KIT | KIT-Bibliothek | Impressum | Datenschutz

Demystifying the Semiconductor‐to‐Metal Transition in Amorphous Vanadium Pentoxide: The Role of Substrate/Thin Film Interfaces

Esther, A. Carmel Mary; Muralikrishna, G. Mohan 1; Chirumamilla, Manohar; Pinto, Manoel da Silva; Ostendorp, Stefan; Peterlechner, Martin; Yu Petrov, Alexander; Eich, Manfred; Divinski, Sergiy V.; Hahn, Horst 1; Wilde, Gerhard
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract:

The precise mechanism governing the reversible semiconductor-to-metal transition (SMT) in V$_2$O$_5$ remains elusive, yet its investigation is of paramount importance due to the remarkable potential of V$_2$O$_5$ as a versatile “smart” material in advancing optoelectronics, plasmonics, and photonics. In this study, distinctive experimental insights into the SMT occurring in amorphous V2O5 through the application of highly sensitive, temperature-dependent, in situ analyses on a V$_2$O$_5$ thin film deposited on soda-lime glass are presented. The ellipsometry measurements reveal that the complete SMT occurs at ≈340 °C. Remarkably, the refractive index and extinction coefficients exhibit reversible characteristics across visible and near-infrared wavelengths, underscoring the switch-like behavior inherent to V$_2$O$_5$. The findings obtained from ellipsometry are substantiated by calorimetry and in situ secondary ion mass spectrometry analyses. In situ electron microscopy observations unveil a separation of oxidation states within V$_2$O$_5$ at 320 °C, despite the thin film retaining its amorphous state. The comprehensive experimental investigations effectively demonstrate that alterations in electronic state can trigger the SMT in amorphous V$_2$O$_5$. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000170221
Veröffentlicht am 24.04.2024
Originalveröffentlichung
DOI: 10.1002/adfm.202309544
Scopus
Zitationen: 3
Web of Science
Zitationen: 1
Dimensions
Zitationen: 4
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 1616-301X, 1616-3028
KITopen-ID: 1000170221
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in Advanced Functional Materials
Verlag Wiley-VCH Verlag
Band 34
Heft 30
Seiten Art.-Nr.: 2309544
Vorab online veröffentlicht am 09.04.2024
Nachgewiesen in Dimensions
Scopus
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page