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Abstract

The existence of cosmic rays with energies beyond 1020 eV has been known for
over half a century, but understanding their astrophysical origin remains one of
the major unsolved problems in modern astrophysics. Studies of the mass compo-
sition and hadronic interaction properties of cosmic rays can improve our knowl-
edge of the nature of ultrahigh-energy cosmic rays. The mass composition is one
of the key observables to constrain possible astrophysical sources of cosmic rays,
and the study of hadronic interactions at energies far beyond man-made accel-
erators provides fundamental insights into the physics of soft QCD interactions.
However, neither the mass composition nor the interaction cross sections are well
measured at ultrahigh energies, and their estimation typically requires assump-
tions on one of these quantities to determine the other.

In this work, the cross section and mass composition analyses are updated
with the latest data of the Pierre Auger Observatory. The mass composition es-
timation employs a new approach, utilizing the Bayesian Markov Chain Monte
Carlo sampling algorithm.

Avoiding the shortcomings of separate analyses, this work presents a com-
bined approach for the independent and simultaneous self-consistent estimate of
the cosmic-ray composition and hadronic interactions for the first time. A stan-
dard mass composition measurement from the depth of the atmospheric shower
maximum, Xmax, as observed by the Fluorescence Detector of the Pierre Auger
Observatory, is performed under the assumption of the modified proton-proton in-
teraction cross section. Our results suggest that the inferred proton-proton inelas-
tic cross section at ultrahigh energies agrees well with the standard extrapolations
of accelerator data. The cosmic-ray composition determined in this work confirms
earlier estimates. Due to the high statistics of the full Phase I data set of the Pierre
Auger Observatory and the marginalization over the cross section and Xmax scale,
inherent in our novel analysis method, the complex evolution of mass groups with
energy is now known with higher confidence.
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Zusammenfassung

Seit mehr als einem halben Jahrhundert ist die Existenz kosmischer Strahlung
mit Energien jenseits von 1020 eV bekannt. Jedoch bleibt das Verständnis ihres
astrophysikalischen Ursprungs eines der größten ungelösten Probleme der mod-
ernen Astrophysik. Untersuchungen zur Massenzusammensetzung und hadronis-
chen Wechselwirkungen der kosmischen Strahlung können unser Wissen über die
Natur der ultrahochenergetischen kosmischen Strahlung verbessern. Die Massen-
zusammensetzung ist von großer Bedeutung, um mögliche astrophysikalische
Quellen von kosmischer Strahlung einzugrenzen. Die Untersuchung hadronischer
Wechselwirkungen bei Energien weit über denen, die von Menschen gebauten
Beschleunigern erreicht werden können, liefert grundlegende Erkenntnisse über
die Physik der Wechselwirkungen bei der weichen Quantenchromodynamik.

In dieser Arbeit werden die Analysen des Wirkungsquerschnitts und
der Massenzusammensetzung mit den neuesten Daten des Pierre-Auger-
Observatoriums aktualisiert. Zur Schätzung der Massenzusammensetzung wird
ein neuer Ansatz verwendet, der den Bayes’schen Markov-Chain-Monte-Carlo-
Sampling-Algorithmus nutzt.

In dieser Arbeit wird zum ersten Mal ein kombinierter Ansatz für
die unabhängige und gleichzeitige selbstkonsistente Abschätzung der Zusam-
mensetzung der kosmischen Strahlung und der hadronischen Wechselwirkun-
gen vorgestellt, der die Unzulänglichkeiten getrennter Analysen vermeidet.
Eine Standardmessung der Massenzusammensetzung aus der Tiefe des atmo-
sphärischen Schauermaximums, Xmax, wie es vom Fluoreszenzdetektor des
Pierre-Auger-Observatoriums beobachtet wird, wird unter der Annahme eines
modifizierten Proton-Proton-Wechselwirkungsquerschnitts durchgeführt. Un-
sere Ergebnisse deuten darauf hin, dass der abgeleitete inelastische Proton-
Proton-Wechselwirkungsquerschnitt bei ultrahohen Energien gut mit Standard-
Extrapolationen von Beschleunigerdaten übereinstimmt. Die in dieser Arbeit
ermittelte Zusammensetzung der kosmischen Strahlung bestätigt frühere Ab-
schätzungen. Aufgrund der hohen statistischen Aussagekraft des vollständigen
Phase-I-Datensatzes des Pierre-Auger-Observatoriums und der Marginalisierung
über den Wirkungsquerschnitt und die Xmax-Skala, die unserer neuen Anal-
ysemethode inhärent ist, ist die komplexe Entwicklung der Massengruppen mit
der Energie nun mit größerer Sicherheit bekannt.
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Introduction

One of the main open questions of astrophysics and astroparticle physics is the
origin and nature of ultrahigh-energy cosmic rays. These particles are the most
energetic particles known in the universe, and neither the mechanism nor the site
of their acceleration is known. Low-energy cosmic rays are detectable using
various techniques with balloon- or space-borne detectors. However, observing
cosmic-ray particles at the highest energies is only feasible with ground-based de-
tector arrays spanning large areas due to the low flux of ultrahigh-energy cosmic
rays reaching the ground. As primary cosmic-ray nuclei traverse the atmosphere,
they initiate a cascade of interactions, forming extensive air showers composed
of secondary particles. These showers are then detected by arrays of particle de-
tectors, such as the Pierre Auger Observatory and the Telescope Array, which
measure the lateral particle densities at the ground. In addition to particle de-
tectors, these arrays are equipped with fluorescence telescopes to detect the light
emission resulting from the collisions of cosmic ray particles with atmospheric
nitrogen molecules and thus to directly observe the longitudinal development of
the air shower.

The atmospheric depth at which the number of particles in a shower reaches
its maximum, Xmax, is an observable which is very sensitive to the cosmic-ray
mass composition and the characteristics of hadronic interactions during the de-
velopment of the extensive air shower in the atmosphere. The shower maximum
carries information about the type of nuclei that initiated the shower, as it is pro-
portional to the logarithm of the mass of the primary particle. At the same time,
Xmax is also determined by the depth of the first interaction in the atmosphere,
which is directly related to the interaction cross section of the particle initiating
the shower with the air. However, neither the mass composition nor the interaction
cross sections are well measured at ultrahigh energies, and their estimation typi-
cally requires some assumptions on one of these quantities to determine the other.
Currently, the standard analysis, estimating the mass composition of cosmic rays
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0. Introduction

at ultrahigh energies, relies on the accuracy of the existing hadronic interaction
models. On the other hand, to estimate the particle interaction cross sections, the
current analyses assume a specific composition to interpret the data.

The main focus of this thesis is to measure the cosmic-ray mass composition
and the proton-proton interaction cross section. Rather than performing sepa-
rate analyses that depend on each other’s results, a new approach for estimating
both the cosmic ray mass composition and proton-proton interaction cross section
simultaneously and independently is presented. The measurement of the mass
composition of cosmic rays is of great importance for understanding their astro-
physical nature and the mechanisms responsible for the acceleration to ultrahigh
energies, and the estimation of the interaction cross sections provides us with a
window to probe the interaction properties at energies beyond the reach of exist-
ing accelerator experiments.

After a brief introduction to cosmic rays, hadronic interactions, and the
Pierre Auger Observatory, a new approach to fitting the mass composition using
Bayesian inference with the Markov Chain Monte Carlo algorithm is discussed.
Extensive tests were conducted to assess the performance of the method across
various composition scenarios and to investigate its sensitivity to the different fit
ingredients. The fractions obtained from the fit to the full Phase I data of the Pierre
Auger Observatory are compared under the assumption of the different hadronic
interaction models and for varying numbers of particle species in the mixture. Ad-
ditionally, the limits on the fraction of protons and photons, and the cosmic-ray
rigidity are calculated.

Next, a method for rescaling the cross section of proton-proton interactions is
discussed, and the effect of the corresponding modifications on the Xmax distribu-
tion is analyzed. The latter is crucial for a mass composition fit under the assump-
tion of modified interaction properties. In such a way, it is possible to perform
a standard mass composition estimation for the range of modified cross sections
and estimate the best-fit combination of the studied variables. Additionally, the
Xmax scale is treated as another fit parameter to account for both systematic uncer-
tainties in the data as well as the theoretical uncertainties associated with particle
production in air showers. Afterwards, the performance of the combined approach
is assessed, and the level of bias in the fit results is calculated.

Finally, the mass composition and cross section fit is applied to recent data of
the Pierre Auger Observatory. The cosmic-ray mass composition, proton-proton
interaction cross section, and a shift in the Xmax scale are estimated, and the
physics implications of the obtained values are discussed.
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Chapter 1

Cosmic rays and extensive air
showers

The observed characteristics of cosmic rays play a crucial role in describing the
cosmic environment. Studies of the properties of cosmic rays are essential for de-
scribing the interstellar medium as cosmic rays affect the abundances of the iso-
topes of the light elements and ionize the interstellar atoms and molecules through
their numerous interactions with interstellar matter [1]. Furthermore, cosmic rays
may also play an important role in galaxy formation and evolution, for example,
by affecting star formation, through the feedback mechanism [2]. Data from cos-
mic ray experiments provide insights into the origin and composition of particles
at the highest observed energies, as well as fundamental information about the
physics behind their acceleration and propagation through astrophysical plasmas.

1.1 Galactic and Extragalactic cosmic rays

Cosmic rays cover a wide range of energies [3], from 107 eV over 1020 eV. Since
the discovery of cosmic rays, a number of different techniques have been used
to measure the flux of particles at each energy, which, displayed as a function of
energy, gives a cosmic ray energy spectrum.

The energy spectrum of cosmic rays is well described as a steeply declining
power law over more than ten decades in energy:

dN
dE

∼ Eγ , (1.1)
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1. Cosmic rays and extensive air showers

where γ denotes the spectral index. The spectrum is shown in Fig. 1.1, where the
top points are all-particle cosmic-ray spectrum. The fluxes of neutrinos, electrons,
positrons, and γ-emission are also displayed.

The spectrum is relatively featureless, with several breaks resulting in changes
in the power-law slope. Below ∼20 GeV, the flux of Galactic cosmic rays is modu-
lated by the magnetic field in the solar-wind plasma [4]. The three transition points
in the spectrum define three energy intervals. The first hardening of the spectrum,
resulting in the change of the spectral index from γ ≈ −2.7 to γ ≈ −3.0 is ob-
served around 3 PeV. It was discovered in 1958 by Kulikov and Khristiansen [5]
and is usually referred to in the literature as the knee. As shown by the KASCADE
experiment, the measured steepening of the total particle spectrum may reflect the
decrease in the flux of the light elements[6]. The origin of this hardening remains
an open question, and there is a wide range of possible theories explaining the
observed feature (see [7] for an overview). One of the first explanations for the
PeV hardening was the cut-off in the rigidity1 of the sources, producing the bulk
of cosmic rays below 1015 eV [8]. In general, theories explaining the origin of
the knee in cosmic-ray spectra can be divided into several groups [9, 10]. The
so-called astrophysical models relate the break in the spectrum to changes in the
source acceleration and/or propagation in the interstellar medium. Another class
of models attempts to explain the steepening of the spectrum due to changes in
particle interactions with increasing energy [11] but is disfavoured since

√
s is

less than LHC center-of-mass-energy in Galactic cosmic rays. The origin of the
knee could also be attributed to the assumption of the spectrum and composition
of primary cosmic rays. One of the most promising and well-studied scenarios
for the origin of the knee is based on the maximum energy achievable by diffu-
sive shock acceleration in supernova remnants, which is believed to be the main
acceleration process for Galactic cosmic rays [12]. Other common explanations
are, for example, an increase in the escape of cosmic rays from the galaxy due
to changes in the diffusion properties of charged particles [13] or the collective
reacceleration of cosmic-ray particles originating from the Galactic disk by the
Galactic wind [14]. In addition, some studies suggest that interactions with the
interstellar medium may be responsible for the spectral break.

Around 20 PeV, some hardening in the spectrum has recently been observed,
with a change in the spectral slope to γ ≈−2.9 [16, 17], followed by a softening
in a spectrum at ≈ 1017 eV [18, 16, 19, 20, 21, 22], with a spectral slope above

1The rigidity of a particle with charge Z e and momentum p (energy E) is R = pc/(Z e) ≃
E/(Z e)
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text. Figure from [15].

13



1. Cosmic rays and extensive air showers

the break of γ ≈−3.3. It is referred to in the literature as the second knee, or the
iron knee, marking the rigidity cut-off for the Galactic iron [23, 24, 25].

At around 1018.5 eV, there is a hardening in the cosmic ray spectrum known
as the ankle [26, 20, 27] with a change in the spectral index to ≈ -2.6 [28, 29].
One of the standard interpretations for the break at EeV energies is known as the
ankle model for the transition from the soft Galactic to the harder extragalactic
component of the cosmic ray flux (see, e.g., [30, 31]). Within this model, the
fluxes of both Galactic and extragalactic cosmic rays become equal at the onset
of the cosmic ray ankle, suggesting the need for the existence of an additional
Galactic component [32] that is accelerated to energies beyond the maximum en-
ergy predicted by the Standard Model. The ankle model assumes that extragalactic
cosmic rays dominate the flux above the ankle. At the same time, the Galactic cos-
mic rays below the break are dominated by the heavier nuclei, i.e. iron. The latter
one, however, contradicts the measurements of the average depth of the shower
maximum observed by HiRes [33] and the Pierre Auger Observatory [34], which
suggest that cosmic rays are primarily composed of lighter nuclei not only above
but also below the ankle within the 1-5 EeV range.

Alternatively, the transition between the Galactic and extragalactic cosmic-ray
components could be characterized by the dip model [35, 36]. In the dip model,
the transition starts at the second knee and lasts until the e+e− pair production
dip above 1 EeV, caused by the energy losses due to the interactions of the extra-
galactic protons with cosmic microwave background photons. In the context of
the dip model, there is a transition from heavy to light between 0.1 and 1 EeV,
whereas above the dip energy, an extragalactic component dominated by lighter
nuclei is anticipated. This agrees with composition measurements in the dip re-
gion but disagrees with the Pierre Auger Observatory results above 4 EeV [36].
The transition from Galactic to extragalactic cosmic rays can also be explained
within the mixed composition model [37, 38]. In the mixed model, the composi-
tion above the ankle is assumed to be a mixture of different nuclei. At the same
time, the Galactic cosmic rays at the end of their spectrum are dominated by iron.
Depending on the chosen model parameters, the transition may occur either at the
ankle or at the energy below it. In the latter case, there might not be a need for an
additional Galactic component beyond what is predicted by the Standard Model
of Galactic cosmic rays. Nonetheless, in the majority of mixed composition mod-
els, the composition remains predominantly proton-dominated up to ≈ 50 EeV,
thus failing to explain the mixed composition reported by the Pierre Auger Obser-
vatory at E > 10 EeV. A potential way around this could be an assumption of the
enhanced abundances of heavier nuclei, exceeding the current expectation for the

14



1. Cosmic rays and extensive air showers

source composition [39]. At the end of the all-particle spectrum, the suppression
of the cosmic ray flux has been seen in the data of different experiments (see, e.g.,
[27, 40, 41, 42]). This steepening observed at E ⪆ 5 ·1019 eV is consistent with the
so-called GZK-cutoff predicted by Greisen, and Zatsepin and Kuzmin [43, 44].
They discovered that cosmic-ray particles lose energy when interacting with the
cosmic microwave background (CMB). The interaction is happening through the
∆-resonance, resulting in the production of pions:

p+ γCMB → ∆
+ → p+π

0 (1.2)

or
p+ γCMB → n+π

+ (1.3)

The pions and neutrons produced by the ∆ resonance then decay into very
high-energy photons and neutrinos. Because of this energy loss, which amounts
on average to 20%, the distance a proton with an energy above 1020 eV can travel
is limited by about 100 Mpc. Therefore, the detection of protons with energies
above 1020 eV would imply either a propagation distance smaller than the GZK
volume or the existence of particles with much higher energies [45]. If heavier
nuclei dominate at ultrahigh energies, the interaction of cosmic rays with CMB
photons would occur via the giant dipole resonance leading to an energy loss
length that is similar to the one of protons for iron nuclei, and even smaller for
intermediate-mass nuclei. However, it is not entirely clear whether the observed
suppression is a definitive confirmation of the GZK cutoff or is due to the proxim-
ity to the maximum limit to which cosmic sources can accelerate particles [46, 47].

1.2 Development of extensive air showers in atmo-
sphere

Due to the low flux of ultrahigh-energy cosmic rays, they cannot be observed di-
rectly in space, but are detected indirectly by studying the particle cascades they
produce in the atmosphere. As cosmic rays pass through the atmosphere, they un-
dergo a series of interactions with atmospheric molecules. These interactions lead
to the formation of cascades of secondary particles that evolve both longitudinally
and laterally, see Fig. 1.2. The majority of the secondary particles produced are ei-
ther charged or neutral pions, the latter of which rapidly decay into photons. The
photons can then convert into electron-positron pairs, and more photons can be
produced by bremsstrahlung of high energy electrons and positrons. The charged
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1. Cosmic rays and extensive air showers

Figure 1.2: Example of the average lateral (left) and longitudinal (right) profiles
of the vertical air showers simulated with CORSIKA for a proton primary at 1019

eV. Figure from [48].

pions have a longer lifetime, so they undergo numerous interactions before finally
decaying into neutrinos and muons, the latter of which are detected at ground
level.

1.2.1 Heitler model for electromagnetic cascades
The development of electromagnetic air shower cascades can be qualitatively well
described by a simple splitting developed by Heitler [49] and Carlson and Oppen-
heimer [50].

The electromagnetic particles entering the atmosphere are subjected to pair-
production and bremsstrahlung. After traversing the splitting length of d = λr ln2,
where λr is the radiation length of about 37 g/cm2, the electron undergoes one-
photon bremsstrahlung. Half of the electron’s initial energy is then lost to the
photon produced. The splitting of the photon after it has traveled the same mean
free path d occurs via the pair production process, with the energy split equally
between the outgoing electron and positron. Therefore, the number of secondary

16



1. Cosmic rays and extensive air showers

particles doubles for each splitting length. Fig. 1.3 (left) shows a schematic rep-
resentation of the evolution of the electromagnetic air shower for the first n = 4
splittings. The cascade process stops when the energy per particle reaches critical
energy ξ c

e , below which the ionization energy losses exceed the radiation losses,
and no splitting is possible. In air, the critical energy is 85 MeV. Thus, the Heitler
profile can be written as

N(X) =

{
2X/d if X ≤ nc

ed;
0 if X > nc

ed,
(1.4)

where nc
e is the maximum number of iterations at which the critical energy is

reached:

nc
e ln2 = ln(E0/ξ

c
e ). (1.5)

The depth X (EM)
max = nc

ed corresponds to the point at which the maximum num-
ber of secondary particles in the cascade, Nmax = E0/ξ c

e , is reached. Thus, the
maximum number of particles in the shower is directly proportional to the initial
energy, and the depth at which the shower reaches its maximum is logarithmically
dependent on the initial energy of the particle initiating the shower:

Nmax ∼ E0

Xmax ∼ lnE0.
(1.6)

Although the Heitler model provides a very simplified description of the evo-
lution of electromagnetic cascades, it gives good qualitative agreement with the
predictions from air shower simulations, and the estimated Xmax is not contra-
dicted by the calculations from the cascade equations describing the propagation
of the cosmic-ray showers in the atmosphere [52]. However, the number of elec-
trons predicted by the Heitler model, Ne =

2
3Nmax, exceeds the actual number [7],

leading to an overestimation of the electron/photon ratio. This occurs because the
model is unable to account for all the intricacies involved in the development of
an air shower, such as the simultaneous emission of the multiple bremsstrahlung
photons or the ranging out of electrons and positrons. A straightforward correc-
tion for this overestimation is a correction factor in the denominator, the specific
value of which depends on the characteristics of the detector being considered.
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1. Cosmic rays and extensive air showers

Figure 1.3: Schematic view of the development of the air shower cascade. Left:
an example of a photon-induced electromagnetic shower. Right: an example of
a proton-induced hadronic shower. In the electromagnetic shower, wavy lines
represent photons. In the hadronic shower, dashed lines correspond to neutral
particles, and solid lines to charged particles. Figure from [51].

1.2.2 Heitler-Matthews model for hadronic cascades

The development of hadron-induced cascades (see Fig. 1.3 (right)) is far more
complicated than electromagnetic showers due to the numerous particle decays
and the complexity of the hadronic multiparticle productions. Although it is pos-
sible to write a set of cascade equations for hadron-induced showers, it is not
feasible to find their analytical solution. However, just like for the electromag-
netic showers, the development of the hadron-initiated cascades can also be ex-
plained using a framework similar to the Heitler model. An approximation for
the hadronic cascades was established by Matthews [51] and is referred to as the
Heitler-Matthews model.

After the proton enters the atmosphere and travels the distance λi ln2, where
λi is the interaction length of a particle, it interacts with an air nucleus. For pions
with energies of 10 - 1000 GeV, the interaction length in air is λi ≈ 120 g/cm2.
After each interaction ntot new particles are created, each with an energy E/ntot,
of which two-thirds are charged particles (charged pions, π±) and one-third are
neutral particles (neutral pions π0) [48]. Due to the isospin symmetry, neutral
pions immediately decay into two photons, triggering electromagnetic showers.
The charged pions continue to interact with air nuclei, each time passing through
another layer of the atmosphere with a thickness of λi ln2. The multiplications of
particles stop when the energy of a pion falls below a critical energy ξ π

c , which

18



1. Cosmic rays and extensive air showers

happens when the interaction length becomes greater than the decay length of
pions in air. At this point, the pion undergoes decay, producing a muon and a
neutrino. After the n interactions the total number of charged pions will be Nπ =
nn

ch = (2/3ntot)
n with a total energy of

E tot
π =

(
2
3

)n

E0. (1.7)

The remaining energy would go into the electromagnetic component:

E tot
EM =

[
1−
(

2
3

)n]
. (1.8)

The energy per single pion is then

Eπ =
E0(3

2nch
)n . (1.9)

Note that the pion multiplicity is assumed to be constant throughout the cas-
cade evolution, whereas it has been shown that, similarly to the accelerator mea-
surements for pp and pp collisions with multiplicity evolving as ∼E0.2, the multi-
plicity in pion-air interactions also slowly increases with energy [53]. The leading
hadron fragments are not taken into account in the calculations as well.

From Eq. 1.9, one can calculate the critical energy and the number of colli-
sions needed to reach it (see [51]). Assuming that the shower was initiated by a
particle of 1015 eV and that the multiplicity of charged particles in the pion-air
interaction is nch = 10 (so there are five neutral pions and a total of 15 new par-
ticles created after each interaction), after four interactions the energy per pion
would be Eπ = 20 GeV. Since at this energy the decay length of the charged pion
is around 1 km, and the distance between the beginning and end of the fourth at-
mospheric layer, obtained from the exponential atmospheric profile, is about 1.8
km, the probability of decay would exceed the probability of the next interaction.
Therefore, the corresponding critical energy would be the energy after four inter-
actions ξ π

c = 20 GeV as discussed above. Generally, the critical energy decreases
with an increase in the initial energy. The number of interactions the pion will
undergo before reaching the critical energy can be calculated as

nc =
ln[E0/ξ π

c ]

ln
[3

2nch
] = 0.85lg

[
E0

ξ π
c

]
, (1.10)
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1. Cosmic rays and extensive air showers

For showers initiated by primary particles with energies between 1014 and
1017 eV, the critical energy would be in the 10-30 GeV range, and nc would take
values between 3 and 6.

The number of muons produced after the critical energy of pions is reached:

Nµ = Nπ = nnc
ch =

(
E0

ξ π
c

)β

, (1.11)

where the β parameter is

β =
lnnch

ln 3
2nch

, (1.12)

so it depends only on nch and varies between 0.85 and 0.92 [53], resulting in a
little less than linear increase in the number of muons with energy. For the case
nch = 10, as assumed above, β is approximately 0.85. At the end of the cascade,
all the primary energy is transferred to the electromagnetic component and the
muons:

E0 = ξ
π
c Nmax +ξ

π
c Nµ . (1.13)

This expression is a reflection of the conservation of energy. Considering that the
number of electrons is Ne = Nmax/g, where g is a correction factor taking into
account the detector properties when comparing the estimated electron number to
the measured value, it can be re-written as

E0 = 0.85GeV(Ne +24Nµ). (1.14)

Based on the primary type, the energy distribution between the electromag-
netic and muonic components would be different. Since Eq. 1.14 shows only a
linear dependence on the number of muons and electrons, the initial energy can
be easily determined if both these quantities are measured.

The depth of the shower maximum in a hadronic cascade can be expressed by
considering the first generation n = 1 of electromagnetic subshowers [48]:

Xmax ≈ λi +λr ln
E0

2ntotξ c
e
= λi +λr ln

E0

3nchξ c
e
= λi +X γ

max −λr ln[2nch]. (1.15)

Adding the higher hadronic generations would not change the structure of
Eq. 1.15, but for an accurate estimate of Xmax, it is essential to account for all
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1. Cosmic rays and extensive air showers

Figure 1.4: Decomposition of the observed Xmax distribution. The Xmax distribu-
tion can be represented as a convolution of the distribution of the depths of the first
interaction point, X1, and of the difference ∆X1 = Xmax −X1. Figure from [54].

generations of the cascade from their origin points, as well as the influence of the
leading particle. Utilizing Eq.1.15 would typically result in an underestimation of
Xmax by approximately 2λi [51]. The elongation rate for the hadronic shower is
then

λ = λ
γ +

d
dlgE0

[
λi ln2−λr ln(3nch)

]
. (1.16)

Therefore, the elongation rate for the hadron-initiated shower will differ from
the electromagnetic elongation rate by the factor depending on the multiplicity nch
and hadronic interaction length λi: the hadronic elongation rate will be smaller
for larger nch and will increase with increase in λi. For protons, the calculations
result in λ p = 58 g/cm2, which is smaller by 27 g/cm2 than the electromagnetic
elongation rate.

The depth Xmax can be decomposed into the distribution of the depths of the
first interaction, X1 and the ∆X1 = Xmax −X1, see Fig. 1.4. From this, the original
X1-distribution can be derived from the measured Xmax and ∆X1 = Xmax −X1 ob-
tained from the air shower simulations. The average depth of the first interaction,
⟨X1⟩ is equal to the interaction length λi.

By knowing the depth of the first interaction point in the air, it is possible to
estimate the corresponding particle interaction cross section. For the interaction
of protons in the atmosphere, X1 is distributed as [55]

dp
dX1

=
1

λp−air
e−X1/λp−air , (1.17)
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1. Cosmic rays and extensive air showers

So, if the distribution of the depth of the first interaction point in air is measurable,
it is possible to compute λp−air. The proton-air cross section is then

σp−Air =
⟨mAir⟩

λi
, (1.18)

where the mean mass of air is ⟨mAir⟩ ≈ 14.45mp and λi then has a meaning of the
interaction length of protons in air.

The above derivations are specific to the basic scenario where the primary
particle is a proton. In the case of the nucleus with atomic mass A > 1, the so-
called superposition model can be applied, where each nucleus with energy E0 and
is treated as A single nucleus with energy E0/A initiating A independent showers.
Accordingly, the predictions for the number of electrons and muons and for the
depth of the shower maximum can be generalised by replacing E with a reduced
energy E0/A:

NA
µ = Np

µA1−β , (1.19)

XA
max = Xp

max −λr lnA. (1.20)

where the superscript (p) refers to the expression derived for the proton-initiated
hadronic shower. Therefore, both the number of muons and the depth at which
the air shower reaches its maximum will depend on the primary nucleus. For the
same primary energy, heavier nuclei will produce more muons. The depth of the
shower maximum will be shallower. It is, therefore, possible to use the measured
Nµ and Xmax to distinguish between the showers initiated by the different nuclei
primaries and by measuring Xmax and E, lnA can be obtained.

1.3 Hadronic interaction models

The energies of cosmic rays cover a wide range, well beyond the maximum energy
achievable by existing collider facilities such as the Large Hadron Collider (LHC)
at CERN. In addition, most of the interactions in the air shower take place in the
forward region, e.g. with pseudorapacities of η > 5, while most accelerators are
designed to be sensitive to the intermediate range, and it is technically challenging
to study forward particle production. Both factors pose significant difficulties for
studying particle interactions in EAS with existing collider experiments. Thus,
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1. Cosmic rays and extensive air showers

the interpretation of cosmic ray measurements at ultrahigh energies must rely on
extrapolations from data obtained at lower energies.

Several Monte Carlo generators have been developed and used to model the
hadronic interactions in EAS cascades and predict air shower observables. Since it
is currently impossible to characterize the soft hadronic interactions in air showers
from the first principles, the existing hadronic interaction models are phenomeno-
logical and utilize the effective theory approach. The most frequently used high-
energy models are EPOS-LHC [56], QGSJETII [57], and Sibyll [58, 59]. The
recent versions of these models belong to the post-LHC generation of hadronic
interaction models, which means they have been fine-tuned and re-parameterized
based on data obtained from experiments at the LHC. In air shower simulations
with Monte Carlo codes such as CORSIKA [60] or CONEX [61], in addition to
high-energy interaction models, low-energy interaction models are also included
to account for interactions below 200 GeV. Some commonly used low energy
models are for example FLUKA [62] and UrQMD [63]. Since the main interest
of this work is the cosmic ray data at the highest energies, and the studied ob-
servables are not affected by the choice of the low-energy model, only the main
features of the high-energy models and the implications of the differences between
them for the interpretation of the cosmic ray measurements are discussed.

1.3.1 High-energy models
All high-energy interaction models are generally based on the Gribov-Regge field
theory (GRFT) [64]. In GRFT, multiple hard and soft particle interactions oc-
cur simultaneously, involving the exchange of microscopic parton cascades, each
treated as an emission of the effective color-neutral object called Pomeron [65].
Within the GRFT framework, parton cascades are considered to have both pertur-
bative and non-perturbative parts.The amplitude of the Pomeron can be analyzed
in two different ways: one approach, referred to as the soft+hard approach, con-
siders it as a combination of pure hard and soft components, while the other ap-
proach treats it as a convolution of these two components (known as the semi-hard
approach) [66]. Within the semi-hard approach, a general Pomeron (Parton lad-
der) is assumed, consisting of the purely phenomenological soft component and a
hard or semi-hard component with the perturbative part parameterized following
the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) formalism [67]. This
approach is implemented in both the EPOS-LHC and QGSJETII models. In the
context of the EPOS-LHC model, an additional mechanism for particle produc-
tion exists, which involves the decay of off-shell remnants [68]. In the central
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1. Cosmic rays and extensive air showers

collisions involving hadrons and nuclei at very high energies, high parton den-
sities are achieved, leading to substantial nonlinear corrections to the interaction
dynamics, such as screening and saturation. In the EPOS-LHC model, the non-
linear effects due to Pomeron-Pomeron interactions are treated via the modified
amplitude tuned to reproduce the observed cross section and multiplicity data [69].
On the other hand, in the QGSJETII model, the non-linearities are explicitly de-
scribed in individual hadronic and nuclear collisions using an enhanced Pomeron
diagram [70].

The Sibyll hadronic interaction model and an older DPMJET model [71] take
a different approach toward the treatment of the particle interactions. They com-
bine the minijet approach [72] commonly found in Monte Carlo generators used
in collider physics, together with some aspects of GRFT. In the Sibyll model, an
energy-dependent transverse momentum cutoff separates the hard and soft interac-
tion regions, allowing the high-density phase space to be avoided. The cutoff also
takes into account the nonlinear effects. Above the cutoff, the cross sections for
the production of parton jets can be calculated using QCD. In the initial versions
of the Sibyll model, it allowed for the possibility of multiple hard interactions with
only one soft interaction. However, starting with the Sibyll 2.1 version [73], the
range of phase space for soft interactions has been extended, permitting multiple
soft interactions as well.

While all these models share a common conceptual framework, their different
approaches to the underlying physics of hadronic interactions result in different
predictions for cosmic-ray observables and varying degrees of agreement with the
LHC data. Significant differences are present not only between different mod-
els but also between different versions of a single model. The choice of either
the semi-hard or minijet approach has a direct impact on the predictions for pa-
rameters such as elasticity (the largest energy fraction carried by the leading par-
ticle) and pseudorapidity (the measure of a particle angle relative to the beam),
with Sibyll 2.3d and QGSJETII-04 having a narrower pseudorapidity, resulting in
some disagreement with LHC data in the TeV region [74]. For cosmic-ray en-
ergies up to about 100 TeV, the variation in multiplicity predictions between all
models is minimal. However, as energies exceed the TeV range, there is a differ-
ence in multiplicity of up to 20-30% between the different models for p-air and
π-air interactions.

Since all the recent models are tuned to the latest LHC measurements, they de-
scribe the proton-proton cross sections measured at the accelerator facilities well.
Moreover, beyond the LHC limit, the differences in the predictions of different
models are minor, as can be seen in Fig. 1.5 (bottom), where the proton-proton
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1. Cosmic rays and extensive air showers

cross sections from the air shower simulations with the discussed MC genera-
tors are compared with the results from the collider experiments (see for refer-
ence [75, 76, 77, 78, 79, 80]) and with the measurement from the Pierre Auger
Observatory.

A tendency similar to the change in the multiplicity with energy can be seen
in the inelastic proton air and pion air interactions cross sections. For instance,
up to the energies reached at the LHC, all the models accurately reproduce ac-
celerator data and show no substantial difference. However, when extended to
extrapolated energy ranges, the predictions of different models begin to diverge.
Fig. 1.5 (top) shows the predictions from air shower simulations with different
models in comparison to cosmic-ray data. The most significant difference is be-
tween the two versions of the Sibyll generator, Sibyll 2.1 and Sibyll 2.3d models,
where the former produces cross sections that are approximately 10-15% larger
than the predicted by the earlier version. Since in the Sibyll MC generator the
proton-air cross sections are calculated based on the proton-proton cross sections
via the Glauber formalism [81], the decrease in the proton-air cross sections in the
Sibyll 2.3d model is partly due to the smaller proton-proton cross sections. Due to
the smaller proton-proton cross sections, there is some additional reduction in the
proton-air cross section. This reduction is due to the inclusion of inelastic shield-
ing, where a particle’s electric charge is shielded by surrounding particles, which
was omitted in the earlier Sibyll version. The proton-air cross sections calculated
with the EPOS-LHC model fall between the Sibyll 2.3d and Sibyll 2.3c extrapo-
lations, and a minimal difference is present between the predictions obtained with
Sibyll 2.3d and QGSJETII-04 models for proton air production cross sections.

The differences between the models in the description of the cascade evolution
and the predictions of the interaction properties are also reflected in the estimated
depth of the maximum air shower. The depth of the shower maximum Xmax is
primarily determined by the position of the first interaction, and is also influenced
by other factors such as diffraction, multiplicity, and elasticity. Consequently, one
can expect the corresponding changes in Xmax due to the variations in these fac-
tors. Fig. 1.6 (left) shows the difference in the average Xmax for pure proton and
iron showers between the different models. Overall, the shift between all mod-
els is nearly constant with energy. The smallest and the largest ⟨Xmax⟩ values are
obtained from the simulations with the QGSJETII-04 and Sibyll 2.3d models, re-
spectively. Sibyll 2.3d is about 20-25 g/cm2 deeper than QGSJETII-04 and also
10 g/cm2 deeper than EPOS-LHC, leading to an interpretation of the data towards
a heavier composition. Additionally, Sibyll 2.3d provides the largest discrimina-
tion between proton and iron showers. The increase in ⟨Xmax⟩ predicted by the
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Figure 1.5: The evolution of the proton-air and proton-proton production cross
section with energy. Top: predictions of the proton-air interaction cross section
compared to measurements with EAS experiments. Figure from [59]. Bottom:
predictions of the proton-proton interaction cross section compared to measure-
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latest version of Sibyll is attributed to the larger interaction length, smaller multi-
plicity, and larger elasticity for the proton interactions in air [59]. The differences
in the mean fluctuations of Xmax, σ(Xmax), are shown in Fig. 1.6 (bottom). The
QGSJETII-04 and Sibyll 2.3d predictions are once more two extremes, with the
difference between them of ≈ 20 g/cm2. Apart from Sibyll 2.3d, other models
discussed in this chapter predict roughly the same fluctuations, with ∆σ(Xmax)
on the order of a few g/cm2. In the case of the iron shower, the σ(Xmax) shows
relatively little sensitivity to the choice of model and does not exceed 10 g/cm2,
with EPOS-LHC having the smallest σ(Xmax).

The number of muons at the ground level Nµ is susceptible to the properties
of the hadronic interactions and, therefore, differs between models. Muons are
produced by decaying hadrons at the very end of the cascade development. There-
fore, the number is mainly affected by the secondary particle multiplicity and the
baryon production rate, with about 30% more muons produced in subshowers ini-
tiated by baryons [48]. A higher multiplicity and a higher baryon production rate
would have the effect of increasing the number of muons at ground level. As
mentioned above, the number of muons is also significantly affected by the type
of primary particle that initiates the air shower. With an increase in the particle’s
mass initiating the shower, more muons are expected to be produced.

In general, the prediction of the number of muons is consistent across all post-
LHC models. However, none of them aligns with the observed number of muons
recorded by various cosmic-ray experiments, such as the Pierre Auger Observa-
tory [85, 86], Telescope Array [87], and IceCube Observatory [88], resulting in
too few muons predicted in these models. This discrepancy between the predic-
tions from the air shower simulations and the cosmic ray data starts above 1016 eV
and increases linearly with the logarithm of primary energy, reaching 30% - 60%
at 1019 eV. It can be noted that some other experiments, such as EAS-MSU [89]
and KASCADE-Grande, do not report any muon deficit. There is also no discrep-
ancy between the simulations and measurements of the Yakutsk EAS array [90],
except for some decrease in the muon density observed for the inclined showers
at ≈ 1019 eV in the latest data [90]. These differences might be related to differ-
ent muon energy thresholds and zenith angle ranges for which these results were
reported.

The existence of the muon deficit, also known as the Muon Puzzle, suggests
that there are some shortcomings in the existing models of hadronic interactions.
Numerous studies have attempted to explain and solve the discrepancy, but have
yet to be successful so far, see [91, 66] for discussion on the various attempts to
resolve the Muon Puzzle. The observed effect is assumed to originate from soft-
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QCD interactions, given that the infrequent occurrence of hard scatterings leading
to the production of new heavy particles is insufficient to account for the differ-
ences. Given the strong sensitivity of the muon count to the fraction of energy
carried away by electromagnetic component, a reduction in this fraction would
release more energy available for muon production and thus lead to an increase
in the number of muons [66]) at the end of the cascade. While preserving con-
sistency with data for other air shower observables, the desired effect may be
achieved by reducing the π0 fraction. The decrease in the secondary pion fraction
may be attributed to collective hadronization, a consequence of the formation of
quark-gluon plasma blobs [92, 93]. Given the early onset of the deficit, there is po-
tential to investigate the problem in the high-energy hadron collisions at the LHC.
In the recent ALICE data, an increase in the strangeness production was mea-
sured at medium rapidities [94], providing a potential lead in resolving the Muon
Puzzle. It has been demonstrated in [95] that an empirical toy model constructed
based on the ALICE measurements can address the muon deficit issue. It is im-
portant to note that, generally, none of the existing interaction models provides
sufficient agreement with the observed trends in hadronic interactions according
to the ALICE data. Further constraints on multi-hadron production can be gained
from forward neutrino flux measurements at FASERν [96], and new experiments
at the Forward Physics Facility (FPF) [97].

1.3.2 Modified hadronic interactions
As outlined in the previous section, the development of extensive air showers is
highly sensitive to the properties of hadronic interactions at ultrahigh energies.
Specifically, key factors include the inelastic cross section for hadrons in air, the
hadron multiplicity, elasticity, and the ratio of electromagnetic to hadronic energy
flow [98]. The change in these properties could have a significant impact on the
prediction of the observables of the air shower and on the interpretation of the
cosmic ray data. The effects of modifications in hadronic interactions have been
extensively studied and addressed in various works, such as the analyses con-
ducted by R. Ulrich et al. [99] and J. Blazek et al. [100, 101]. Such works also
address the issue of whether the discrepancies among existing interaction models
can be used as uncertainties in our understanding of the hadronic interaction mod-
els, particularly assessing whether they exceed the actual systematic uncertainties
or are too limited in scope to cover all possibilities. The key findings of the studies
on the modified properties of hadronic interactions are briefly summarized below,
given their high relevance to the subject of this thesis.
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In the work by Ulrich et al. [102], the individual properties of hadronic inter-
actions are modified by an energy-dependent factor:

f (E, f19) = 1+( f19 −1)F(E), (1.21)

where

F(E) =

{
0 if E ≤ Etr;

lg(E/Etr)
lg(1019eV)/Etr

if E > Etr,
(1.22)

The factor is defined in such a way that is equal to 1 below the threshold energy Etr,
where the model predictions are tuned to the LHC data. Beyond the threshold en-
ergy, deviations from the properties defined by the model increase logarithmically,
reaching a value of f19 at 1019 eV. These modifications were implemented into the
CONEX air shower program to investigate the impact of deviations from the origi-
nal model on the observables of extensive air showers (EAS). The factor f (E, f19)
is evaluated after each hadronic interaction within the cascade. If its value devi-
ates from unity, the properties of individual secondary particles are altered using
the resampling algorithm. These modifications have been implemented in the
Sibyll generator, and since it is a semi-superposition model, the same resampling
algorithms can be applied to showers initiated by any nuclei [103], taking into
account the energy scaling with the atomic mass number E = E0/A, where E0 is
the total energy of the projectile nucleus. The cross sections for nucleus-air in-
teractions, calculated within the framework of the modified hadronic interaction
model, are linked to the corresponding nucleon-air (proton-air) interaction cross
sections through Glauber theory [81].

Figs. 1.7 and 1.8 show the effect of the rescaled interaction properties, such
as production cross section, multiplicity, and elasticity, on the predictions of air
shower observables for proton and iron primaries, respectively. As can be seen
from the plot, the modification in the inelastic cross section has the largest effect
on the depth of the maximum air shower development, e.g. on the mean ⟨Xmax⟩
and standard deviation σ(Xmax). The change in the cross section by 50% may re-
duce or increase (depending on the direction of the change) the predictions for the
⟨Xmax⟩ by more than 100 g/cm2 for proton-initiated shower and by more than 40
g/cm2 for iron-initiated showers. For the fluctuations of Xmax, significant changes
are only observed for primary protons when the cross section is reduced, leading
to an increase in the standard deviation of more than 100 g/cm2 for a cross sec-
tion twice as small. When the cross section is 50% larger than predicted by the
unmodified model, there is only a small decrease in the fluctuations of about 10
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g/cm2, with no sensitivity to further increases in the cross section value. Regard-
ing iron, the changes in the standard deviation are nearly symmetrical for both the
decrease and increase in the cross section within the rescaling parameter range,
resulting in a change of 3-4 g/cm2 compared to the predictions from simulations
with standard Sibyll cross sections. The elasticity and multiplicity also impact
the predictions for Xmax, mainly affecting the ⟨Xmax⟩ with less dependence in the
Xmax fluctuations than for the changes in the cross sections. The decrease in mul-
tiplicity leads to more deep showers with a rate close to the effect of the change
in cross sections within a narrow range of f19 values close to the original model.
As the evolution in Xmax with the multiplicity becomes more complicated than a
negative logarithmic function for a larger significant deviation from the standard
cross section values, the dependence starts to behave more like an inverse func-
tion with the further increase/decrease in f19. Elasticity has an effect opposite to
the multiplicity on ⟨Xmax⟩, resulting in shallower showers for larger values. For a
rescaling factor twice as large, the increase is around 30-40 g/cm2 for both primary
protons and iron. While the standard deviation shows no dependence on varying
the multiplicity, increasing the elasticity would also result in larger fluctuations.
However, as the elasticity becomes less than the original mode, the sensitivity of
Xmax to the changes in the elasticity gradually decreases, with almost no effect on
the Xmax fluctuations for f19 below unity.

In addition to the effect on the depth of the maximum air shower development,
the changes in the interaction properties will also affect the number of electrons
and muons observed at ground level. There is both a direct change from the in-
teraction properties themselves and a change due to the effect on Xmax: for larger
Xmax values, more electrons will be observed than for shallower showers. Note
that in the case of muons, Xmax has a much smaller impact on the predicted Nµ

since muons are heavily attenuated in the atmosphere compared to the electrons.
While the number of electrons is mainly affected by Xmax, the direct modifica-
tions in the interaction properties are more relevant for muons. Thus, it can be
seen that the mean log10 Ne as well have a change correlated with that of Xmax
for the modifications in cross section, multiplicity, and elasticity. However, the
effect of the interaction properties themselves also can not be neglected for the
number of electrons, since the fluctuations in log10 Ne do not strictly follow the
evolution of ⟨Xmax⟩ with modifications in the original model, except for the multi-
plicity, which, indeed, has the largest influence on the predictions for the number
of electrons at the ground level. The cross sections also affect the fluctuations
in the log10 Ne, but only if they are smaller than the extrapolation in the original
model. Thus, either the multiplicity or the interaction cross section can be reduced
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Figure 1.7: The effect of the modified hadronic interaction properties on air
shower observables for the proton-initiated cascade: shower maximum Xmax
(left), number of electrons Ne (middle), and number of muons Nµ (right). The
averages of 1000 showers simulated at 1019.5 eV are shown. Figure from [102].

to effectively make the fluctuations in the predicted number of electrons.
As was mentioned above, the interaction properties directly affect the number

of muons, and there are fewer correlations with Xmax. In contrast to both ⟨Xmax⟩
and mean log10 Ne, which show an anti-correlation with the multiplicity, the mean
log10 Nµ increases for the large multiplicity values. However, the effect of cross
sections and elasticity is much less pronounced for the mean and the fluctuations
of log10 Nµ seem to be solely determined by the elasticity.

The same effects as seen for the number of muons and electrons in the proton-
initiated showers are also present for the iron primaries but to a much lesser extent.

1.3.3 Hadronic cross sections and Glauber theory

The Glauber multiple scattering theory, introduced in [103], provides a link
between hadron-hadron interactions and interactions involving nuclei, such as
nucleus-air interactions in air shower simulations. One of the main assumptions in
Glauber theory is that the eikonal functions of the individual scattering processes
could be added up linearly [104]. For example, for a scattering process with two
target nucleons, the elastic amplitude will be
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Figure 1.8: The effect of the modified hadronic interaction properties on air
shower observables for the iron-initiated cascade: shower maximum Xmax (left),
number of electrons Ne (middle), and number of muons Nµ (right). The averages
of 1000 showers simulated at 1019.5 eV are shown. Figure from [102].

GGlauber(⃗b) = 1− exp−χ1(⃗b)−χ2(⃗b) = 1− (1−Γ1)(1−Γ2), (1.23)

where Γ1,2 = 1− exp−χ1,2 is an impact parameter written in terms of the eikonal
function χ1,2.

The scattering amplitude of a hadron h interacting with a nucleus of mass
number A is then

f hA
f i (s,q

2) =
ik
2π

∫
expi⃗q⃗b

ψ
∗
f (r⃗1...r⃗A)ΓhA(⃗b, s⃗1...s⃗A)ψi(r⃗1...r⃗A)d2b

A

∏
j=1

d3r j,

(1.24)
where ψi and ψ f are wave functions of the nucleus in the initial and final states. r⃗ j
and s⃗ j represent the positions of the nucleons in the nucleus and their projections
on the plane perpendicular to the momentum vector. From the optical theorem,
the total and elastic cross sections are then

σ
tot
hA = 2ℜ

∫
Γ̃hA(⃗b)d2b (1.25)

σ
ela
hA =

∫ ∣∣Γ̃hA(⃗b)
∣∣d2b, (1.26)
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with an impact amplitude of

Γ̃hA(⃗b) = 1−
A

∏
j=1

[
1−

∫
ΓhN (⃗b− s⃗ j)ρ j(r⃗ j)d3r j. (1.27)

In the last expression Γ̃hN is the amplitude describing the interaction of the
hadron h with nucleon N, and ρ j is the single nucleon density.

The production cross section, also referred to as the inelastic cross section,
can be obtained by substracting the elastic σ ela

hA and quasi-elastic σ inela
hA scattering

from the total cross section. The sum of the latter two can be expressed as

σ
ela
hA +σ

inela
hA =

∫ ∣∣∣∣1− A

∏
j=1

[
1−ΓhN (⃗b− s⃗ j)

]∣∣∣∣2( A

∏
j=1

ρ j (⃗r j)d3r j

)
d2b. (1.28)

With the superposition approach the expression above could be generalized
for any nucleus-nucleus interaction cross sections:

σ
ela
AB +σ

ela
AB =

∫ ∣∣∣∣ A

∏
j=1

B

∏
k=1

[
1−ΓNN (⃗b− s⃗ jτ⃗ j)

]∣∣∣∣2( A

∏
j=1

ρ j (⃗r j)d3r j

)( B

∏
k=1

ρk(⃗tk)d3rk

)
d2b,

(1.29)
with the corresponding total and elastic cross sections:

σ
tot
AB = 2ℜ

∫
Γ̃AB(⃗b)d2b (1.30)

σ
ela
AB =

∫ ∣∣Γ̃AB(⃗b)
∣∣d2b. (1.31)

The positions of nucleons in the second nucleus with mass number B are de-
noted by t⃗k and τ⃗k.

In air shower simulations, Glauber theory provides the simplest and fastest
way to link the proton-proton and proton-nucleus interaction properties. Its imple-
mentation in the Sibyll MC generator allows easy conversion of any modifications
in the model extrapolations for proton-proton to any nucleus-nucleus interactions.
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Chapter 2

The Pierre Auger Observatory

The Pierre Auger Observatory, located near the city of Malargue in the province
Mendoza in Argentina, at the height of 1400 m above sea level, is the world’s
largest observatory for studying ultrahigh-energy cosmic rays [105]. The con-
cept of building an observatory of such a scale and scientific potential was ini-
tially proposed by Jim Cronin and Alan Watson at the International Cosmic Ray
Conference in Dublin in 1991. The observatory’s design, including the scientific
discussion and cost estimate, was completed in 1995. The construction of the ob-
servatory started in the Southern Hemisphere in 2002 after extensive six months of
studies on concept validation and the detector performance with the Engineering
Array consisting of 32 surface detector stations and a single fluorescence tele-
scope. Construction of the Observatory was finalized in 2008, and since January
2004, it has been continuously detecting the most energetic particles reaching the
Earth.

The observatory has a hybrid design consisting of the surface detector [106]
measuring the cosmic-ray particles at the ground level (SD), and the fluorescence
detector (FD) [107] observing the development of the longitudinal air shower pro-
file in the atmosphere. The layout of the Pierre Auger Observatory is shown in
Fig. 2.1. The SD array consists of 1600 water Cherenkov detectors (WCD). It is
overlooked by 24 fluorescence telescopes located at four sites - Los Leones (LL),
Los Morados (LM), Loma Amarilla (LA), and Coihueco (CO), with six telescopes
at each location. In addition, three high-elevation telescopes (HEAT) were built
at the Coihueco site. Near it, the AMIGA (Auger Muon and Infill for the Ground
Array) detector has been installed, consisting of the muon counters buried under-
ground and the more densely packed array of 60 water Cherenkov stations at a
distance of 750 m.
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2. The Pierre Auger Observatory

Figure 2.1: Layout of the Pierre Auger Observatory. Each black dot corresponds
to one water Cherenkov detector. Four fluorescence detector sites (Los Morados,
Los Leones, Coihueco, and Loma Amarilla) are shown in blue, with additional
extra high elevation (HEAT) telescopes at the Coihueco site shown in red. The
lines of the corresponding colors indicate the field of view of each of the 24+3
fluorescence telescopes. Near Coihueco, the denser Infill array and Engineering
Radio Array (shown in blue) are located. Two laser (XLF and CLF) and one
balloon (BLF) facilities are marked with red dots. Figure from [108].

The standard range of energies measured by Observatory is ≳ 1018 eV. Com-
bining the HEAT telescopes and the 750 m array allows one to extend the obser-
vatory’s sensitivity down to lower energies of ≳ 1017 eV.

2.1 The surface detector

The 1660 surface detector stations of the regular array (SD-1500) are spaced
1.5 km apart on a hexagonal grid and cover an area of about 3000 km2. Lo-
cated 6 km away from the Coihueco site, there is an Infill array consisting of 61
stations spread over 23.5 km2 with additional stations nested within the standard
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grid, reducing the spacing between the WCDs to 750 m. The detection efficiency
at the trigger level reaches 100% for energies above 3 · 1018 eV for the SD-1500
array, and the full efficiency range can be extended down to above ≈ 3 · 1017 eV
with the Infill array. The duty cycle of the SD is close to 100%.

Each WCD station consists of a cylindrical tank, 3.6m in diameter and 1.5
m high, filled with 12000 liters of purified water. The water level in the tank
reaches up to around 1.2 m, which allows the detection of inclined air showers
with zenith angles of up to 80°. The water is enclosed by a sealed liner (Tyvek
bag) with an opaque, low-density polyethylene reflective inner surface. When an
energetic charged particle passes through the water volume, Cherenkov light is
emitted. The light is then diffusely reflected from the liner surface and detected
by one of three photomultiplier tubes (PMTs), with properties suitable for long-
term measurements of Cherenkov radiation with a peak in the 350-450 nm range
(see [109] for the discussion on the required PMTs characteristics), mounted on
top of the liners. The liner has three windows through which the PMTs can see
the water volume. Two signals are taken from the PMTs, one from the PMT
anode and one from the last dynode, the latter being inverted and amplified to
32 times the anode charge gain. The signals are digitized at a 40 MHz sampling
frequency by 10-bit flash analog-to-digital converters (FADCs). The combination
of these two signals provides sufficient dynamic range to cover the full range of
fluxes detected close to the shower core (∼ 1000 particles per µs) and far from
the shower core (∼ one particle per µs). The emitted Cherenkov light is measured
in the units of a vertical-equivalent muon (VEM). The signals obtained from the
cosmic-ray-induced EAS particles are selected by a complex hierarchical trigger
system [110]. The trigger chain at each surface station includes two levels of local
triggers, T1 and T2, which operate independently, and a third level, T3, which is
formed at the Central Data Acquisition System (CDAS) and initiates central data
acquisition for further selection of physical (T4) and accurate (T5) events from
the stored data [111], see below for detailed discussion.

At level 1, the data acquisition is triggered in the station and temporarily stored
in case a T3 will be formed. The T1 has two different trigger modes for detecting
electromagnetic and muonic components of the EAS. In the first mode, which is
designed to select large signals, both close and spread in time, a threshold trig-
ger (TH) is used. It is formed when each of the three PMTs has a signal above
1.75Ipeak

VEM in coincidence, and the trigger rate is around 100 Hz. In the second
mode with the ’Time-over-Threshold’ (ToT) trigger, the sequences of small and
spread-out signals are detected. The ToT trigger has a rate of less than 2 Hz,
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mainly attributed to the coincidence of the signals from two muons within the
duration of the sliding window. While the TH mode is the most sensitive for de-
tecting highly inclined muonic showers, the ToT mode is efficient for detecting
close low-energy showers of electromagnetic origin or high-energy distant EAS.
The ToT mode requires a coincidence of at least two PMTs with a minimum of
13 bins out of 120 FADC bins above a threshold of 0.2Ipeak

VEM. The corresponding
time spread of 325 ns allows us to reject the muon background since it is larger
than the average signal duration of a single muon of 150 ns.

At the second trigger level, the trigger rate is decreased to approximately
20 Hz per detector due to the bandwidth limitations of the communication sys-
tems. While all ToT triggers of the first level are reaching the T2 level, the ad-
ditional selection is applied to the TH triggers, requiring a higher threshold of
3.2Ipeak

VEM in coincidence. For the initiation of the T3 trigger for the data acqui-
sition at CDAS, spatial and temporal coincidence of the T2 triggers is required.
The first condition is met by requiring at least three neighboring detectors to be
ToT-triggered, e.g., a detector should have its closest and second closest neigh-
bors also triggered. There should be a particular spread between the first and
subsequent triggers to fulfill the timing condition.

At the T4 level, physical events, e.g., real showers, are selected from the T3
set. In addition to the ToT trigger criteria at the T3 level, which already selects
predominantly actual events due to the low muon background, additional require-
ments are placed on the geometry of the three nearby triggered stations. Further-
more, the timing of the trigger should be compatible with the speed of light. These
criteria ensure a selection efficiency above 98% for events with zenith angles be-
low 60°. The efficiency could increase to ≈ 100% with a compact configuration (a
detector station has at least three triggered tanks out of the closest six neighbors)
and timing requirements imposed on the four nearby stations. In the end, only
the events that could be properly reconstructed are to be selected. This is done
with a fiducial (quality) trigger, T5, which rejects the events with the wrong core
position and, therefore, with the wrong energies. This is particularly relevant for
events recorded at the edge of the array, where a shower part could be missing,
with the real core outside the array and the reconstructed one inside. To ensure
the correct energy reconstruction, only the events well contained in the array are
selected by the T5 trigger. This is achieved by requiring all six of the closest
neighbors of the detector with the highest signal to be in operation. The resulting
effective area is reduced by 10%.

The calibration of the surface detector station is done with the measurements
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Figure 2.2: The water Cherenkov detector station of the surface detector. Left:
Photograph of the WCD station. Figure from [112]. Right: Schematic view of
one WCD station. Figure from [113]. A detailed description of the design and
operation of the WCD can be found in the text.

of atmospheric muons to define the conversion between 1 VEM and the measured
signal [114]. The peak of the light produced by the muons is measured from the
charge (the voltage amplitude peak) histograms. The position of the peak for each
PMT and the sum of three PMTs is determined, 1.03 and 1.09 VEM, respectively,
and can be used to convert the PMT electronics signal to one VEM.

The station is powered by a solar photovoltaic system consisting of two 55 Wp
solar panels and two 105 Ampere-hour (Ah), 12 V batteries, producing on average
10 W power. For the transmission of the data to the communication towers, which
in turn provide the link with CDAS and the correct timing, the communication
radio and GPS antennas are installed at the top of the WCD.

2.2 The fluorescence detector

As the charged cosmic rays pass through the atmosphere, they interact with atmo-
spheric molecules. These interactions excite the rotational and vibrational modes
of the nitrogen molecules, resulting in ultraviolet emission in the ≈ 300-430 nm
range, which can then be collected with fluorescence telescopes. The atmosphere
acts as a calorimeter for determining the energy of EAS particles, and the num-
ber of emitted photons is proportional to the energy deposited in the atmosphere.
Measured as a function of the atmospheric slant depth X , defined as the amount
of material traversed by the shower, the emission rate gives us the development of
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Figure 2.3: The FD site of the Pierre Auger Observatory. Left: Photograph of the
FD station | by Tobias Schulz. Right: Schematic layout of the FD station. Figure
from [107].

the longitudinal profile of the energy deposit in the atmosphere dE/dX .
As mentioned above, there are 27 fluorescence telescopes - six at each of the

four FD sites, plus three additional high-elevation telescopes at the Coihueco site,
extending the measured energy range to about 1017 eV. An example of an FD
station and a schematic view of its interior is shown in Fig 2.3. The field of
view of each telescope covers an angular range of 30° by 30° in azimuth and
elevation. Due to their relative orientation towards the field, a single FD station’s
total coverage is 180° in azimuth. The HEAT telescopes can see elevation angles
from 30° up to 58° due to the increased inclination. Due to the safety limitations
on the PMT illumination, the FD can operate only during clear nights with a low
moon fraction and night sky background, which limits the FD duty cycle to around
19%. Due to the weather conditions, this number lowers to 15% [108].

The telescope’s optical system consists of the aperture system, including the
aperture itself, a filter and a corrector ring, a segmented mirror, and a fast-timing
camera [115]. A circular diaphragm with a UV-transparent filter is installed at the
bay entrance. The filter selects the part of the spectrum with a wavelength below
410 nm, thus reducing the background noise signal from visible photons while
having high efficiency in the range of nitrogen fluorescence. The corrector ring
with an aspherical lens minimizes the coma aberration and corrects the spherical
aberration caused by the mirror without increasing the spot size. At the entrance of
the telescope bay, there is a shutter, which is opened during the telescope operating
hours on suitable nights. There are also curtains to prevent the telescope from
being exposed to daylight in the event of an electronic or shutter failure. Normally,
shutters close automatically with rain/snow or strong wind. After passing through
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the aperture, the light is focused on the segmented mirror. The area of the mirror is
around 13 m2. The mirror segments are either made of aluminum alloy sheets (LL
and LM sites) and have a rectangular shape or glass with a reflective aluminum
layer coated with SiO2 for mechanical protection and have a hexagonal shape (CO
and LA sites). The average reflectivity of the mirror segments is more than 90%
in the part of the spectrum between 300 and 400 nm. The light collected by the
mirror is then focused onto the photomultiplier camera. The camera comprises
440 hexagonal pixels of almost 45 mm in size arranged on a 22 by 20 spherical
focal surface [116].

Each pixel contains a photomultiplier tube mounted in the center of the pixel
and surrounded by light collectors. The field of view of a single pixel is 1.5°. The
light collectors have a simplified classic Winston cone structure with a so-called
"Mercedes" stars, ensuring a smooth transition between adjacent pixels and good
light collection efficiency of around 93%. The photomultiplier unit is an 8-stage
PMT with ≈ 25% quantum efficiency for the wavelength range between 350 and
400 nm. The high voltage for the PMT is provided by an HV-divider chain in
the head electronics (HE) unit. The signal driver circuitry, another unit element,
maintains the gain stability by keeping the bias from the divider- introduced below
1%. The HE unit is connected to the PMTs via the distribution boards, which pro-
vide power to the PMT electronics and receive the output signal. The distribution
boards are installed at the back of the camera without affecting the telescope’s
field of view, and each board is connected to 44 PMTs.

The signals received by the PMT is processed with a three-level trigger system.
In the first stage, the signal is digitized at 10 Hz and stored for further reading.
The rate of each pixel (hit rate) is measured and adjusted to 100 Hz by changing
the pixel trigger threshold depending on the background. At the second level, a
trigger is formed if the obtained after the first level geometrical pattern resem-
bles the cosmic ray pattern. The track segment should follow a straight pattern
and have at least 5 pixels in length. Fig 2.4 shows the patterns used to identify a
cosmic-ray signal. The observed track is compared with the predicted geometries,
including their rotations and mirror reflections. Since not all tracks pass through
the center of each pixel and provide sufficient illumination of the pixel, and there
is a chance of a defective PMT, only four out of five triggered pixels are required.
The events passing the second level are stored in the pixel memory and analyzed
in software at the third trigger level by PCs connected to the mirrors (MirrorPC).
If the event comes from the calibration or test systems or is produced by an arti-
ficial light source, it is sent to the PCs connected to the eyes (EyePC) and stored
in the corresponding raw data files. On the contrary, before being sent to the Eye-
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Figure 2.4: The patterns for the cosmic-ray tracks identification in FD. Figure
from [107].

PCs, the actual air shower events are passed through the third trigger level at the
MirrorPCs. At the third level, the data is cleaned of the noise events that survived
the hardware triggers and the randomly triggered pixels. The software also re-
jects triggers from lightning or muons hitting the camera. The efficiency of the
algorithm is relatively high, with about 94% of the background events correctly
identified and removed and less than 1% of real air shower events erroneously
removed. The events surviving the software trigger are sent to the eyePCs. The
coincident events from the telescopes at the same site are merged. After that, a
hybrid trigger for the SD is generated and sent by the eyePCs.

A calibration of the FD is required to convert the recorded ADC counts into
the light flux at the aperture. For this, a pixel response to an influx of incident pho-
tons from the solid angle covered by that pixel needs to be measured [117]. Such
an end-to-end calibration includes various factors of the telescope optics, such as
aperture projection, UV filter transmittance, light collection efficiency, quantum
efficiency, PMT gain, and the reflectivities of optical surfaces and telescope mir-
rors etc., should be considered. Three different calibration methods are used at the
Pierre Auger Observatory: absolute calibration [118], relative calibration [119],
and wavelength (spectral) calibration [120].

The absolute end-to-end calibration of the FD is performed with a calibrated
portable drum-shaped light source 2.5 m in diameter. It consists of two UV LEDs
that emit pulsed light of known intensity at a wavelength of 375±12 nm. The
surface of the drum is a good Lambertian source, evenly illuminating all pixels in
the camera over the entire angular range of the camera relative to the drum. The
light source is mounted inside a Teflon cylinder on the front of the drum. The light
output for each LED is monitored by the silicon detector at the top of the cylinder.

The drum itself is calibrated with a silicon photodiode. The charge from the
reference PMTs, placed on the drum axis, is recorded for each pulse, providing a
distribution of the observed integrated flux. Another PMT is installed at the optical
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bench. It records the diffuse emission from the pulsed LEDs with a neutral density
filter and an intensity adjusted to match the measured intensity of the drum. At
each intensity setting, the second measurement is done with the PMT replaced by
a NIST-calibrated photodiode and the neutral density filter removed. This gives a
linear relationship between the PMT response and the photodiode current, which
can then be used to calculate the photon flux, knowing the technical characteristics
of the LEDs and photodiode.

An absolute calibration of the fluorescence detector is also checked with ver-
tical laser shots at 337 and 355 nm. Assuming perfect Rayleigh scattering with a
known cross section of the atmosphere, it is possible to calculate the flux of pho-
tons at the telescope aperture. It is, therefore, possible to estimate the response of
each pixel to the number of photons detected from a segment of the laser beam.
The track produced by the laser beam is similar to that of cosmic rays. However,
this method can be less practical since only a few pixels are illuminated at a time,
and the calibration of the entire camera would require frequent changes in laser
position.

The relative calibration is performed every night before and after the data tak-
ing. It allows for monitoring the changes from night to night and the seasonal
variations in the response of the PMTs [121]. The light from three xenon flash
light sources (referred to as A, B, and C) located at each FD site is distributed via
optical fibers to each mirror. Each light source in the system monitors the differ-
ent detector components, so the properties and characteristics of the three LEDs
differ depending on the purpose. The light from source A is transmitted to the
light diffusers installed at the center of each mirror to illuminate all the pixels in
the camera simultaneously. It monitors the stability and linearity of the camera
system. The light from the second source is transmitted to the diffusers installed
at the center of two sides of the camera. It is then reflected from the mirror to the
camera for checking the camera PMTs and the stability of mirror reflectivity. The
light from the third source is flashed at the diffusers installed outside the entrance
aperture on the telescope doors. The light from the diffusers illuminates a reflec-
tive Tyvek screen located outside of the UV filter. This screen reflects the light
towards a mirror, and the camera records the reflected light. At this calibration
step, the overall stability of the telescope is checked, including mirror reflectivity
and PMT response.

Multi-wavelength calibration employs a similar to end-to-end absolute calibra-
tion technique and is used to estimate the wavelength dependence of the spectral
response of the fluorescence detector. Drum intensity measurements are made at
several wavelengths in the nitrogen region (320, 337, 355, 380 and 405 nm) us-
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ing the same reference PMTs as for drum calibration. The combination of the
PMT response and the quantum efficiency, measured in the lab, gives a quantity
proportional to the number of photons emitted. The relative uncertainty at each
wavelength is approximately 5%. The final calibration curve is normalized to
375 nm.

2.2.1 Event reconstruction
The reconstruction of the events detected by the hybrid detector includes two
stages: geometrical reconstruction and shower profile and energy reconstruc-
tion [107]. The first step of the geometrical event reconstruction is to determine
the shower detector plane (SDP) consisting of the shower axis and the FD. The
orientation of the shower axis is fixed by two parameters - the impact parame-
ter Rp and the angle between the axis and the horizontal χ0, and its position is
defined by the timing information of the camera pixels. If the angular velocity re-
mains unchanged over the range of Rp and the range of observed elevation angles
χ0, it is not easy to constrain these parameters from FD alone, since then there is
no single pair of values that fits the angular velocity. Therefore, the information
of the time of arrival of the shower front at ground level is used to improve the
accuracy of the geometry reconstruction [122]. Such a so-called hybrid geometry
reconstruction is achieved by using the measured time of a single SD station close
to the shower axis.The resulting accuracy is 50 m in the core location and around
0.6° in the angular resolution. The uncertainty of the geometry reconstruction is
evaluated with the CLF facility with a well-defined beam geometry.

With a known geometry and fluorescence efficiency, the light detected by FD
can be converted into an energy deposit as a function of the slant depth. In the
standard approach, the contributions from the different light sources are carefully
estimated using an analytical approach [123], the contributions of fluorescence
and Cherenkov light are treated equally as a signal, which is possible due to the
observed universality of the energy spectra of electrons and positrons, with which
the number of charged particles (responsible for Cherenkov light) can be related
to the energy deposit (responsible for Fluorescence light). An example of the
measured light at aperture and the reconstructed light contributions, and energy
deposit profile is shown in Fig. 2.5. Here the detected light at the telescope aper-
ture is shown as points with error bars and the reconstructed contributions from
different sources of light: Fluorescence light, direct and scattered Cherenkov light.
Light scattered at aerosols and air molecules is labeled as "Mie" and "Rayleigh",
respectively. A small fraction of multiple-scattered fluorescence light is indicated
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Figure 2.5: Example of a reconstructed shower profile (event 931431). Figure
from [105].

as well. The reconstructed longitudinal profile is shown on the right panel of
Fig. 2.5. The data points denote the reconstructed energy deposit in the atmo-
sphere and the line is the fit with the Gaisser-Hillas function, Eq. 2.2. The en-
ergy deposited by an air shower, which is measured as a function of the traversed
depth, is commonly referred to as the longitudinal air shower development profile.
Fig. 2.6 shows an an example of the longitudinal air profile for iron and proton
primaries simulated at 1019 eV. The slant depth X is obtained by integrating the
density of air along the direction of arrival of the air shower through the curved
atmosphere,

X(l) =
∫

∞

l
ρ(r(l′))dl, (2.1)

where ρ(r(l)) is the density of air at a point with longitudinal coordinate l along
the shower axis.

By integrating the longitudinal profile, one can derive a calorimetric measure-
ment of the shower’s energy. The atmospheric depth at which the longitudinal
profile reaches its maximum, known as Xmax, is the parameter most sensitive to
the mass of the primary particle and the properties of the hadronic interactions.

To obtain Xmax, the measured longitudinal air shower profile is reconstructed
with a profile function, such as e.g. Gaisser-Hillas (GH) [124], Greisen [125],
and ‘Gaussian in Age’ [22] functions. The Gaisser-Hillas profile, which is com-
monly used in the reconstruction of the Pierre Auger Observatory data, can be
parameterized as [124]:
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Figure 2.6: An example of the longitudinal air shower profile for iron (red dotted
lines) and proton (black solid lines) primaries. Figure from [126].

N(X)GH = Nmax

(
X −X0

Xmax −X0

) (Xmax−X0)
λ

exp
(

Xmax −X
λ

)
, (2.2)

where Nmax is the number of particles at shower maximum, X0 is the depth of the
start of the profile and λ is a parameter determining the shape of the profile.

The function can be rewritten in a Gaussian-like form by introducing new
variables N′=N/Nmax and X ′=X−Xmax, and redefining the fit parameters as R=√

λ/|X0 −Xmax| and L =
√

|λ (X0 −Xmax)| [127], which would then correspond
to the characteristic width and an asymmetry parameter respectively:

N′ =
(

1− RX ′

L

)R−2

exp
(

X ′

LR

)
. (2.3)

Based on the concept of the "universal air shower profile", the average lon-
gitudinal profile can be used instead of the individual profiles. This reduces the
statistical uncertainties, e.g. in the light collection or Xmax determination, affect-
ing the estimation of the profile shape parameters, making it possible to fit L and
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R parameters simultaneously [128]. Using the average profile also helps to reduce
the systematic uncertainties, allowing an event-by-event analysis.

The elongation rate De =
d⟨Xmax⟩

dlnE [129, 130], defined as an evolution in the
position of the mean depth of shower maximum, ⟨Xmax⟩, as a function of energy
E, shows a change in the primary composition with an increase in energy. It can
be written as [131]:

De = (1−B)λr

(
1− d⟨lnA⟩

dlnE

)
, (2.4)

where B shows a dependence on the hadron-air interactions, λr is the radiation
length for electromagnetic cascades in air, and A is a mass number. For conve-
nience, the elongation rate is commonly defined as a change in average Xmax per
decade of energy, d⟨Xmax⟩/dlgE. For a photon-initiated shower in the electro-
magnetic cascade the elongation rate is equal to D = 85 g/cm2.

Figure 2.7: The evolution of the first moments of the Xmax distribution, the mean
⟨Xmax⟩ (left) and standard deviation σ(Xmax) (right) as a function of energy from
measurements with the fluorescence and surface detectors of the Pierre Auger
Observatory and Telescope Array. The results of the Telescope Array were shifted
in energy to match the energy scale of the Pierre Auger Observatory. Figure
from [47].

The average Xmax, ⟨Xmax⟩, can also be expressed as the sum of the contribu-
tions from each mass group [132]:

⟨Xmax⟩=
N

∑
s=1

fsµs (2.5)
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where fs is the fraction of nuclear species s and µs is the corresponding mean of
the Xmax distribution.

Similarly, for the standard deviation of the Xmax distribution:

σ(Xmax) =

√√√√ N

∑
s=1

fsVs +
N

∑
s=1

fsµ2
s −
(

N

∑
s=1

fsµs

)2

, (2.6)

where Vs is the variance of nuclear species s.
Fig. 2.7 shows an example of the measured from the cosmic-ray data mean,

⟨Xmax⟩, and standard deviation, σ(Xmax). As can be seen, the observed trend
indicates an increasing presence of the heavier component at higher energies.

2.2.2 Resolution and Systematics
The performance of the FD profile reconstruction has been extensively studied
since both the energy and Xmax scales of the observatory are based on recon-
structed FD events. The uncertainty of the energy scale is 14% [133], and is dom-
inated by the absolute optical calibration of the telescopes. The energy resolution
is about 8%, almost independent of the energy [134].

Of particular importance for this thesis is the Xmax reconstruction. A detailed
discussion on the detector resolution and systematics of Xmax can be found in
[34]. The corresponding energy dependence is shown in Fig. 2.8. As can be
seen, the resolution is dominated by the photo-electron statistics of the profile
(labelled "detector" in Fig. 2.8 (left)), and at high energies, contributions from the
uncertainty of measurement of aerosols in the atmosphere become non-negligible.

Reconstruction uncertainties at low energies and atmospheric uncertainties at
high energies dominate the systematics of the Xmax scale. While the different
contributions shown in Fig. 2.8 (right) add up quadratically to a near-constant
value, their energy dependence could be an overall Xmax scale uncertainty and
an energy-dependent Xmax shift. To consider this, the covariance matrix of the
systematic Xmax uncertainty was determined in [34] and will be used in some of
the studies discussed below.

2.3 Atmospheric monitoring

Atmospheric conditions play an essential role in the reconstruction of extensive air
showers, as they affect both the development of the air shower in the atmosphere
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Figure 2.8: Resolution (left) and systematic uncertainty (right) of the Xmax mea-
surement with Fluorescence Detector of the Pierre Auger Observatory. Figure
from [34].

and the measurement of the the fluorescence yield, which depends on the local
pressure, temperature and humidity [135]. For example, atmospheric conditions
could affect SD measurements, such as the energy estimate of the SD - the signal
measured 1000 m from the shower core due to their effect on the particle density
at the ground, as well as the SD trigger probability could be altered by the varying
atmospheric pressure [136]. Fluorescence telescopes are particularly sensitive to
atmospheric conditions, as their measurements are affected by optical attenuation
due to light absorption and scattering due to the molecular atmospheric density
(Rayleigh scattering) and the aerosol density (Mie scattering) [137]. Therefore, a
number of instruments for monitoring the atmospheric conditions were deployed
in the field, allowing the accurate estimation of the variable properties of the at-
mosphere.

The installed instruments can be roughly divided into the following three
groups:

• Monitoring the state of the atmosphere: weather stations, and the Global
Data Assimilation System (GDAS);

• Estimation of the aerosols content: laser facilities - Central Laser Facil-
ity (CLF) and eXtreme Laser Facility (XLF), two Aerosol Phase Func-
tion Monitors (APFs) and the F(/ph)otometric Robotic Telescope for At-
mospheric Monitoring (FRAM);

• Monitoring the presence of clouds: four cloud cameras, four LIDAR sta-
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tions, FRAM, CLF lidar, and XLF.

The information on the local ground-level weather conditions is provided every
5 minutes by weather stations installed at all four FD sites. The stations moni-
tor the temperature, pressure, humidity, and wind speed. Since they could only
do measurements at the ground level, the information on the vertical profiles of
the temperature, pressure, and humidity is obtained from the global atmospheric
model GDAS, which was developed by NOAA’s National Centers for Environ-
mental Prediction. The data from GDAS [138] are published once a week for
every three hours, and it covers a vertical distance of up to about 26 km.

The aerosol content of the atmosphere is estimated based on the scattering
of CLF and XLF laser beams shot horizontally during the FD operation. Mea-
surements are taken every 15 minutes. They are compared with simulations and
clear conditions to estimate the vertical aerosol optical depth. Additionally, the
backscatterings in the atmosphere are measured by elastic LIDARS, installed at
each FD site [139]. Shots are fired both vertically and horizontally toward the FD
stations. The latter measures the light attenuation at the ground level. LIDARs are
also used to identify clouds. As the beam passes through the cloud layer, it is scat-
tered back and recorded by a signal receiver. The time measurements allow us to
identify the height of the clouds. As clouds have higher temperatures and produce
more infrared light, they can also be seen with infrared cameras. Another tech-
nique used by the Observatory for aerosol attenuation measurement and cloud
tracking is based on stellar photometry. This is done with the F(/ph)otometric
Robotic Telescope for Atmospheric Monitoring (FRAM), which has been operat-
ing at the Los Leones site since 2005 [140].

2.4 The Pierre Auger Observatory Upgrade: Auger-
Prime

After 15 years of operation, an upgrade of the observatory was planned to improve
the performance of the observatory and enhance the sensitivity of the detectors.
The original upgrade plan included upgrading the SD electronics, installing the
Surface Scintillator Detector (SSD) and Radio Detector (RD) on each WCD, de-
ploying the Underground Muon Detector (UMD) and extending the FD duty cy-
cle [108]. The upgrade is expected to clarify the origin of the suppression of the
cosmic ray flux above 4·1019 eV, improve the estimation of the primary composi-
tion, and access the properties of the hadronic interaction at the highest energies.
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The SSDs are the main part of the upgrade and will provide a complementary
and independent measurement of particle densities at ground to the WCDs. While
muons dominate the WCD signal, the SSD is more sensitive to electromagnetic
particles. Thus, the combination of these two detectors will allow better differenti-
ation between the air shower’s different components, muonic and electromagnetic,
at ground level, providing a better estimation of the energy scale and mass compo-
sition [141]. The dynamic range of the SD was improved by adding a fourth small
PMT at each WCD station. The old unified boards of the SD electronic were re-
placed with the new ones, characterized by faster sampling and signal processing,
better timing accuracy, and an increased gain and dynamic range. With the new
electronics, it will be possible to process signals from all the upgrade detectors
simultaneously.

The Auger Engineering Radio Array (AERA) [142], consisting of 150 radio
detector stations and designed to test the capabilities of detecting radio emission
from cosmic rays, has been in operation for several years before the start of the
upgrade. Based on the AERA performance and the results obtained, extending
the Radio Detector over the entire SD array was proposed by placing radio anten-
nas on top of the upgraded WCDs. The radio upgrade will better detect inclined
showers and complement the mass sensitivity studies with the WCD+SSD com-
bination. Another component of the AugerPrime project is completing the full
SD-750 array with UMDs [140], which serves as a tool for directly measuring
muons. The upgraded AMIGA detector will improve the accuracy of muon de-
tection and provide a means of cross-checking the results obtained with the SD.

At the time of writing this thesis, the commissioning of the AugerPrime up-
grade was nearing completion, with all the SSDs installed and already taking data.

2.5 Data sets and data selection

To measure the cosmic-ray mass composition, we use the hybrid events collected
by the Pierre Auger Observatory, i.e., the events that were seen with FD and trig-
gered at least one SD station. The data selection procedure is based on the exten-
sive description provided in [34]. Only data recorded during stable operation and
optimal atmospheric conditions are considered. This includes the requirements
of the vertical aerosol optical below 0.1 at 3 km above the ground level, and the
reconstruction of the longitudinal air shower profile is not affected by clouds.
Another requirement is that the depth of the shower maximum must fall within
the geometrical field of view of the telescope, and its reconstruction uncertainty
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should be below 40 g/cm2. Only the showers with the difference between SD
trigger probabilities for proton and iron of less than 5% are selected to avoid mass
composition bias. The contribution from Cherenkov light should be at most 20%.
Lastly, applying the fiducial field of view cuts (FoV) ensures the high quality of
events without Xmax selection bias, regardless of the shower geometry and Xmax
values.

The slant depth range is defined by the lower and upper limits, Xlow and Xup
respectively, where Xmax of each event is reconstructed with a resolution better
than 40 g/cm2. The acceptance of the shower is contingent on this interval being
sufficient to include most portion of the Xmax distribution. Cuts (boundaries), Xcut

low
and Xcut

up , are further imposed on the limits of the slant depth range. The cuts for
the field of view limits are estimated from the behavior of the mean Xmax as a
function of the values of the sections, since the true Xmax is unknown at this stage
of the reconstruction, and are set at values where the deviation of ⟨Xmax⟩ from the
asymptotic value begins to exceed 5 g/cm2.

The results shown in this thesis will exploit the use of three different datasets:

• the data used in the Xmax analysis by the Pierre Auger Collaboration and
published in [34, 82], covering the data-taking period between December
2004 and December 2012 with a total number of events surviving all the
cuts of 19759 for the energies above 1017.8 eV. We will refer to this data set
as to PRD14 in the following;

• the data used for the updated analysis presented at the International Cosmic
Ray Conference (ICRC) in 2019 [143], covering the data-taking period dur-
ing 2004-2017 with a total number of events surviving all the cuts of 31085
for the energies above 1017.8 eV. Thus, the statistics in this data set is about
1.5 higher the one available in the PRD14. This data set will be referred to
as ICRC19;

• the most recent data, covering the entire Phase I of the Pierre Auger Obser-
vatory operations between December 2004 and December 2021, presented
at the ICRC conference in 2023 [144]. Phase I has a total of 74760 events
for the energies above 1017.8 eV. This is the main data set used in this thesis
and it is referred to as ICRC23.

In the listed datasets, energies below 1017.8 eV, measured by the Pierre Auger
Observatory with HEAT/Coihueco (HeCo) telescopes, are excluded. For the
discussion on the mass composition analysis with the low energy extension of
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the Pierre Auger Observatory, one can refer to the measurements presented at
ICRC 2017 [145], which cover the energy range 1017.2 - 1017.8 eV for the period
between June 2010 and December 2015.

In addition to the increased statistics due to more years of observations, other
differences between the datasets can affect the interpretations. One such factor is
the change in the event reconstruction. With an increase in the precision of the
fluorescence yield measurements over the years, the reconstruction of the longitu-
dinal air shower profile is being updated, affecting the Xmax and energy scale de-
termination (see, e.g [133] for the reconstruction used in ICRC19 data and [146]
for the reconstruction used in ICRC23 data). In addition, measurements of the ver-
tical aerosol optical depth profile at the Pierre Auger Observatory have recently
been reviewed and updated [147].
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Chapter 3

Measurement of Mass Composition

One of the most robust techniques for estimation of the mass composition is based
on the depth of atmospheric shower maximum, Xmax, as measured by the fluores-
cence detector of the Pierre Auger Observatory. By comparing the Xmax distri-
bution to the predictions from air shower simulations with varying fractions of
nuclear mass groups, the best-fit composition can be estimated with, for example,
a binned maximum-likelihood estimator (MLE), which is a standard approach
used so far in Auger, see e.g. [82, 148].

In this chapter, we discuss a slightly different approach for fitting the compo-
sition fractions, namely instead of using a minimization algorithm we apply the
Markov Chain Monte Carlo (MCMC) method to investigate the composition frac-
tions with Bayesian techniques. The MCMC approach has several advantages for
mass composition measurements. Firstly, MCMC can be applied to global opti-
mization problems, and it will not get stuck in a local minimum (at least theoret-
ically if the number of samples is large enough and/or the sampling steps are set
appropriately). Furthermore, MCMC can deal with a large number of highly cor-
related parameters which is numerically impossible with standard gradient mini-
mizers such as MINUIT [149]. This can be very useful for composition studies if
e.g. one aims at marginalizing over all 26 charges from a proton to iron instead of
using mass groups or if in addition to the nuclear fractions one also wishes to fit
properties of hadronic interactions. Most importantly, MCMC allows to sample
of the posterior probability density function of the estimated fractions. Thus, it is
easy to marginalize over the mass composition for derived quantities. Examples
of such derived quantities are the average rigidity (energy per charge) of cosmic
rays and the first two moments of the Xmax distribution, as will be discussed later.
A future application could be the fit of the proton-proton cross section, with un-
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certainties marginalized over the mass composition and other nuisance parameters
such as the systematic uncertainties of the energy- and Xmax-scale or assumptions
made in the calculation of nucleus-air cross sections.

The chapter covers the following content. Firstly, the MCMC sampling algo-
rithm and the mass composition fitting procedure are introduced. Next, we assess
the accuracy of the fitting method and investigate any potential biases in the re-
sults. Then, we evaluate the impact of Xmax distribution binning and the template
generation method on the results. We also compare the fractions predicted from
the different datasets (see Sec. 2.5 for the description of the considered data). Fi-
nally, we present the mass composition derived from the Phase I data of the Pierre
Auger Observatory. Additionally, we explore potential applications of the MCMC
fitting algorithm and the results obtained.

3.1 MCMC Sampling of the Xmax distribution

The name of the Markov chain Monte Carlo combines two properties: Monte
Carlo and Markov chain. The basis of the Monte Carlo method lies in sampling
from the posterior probability density function to infer the quantity of interest,
i.e., the probability distribution of the fitted model given the data. In Monte Carlo
methods, the sampling process does not start at the mean but involves generating
a significant number of samples to average. Indeed, sampling directly from the
posterior distribution can be challenging, especially in high-dimensional prob-
lems. The use of Markov chains simplifies the sampling process in such cases.
In Markov chains, each subsequent step is influenced solely by the preceding step
and is not dependent on any values prior to it. This property, known as the Markov
property, imparts a memoryless characteristic to the process, meaning that future
sampling would depend only on the current value and not the preceding steps.
Combining Monte Carlo sampling and the Markov chain algorithm is a powerful
tool for approximating complex probability distributions.

The two commonly used algorithms in MCMC are the Metropolis-Hastings
(MH) algorithm and the Gibbs sampling algorithm, the latter being a special case
of the MH algorithm. In the MH method, the step (state) is accepted or rejected
based on the so-called acceptance ratio, which is the ratio of the probability of the
proposed sample under the target distribution to the probability of the current state.
If the probability of the proposed sample is equal to the acceptance probability,
the sample is accepted and becomes a new state. Otherwise, the state remains
unchanged. The Gibbs algorithm, on the other hand, updates only one variable

56



3. Measurement of Mass Composition

at a time in the new state, considering the current values of the other variables.
In this study, we adopt the Metropolis-Hastings algorithm. Here, we only briefly
introduced the Bayesian fitting with MCMC algorithm discussed and outlined its
main components. A more extensive description of the MCMC technique can be
found in [150]

There exist several libraries in Python for performing MCMC sampling, the
most commonly used of which are the EMCEE [151] and PYMC [152] modules.
Due to its widespread application in astrophysics (more than 8165 citations on
NASA/ADS as of the writing of this work), we decided to use EMCEE library, but
verified that both modules give identical results.

3.1.1 Fitting algorithm
The required input to any MCMC sampler consists of two parts, and calculates
and returns the sum of the logarithm of the prior, p(θ), of the fit parameters θ , and
the logarithm of the likelihood function p(X |θ), where X is the data. The main
output of the MCMC algorithm are samples of the posterior distribution:

p(θ |X) ∝ p(X |θ) p(θ). (3.1)

The prior p(θ) is set to have a form of the uniform distribution within the allowed
parameter range, which corresponds to the so-called uniform uninformative prior.
In the case of infinite MCMC statistics, the best sample with such a prior is equiv-
alent to the maximum likelihood estimator.

To measure the mass composition we use the depth of maximum of extensive
air showers, Xmax, which is one of the observables most sensitive to the ultrahigh-
energy cosmic-ray composition. As there are fluctuations in the properties of first
few hadronic interactions in the in the cascade, it is not possible to accurately es-
timate the primary on the event-by-event basis,so instead the distribution of the
measured Xmax values is used. Assuming that nuclei of mass A produces the dis-
tribution Fi(Xmax) the overall distribution is then a sum of individual [34]:

F(Xmax) = ∑
i

fsFi(Xmax), (3.2)

where fs is a fraction of primary particle of type s.
The relation between the true and observed Xmax distribution is

Fobs(Xmax) =
∫

∞

0
F(Xmax)ε(Xmax)R(X rec

max −Xmax)dXmax, (3.3)
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where ε is a detector efficiency and R is the detector resolution that relates the
true Xmax to the reconstructed, X rec

max. In the case of the ideal detector, ε would be
a constant, and a δ -function can approximate R.

To describe the measured number of entries ni in the Xmax histogram at depth
bin i, we use the same Poisson likelihood as in the previous Auger mass compo-
sition analyses [82, 153]:

− lnL ≡− ln p(X |θ) = ∑
i

(
Ci −ni +ni ln

ni

Ci

)
, (3.4)

where Ci is the model prediction defined via

Ci =
Ndata

∑s ∑i fsXs,i
∑ fsXs,i. (3.5)

Here fs are the fractions of nuclear species included in the fit, Ndata is the total
number of events in the data and Xs,i is the binned Xmax distribution template. The
template is a simulated distribution of Xmax values including the effects of detector
acceptance and resolution according to Eq. 3.3. It can be parameterized as [82]

Xm
s, j =

NMC

∑
n

a(X t
s,n)p j(X t

s,n)/NMC, (3.6)

where a(X t
s,n) is an acceptance weight for the nth event of s particle species and

p j(X t
s,n) is the probability for each Xmax bin j.

By definition, the composition fractions fs can have values between 0 and 1
and should sum up to 1. To make sure that these conditions are fulfilled, we do
not fit the fraction fs, but the auxiliary variables ζi that encode these constraints
by the following relation to the fractions (see e.g. [154]):

f1 = ζ1

f2 = (1−ζ1)ζ2

...

fi−1 = (1−ζ1)(1−ζ2)...(1−ζi−2)ζi−1

fi = (1−ζ1)(1−ζ2)...(1−ζi−2)(1−ζi−1) (3.7)

and set the prior on the values of ζi to be uniform between 0 and 1. The geomet-
rical interpretation of this transformation is to identify a composition mix with a
point u on an n-dimensional unit sphere. The fractions can then be identified with
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the squared length of the Cartesian coordinates ui and ζi as the squared directional
cosines

f1 = u2
1 = cos2

ϕ1 ≡ ζ1

f2 = u2
2 = sin2

ϕ1 cos2
ϕ2 ≡ (1−ζ1)ζ2

...

(3.8)

for which u2 = ∑u2
i = 1 and ui ∈ [0,1].

The Xmax distribution templates Xs,i are generated with the CONEX air shower
program [155] and then modified by the Xmax acceptance and resolution [82]. To
account for the detector acceptance each bin of the template φi is multiplied by
the detector acceptance εrel(Xmaxi):

φ
′
i = φi · εrel(Xmaxi), (3.9)

calculated for the bin centers with the following standard parameterization [34]:

εrel(Xmax) =


e

Xmax−x1
λ1 ; Xmax ≤ x1,

1 ; x1 < Xmax ≤ x2,

e−
Xmax−x2

λ2 ; Xmax > x2.

(3.10)

εrel gives the probability to measure a shower as a function of Xmax. Due to the
fiducial event selection, it has a flat central part between x1 and x2. Outside of this
range, the efficiency decreases exponentially, and the measured Xmax distribution
is, therefore, expected to be biased in the tail of the distribution.

The detector resolution can be parameterized as the sum of two Gaussian dis-
tributions G(σ):

R(X rec
max −Xmax) = f G(σ1)+(1− f )G(σ2), (3.11)

where f , σ1, and σ2 are parameters of the Xmax resolution, and the bin center
corresponds to the expectation of the normal distribution. Thus, if we consider
the Xmax distribution in the range between 0 and 2000 g/cm2 with a bin width
of 2 g/cm2, the distribution is approximated with 1000 double Gaussians. For
each bin, the resolution function is evaluated for the Xmax values in the range 0-
2000 g/cm2 with steps of 1 g/cm2.
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Figure 3.1: The detector acceptance as a function of logarithmic energy for the
following species: photons (orange pentagons), H (red diamonds), He (cyan tri-
angles), N (grey squares) and Fe (blue circles). The lighter the species, the more
it is affected by the detector acceptance.

To have the correct number of counts in the bins each of the double Gaus-
sians Ri is divided by the sum over the distribution range ∑i Ri to normalize it and
then multiplied by the corresponding probability density function values of the
corrected for acceptance effects Xmax template φ ′

i :

R′
i =

Ri

∑i Ri
·φ ′

i . (3.12)

Then, the renormalized double Gaussian distributions R′
i are summed up. We

rebin the obtained distribution accordingly the selected binning in the data in or-
der to have the same number of entries per Xmax interval in the templates. For
example, if the selected binning is 20 g/cm2, bins are grouped by 10, as one bin
with a width of 20 grams can be composed of 10 bins with a width of 2 grams,
and the bin counts are summed within each group. The corrected for acceptance
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and resolution binned template Xs,i for a certain energy bin and a single species s
is weighted according to its species fraction fs to form model prediction Ci for the
comparison with data in each Xmax bin.

The resolution and acceptance slightly alter the shape of the Xmax templates.
Moreover, the acceptance changes the normalization of the individual compo-
nents. But since the fiducial field of view cuts assure a large range of constant
acceptance, the corrections are small for nuclear primaries. As can be seen in
Fig. 3.1, the total selection efficiency, i,e. the integral over εrel(Xmax) weighted by
the normalized Xmax distribution is close to 100% for elements A ≥ 2, and ≥ 90%
for protons. Only photons are severely affected by the acceptance with a selection
efficiency dropping to as low as 50% at ultrahigh energies for the standard Xmax
selection, which was of course not optimized for photon searches.

The fit runs over the Xmax range between 0 and 2000 g/cm2 and the default
binning of the distribution, unless noted otherwise, is 10 g/cm2.

The assumed uninformative prior is quite common in the Bayes statistics, how-
ever here we set a uniform flat prior for the parameters ζi, via which the fractions
are defined, and this does not necessarily result in the same uniform prior for the
fractions.1

To make sure that the appearance of the prior will not affect the fit we con-
sider two other options of defining the prior and/or the model prediction in the
likelihood without introducing the auxiliary variables ζi in the fitting procedure,
which allows us to have non-informative prior for the fractions as well. As a first
alternative implementation, we studied the fit of N −1 fractions with the uniform
prior on [0,1] and defined the Nth fraction as fN = 1−∑

N−1
i=1 fi while requiring the

fN to be within the [0, 1] interval. Another option we investigated was to fit all
fractions but modify the model prediction in such a way that the Xmax templates
for species are individually normalized and the double sum in the Eq. (3.5) can
be omitted, so the likelihood itself will guarantee that the resulting fractions will
add up to 1 without imposing any additional constraints. We checked all three
discussed options and found that the estimated fractions for the best-fit point es-
timate discussed in the next section are very similar and it can be concluded that
the particular choice of the prior is not relevant for the result.

1Uniform priors on ζi in Eq. (3.7) correspond to a uniform distribution of f1, but to skewed (but
identical) distribution peaked at zero for all the other fractions. We also investigated the fraction
prior using the method of normalized Gaussians [156] to pick the directional cosines. In this
case, the pdfs of all fractions are equal, but again skewed and peaking at zero. The fact that this
method results in equal prior for all fractions makes it conceptually more attractive and could be
investigated further in the future.

61



3. Measurement of Mass Composition

The testing of the fitting algorithm will be performed with the latter option of
defining the likelihood, while for the fit with the actual data we use the parameter-
ization with the auxiliary variables ζi. The reason for this is that the latter option
with the normalized templates does not allow us to account for the acceptance
effects in the templates, which we do not necessarily need for the tests with the
simulated data, but which we can not ignore for the fit to the observable.

As mentioned above, the main output of the MCMC fit is the posterior dis-
tribution, from which we can derive the point estimates of the fractions and the
associated statistical uncertainties. Examples of the projections of MCMC sam-
ples as the corner plot and as the posterior distribution are shown in Fig. 3.2 for
the four-component fit to the PRD14 data, at energies of 1017.8 - 1017.9eV. It is
also possible to access the correlations between the different nuclei from the cor-
ner plot. In the example given, there is clearly a strong anti-correlation between
H and He, as well as between He and N.

There are several ways to report numerical values summarizing the posterior
distribution, and one can use, for example, mean, mode, or median, all of which
are calculated directly from the distribution or the maximum a posteriori (MAP)
estimator, which, as its name suggests, is based on the maximum of the posterior
distribution. In case of the uniformative prior used here, MAP is equivalent to the
maximum likelihood value. Depending on the shape of the posterior distribution,
i.e. whether we have a symmetric or a skewed distribution, this or that point esti-
mate of the parameter of the interest may be more adequate to summarize the dis-
tribution, but the most common and recommended is the use of the median (50th
percentile) of the distribution when reporting the point value of the fit parameters.
Regarding the calculation of the statistical uncertainties, one of the most common
ways are to quote the uncertainties based on the 16th and 84th percentiles of the
distribution or to use the 68% highest posterior density interval, which constitutes
the 1-sigma confidence range. The latter one is more applicable in a case of a
skewed posterior distribution, as it allows to obtain the one-sided confidence lim-
its. For the cross-checks, the mass composition fit is also performed with the min-
imization algorithm MINUIT, in particular with the Python-based iminuit [157]
interface for the MINUIT2 C++ library, for which the parameter estimates are free
from statistical fluctuations associated with the finiteness of the MCMC chain.
The walkers, i.e. the various chains that the algorithm uses to explore the parame-
ter space, for the auxiliary ζ parameters in the MCMC fit, which are the members
of the ensemble moving around a given initial position, are initialized with a uni-
form random distribution on [0,1]. The two main indicators of the performance
of the MCMC sampler are the convergence of the chain and the independence
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Figure 3.2: Example of the MCMC posterior samples for the 4-component fit
to the PRD14 data at energies of 1017.8-1017.9 eV. Left: The corner plot for the
MCMC draws from the posterior distribution showing the 2–D correlations be-
tween the parameters and the distributions of fitted parameters (diagonal). The
contours in the density plots denote the 1-sigma level containing 39.3% of the
volume, which corresponds to 68% for the 1-D distribution. The following point
estimates are shown for the distributions: median (solid black line), mode (dash-
dotted blue line), and MAP (dashed red line). The Equal-tailed and the Highest
Density 1-sigma credible intervals are indicated with the dotted and dashed black
lines respectively. Right: The posterior predictive for four species: H (in red), He
(in cyan), N (in gray), Fe (in blue). The combination of four species is shown in
olive and compared with the data.
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of the samples. For this, we check the acceptance fraction, autocorrelation, and
Gelman-Rubin statistic R̂ [158] to see if the chain has converged. The acceptance
fraction α f is the ratio between the accepted number of steps and the total number
of steps. In general, there are no particular limits for the acceptance fraction. Still,
it is advisable to have it between 0.2 and 0.5 since at very small α f , there will be
very few independent samples. In contrast, almost all samples will be accepted at
α f ∼ 1, preventing the converging to the target density. The autocorrelation time
allows us to evaluate the number of steps needed to produce enough independent
samples. The smaller the number, the better, meaning that fewer iterations of the
probability distribution function are needed. In addition to the thinning of the
chain, the autocorrelation time could also be reduced by adjusting the parameters
of the stretch-move algorithm implemented in the emcee module. The R̂, evalu-
ated from the square root of the ratio between the within-chain and between-chain
variance, provides another means to evaluate the chain’s convergence; as a rule of
thumb, it should be less than 1.05. A larger R̂ value would indicate a suboptimal
mixing of the chain. Thus, based on the performance of the MCMC sampling, the
number of steps in each MCMC chain was set to 45000 for the 4-component fit.
To stabilize the chain, we discharge the first 5000 steps as burn-in and to reduce
the auto-correlation, the MCMC chain is thinned by storing only every 15th step
in the output. The length of the chain and the burn-in period should be adjusted
based on the number of fitted parameters. More parameters, especially if they are
strongly correlated, would necessitate a more extended sampling.

Since the fractions are defined via ζ variables we have only three fit parame-
ters in the MCMC when a fit for 4 composition fractions is performed. We then
convert the samples from the posterior distributions obtained for ζ variables into
the posterior distributions for fractions using the Eq. (3.7), so that we can get the
point estimates of fractions and the corresponding statistical uncertainties. Such
conversion and an error propagation from ζ to fractions is actually an example of
an application of posterior distributions.

3.1.2 Test of fraction fitting with MCMC algorithm
To test the MCMC fit performance we applied the fit to ensembles of the data
simulated with Xmax distributions drawn from the Gumbel function parameteri-
zation [159, 160] for different mixtures of four particle species at an energy of
1017.8 eV. The number of events in the templates is 2·106 per species, and the
number of events in the simulated data sets is varied from 100 to 2·105. For each
composition, we repeat the generation of the data set and apply the fitting pro-
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cedure N times. In total, for each composition scenario, we generated N = 100
data sets and then calculated the average of the fractions over the N realizations. In
Fig. 3.3 the results for the following benchmark composition scenarios are shown:

a) equal composition: H:He:N:Fe: 0.25:0.25:0.25:0.25;

b) highly unequal composition - low He and N: H:He:N:Fe: 0.6:0.05:0.1:0.25;

c) highly unequal composition - low He and Fe: H:He:N:Fe:
0.45:0.05:0.45:0.05.

On the x-axis the total number of events Ntot in the data is shown and the y-axis
is the average of the fraction values over 100 fit realizations. Four different point
estimates are shown: the median, mode, and the MAP from the MCMC fit and
also the MLE found by MINUIT. As can be seen, all point estimates are biased for
the unequal composition scenarios if the number of events is low, and the more
unequal the composition is, the more significant the bias. In the limit of large
statistics, the fraction estimators converge to the generated fractions. Asymptoti-
cally, the fitted fractions are unbiased within a couple of percent.

The median has the most significant bias, while the MAP is the least biased
point estimator. As expected, the MAP is similar to the MLE obtained by the
gradient search with MINUIT. Two examples of posterior distributions with a
significant bias in the point estimates of the fractions are shown in Fig. 3.4. The
posterior distribution displayed in Fig. 3.4 (left) looks like a normal symmetric
distribution, so all three discussed point estimates are almost identical. However,
their values are significantly less than the actual simulated fractions. On the other
hand, the posterior distribution shown in Fig. 3.4 (right) is strongly skewed with
point estimates that are, in this case, all biased except for the median, which is in
a reasonable agreement with the simulated fraction

The overall performance of the MCMC fitting algorithm is good and compat-
ible with gradient minimizers. Some bias is possible only in case of the very low
statistics in data and the extreme composition scenarios with a nearly pure com-
position. The latter one could be due to the physical non-negativity constraint on
the estimated composition fractions [161].

3.1.3 Confidence intervals and coverage probability
As an additional performance check, we also looked at the coverage probability
of the 68%, 90%, and 95% credible intervals. The coverage probability is the
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(a) H:He:N:Fe: 0.25:0.25:0.25:0.25.

(b) H:He:N:Fe: 0.6:0.05:0.1:0.25.

(c) H:He:N:Fe: 0.45:0.05:0.45:0.05.

Figure 3.3: Average fitted fractions for three composition scenarios as a function
of the number of detected events, Ntot. The following point estimates of frac-
tions are shown: the median (gray triangles), mode (purple circles), MAP (blue
squares), and the MLE fractions from MINUIT (red diamonds). The true fraction
is shown as the green dashed line.

probability that a certain confidence level of a statistical estimator contains the true
value. Ideally, the coverage probability should be equal to the chosen confidence
level. The credible interval is a Bayesian equivalent to the frequentist confidence
interval. In the case of symmetric posterior density and flat prior, the credible
interval will be numerically close to the confidence interval. Unlike the confidence
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Figure 3.4: Examples of posterior distributions resulting in biased point estimates
for the tests with the simulated data. The following point estimates are shown:
the median (solid black line), mode (dash-dotted blue line), and MAP (dashed red
line). The true fractions are shown as green dotted lines. The 68 % ETI and HDI
intervals are shown in black dotted and dashed lines, respectively.
Right: H posterior, H:He:N:Fe = 0.45:0.05:0.45:0.05.
Left: He posterior, H:He:N:Fe = 0.6:0.05:0.1:0.25.

interval, which reflects how often the actual value lies within the interval limits,
the credible interval tells us what is the posterior probability that the true value
can be found within this range, which corresponds to the significance of 1-, 2-,
and 3-sigma. Regarding the calculation of statistical uncertainties, there are two
options for defining the uncertainty: one can quote the uncertainties based on
the so-called equal-tailed interval (ETI) or the highest density interval (HDI). In
the case of the ETI, the probability of having a value below the interval is the
same as above it and necessary includes the median so that the 1-sigma credible
interval (68%) will have 16% of the distribution on both sides of the limits. The
second option, the Highest Density Interval, is defined so that all points within the
interval have a higher probability density than points outside. By construction,
the HDI always includes the mode of the distribution. The ETI and HDI methods
for computing credible result in identical values if the distribution is symmetric.
If the distribution is skewed, the intervals will be different. Since the HDI is
generally recommended when the posterior distribution is skewed, which happens
occasionally with the obtained posterior distributions for fractions, we use the HDI
to report the 1-sigma uncertainty on the estimated parameters. However, a point
estimate of fractions may lie outside the boundaries of the credible interval. This
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is especially true if the MAP is used to report the value since it is not related to a
property of the distribution, unlike the other estimates, but the MCMC is a draw
with the largest posterior. The corner plot with the example of the MAP lying
outside the 68% HDI credible interval and both mode and MAP lying outside the
central (ETI) credible interval is shown in Fig. 3.5.

As can be seen, in this example the posterior distributions are highly skewed
towards lower values (to the left) for two species, He and Fe, so it looks like we
have only half of the usual distribution due to the physical limit at 0. Thus, the
16th percentile of the distribution (lower border of the central 68% credible inter-
val) falls around the maximum of the posterior distribution, where, by definition,
we also expect to have the MAP and mode, so for such a distribution it is better to
report the HDI as a 1-sigma uncertainty. Nevertheless, though using the interval
constructed with the HDI method undoubtedly has advantages for a skewed poste-
rior distribution, we still can have the MAP point estimate outside the interval for
a more or less symmetric distribution. A possible alternative to the issue with the
point estimate not being inside the credible interval can be switching to the one-
sided limit if the two-sided credible interval does not contain a point estimate,
e.g., if the fraction value lies outside the limit on the lower side of the distribution
we only report the upper limit, and vice versa - only the lower limit is consid-
ered if the point estimate has a higher value than the upper edge of the two-sided
credible interval. However, it may result in unrealistically large uncertainties and,
correspondingly, an over-coverage of the confidence intervals.

The coverage probabilities for three standard credible intervals for the simu-
lated data with two different compositions are shown in Fig. 3.6. Coverage prob-
ability is a frequentist concept and quantifies the fraction of realizations that the
interval contains the true value of interest,

pcoverage =
N(true value within interval)

number of realizations
(3.13)

Ideally, the coverage probability equals the confidence level, i.e., for an interval
at 68% C.L., the coverage probability should also be 68%. While the confidence
level quantifies the desired frequency of "type-I errors", the coverage probability
measures the actual occurrence of these errors.

A closer inspection of the resulting coverage probabilities leads to the qual-
itative statement that the coverage probability behavior varies depending on the
composition and available data statistics. While for some species it tends to in-
crease or decrease as the number of events in the simulated data changes, for other
species it seems that the coverage probability fluctuates around a constant value.
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Figure 3.5: An example of the corner plot showing the 2–D correlations between
the parameters and the distributions of fitted parameters (diagonal) with some
point estimates outside the 1σ credible interval. The fit 4-component fit was per-
formed with the PRD14 data at the energies of 1018.6 - 1018.7 eV. The contours in
the density plots denote the 1-sigma level containing 39.3%, i.e. 1− exp(−0.5),
of the volume, which corresponds to 68% for the 1-D distribution. The following
point estimates are shown: the median (solid black line), mode (dash-dotted blue
line), and MAP (dashed red line). The dotted and dashed black lines indicate the
1σ ETI and HDI uncertainty ranges.

We can not expect good coverage at low Ntot where point estimates are biased.
In particular, there is over-coverage for N and Fe in the low-He/low-N scenario
shown in Fig. 3.6b and a significant under-coverage for He and N in the low-
He/low-Fe scenario displayed in Fig. 3.6c. Moreover, in both scenarios displayed,
we have an over-coverage at large Ntot at the 90% and 95% levels.
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(a) H:He:N:Fe: 0.25:0.25:0.25:0.25.

(b) H:He:N:Fe: 0.6:0.05:0.1:0.25.

(c) H:He:N:Fe: 0.45:0.05:0.45:0.05

Figure 3.6: Coverage probabilities for three different composition scenarios. Left:
68% credible interval. Center: 90% credible interval. Right: 95% credible inter-
val.
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It can be noted that the data for the benchmark compositions were generated
for the exact number of events without any fluctuations. To see whether this can
affect the coverage probability in some way, we simulated the data following the
multinomial distribution for one of the composition scenarios, thus adding fluctu-
ations to it. We then compared the calculated coverage probability with the one
for the fit to the data simulated with the exact number of events. For this check, we
increased the number of realizations up to 1000 for more accuracy. The obtained
coverage probabilities differ only slightly, with the values for the data simulated
with the multinomial distribution being slightly smaller than for the data with the
fixed number of events. The coverage probability almost did not change with the
increase in the number of realizations from 100 to 1000 as well.

Summarizing the above, the bias in the fit is on average small and within the
statistical uncertainty for typical event statistics and composition fractions as ob-
served in the data, but in general depends on the composition and the number of
events in the data set. Nearly unbiased results are observed when the MAP is used
to report the outcome of the MCMC fitting procedure or when the fit is done with
the MLE, which is equivalent to the prior used here. This bias also affects the
considered coverage probability of the credible intervals making a specific con-
tribution to the observed over-coverage/under-coverage for different composition
scenarios with a varying size of the data set.

3.2 Application to data

In this section, we apply the fitting procedure to the most recent Auger data and
discuss the results obtained. The parameters of the MCMC fit and the way of
constructing the model predictions, including the log-likelihood, remain the same
as in Sec. 3.2.1.

The mass composition fits are performed using a default mix of H, He, N,
and Fe, but also with different combinations of particle species. Several hadronic
interaction models are considered in the analysis, i.e., EPOS-LHC, QGSJETII-04,
Sibyll2.3c, and the latest Sibyll 2.3d. In light of the release of the newer Sibyll
version during the course of this study, the analysis of the most recent data does
not use the previous version of the Sibyll MC generator. For a discussion of the
differences between the predictions of air shower observables from the different
models, see the section on hadronic interaction models. In addition, given that
QGSJETII-04 does not describe the Auger data well, it was decided not to use it
for the composition estimates from the full Phase I data.
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Figure 3.7: Comparison of fractions and the quality of the fit for the different
binning of the Xmax distribution as a function of logarithmic energy. The data set
is ICRC19 and the fit is done with the Sibyll 2.3d hadronic interaction model. The
bottom panel shows the quality of the fit Pχ2(D,ν) estimated from the χ2 statistics.

Since we found the MAP point estimate to be the least biased among all dis-
cussed options, we decided to use it to report the ’data point’ of the fitted fractions.
Two distinct approaches can be employed to evaluate the quality of the fit. Ac-
cording to [82], it can be defined as the probability of obtaining a worse fit, e.g., a
larger negative likelihood, than that obtained with the data, assuming that the dis-
tribution predicted by the fit results is correct. However, estimating the p-values
for the fit in this way, along with the corresponding systematic uncertainties, can
be a time-consuming procedure, particularly when the p-values are small, as it
would require generating a substantial amount of simulated data. Alternatively,
we can use the fact that the deviance D defined by the logarithm of the Poissonian
likelihood is approximately χ2-distributed [153]. Then, considering the number
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of degrees of freedom ν , defined as the difference between the number of bins and
the number of the fitted parameters, we can evaluate the fit quality, denoted in a
text as Pχ2(D,ν), from the χ2 statistics. Defining the degrees of freedom in the
likelihood, Eq.3.2, is not straightforward since also bins with template entries <
1 are included in the sum. When determining the number of degrees of freedom,
we consider only the bins in which the entry values in the model prediction ex-
ceed 0.1 or in which more than zero events were observed in the data. Thus, the
resulting quality of the fit depends on the number of degrees of freedom, so one
should be cautious with this approach when comparing the output of the fits to the
Xmax distributions with different binning. The difference in the quality of the fit
depending on the binning of the Xmax distribution is shown in the bottom panel of
Fig. 3.7.

For most of the analysis in this chapter, we will use the CONEX air shower
simulation programme to generate the Xmax distribution templates. Alternatively,
as air shower simulations with sufficient statistics can be time-consuming, the
Gumbel function parameterization used in the previous section to assess the
method performance is also commonly utilized. As shown in Fig. 3.8, the esti-
mated mass composition obtained using the CONEX-simulated Xmax distribution
templates and the Gumbel distribution parameterization overall shows nearly no
difference with an exception for one energy bin. The figure also demonstrates that
the MAP and MLE give the same results, as expected.

In addition to the statistical uncertainty, we also consider the systematic un-
certainty, in particular the Xmax-related one, when reporting the final results. In
the PRD14 paper [82], the uncertainties on Xmax, the energy scale, and the param-
eterization of the detector resolution and acceptance (see Eq. 3.11 and Eq. 3.10,
respectively) are taken into account. For the fit discussed in the current Chap-
ter, we considered only the effect of the uncertainty on the Xmax measurements
as a first approximation, which gives the most significant contribution to the total
systematic uncertainty. To calculate the Xmax-related uncertainty, we consistently
varied the shift in the Xmax scale δXmax in the range from -σ and +σ with a step
of 0.1(Xup

max −X low
max). We then fitted the shifted and rebinned data with the imi-

nuit python minimizer. We then considered the largest and the smallest obtained
fractions as the lower and upper systematic uncertainty limits. Similarly, the un-
certainty limits were evaluated for the p-values by taking the smallest and largest
p-values obtained for the fits with different Xmax-scales within the systematic un-
certainty. Alternatively, we can also include the Xmax-scale as a free parameter
constrained by a Gaussian prior. This approach fits nicely into the spirit of the
MCMC approach to marginalize over all parameters, leading to similar systematic
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Figure 3.8: Comparison of the composition fit with CONEX Xmax and Gumbel
Xmax distribution templates applied to the data from [145] for the low-energy
part of the fit and from [143] for the high-energy part. In addition, the fit results
obtained with the MCMC algorithm are compared to the prediction with the gra-
dient minizimer.

uncertainties for the fractions, but it turns out that the best-fit scale-shifts are non-
zero, i.e., that the data prefers to be shifted with respect to the model predictions.
While this is interesting in itself, it goes beyond the inference of the fractions for
the nominal Xmax and model scales, and will be discussed in Sec.3.2.4.

Regarding the spectrum, we assume a spectral index of 1.1 for energies below
1018 eV and a spectral index of 2.2 for energies above 1018 eV, except for the last
integral energy bin, which has a spectral index of 4.7. These values are obtained
from the fit to the energy spectrum dN/dE of the selected FD event, which differs
from the SD energy spectrum reported in [162] for the events arriving at Earth.
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3.2.1 Comparison to previous results

As a first step of the analysis, the MCMC algorithm was applied to the PRD14
data. In Fig. 3.9 the comparison between the fractions obtained with the MCMC
algorithm and the composition fractions derived in [82] for the PRD14 data set
with the standard MLE approach is shown. As can be seen, there is good over-
all agreement. Choosing any of the other point estimates discussed above, we
obtain very similar results except for the highest energies, where using the mode
and median as point estimates gives fractions that differ more from the PRD14
values. Note that at some energies the MAP estimate is outside the 68% credible
interval, and we then report the upper or lower physical limit of the fraction as the
corresponding statistical uncertainty. On average, the uncertainties obtained with
the MCMC error bars exceed the statistical uncertainties from the PRD14 mass
composition fit. These small differences are within the precision of the coverage
discussed in 3.1.3.

With the estimated fractions, we can then calculate the first two moments of
the Xmax distribution, namely the mean ⟨Xmax⟩ and the standard deviation σ(Xmax)
to compare with the data using Eqs. 2.5 and 2.6, respectively.

Since the MCMC fit gives us the posterior distributions for fractions, for cal-
culating the Xmax moments, we may not use the point estimates of fractions. In-
stead, we can obtain the posterior distributions for the moments by plugging the
samples from the distributions for fractions into the Eqs. 2.5 and 2.6, for which we
can calculate the Xmax moments with any point estimate. The statistical uncertain-
ties on the moments can be determined exactly as for the fractions by quoting the
limits of the highest density interval of the distribution. This way of estimating the
moments of the Xmax distribution illustrates one of the MCMC advantages - the
construction of arbitrary posterior distributions from the samples and, therefore, a
straightforward way to propagate uncertainties to arbitrary quantities derived from
the fit values.

The comparison of the calculated from the MCMC fit Xmax moments and the
moments from the PRD14 data set is shown in Fig. 3.10. Here, as a point estimate
of the moment, we report the value corresponding to the MAP fractions. Alterna-
tively, the mean or mode of the computed distribution for moments can be used
for reporting the point estimates. As the one-sigma statistical uncertainty, we con-
sider the HDI interval of the posterior distributions of the Xmax moments. Similar
to the fractions, the point estimate is slightly above the credible interval for some
energies. Since there are no physical limits for moments, we cannot redefine the
statistical uncertainty as we did for fractions by quoting the upper/lower physical
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Figure 3.9: Comparison of the fractions derived with MCMC to the the previous
Auger measurements [82] for the QGSJETII-04 (blue triangles) and EPOS-LHC
(red diamonds) hadronic interaction models. The MCMC fractions are shown
as filled symbols, and the PRD14 fractions are shown as open symbols of the
corresponding colors. Inner error bars denote statistical, and outer error bars
correspond to the total uncertainties.

limit in such a case. As can be seen, there is good agreement between the calcu-
lated Xmax moments and the data. However, systematic differences exist between
data and calculations below 1018 eV, where the fitted composition model consis-
tently underpredicts the ⟨Xmax⟩ by ≤ 5 g/cm2. The comparison of the moments of
the data and the fitted distribution is a powerful test of the agreement of data and
the interaction model, in addition to the goodness-of-fit estimate discussed at the
beginning of Sec. 3.2.
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Figure 3.10: The first two moments of the Xmax distribution calculated from the
MCMC fit (blue squares) to the PRD14 data (green circles): the mean ⟨Xmax⟩
(left) and the standard deviation σ(Xmax) (right). The calculated moments are
shown as green circles and the data as blue squares.

3.2.2 Composition fractions for different data sets

In Fig. 3.11, the comparison of the estimated fractions for all three datasets dis-
cussed in Sec.2.5 for the EPOS-LHC and Sibyll 2.3d hadronic interaction mod-
els is shown. As can be seen from the figure, the overall trend in the evolution
of the fractions with energy remains the same. In general, the fractions derived
from the different datasets do not differ much. Given the broad systematic uncer-
tainty range (see, e.g., Fig 3.16 for estimating the total uncertainty, which includes
statistical and systematic uncertainties), we can say that the values agree within
the uncertainty range. The results for the ICRC23 and ICRC19 datasets agree
within the statistical uncertainty. However, it should be noted that there are some
differences in the point values of the fractions, especially for He and N nuclei.
The differences are also more significant for the fractions fit performed with the
Sibyll 2.3d interaction model. In particular, the fraction of helium estimated from
the PRD14 data is smaller than that in the ICRC19 and ICRC23 data sets. Simul-
taneously, as the He and N fractions are anti-correlated, the fraction of nitrogen
nuclei is higher in the PRD14 data. The most substantial amount of nitrogen is
seen in the most recent data, whereas the predictions for nitrogen in the ICRC19
data are between PRD14 and ICRC23. The heavier composition in the ICRC23
data is also in line with the changes in data ⟨Xmax⟩ and σ(Xmax), see [144] for
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the comparison of the Xmax distribution moments for PRD14 and ICRC23 data.
For the predictions with the Sibyll 2.3d model, the fitted He fraction is nearly 0
at most energies below 1018.2 eV for the PRD14 data, while in two other datasets,
it is estimated to be between 30 - 40%. The difference of around 30% between
the fractions from ICRC23 and PRD14 data estimated with the Sibyll 2.3d model
persists throughout the entire energy range, except for several energy bins in the
middle. There are also more protons at the lowest energies in the PRD14 data than
in the later data sets. The difference between the ICRC19 and ICRC23 data in the
prediction for composition fractions reaches at most no more than 10-15% at the
highest nitrogen contribution. A similar trend in the discrepancies between the
different data sets is also observed in the fit with the EPOS-LHC model, but to a
lesser extent, with ICRC19 and ICRC23 data showing good agreement within the
statistical uncertainties for the energy range considered. The contribution of iron
is compatible with zero for all datasets. It is worth noting that the ICRC19 Xmax
data indicates a Fe component at ultrahigh energies, which was less pronounced
in previous fits with smaller statistics and correspondingly coarser energy bins at
these energies. No iron was visible in the PRD14 fraction fits, and only Sibyll2.3
showed a small iron contribution at UHE in the fits presented at ICRC17. In our fit
to the PRD14 data, there is also some iron at the highest energies, but this could be
due to the change in energy binning compared to the analysis in the corresponding
paper, as here we use the same binning at the highest energies for all three datasets
in question, which results in a smaller number of events in the two last energy bins
for the PRD14 data than in the corresponding paper.

3.2.3 Effect of including additional particle groups
As mentioned in the introduction to this chapter, the MCMC algorithm allows
marginalization over a large parameter space. Thus, we can include other nuclei
in the fit to see what effect they might have without worrying that many parame-
ters might complicate the fitting procedure. The conventional fit usually consists
of four species corresponding to four particle groups, but adding the Si nucleus or
photons into the mix is of great interest because the Si mass group is dominating
at ultrahigh energies in some astrophysical fits of spectrum and composition, see,
e.g. [163]. Figs. 3.12 and 3.13 display several different fits with a varied compo-
sition mix, incorporating additional nuclei such as photons, oxygen, and silicon
alongside the four standard nuclei.

The addition of different nuclei to the mix has a minor effect on the predicted
composition, which is also reflected in the quality of the fit. If nitrogen is present
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Figure 3.11: Comparison of the estimated composition fractions for the PRD14,
ICRC19 and ICRC23 datasets with the Sibyll 2.3d (left) and EPOS-LHC (right)
hadronic interaction models. Only statistical uncertainties are shown.

in the mix, oxygen can replace nitrogen in the fit, as these two elements are highly
correlated. Adding Si to the fit does not alter the overall results, and the quality of
the fit remains unchanged. The fitted Si fraction is consistent with zero throughout
the energy range, except for the last integral energy bin, where there is some
contribution from Si instead of Fe. This is in line with astrophysical fits that prefer
Si at these energies. Including photons in the fit results in the estimated non-zero
photon fractions contributing up to 5-6% to the mix. In addition, with photons in
the fit, we see some improvement in fit quality over the nearly all energy range,
particularly around 1018.6 eV, where the four-component conventional mix fits the
data poorly. The cosmogenic origin of such a large photon fraction conflicts with
the inferred (heavy) composition at ultrahigh energies. Furthermore, it disagrees
with the photon limits derived from hybrid data, which, due to the additional use
of surface detector data, have better sensitivity than the Xmax-only study presented
here. Instead of a photonic origin, it is thus more likely that the models used to fit
the Xmax distribution underpredict the number of deep showers, i.e., showers with
large Xmax values, and this deficit is alleviated here by adding a photon component.
A combined composition and cross section fit, discussed in Chap. 5, could show
if a lower cross section can lead to a consistent photon fraction between hybrid
and Xmax-only analyses.
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Figure 3.12: The comparison of the fit results for the different particle species
in the mix to the conventional four-component fit with H, He, N, and Fe nuclei
(black stars). The additional components shown are O, Si and photons (γ). Only
statistical uncertainties are displayed. The bottom panels shows the quality of the
fit Pχ2(D,ν) estimated from the χ2 statistics.

3.2.4 Fits with a free Xmax scale
Typically, the estimation of the mass composition by fitting the data to the tem-
plates constructed with either of the hadronic interaction models relies on the as-
sumption that the prediction of the Xmax scale from the hadronic interaction mod-
els is correct. However, it is well known that existing models face challenges in
accurately predicting observations of air showers, and moreover, the uncertainties
on the predicted Xmax scale are larger than about a third of the difference between
the ⟨Xmax⟩ of proton and iron nuclei [164, 165]. Therefore we investigated the
possibility to include a shift in the Xmax scale δXmax as an additional parameter
in the composition fit. We apply a shift in the data rather than the templates, so
no rebinning is required in the templates. The MCMC prior is redefined accord-
ingly to include δXmax, for which we set the upper and lower bounds to -40 and
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Figure 3.13: The comparison of the fit results for the different particle species in
the mix to the conventional 4-component fit with H, He, N, and Fe nuclei (black
stars). The additional components shown are O, Si and photons (γ). Only statis-
tical uncertainties are displayed. The bottom panels shows the quality of the fit
Pχ2(D,ν) estimated from the χ2 statistics.

40 g/cm2, respectively. Due to the additional parameter, we needed to adapt the
parameters of the MCMC chain. We increased the sampling length to 106 steps
and adjusted the burn-in period to 20000. Although an alternative way to increase
the number of steps would be to change how the MCMC proposals are generated,
none of the options available in emcee have provided a sufficient improvement.

Fig. 3.14 shows the results of the MCMC fit with a shift in the data Xmax
scale as an additional fit parameter. The fit was performed with Sibyll 2.3d and
EPOS-LHC interaction models to the ICRC19 data set. The normalized posterior
distributions are plotted using a color scheme, with the points corresponding to
the MAP point estimates. While the posterior distributions for the fractions are
unimodal, with the MAP estimates coinciding with the mode of the distribution,
the fit for the δXmax can have several local minima, with the MAP not neces-
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Figure 3.14: The 4-component MCMC fit with a shift in the data Xmax scale as
an additional fit parameter. The fit is performed with the EPOS-LHC (left) and
Sibyll 2.3d (right) hadronic interaction models for the ICRC19 data. The color
scale shows the posterior distribution for the composition fractions and the shift
δXmax. The posterior distributions are normalized. The black dots are the point
estimates of the fitted quantities (MAP).

sarily equal to the mode of the distribution. Allowing for the shift in the mass
composition fit results in a noticeable change in the predicted fractions, with a
significant increase in the fraction of N and Fe nuclei for both interaction models.
Consequently, the He fraction becomes compatible with zero in more than 2/3 of
the energy bins, even at energies above 1018.6 eV, where the He-N mix dominates
in a standard fit. The fraction of protons in the composition mix remains almost
unchanged.

It is clear that in the EPOS-LHC model, the favoured shift in data tends to be
close to or above zero at lower energies and gradually decreases with increasing
energy. The shift value reaches approximately -30 g/cm2 beyond 1019 eV (except
for the last energy bin, where the preferred shift is back to the default Xmax scale).
In the case of the fit with the Sibyll 2.3d model, the average shift is about -25
g/cm2, except for a few energy bins with a jump in the fit results, without showing
any particular trend with the evolution of the energy.

Fig. 3.15, shows the results of the fit to the most recent ICRC23 data with
Sibyll 2.3d interaction model. The trends in the evolution of the predicted compo-
sition and the shift in the Xmax scale are very similar to those derived from the fit
to the ICRC19 data, indicating an increase in the contribution from heavier nuclei.
At lower energies, because the fit favors the near-zero or positive shift in the Xmax
scale, the fitted composition is either consistent with the results of the fit with a
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Figure 3.15: Mass composition fit to the ICRC23 data with a shift in the Xmax scale
using the Sibyll 2.3d model. The color scale shows the posterior distribution for
the compositional fractions and the shift δXmax normalized to the corresponding
modes. The black dots are the point estimates of the fitted quantities (MAP).

fixed Xmax scale or has an increased contribution from the lighter nuclei, i.e., H
and He. With increasing energy, the shift in the Xmax scale decreases so that the
corresponding composition is dominated first by N and then by Fe nuclei after the
δXmax reaches a value of ≈ −30 g/cm2 at the highest energies.

It is worth noting that estimating the Xmax scale energy-by-energy may not be
the optimal approach, as it could lead to inconsistent shifts at different energies.
As an alternative method to the energy-by-energy fitting of the Xmax scale, a scan
over a given range can be performed, followed by summing the χ2 over the en-
ergies to estimate the best-fit single shift in the Xmax scale. In this scenario, we
obtain a shift of −4.5+1

−1.4 g/cm2 and −12.7+1.8
−0.8 g/cm2 for the fit to the ICRC23

data with the EPOS-LHC and Sibyll 2.3d interaction models, respectively. For
the ICRC19 data, the results are similar, with a shift of −6.5+0.6

−2.2 g/cm2 for the
EPOS-LHC models and −13.7+1.9

−0.8 g/cm2 for the Sibyll 2.3d model. In addition,
the Sibyll 2.3d fit has a second, local, minimum 2.2σ away from the global min-
imum, predicting a shift in the data Xmax scale of −28.3+0.7

−2 g/cm2. The second
minimum value of the shift in the Xmax scale agrees well with the results obtained
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in [166] for the Sibyll 2.3 hadronic interaction model. There is no second mini-
mum observed with the EPOS-LHC interaction model.

3.3 Results

In this section, we report the cosmic-ray mass composition estimated from the full
Phase I data of the Pierre Auger Observatory and discuss the interpretations of the
obtained results. Furthermore, we investigate additional potential applications of
the MCMC fractions fit procedure.

3.3.1 Composition fractions

In Fig. 3.16, the results of the mass composition fit with the MCMC algorithm
is shown for a combination of four particle species, representing four elemental
groups, approximately equally spaced in lnA, for the EPOS-LHC and Sibyll 2.3d
models for the latest ICRC23 data, including the systematic uncertainty. The fit
is performed on the Xmax range of 0-2000 g/cm2, and a binning of the Xmax dis-
tribution of 10 g/cm2 was chosen. The energy binning is consistent with PRD14,
employing a bin width of 0.1 lg(E/eV) for all energies up to the last integral bin
at > 1019.6. All events above this energy are merged into one integral bin. For
this result, we quote the more precise p-values obtained from fitting mock data,
see discussion at the beginning of Sec. 3.2. Both statistical and total uncertainties
on the fit fractions are shown. The total uncertainty on the composition fractions
includes the statistical uncertainty from the MCMC posterior distributions and the
effect of the systematic uncertainty in the measurement of the Xmax scale. For the
fits for the individual Xmax distributions and the values of the fitted fractions, see
Appendix B.

Overall, the cosmic-ray mass composition can be described as a mix of H,
He, and N nuclei at lower energies and a He-N mix at the higher energies above
the ankle in the cosmic-ray spectrum. Although the qualitative behavior for both
interaction models is the same, one can also see the significant dependence of
the choice of the interaction model on the individual fractions. On average, the
Sibyll 2.3d model results in a He fraction that is ≈ 20% larger at lower energies
and an increase in the fraction of N nuclei at higher energies compared to EPOS-
LHC. The proton fraction obtained with EPOS-LHC reaches up to 70% around
1018 - 1018.2 eV and then drops to less than 20% above 1018.7 eV. The Sibyll 2.3d
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Figure 3.16: The MCMC fit to the ICRC23 data with four elemental mass groups:
H, He, N and Fe (top four panels). The error bars denote statistical (inner cap)
and total (outer cap) uncertainties. The bottom panel shows the p-values of the fit.
The fractions are shown for the following hadronic interaction models: Sibyll 2.3d
(blue squares) and EPOS-LHC (red circles). Error bars for the fractions denote
statistical and total uncertainties. Error bars for the p-values correspond to the
variations in the fit fractions within the Xmax scale uncertainty range.

predicts a smaller proton fraction over the energy range considered, with a near-
zero contribution at the higher energies. The amount of iron in the cosmic-ray mix
is consistent with zero within uncertainties at all energies. Within the energy range
observed, the data is compatible with a cycle from H to He to N, referred to in the
literature as Peter’s cycle (see [167] for further discussion in the astrophysical
context).

Similarly, as in the previous section, we can calculate the first two moments
of the Xmax distribution, mean ⟨Xmax⟩, and standard deviation σ(Xmax), from the
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Figure 3.17: The first two moments of the Xmax distribution, mean ⟨Xmax⟩ (left),
and standard deviation σ(Xmax) (right) obtained from the MCMC-fitted fractions
for the ICRC23 data. The predictions from the composition fit with Sibyll 2.3d and
EPOS-LHC hadronic interaction models are compared to the data moments. The
uncertainties on the derived moments are the statistical uncertainties calculated
from the posterior distributions for the moments.

obtained fractions. Fig. 3.17 compares the moments of the data and the moments
derived from the fractions fitted with EPOS-LHC and Sibyll 2.3d interaction mod-
els. Overall, the predicted moments follow a similar trend in evolution with energy
and are in good agreement with the data within the statistical uncertainty limits.
A difference between the data and the calculated σ(Xmax) is observed at several
energy bins, where there are fluctuations in the data, while the σ(Xmax) derived
from the fractions evolves rather monotonically with energy. Around 1018.6 eV,
a slight increase in σ(Xmax) is observed in both data calculated moments, with
the latter being less pronounced, despite the overall trend indicating a decrease in
Xmax fluctuations with an increase in energy. Conversely, around 1018.9 eV and
1019.1 eV, the σ(Xmax) derived from the fractions fit with Sibyll 2.3d has higher
values than the observed standard deviation. The predictions from EPOS-LHC,
although also lower than data values, agree with them within the uncertainty lim-
its. It is worth noting that at both 1018.6 eV and 1018.9 eV, the fit quality is poor,
especially for the Sibyll 2.3d interaction model, with p-values below 10−3.
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3.3.2 Further applications of the MCMC mass composition fit

This section explores several examples highlighting the advantages of the MCMC
inference approach, such as the straightforward estimation of uncertainties from
the sampled posterior distribution and their propagation into any other distribution
derived from the estimated fractions.

Fraction Limits

One example of the MCMC applications is the estimation of the upper bounds
of the proton/photon fraction. This can be done directly from the posterior dis-
tribution by selecting the quantile of interest. Fig. 3.18 shows statistical 95% c.l.
upper limits on the proton and photon fractions. The obtained results also show
good agreement with the limits derived using a Neyman construction in [168]. At
the lowest energies, the proton fraction in both the EPOS-LHC and Sibyll 2.3d
models is about 1/3 of the mix, so the upper limits are quite high, reaching up to
≈ 60% and 40%, respectively. At the energies of around 1019 eV, the maximum
possible amount of protons in the Sibyll 2.3d model drops to less than 10% for
the Sibyll 2.3d and less than 20% for EPOS-LHC but increases again at the high-
est energies. In general, as is also seen from the fitted fractions, the EPOS-LHC
model always predicts more protons in the mix. The upper limit on the photon
fraction, shown in Fig. 3.18 (right), is at a maximum of ≈ 10% at the highest en-
ergies and is around 2% around the ankle in the cosmic-rays spectrum. Note that
since we have limited statistics in the data, there is always a minimum possible
value for the photon fraction [169]. The sensitivity to the photons should improve
with an increase in the number of events.

Rigidity

Another example of the application of the MCMC posterior distribution for the
fractions, and an error propagation can be the estimation of the average cosmic-
ray rigidity similar to how the Xmax moments are obtained by using the MCMC
samples fi in the expression for the rigidity R = ∑i fi ·Ei/Zi, where Ei is energy
and Zi is a species atomic number. The average rigidity calculated in such a way
is shown in Fig. 3.19 as a function of energy for three hadronic interaction models
for the ICRC 2019 data set. It is promising to see that the rigidity is increasing
over the full energy range, i.e., that the charge increases slower than the energy,
and thus, the deflection in cosmic magnetic fields decreases with energy. Since
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Figure 3.18: The upper 95% statistical differential limits for the proton (left, for
Sibyll 2.3d and EPOS-LHC models) and photon fractions (right, for Sibyll 2.3d
model) for the fit to ICRC23 data. The photon limits are derived from the five-
component fractions fit (γ , H, He, N, and Fe).

the magnetic deflection angle is proportional to the inverse of the rigidity, but in
general 1/⟨x⟩ ≠ ⟨1/x⟩, we also calculate the average of 1/R from the MCMC
samples and display the inverse of that average (i.e., 1/⟨1/R⟩) in the right panel
of Fig. 3.19. As can be seen, the trend with energy is similar to that of ⟨R⟩(E),
but the absolute values change substantially. For a typical deflection angle of
⟨θdef⟩ = 3◦ × 60EV× ⟨1/R⟩ in the coherent Galactic magnetic field [170], the
value of ⟨R−1⟩−1 ∼ 1018.8 eV derived for the EPOS-LHC fractions at the highest
energies corresponds to ⟨θdef⟩= 28◦.

Nevertheless, such an average deflection angle is unlikely to be a very mean-
ingful quantity for a mixed composition. For example, a mixture of protons and
iron may have a large average deflection angle dominated by the nearly isotropic
iron. However, the protons in this sample will still point back to regions close to
the sources. Given a model of the Galactic magnetic field, the MCMC samples of
the fractions can be used in future studies to derive a posterior of the distribution
of deflection angles, from which angular quantiles can be derived that give a better
representation of the cosmic ray arrival directions than the mean.
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Figure 3.19: Average cosmic-ray rigidity ⟨R⟩ (left) and rigidity computed from in-
verse ⟨R−1⟩−1 (right) as a function of logarithm energy for the following hadronic
interaction models: Sibyll 2.3c (gray circles), QGSJETII-04 (blue triangles),
EPOS-LHC (red diamonds). The calculations were done for the PRD14 data.
Only statistical uncertainties are shown.

Fractions from on/off Galactic plane

A previous study [171, 172] showed evidence for difference in the Xmax distri-
bution from different parts of the sky, in particular from the region around the
Galactic plane and the complementary region. With the fraction fit we can inves-
tigate which elemental group is responsible for this difference.

We split the data into two parts: one subsample consisting of events with a
Galactic latitude, |b| ≤ 30◦, referred to as on-plane sample, and another subsample
with |b| ≥ 30◦ , referred to as the off-plane sample. Fig. 3.20 shows the fractions
estimated from the on- and off-plane regions compared to the estimation from the
full data. Since there is no statistically significant difference in the acceptance
parameterization for on- and off-plane data, and the resolution parameterizations
agree within the uncertainty [172], we use the same acceptance and resolution
parameterizations for the two subsamples as for the full-sky analysis. The differ-
ences seen in the fitted on- and off-plane fractions are similar to the difference in
the first two moments for the two regions of the plane (see [172] for the compar-
ison of the moments of the Xmax distribution from on- and off-plane regions and
further discussion of the astrophysical implications). While at lower energies the

89



3. Measurement of Mass Composition

Figure 3.20: The comparison of the composition fractions from on- (blue circles)
and off-plane regions (violet diamonds). The fit is done with the Sibyll 2.3d inter-
action model to the ICRC23 data. The bottom panel shows the quality of the fit.

splitting of the data into two subsamples does not affect the results, at energies
> 1018.7 eV, there is an increase in the heavier component, i.e., in the N fractions,
from the on-plane sample, reaching almost 100% at energies > 1019 eV. In con-
trast, the fit to the full-sky, as was shown in Fig. 5.26, and off-plane data suggests
a He fraction of up to 40%. A fluctuation in the proton fraction for the off-plane
region at ≈ 1019.2 is also consistent with the data moments. Note that within the
overall uncertainty limits, the proportions calculated for two regions of the plane
agree with each other and with the full-sky results, except for a few energy bins
where the deviation of one or another particle species exceeds the uncertainty.
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Figure 3.21: Examples of the difference between the generated and reconstructed
Xmax, Xgen

max −X rec
max. The differences are shown for two different energies and Xmax

ranges.

3.4 Xmax-dependent Xmax bias

One of the factors sometimes omitted in the Xmax-based analyses, but which can
indeed affect the interpretations of the measurements, is the existence of the non-
constant reconstruction bias in the Xmax scale, which depends on the Xmax value
itself. While both detector and reconstruction biases are estimated and corrected,
the potential dependence of the reconstruction bias on Xmax is often overlooked.
In this section, we attempt to estimate the Xmax-dependent Xmax bias and evaluate
its effect on the composition measurements.

We estimate the bias using the extensive Monte Carlo simulations produced
with air shower simulation programs for the description of the physics processes
in the EAS and the detector responses [173]. As the simulations include all the
reconstruction steps except the atmospheric effects, we can compare the true gen-
erated Xmax, Xgen

max, with the corresponding reconstructed value X rec
max and evaluate

the dependence in the difference on the Xmax. Fig. 3.21 shows an example of
the difference between the generated and reconstructed Xmax. To ensure sufficient
statistics in the Xmax distribution, we increased the energy binning to 0.2lgE while
keeping the last integral energy bin unchanged, and we divided the Xmax range into
20 g/cm2 intervals. For each such interval, we estimated a mean µ(Xmax), and a
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Figure 3.22: Examples of the evolution of the mean µ(Xmax) (top) and standard
deviation σ(Xmax) (bottom) of the difference between the generated and recon-
structed Xmax scale with the generated (true) Xmax. The differences are shown for
two energy ranges. The dashed line corresponds to the fit with a cubic/quadratic
function to the data points. The solid line shows a fit obtained from interpolating
the bias parameterization as a function of energy.

standard deviation σ(Xmax) of the difference Xgen
max −X rec

max.

The change in the difference with the evolution in Xmax is illustrated in
Fig. 3.22 for two energy bins. As the MC simulations include four particle species,
H, He, N, and Fe, in equal proportions (25% of the dataset each), we verified that
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Figure 3.23: Examples of the evolution of the mean µ(Xmax) (top) and standard
deviation σ(Xmax) (bottom) of the difference between the generated and recon-
structed Xmax scale with the generated (true) Xmax. The differences are shown for
two energy ranges. Each particle species is shown separately.

we get the same trend in the mean and standard deviation trend seen in the sim-
ulations including all elements does not differ from the predictions for individual
species (see Fig. 3.23).

Both the mean and standard deviation of the difference between the generated
and reconstructed Xmax show a strong dependence on Xmax, increasing as Xmax
increases. This effect could lead to an Xmax deeper by up to 20 g/cm2 in the tail of
the Xmax distribution, especially at the lowest energies as the Xmax is, in general,
larger for low energies and decreases at high energies. At the same time, small
Xmax values can become even smaller when the difference becomes negative. This
is observed, for example, for the energy around 1017.8 eV. It is important to note
that, on average, there is an almost flat region of approximately 80-100 g/cm2 in
the central Xmax range, indicating that the bulk of the Xmax distribution does have
a nearly constant bias.
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Figure 3.24: Xmax-dependent Xmax bias parameterization as a function of energy
for the µ(Xmax) interpolated with a cubic function with parameters par0, par1,
par2 and par3.

The observed in µ(Xmax) and σ(Xmax) Xmax-dependent Xmax bias can be
parametrized as a function of Xmax. For now, we have decided to use a cubic func-
tion for µ(Xmax) and a quadratic function for σ(Xmax) as they gave the best quality
of fit. For Xmax values exceeding the MC range, we use a linear extrapolation as
we do not expect the bias to continue to grow cubically above ≈ 1200 g/cm2.

Although the same functional dependencies apply to all energies, the quan-
titative and qualitative behavior varies from energy to energy, so extending the
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Figure 3.25: Xmax-dependent Xmax bias parameterization as a function of energy
for the σ(Xmax) interpolated with a quadratic function with parameters par1,
par2, and par3.

parameterization over the whole energy range is not entirely trivial. It may elim-
inate the possible energy-by-energy fluctuations but could lead to less accurate
results if the fitting function is not properly selected. It was found that the en-
ergy dependence of the bias parameterization for µ(Xmax) and σ(Xmax) can be
described well with a cubic function:

µ(Xmax) = par0,µX3
max +par1,µX2

max +par2,µXmax +par3,µ ,

σ(Xmax) = par0,σ X3
max +par1,σ X2

max +par2,σ Xmax +par3,σ .
(3.14)

For the corresponding numerical values of the parameterizations, see Ap-
pendix A.

Fig. 3.24 illustrates the dependence of the bias parameterization as a function
of energy for the mean difference between the generated and reconstructed Xmax,
and Fig. 3.25 shows the dependence on the energy for the σ(Xmax) parameter-
ization. In the latter case, since we use the quadratic function for the σ(Xmax)
dependence on Xmax, the coefficient of the cubic term, par0, is equal to 0, so it
is not shown. To verify that the functional dependence of the bias parameteriza-
tion on energy gives the correct µ(Xmax) and σ(Xmax) over the whole Xmax range,
we verified that the function with the fit parameters obtained from the energy de-
pendence reproduces the fitted points and the fit itself well, as demonstrated in
Fig. 3.22.

As we do not know the true values in the measurements, we cannot correct
the data directly. Instead, we implement the correction in the Xmax distribution
templates by modifying the double Gaussian detector resolution function. For
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this, we re-calculate the standard deviations of the Gaussians and shift each of the
Gaussians by µ(Xmax), e.g. we would have now:

R(X −Xmax) = f G(µ(Xmax),σ
corr
1 )+(1− f )G(µ(Xmax),σ

corr
2 ). (3.15)

Figure 3.26: The Xmax
distribution templates with
and without Xmax-dependent
Xmax bias correction for pro-
ton primary at 1017.8 eV.

For simplicity, we assume that f depends only
on energy. We also assume that the ratio between
σ1 and σ2 does not evolve with Xmax either so that
we can relate σ(Xgen

max −X rec
max) to the resolution of

each Gaussian in the detector resolution function.
In principle, we could also fit the double Gaus-

sian function to Xgen
max −X rec

max instead of taking the
full width of the difference, but the corresponding
fit is unstable, leading to significant fluctuations in
the results, even for an unbinned maximum likeli-
hood fit. Therefore, as a first approximation, we
use the full width and the mean of the distribution
of the difference between the generated and recon-
structed Xmax instead of directly fitting the resolu-
tion function to it. A comparison of the Xmax distri-
bution template for H nuclei with and without im-
plemented bias correction is shown in Fig. 3.26.

With implemented correction for the Xmax-dependent Xmax bias, we evaluated
its effect on the mass composition estimation. As can be seen from Fig. 3.27, the
fitted mix of particle species almost does not change independently of the bias cor-
rection, which would be expected assuming that the fit is dominated by the central
part of the Xmax distribution with a constant Xmax bias. The only minor differences,
mainly negligible within the uncertainty limits, are seen in the predicted compo-
sition, indicating a slightly lighter composition over the whole energy range, with
an increase in the proton component at the lower energies and He component at >
1018.6 eV.
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Figure 3.27: The comparison between the fitted fractions with and without the
correction for the Xmax-dependent Xmax-bias. Only statistical uncertainties are
shown. The quality of fit (lower panel) is accessed via the Poissonian likelihood.
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Chapter 4

Measurement of the proton-proton
cross section from the tail of the Xmax
distribution

The standard method for measuring the interaction cross section from ultrahigh-
energy cosmic-ray data is based on the fit to the tail of the Xmax distribution and
the subsequent conversion of the derived value to the proton-air interaction cross
sections with air shower simulations. This is possible because the exponential
tail of the Xmax distribution has a slope proportional to the nucleon-air interaction
length. So even though we cannot directly probe the depth of the first interaction
point, which is directly related to the interaction length of the protons in the atmo-
sphere and thus to the proton-air cross section, we can still infer σp−Air from the
distribution of the depth of the air shower maximum [174].

This approach for measuring the proton-air cross section from the Xmax distri-
bution tail was initially applied in analyzing the Fly’s Eye data [174, 176] and was
adopted by other air shower experiments later, such as the HiReS Project [177],
Pierre Auger Observatory [178, 175] and Telescope Array [179, 180].

4.1 Method

The fit to the tail of the Xmax distribution is typically done using a certain fraction
of events in the tail. In the Telescope Array (TA) Collaboration measurements,
the start of the exponential fit is determined as the minimum stable Xmax value that
maximizes the number of events in the tail of the distribution, which is estimated

99



4. p-p cross section from the tail of the Xmax distribution

Figure 4.1: The unbinned likelihood fit to the tail of the Xmax distribution (left)
and the conversion to the proton-air interaction cross section for the energy range
of 1018-1018.5 eV. Figure from [175].

from the data as Xi = ⟨Xmax⟩ + 40 g/cm2. In the Pierre Auger Observatory analysis,
the fit range is set to the tail fraction η=0.2, meaning that 20% of the deepest
showers are considered with the fit starting at the corresponding depth. Here, we
will adopt the approach of the Pierre Auger Collaboration, where, additionally, a
selection of events for cross section analysis is conducted to guarantee an unbiased
Xmax distribution across the entire depth range of observed Xmax values as follows.
We will refer to this selection as xsecFoV in the following.

Firstly, a fiducial event selection (see Sec. 2.5) is performed for the range of
Xmax values containing 99.8% of the Xmax distribution. The Xmax value corre-
sponding to η=0.2 is then found from the obtained subset. The range of the tail to
fit is thus defined by the beginning of the 20% tail, X20, and the upper limit of the
99.8% of the Xmax distribution, X99.8. Only those events with geometries allowing
the complete observation of the fit range are selected to maximize the statistics of
the unbiased distribution in the tail. Then, the exponential tail is fitted with:

f (z) =
1
k

e
− z

λη , (4.1)

Here, z = Xmax −X20, k is a normalization factor defined over the [X20, X99.8]
interval, and λη represents the slope of the exponential profile. The conversion of
λη to proton-air cross sections is carried out through air shower simulations with
an energy-dependent scaling factor included to modify the original models. Note
that the conversion is subject to uncertainties due to extrapolations of hadronic
properties from low-energy data and the assumptions made in this context. Ad-
ditionally, the experimental uncertainties may also have a non-negligible effect
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on the estimation of the proton-air interaction cross section. The potential pres-
ence of helium in the data is considered as the dominating systematic uncertainty,
assuming a He fraction of less than 25%.

Figure 4.2: An example of the unbinned
likelihood fit to the tail of the simulated
Xmax distribution at 1017.8 eV with ac-
ceptance damping using a broken expo-
nential profile (blue line). Additionally, a
line for exp(−z/λη) is shown (in green).

More substantial amounts of he-
lium could result in a significant over-
estimation of the proton-air cross sec-
tion by more than 80 mb if helium con-
stitutes more than half of the compo-
sition mix, see Fig. 5.12 below. In
Fig. 4.1, an example of the fit to the
tail of the Xmax distribution alongside
the conversion curve for the proton-air
cross section is shown for three dif-
ferent interaction models. The corre-
sponding cross section measurements
are shown in Fig. 1.5 (top), with the
proton-proton cross sections being cal-
culated from the proton-air cross sec-
tions with the Glauber formalism and
taking into account the corresponding
uncertainty.

In the case of a standard event se-
lection used for the mass composition
estimation, to which we will refer fur-
ther in the text as compFoV selection,
the damping in the exponential tail due to the detector acceptance should be taken
into account in the fit [34]:

f (z) =
1
k

e
− z

λη

{
1 z<zacc

e−
z−zacc

λ otherwise,
(4.2)

where z = Xmax −Xstart,tail, zacc = x2 −Xstart,tail and k is the normalization:

k = λη(1+ exp(−zacc

λη

)
[ λ2

λ2 +λη

−1
]
), (4.3)

where λ2 and x2 are the detector acceptance parameterizations. The starting
point of the fit (X20) is defined in the same way as for the unbiased selection in
the tail, and there is no upper limit on the fit range, e.g. the fit is performed to
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infinity. Fig. 4.2 shows an example of this ”broken exponential” fit to the tail of
the simulated Xmax distribution.

4.2 Bias and uncertainties

As we established the existence of Xmax-dependent Xmax reconstruction bias, the
λη measurements have to include the corresponding correction. While this bias
had nearly no impact on the composition measurements, the correction provided
for the fit to the tail of the Xmax distribution is quite significant as the bias is the
greatest at the large Xmax values, i.e., in the tail of the Xmax distribution. The
bias correction results in an increase in λη for both the xsecFoV and compFoV
selections, thereby improving the agreement between them as well as with the
previous measurements. Note that the effect is slightly different for the two event
selections considered, as the compFoV selection includes larger Xmax values due
to the absence of the upper limit on the Xmax values, and the parameterization of
the bias correction for xsecFoV is different from the one for the compFoV. The fits
to the simulated exponential distribution were used to obtain the corrections for

Figure 4.3: Bias correction for the λη fit. Left: The difference between the fit
results to 1000 simulated data sets with (in green) and without (in pink) bias for
λη=60 g/cm2. Right: an example of the relation between λη measured from the
biased distribution to the unbiased distribution for 1018.3-1018.4 eV.
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the Xmax-dependent Xmax bias. We simulated 1000 Xmax distributions following
single and broken exponential distributions in the tail for the xsecFoV and comp-
FoV selections, respectively, and fitted them with the corresponding exponential
profiles. Then, we adjusted each entry in the distribution based on the bias param-
eterization and re-fitted the biased distributions accordingly. As bias evolves with
Xmax, the distribution entries shift unevenly, leading to a modification in the slope
of the exponential tail of the Xmax distribution. We use the same Xmax ranges for
the fits to the simulated data as we would use for the fits to actual data at each
energy. We performed a fit to the biased and unbiased simulated distributions
for a wide range of λη values to construct a function connecting the biased and
unbiased λη measurements. We then corrected the measurements for the λη for
the Xmax-dependent Xmax bias using the obtained correlation function. Fig. 4.3
shows the effect of the bias in the Xmax distribution for the λη measurements and
provides an example of the correlation function. There are tow different event
selections shown in the Figure. One is a selection used previously for the cross
section analysis by the Pierre Auger Observatory [178], xsecFoV, and another one
is a selection used for mass composition estimation, compFoV. Fig. 4.4 compares
the fit to the tail of the Xmax distribution with and without the correction for the
Xmax dependent bias. The effect of an increase in λη value has a greater signifi-
cance for the compFoV as it covers a broader range of Xmax values, as seen in the
figure.

In addition to the statistical uncertainty from the fitting, there is also a system-
atic uncertainty for the λη fit with compFoV related to the detector acceptance
parameterization. To estimate the impact of the acceptance-related uncertainty on
the measured λη , we repeat the fit for four different combinations of δx2 and δλ2
uncertainties: both with a positive sign, both with a negative sign and one with
a positive sign and another with a negative sign. The combinations giving the
largest positive and negative deviations, on average within 1-2 g/cm2, from the
fitted λη are then reported as the systematic uncertainty.

4.3 Results

The previous proton-proton cross section measurements from the Pierre Auger
Observatory utilize the data recorded between December 2004 and September
2010. Since then, more than ten additional years of operation have been added,
and there is now nearly four times as much data available, see discussion in
Sec. 2.5.
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Fig. 4.5 shows the results of the fit to the tail of the Xmax distribution for full
Phase I data of the Pierre Auger Observatory. The measurements are corrected for
the Xmax-dependent Xmax bias. The results obtained agree with each other and with
the measurements of [175], referred to as ICRC2015 in the figure. The statistical
uncertainties in the compFoV are smaller than those in the xsecFoV because fewer
events in the tail of the Xmax distribution are passing the latter selection. Also, the
fit uncertainties are much larger at the highest energies due to the smaller statistics
in the data. The two datasets share less than 20 % of the common events, so they
can be considered almost independent.

In general, λη decreases with energy, except for energies below 1018 eV, where
there is a slight increase. The fluctuations in λη seen at ≈ 1018.6 and 1019.1 eV
correspond to the fluctuations in the first two moments of the Xmax distribution.

Since the compFoV gives a smaller statistical uncertainty than the xsecFoV,
we use it to estimate the proton-proton interaction cross sections. By modifying
the proton-proton cross sections in the simulations, we can derive the function
for converting λη into σpp similar to what is shown for proton-air interactions in
Fig. 4.1.

Fig. 4.6 shows proton-proton inelastic cross section obtained from the fit to
the tail of the Xmax distribution. The average estimated cross sections align with
the Sibyll 2.3d extrapolation within the uncertainty limits, except for the interval

Figure 4.4: Comparison of λη measurement with and without the Xmax-dependent
Xmax bias correction for the xsecFoV (left) and compFoV (right) event selections.
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4. p-p cross section from the tail of the Xmax distribution

Figure 4.5: The measured λη from the ICRC23 data. Both xsecFoV and compFoV
selections are shown. For the latter, in addition to the statistical uncertainty (in-
ner cap), the total uncertainty, including the systematic uncertainty from detector
acceptance and resolution, is shown (outer cap). The results obtained in this work
are compared to the previous measurements [175].

of 1018.4-1018.6 eV where the large cross sections are measured, which corre-
sponds to a decreasing trend in λη . Note that above 1018.3 eV, the He fraction
estimated from the data reaches up to 50%, which could introduce significant bias
and reduce the accuracy of the λη fit for cross section measurements, as previ-
ously discussed. The range shown is limited by the energies for which a sufficient
amount of protons is present in the composition mix, see Fig. 3.16.

We can also estimate the λη corresponding to the prediction from the mass
composition fit. We construct the Xmax distributions using the Gumbel function
under the assumption of the composition estimated in the previous section from
the ICRC23 data and fit the 20% tail of the distribution. In this example, we as-
sume an ideal detector response, so the detector resolution and acceptance effects
are not accounted for in the simulated Xmax distributions. Figure 4.7 compares the
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Figure 4.6: Proton-proton inelastic cross section derived from the fit to the tail of
the Xmax distribution (λη ) compared to the previous Auger results and to measure-
ments from the accelerator experiments.

predicted from the composition values of λη with measurements from the Pierre
Auger Observatory and Telescope Array. The fitted fractions have been smoothed
with a Gaussian kernel, resulting in a smooth transition from one energy bin to an-
other. In addition to the λη corresponding to the measured composition mix, the
fit to the pure proton simulations is shown. Results are shown for the EPOS-LHC
and Sibyll 2.3d hadronic interaction models.

As can be seen, the difference between the λη obtained from the Xmax distribu-
tion simulated under the mixed composition assumption and that of a pure proton
composition is small in the energy range studied by the Pierre Auger Observatory.
However, there is a significant change between the two scenarios at the higher
energies studied by the Telescope Array. Consequently, the closeness of the Tele-
scope Array measurements to the λη values for proton-initiated air showers [181]
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Figure 4.7: Comparison of the expectations for a pure proton composition (indi-
cated by dashed lines) and a mixed composition (indicated by solid lines) of λη

with measurements from the Pierre Auger Observatory [175] and the Telescope
Array [179, 180]. In addition, the λη values derived in this study from the latest
Pierre Auger Observatory data are included in the comparison. Only statistical
uncertainties are given.

is unexpected. However, considering the statistical uncertainties associated with
the measurements, the Telescope Array measurements are also consistent with
predictions for a mixed composition.
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Chapter 5

Combined estimation of the
cosmic-ray mass composition and
proton-proton inelastic cross section

The mass composition of cosmic rays and the cross sections of particle interac-
tions are crucial for understanding the origin and nature of ultrahigh-energy par-
ticles and the fundamental properties of their interactions. Both quantities can
be estimated from the Xmax data measured by the fluorescence detector, but their
separate estimation is considerably influenced by the assumptions needed in the
corresponding analyses. The mass composition estimations rely on the predictions
for air shower characteristics from the hadronic interaction models. However, as
discussed in the Sec. 1.3.1, these predictions can vary significantly between differ-
ent interaction models, particularly for ⟨Xmax⟩ and σ(Xmax), as shown in Fig. 1.6.
The extrapolations of the measurements obtained in the collider experiments at the
LHC energies are needed to interpret cosmic ray data at ultrahigh energies. One
of the main challenges is the poorly understood uncertainties associated with ex-
trapolation, so the existing interaction models may not fully cover the phase space
of interaction characteristics. The construction of hadronic interaction models
can benefit from studies of the interaction properties of ultrahigh-energy cosmic
rays. However, testing the interaction models extensively with the air shower sim-
ulations may entail making some assumptions about the mass composition. For
instance, the measurements of the cross sections for proton-air or proton-proton
interactions, which are the focus of this study, are typically made under the as-
sumption of the proton-dominated tail of the Xmax distribution. Any potential
He-contamination effect is then considered as the systematic uncertainty (see, for
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5. Combined mass composition & cross section fit

example, [178]).
The chapter is structured as follows: first, we discuss the modifications to

the Sibyll interaction model, in the spirit of the f19 approach for the proton-air
interactions covered in Sec. 1.3.1, but applied to the proton-proton interactions.
Then, we present a new approach for the combined measurement of the cosmic ray
mass composition and the proton-proton interaction cross sections and evaluate
the performance of the method. Lastly, we will apply the new method to the
actual data and discuss the implications of the obtained results for the physics of
cosmic rays.

Some of the results discussed in this chapter were presented at the Interna-
tional Cosmic Ray Conferences in 2021 and 2023. For the corresponding pro-
ceedings, see [182] and [183], respectively.

5.1 Rescaling of the proton-proton interaction cross
section

In this work, we follow the approach introduced in [102] to modify the interaction
properties in the existing interaction models. However, instead of rescaling the
proton-air interactions, as was done previously, and propagating those modifica-
tions to proton-proton interactions, we directly modify the latter.

The original proton-proton cross section is modified by the energy-dependent
factor f (E):

σ
pp
mod = σ

pp
orig f (E), (5.1)
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Figure 5.1: The effect of the rescaling in σpp on the σA−air and the relation be-
tween them. Left: The modified σA−air normalized to the original Sibyll 2.3d
cross section for proton, helium, nitrogen, and iron nuclei. The x-axis is shown
as energy per nucleon E/A. Right: The relationship between the proton-proton
and nucleus-air interaction cross sections. The simulations were performed with
a modified Sibyll 2.3d interaction model in CONEX.

where the rescaling factor has a form of:

f (E) = 1+H(E −E0)( flgE1 −1)
lg(E/E0)

lg(E1/E0)
, (5.2)

with H(E −E0) being a Heaviside step function, E denotes the energy of interest,
E1 is an energy at which f (E) = flgE1 and E0 is a threshold energy corresponding
to the onset of the modifications in the cross sections. As E0, we use the center-
of-mass energy at the LHC of ≈ 1016.95 eV, as of time of writing this thesis (see
Appendix C for the effect of the choice of E0). Below this energy, the post-LHC
version of the hadronic interaction models are tuned to the collider experiment
data. We keep the reference energy, E1, equal to 1019 eV as in the original analy-
sis. The modifications are implemented for the Sibyll 2.3d model in the CONEX
air shower simulation program, where the cascade equations are incorporated be-
low the threshold energy, and the full Monte Carlo simulations are performed
above it. The σpp predicted by the Sibyll 2.3d model is 80 mb at the threshold
energy and 110 mb at 1019 eV. The hadron-nucleon cross sections (π+p, K+p) are
also rescaled by the f pp

19 factor. Given the input cross section for proton-proton
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Figure 5.2: The algorithm for generating the Xmax distribution for the modified
cross section.

interaction, a self-consistent rescaling of any nucleus-nucleus cross sections can
be obtained using the Glauber calculation, see Sec. 1.3.3.

Fig. 5.1 illustrates the impact of the modified proton-proton interaction cross
sections on nucleus-air interaction cross sections and the corresponding relation-
ship between them. The x-axis is shown as energy per nucleon E/A since the onset
of modifications for each nucleon A > 1 scales as atomic mass A according to the
superposition model. The modified cross sections in Fig 5.1 (left) are normalized
to the original Sibyll 2.3d cross sections. The effect of σpp rescaling is shown for
three f19 values, 0.5, 2.0, and 3.0, for H, He, N, and Fe nuclei. Since the simula-
tions were conducted at 1019 eV, which surpasses the E/A threshold for the mod-
ification of iron interactions, all four particle species are affected by the rescaling.
The most significant changes in nucleus-air cross sections are present for protons.
The heavier the nuclei, the smaller the deviations from the original cross section
as anticipated. The relation between the proton-proton and nucleus-air interaction
cross sections is shown in Fig. 5.1 (right), which can be used for a straightforward
conversion between the quantities. The central question of interest here is how
the introduced modification in the proton-proton cross section would impact the
predicted Xmax distributions as the measured Xmax is sensitive to the interaction
properties of cosmic rays and is commonly used to estimate the interactions of
ultrahigh-energy cosmic rays. Fig. 5.2 shows a schematic depiction of the gen-
eration of the Xmax distributions for the modified proton-proton interaction cross
section. First, the flgE1 factor is introduced for the energy of interest E = E1, and
the proton-proton cross section is rescaled. Then, the proton-air cross section, or
any nucleus-air cross section in general, is modified according to Glauber theory.
Finally, CONEX air shower program generates the Xmax distribution predicted by
the modified interaction model.

The changes in the shape of the Xmax distribution with the rescaling fac-
tor f pp are shown in Fig. 5.3. As can be seen, increasing the rescaling fac-
tor results in a narrower and shallower distribution. This can also be seen
in Fig. 5.4, where the effect of rescaling the proton-proton cross section on
the Xmax distribution is shown separately for the first two moments of the
Xmax distribution, the mean, ⟨Xmax⟩, and the standard deviation, σ(Xmax).
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Figure 5.3: Proton Xmax distributions
for modified σpp at 1019 eV. The color
scheme shows the change in the rescal-
ing factor.

Qualitatively, it is equivalent to that
discussed in Sec. 1.3.2 for rescaling
the proton-air interaction cross sec-
tions. As the primary particle mass in-
creases, there are fewer changes in the
moments of the Xmax distribution, with
interactions of iron nuclei almost unaf-
fected. Moreover, as the rescaling fac-
tor values increase, the magnitude of
the changes decreases. At large rescal-
ing values, f pp

19 = 2.5 and above, there
is almost no sensitivity of Xmax to fur-
ther increases in f pp

19 .
Fig. 5.4 illustrates a change in the

depth of the first interaction point X1
and the difference between Xmax and
X1 for different values of the rescaling
factor. This difference is highly rele-
vant for the measurement of the parti-
cle interaction cross section in air, see Sec. 1.2.2, as it provides a mean for re-
trieving the X1 distribution from the measured Xmax and air shower simulations as
shown in Fig. 1.4, as it is not possible to measure the depth of the first interaction
directly.

5.2 Fitting algorithm

Now that we have a tool for estimating the fractions of cosmic ray nuclei and
a method for modifying the proton-proton cross section, we can combine them
to obtain an independent and simultaneous measurement of the cosmic ray mass
composition and the proton-proton interaction cross sections.

The basis of the approach lies in a standard fit of the mass composition with
model predictions constructed from the modified hadronic interaction properties,
particularly the particle interaction cross section. This is done by rescaling the
proton-proton production cross section, with the subsequent self-consistent mod-
ification of any nucleus-nucleus cross section via Glauber theory, as discussed in
the previous sections.

In general, the combined mass composition and cross section fitting algorithm
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Figure 5.4: Top: the effect of the rescaling in σpp on the first two moments of the
Xmax distribution, mean ⟨Xmax⟩ (left) and standard deviation σ(Xmax) (right). Bot-
tom: the effect of the rescaling in σpp on the point of the first interaction X1 (left)
and the difference between Xmax and X1 (right). The simulations were performed
with a modified Sibyll 2.3d interaction model in the CONEX for proton, helium,
nitrogen, and iron nuclei at 1019 eV. The averages of 5000 simulated showers are
shown.
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can be broken down into the following steps. First, we generate the Xmax distri-
bution templates as predicted by the Sibyll 2.3d interaction model with modified
interaction cross sections for closely spaced, with a step size of 0.1, f pp

19 rescal-
ing factor values (refer to Fig. 5.2 for an illustrative representation of the steps
involved in generating the Xmax distribution for the modified cross section). Then,
with each generated template, i.e., for each value of the rescaling factor, we per-
form a standard mass composition fit. Given that the Xmax scale is not well-defined
by the existing interaction models, as discussed in Sec. 1.3.1, we also account for
the corresponding uncertainty in the fit by shifting the data by some δXmax. There-
fore, ultimately, we obtain a discrete scan over a range of f pp

19 and δXmax values
with the estimate of the best-fit mass composition for each combination of them.
We then can access the goodness of fit for each combination of the shift in the
Xmax scale and the cross section rescaling factor by calculating the deviance of
the fit as defined by the logarithm of the Poissonian likelihood adopted in the
maximum-likelihood fit, which is approximately χ2-distributed.

By comparing the resulting χ2 values, we can find which combination of f pp
19

and δXmax gives the best quality of the fit and determine the corresponding com-
position. In this way, we obtain the best-fit estimate of the proton-proton cross
section rescaling factor f pp

19 , the shift in the Xmax scale δXmax, and the cosmic ray
mass composition at ultrahigh energies. We use the contour of

nσ =
√

χ2 −χ2
min (5.3)

at nσ = 1 to obtain the one-dimensional 68% CL uncertainties on δXmax and f pp
19 .

The χ2
min is a minimal value of the χ2 of the fit. When one of the parameters is

fitted in the one-dimensional case, χ2 + 1 is given as the statistical uncertainty.
Fig. 5.5 shows an example of the 1D fit to the simulated data with only a scan
over f pp

19 considered for one energy bin. From this example, one can see which
combination of the nuclei fractions and the f pp

19 gives the best fit quality, e.g., the
smallest χ2. Note that instead of f pp

19 the x-axis shows f pp
17.8, e.g. the rescaling

factor value at that particular energy of 1017.8 eV calculated according to Eq. 5.2.
Since the energy of 1017.8 eV in the example fit is below the threshold for the
modifications of the nitrogen and iron interaction cross section, the variations in
the proton-proton interaction cross sections do not affect the EAS variables for the
heavier elements.

As established with simulated data, the fitting the cross section and Xmax scale
at each energy is an underconstrained problem leading to ambiguous results (mul-
tiple minima). However, for a mixed composition evolving with energy, these
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Figure 5.5: An example of the combined mass composition and cross section fit.
The four upper panels display the estimated fractions as a function of the rescaling
factor. The bottom panel shows the χ2 of the fit. The fit is shown for the data
simulated at 1017.8 eV with 95% H and 5% He.

ambiguities can be resolved, since only one Xmax shift fits at all energies, see dis-
cussion in Sec. 3.2.4 and Sec. 5.4. Therefore, we assume that both the factor f pp

19
and the shift δXmax are constant across energies and consider all energies simul-
taneously to estimate the best-fit values of the fitted variables. To do this, we
perform composition fits for all energies, scanning over f pp

19 and δXmax, we sum
the χ2 values over the entire energy range, thus finding the f pp and δXmax that
minimize the total χ2 for the entire data set.

Since conducting full simulations of the Xmax distributions with air shower
codes, with sufficient statistics to avoid random fluctuations, could be time-
consuming, especially if simulations are needed for a broad range of cross sec-
tional modifications, we utilize the Gumbel function parameterization for the Xmax
distributions instead. The Generalized Gumbel distribution has a form of [159]:

G(z) =
1
σ

λ λ

Γ(λ )
(e−λ z−λe−z

), z =
x−µ

σ
(5.4)

where Γ(λ ) denotes the Gamma-function, and λ , µ , and σ are free fit parameters.
The functional dependence of the shape parameters of the generalized Gumbel
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Figure 5.6: An example of the parameterization of the Gumbel function shape
parameters, λ (left), µ (center) and σ (right) as a function of the rescaling factor
f pp
19 at 1019 eV is shown for H (first row), He (second row), N (third row), and Fe

(last row).
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distribution on the scaling factor is obtained by fitting them to the Xmax distribu-
tions simulated with CONEX with limited statistics for a wide range of modified
proton-proton cross sections. An example of the dependence of the Gumbel func-
tion parameterization on the rescaling factor at 1019 eV for proton, helium, nitro-
gen, and iron nuclei is shown in Fig. 5.6. To obtain the interpolation function,
we fitted the evolution of the shape parameters with the rescaling factor using a
polynomial function up to the 5th order and evaluated the quality of the fit. For
each energy, particle species, and each parameter of the Gumbel distribution, we
selected the function that gives the best p-value.

5.3 Effect of the cross section modification on the
mass composition fit

Firstly, before reporting the final results, we evaluate the effect the change
in the proton-proton interaction cross section has on mass composition. As
an example, we performed a fit to the ICRC23 data for four values of f pp

19
factor: 0.6, 0.8, 1.2, 1.4. We keep the Xmax scale at the default value.

Figure 5.7: Comparison of the model extrap-
olations for σpp with different values of f pp

19
rescaling factor: 0.6, 0.8, 1.0, 1.2, and 1.4.

Fig. 5.7 illustrates the expected de-
viation in the cross section cor-
responding to the given rescal-
ing factor values. The figure
also includes measurements from
accelerator experiments and esti-
mates derived from cosmic ray
data recorded by the Pierre Auger
Observatory. The latter covers,
within its uncertainty, the range
of rescaling factor values between
0.8 and 1.2.

Fig. 5.8 shows the correspond-
ing change in composition with the
change in interaction cross section.
The uncertainties on the fitted frac-
tions are only shown for the fit to the model predictions with the original
Sibyll 2.3d cross section, as the same data are used in the fit for each value of
the rescaling factor. The error bars are, therefore, very similar. At lower ener-
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gies, where the composition is a mixture of H, He, and N nuclei, the change in
the predicted fractions is observed for the lighter elements, H and He. The larger
proton-proton interaction cross section, corresponding to the increase in f pp

19 , leads
to larger proton fraction in the fitted mix, thus reducing the contribution of He.

For example, increasing the rescaling factor from 0.8 to 1.2 reduces the He
fraction from ≈ 0.7 to 0.4, while the H fraction increases by almost the same
amount. Up to energies where no protons are observed in the data (less than 5%
in the mixture), the N fraction remains unaffected by cross section modifications.
Above ≈ 1018.7 eV, the change in the fitted composition fractions for He and N
nuclei is observed with the same trend as for H and He nuclei at the lower energies,
with lighter nuclei becoming more dominant for the larger proton-proton cross
section. The difference from the fit with the original Sibyll 2.3d cross section
increases with energy. The iron fraction remains stable at almost all energies,
except at the highest energies where its contribution is non-zero, and the increase
in f pp

19 leads to the decrease in the Fe fraction. In general, an increase in the
rescaling factor, and thus a larger proton-proton interaction cross section, results
in a lighter composition over the whole energy range. The overall trend in the
change in fractions with energy following Peter’s cycle remains unaffected.

Fig. 5.9 shows two first moments of the Xmax distribution, ⟨Xmax⟩ and σ(Xmax),
derived from the fitted fractions, as well as the slope λη determined from the fit
to the tail of the Xmax distribution, compared to the data. Throughout the energy
range, the mean Xmax remains insensitive to changes in the interaction cross sec-
tion and agrees well with the data within the uncertainty. The standard deviation
σ(Xmax) also does not show much dependence on the assumed value of the rescal-
ing factor, the differences between them being within a few g/cm2. The second
moment of the Xmax distribution is smaller for larger cross sections, and the dif-
ference between the σ(Xmax) of the modified Sibyll 2.3d model and the original
one increases with energy, reaching up to 10% deviation for the 20% larger rescal-
ing factor above 1018.5 eV. This behavior in σ(Xmax) is consistent with a lighter
composition obtained in the combined fit for the larger cross section since both
an increase in the scaling factor and an increase in the fraction of lighter nuclei
would have the same effect on the Xmax distribution, narrowing it. Generally, there
is good agreement between the σ(Xmax) calculated using the fitted fractions and
the data for all the rescaling factor values considered, except for a few energies
where the original Sibyll 2.3d model also provides a poor description of the data.

To study the dependence of the λη derived from the estimated composition
on the modified cross section, we constructed the Xmax distributions using the
CONEX simulations and the fitted fractions. We then fit the 20% tail of the distri-
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Figure 5.8: The variation in the measured mass composition depending on the
rescaling factor f pp

19 . Four top panels: composition fractions. Bottom panel: the
quality of the fit accessed by a deviance Pχ2 (D,ν).

bution to estimate the λη . The dependence of λη on the rescaling factor is similar
to that observed for σ(Xmax). As expected, with an increase in the rescaling factor
(and therefore for larger proton-proton cross sections) the value of λη becomes
smaller. While there is little dependence on f 19

pp at the lower energies, the dif-
ference between the results obtained under the modified cross section assumption
increases with energy. As can be seen, the results of the fit to the tail of the Xmax
distribution corresponding to the fitted composition agree well with the data for
the 20% deviation in the value of the rescaling factor.

5.4 Performance of the method

Before proceeding to the data analysis with a method for the combined measure-
ment of the proton-proton interaction cross section and cosmic-ray mass compo-
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Figure 5.9: The variation in the first two moments of the Xmax distribution, mean
⟨Xmax⟩ (left) and standard deviation σ(Xmax) (center), as well as the slope λη from
the fit to the tail of the Xmax distribution (right), derived from the fitted composition
fractions as a function of the rescaling factor f pp

19 . The calculations are compared
to the data of the Pierre Auger Observatory.

sition, we verify how well the algorithm performs.
We start with a simple case of the fit at one energy bin with a fixed Xmax

scale. As the primary source of uncertainty in the estimation of the particle cross
sections from the fit to the tail of the Xmax distribution is the possible presence
of He in the tail of the Xmax distribution, we simulated data with different helium
contamination, in particular we had a look at 0%, 5%, 25%, 40%, 50%, 60%,
75%, 95% and 100% of He in the data.

We also looked at several different rescaling factor values, e.g., we did tests
on the original Sibyll 2.3d proton-proton cross section and the modified values.
The total number of H and He events is always set to 6000 to avoid possible ef-
fects of varied sample size. This is similar to the number of events in the Pierre
Auger Observatory data in the energy bins around 1018 eV. The data and the Xmax
distribution templates were generated using the parameterization of the general-
ized Gumbel distribution as a function of the scaling factor, with a binning of 1
g/cm2. The selected energy range is 1017.8-1017.9 eV. For each composition and
cross section scenario, we generated 100 data realizations and evaluated the fit
performance based on the average results.

In the case of the simulated data mainly being dominated by one particle
species, the χ2 as a function of the scaling factor has a parabolic shape with a
prominent minimum, as shown in Fig. 5.5, and correspondingly, the best-fit in-
teraction cross sections are well-defined. However, if the composition is more
mixed, the fit can have two minima or a very flat χ2 even in a simple scenario
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Figure 5.10: The χ2 contour of the combined mass composition and cross section
fit in a two-component H-He mix: proton-dominated composition with 5% of He
(left), equal H-He mix (right), and He-dominated composition with 20% of H
(bottom). The color bar shows how much the χ2 deviates from the minimum value
in units of sigma. The actual simulated parameters are shown in a blue dashed
line.

involving two particle species. Fig. 5.10 shows an example of the dependence of
the resulting χ2 profile shape on the composition in the fitted simulated data for
three scenarios: almost pure proton composition with 5% He fraction, equal H-He
mix, and a He-dominated composition with 20% H.
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5. Combined mass composition & cross section fit

Figure 5.11: The fitted Xmax distribu-
tion for the combined mass composition
and cross section fit with an equal H-He
mix in the simulated data. The shown
Xmax distributions correspond to two
minima in the fit: one at H:He=1:1 with
f pp
17.8=1.0 and another one H:He=0:1

with f pp
17.8 ≈0.25.

As can be seen, the scenario with
an equal amount of H and He in the
simulated data can have two minima
- one that correctly reproduces the in-
put parameters and a second one where
the predicted cross section is much
smaller, approximately 1/4 of the sim-
ulated value ( f pp

17.8 ≈0.25), and almost
pure He composition. This degener-
acy is also seen in Fig. 5.11, where
the two Xmax distribution fits are com-
pared. Although there is a difference
in the fitted composition, this is com-
pensated for by the significantly mod-
ified σpp, so there is no difference in
the predicted Xmax distributions as both
of them describe the data equally well.
For one energy bin, the only way to
distinguish these several minima is by
theoretical prejudice since the proton-
proton cross section does not fall to a
quarter of its value at LHC energies
within a decade in beam energy (fac-
tor of 3 in center-of-mass energy). If more energy bins of data are present, and
the composition varies with energy, then the extreme fit of the second minimum
can also be excluded, as it will not be viable for other composition fractions. Note
that this is a rather extreme example, and such scenarios are rarely observed in
actual data. In the case of the He-dominated composition scenario, as shown in
Fig. 5.10 (bottom), there is only one minimum in the χ2 profile, but a very broad
χ2 +1 contour, resulting in the greater uncertainty in the estimated cross section
and mass composition.

In Fig. 5.12, the results of the proton-proton cross section measurement from
a combined fit are compared with those obtained from the fit to the tail of the Xmax
distribution, as discussed in Chap.5. The fit is performed on simulated data with
varying helium fraction in the mix and different scaling factor values. The left
side of the figure shows the bias in the estimated proton-proton cross section σ

pp
est

relative to the simulated σ
pp
sim. As can be seen, the proton-proton cross sections

obtained from the combined fit are compatible with the standard approach for the
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5. Combined mass composition & cross section fit

Figure 5.12: The performance of the combined fit as a function of He fraction for
a two-component mix of proton and helium. Left: the bias of the fitted proton-
proton interaction cross sections obtained from the combined fit (filled symbols)
and the fit to the tail of the Xmax distribution (open symbols) as a function of the He
fraction. Right: the fitted He fraction as a function of the simulated He fraction.
The averages of the fit to 100 simulated data realizations at 1017.8-1017.9 eV are
shown. Error bars correspond to the uncertainty on the mean, and the shaded
area shows a standard deviation.

proton-dominated composition. Furthermore, the combined mass composition
and cross section fit not only reproduces the input parameters well for the large
proton fraction in the simulated data but also yields nearly unbiased σpp even with
an arbitrarily high contribution from helium in the mix, where the Xmax distribu-
tion tail fit provides significantly overestimated values. Therefore, the combined
fit does not require an almost pure proton composition in the tail of the Xmax dis-
tribution and can be used to estimate proton-proton cross sections even with a
significant amount of helium. The combined fit also performs well with respect
to the composition and fully reproduces the simulated fractions, as shown on the
left. The results are independent of the choice of the energy.

As outlined in the description of the fitting algorithm, in addition to scan-
ning the rescaling factor, we estimate the best-fit shift in the Xmax scale, δXmax.
Therefore, as a further elementary test of the performance of the method, we fit
the simulated data set with varied δXmax values. Figure 5.13 illustrates a fit to
the proton-dominated simulated data - pure proton composition and a H-He mix

124



5. Combined mass composition & cross section fit

with 25% He, shifted by some δXmax, scanned in a range between −40 and 40
g/cm2. Note that this is an extreme case, as the presence of N or Fe nuclei will
make the range of possible shifts smaller. Again, we display the corresponding
bias instead of showing the cross sections. There are noticeable changes in the
predicted composition and cross section depending on the value of the shift. In
particular, for the pure proton composition, the larger shift, heavier composition,
and smaller cross sections are expected to compensate for the change in the Xmax
scale. However, it should be noted that there is very little sensitivity in the quality
of the fit to negative shifts as the χ2 value remains nearly the same independently
of the δXmax value. However, large positive shifts in data are entirely disfavored
by the χ2. With the increase in the shift value, the cross section rapidly decreases.
However, this is insufficient to reproduce the data, as no further changes in the
composition are possible, having reached the 100% proton fraction. This pattern
remains the same as the composition becomes more mixed with an increase in the
He fraction. Fig. 5.13 (bottom) shows the extreme case of a pure He composition
in the simulated data. Again, at significant negative shifts in the Xmax scale, the fit
prefers a well-mixed heavier composition and smaller cross sections. Neverthe-
less, as the Xmax scale approaches the default value, the deviation from the input
value becomes smaller, eventually leading to a positive bias. Around δXmax = 0
g/cm2, the cross section gradually gets smaller, and the fitted composition reaches
the simulated 100% He fraction. At approximately 15 g/cm2, there is a phase tran-
sition from pure He to pure H composition, leading to a corresponding change in
the proton-proton cross section to almost twice the input value. Similar to the pure
proton composition, the changes in χ2 are small for negative shift values, and all
shift values above δXmax = 0 g/cm2 are disfavored by large χ2. The sharp transi-
tion from pure He to pure proton composition is also reflected in the χ2 dropping
to smaller values.

As a final test of the fit performance at individual energies, we simulate 100
data realizations with a composition similar to that observed in the cosmic ray data
and for the composition close to the one derived in Chap. 3. We perform a fit at
each energy bin, adjusting the number of events to match the observed data. The
Xmax scale is fixed at its default value. Fig. 5.14 shows the bias in the estimated
cross section and the fitted composition. Both quantities are well reproduced by
the fit with little or no bias over the entire considered energy range independently
of the simulated composition as it is different in different energy bins.

After preliminary tests of the method’s performance at individual energies,
we estimate a single rescaling factor and a shift in the Xmax scale δXmax for all
energies. We use the same procedure to test the algorithm, simulating the 100
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5. Combined mass composition & cross section fit

Figure 5.13: The performance of the combined fit with a shift in the Xmax scale
δXmax. The fit is done to data simulated at 1017.8-1017.9 eV with a pure proton
composition (top) and a pure He (bottom). Left: The bias in the estimated proton-
proton cross section. Right: The fitted composition and the χ2 of the fit. The
averages of 100 fits are shown for the fractions and cross sections. For the χ2, all
fits are shown using a color scheme, where each color represents one of 100 fits.

Xmax distribution realizations for different composition scenarios and performing
the fit with a scan over a range of f pp

19 and δXmax values. We first generate data
with the same parameterization of the Gumbel function as in the templates under
the assumption of an ideal detector response. The number of events per energy
bin equals the corresponding numbers in the actual data. In Fig. 5.15, the re-
sults of the combined fit are shown for several different composition scenarios in
the simulated data with the ratios of H to He to N to Fe of 0.25:0.25:0.25:0.25,
0.15:0.6:0.15:0.1, 0.15:0.2:0.6:0.05, 0.6:0.2:0.1:0.1. The fit to the simulated data
with AugerMix2023, which denotes realizations using the fractions derived in
Chap. 3, is also shown. Note that while the other composition scenarios have
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5. Combined mass composition & cross section fit

Figure 5.14: The performance of the combined mass composition and cross sec-
tion fit for several energy bins. The fit was performed to the simulated data with a
composition close to the observed composition in cosmic-ray data. Left: the bias
in the estimated proton-proton cross section. Right: The fitted fractions.

the same fractions at all energies, in the latter case, the composition varies from
energy to energy as observed in data. Depending on the simulated composition
mix, there is variation in the bias observed in the measured cross section. Among
the composition mixes considered, it is largest for the He-dominated composition
with ≈ 10% deviation towards the increase of the cross section value, and almost
zero for the H- and N-dominated scenarios with 20% He. Generally, the bias does
not exceed 8% for all the cases considered. For the composition measured in the
actual data using unmodified Sibyll 2.3d model, the deviation in the fitted cross
section from the input value at the level of 4%. The level of the bias also has some
minor dependence on the presence of the δXmax shift in the fit. The estimated
shift is negative and less than 0.1 g/cm2 for all composition scenarios considered
except the AugerMix2023 case with δXmax = −2.56± 0.16 g/cm2. Thus, since
the shifts obtained are compatible with zero or have minor deviations from zero,
there is little to no difference in the composition and cross section predictions be-
tween the fits with a free and fixed Xmax scale. A slight reduction in the bias of less
than 2 % is observed (see Figure 5.15), which could also be related to the more
straightforward way of estimating the best-fit combination of variables, as with
fixed δXmax = 0 the parabolic approximation/interpolation around the minimum
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5. Combined mass composition & cross section fit

Figure 5.15: The estimated proton-proton cross sections obtained by fitting the
data realizations simulated with different composition scenarios. Left: with a
fixed Xmax scale. Right: with fitted shift in the Xmax scale δXmax. The shaded area
corresponds to the standard deviation, while the dashed lines mark the estimated
value.

is needed only in one dimension. The plot for a fixed Xmax scale includes two
additional composition scenarios: pure proton composition and equal H-He mix.
As observed, the fit is slightly biased towards smaller cross section values for the
pure proton composition and larger cross section values for the H-He mix, with
an average deviation in the value of the rescaling factor f pp

19 from unity of ≈ 0.05.
Note that fitting a pure composition with a varied shift δXmax makes no sense
due to some degeneracy between f pp

19 and δXmax, which results in all parameters
combinations being equally preferred.

Fig. 5.16 compares the fitted and simulated fractions for different composi-
tion scenarios, constant in energy, and Fig. 5.17 shows the fit result for the data
simulated with AugerMix2023 fractions, i.e. variable with energy composition.
Independently of the assumed composition, the fit recovers the input fractions
well with nearly no bias in the results, except for the highest energies where the
deviation of up to 10% in the fitted fractions is observed in the He-dominated case.

In the tests above we used data simulated with the Gumbel function parameter-
ized as a function of the f pp

19 scaling factor. However, there could be some bias in
the data fit originating from the accuracy of the parameterization. To check this,
we generated data assuming the same fractions of nuclei and number of events
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measured in the composition-only fit for the original Sibyll 2.3d model using the
Gumbel function parameterization and the CONEX air shower simulations pro-
gram. In the case of the fit to the simulations with the Gumbel function parameter-
ization without the dependence in the rescaling factor for the original Sibyll 2.3d
model (see [159] for the parameterization), we get a bias of ≈ 11% in the esti-
mated value of the rescaling factor, e.g., f pp

19 = 1.1, and the Xmax scale has a small
bias of δXmax = −2.85 g/cm2. The fitted shift in the Xmax scale remains con-
sistent with that obtained from tests using data simulated by parameterizing the
Gumbel function for the modified cross section. In the case of the simulated Xmax
distribution with CONEX simulations, the deviation of the fitted f pp

19 from the in-
put increases, reaching a deviation of up to 24% in the estimated cross section at
1019 eV ( f pp

19 =1.24). The shift in the Xmax scale remains nearly unchanged com-
pared to the test with Gumbel distribution. Assuming an equal number of events
in each energy bin in the simulated data, the deviation from the ’true’ simulated
values decreases to f pp

19 = 1.15 and δXmax =−1.98 g/cm2. Furthermore, introduc-
ing a change in composition from that observed in the data to an equal mixture of
all four nuclei further reduces the bias. The difference between the simulated and
input values of the rescaling factor becomes less than 10% ( f pp

19 = 1.08), and the
shift in the Xmax scale is compatible zero (δXmax = −0.24 g/cm2) as simulated.
Furthermore, the issue might not be related to the precision of the parameteriza-
tion used here, but to the accuracy with which the Gumbel function is capable to
describe air shower simulations, see e.g.[184] for a discussion of different Xmax
parameterizations and their quality in the tail of the Xmax distribution.

In addition to the tests conducted with Sibyll 2.3d simulated data, we also ex-
amined the fit performance using data simulated under the assumption of different
interaction models, particularly QGSJETII-04. This model was chosen because,
among all available hadronic interaction models with different predictions for air
shower observables, QGSJETII-04 is the most optimal for fits with the Sibyll 2.3d
templates. Due to the different approaches of treating the nuclear fragmentation,
we cannot fully reproduce the Xmax distribution shape predicted by EPOS-LHC,
even with the modified Sibyll 2.3d model, see [185] for a discussion of an up-
date of the treatment of nuclear fragmentation in the next version of the model.
In the case of the Sibyll 2.1 MC generator, we cannot recover the slope of the
extrapolated proton-proton interaction cross section, as it is not tuned to the most
recent LHC data. The estimated proton-proton cross section from the fit to the
QGSJETII-04 data simulated with AugerMix2023 composition is compared to
the original QGSJETII-04 values in Fig. 5.18 (left). The results are shown for a
fixed Xmax scale and a varied δXmax. The best-fit shift obtained with a free Xmax
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5. Combined mass composition & cross section fit

Figure 5.16: The estimated fractions of particle species obtained by fitting the
data realizations simulated with different composition scenarios with a composi-
tion constant across the energies. The input fractions are shown as dashed lines
of the same color as the fitted composition.

scale is 14.2 ± 2 g/cm2, which is close to the average difference in the predicted
Xmax scale between the QGSJETII-04 and Sibyll 2.3d models. The observed de-
viation from the simulated values is minimal, approximately ± 5% at 1019 eV, in
both cases, with a larger cross section predicted in the case of the allowed shift in
the Xmax scale and a smaller cross section when δXmax = 0, compared to the orig-
inal QGSJETII-04 extrapolations. The fitted fractions of particle species deviate
from the simulated values towards a heavier composition (see Fig. 5.18 (right)).
The predicted composition is significantly heavier with the Xmax scale fixed, with
up to 50% iron at the highest energies and no more than 30% He and 20% H at all
energies.

In contrast, the simulated composition has up to half the mix being protons
at the lowest energies and an almost pure He composition around 1018.7-1019 eV.
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5. Combined mass composition & cross section fit

Figure 5.17: The estimated fractions of particle species obtained by fitting the
data realizations simulated with AugerMix2023 composition.

With the Xmax scale set free, the composition estimate becomes more accurate,
with tiny discrepancies of less than a few percent between the simulated and fitted
fractions for H and Fe over the whole energy range, as well as for He and N at the
lowest and most of the highest energies. In the intermediate energy range, the es-
timated composition also has an enhanced contribution from nitrogen as in the fit
with δXmax = 0, but to a much lesser extent. Thus, this example demonstrates that
leaving the Xmax scale free in the combined mass composition and cross section
fit leads to a more accurate estimation of the variables.

Finally, we tested the performance of the method with end-to-end Monte Carlo
simulations of the EAS, including the detector response and all the physical pro-
cess in the light emission and transmission and other environmental factors, like
the night-sky background. Since the existing simulations have limited statistics
and the number of events follows the cosmic ray spectrum with an index of
α = 2.2, there are fewer events at the lowest energies compared to the intermediate
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Figure 5.18: The results of the fit to the data simulated with QGSJETII-04 in-
teraction model with AugerMix2023 composition. Left: estimated proton-proton
interaction cross section. The shaded area corresponds to the standard deviation,
while the dashed lines mark an uncertainty on the estimated cross section.. Right:
fitted mass composition. The fit is shown for a fixed Xmax scale and the best-fit
δXmax = 14.2±2 g/cm2.

energy range. However, the actual data has the highest number of events at lower
energies of ≈ 10000, which limits the ability to generate more than five fully inde-
pendent datasets from the full MC simulations assuming the AugerMix2023 com-
position. Since increasing the number of simulations to 100 independent datasets
is time-consuming, the existing MC simulations are resampled.

The results obtained demonstrate the existence of some bias in the estimator.
The average fitted cross section deviates from the input value towards a larger
cross section with the fitted rescaling of 1.29 ± 0.009 when the Xmax scale is
not fixed. The corresponding shift in the data is δXmax = −8.6 ± 0.2 g/cm2.
If we assume δXmax = 0, the bias in the fit is reduced to ≈ 25% at 1019 eV
( f pp

19 = 1.25± 0.006). The fitted mass composition is heavier than simulated if
the Xmax scale is left free, and otherwise lighter if it is assumed default. The pri-
mary change is evident in the He and N fractions, where the amount of N increases
correspondingly for the best-fit δXmax, while the contribution from He decreases
by the same amount. The opposite picture, with an increase in the He fraction and
a decrease in the N fraction, respectively, is present for δXmax = 0. The amount
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Figure 5.19: The proton-proton inelastic cross section obtained from the fit to
data simulated with Sibyll 2.3d interaction model including detector response.
Left: fit with a fixed Xmax scale. Right: fit with a scan in δXmax. Additionally,
the effect of the Xmax-dependent Xmax bias correction is shown. The shaded area
corresponds to the standard deviation, while the dashed lines mark an uncertainty
on the estimated cross section.

of He from the fit with a fixed Xmax scale is larger than the input fraction by ≈
10% for almost all energies, except in the small range between 1018 and 1018.5 eV
where the difference is a few percent. This results in a composition around the
ankle that is almost purely He, as opposed to the simulated H-He mix dominated
by He. There is also a slight increase in the proton fraction compared to the sim-
ulations. For the δXmax ̸= 0 fit, the difference between the fitted and simulated
He fractions, and thus, N fraction, is about 10% at the lowest energies and rises
to about 25% for energies above 1018.5 eV. Furthermore, an increased presence of
iron is observed in the lowest and highest energy bins.

However, as the full MC simulations are subject to the exact reconstruction as
the data, the Xmax-dependent Xmax bias should be considered. As was shown pre-
viously, we found minimal effect on composition measurements and, conversely,
quite a change in the cross section measured from the fit to the tail of the Xmax
distribution. Therefore, a comparable bias contribution is anticipated in the com-
bined mass composition and interaction cross section estimation. The bias was
corrected in the same manner as for the composition fit, with the Xmax templates
constructing the model predictions modified accordingly.
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Figure 5.20: The mass composition fractions obtained from the fit to the data sim-
ulated with the Sibyll 2.3d interaction model, including the detector response. The
results of the fit with (blue squares) and without (red circles) the shift in the Xmax
scale are compared with the simulated composition (green diamonds). The effects
of the Xmax-dependent Xmax bias correction are also shown (black triangles).

Fig. 5.19 shows the change in the estimated cross section for the fit with both
a free and a fixed Xmax scale when the Xmax-dependent Xmax bias is taken into
account. Correcting for the Xmax-dependent Xmax bias significantly reduces the
deviation in the estimated cross section, resulting in a 10 % smaller cross section
at 1019 eV, corresponding to the rescaling factor value of f pp

19 = 1.19±0.01, com-
pared to the fit without bias correction. Prior to the correction, the rescaling factor
has a value of f pp

19 = 1.29±0.009. The Xmax scale shift estimated from the fit with
the bias correction becomes larger and is δXmax =−13.8±0.54 g/cm2. In the case
of a fixed Xmax scale, the remaining deviation from the simulated cross section
after correction for the Xmax-dependent Xmax bias is even smaller and amounts to
less than 5 %. As would be expected based on the results of the composition-only
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fit, the fractions of the particle species are not sensitive to the bias correction (see
Fig. 5.20). Note that the studies of the Xmax-dependent Xmax bias performed in this
work are only valid for the Pierre Auger Observatory data presented at ICRC23,
as different datasets use different reconstructions, and quantitatively, there will be
differences in the significance of the bias.

’data’ f 19
pp , % δXmax, g/cm2

Gumbel distr. as a func. of f 19
pp +4 −2.6

Original Gumbel distr. (no f 19
pp dependence) +11 −2.9

CONEX air shower simulations +24 −2.9
End-to-end Monte Carlo sim. (with CONEX) +19 −13.8
QGSJETII-04 Gumbel distr. +7 ≈ −9

Table 5.1: The sources of bias in the combined mass composition and cross section
fit for the rescaling factor f pp

19 and shift in the Xmax scale δXmax, in the simulated
data we assume the composition derived in Sec 3.2, δXmax = 0 and the number of
events as in the ICRC23 data.

In summary, we can conclude that the combined mass composition and cross
section method works well. Using data generated with the Gumbel function pa-
rameterization, we have verified that for a single energy, the estimator remains
unbiased for any He fraction. We also did not get any significant deviation from
the input parameters, assuming the composition mix observed in data. Note that
we may have several minima in a fit for extreme cases of a pure composition due
to some existing degeneracy between the f 19

pp and fractions. If this is the case,
we choose the cross section that is closest to the original Sibyll 2.3d value, as
there is no physical justification for the estimated value to be twice as large as
the current extrapolations from the LHC measurements. The fit also recovers the
input parameters well, with a bias of less than 10%, when estimating a single
rescaling factor across all energies, with some minor dependence on the assumed
composition. Suppose the Xmax scale is left free. In that case, there is a slightly
larger deviation from the simulated value, but only within a few percent, which
could also be related to the accuracy of finding the minimum in the 2D case. We
also ran a test with a different interaction model as input, and the method allowed
us to estimate both the cross section and a shift in the Xmax scale, as well as the
composition, quite accurately. The test with QGSJETII-04 as input also showed
that leaving the Xmax scale gives a better estimate of the proton-proton interac-
tion cross section and mass composition. However, it generally leads to a larger
statistical uncertainty in the results.
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The largest source of bias, leading to an increase in the rescaling factor of up to
20% and thus in the estimated cross section with a deviation ranging from nearly
8% at the lowest energies to 24% at the highest energy, is the parameterization of
the Gumbel distribution as a function of the rescaling factor f pp

19 . This bias is evi-
dent in tests on data simulated with a standard Gumbel parameterization, CONEX
simulations, and full Monte Carlo simulations. All sources of bias, except for the
Xmax-dependent Xmax bias, as the correction for it is implemented in the fit itself,
are listed in Tab. 5.1.

5.5 Results

In this section, we apply the combined mass composition and cross section fit to
the data of the Pierre Auger Observatory and discuss the results obtained. We
implement the correction for the Xmax-dependent Xmax bias as described above for
the most recent data. We also implement the correction for bias seen in the full
Monte Carlo simulations for the final results by subtracting half of it from the
estimated fit parameters.

As we leave the Xmax scale free, we no longer include the Xmax-related system-
atic uncertainty, as we did for the fixed Xmax scale. However, since we consider
a constant shift in the Xmax scale across all energies, we estimate the energy-
dependent Xmax systematics instead. We repeat the fitting process 100 times using
the data with varying shifts in the Xmax scale at each energy obtained from the co-
variance matrix of the Xmax systematics. We then estimate the best-fit f pp

19 , δXmax,
and composition for each iteration. In such a way, we obtain the distribution of
the estimated variables, the 16% and 84% quantiles of which can then be quoted
as the corresponding systematic bounds. Another source of uncertainty in the fit
results is the energy scale systematic uncertainty, for which we adopt the 14% es-
timated in [133]. We refit the data twice to account for this, shifting the energies
up and down accordingly. In addition, we include the systematic uncertainty from
the detector acceptance and resolution parameterizations by taking the combina-
tions of uncertainties for each parameter that give the extreme acceptance values
and the upper and lower 1-σ bounds on the resolution.

Fig. 5.21 compares the results of the combined mass composition and cross
sectional fit for several different data: PRD14 data, ICRC19 data, ICRC19 data
with the same reconstruction as in PRD14 (denoted GH in the plot), and ICRC23
data. The results are shown for the free Xmax scale, and the corresponding best-fit
shifts are listed in Table 5.2. As can be seen, there is quite a difference between
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Figure 5.21: The comparison of the proton-proton inelastic cross section σ
pp
inel

(left) and the composition fractions (right) from the combined mass composition
and cross section fits to the different datasets of the Pierre Auger Observatory.
The shaded area corresponds to the statistical uncertainty on the estimated cross
section.

PRD14 ICRC19 ICRC19 GH ICRC23
f pp
19 1.0+0.02

−0.13 1.28+0.09
−0.09 1.0+0.08

−0.01 1.21+0.11
−0.15

δXmax, g/cm2 −8.7+1.64
−0.24 −13.7+0.81

−1.00 −9.8+0.8
−0.8 −11.54+0.53

−1.08

Table 5.2: The rescaling factor f pp
19 and the shift in the Xmax scale δXmax measured

from the different datasets of the Pierre Auger Observatory. Statistical uncertain-
ties are shown.

the results. The highest cross section is observed in the ICRC19 data, while both
the PRD14 data and the ICRC19 + GH data, which is reconstructed in the same
way as the PRD14 data, agree with the Sibyll 2.3d extrapolations of the LHC mea-
surements. Note that neither fit has a correction for the Xmax-dependent Xmax bias
as we can estimate it only for the most recent data. The cross sections estimated
with a combined fit from the older PRD14 data are in reasonably good agreement
within the uncertainty with the result of the fit to the tail of the Xmax distribution
reported by the Pierre Auger Collaboration in 2012.

In Fig. 5.22, the proton-proton cross section estimated from the ICRC23 data
is compared with two scenarios: one using a default fixed Xmax scale and the other
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Figure 5.22: The comparison of the proton-proton cross section σpp estimated
from the combined mass composition and cross section fit to the ICRC23 data
with the default Xmax scale and a free Xmax scale. Additionally, the effect of the
correction for the Xmax-dependent Xmax bias is considered. After the bias correc-
tion, the results are the same for fit with δXmax = 0 and for free δXmax, so only
the latter is shown. The shaded area corresponds to the statistical uncertainty on
the estimated cross section.

incorporating a fitted shift in Xmax. The effect of the bias correction is also shown
for each case. From the biased data, we obtain a significant deviation of more than
20% at 1019 eV in the estimated cross section from any hadronic interaction model
for both fixed and fitted Xmax scales, with the rescaling factor values of 1.37+0.04

−0.16
and 1.22+0.10

−0.15 accordingly. In the latter case, the best-fit Xmax scale is shifted
by −11.5+0.54

−0.10 g/cm2 compared to the prediction from the original Sibyll 2.3d
interaction model. After correcting for the Xmax-dependent Xmax bias, the fitted
f pp
19 decreases, leading to a smaller interaction cross section. The effect of the bias
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Figure 5.23: The comparison of the composition fractions estimated from the com-
bined mass composition and cross section fit to the ICRC23 data with the default
Xmax scale and a free Xmax scale. Additionally, the effect of the correction for the
Xmax-dependent Xmax bias is considered. After the bias correction, the results are
the same for fit with δXmax = 0 and for a free δXmax, therefore displaying only the
latter.

correction is greater for the fit with a fixed Xmax scale, which gives the same cross
section as the fit with a free Xmax scale after the bias correction, corresponding to
a rescaling factor of 1.16+0.08

−0.09. The estimated shift in the Xmax scale from the fit
with correction for the Xmax-dependent Xmax bias is δXmax = −15.8+0.5

−0.6 g/cm2.
The corresponding mass composition is shown in Fig. 5.23. The fitted Xmax

distributions can be found in Appendix C. As discussed above, the presence of
the Xmax-dependent Xmax bias has a negligible effect on the bulk of the Xmax dis-
tribution, and, therefore, the fitted composition is nearly insensitive to it, with no
change in the fit quality. The choice between keeping the Xmax scale fixed or let-
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Figure 5.24: The combined mass composition and cross section fit to the data
with an energy-dependent shift in Xmax scale. Left: the estimated rescaling factor
value from the fit with a fixed (in green) and free (in blue) Xmax scale. Right: the
estimated shift in Xmax scale δXmax. The median of the obtained distribution is
shown as a solid line, and the one standard deviation interval is shown in the
dashed line.

ting it free does matter, however, in particular at energies above 1018.6 eV. The
effect is the same as when fitting to simulated data, resulting in a predicted lighter
composition over the whole energy range. At the lowest energies, the changes in
composition are small, remaining below 5% for He, N, and Fe nuclei and below
10% for protons. The largest difference in the estimated fractions is present in the
energy range between an ankle and the end of the cosmic-ray spectrum. While the
fit with a free Xmax scale favors the nitrogen-dominated composition, the fit with
a fixed Xmax scale results in an almost pure He composition between 1018.6 and
1019.1 eV. In addition, at both the lowest and highest energies, leaving the Xmax
scale free results in an increased contribution from iron.

As discussed for the fit performance tests using the Monte Carlo simulations,
leaving the Xmax scale free is beneficial for recovering the Xmax scale if it is not
equal to the predictions from the existing hadronic interaction models. Further-
more, it is apparent from analyzing the fits with the energy-dependent shift in Xmax
data (see Fig. 5.24) that releasing the Xmax scale results in a sizable reduction of
the uncertainty on the estimated rescaling factor from nearly 10% to 2%.
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As a final step, we correct the obtained cross section for the bias observed in
the Monte Carlo simulations. It is not entirely straightforward how to proceed with
this bias correction since the extent of the bias depends on the composition of the
data and the presence of the Xmax shift, which are both measured quantities. We
substract the full bias seen in the end-to-end simulation of the measurement from
the obtained results, thus reducing the estimated proton-proton interaction cross
section by 19% at 1019 eV. The rescaling factor corrected for the Xmax-dependent
Xmax bias will then be equal to f 19

pp = 0.96.
For the final results, all sources of systematic uncertainty listed at the begin-

ning of this section are considered as well as the uncertainty of the correction for
the Monte Carlo bias, and the systematic uncertainty in the the Glauber calcula-
tions, taken from [178]. The systematic uncertainty additionally includes the bias
obtained by fitting the simulated QGSJETII-04 data with the modified Sibyll 2.3d
model predictions. The simulated data for the QGSJETII-04 test was obtained us-
ing the Gumbel function. Therefore, the uncertainty component was corrected for
the bias observed in the fit to the original Gumbel function parameterization with
the modified one. We also incorporate the uncertainty of the end-to-end Monte
Carlo bias correction as the uncertainty of the estimated rescaling factor obtained
from fitting the simulated data. Table 5.3 summarizes the sources of systematic
uncertainty. The parameterization of detector acceptance is the most significant
factor contributing to the systematic uncertainty in the cross section estimation.
Another significant contribution comes from the uncertainty in the Glauber cal-
culations. On the other hand, the energy scale uncertainty does not impact the
rescaling factor value but remains the primary source of uncertainty in the estima-
tion of Xmax scale. Fig. 5.25 shows a comparison of the interaction cross section
estimated in this work to the model predictions, accelerator data and the previous
measurement of the Pierre Auger Observatory. The fitted rescaling factor value is

f pp
19 = 0.96+0.09

−0.08(stat) +0.10
−0.15(sys) . (5.5)

After correcting for the Xmax-dependent Xmax bias and the bias observed in the
Monte Carlo simulations, the measured cross section is in agreement, within the
uncertainty, with all of the hadronic model extrapolations and the previous mea-
surement from the cosmic-ray data. Most of the uncertainty in the obtained results
is due to statistical uncertainty from the fit itself. A contribution from systematic
effects, such as the uncertainty in energy estimation or detector parameterization,
is minor. The estimated uncertainty permits substantial variation in the develop-
ment of the proton-proton cross section with energy. This includes a scenario in
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Figure 5.25: The estimated inelastic cross section for proton-proton collisions es-
timated from the data of the Pierre Auger Observatory using the combined mass
composition and cross section fit. The results are compared to predictions from
the existing hadronic interaction models, accelerator data, and the previous mea-
surement of the Pierre Auger Observatory. The darker shaded area corresponds
to the statistical uncertainty from the fit, and the lighter area corresponds to the
total uncertainty.
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Figure 5.26: The estimated composition fractions from the Pierre Auger Observa-
tory data using the combined mass composition and cross section fit (blue circles)
compared to the results of the composition-only fit (green squares). Both the statis-
tical uncertainties (inner cap) and the total uncertainties, including systematics,
(outer cap) are shown.

which the cross section remains nearly constant over the energies, significantly
lower than predicted by interaction models and an increase of up to 20% at the
highest energies. The proton-proton interaction cross section resulting from the
combined fit of mass composition and cross section is consistent with the mea-
surements derived from the fit to the tail of the Xmax distribution discussed earlier.

The estimated shift in the Xmax scale with the statistical uncertainty from the fit
is equal to δXmax =−2.58±0.54 g/cm2. The systematic uncertainty of the Xmax
scale comprises the same components as the cross section, except the Glauber cal-
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culations. The most significant contribution comes from the fit with the energy-
dependent Xmax systematic, equal to ± 10.0 g/cm2. Each other systematic uncer-
tainty factor contributes to only a couple of g/cm2. The total systematic uncer-
tainty is +12.6 g/cm2 for the upper limit and −11.0 g/cm2 for the lower limit on
the cross section estimation. The result for the shift in the Xmax scale is:

δXmax =−2.58±0.54(stat) +12.6
−11.0(sys) g/cm2. (5.6)

The estimated mass composition from the combined mass composition and
cross section fit is heavier than the predictions from the composition-only fit,
though both measurements agree within the total uncertainty, consisting of statis-
tical and systematic uncertainty. The systematic uncertainty in both fits includes
the corresponding uncertainty from the acceptance and resolution parameteriza-
tion and an energy scale uncertainty. Additionally, the composition-only fit in-
cludes the Xmax scale uncertainty. Since it is the primary source of uncertainty
in the standard composition estimation, the resulting total uncertainty exceeds the
one for the fractions estimated from the combined mass composition and cross
section fit. Just like for the measured proton-proton interaction cross section and
the shift in the Xmax scale, the fitted fractions were adjusted for the bias observed
in the Monte Carlo simulations fits. It should be noted that this correction is only
approximate as it has some minor dependence on the composition, and the applied
bias correction was obtained for the fractions in the composition-only fit, which
results in a larger contribution from the lighter elements compared to the com-
bined estimation. While the proton fraction remains unaffected and only a minor
increase in the Fe fraction is observed, there is a significant difference between the

f pp
19 , % δXmax, g/cm2

Monte Carlo correction ±1.25 0.5
Energy scale −3.1 +6.4

−3.8
Detector acceptance +6.3

−8.3 ±0.5
Detector resolution +2.1

−10.4 ±0.5
Energy-dependent Xmax systematics ±1.46 ±10
QGSJETII-04 sim. bias −2.1 3
Glauber calculations ± 5.7 -
Quadratic sum +10.4

−15.9
+12.6
−11.0

Table 5.3: The sources of the systematic uncertainty in the estimated rescaling
factor and the shift of the Xmax scale.
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predicted amount of H and He nuclei for the two fit approaches. The fraction of
N nuclei obtained from the combined method constitutes nearly 50% of the mix
up to 1019 eV and rises above it, resulting in a nearly pure N composition, while
the standard fit predicts a more mixed composition at the same energies. The he-
lium fraction remains below 40% throughout the entire energy range, reaching its
maximum at around 1018.7-1019 eV and is almost zero at the lowest and highest
energies. In nearly all energy bins, the quality of the combined fit is better. At the
energy of 1018.6 eV, neither fit performs satisfactorily due to the presence of the
event with Xmax > 1200 g/cm2 in the data.

Thus, summarizing what is being discussed, we see that the proton-proton in-
teraction cross section estimated with the combined mass composition and cross
section approach introduced in this work agree with the extrapolations in the orig-
inal Sibyll 2.3d hadronic interaction models as well as with the previous measure-
ment of the Pierre Auger Observatory. The measured shift in the Xmax scale is
small, negative, and compatible with the default Xmax scale within the uncertainty
limits. The composition predicted from the combined mass composition and cross
section fit is heavier than that measured with the original Sibyll 2.3d model with
the default interaction cross sections. The fraction of nitrogen and iron nuclei has
increased, reducing the helium fraction, while the contribution from protons has
remained unchanged.
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Summary and Outlook

This thesis is dedicated to the combined studies of the cosmic-ray mass composi-
tion and hadronic interaction cross sections at ultrahigh energies using the depth
of the maximum air shower development measured by the Fluorescence Detec-
tor of The Pierre Auger Observatory. A novel strategy has been proposed for
the concurrent evaluation of the mass composition and proton-proton interaction
cross section, free from the assumptions required in standard independent analy-
ses, such as the validity of the existing hadronic interaction models and a specific
proton-dominated composition in the measured data. To perform such a fit, the
Sibyll 2.3d hadronic interaction model was modified to obtain self-consistent sim-
ulations of nucleus-induced air showers for different values of the inelastic proton-
proton interaction cross section. The conversion from the modified proton-proton
to the corresponding nucleus-nucleus cross sections is done via the Glauber the-
ory. Using air shower simulations, it is possible to generate model predictions
corresponding to the modified interaction properties, which can be used in the
standard mass composition fit, allowing one to obtain a mass composition esti-
mate for a varied proton-proton cross section. In addition, the Xmax scale was
set free to account for both systematic uncertainties of the data and theoretical
uncertainties of the properties of particle production in air showers.

The performance of the proposed method was evaluated, and no significant
bias in the measured variables was detected, irrespective of the assumed compo-
sition mix, contrary to the standard cross-section analysis. It was confirmed that
allowing the Xmax scale to remain unconstrained leads to enhanced performance if
the data has a distinct Xmax scale compared to the predictions of the employed in-
teraction model. However, it was discovered that the results of the combined mass
composition and cross section fit, as well as the separate cross section analysis,
are significantly affected by reconstruction biases. Consequently, the correspond-
ing corrections were derived and applied. The studies with end-to-end Monte
Carlo simulations revealed the existence of another additional bias, most likely
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attributed to the parameterization of the Gumbel function depending on the cross
section rescaling factor, and the reported values were corrected for it as well.

The combined mass composition and cross section fit was applied to the full
Phase I data of the Pierre Auger Observatory. The outcome of the fit was com-
pared to the predictions of the existing hadronic interaction models, the results of
the separate analyses, and the previous measurements from the cosmic-ray data of
the Pierre Auger Observatory. The measured cross section for proton-proton inter-
actions, corresponding to the rescaling factor of f pp

19 = 0.96+0.13
−0.17, agrees well with

the existing hadronic interaction models and previous analyses. With this analy-
sis, we could decrease the statistical uncertainty of the previous measurement by
20% using the full Phase I dataset. The method developed in this thesis can im-
prove the systematic uncertainty by a factor of 1.3 and 1.8 for the lower and upper
uncertainty bands, respectively, with a degree of improvement depending on the
assumed helium contamination in the standard analysis. Note that although the
measured uncertainty is smaller than previously, it still covers a broad range of
cross section modifications, including the logarithmic evolution in cross section
with energies and a nearly constant value over the considered energy range.

The estimated shift in the Xmax scale is compatible with a fixed Xmax scale but
also covers a wide range between −13 g/cm2 and 10 g/cm2 compatible with the
experimental uncertainty of the Xmax scale. The composition obtained from the
combined approach is heavier than the predictions of the original non-modified
Sibyll 2.3d model, with the N fraction reaching more than 80% at energies above
1019 eV and a corresponding decrease in He fraction. The proton and iron com-
ponents of the mix remain stable relative to the cross section modifications.

In addition, separate cross section and mass composition analyses were per-
formed on the full Phase I data, providing an update of the results of the individual
analyses with improved methodology and statistics. A Bayesian Markov Chain
Monte Carlo approach was used for the mass composition estimation in this the-
sis. It allows a more straightforward estimation of the uncertainty on the fitted
variables and easier marginalization over any quantity derived from the compo-
sition fractions, such as cosmic-ray rigidity and upper limits on the proton and
photon fractions.

Further studies and improvements in the method could be beneficial for a bet-
ter understanding of uncertainties in the obtained results and the robustness of the
underlying assumptions. For example, as the method relies on Glauber calcula-
tions for the conversion between the proton-proton and proton-air cross section,
one of the questions of interest is an accurate estimation of systematic uncertainty
related to the Glauber formalism. Another issue requiring a more detailed study
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could be better quantifying the biases seen in the end-to-end Monte Carlo sim-
ulations. Further work of interest could also include studies on the change in
the functional dependence of the function used for rescaling the interaction cross
section to decrease the related uncertainties that dominates the current systematic
uncertainties.

The combined mass composition and cross section fit presented in this thesis
provides a new approach for the studies of the cosmic-ray mass composition and
the properties of the hadronic interactions. The method shows good performance,
and the results obtained from the data fit could be considered reliable.
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Appendix

A Xmax-dependent Xmax bias

Parametrization of the Xmax-depedent Xmax bias as a function of
energy
The mean of the difference between the generated and reconstructed Xmax,
µ(Xgen

max −X rec
max) can be parameterized as a cubic function w.r.t. Xmax:

µ(Xmax) = par0,µX3
max +par1,µX2

max +par2,µXmax +par3,µ . (A.1)

Each of the parameters in the Xmax-dependence of the bias can then be parameter-
ized as a function of energy:

parn = coeff0,µE3 + coeff1,µE2 + coeff2,µE + coeff3,µ . (A.2)

The standard deviation of the distribution of differences σ(Xgen
max −X rec

max) can be
parameterized in a similar way with a quadratic function. Tabs. A.1 and A.2
show the coefficients of the function dependence of the bias parameterization of
the Xmax-dependent Xmax bias on energy for the mean and standard deviation of
the difference between the generated and reconstructed Xmax, respectively, for the
compFoV event selection.

Similarly, the Xmax-dependent Xmax bias was parameterized as a function of
energy for the xsecFoV selection, see Tabs. A.3 and A.4. In this case we use
a quadratic polynomial for the dependence on the Xmax for the both mean and
standard deviation of the distribution of Xgen

max −X rec
max.
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parameter coeff0,µ coeff1,µ coeff2,µ coeff3,µ
par0 1.21e-8 -2.42e-7 -4.44e-6 -8.87e-5
par1 -2.6e-5 5.2e-4 9.4e-3 - 0.19
par2 1.8e-2 -0.36 -6.5 131.6
par3 -4 81 1454 -29708

Table A.1: Parametrization of the µ(Xgen
max −X rec

max) as a function of energy for the
compFoV event selection.

parameter coeff1,σ coeff2,σ coeff3,σ
par1 -1.22e-5 4e-4 - 3e-3
par2 1.6e-5 -0.48 3.24
par3 -1.58 4 543

Table A.2: Parametrization of the σ(Xgen
max −X rec

max) as a function of energy for the
compFoV event selection.

parameter coeff0,µ coeff1,µ coeff2,µ coeff3,µ
par1 2.9e-6 5.3e-3 -1e-3 1.8e-2
par2 -4.4e-3 8.1e-2 1.5 -28.2
par3 1.7 -30.3 -574.8 10482

Table A.3: Parametrization of the µ(Xgen
max −X rec

max) as a function of energy for the
xsecFoV event selection.

parameter coeff0,σ coeff1,σ coeff2,σ coeff3,σ
par1 -1.8e-6 3.4e-5 6.4e-4 -1.1e-2
par2 2.7e-3 -5e-2 -0.94 17
par3 -0.9 16.2 312 -5499

Table A.4: Parametrization of the σ(Xgen
max −X rec

max) as a function of energy for the
xsecFoV event selection.
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B MCMC mass composition estimation

Mass composition fit to the ICRC23 data with Sibyll 2.3d
hadronic interaction model

lgElow/eV lgEup/eV fH fHe fN fFe p-value
17.8 17.9 0.29+0.025

−0.026 0.35+0.052
−0.049 0.32+0.034

−0.038 0.042+0.011
−0.01 0.013

17.9 18.0 0.36+0.027
−0.029 0.28+0.054

−0.053 0.34+0.035
−0.037 0.025+0.009

−0.009 0.00001
18.0 18.1 0.42+0.029

−0.031 0.21+0.049
−0.058 0.35+0.038

−0.032 0.01+0.009
−0.009 0.16

18.1 18.2 0.42+0.031
−0.037 0.3+0.066

−0.053 0.26+0.032
−0.043 0.01+0.009

−0.008 0.134
18.2 18.3 0.39+0.03

−0.04 0.39+0.075
−0.05 0.2+0.03

−0.051 0.01+0.01
−0.008 0.23

18.3 18.4 0.34+0.033
−0.048 0.52+0.087

−0.056 0.12+0.033
−0.06 0.018+0.014

−0.009 0.41
18.4 18.5 0.38+0.029

−0.057 0.47+0.106
−0.036 0.15+0.01

−0.066 0.0+0.0089
−0.0 0.72

18.5 18.6 0.22+0.029
−0.065 0.64+0.131

−0.03 0.14+0.007
−0.086 0.00004+0.014

−0.00004 0.4
18.6 18.7 0.27+0.038

−0.06 0.5+0.126
−0.051 0.23+0.019

−0.086 0.00001+0.011
−0.00001 0.0003

18.7 18.8 0.04+0.027
−0.038 0.79+0.082

−0.066 0.17+0.037
−0.069 0.00004+0.007

−0.00004 0.28
18.8 18.9 0.0012+0.045

−0.012 0.8+0.061
−0.086 0.2+0.034

−0.094 0.0002+0.018
−0.0002 0.12

18.9 19.0 0.024+0.026
−0.022 0.77+0.097

−0.064 0.21+0.037
−0.103 0.00006+0.01

−0.00006 0.0007
19.0 19.1 0.0088+0.053

−0.088 0.7+0.097
−0.057 0.29+0.07

−0.083 0.00005+0.011
−0.00005 0.019

19.1 19.2 0.0004+0.027
−0.0004 0.52+0.091

−0.096 0.48+0.062
−0.11 0.0002+0.012

−0.0002 0.03
19.2 19.3 0.059+0.069

−0.059 0.45+0.16
−0.19 0.49+0.1

−0.16 0.00002+0.02
−0.00003 0.12

19.3 19.4 0.002+0.07
−0.02 0.3+0.07

−0.19 0.7+0.09
−0.13 0.0002+0.024

−0.0002 0.01
19.4 19.5 0.0001+0.08

0.0001 0.17+0.053
−0.17 0.8+0.046

−0.23 0.03+0.029
−0.08 0.35

19.5 19.6 0.0008+0.13
−0.0008 0.28+0.05

−0.28 0.72+0.074
−0.27 0.0005+0.056

−0.0004 0.27
19.6 21.0 0.0009+0.054

−0.0009 0.00004+0.11
−0.00004 0.87+0.13

−0.27 0.13+0.14
−0.08 0.76

Table B.1: Fractions from the MCMC fit to the ICRC23 data with the Sibyll 2.3d
interaction model. Only statistical uncertainties are included.
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Xmax distributions for the fit to the ICRC23 data with the
Sibyll 2.3d hadronic interaction model
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Figure B.1: Xmax distributions for the fit to the ICRC23 data with the Sibyll 2.3d
interaction model
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Mass composition fit to the ICRC23 data with EPOS-LHC
hadronic interaction model

lgElow/eV lgEup/eV fH fHe fN fFe p-value
17.8 17.9 0.49+0.028

−0.027 0.13+0.46
−0.046 0.3+0.029

−0.029 0.08+0.0086
−0.0083 0.047

17.9 18.0 0.56+0.026
−0.0296 0.06+0.044

−0.042 0.31+0.024
−0.03 0.061+0.009

−0.007 0.00009
18.0 18.1 0.61+0.028

−0.027 0.065+0.041
−0.047 0.26+0.024

−0.031 0.07+0.009
−0.008 0.38

18.1 18.2 0.67+0.027
−0.033 0.063+0.047

−0.05 0.23+0.024
−0.035 0.04+0.007

−0.01 0.4
18.2 18.3 0.61+0.038

−0.041 0.18+0.061
−0.073 0.17+0.044

−0.035 0.04+0.009
−0.01 0.29

18.3 18.4 0.58+0.039
−0.051 0.27+0.086

−0.063 0.12+0.037
−0.05 0.035+0.012

−0.009 0.55
18.4 18.5 0.67+0.039

−0.065 0.12+0.12
−0.047 0.2+0.013

−0.068 0.001+0.011
−0.001 0.82

18.5 18.6 0.46+0.044
−0.067 0.39+0.12

−0.06 0.13+0.028
−0.077 0.012+0.014

−0.008 0.55
18.6 18.7 0.5+0.049

−0.072 0.23+0.14
−0.06 0.26+0.018

−0.088 0.0003+0.013
−0.0003 0.003

18.7 18.8 0.19+0.04
−0.07 0.66+0.14

−0.06 0.15+0.023
−0.1 0.00004+0.009

−0.00004 0.74
18.8 18.9 0.15+0.048

−0.074 0.72+0.15
−0.04 0.12+0.087

−0.08 0.006+0.015
−0.006 0.21

18.9 19.0 0.08+0.04
−0.05 0.84+0.1

−0.03 0.08+0.06
−0.09 0.00002+0.01

−0.00002 0.018
19.0 19.1 0.14+0.062

−0.078 0.64+0.17
−0.086 0.22+0.04

−0.13 0.0+0.012
−0.0 0.12

19.1 19.2 0.0007+0.039
−0.0007 0.72+0.08

−0.1 0.28+0.11
−0.063 0.0001+0.013

−0.0001 0.27
19.2 19.3 0.16+0.096

−0.1 0.45+0.24
−0.16 0.38+0.06

−0.2 0.0001+0.02
−0.0001 0.32

19.3 19.4 0.03+0.09
−0.03 0.47+0.1

−0.21 0.5+0.1
−0.13 0.0001+0.023

−0.0001 0.04
19.4 19.5 0.0007+0.13

0.0007 0.42+0.057
−0.29 0.52+0.15

−0.17 0.06+0.068
−0.052 0.3

19.5 19.6 0.077+0.12
−0.077 0.32+0.15

−0.31 0.6+0.054
−0.33 0.0006+0.055

−0.0006 0.37
19.6 21.0 0.0003+0.082

−0.0003 0.044+0.13
−0.044 0.9+0.1

−0.31 0.05+0.12
−0.045 0.75

Table B.2: Fractions from the MCMC fit to the ICRC23 data with the EPOS-LHC
interaction model. Only statistical uncertainties are included.
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Xmax distributions for the fit to the ICRC23 data with the EPOS-
LHC hadronic interaction model
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Figure B.2: Xmax distributions for the fit to the ICRC23 data with the EPOS-LHC
interaction model
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Fit with Sibyll 2.3d vs Sibyll 2.3c

Figure B.3: Comparison of the estimated composition fractions with two versions
of the Sibyll MC generator, Sibyll 2.3c, which has been used extensively in the
past, and the newer version Sibyll 2.3d, for ICRC19 data. Only statistical uncer-
tainties are shown.
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Shift in the Xmax scale as an additional fit parameter
+ Si in the composition mix

Figure B.4: Mass composition fit to the ICRC2019 data with a shift in the Xmax
scale and Si nuclei in the fractions mix. The color scale shows the posterior
distribution for the compositional fractions and the shift δXmax normalized to
the corresponding modes. The black dots are the point estimates of the fitted
quantities (MAP). It can be seen that introducing an additional heavy component
into the mix leads to a redistribution of the expected quantities. The δXmax is on
average −25 g/cm2 with much less variation than for the 4-component fit.
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C Combined mass composition & cross section fit

Xmax distributions for the fit to the ICRC23 data with the
Sibyll 2.3d hadronic interaction model with modified proton-
proton interaction cross section: best-fit case
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Figure C.1: Xmax distributions for the fit to the ICRC23 data with the modified
Sibyll 2.3d interaction mode (best-fit cross section).
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Energy threshold

Figure C.2: The dependence of the estimated cross section on the threshold en-
ergy, Etr. Fit to the ICRC19 data. While there is nearly no difference in the results
for the Etr <1018 eV, the direction of the fit changes completely above it.
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