
D
esign

Analysis

M
odelEx

pe
rim

ent

Im
p
le
m
e
n
ta
tio

n
Algorithm
Engineering

Scalable Distributed String Sorting Algorithms

Master’s Thesis of

Pascal Mehnert

At the Department of Informatics
Institute of Theoretical Informatics
Karlsruhe Institute of Technology

First examiner: Prof. Dr. Peter Sanders

First advisor: M.Sc. Matthias Schimek
Second advisor: Dr. Florian Kurpicz

August 01, 2023 – February 01, 2024

Karlsruher Institut für Technologie
Fakultät für Informatik
Postfach 6980
76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself. I have
not used any other than the aids that I have mentioned. I have marked all parts of the
thesis that I have included from referenced literature, either in their original wording or
paraphrasing their contents. I have followed the by-laws to implement scientific integrity at
KIT.

Karlsruhe, February 01, 2024

. .
(Pascal Mehnert)

Abstract

String sorting algorithms have been studied extensively for sequential and shared-memory
parallel models of computation. There has, however, been comparatively little and only
very recent work covering string sorting in distributed-memory parallel systems. In this
thesis, we directly build on the existing work to develop distributed algorithms that are
more scalable with respect to two parameters: the number of processors used for sorting
and the input size per processor in terms of characters. For the first aspect, we develop a
multi-level generalization of existing multi-way string merge sort algorithms, based on a
technique that has been applied successfully in atomic sorting. The developed algorithms
are experimentally demonstrated to perform well for a range of inputs across a spectrum of
magnitudes. We observe speedups up to five over the closest existing competitor on up to
24 576 processors.

For the second aspect, aimed at making distributed string sorting more scalable with respect
to input size, we develop a space-efficient sorting framework which primarily distinguishes
itself through the use of a compressed input representation. By deduplicating overlapping
substrings and sorting the input in smaller chunks rather than as a whole, it is possible to
create sorted permutations for inputs that would otherwise exceed the available working
memory. We experimentally confirm this claim by demonstrating that an implementation
of the framework is able to sort inputs of uncompressed size up to 22.4GB per processor
with only 2GB memory available on average. Furthermore, an application of space-efficient
sorting in suffix array construction, specifically as subroutine to DCX, is proposed. We show
that our implementation is capable of sorting large difference cover samples, including for a
difference cover modulo 8192, for texts comprising up to 1.23TB in size.

v

Zusammenfassung

Sortieralgorithmen für Zeichenketten variabler Länge (Strings) wurden in der Vergangen-
heit für sequentielle und parallele Systeme mit gemeinsamem Speicher bereits umfassend
untersucht. Hingegen existiert im Bezug auf Stringsortieralgorithmen für parallele Systeme
mit verteiltem Speicher erst seit kurzem und bisher nur vergleichsweise wenig Forschung.
Die vorliegende Masterarbeit baut direkt auf vorhandenen Ergebnissen auf und entwickelt
verteilte Algorithmen, die in Bezug auf zwei Parameter besser skalierbar sind: die Anzahl der
Prozessoren, die für das Sortieren verwendet werden können, und die Eingabegröße bezogen
auf die Anzahl Zeichen pro Prozessor. Für den ersten Aspekt wird eine mehrstufige Verallge-
meinerung von bestehenden Mehrwege-Mergesort Algorithmen entwickelt, basierend auf einer
Methodik, die bereits erfolgreich für das atomare Sortieren eingesetzt wurde. Anhand einer
experimentellen Evaluation wird empirisch gezeigt, dass sich die vorgestellten Algorithmen
für eine Reihe von Eingaben von diverser Größe bewähren. Dabei werden Beschleunigungen
von bis zu fünf gegenüber dem nächstgelegenen Konkurrenten auf bis zu 24 576 Prozessoren
gemessen.

Bezogen auf den zweiten Aspekt, also zur Verbesserung verteilter Stringsortieralgorithmen
hinsichtlich der Eingabegröße, wird eine Struktur für platzsparendes Sortieren entwickelt.
Diese zeichnet sich in erster Linie durch die Verwendung eines komprimierten Eingabeformats
aus, bei dem sich überlappende Strings dedupliziert gespeichert werden. Indem die Eingabe
in kleineren Teilen verarbeitet wird, ist es möglich, sortierte Permutationen für Mengen von
Strings zu erstellen, die andernfalls den verfügbaren Arbeitsspeicher überschreiten würden.
Diese Behauptung wird experimentell dadurch bestätigt, dass eine Implementierung der
Struktur in der Lage ist, Eingaben von dekomprimierter Größe bis zu 22.4GB auf einem
System mit nur 2GB Arbeitsspeicher zu sortieren. Darüber hinaus wird auch eine mögliche
Anwendung des Konzepts als Subroutine von DCX in der Suffix-Sortierung vorgeschlagen.
Hierzu werden als Teil der experimentellen Evaluation Differenzabdeckungen mit großer
Schrittweite für Texte von bis zu 1.23TB sortiert.

vi

Acknowledgments

I would like to thank my supervisors, Matthias Schimek and Florian Kurpicz, for guiding me
through the process of writing this thesis and for sharing their expertise with me. I would
also like to thank Prof. Dr. Sanders for providing me with the opportunity to work on such
an interesting subject. Finally, I want to express my sincere gratitude towards my family for
their encouragement and patience throughout my educational path.

I gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu)
for funding this project by providing computing time on the GCS Supercomputer SuperMUC-
NG at Leibniz Supercomputing Centre (www.lrz.de).

vii

www.gauss-centre.eu
www.lrz.de

Contents

Abstract v

Zusammenfassung vi

1. Introduction 1
1.1. Contribution . 2
1.2. Outline . 2

2. Preliminaries 3
2.1. Definitions and Notation . 3
2.2. Model of Computation . 4
2.3. Sequential String Sorting . 6
2.4. Related Work . 7

3. Techniques 9
3.1. LCP-Hypercube Quicksort . 9
3.2. Distributed Ordered Partitioning . 13

3.2.1. Partitioning Algorithm . 13
3.2.2. String-Based Regular Sampling . 14
3.2.3. Character-Based Regular Sampling 15

3.3. Distributed Group Assignment . 16
3.3.1. Grid-Wise Assignment . 17
3.3.2. Simple Assignment . 18
3.3.3. Deterministic Assignment . 21

4. Multi-Level String Merge Sort 25
4.1. Multi-Level Merge Sort . 27

4.1.1. Algorithmic Details . 27
4.1.2. Runtime and Communication . 29

4.2. Multi-Level Prefix Doubling Merge Sort . 34
4.2.1. Multi-Level Bloom Filter . 35
4.2.2. Distributed Permutations . 38
4.2.3. Runtime and Communication . 40

ix

Contents

5. Space-Efficient String Sorting 41
5.1. Algorithmic Framework . 42
5.2. Space-Efficient Merge Sort . 46

5.2.1. Sorting First versus Partitioning First 46
5.2.2. Prefix Approximation First versus Partitioning First 48
5.2.3. Runtime and Communication . 48

5.3. Application in Suffix Sorting . 51

6. Experimental Evaluation 53
6.1. Implementation Details . 53

6.1.1. String Layout and Communication 53
6.1.2. LCP-Hypercube Quicksort . 54
6.1.3. Multi-Level Merge Sort . 55
6.1.4. Space-Efficient Merge Sort . 56

6.2. Experimental Setup . 56
6.2.1. Platforms . 57
6.2.2. Algorithms . 57
6.2.3. Inputs . 59

6.3. Multi-Level String Merge Sort . 63
6.3.1. Fixed D/N Ratio Weak-Scaling . 63
6.3.2. Real-World Strong-Scaling . 69
6.3.3. Summary . 70

6.4. Space-Efficient String Sorting . 72
6.4.1. Fixed D/N Ratio Weak-Scaling . 72
6.4.2. Difference Cover Weak-Scaling . 75
6.4.3. Summary . 78

7. Conclusion 79
7.1. Future Work . 80

Bibliography 81

A. Appendix 85
A.1. Running Times – Multi-Level Merge Sort 85
A.2. Running Times – Space-Efficient Merge Sort 88

x

List of Figures

2.1. Illustration of string arrays, LCP arrays, and distinguishing prefixes 4
2.2. Illustration of single-level multi-way merge sort 7

3.1. Illustration of an exchange using simple group assignment 19
3.2. Illustration of an exchange using deterministic group assignment 23

4.1. Illustration of PE groups for three sorting levels in a distributed system . . 26
4.2. Illustration of multi-level merge sort with two levels 28
4.3. Illustrations of one-, two-, and three-dimensional communicator grids 36
4.4. Illustration of the multi-level Bloom filter with two communication levels . . 38

5.1. Illustration of compressed and uncompressed character arrays 41
5.2. Illustration of the space-efficient sorting scheme without details of distributed

execution . 43

6.1. Layout and size in bits of strings with and without permutations 54
6.2. Character and string arrays for two DNDataSE instances 60
6.3. Results of the DNData weak-scaling experiment with variable n/p ratio . . 64
6.4. Results of the DNData weak-scaling experiment with variable D/N ratio . 67
6.5. Results of the strong-scaling experiment using real-word inputs 71
6.6. Results of the DNDataSE weak-scaling experiment with variable D/N and

n/p ratios . 73
6.7. Results of the DNDataSE weak-scaling experiment with variable size of

requested quantiles . 75
6.8. Results of the weak-scaling experiment using difference cover samples for

real-word datasets . 76

xi

List of Tables

5.1. Comparison of runtimes to obtain local quantiles by sorting before or after
partitioning . 47

5.2. Comparison of runtimes for distinguishing prefix approximation and dis-
tributed ordered partitioning depending on the order of execution 49

6.1. Configured splitting factors for one-, two-, and three-level merge sort 58
6.2. Size and parameters of computed difference covers 62
6.3. Characteristics of real-word datasets used in the strong-scaling experiment . 69
6.4. Number of quantiles used in the DNDataSE weak-scaling experiment . . . 74
6.5. Measured D/N ratios of difference cover samples for real-word datasets . . . 77

A.1. Runtimes of the DNData weak-scaling experiment with variable n/p ratio . 85
A.2. Runtimes of the DNData weak-scaling experiment with variable D/N ratio 86
A.3. Runtimes of the strong-scaling experiment using real-world inputs 87
A.4. Runtimes of the DNDataSE weak-scaling experiment with variable n/p and

D/N ratios . 88
A.5. Runtimes of the weak-scaling experiment using difference cover samples of

real-word datasets . 89

List of Algorithms

1. LCP-Hypercube Quicksort (LCP-RQuick) . 10

2. Binary LCP-Merge . 11

3. Simple String-Based Assignment . 19

4. Simple Character-Based Assignment . 20

5. Deterministic Character-Based Assignment 24

6. Multi-Level Bloom Filter Exchange . 37

xii

1. Introduction

Sorting, that is, finding a globally ordered permutation of a sequence of elements, is one of
the most extensively studied problems in computer science. Conventional sorting algorithms
treat input elements as atomic and assume they can be compared and swapped in constant
time. However, at least the first assumption clearly does not hold if variable-length strings
are to be sorted, since the worst-case complexity of comparing two strings is linear with
respect to their length. It is therefore generally inadequate to treat strings as atomic objects
and inefficient to sort sequences thereof using conventional sorting algorithms. Instead,
specialized string sorting algorithms are required, which make use of the inherent structure
of string sequences. By exploiting characteristic properties like longest common prefixes,
such algorithms are able to yield improved runtime guarantees and can, ideally, bound the
required work by the size of the distinguishing prefix.

Atomic sorting algorithms have been and continue to be the subject of extensive study
across a wide variety of computational models, ranging from sequential, over shared- and
distributed-memory parallel, to external-memory paradigms. Comparable effort has gone
into designing and engineering string-specific sorting algorithms that are fast in practice for
sequential and shared-memory parallel systems. Here too, external-memory algorithms have
been developed to sort inputs that would otherwise exceed the available memory. However,
the specific topic of string sorting algorithms for distributed-memory parallel systems has
received surprisingly little attention in the past. The first publication, to our knowledge,
that includes explicit work in this direction was published in 2019 [18]. The algorithm uses a
multi-way merge sort approach which has since been refined by different authors [36, 11].

In distributed sorting algorithms, the input elements are usually assumed to be evenly
distributed over p ordered processing elements (PEs) which receive ranks from 0 to p− 1.
A sorting algorithm must redistribute all input elements between PEs such that they are
sorted globally and reorder them to ensure they are also sorted locally. The former condition,
for a globally sorted output, requires that any element on a PE with rank i must be smaller
than every element on PEs with higher rank j > i. Being sorted locally, simply refers to the
order of elements on any PE. For strings, the order of elements is defined lexicographically.
Sorting algorithms should also ensure that the output distribution remains balanced.

Distributed-memory parallel algorithms can typically expect to be executed on a much
higher number of processors compared to their shared-memory counterparts. Furthermore,
communication between PEs is performed using explicit message passing, which is generally
more expensive than shared-memory techniques and comes with higher latency. Bottleneck
communication volume and the number of communication rounds must therefore be consid-
ered as a crucial factor in the design and analysis of efficient distributed algorithms. Explicit
communication also creates additional overhead in practice, for example in the form of send
and receive buffers. On distributed systems, where memory is often sparse, particular care
must therefore be taken to limit the amount of auxiliary space required by an algorithm.

1

1. Introduction

1.1. Contribution

In this thesis, we develop two novel algorithms that make distributed string sorting more
scalable. The first builds upon the multi-way merge sort algorithm from the existing work [18,
36, 11], allowing it to efficiently scale to a higher number of PEs. To this end, we develop a
multi-level generalization of the algorithm based on the approach employed by Axtmann
et al. for atomic sorting [6, 2]. The existing single-level variant works by partitioning the
input into p pieces on every PE and sending strings to their final PE with a single exchange.
The multi-level variant subdivides PEs into r groups, partitions the input into r pieces,
and exchanges strings only between groups. This technique trades an additional exchange
phase with every recursion level for a reduction in the overhead caused by partitioning. We
demonstrate that this approach is not only an improvement in theory, as it is efficient for
more PEs at a given input size, but also an improvement in practice. In an experimental
evaluation, multi-level variants exhibit improved scaling behavior on up to 24 576 PEs for a
range of input sizes and are shown to outperform competitors for sufficiently large values of p.
Relating to multi-level merge sort, we also develop partitioning and load-balancing methods,
as well as a multi-level Bloom filter for the purpose of distinguishing prefix approximation.

The second algorithm developed in this thesis aims to make distributed string sorting
algorithms more space-efficient, thereby allowing them to accept larger inputs. This is
primarily achieved through the use of a compressed input representation where strings may
overlap and shared characters are not duplicated. Thus, inputs that would otherwise exceed
the available memory can be instantiated, especially in cases with high duplication between
strings. Because strings must be materialized, i.e., converted to an uncompressed format,
before they can be exchanged using message passing, it is not possible to sort the entire input
at once. Instead, we propose to partition strings into ordered quantiles, which individually
fit into memory, sorting only one quantile at a time, and thereby determining the rank
of each string within a sorted permutation of the input. For an implementation based on
multi-level merge sort, we demonstrate that space-efficient sorting is able to process inputs
of uncompressed size up to 22.4GB per PE on a system with only 2GB memory available
on average. We also provide motivation for an application in suffix-sorting as subroutine to
DCX, by sorting large difference cover samples for texts up to 1.23TB in size.

1.2. Outline

Prior to any substantive work, Chapter 2 introduces some conventions and notations used
throughout this thesis and discusses related work. Chapter 3 develops a number of building
blocks, including a distributed string sorting algorithm for small inputs, as well as distributed
partitioning and group assignment algorithms. The first major part of this thesis—multi-level
merge sort—is covered in Chapter 4. Space-efficient string sorting as a framework, as well as a
realization thereof, using multi-level merge sort, is proposed in Chapter 5. After an overview
of implementation details and after briefly discussing the experimental setup, Chapter 6
mainly comprises an experimental evaluation. Finally, Chapter 7 summarizes the results of
this thesis and gives pointers for possible future work on the topic.

2

2. Preliminaries

This chapter lays the necessary foundations for the rest of this thesis. Section 2.1 introduces
commonly used definitions and a number of notational conventions. Section 2.2 gives specifics
for the distributed-memory parallel model of computation and provides runtime bounds
for important collective operations. Used as subroutine to various distributed algorithms,
Section 2.3 concisely describes MSD radix sort—our sequential string sorting algorithm of
choice. Finally, Section 2.4 discusses related work from the topic of distributed string sorting
algorithms and from the subject of highly scalable atomic sorting.

2.1. Definitions and Notation

An array A := [a0, . . . , an−1] is an ordered sequence of n elements where |A| := n denotes
the length of A. A string s := [c0, . . . , cn−1] is an array of characters from an ordered
alphabet Σ := {1, . . . , σ}. Unless stated otherwise, we assume that strings are terminated by
a sentinel element that is not part of the alphabet, i.e., cn−1 = $ /∈ Σ. The sentinel is defined
as a null-terminator and therefore smaller than every character in Σ. It is possible—and
necessary for the algorithms in Section 5—to replace the sentinel with other end-of-string
indicators such as explicitly storing their length. String arrays are represented as arrays of
pointers which is illustrated in Figure 2.1. When sorting strings, the lexicographical order of
characters is used to define the binary relation “<”. We use +∞ and −∞ to denote strings
that are lexicographically larger and smaller than every other string. For an array of strings
S, we define the character array C(S) := s0 + · · ·+ sp−1 as the concatenation of all strings.
For an array of strings S, we define ∥S∥ := |C(S)| =

∑n−1
i=0 |si| as the total length of strings

in S.

The notations [i, j) and [i, j] are used to denote ranges of whole numbers {i, . . . , j − 1} and
{i, . . . , j} respectively. Analogously, in addition to regular array indexing A[i] := ai, we
define A[i, j) := [ax | x ∈ [i, j)] and A[i, j] := [ax | x ∈ [i, j]]. Corresponding to regular set
comprehensions we use array comprehensions such as

[
x2 | x ∈ A

]
:= [a20, a

2
1, . . . , a

2
n−1] when

the order of elements is unambiguous.

Let lcp(s, t) denote the longest common prefix (LCP) of two strings s and t. The LCP
array of a string array S = [s0, . . . , sn−1] is defined as H(S) := [⊥, h1, . . . , hn−1] with LCP
values hi := lcp(si−1, si) and undefined first value ⊥. We define the sum of LCP values
as L(S) :=

∑n−1
i=1 hi. The distinguishing prefix dpS(s) of a string s with respect S is the

shortest prefix of s that is required to establish the rank of s in a lexicographical order of S.
Note that, while sentinel characters are never part of any longest common prefix, they can be
part of distinguishing prefixes if necessary. We also refer to (the size of) the distinguishing
prefix of string arrays D(S) :=

∑n−1
i=0 dpS(si). The definition can be extended to use prefixes

with respect to another string array S ′ which we denote as DS′(S). If S is sorted, then

3

2. Preliminaries

a r k a n e $
a r r a n g e $
a u r o r a $
t h o u g h t $
t h o u g h $
a r r a y $
a n x i o u s $

s0⊥
s12
s21
s30
s46
s50
s61

SH(S)
a n x i o u s $
a r k a n e $
a r r a n g e $
a r r a y $
a u r o r a $
t h o u g h $
t h o u g h t $

s′0⊥
s′11

s′22

s′34

s′41

s′50

s′66

S ′H(S ′) dpS′(s′i)

Figure 2.1.: Unsorted string array S with LCP array and the corresponding
sorted string array S ′ with LCP array and distinguishing prefixes.

distinguishing prefix lengths are |dpS(si)| = max{hi+1, hi+1 +1} with sentinels h0 = 0 and
hn = 0.

We use a number of abbreviations for key characteristics of string arrays when it is clear
which array is being referenced. For distributed algorithms, this will always be a global string
array S. The total number of strings is denoted n := |S|, the cumulative length of strings is
N := ∥S∥, the size of the distinguishing prefix is D := D(S), and the sum of LCP values is
L := L(S). Furthermore, let ℓ̂ := maxs∈S |s| and

ˇ
ℓ := mins∈S |s| be the lengths of the longest

and shortest strings, and d̂ := maxs∈S |dpS(s)| the length of the longest distinguishing prefix
of any string.

2.2. Model of Computation

Throughout this thesis we use a distributed-memory parallel machine with p ordered pro-
cessing elements (PEs) numbered from 0 to p − 1 as our computational model. PEs are
connected by a network and communicate using single-ported message passing where every
PE can only exchange messages with a single other PE at a time. Communication between
PEs is assumed to use the linear model of communication where sending a message of m
units of data takes time α+ βm [19]. The constant α-term is the so called start-up latency
and β models the network’s inverse bandwidth, i.e., the speed at which units of data can be
transferred. For the parameters, it is generally possible to assume that α≫ β. Somewhat
unusually, we use bits, rather than machine words, as the standard unit of data, which
makes it possible to differentiate between sending characters and larger integers. Sending m
characters of an alphabet of size σ from one PE to another incurs total communication cost
in O(α+ βm log σ).

We often rely on well-understood collective communication operations to state the communi-
cation complexity of algorithms. Here, all PEs participate in communication with simple,
predictable, and uniform patterns of interaction. This makes analysis as simple as plugging
characteristic values into existing formulas. Collective operations relevant to this thesis with
accompanying bounds on complexity are introduced hereafter.

Broadcast A single PE—called the root—has a message m of size n bits which it wants to
distribute, i.e., broadcast, to every other PE. A lower bound for latency in Θ(α log p) must

4

2.2. Model of Computation

hold, since the number of PEs that have received m can at most double with every round
of communication due to the single-ported requirement. By splitting messages into smaller
chunks, pipelining can be used to properly utilize the network with large messages. Two-tree
algorithms combine two pipelined binary trees to better use the available bandwidth while
achieving optimal communication time in O(α log p+ βn) [34].

Reduce/All-Reduce Let ⊕ be an associative operator and assume that each PE has a message
mi of equal length n bits. A reduction computes the result of ⊕p−1i=0 mi on a root PE. Messages
are usually made up of smaller units, e.g., integers, that can be reduced individually and
make pipelining possible. Similar to broadcasts, reductions can use pipelined binary trees
for communication complexity in O(α log p+ βn) [34]. All-reduce operations make the result
available to all PEs which can be implemented using an additional broadcast with the same
asymptotic bound.

Prefix-Sum There is again an associative operator ⊕ and messages mi of equal length n
which are, as is the case for reductions, often made up of multiple smaller units. A prefix-sum,
or scan, computes the result of ⊕ij=0mj on each PE i. The value of mi is omitted on each
PE for an exclusive prefix-sum. The operation can be implemented using similar techniques
to reductions, which again requires communication time in O(α log p+ βn) [34].

Gather/All-Gather Here, PEs have a message mi consisting of n bits which must all be sent to
a single root PE. Hence, the root gathers and concatenates messages m0 ·m1 · . . . ·mp−1. This
can be seen as a reduction with concatenation as operator and thus needs communication
time in O(α log p + βpn) [35, p. 412]. An additional broadcast in time O(α log p + βpn)
suffices to obtain an all-gather operation. If messages have varying lengths ni with sum
n :=

∑p−1
i=0 ni, then both operations need communication time in O(α log p+ βn).

All-To-All Initially, each PE i has p messages m0
i , . . . ,m

p−1
i that need to be delivered such

that afterwards PE i has messages mi
0, . . . ,m

i
p−1. Hence, every PE exchanges information

with every other PE. If all messages have equal length n bits, then a regular all-to-all
exchange can be implemented with p − 1 rounds of direct exchanges using the 1-factor
algorithm in time O(αp + βpn) [35, p. 414]. In the case of small messages, an indirect
exchange using a hypercube communication pattern consisting of log p iterations with total
communication in O(α log p+ βpn log p) may be preferable [35, p. 415]. In the context of
strings we often require irregular all-to-all exchanges where message have arbitrary lengths
nji . We can define the maximum number of bits sent or received by any PE, the so-called
bottleneck communication volume, as h := maxi

{∑
j n

j
i ,
∑

j n
i
j

}
. Messages can be delivered

using two successive uniform all-to-all exchanges. Each message mj
i is split into p equally

sized pieces mj,k
i for k ∈ [0, p) which are then sent indirectly via PE k and reconstructed on

PE j. Using the 1-factor algorithm for uniform all-to-all exchanges, this two-phase algorithm,
has communication complexity in O(αp+ βh) if message sizes are sufficiently large—at least
h = Ω(p log h) bits to dominate the exchange of piece sizes [35, p. 417]. Irregular all-to-all
exchanges are the most general communication pattern, as they form a superset of other
operations such broadcasts and gathers. However, the two-phase algorithm is not efficient in
cases with sparse communication patterns, where many send and receive counts are equal to
zero.

5

2. Preliminaries

Irregular Exchanges Unfortunately, at least for the multi-level algorithms in Chapter 4, we
also encounter cases of highly irregular communication where simple collective operations
are not sufficient. In particular, we require exchange operations where each PE sends
messages to a subset of PEs that is unknown before execution and whose size is usually only
bounded asymptotically. Using direct exchanges, an obvious lower bound for this is given by
Ω(αr+βm) if each PE sends and receives messages to and from r other PEs with total length
m. Unfortunately, it is not clear how such an exchange can be implemented optimally while
observing the single-ported requirement. The problem here is that a schedule of exchanges
needs to be determined such that each PE can be active during every round of communication.
Naive solutions, like using all-to-all exchanges with empty messages, incur either latency in
O(αp), which may be acceptable in practice but undesirable in theory, or factors up to log p
in communication volume for indirect exchanges, which is unacceptable for large messages.
More advanced algorithms are conceivable, for example using a graph coloring formulation [35,
p. 417], though it is unclear how these can be implemented in practice with acceptable
runtime overhead. In practice, sparse all-to-all exchanges where messages are sent in parallel
may prove effective. Such approaches are, however, precluded from our theoretic analysis
due the requirement for single-portedness. Conforming to the approach chosen in the paper
on which our multi-level merge sort algorithms are based, we define a black-box function
to encapsulate the cost of irregular exchanges [6]. The term Exch(p,m, r) gives the time it
takes for p participating PEs, where each PE sends and receives at most m bits, to exchange
at most r messages in either direction. We also use Ex̃ch(p,m, r) := (1 + o(1)) Exch(p,m, r)
to absorb terms that are dominated by data exchange phases. As previously noted, we
assume direct exchanges and therefore Exch(p,m, r) = Ω(αr + βm).

2.3. Sequential String Sorting

There exist a large variety of sequential sorting algorithms including multi-key quicksort,
LCP-merge sort, and LCP-insertion sort—Bingmann provides a recent and comprehensive
overview [8]. To sort local string arrays as subroutine to the distributed algorithms in this
thesis, we use most significant digit (MSD) radix sort, a variant of regular radix sort for
strings. Significant effort has gone into engineering radix sort for strings and the resulting
implementations are some of the fastest string sorters in practice [29, 25].

With an initial string array S, MSD radix sort works by repeatedly splitting S into σ
subproblems. At each step, all strings in the current array have a common prefix of length h.
Starting with an initial character depth h = 0, by looking at the character at position h and
splitting S into σ arrays accordingly, the common prefix is increased to h+ 1. For inputs
with o(σ) strings, maintaining σ buckets is no longer efficient and a different string sorting
algorithm is required. We assume that multi-key quicksort [7] is used for these base cases,
which has runtime in O(D+n log n) with the definitions previously introduced in this chapter.
The radix steps have total runtime in O(D). Sorting O(n/σ) base cases with O(σ) strings
each and cumulative distinguishing prefix at most D, has runtime in O(D) with multi-key
quicksort. Therefore, MSD radix sort has time complexity in O(D+n log σ) which is good for
small alphabets. The algorithm is less suited for large alphabet and may, depending on the
implementation, struggle with large recursion stacks. Many algorithmic optimizations, such
as super-alphabets and character-caching, are possible to improve empirical performance [8].

6

2.4. Related Work

2.4. Related Work

Compared to sequential string sorting [29, 25, 7, 8], parallel string sorting in shared-memory
machines [32, 14, 10, 15, 8], and even string sorting in external memory [1, 16], there has
been surprisingly little work on sorting strings in distributed-memory parallel systems. The,
to our knowledge, first distributed sorting algorithm explicitly designed for strings was
proposed by Fischer and Kurpicz as a subroutine to a distributed suffix array construction
algorithm [18]. The authors therein describe their algorithm as a distributed variant of
shared-memory string sample sort [10]. In their master’s thesis [36]—the results of which
have since been published [11]—Schimek develops two new algorithms, distributed String
Merge Sort (MS) and distributed Prefix Doubling String Merge Sort (PDMS), based on the
approach chosen by Fischer and Kurpicz. Since the multi-level sorting algorithms in this
thesis are directly based on MS and PDMS, the following provides a detailed description of
the two algorithms. Figure 2.2 includes an illustration of single-level multi-way merge sort
without string-specific details.

PE 0 PE 1 PE 2 PE 3

local sorting

distributed partitioning

string exchange

local merging

ex
ec

ut
io

n

Figure 2.2.: Execution of single-level multi-way merge sort for an instance with p = 4
PEs. Colors indicate lexical distribution of elements.

Both MS and PDMS use a multi-way partitioning and merging scheme. For an input
consisting of a string array Si on each PE i, both algorithms first sort the arrays locally. MS
then proceeds by globally partitioning the input into p buckets B0, . . . ,Bp−1, by globally
drawing Θ(p2) samples at regular intervals, sorting the samples, and selecting p− 1 splitters ;
again at regular intervals. Buckets are ordered, meaning that for any strings si ∈ Bi and
sj ∈ Bj from buckets i < j the same order si < sj is guaranteed to hold for the strings. To
ensure strings are globally ordered, the algorithm then assigns the strings of bucket i to
PE i, by splitting local string arrays according to the global partition and exchanging the
resulting sequences with an irregular all-to-all exchange. It only remains to merge all received
sequences with a multi-way merging algorithm which restores local order of strings. PDMS
enhances MS based on the observation that strings can be arbitrarily long and therefore
cause high communication volume. In reality, depending on the string array, some characters,
if not most, may be unnecessary to establish a correct order of strings, specifically in cases
where D ≪ N . By repeatedly applying a Bloom filter [12] to determine duplicates among

7

2. Preliminaries

exponentially growing string prefixes, PDMS approximates the distinguishing prefix of each
string. From here, the algorithm works like MS, expect using string arrays consisting of
the approximated prefixes. The authors propose a number of string-specific optimizations
for both MS and PDMS by exploiting LCP values. Notably, strings can be compressed
for all-to-all exchanges by only sending common prefixes once, which we refer to as LCP
compression. Local merging can use an LCP-ware multi-way merging algorithm, thereby
bounding the number of character comparisons by D.

We also draw from a technique used in atomic sorting. Specifically, our multi-level merge
sort algorithms are closely related to Recurse Last Multi-way Merge sort (RLM-sort) and,
more distantly, to Adaptive Multi-level Sample sort (AMS-sort), both of which were proposed
by Axtmann et al. [6, 3]. The ideas of RLM- and AMS-sort are similar: given an input
distributed over p PEs, rather than partitioning local data into p pieces and delivering
each piece to its final PE with a single exchange, instead divide PEs into groups of size
p′, only exchange elements between group, and proceed recursively. This approach needs
to exchange data multiple times, which for k level of recursion results in a factor k more
communication volume. However, by only needing to compute r = p/p′ splitters, the authors
are able to improve the minimum size at which the algorithms are efficient from Ω(p2 log p)
to Ω(p1+1/k log p) for RLM- and Ω(p1+1/k/ log p) for AMS-sort. Similar approaches have
been explored previously, for example, in the bulk synchronous parallel (BSP) model for
sample sort by Gerbessiotis and Valiant [20].

8

3. Techniques

The following sections introduce a number of techniques and algorithms that are required
as subroutines in later chapters. We first cover distributed sorting of small string sets
in Section 3.1. A distributed ordered partitioning algorithm, as well associated sampling
techniques are described in Section 3.2. Finally, Section 3.3 covers distributed assignment of
strings to groups of PEs.

All algorithms in this chapter obtain similar inputs, which we formalize with the following
conventions. Each PE i receives an array of strings Si as input. The global input array is
defined as S := S0 + · · ·+ Sp−1 using concatenation to allow for duplicate elements. Recall
the definitions of n, N , ℓ̂,

ˇ
ℓ, and d̂ for S from Section 2.1.

3.1. LCP-Hypercube Quicksort

The distributed merge sort algorithms in this thesis require comparatively small sets of
strings to be sorted as a subroutine. Once sorted, the strings are used to compute a globally
ordered partition of a larger input. In their Master’s thesis [36], Schimek proposes two
algorithms for this scenario. The first—a centralized approach that gathers strings, sorts
them sequentially on a single PE, and broadcasts them afterwards—proved a bottleneck
for even moderate input sizes based on empirical data. To deal with lager numbers of
PEs, the author proposes a distributed hypercube quicksort algorithm as an improvement
which has been further analyzed in a subsequent paper [11]. The algorithm is directly based
on RQuick—a “robust” version of hypercube quicksort for atomic objects proposed and
implemented by Axtmann [2, 3]. What makes RQuick novel and distinguishes it from other
distributed hypercube quicksort implementations is an initial random redistribution of inputs,
the use of a tie-breaking scheme to cope with duplicates, and the details of the scheme used
to approximate the median and thereby determine the splitter.

In an attempt to make RQuick more efficient for strings, we applied several string-related
optimizations. Algorithm 1 shows pseudocode for the resulting variant—LCP-RQuick. First,
during the local sorting phase, the LCP array of Si is computed as by-product of sorting
and saved as Hi on each PE. LCP arrays must be partitioned and sent alongside the string
arrays during each iteration. This incurs additional communication, but does not actually
change the algorithm’s asymptotic complexity, which we show in Theorem 1. The main
improvement over regular RQuick is that using the LCP arrays, we can apply a binary
LCP-merge algorithm to combine the received string arrays. This also leaves us with an
up-to-date LCP array for the result. It is also possible to use LCP values to speed up locating
the splitter within local string arrays. When combined, these changes ideally improve the
algorithm’s required local work from log p scans of the entire character array to a single
scan.

9

3. Techniques

Algorithm 1: LCP-Hypercube Quicksort (LCP-RQuick) based on [3, 36]
Input: Local string array Si on each PE i and number of PEs p = 2d

1 Si ← randomly redistribute Si // for details see [3]
2 Sort(Si)→ Hi // save LCP array during sorting
3 for h← d− 1 downto 0 do // hypercube dimension
4 s← find approximate median // for details see [3]
5 S≤i · S

>
i , H

≤
i · H

>
i ← split Si and Hi at s // can exploit LCP information

6 j ← i⊕ 2h // communication partner
7 if j < i then
8 send S≤i ,H

≤
i to PE j and receive S>j ,H

>
j from j

9 Si, Hi ← LCP-Merge(
(
S>i ,H

>
i

)
,
(
S>j ,H

>
j

)
)

10 else
11 send S>i ,H

>
i to PE j and receive S≤j ,H

≤
j from j

12 Si, Hi ← LCP-Merge(
(
S≤i ,H

≤
i

)
,
(
S≤j ,H

≤
j

)
)

Output: Locally and globally sorted string array Si with LCP array Hi

Note that in Algorithm 1 the number of PEs is assumed to be a power of two. If this
assumption does not hold, then the input must be reduced to a hypercube with dimension
d = ⌊log p⌋ prior to the algorithm itself. Here, any PE with rank i > 2d moves their entire
input array to PE i− 2d and thereafter no longer participates in sorting.

Lemma 1. Using binary LCP-merge from Algorithm 2, LCP-RQuick, as described in
Algorithm 1, requires at most L+ n⌊log p⌋+ pℓ̂⌊log p⌋ character comparisons summed over
all PEs and hypercube-dimensions, to merge string sequences.

The following proof is closely based on the proof by Bingmann et al. of an analogous statement
for two-way LCP-merge sort [10, Theorem 2]. Our version requires an additional term pℓ̂ log p
to account for LCP values “lost” after splitting arrays during each iteration.

Proof. First of all, note that there are only three places in LCP-Merge where character
comparisons can occur—specifically in lines 8 and 9. The first two, in the while-loop, are
essentially part of an inlined LCP-Compare routine that scans over positions of s0 and s1
while the corresponding characters are equal, or until a null-terminator is found. The third
comparison, in the if-statement, rechecks the characters at the last encountered position
and thereby determines the order of s0 and s1. Because the same characters are compared in
two cases and the third involves a comparison of one of them to zero, we can view the entire
group as a single three-way comparison, and use status flags for the comparison to zero. Each
time the condition of the while-loop is evaluated to true, a corresponding entry in an LCP
array is increased by one. And for each string, there can only be a single false-outcome of
the condition per call to LCP-Merge; specifically when a string is appended to S. Thus, the
former can be bounded by the sum of LCP values after merging and the latter contributes
at most n comparisons per dimension of the hypercube, i.e., n⌊log p⌋ in total. To arrive at a
bound for the former term, we need to establish a number of additional observations about
LCP-RQuick. After every iteration of the for-loop in Algorithm 1, the global sum of LCP

10

3.1. LCP-Hypercube Quicksort

values is at most L, i.e.,
∑p−1

i=0 Hi ≤ L. The only points at which LCP values are changed
after the initial local sorting, are during merging and after splitting local arrays (the first
entry of H>i is implicitly set to zero by the next call to LCP-Merge). Resetting a single LCP
value per PE discards at most ℓ̂ characters which amounts to pℓ̂⌊log p⌋ over all PEs and
dimensions of the hypercube. Otherwise, no LCP values are decreased or modified. Recalling
that each true-outcome accounts for incrementing the sum of LCP values by one, we can
bound the number of character comparisons incurred thereby with L+ pℓ̂⌊log p⌋. Having
accounted for all comparisons in LCP-Merge, this concludes the proof of Lemma 1.

Algorithm 2: Binary LCP-Merge [10]
1 Function LCP-Merge((S0,H0), (S1,H1))

Input: Sorted string arrays S0, S1 and LCP arrays H0, H1.
String arrays have sentinels Sy[|Sy|] =∞ for y ∈ {0, 1}.

2 i0 ← 0, i1 ← 0, j ← 0 // current indices into S0, S1, and S
3 h0 ← 0, h1 ← 0 // LCP values to the current head of S
4 while i0 < |S0| or i1 < |S1| do

// Invariant: hy = lcp(Sy[iy],S[j − 1]) for y ∈ {0, 1}
5 s0 ← S0[i0], s1 ← S1[i1]
6 if h0 = h1 then // need to compare additional characters
7 h′ ← h0 // increment until h′ = lcp(s0, s1)
8 while s0[h

′] ̸= $ and s0[h
′] = s1[h

′] do h′ ← h′ + 1
9 if s0[h′] ≤ s1[h′] then x← 0 else x← 1

10 else if h0 < h1 then x← 1, h′ ← h0 // s1[h0 + 1] < s0[h0 + 1]
11 else if h0 > h1 then x← 0, h′ ← h1 // s0[h1 + 1] < s1[h1 + 1]

// Invariant: sx ≤ s1−x and h′ = lcp(s0, s1)
12 S[j]← sx, H[j]← hx, j ← j + 1 // append smaller string to S
13 ix ← ix + 1, hx ← Hx[ix], h1−x ← h′ // advance to next string

Output: Sorted string array S with LCP array H

Lemma 1 only gives a bound for the character comparisons incurred by merging over all PEs
and iterations of LCP-RQuick. This still leaves the possibility that local work is distributed
unevenly between PEs and iterations which could lead to a longer critical path. We suspect
that the total local work for merging on any PE can in fact be bounded further, e.g., by
O(nℓ̂/p+ ℓ̂ log p) over all iterations, but were unable to satisfactorily prove this. Somewhat
unconventionally, we instead state the total local work summed over all PEs incurred by
LCP-RQuick in the following theorem.

To determine the runtime of LCP-RQuick, we also need to consider the imbalance of
local string arrays, which is influenced by the quality of the approximated median. For a
version of the algorithm with a more complex median selection (RQuick+), Axtmann is
able to show that every PE has O(n/p) elements with high probability, but is only able to
conjecture, based on empirical evidence, that RQuick manages the same [2, Theorem 6.6,
Conjecture 6.11]. The following theorem therefore includes an explicit precondition that the
median approximation works well and manages to maintain O(n/p) strings per PE. Because
we do not make any general assumptions about the distribution of string lengths with respect
to the lexicographical order, we assume that each string contributes ℓ̂ characters. This leads
to several bounds containing the term nℓ̂/p.

11

3. Techniques

Theorem 1. If Algorithm 1 maintains balanced workload for all log p iterations, then the
algorithm can be implemented to run using local work O(nℓ̂/p log p + n/p log σ), latency
O(α log2 p), and bottleneck communication volume O((ℓ̂ log2 p+ nℓ̂/p log p) log σ) bits. The
sum of local work over all PEs is in O(D + n log σ + (n+ pℓ̂) log p).

Proof. Initial reduction to the nearest hypercube sends and receives at most one message of
O(nℓ̂/p) characters on each PE. The subsequent random redistribution uses a hypercube
communication pattern during which each string is sent at most once which yields latency
O(α log p) and communication volume O(nℓ̂/p) characters. Local sorting with MSD radix
sort takes time O(nℓ̂/p+n/p log σ) with a conservative estimate for the distinguishing prefix.
Approximating the median in each iteration of the loop requires a binary tree reduction
and single broadcast. Both have latency O(α log p) per iteration which explains the overall
polylogarithmic latency. The reduction only works on a constant number of strings and
therefore contributes O(βℓ̂ log p log σ) bits. Using LCP-aware linear search to locate the
splitter requires local work O(n/p+ ℓ̂) for a single scan of Si and s in the worst case. Moving
string arrays to the communication partner requires sending O(nℓ̂/p log σ) bits in each
iteration. LCP arrays only require O(n/p log ℓ̂) additional bits to be sent which is dominated
by the previous term. Finally, in the worst case merging requires local work in O(nℓ̂/p) per
iteration.

For the sum of local work over all PEs, first note that the sum of LCP values is bounded
by the size of the distinguishing prefix. Summed over all PEs, local sorting takes total
local work in O(D + n log σ). Locating the median is in O(n + pℓ̂) per iteration when
multiplied by p. Finally, the total work for merging can be derived from Lemma 1 and is in
O(D+ (n+ pℓ̂) log p). All other local work is dominated by these terms and the bound from
the theorem follows immediately.

With Theorem 1, we are not able show an improvement in worst-case complexity of LCP-
RQuick over regular RQuick. However, with the bound on local work over all PEs, if
we assume that work for merging is distributed evenly over PEs, then this suggests that
LCP-RQuick does in fact provide an improvement in expected merging time by a factor log p.
Though a theorem with an explicit bound on local work per PE is needed, to further support
this claim. Even then, consider again that the main drawback of hypercube quicksort for
strings is its communication-inefficiency since it has to send approximately half of the strings
log p times. Exploiting LCP values to make local work more efficient does not change this
and actually leads to additional communication. Given inputs with sufficiently large common
prefixes, the communication overhead can be offset by the reduction in local work, which we
demonstrate empirically with better sorting times as part of the experimental evaluation
in Chapter 6. There are a number of ways the algorithm could be further improved by
reducing the expected communication volume. Similar to PDMS, one could apply prefix
approximation before sorting or even before the reduction to the nearest hypercube. By
applying LCP compression it is possible to further reduce the number of characters sent per
exchange. Also, median approximation could use character-based techniques to bound the
expected number of characters per PE by O(N/p).

12

3.2. Distributed Ordered Partitioning

3.2. Distributed Ordered Partitioning

The existing distributed string sorting algorithms—MS and PDMS—use a multi-way
merge sort scheme which requires a global input array to be partitioned into p buckets
B0, . . . ,Bp−1 [18, 36, 11]. The buckets are required to be ordered, i.e., for i < j all strings
in bucket Bi must be smaller than any string in bucket Bj . In the algorithm’s next phase,
elements are exchanged such that each bucket is assigned to its own PE. The relative
bucket sizes directly influence the workload of PEs in subsequent processing steps and must
therefore be bounded to ensure load balancing. For atomic objects, it is sufficient to consider
only the number of elements to show that buckets are well-balanced. However, due to the
multidimensionality of strings, where complexity also depends on the length of strings, it
may be desirable to use the number of characters as criteria instead.

The multi-level merge sort variants presented in this thesis use the same partitioning scheme
in a slightly more general form. Rather than being limited to yield a partition with p
buckets, we may instead freely choose any divisor of p as the desired number of buckets. The
space-efficient string sorting framework is yet more general and does not require that r is a
divisor of p or even that r ≤ p. Any bounds on worst-case imbalances must consider these
relaxed preconditions. In Section 3.2.1, we first restate the algorithm from [36] to accept this
new input specification. Sections 3.2.2 and 3.2.3 adapt string- and character-based regular
sampling techniques and give amended bounds for buckets imbalance.

3.2.1. Partitioning Algorithm

In addition to the string array Si, each PE also receives the desired number of buckets r as
input which must be the same value on all PEs. We assume all input strings to be globally
unique which may be assured with an appropriate tie-breaking scheme, e.g., using the PE
rank and local array index from which a string originates. The oversampling factor v gives
the number of samples to be drawn per PE. For single-level merge sort, the oversampling
factor is usually chosen to as Θ(p) in practice when using regular sampling. Input arrays are
required to be sorted locally which is essential for regular sampling techniques. The following
algorithm and the analysis thereafter assume perfectly balanced string and character arrays,
i.e., |Si| = n/p and ∥Si∥ = N/p for every PE i. However, it is possible to modify both such
that they remain valid for only asymptotically balanced arrays in Θ(n/p) and Θ(N/p). The
idea is broadly to maintain uniform spacing between samples, by distributing the pv samples
according to the number of strings and characters on each PE [36].

The partitioning algorithm consists of the following four main steps:

(1) Local Sampling: On each PE i, draw v samples from Si using one of the sampling
techniques from the following sections to obtain Vi.

(2) Distributed Sorting: Globally sort the pv samples using a distributed string sorting
algorithm, e.g., LCP-RQuick, to obtain the distributed array V.

(3) Splitter Selection: Choose r − 1 evenly spaced splitters fi = V[(ipv/r) − 1] for
i = 1, . . . , r − 1 using a distributed selection algorithm. For simplicity, we assume that
r divides pv which means that no rounding is necessary. Using an all-gather operation
the r − 1 splitters are communicated to every PE.

13

3. Techniques

(4) Bucket Computation: On each PE i, the (sorted) input array is split into intervals
to obtain ordered buckets Bji := [s ∈ Si | fj < s ≤ fj+1] with sentinels f0 = −∞ and
fr = +∞. Splitter positions within Si can be found using binary search or a single
linear scan.

For convenience in later analysis, we define global buckets Bj := Bj0 ∪ · · · ∪ B
j
p−1 as the set of

strings in the jth bucket on all PEs. The algorithm fulfills the postcondition that buckets
B0, . . . ,Br−1 are ordered.

We do not provide combined runtime of the partitioning algorithm as it depends on the
chosen sampling technique and distributed sorting algorithm. Splitter selection can be
implemented in time O(α log p + βrℓ̂ log σ). This includes a prefix-sum to compute the
offset of every PE into V and the all-gather which can be thought of as separate gather
and broadcast operations in the same time. Locating the splitters in step (4) using r − 1
individual binary searches requires time O(rℓ̂ log n

p). Because the splitters are sorted we can
also use a single linear scan over Si in time O(maxi D(Si) + rd̂) with an up-to-date LCP
array. The term rℓ̂ is required to find LCP values of splitters. More conservatively, with the
reasonable assumption that rd̂ = O(N/p), this can be simplified to O(N/p) which we may
use to absorb the term into more complex bounds.

3.2.2. String-Based Regular Sampling

Because the input arrays are sorted, it is possible to apply regular sampling. Here, as the name
implies, samples are chosen at regular intervals which provides good worst-case guarantees for
the maximum size of buckets after partitioning and has been applied successfully to parallel
sorting algorithms in the past [37]. The following string- and character-based sampling
techniques are directly based on existing work [36, 11]. Proofs of bucket sizes bounds are
only slightly generalized to account for the choice of r − 1 rather than p− 1 splitters. For
string-based regular sampling, we assume that the number of input strings |Si| is divisible by
v+1 on every PE. We define ω = |Si|/(v+1) as the distance between samples and choose

Vi :=
{
Si[ωj − 1] | j ∈ [1, v]

}
accordingly in time O(n/p). Theorem 2 proves that with these samples, the resulting buckets
are well-balanced with respect to the number of strings. It is, however, not possible to give
general bounds for the number of characters per bucket. We first reiterate the following
lemma on the density of samples from the existing literature.

Lemma 2 (String-Based Sampling Density [11, Lemma 1.1]). Let S ′i = {s ∈ Si | a ≤ s ≤ b}
be an arbitrary contiguous subsequence of Si for i ∈ [0, p). With |S ′i ∩ V| = k it must hold
that |S ′i| ≤ (k + 1)ω.

Theorem 2. Using string-based regular sampling with v samples per PE, every global bucket
Bj obtained using the partitioning algorithm contains at most n/r + n/v strings.

Proof. Let Vji = Bji ∩Vi be the samples on PE i that fall into the jth bucket. Using Lemma 2
it follows that Bji ≤ (|Vji | + 1)ω. By definition in step (3) of the partitioning algorithm,

14

3.2. Distributed Ordered Partitioning

splitters fj and fj+1 are separated by pv/r − 1 strings and thus
∑p−1

i=0 |V
j
i | = pv/r when

including fj+1. The stated bound follows directly using the definition of Bj and assuming
balanced input arrays as follows:

∣∣Bj∣∣ = p−1∑
i=0

∣∣Bji ∣∣ ≤
p−1∑
i=0

(∣∣Vji ∣∣+ 1
)
ω = ω

(pv
r

+ p
)

=

∣∣Si∣∣
v + 1

(pv
r

+ p
)

=
n

p(v + 1)

(pv
r

+ p
)
≤ n

pv

(pv
r

+ p
)
=
n

r
+
n

v

To summarize, using string-based regular sampling yields buckets with a maximum imbalance
of n/v strings if the input is initially balanced: which is equivalent to an imbalance factor
1 + r/v. A choice of v = Θ(r) means that the number of strings per bucket is in Θ(n/r).

3.2.3. Character-Based Regular Sampling

For character-based regular sampling, the distance between samples is chosen with respect
to the character array C(Si). As with string-based sampling, we assume that the number
of characters ∥Si∥ is divisible by v + 1 on each PE and choose the appropriate sampling
distance ω′ = ∥Si∥/(v+ 1). To ensure that samples are unique, we require that the length of
the longest string ℓ̂ is not greater than the distance between samples, i.e., ℓ̂ ≤ ω′. Using ω′

we obtain positions in the character array at ω′j − 1 for j ∈ [1, v]. These character samples
do not necessarily line up with string boundaries and we therefore need to introduce an
additional transformation to arrive at the final string samples. Positions that are not already
at the first character of a string, are shifted right by at most ℓ̂−1 characters to the beginning
of the next string. This transformation can be formalized on PE i as a function

ϕi : [0, ∥Si∥)→ [0, |Si|) with m 7→ min
{
j ∈ [0, |Si|) : m ≤ ∥Si[0, j)∥

}
which maps character positions to string positions. The returned position is the leftmost
string beginning at or after the mth character in C(Si). If the length of strings is known and
can be queried in constant time, then sampling character positions and mapping them to
strings only requires a single scan over Si in time O(n/p). Using ϕi the set of samples on
PE i is defined as

Vi :=
{
Si[ϕ(ω′j − 1)] | j ∈ [1, v]

}
.

Following a similar approach to string-based sampling, we can bound the maximum number
of characters in each bucket. Again, we first restate a lemma from the existing work about
the density of samples with respect to the number of characters.

Lemma 3 (Character-Based Sampling Density [11, Lemma 2.2]). Let S ′i = {s ∈ Si | a ≤
s ≤ b} be an arbitrary contiguous subsequence of Si for i ∈ [0, p). With |S ′i ∩ V| = k it must
hold that ∥S ′i∥ = |C(S ′i)| ≤ (k + 1)(ω′ + ℓ̂).

Lemma 3 suffices to show the following theorem about the number of characters per bucket.

Theorem 3. Using character-based regular sampling with v samples per PE, every bucket Bj
obtained using the partitioning algorithm contains at most N/r+N/v+(p+ vp′)ℓ̂ characters.

15

3. Techniques

Proof. Let Vji = Bji ∩ Vi be the local sample buckets as in the proof of Theorem 2. Using
Lemma 3 yields the analogous bound ∥Bji ∥ ≤ (|Vji |+ 1)(ω′ + ℓ̂). The equalities for Vji and
Bj remain identical which suffices to obtain the stated bound.

∥∥Bj∥∥ =

p−1∑
i=0

∥∥Bji ∥∥ ≤
p−1∑
i=0

(∣∣Vji ∣∣+ 1
)
(ω′ + ℓ̂) =

(pv
r

+ p
)(∥∥Si∥∥

v + 1
+ ℓ̂

)

≤
(pv
r

+ p
)(N

pv
+ ℓ̂

)
=
N

r
+
N

v
+
(pv
r

+ p
)
ℓ̂

Note the term (p+ pv/r)ℓ̂ in Theorem 3 which can be simplified to Θ(pℓ̂) if v = Θ(r). This
means that in contrast to string-based sampling, the imbalance does not only depend on the
number of partitions, but also on the number of PEs. Intuitively, this is due to the fact that
on each PE the string samples may have been shifted right by up to ℓ̂− 1 characters.

3.3. Distributed Group Assignment

As part of the multi-level merge sort algorithm in Chapter 4, we encounter the problem
of assigning elements from partitioned arrays to groups of multiple PEs. Going forward,
we refer to the problem as (distributed) group assignment. The resulting assignment needs
to ensure that each PE receives approximately the same amount of data to ensure load
balancing. Again, because our algorithms work with variable-length strings, an assignment
of elements may be considered well-balanced with respect to either the number of strings
or the number of characters on each PE. Additionally, the number of sent and received
messages should be bounded, with an asymptotic lower bound being a constant number of
messages per group.

In addition to the customary string array Si, each PE also obtains a partitioning of that
array into r buckets B0i , . . . ,B

r−1
i . We only require that buckets are a partition of Si, i.e.,

the union of all buckets on PE i is equal to Si and their intersection is empty, but make
no assumption about the lexicographical order of contained strings. As before, strings are
assumed to be unique and we can thus define global buckets Bj =

⋃r−1
i=0 B

j
i using set union.

The number of buckets must divide the number of PEs into groups of equal size p′ := p/r ≥ 1.
Intuitively, group j consists of the p′ consecutive PEs with ranks jp′ to (j + 1)p′ − 1. The
task of algorithms in this section is to assign all strings from the p buckets Bj0, . . . ,B

j
p−1 to

the PEs of group j. Our algorithms are, with one exception, not explicit on how such an
assignment is represented, since we consider this to be an implementation detail. It can be
conceptualized as further splitting the buckets into p′ sets, one for each PE of the group.
Based on the local string assignments, we globally define Aji as the set of all strings assigned
to the ith PE of group j. Note that actually applying the assignment is not part of the
algorithms described in this section and instead part of a subsequent and separate string
exchange phase.

The case of p′ = 1 is trivial as there is only the single valid assignment Aj0 = Bj for every j.
This is only used as convention to avoid special cases in the definition of multi-level merge
sort. We assume that input arrays are initially perfectly balanced, i.e., each PE needs to
send n/p strings and N/p characters. Using appropriate rounding behavior, the algorithms

16

3.3. Distributed Group Assignment

can be adapted to work with only asymptotically balanced arrays. We also assume that
perfect intra-group balance is possible, i.e., bucket sizes |Bj | and ∥Bj∥ are divisible by p′ for
every group j. However, because the partitioning algorithm does not yield perfectly uniform
buckets, we introduce inter-group string and character imbalance ε and δ with corresponding
bounds ∣∣Bj∣∣ ≤ (1 + ε)

n

r
and

∥∥Bj∥∥ ≤ (1 + δ)
N

r
. (3.1)

The following sections introduce three algorithms that solve the assignment problem with
increasing complexity. Section 3.3.1 introduces a first attempt that is entirely oblivious to the
amount of data per PE, but always sends and receives exactly one message to every group on
each PE. Conversely, the second approach, in Section 3.3.2, guarantees uniform distribution
of data but cannot offer a nontrivial upper bound on the number of messages received per PE.
Finally, Section 3.3.3 proposes an approach that maintains equal distribution of elements
while bounding the number of sent and received messages by the number of groups at the cost
of additional algorithmic complexity. In their paper on multi-level atomic sorting, Axtmann
et al. [6] cover the same “data redistribution problem” for atomic objects. Compared to their
work, the following algorithms are broadly similar, but somewhat more general, since we
cannot assume that elements remain globally balanced after redistribution.

3.3.1. Grid-Wise Assignment

The first assignment technique is termed grid-wise as it views the PEs as a grid with
dimensions p′×r and only allows communication along rows and columns thereof. Intuitively,
groups of p′ PEs make up rows, while columns join the lth PE of each group which yields
coordinates

row(i) := ⌊i/p′⌋ and col(i) := imod p′.

This approach is primarily intended to support 2-dimensional cartesian MPI communicators
and works by exchanging buckets along columns using p′ parallel all-to-all exchanges. For-
mally, PE i assigns all strings in bucket Bji to PE jp′ + col(i). This leads to all buckets in a
column being assigned to

Aji :=
r−1⋃
l=0

Bjlp′+i

on the ith PE of group j. It is immediately clear that grid-wise group assignment may yield
undesirable imbalances between PEs, which we formalize with Theorem 4.

Theorem 4. Using grid-wise group assignment, each PE needs to send and receive strings
from exactly r PEs. There exist cases where a single PE receives Ω(n/p′) strings or Ω(N/p′)
characters.

Proof. The first part holds by definition and must be true to allow a column-wise all-to-all
exchange. For the second part, consider the case where every PE in a column c sends all
its strings to the same group j. This happens if |Bji | = |Si| = n/p for PE i = lp′ + c on
every row l. We claim that such bucket sizes are actually possible without violating the

17

3. Techniques

requirement for initially balanced arrays. The number strings assigned to PE c of group j is
therefore ∣∣Ajc∣∣ =

∣∣∣∣∣
r−1⋃
l=0

Bjlp′+c

∣∣∣∣∣ =
r−1∑
l=0

∣∣∣Bjlp′+c∣∣∣ = r
n

p
=
n

p′
.

An analogous argument can be made for the number of characters by substituting the number
of strings n for characters N and usages of |·| for ∥·∥.

Note the difference between n/p and n/p′ in Theorem 4. The latter directly implies that an
intra-group string or character imbalance by a factor of Ω(r) is possible when using grid-wise
assignment. The following approach aims to resolve this issue using a technique from the
distributed algorithm basic toolbox.

3.3.2. Simple Assignment

As a simple approach to ensure well-balanced assignment, we view the problem as filling
a sequence of slots using a set of items of possibly variable size. Each item, i.e., string,
takes up a defined number of slots—either one per string or one per character depending on
whether string- or character-based assignment is desired. For each group of PEs, we allocate
a matching number of open slots, sufficient to receive all strings from the corresponding
bucket in the partition. Slots and strings are both enumerated and we assign the ith string
to the ith open slot. Now, slots are distributed over the p′ PEs of each group in equally
sized chunks to arrive at the final assignment of strings to PEs. PEs only need to determine
the total number of slots and how many slots are used by PEs with smaller rank to compute
the assignment. Both values can easily be computed using simple collective operations.
Additional work is required to adapt the technique to a character-based approach, where the
number of slots corresponds to the number of characters. Figure 3.1 illustrates the working
principle of simple assignment for a system with six PEs and three groups.

String-Based Assignment

For the string-based variant, the number of slots in group j is equal to the number of strings
in the group (i.e., |Bj |) which can be computed using an all-reduce operation. The all-reduce
is performed over r-sized vectors containing |B0i |, . . . , |B

r−1
i |. Additionally, an exclusive

prefix-sum operation over the same vectors is performed to determine the slot to which PE
i should assign the first string in each of its buckets. The exclusive prefix-sum yields the
number of slots used by PEs to the left of i. Algorithm 3 describes how the assignment can
be computed using the results of all-reduce and prefix-sum operations.

The following theorems show that the algorithm can be efficiently implemented and yields a
well-balanced assignment with respect to the number of strings per PE. However, Theorem 6
also shows that it is not possible to give nontrivial bounds on the number of messages
received during a string exchange using the assignment.

Theorem 5. Algorithm 3 requires local work O(n/p), latency O(α log p), and bottleneck
communication volume O(r log n) bits.

18

3.3. Distributed Group Assignment

PE 0 PE 1 PE 2 PE 3 PE 4 PE 5

7 11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 3 6 9 12 15 1 4 10 13 16 2 5 8 14 17

group 0 group 1 group 2

Figure 3.1.: An exchange using simple group assignment for p = 6 PEs with r = 3 groups of
size p′ = 2. Buckets are globally numbered sequentially from 0 to 17. Assignment
is highlighted for the second group. Hatching indicates overlapping buckets.

Algorithm 3: Simple String-Based Assignment
Input: On each PE i string arrays B0i , . . . ,B

r−1
i

1 for j ← 0 to r − 1 do
2 k ←

∑i−1
l=0|B

j
l | // computed with a single r-ary exclusive prefix-sum

3 m← |Bj |/p′ // and an r-ary all-reduce before the first iteration
4 for s ∈ Bji do
5 assign string s to PE ⌊k/m⌋ of group j
6 k ← k + 1

Output: A balanced assignment Aji of strings to PEs

Proof. Local work is determined by the inner loop of Algorithm 3 which makes
∑r−1

j=0|B
j
i | =

|Si| = n/p iterations. All-reduce and prefix-sum operations each incur latency O(α log p).
Both operate on vectors with r entries of O(log n) bits to store the global number of strings
which gives the communication volume.

Theorem 6. If |Bj | is a multiple of p′ for every j ∈ [0, r), then Algorithm 3 assigns |Bj |/p′
strings to the ith PE of group j. It is possible for a PE to be assigned strings from Ω(p) PEs.

Proof. Let |Bj | be divisible by p′ for every group j as required by the theorem. Note that
the algorithm can be adapted to work without this assumption by using m = ⌈|Bj |/p′⌉
instead. The first part of Theorem 6 must hold because values of k in line 5 are globally
unique. Therefore, exactly |Bj |/p′ strings are assigned to every set Aji . For the worst-case
lower bound on received messages consider a case where Θ(p) consecutive PEs send small
buckets containing |Bji | = Θ(n/p2) strings each to the same group j. The algorithm assigns
the strings in these buckets to O(1) PEs which therefore receive Ω(p) messages during a
string exchange.

Theorem 6 proves that Algorithm 3 computes an assignment with perfect intra-group
string balance. Based on the string imbalance parameter ε, we also achieve optimal global
imbalance ∣∣Aji ∣∣ =

∣∣Bj∣∣
p′
≤ 1

p′
(1 + ε)

n

r
= (1 + ε)

n

p
.

19

3. Techniques

However, even for a constant number of partitions r = O(1) it is possible that a single PE
needs to receive Θ(p) messages. In Section 3.3.3 we provide an algorithm that reduces this
to O(r).

Character-Based Assignment

The preceding string-based approach can easily be adapted to yield an assignment that is
balanced with respect to the number of characters instead. Here, the number of slots per
group is ∥Bj∥ which can be implemented by using vectors containing character counts ∥Bji ∥
rather than string counts for all-reduce and prefix-sum operations. Strings are assigned to a
PE while at least one character slot is still available, regardless of the length of the assigned
string. We show that this allows at most an imbalance of ℓ̂− 1 characters. Note that the
corresponding slots taken up by a string on the previous PE remain unused on the following
PE. Algorithm 4 gives a formal description of how this behavior can be implemented.
The only changes when compared to string-based assignment are the usage of ∥·∥ where
appropriate and incrementing k by the number of characters |s| instead of 1 in line 6. To
avoid edge cases where no strings are assigned to a PE, we require that the length of the
longest string is less than the number of slots per PE, i.e., ℓ̂ < ∥Bj∥/p′ for all groups j.

Algorithm 4: Simple Character-Based Assignment
Input: On each PE i string arrays B0i , . . . ,B

r−1
i

1 for j ← 0 to r − 1 do
2 k ←

∑i−1
l=0∥B

j
l ∥ // computed with a single r-ary exclusive prefix-sum

3 m← ∥Bj∥/p′ // and an r-ary all-reduce before the first iteration
4 for s ∈ Bji do
5 assign string s to PE ⌊k/m⌋ of group j
6 k ← k + |s|

Output: A balanced assignment Aji of strings to PEs

We can provide similar bounds for local work and communication complexity of Algorithm 4
as for the string-based version. The following theorems assume that string lengths are
known and can be queried in constant time; otherwise, a lower bound of O(N) could not be
improved upon. In practice, we store strings as pairs of pointer and length which provides
the desired constant lookup time.

Theorem 7. Algorithm 4 requires local work O(n/p), latency O(α log p), and bottleneck
communication volume O(r logN) bits.

Proof. The proof is identical to Theorem 5 except that collective operations use integers
of logN bits. For local work also consider that local buckets sizes B0i , . . . ,B

r−1
i can be

computed in time O(n/p).

Theorem 8. If ℓ̂ is the length of the longest string, then Algorithm 3 assigns less than
∥Bj∥/p′ + ℓ̂ characters to each PE in every group j.

20

3.3. Distributed Group Assignment

Proof. Let s be a string from bucket Bji and let k be the associated value in line 5 of the
algorithm. The string is assigned to PE k/(∥Bj∥/p′) which must have less than ∥Bj∥/p′
assigned characters. Considering the length of the longest string, s adds at most ℓ̂ additional
characters to the PE. The stated bound follows directly.

Theorem 8 proves that with simple character-based assignment in contrast to the string-based
version we only get close to maintaining intra-group character balance after a subsequent
string exchange. For the global character imbalance, using the parameter for character-
imbalance, we get a bound of

∥∥Aji∥∥ ≤
∥∥Bj∥∥
p′

+ ℓ̂ ≤ (1 + δ)
N

p
+ ℓ̂.

As with the character-based sampling techniques from Section 3.2 the length of the longest
string directly influences the worst-case bound. Thus, if there exist extremely long strings, for
example of length Θ(N/p), it is not possible to make meaningful load-balancing guarantees.

3.3.3. Deterministic Assignment

With the previous approach to group assignment we already have an algorithm that yields
optimal intra-group balance. To resolve that approach’s main drawback—PEs being assigned
strings from Ω(p) sources—we adapt a technique proposed by Axtmann and Sanders [3].
Consistent with the original naming convention, we call this approach deterministic assign-
ment which stands in contrast to a randomized approach from the same publication. The
following is not an exhaustive analysis of the algorithm but instead only serves to motivate
the idea that an efficient algorithm exists which can compute an assignment with the desired
properties. Our contribution exclusively consists in adapting the group assignment technique
to a character-based approach.

General Approach

In this section, we describe the basic idea of deterministic assignment and define an according
black-box function DeterministicAssign [6, 2]. This function provides relevant guarantees
which we use to define deterministic string- and character-based assignment in the subsequent
sections. Because of the more abstract perspective on the problem, we also require slightly
altered definitions and conventions. Instead of receiving buckets and using functions |·| or
∥·∥, the function DeterministicAssign directly obtains bucket sizes bji as input. We require
that local input sizes are balanced and define the global input size m :=

∑p−1
i=0

∑r−1
j=0 b

j
i to

avoid ambiguities with n and N . The meanings of p, r, and p′ remain unchanged.

The algorithm is based on the observation that, when many consecutive PEs send small
buckets to the same group, the messages must be distributed among multiple PEs, to
maintain O(r) messages on each one. To handle such scenarios properly, we choose to assign
small and large buckets separately, using different techniques. For our purposes, we consider
a bucket to be small if it has size at most m/2pr. Small buckets are assigned first, with a
naive technique using only local information. PE i simply assigns any small bucket bji to PE

21

3. Techniques

⌊i/r⌋ of group j. Any PE is assigned at most r buckets of cumulative size at most m/2p,
leaving at least half its total capacity of m/p unused.

It now remains to distribute the leftover large buckets while taking the residual capacities
into account. This is again accomplished by viewing the problem as filling a sequence of
open slots, similar to the simple assignment from Section 3.3.2. However, because PEs have
different residual capacities, it is not possible to find an assignment using a single prefix-sum
as before. Each group must instead work individually to compute an assignment for the
buckets assigned to it. Conceptually, this works by performing separate prefix-sums over
residual capacities and sizes of unassigned buckets, in each group. The resulting sorted
sequences of integers must then be merged such that the bucket beginning at the ith element
is preceded by the PE containing the ith open slot. Buckets that do not line up exactly
with PE boundaries are split, and simply wrap over to the next PE or, at most, to the two
succeeding PEs. Axtmann et al. propose an algorithm that implements this assignment
strategy, based on a merging technique for shared-memory systems [22]. The algorithm
requires time Exch(p,O(r logm), r) to exchange bucket sizes and latency O(α log p′) for the
merging operation. Crucially, each PE has residual capacity between m/2p and m/p on one
hand, and each leftover large bucket contains at least m/2pr elements on the other hand.
Thus, the number of large buckets assigned to any PE is less than m

p /
m
2pr = 2r and a single

large bucket spans at most 1 + m
p /

m
2p = 3 PEs (considering the wrapping behavior described

above). Hence, taking both small and large buckets into account, each PE receives messages
from O(r) other PEs. With the previous assumption that inputs are perfectly balanced, this
yields the following lemma about the resulting assignment.

Lemma 4. For perfectly balanced inputs, the function DeterministicAssign ensures that
each PE is assigned exactly m/p elements from O(r) other PEs.

The multi-level merge sort algorithms introduced in Chapter 4 cannot generally assume
that inputs are perfectly balanced. Instead, only asymptotic guarantees in O(n/p) strings
or worse O(N/p + ℓ̂) characters are possible. A version of DeterministicAssign can be
implemented such that the resulting assignment maintains the guarantees from Lemma 4.
Clearly, a bucket greater than m/p elements may wrap over to more than 2 additional PEs,
but a bound of O(n/p) guarantees that the result is in O(1) at least in the case of strings.
As is always the case for strings in a distributed context, extreme values of ℓ̂ may lead to
unavoidable imbalances. Finally, based on the work by Axtmann et al. [6, Theorem 1], we
derive the following statement about the runtime of DeterministicAssign:

Theorem 9. For balanced inputs, the function DeterministicAssign requires runtime in
2 · Ex̃ch(p, r logm,O(r)).

The factor two in Theorem 9 stems from having to first send bucket sizes to the assigning
group and then needing to return the assignment back to the sender. Remaining terms for
the merging of slot sequences are dominated by these exchanges; hence, the usage of Ex̃ch(·).
The preceding theorem can be used to assert that the communication of group assignment as
a whole is dominated by the time of string exchange phases when used as part of multi-level
string merge sort.

22

3.3. Distributed Group Assignment

bucket Bj
4 on PE 2

small bucket
≤ m/2pr

large bucket
> m/2pr

0 1 2 3 5 6 7 9 10 114a 4b 8a 8b

0 3 1 2 4a 5 4b 6 7 8a 10 8b 9 11

PE 0 of group j PE 1 of group j PE 2 of group j

Figure 3.2.: An exchange using deterministic group assignment for p = 12 PEs with r = 4
groups of size p′ = 3. Only buckets and communication for a single group j are
shown. Buckets are numbered according to source PE. Small buckets are drawn
as . Large buckets are labeled a and b if split during assignment.

String-Based Assignment

For a string-based approach, the result of DeterministicAssign can immediately be used
as the final group assignment. We simply define bucket sizes as the number of strings, i.e.,
bji := |Bji |. The desired guarantees on balance and number of messages received can be
derived directly from Lemma 4 with m := n. Complexity of the algorithm is identical and
therefore subject to the bound from Conjecture 9.

Corollary 1. If |Si| = Θ(n/p) for every i ∈ [0, p), then deterministic string-based assignment
ensures that each PE is assigned Θ(n/p) strings from O(r) other PEs.

As before, string-based techniques do not allow us to establish nontrivial guarantees on the
balance of characters. The following section therefore proposes a character-based version of
the algorithm.

Character-Based Assignment

Providing a character-based version of deterministic assignment only requires a number
of minor alterations. First, we use character counts to define bucket sizes bji := ∥Bji ∥
and the number of elements m := N . We also need to map the result obtained using
DeterministicAssign from an assignment of characters to one of strings. For this purpose,
we define the function’s return value as r sequences D0

i , . . . ,D
r−1
i on each PE. Each sequence

Dji contains O(r) elements from [0, r) × [0, N). Here the pair (i′, d) ∈ Dji specifies that d
characters from bucket Bji on PE i should be assigned to PE i′ of group j. To avoid ambiguities,
we say that PE i has been allocated d character slots for PE i′ to draw a distinction between
the final assignment of strings. For correctness of the following algorithm, we use the fact
that the sum of interval sizes in each of these sequences is equal to the total bucket size,
i.e.,

∑
(·,d)∈Dj

i
d = bji = ∥B

j
i ∥. We do not make any further assumptions about the order of

entries in Dji .

Algorithm 5 describes how the transformation from character to group assignment can be
performed. Similar to simple assignment, strings are assigned to a PE while at least one

23

3. Techniques

Algorithm 5: Deterministic Character-Based Assignment
Input: Buckets B0i , . . . ,B

r−1
i and character assignments D0

i , . . . ,D
r−1
i obtained from

DeterministicAssign(∥B0i ∥, . . . , ∥B
r−1
i ∥) on each PE i.

1 for j ← 0 to r − 1 do
2 l← 0, c← 0 // index of current string, characters to the left
3 b← 0 // character boundary to the next PE
4 for (i′, d) ∈ Dji do
5 b← b+ d
6 while c < b do // at least one slot must be unused
7 assign string Bji [l] to PE i′ of group j
8 c← c+ |Bji [l]|, l← l + 1

Output: A balanced assignment Aji of strings to PEs

character slot defined by Dji is still available. Any excess characters, which wrap over PE
boundaries, are deducted from the next PE. As before, this means that a PE may receive
up to ℓ̂− 1 characters more than actually allocated. Note that if buckets were assigned as a
whole by DeterministicAssign, then strings line up exactly with the assignment and no
over-allocation of strings can occur. Because each PE receives at most one bucket whose end
has been truncated, the over-allocation can only occur once. With m := N the rest of the
following theorem follows directly from Lemma 4.

Theorem 10. If ∥Si∥ = O(N/p) for every i ∈ [0, p), then deterministic character-based
assignment ensures that each PE is assigned at most O(N/p+ ℓ̂) strings from O(r) PEs.

Character-based assignment adds runtime in O(n/p) to iterate over string arrays—first
to compute buckets sizes and then to map assigned character slots to strings. However,
because the number of buckets itself remains unchanged, so does the runtime of the call to
DeterministicAssign. The bound from Conjecture 9 therefore still applies with communi-
cation in 2 · Ex̃ch(p, r logN,O(r)).

This concludes our investigation of distributed group assignment techniques. With determin-
istic character-based assignment we have an algorithm that ensures sufficient load balance for
our multi-level merge sort algorithms. This will allow us to implement the string exchange
phases in time Exch(p,O(N/p+ k2rℓ̂), O(r)) where k is the number of levels. However, in
the experimental evaluation, we rely on grid-wise assignment as the technique of choice. So
long as inputs can be assumed to be randomly distributed, no significant imbalance should
be incurred in practice.

24

4. Multi-Level String Merge Sort

In Section 2.4, we already introduced two distributed string merge sort algorithms—MS and
PDMS—from the existing work on distributed-memory string sorting algorithms [18, 36,
11]. Both algorithms work by computing an ordered partition of the input into p buckets
and redistributing elements onto their final PE in a single pass. Hence, we refer to them
as single-level algorithms. The ordered partitions are defined by p− 1 splitters which are
obtained using the partitioning algorithm from Section 3.2. Splitters are determined by
sampling the input strings, globally sorting the samples, and finally drawing splitters at
regular intervals. Using regular sampling techniques requires Θ(p) samples to be drawn on
each PE to achieve well-balanced buckets. This results in Θ(p2) global samples needing to
be sorted in total. For inputs with small N/p ratio and less clearly for small n/p ratios, i.e.,
cases where proportionately few characters or strings are distributed over many PEs, the
step of sorting samples can come to dominate the runtime of single-level MS and PDMS.
Put more formally, if we assume a simple setting, where a generic hypercube quicksort
algorithm is used to sort Θ(p) samples of length at most ℓ̂, then we expect communication
time in Tsort := O(α log2 p+ βpℓ̂ log p log σ). A single-level merge sort algorithm that works
by sending all characters using direct exchanges, has requires at least communication time
in Texch := O(αp+ βN/p log σ) to sort an input of N equally distributed characters. It can
easily be seen that for an instance with N/p ratio in O(pℓ̂ log p), the time required for a
character exchange is already bounded by the time to sort samples.

Texch = O

(
αp+ β

N

p
log σ

)
= O

(
α log2 p+ βpℓ̂ log p log σ

)
= Tsort

Intuitively, we may infer that the single-level algorithm is only efficient for inputs of size
N = Ω(p2ℓ̂ log p), and thus with N/p ratio in Ω(pℓ̂ log p). The preceding analysis is clearly
somewhat limited as it may overestimate the cost of sample sorting, outright ignores the
exchange of LCP values, and disregards potential input imbalances among other factors.
However, because behavior consistent with this analysis is also revealed by an experimental
evaluation, the observation still serves as motivation for the multi-level algorithms introduced
hereafter. Also note that similar limitations are often inherent to related distributed sampling-
and partitioning-based sorting algorithms, and are not exclusive to our particular versions of
multi-way string merge sort.

In their paper on “massively parallel sorting” [6], Axtmann et al. cover the same problem
for the case of atomic distributed merge and sample sort algorithms. The authors propose
multi-level generalizations of both algorithms to address the problem. In short, the idea is
to partition the input into fewer than p buckets, distribute the elements of each bucket over
groups of multiple PEs, and recurse independently on each group to sort assigned strings.
By selecting appropriate splitting factors, it is possible to reduce the number of samples that
need to be sorted by a factor p/r for a favorable choice of r. The main disadvantage of this
approach is that with k levels of recursion, input elements need to be moved between PEs k

25

4. Multi-Level String Merge Sort

times which incurs increased overhead, in the form of additional communication volume. By
bringing this argument to its logical conclusion, we would arrive at log p levels of recursion
where the number of PEs is halved each time. This would require moving the data log p
times which essentially completes the circle back to hypercube quicksort. In practice, we will
therefore choose some midpoint between the two extremes as a trade-off between the cost
of partitioning and the cost of communication. Axtmann et al. support the efficacy of this
approach with an evaluation of their multi-level merge and sample sort implementations on
up to 215 PEs. In this chapter, we apply the same techniques to distributed string sorting
by developing multi-level generalizations of MS and PDMS.

Throughout this chapter, we rely on the established input conventions and related definitions
to describe and analyze our algorithms. As before, each PE i receives an array of strings Si
as input. We explicitly allow duplicate strings and therefore have to define the global input
array S := S0 + · · ·+ Sp−1 as the concatenation of local arrays. The existing definitions of n,
N , D, ℓ̂, and d̂ are assumed for S.

connection

node

rack

island

level 1

level 2

level 3

Figure 4.1.: A possible configuration of PE groups for k = 3 levels in a system with two
islands, four racks per island, and four nodes per rack. The first level uses the
entire system (), the second level combines two racks (), the final level
is node internal (). The configuration assumes around eight PEs per node.
Bandwidth is indicated by the number of connections between components.

The algorithms presented in this chapter work by recursively splitting PEs into multiple
groups. We use k levels of recursion with arbitrary splitting factors between levels. To
avoid special cases, we require that the final level splits the PEs into groups of size one.
Thus, the original single-level variant of an algorithm may be trivially obtained by choosing
k = 1. In the description of algorithms, we always assume the case of p PEs which can
be perfectly subdivided into r groups of p′ consecutive PEs. It follows naturally that the
(zero-based) jth group consists of PEs jp′ to (j + 1)p′ − 1. While the splitting factors for
a given number of recursions may notionally be chosen freely, a number of considerations
can be used to help limit the space of available divisors of p. To simplify analysis of the
multi-level algorithms, we generally assume approximately equal splitting factors on each
level, i.e., r = Θ

(
k
√
p
)

which means that p = Θ
(
rk
)
. The group size on the lth level of

recursion p/rl can interchangeably be obtained as rk−l or p(k−l)/k. In practice, one also
needs to consider architectural properties of any particular distributed system. For example,
it may seem immediately beneficial to choose a level of recursion—most likely the final
one—such that the number of PEs in each group matches the number of processor cores
per compute node in the system. Thus, provided that processes are allocated correctly, no
further inter-node communication is required for the remaining sorting process. Similarly, in

26

4.1. Multi-Level Merge Sort

a system with multiple islands, where the network topology connecting nodes within a single
island provides a higher bandwidth than the one between islands, parameters may be chosen
such that every PE of a group is located in the same island. Figure 4.1 provides an example
for a configuration of PE groups and splitting factors in a system with a hierarchy of islands,
racks, and nodes.

Having established the preceding conventions and definitions, we can turn to the description
of multi-level algorithms. Section 4.1 covers the generalization of the merge sort algorithm
without prefix doubling to obtain multi-level MS. Building on the basic version, Section 4.2
introduces the necessary modifications to obtain an algorithm that only considers approximate
distinguishing prefixes, i.e., multi-level PDMS. We also introduce a multi-level version of the
Bloom filter used to approximate such prefixes.

4.1. Multi-Level Merge Sort

Multi-level distributed string Merge Sort, or multi-level MS for short, is closely based on
the single-level algorithm by Schimek [36]. Processing steps are mostly identical, with the
notable exception of a distributed group assignment phase before each string exchange. The
same string-specific optimizations to local sorting, multi-way merging, compression, etc. may
be applied. We provide a formal description of the algorithm in Section 4.1.1 and analyze its
complexity in Section 4.1.2.

4.1.1. Algorithmic Details

The algorithm is split into a one-time initialization and a recursive phase which is invoked k
times. The primary processing steps of both phases are listed and described below. Figure 4.2
provides a visual illustration of the multi-level merge sort scheme without string-specific
details.

Initialization The algorithm first ensures that all input arrays are sorted locally.

(1) Local Sorting: On each PE sort the local input array Si. The LCP array is either
obtained as by-product of sorting or needs to be computed explicitly.

Recursion The algorithm now proceeds recursively to establish a global order. As necessary
precondition, we require that string arrays Si are sorted locally. There are always p PEs and
r groups of size p′ = p/r on each level of recursion; in other words, the values of p and p′ are
updated after every round of sorting.

(2) Distributed Partitioning: Globally determine r − 1 splitters and compute local
buckets B0i , . . . ,B

r−1
i on each PE using the distributed ordered partitioning algorithm

from Section 3.2.

(3) Distributed Group Assignment: Using one of the algorithms from Section 3.3,
assign the strings from bucket Bji to the PEs of group j on each PE.

(4) String Exchange: Using the assignment from the previous step, exchange strings
and LCP values using direct messaging.

27

4. Multi-Level String Merge Sort

(5) Local Merging: On each PE i, merge the received string sequences to obtain locally
sorted string arrays Oi. We also obtain up-to-date LCP values for Oi during merging.

After each level of recursion, the following invariant must hold: For any two groups i, j ∈ [0, r)
any string on a PE of group i is smaller than all strings on the PEs of group j. On the final
level we require that r is equal to the remaining number of PEs and thus groups have size
p′ = 1 which makes the invariant equivalent to the regular criteria for global sortedness. If
the algorithm has not reached the final level of recursion, i.e., p′ > 1, then it independently
recurses on each group of PEs with the updated value of p ← p′ and Si ← Oi. In other
words, r instantiations of each step are executed in parallel.

PE 0 PE 1 PE 2 PE 3

group 0 (p′ = p/r PEs) group 1 (p′ = p/r PEs)

local sorting

distributed partitioning

string exchange

local merging

distributed partitioning

string exchange

local merging

ex
ec

ut
io

n

le
ve

l1
le

ve
l2

r = k
√
p groups of PEs

Figure 4.2.: Execution of multi-level merge sort for an instance with p = 4 PEs and r = 2
groups. Colors indicate lexical distribution of elements. Group assignment phases
are omitted for brevity. String exchanges assume simple group assignment.

Several further string-specific optimizations are possible for each of the preceding steps, a
selection of which is mentioned hereafter. Local sorting may use a sequential string sorting
algorithm such as MSD radix sort. Similarly, an LCP-aware multi-way string merging
algorithm, e.g., LCP-aware loser trees (a.k.a. tournament trees) [10], can be used for local
merging. During distributed partitioning, samples may be truncated to an approximation
of the average distinguishing prefix length to reduce communication volume at the cost of
forfeiting worse-case guarantees. Communication volume during string exchange phases can
be reduced by applying LCP compression. Schimek presents an algorithm that makes it
possible to merge strings without unpacking LCP-compressed sequences. If the distributed
partitioning phase was changed to work with compressed strings as well, then only a single
round of compression during the first level of recursion would be required without a need

28

4.1. Multi-Level Merge Sort

for decompression at any point during the algorithm. We did not further investigate this
possibility and instead assume sequences to be decompressed after each string exchange
phase.

4.1.2. Runtime and Communication

We now turn to analyzing the complexity of multi-level MS. As before, the analysis assumes
that inputs are initially balanced with respect to the number of strings and characters except
for constant factors, i.e., |Si| = Θ(n/p) and ∥Si∥ = Θ(N/p) for each PE i. To ensure that
this balance is—at least approximately—maintained after every redistribution of strings, we
first show that repeated partitioning does not lead to escalating imbalance.

Bounds on Workload Imbalance

The various theorems on imbalance introduced for partitioning from Section 3.2 are the
basis for the following analysis. We aim to generalize these to make them applicable in the
multi-level context.

Lemma 5. On recursion level l with r = k
√
p groups, in step (2) of multi-level MS using

string-based regular sampling with oversampling factor v and string-based deterministic
assignment, each bucket has size at most∣∣Bj∣∣ ≤ (1 + r

v

)l n
rl

.

Proof. We give a proof by induction. For the first level of recursion, Theorem 2 immediately
yields a maximum bucket size of∣∣Bj∣∣ ≤ n

r
+
n

v
=
(
1 +

r

v

)n
r
.

Using string-based deterministic assignment from Section 3.3.3 guarantees that each PE in a
group receives the same number of strings. We can therefore apply Theorem 2 again, for
recursion level l − 1 ; l to obtain the stated bound∣∣Bj∣∣ ≤ (1 + r

v

)1
r

(
1 +

r

v

)l−1 n

rl−1
=
(
1 +

r

v

)l n
rl

.

The preceding theorem is of little use in establishing nontrivial bounds on communication
volume and local work for multi-level MS, since it cannot limit the number of characters per
bucket. It nevertheless allows us to make general statements about the algorithm and informs
our choice of oversampling factor for regular sampling. The term (1 + r/v)l means that
imbalance between buckets multiplies with each level of recursion. We therefore need to choose
the oversampling factor v such that the term remains asymptotically constant for the entire
sorting process. For single-level MS v = Θ(p) samples per PE suffice which we generalize
to v = Θ(kr) for any number of levels k. Notice the crucial difference between drawing kr
rather than rk = p samples. With this oversampling factor, we get (1 + 1/k)k = Θ(1) after

29

4. Multi-Level String Merge Sort

the final round of partitioning1. More precisely, to achieve an imbalance of (1 + ε)(n/p) for
a constant ε, we require per-level imbalance ε′ and an appropriate v that satisfy

ε′ =
r

v
= k
√
1 + ε− 1 = Θ

(ε
k

)
.

Next, we provide a version of Lemma 5 that uses character-based sampling and group
assignment.

Lemma 6. On recursion level l with r = k
√
p groups, in step (2) of multi-level MS using

character-based regular sampling with oversampling factor v and a character-based assignment
algorithm, each bucket has size at most∥∥Bj∥∥ ≤ (1 + r

v

)l(N
rl

+ l
(
1 +

v

r

) p

rl−1
ℓ̂

)
.

Proof. We give a proof by induction as in the previous lemma. The base case of l = 1 can
be derived immediately from Theorem 3 as follows:∥∥Bj∥∥ ≤ (1 + r

v

)N
r

+
(
1 +

v

r

)
pℓ̂ ≤

(
1 +

r

v

)(N
r

+
(
1 +

v

r

)
pℓ̂

)
We now proceed with the inductive case l − 1 ; l by applying the same theorem again on
each group. Note that the value of p′ needs to be changed to reflect the current group size,
i.e., p; p/rl−1. Recall that character-based group assignment in contrast to the string-based
version does not yield perfect intra-group balance. Because string lengths may not exactly
line up with PE boundaries, there is a possible imbalance of up to O(ℓ̂) characters between
PEs in the same group with deterministic assignment (cf. Section 3.3.3). We can furthermore
assume that r/v ≥ 0 as both values must in fact be positive. This implies (1 + r/v)l−1 ≥ 1
which we use to derive the second inequality (∗) in the following equation and thereby suffices
to show the stated bound:

∥∥Bj∥∥ ≤ (1 + r

v

)(1 + r
v

)l−1 N
rl−1 + (l − 1)

(
1 + r

v

)l−2(
1 + v

r

) p
rl−2 ℓ̂

r
+
(
1 +

v

r

) p

rl−1
ℓ̂

=
(
1 +

r

v

)lN
rl

+ (l − 1)
(
1 +

r

v

)l−1(
1 +

v

r

) p

rl−1
ℓ̂+

(
1 +

v

r

) p

rl−1
ℓ̂

∗
≤
(
1 +

r

v

)lN
rl

+ l
(
1 +

r

v

)l−1(
1 +

v

r

) p

rl−1
ℓ̂

≤
(
1 +

r

v

)l(N
rl

+ l
(
1 +

v

r

) p

rl−1
ℓ̂

)

Lemma 6 may seem intractable at first sight and its usefulness may not be immediately
apparent. The following seeks to interpret the result and derive asymptotic bounds for the
maximum bucket size. First, note that the left summand of the inequality is equivalent to
the lemma’s string-based version which further reinforces our choice of v = Θ(kr). Using the
stated oversampling factor and by applying the same argument as before, we can simplify
the left summand to O(∥S∥/p). Because character-based regular sampling introduces an
additional imbalance from shifting samples to the beginning of the next string, we get the

1Note that limk→∞ (1 + α/k)k = eα = O(1) for any constant 0 < α ∈ R.

30

4.1. Multi-Level Merge Sort

added right summand. By substituting r = k
√
p and (1 + 1/k)k−1 ≤ (1 + 1/k)k = O(1), we

can simplify the term to
O
(
k(1 + k)

p

rk−1
ℓ̂
)
= O

(
k2rℓ̂

)
.

For the single level case with k = 1, this is immediately equivalent to O(pℓ̂) which is the
same as the original algorithm. For the case of k > 1, we need to further interpret the
result. Character-based regular sampling requires that the sampling distance ω′ is greater
than the length of the longest string. With asymptotically balanced local string arrays and
oversampling factor v = Θ(kr), the sampling distance is in O(N/pkr) (cf. Section 3.2.3). It
is therefore possible to bound the term k2rℓ̂ as follows:

k2rℓ̂ ≤ k2rω′ = O

(
k2rN

pkr

)
= O

(
k
N

p

)
If we additionally require that k is constant, then the term and therefore also bucket sizes
overall are in O(N/p). This suffices to demonstrate that, with character-based regular
sampling, multiple level of partitioning and exchanging strings does not lead to unexpected
imbalances.

In total, using character-based sampling with an oversampling factor in Θ(kr) yields bucket
sizes in O(∥S∥/p + k2rℓ̂). This may seem slightly counter-intuitive, as a single round of
character-based partitioning already introduces an imbalance of O(pℓ̂) characters. However,
consider that the assignment algorithm distributes this imbalance over p′ PEs in each group.
Because of the unwieldy form of Lemma 6—and in contrast to the string-based case—we are
unable to give exact per-level imbalance parameters to achieve a particular final imbalance
ε. It is also possible to derive bounds for the number of characters per PE after each level
of recursion using similar arguments. Simply divide buckets sizes by the current value of
p′ = rk−l and add the imbalance introduced by deterministic character-based assignment as
in Theorem 10 to bound the size of ∥Oi∥ and therefore ∥Si∥ with

O

(∥∥Bj∥∥
rk−l

+ ℓ̂

)
= O

((
1 +

1

k

)l(N
p

+ l(1 + k)rℓ̂

)
+ ℓ̂

)
= O

(
N

p
+ k2rℓ̂

)
. (4.1)

With the additional assumptions k = O(1) and ℓ̂ = O(N/pr), the term is in O(N/p) which
we later use to provide simplified runtime guarantees for well-behaved inputs.

Finally, it is necessary to bound the number of strings per PE in some way. While it is not
possible to give general balance guarantees, we can at least try to improve on the worst-case
assumption of O(N/p) strings, i.e., one string per character. First consider the universal
inequalities N ≤ nℓ̂ and n ≤ N/

ˇ
ℓ if we assume that

ˇ
ℓ > 0. By applying these relations to

Equation (4.1), we can limit the number of strings |Si| with

O

(
N/p+ k2rℓ̂

ˇ
ℓ

)
= O

(
nℓ̂/p+ k2rℓ̂

ˇ
ℓ

)
= O

(
ℓ̂

ˇ
ℓ

(
n

p
+ k2r

))
using the ratio of longest to shortest string. This yields strong guarantees at least for benign
instances where ℓ̂ is close to

ˇ
ℓ. In the general case (i.e., if ℓ̂≫

ˇ
ℓ), we still require additional

assumptions to guarantee that the number of strings per PE remains in O(n/p). For the
sake of simpler notation, we define shorthands

Ñ :=
N

p
+ k2rℓ̂ and ñ :=

ℓ̂

ˇ
ℓ

(
n

p
+ k2r

)
. (4.2)

31

4. Multi-Level String Merge Sort

We can additionally require that ñ = O(Ñ), because nℓ̂ may otherwise overestimate the
total number characters. For a proper worst-case analysis, we cannot reasonably improve on
O(N/p+ k2rℓ̂) strings per PE.

Bounds on Complexity

With the preceding bounds on character imbalance, we are able to obtain meaningful
guarantees for the runtime of multi-level MS. We first analyze the runtime for a single level
of recursion by providing bounds for steps (2)–(5). Note that on recursion level l the number
of PEs is p/rl−1.

Distributed Partitioning First, each PE samples v = Θ(kr) strings locally with local work
in O(ñ) using character-based sampling. The samples are then sorted using a hypercube
quicksort algorithm, e.g., LCP-RQuick. As stated in Theorem 1, this incurs polylogarithmic
latency O(α log2 p

rl−1). For local work, we start with the bound from the theorem and
substitute the current values for p and v for the number of elements per PE. We simplify
the term using our choice of v to estimate runtime as

O
((
ℓ̂+ log σ + log

p

rl−1

)
v + ℓ̂ log

p

rl−1

)
= O

(
krℓ̂ log

p

rl−1
log σ

)
.

Performing the same substitutions and similar simplifications, we can obtain an equivalent
bound for communication volume. The factor O(ℓ̂ log2 p

rl−1 log σ) in communication for
median determination is dominated by O(rℓ̂ log p

rl−1 log σ) because r = k
√
p. Note that the

bound is effectively naive hypercube quicksort and equal to sending v strings of ℓ̂ characters
log p times. Once the samples have been sorted we select and distribute the final splitters
using an all-gather operation. By conceptualizing this as separate gather and broadcast
operations, we obtain communication time O(α log p

rl−1 + βrℓ̂ log σ). Finally, splitters are
located in Si to partition the array, using a single linear search in time O(Ñ) as described in
Section 3.2.1. To summarize, overall complexity of the partitioning phase is almost entirely
determined by the time and communication required to globally sort samples. In total, we
get the following bound on runtime:

O
(
ñ+ α log2

p

rl−1
+ βkrℓ̂ log

p

rl−1
log σ

)
(4.3)

Distributed Assignment We do not provide tight bounds for the runtime of deterministic
assignment. Suffice to say that the algorithm’s complexity is dominated by the actual string
exchange. From Conjecture 9 [6, Theorem 1] we infer runtime in

2 · Ex̃ch(p,O(r logN), O(r)). (4.4)

We assert that this term is dominated by the string exchange phase for inputs with some
reasonable restrictions. A multi-level algorithm only makes sense if the input size is polynomial
in p, since otherwise a single-level algorithm would be better. We can therefore assume that
logN = O(log p) which, with r = O(

√
p), implies that r logN = O(p). This is dominated

by the characters exchange phase, unless N/p = o(p) in which case LCP-RQuick may be
preferable.

32

4.1. Multi-Level Merge Sort

String Exchange Little further analysis is needed for the string exchange phase. There are
p/rl−1 PEs which all receive O(Ñ) characters from O(r) other PEs according to the bounds
established here and in Theorem 10. Exchanging LCP values additionally requires O(log n)
bits per string. We do not consider gains achieved through LCP compression as they cannot
improve worst-case complexity. These values can immediately be substituted into the Exch(·)
black-box to obtain the following:

Exch
(p

rl−1
, O
(
Ñ log σ + ñ log n

)
, O(r)

)
(4.5)

Local Merging Merging the O(r) received string arrays without an LCP-aware algorithm
requires local work in

O
(
Ñ + ñ log r

)
. (4.6)

Recursion With the bounds from Equations (4.3)–(4.6) and some simplifications, we can
derive a bound for the runtime of a single recursion. Note the usage of Ex̃ch(·) to account
for group assignment.

O
(
Ñ + ñ log r + α log2

p

rl−1
+ βkrℓ̂ log

p

rl−1
log σ

)
+ Ex̃ch

(p

rl−1
, O
(
Ñ log σ + ñ log n

)
, O(r)

) (4.7)

Overall Runtime From this we can easily derive the algorithm’s combined runtime. The
initial local sorting with MSD radix sort takes time in O(maxiD(Si) + n/p log σ), of which
the first term can be absorbed into Ñ . What remains are k repetitions of Equation (4.7).
The first part of the equation can be simplified by substituting the original value of p. For
the exchange phases we observe that the algorithms iterates over groups of pk/k, . . . , p1/k

PEs and reformulate the Ex̃ch-terms accordingly. In total, this yields the following bound
for the runtime of multi-level MS.

Theorem 11. Multi-level MS with r = k
√
p, and using character-based sampling and deter-

ministic assignment, can be implemented to run in time

O

(
n

p
log σ + k

(
Ñ + ñ log r + α log2 p+ βkrℓ̂ log p log σ

))
+

k∑
l=1

Ex̃ch
(
p

l
k , O

(
Ñ log σ + ñ log n

)
, O(r)

)
.

Interpretation of Results

The result from Theorem 11 makes high-level analysis difficult due to its inherent complexity.
Further interpretation of the bound requires additional assumptions to simplify the term.
First, we constrain the input such that the number of characters per PE is in O(N/p).
Considering the definition of Ñ from Equation (4.2), this is equivalent to k2rℓ̂ = O(N/p).
An analogous bound for the number of strings ñ requires a much stronger assumption. We
need to require a priori that multi-level MS manages to maintain O(n/p) strings per PE.
In practice, we can only guarantee this if, for example, all strings have equal length, or,

33

4. Multi-Level String Merge Sort

at least in expectation, if there is no statistical correlation between lexical order and the
length of strings. However, without this constraint few meaningful worst-case guarantees are
possible.

Next, we can reasonably assume that a string exchange phase in a smaller network is at least
as fast as one in a large network, if PE groups for the algorithm are properly configured.
This, together with the results from the previous section, allows us to bound the sum from
Theorem 11 with

kEx̃ch

(
p,O

(
N

p
log σ +

n

p
log n

)
, O(k
√
p)

)
.

If we further assume that exchange phases are implemented with a direct exchange, then the
resulting latency of at least Ω(α k

√
p) dominates the term O(αk log2 p). To further simplify

the runtime, we assert that α and β are constants and use this to consolidate local work and
communication. We can thereby immediately absorb terms O(kN/p) and O(n/p log σ). For
the term O(n/p log r) we need to assume that the number of strings is a polynomial over p
and therefore log n = Θ(log p). With r = O(p), the term is dominated by the exchange of
LCP values. This is reasonable for instances with

ˇ
ℓ ≈ ℓ̂ because multi-level MS only makes

sense for N/ℓ̂ polynomial over p as mentioned in the introduction to this chapter. In total,
this leaves communication for hypercube quicksort and terms for data exchange phases. If
we assume the best-case scenario for Exch(·), then the runtime of multi-level MS can finally
be estimated as

O

(
k2ℓ̂ k
√
p log p log σ + k

N

p
log σ + k

n

p
log n

)
.

Disregarding the exchange of LCP values, this shows that the algorithm is only efficient
for inputs with N = Ω(kp1+1/k ℓ̂ log p)—a factor p(k−1)/k/k better than the single-level
algorithm.

4.2. Multi-Level Prefix Doubling Merge Sort

Multi-level Prefix Doubling string Merge Sort (multi-level PDMS) can be obtained from
multi-level MS by applying a number of modifications to the algorithm, similar to the
single-level variants. First, a step is added to the algorithm’s initialization phase, which
computes an approximation of the distinguishing prefixes:

(1.1) Distinguishing Prefix Approximation: Compute an approximation of the global
distinguishing prefix of each string and replace each string in Si with the resulting
prefix for the rest of the algorithm.

This step uses a prefix doubling technique in combination with a Bloom filter to compute an
approximation in at most ⌈log ℓ̂ ⌉ iterations. We adapt the single-level version slightly in
Section 4.2.1 to avoid latency O(αp) per iteration. Additionally, the algorithm’s output must
be changed to use a different format. This requires auxiliary information to be associated
with each string to reconstruct its original location after sorting. We discuss this point with
more detail in Section 4.2.2.

34

4.2. Multi-Level Prefix Doubling Merge Sort

4.2.1. Multi-Level Bloom Filter

Schimek proposes an approximation scheme that uses a prefix doubling technique to check
exponentially growing string prefixes for uniqueness [36]. The approach includes a distributed
duplicate detection algorithm based on a distributed single shot Bloom filter [33] as subroutine.
The multi-level version of PDMS can reuse the prefix doubling technique without change,
but requires a slightly refined version of the duplicate detection algorithm. The following
will first give a short explanation of the single-level version and then highlight the changes
needed to make it suitable for usage in the multi-level algorithm.

Conceptually, a Bloom filter works by defining a global bit array B with all bits initial set
to 0. Let h : S → {0, . . . , |B| − 1} be a hash function that maps strings of S to positions of
B. A string s can be added to the Bloom filter by setting the bit at position h(s) to 1. To
query whether s has been previously added to the Bloom filter, simply check the bit at the
same position h(s). If the bit has value 0, then we can guarantee that s has not been added
yet. If the value is 1, then s or another value with the same hash value has been added,
i.e., there may be false positives due to hash collisions. To identify potential duplicates
in S, we first add all strings from S and then perform membership queries for all strings.
This is guaranteed to mark every duplicate as such. Assuming a uniform hash function and
using a bit array of size |B| = |S|c for some positive integer c yields false positive rate 1/c.
Going forward we define the size of B as m := |S|c and require that m is divisible by p for
simplicity.

The technique described above can be used to approximate distinguishing prefixes in a
distributed context. Let ℓ ≤ ℓ̂ be the current length of prefixes to be tested. Hash values,
i.e., positions of the bit array B, are distributed equally over PEs in chunks of size m/p.
Hence, PE i is assigned hash values im/p to (i+ 1)m/p− 1. First, each PE computes the
hash value for the ℓ-prefix of every string in its local string array—truncating strings that
are too short—to obtain the array

Hi :=
[
h
(
s[0,min{|s|, ℓ})

) ∣∣ s ∈ Si].
The array is sorted while saving the original position of elements. Next, hash values are
sent to the appropriate PE according to their value. In the single-level version, this is
accomplished with a single all-to-all exchange after partitioning the array into p intervals.
Received hash values are tagged with the rank of the sending PE and sorted again. Duplicate
values can now be identified using a single scan over the local array. The result is a bit array
with one entry per received hash value, where a 1-bit denotes a possible duplicate, while a
0-bit indicates a unique string. To return this information back to the sender, partition the
bit array into p separate arrays, using the rank saved during the second round of sorting to
restore the order in which the hash values were originally received. Now, the bit arrays are
sent back with another all-to-all exchange. It is important to note that the order of elements
from the same PE is maintained by all-to-all exchanges, the second round of sorting, and
the partitioning of bits. Finally, the bits can be mapped back to the original strings using
positions saved during the first round of sorting which yields the bit array Ri.

The duplicate detection algorithm as described here has two relevant communication phases
which both use all-to-all exchanges. With the 1-factor algorithms (cf. Section 2.2), this
incurs latency O(αp) which is undesirable in a multi-level setting where latency in O(k

√
p)

is the goal. This was actually observed during early experimental evaluation of multi-level

35

4. Multi-Level String Merge Sort

PDMS where the latency dominated the algorithm’s runtime for sufficiently large values of
p. We use a grid-based communication pattern as a well-understood technique to contend
with this problem. What makes the implementation noteworthy is that, due to the special
structure of the communicated information, the algorithm is able to entirely avoid sending
any additional information, e.g., ranks to indicate the destination of a message.

0

1

2

0 1 2

3 4 5

6 7 8

0 3 6

9 12 15

18 21 24

1 4 7

10 13 16

19 22 25

2 5 8

11 14 17

20 23 26

Figure 4.3.: From left to right, k-dimensional communicator grids for k ∈ {1, 2, 3},
r = 3, and p = rk. PE groups for column-wise exchanges with d = 1 are
highlighted as . Groups for d = 2 are highlighted as if applicable.

The following algorithm uses the same parameters as multi-level MS, though there exists no
actual requirement for this. There are again k ≥ 1 levels of recursion with equal splitting
factor r := k

√
p to define a k-dimensional grid. We define a function ColumnAlltoall to

encapsulate all-to-all exchanges along conceptual column of the grid. The function is used
as ColumnAlltoall((m0

i , . . . ,m
r−1
i), d), where mj

i are the arrays to be sent and the second
parameter d indicates the dimension along which to exchange. A dimension d ∈ [1, k] defines
a stride rk−d, such that a PE i exchanges data with PEs i+ jrk−d mod p for appropriate
values of j ∈ Z. This is illustrated for simple values of r and k in Figure 4.3. The function
returns a single concatenated array of received values, ordered by the ranks of sending PEs.
Received values may optionally be tagged with an index from [0, r) to indicate the sender.
The idea is to partition the data into r buckets k times and exchange them among only
r PEs with each iteration. During the first exchange, hash values can be partitioned and
routed according to their numerical value. By saving the sender of received hash values, it
is possible to route the bits during the second exchange. This approach is formalized as
function SendRec in Algorithm 6. The algorithm’s main processing steps are shown for a
small instance in Figure 4.4.

We first consider the algorithm’s recursive case, i.e., the else-block. Hash values are routed
to the correct PE through incremental refinement. Prior to the first level of recursion, the
array Hi may contain hash values from the entire range [0,m). The array is partitioned
into buckets of size m/r and redistributed by the first all-to-all exchange. Afterwards, the
updated array Hrecv

i only contains values from the range starting at ⌊i/rk−1⌋m/r. This can
be extrapolated to an arbitrary recursion depth d ∈ [1, k]. For every PE i and every hash
value h in Hrecv

i on that PE, it holds that⌊
i

rk−d

⌋
m

rd
≤ h <

(⌊
i

rk−d

⌋
+ 1

)
m

rd
.

36

4.2. Multi-Level Prefix Doubling Merge Sort

Algorithm 6: Multi-Level Bloom Filter Exchange
1 Function SendRec(Hi, d := 1)

Input: A sorted array of hash values Hi and recursion depth d on each PE i
2 if d = k + 1 then // final level of recursion
3 locally compute bit arrays of duplicates Ri
4 return Ri
5 else // exchange hash values and recurse
6 partition Hi into r buckets H0

i , . . . ,H
r−1
i

7 Hrecv
i ← ColumnAlltoall(

(
H0
i , . . . ,H

r−1
i

)
, d) // save source PE

8 Sort(Hrecv
i) // sort tuples by hash value

9 Ri ← SendRec([h | (h, ·) ∈ Hrecv
i], d+ 1)

10 for (·, j), b in Hrecv
i ,Ri do // Invariant: |Hrecv

i | = |Ri|
11 append b to bit array Rji
12 return ColumnAlltoall(

(
R0
i , . . . ,R

r−1
i

)
, d)

Output: A bit array Ri containing 1-bits for possible duplicates.

All values are therefore on the correct PE after d = k levels of recursion, since p = rk which
simplifies the expression to im/p ≤ h < (i + 1)m/p. During the first all-to-all exchange,
we tag hash values with an integer from the range [0, r) to indicate the PE from which
they were sent. This means that Hrecv

i actually contains pairs (h, j) of hash and index.
Only the first entry is considered during the sorting step in line 8, which can therefore be
performed in expected linear time. Hash values being in sorted order also guarantees that
the partitioning step only requires a single, linear time scan of the array to obtain contiguous
intervals thereof.

Once hash values have been delivered to the correct PE, the local duplicate detection works
identically to the single-level algorithm. To deliver bits back to the respective hash value’s
sender, we simply follow the indices from the first round of all-to-all exchanges. This uses
the same arguments as the single-level version and relies on the fact that the order of hash
values sent from the same PE is never altered after the first round of sorting. Local duplicate
detection and each round of partitioning can be performed in linear time with a single scan
of the respective array. It only remains to map the received bits back to the original strings,
using the permutation saved during the first round of sorting. However, this exceeds the
scope of Algorithm 6. Observe that the algorithm is a generalization of the single-level
variant, which may be obtained by choosing k = 1.

Analyzing the complexity of Algorithm 6 and the prefix approximation scheme more broadly
requires significant effort. This includes obtaining expected values for the size of distinguishing
prefixes and using Golomb coding [31] to compress hash values for all-to-all exchanges. We
refer to the analysis by Schimek [36], a more concise version by Bingmann et al. [11], and
the original work by Sanders et al. [33] for more details. Because the multi-level Bloom filter
only changes the data-delivery phases, we simply alter existing bounds and conjecture the
resulting runtime.

Broadly, each iteration of duplicate detection incurs latency O(αr) and O(log p) bits for
each string where a distinguishing prefix has not yet been found. Provided an appropriate
false positive rate, i.e., a large enough value of m, the expected number of iterations is in

37

4. Multi-Level String Merge Sort

PE 0 PE 1 PE 2 PE 3
Hi

Hi

Hi

Ri

Ri

ex
ec

ut
io

n

0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6

5 13 29 32 47 54 55 6 7 18 20 28 33 52 13 13 22 24 26 42 53 2 18 19 29 33 41 52

←−
5
←−
13
−→
13
−→
13
−→
22
−→
24
−→
26

−→
2
←−
6
←−
7
←−
18
−→
18
−→
19
←−
20

←−
29
←−
32
−→
42
←−
47
−→
53
←−
54
←−
55

←−
28
−→
29
←−
33
−→
33
−→
41
←−
52
−→
52

−→
2
←−
5
−→
6
−→
7
←−
13
←−
13
←−
13

−→
18
−→
18
−→
19
−→
20
←−
22
←−
24
←−
26

−→
28
←−
29
−→
29
←−
32
−→
33
−→
33
−→
41

←−
42
←−
47
−→
52
−→
52
←−
53
←−
54
−→
55

←−
0
←−
1
←−
1
←−
1
−→
0
−→
0
−→
0

←−
0
←−
0
←−
0
−→
1
−→
1
−→
0
−→
0

←−
1
←−
0
−→
0
−→
0
−→
0
−→
0
−→
0

←−
0
←−
1
←−
1
←−
1
←−
0
−→
1
−→
1

←−
0
←−
1
−→
1
−→
0
−→
0
−→
0
−→
0

←−
0
←−
0
←−
1
←−
0
−→
0
−→
1
−→
1

←−
1
←−
1
←−
0
←−
0
←−
0
−→
0
−→
0

←−
0
←−
1
←−
0
−→
1
−→
1
−→
0
−→
1

Figure 4.4.: Execution of the multi-level Bloom filter for an instance with n = 28, m = 2n,
p = 4, and r = 2. Hash value arrays Hi are shown as passed to the function, bit
arrays Ri are shown as returned. Arrows over hash values or bits (i.e., ←−x and
−→x) indicate origin PE. Duplicates found during local detection are highlighted.

O(log d̂). Furthermore, let D̂ := maxi DS(Si) be the largest global distinguishing prefix, i.e.,
distinguishing prefix of local string arrays Si with respect to the global array S. And let
n̂ := maxi |Si| be the maximum number of strings on any PE. This yields the following
runtime for the updated prefix approximation algorithm with k levels of recursion and
columns of size r.

Conjecture 1. Distributed distinguishing prefix approximation using Algorithm 6 for data
exchange can be implemented with expected runtime in

O
(
D̂ +

⌈
log d̂

⌉
(αkr + βkn̂ log p)

)
.

As already stated, reaching the claimed communication volume requires compression of hash
values using Golomb coding and only if a sufficient number of strings participate in the
algorithm. It is not entirely clear whether repeated compression and decompression on every
level of Algorithm 6 maintains the required runtime.

4.2.2. Distributed Permutations

Like the single-level variant, multi-level PDMS reduces communication volume by only
exchanging string prefixes. The information discarded thereby makes it impossible to
output the entire original strings after sorting without additional communication and thereby
defeating the point of PDMS. Schimek therefore proposes to output the resulting permutation,
in the form of references to the strings original position instead [36]. We refer to this format
as a distributed permutation and provide the following definition:

Definition 1 (Distributed Permutation). A distributed permutation is an array Pi containing
tuples from [0, p) × [0, n) on each PE i. The pair (j, l) ∈ Pi references the string Sj [l] at
position l on PE j.

38

4.2. Multi-Level Prefix Doubling Merge Sort

The global permutation is defined using concatenation as P := P0 + · · ·+ Pp−1. For every
PE j and any string l ∈ [0, |Sh|), a correct distributed permutation P must contain the pair
(j, l) exactly once. Furthermore, the permutation must uphold the established criteria for
sortedness. Building such a permutation requires the PE rank and local index, from which
each string originates, to be exchanged during sorting. Though the PE rank may be omitted
for the single-level algorithm as it can be inferred from the all-to-all exchange.

To remove the need for additional communication, and in preparation for the space-efficient
sorting algorithm in Chapter 5, we introduce a second output format. The idea is to store
the rank, in a globally sorted, order of each string at its original location—similar to the
difference between a suffix array and an inverse suffix array. Hence, we designate this format
as a distributed inverse permutation.

Definition 2 (Distributed Inverse Permutation). A distributed inverse permutation is an
array P i containing integers from [0, n) on each PE i. An entry l = P i[j] states that there
exists an ordered permutation of S where the string Si[j] is located at position l.

We again define the concatenation P := P0 + · · · + Pp−1 and require that the result is a
permutation of [0, n). To ensure sortedness, it must hold that for any indices i, j ∈ [0, n),
if the corresponding strings have order S[i] < S[j], then the same must be true for their
respective ranks P[i] < P[j]. Note that the order of ranks for duplicate strings in S may
be chosen arbitrarily in this case. For the space-efficient sorting algorithm, in Section 5.3,
we provide a version of inverse permutations which guarantees that equal strings receive
identical ranks. It is clearly possible to invert a distributed permutation P to obtain P
by using a prefix-sum to compute ranks and sending the result back to the referenced PEs
with an all-to-all exchange. Formally, the jth string on PE i in sorted order has global rank
j+
∑i−1

l=0|Oi|, where Oi are the string arrays returned by PDMS. Depending on the all-to-all
exchange algorithm, this approach has time complexity in

O(αp+ βñ log n) or O(α log p+ βñ log p log n).

Neither term can easily be absorbed into the existing runtime of multi-level MS. This
approach may also be undesirable in practice, as it incurs additional communication during
sorting to compute the permutation.

A less naive technique to obtain inverse permutations uses an approach very similar to the
multi-level Bloom filter from Algorithm 6. As with the duplicate detection algorithm, each
PE saves the resulting permutation during local sorting. Then, during each string exchange
phase, received strings are tagged with the rank of the sending PE. These tags are reordered
alongside the strings during merging and saved for later use. Once the final order has been
established, global string ranks are determined using a prefix-sum as before. Now, the indices
saved during the string exchanges are used to send ranks back to the string’s original PE.
Like in Algorithm 6, this exploits the fact that the local order of strings from the same PE
does not change after initial sorting. Finally, the received ranks need to be reordered using
the permutation obtained during local sorting. Because the exchange of string ranks uses
the same sets of communication partners as the sorting process, we need to use the Exch(·)
black-box to obtain runtime in

k∑
l=1

Exch
(
p

l
k , O(ñ log n), O(r)

)
.

39

4. Multi-Level String Merge Sort

This is asymptotically equivalent to existing LCP value exchanges. However, the improvement
comes at the cost of space complexity in O(kñ log p) to store arrays of PE ranks on each
level of recursion.

4.2.3. Runtime and Communication

Computing approximate distinguishing prefixes using a Bloom filter and prefix doubling
reduces the expected number of characters on each PE to O(DS(Si)). For the purposes of
multi-level merge sort, we can therefore say that each PE initially contains O(D̂) characters
with the previous definition of D̂ as the largest global distinguishing prefix. Furthermore, the
length of the longest string is reduced to O(d̂) which applies to the runtime of partitioning
phases and the character imbalance introduced thereby. Analogous to Ñ , we introduce the
shorthand D̃ := D̂+k2rd̂ to include the additional characters. Combining runtimes for prefix
approximation and merge sort using a regular distributed permutation yields the following
overall runtime:

Theorem 12. If prefix approximation has the runtime stated in Conjecture 1, then multi-level
PDMS with r = k

√
p, and using character-based sampling and deterministic assignment, has

expected runtime in

O

(
n

p
log σ +

prefix approximation︷ ︸︸ ︷(
αkr + β

n

p
log p

)
log d̂ + k

(merging︷ ︸︸ ︷
D̃ + ñ log r +

partitioning︷ ︸︸ ︷
βkrd̂ log p log σ

))

+

k∑
l=1

Ex̃ch
(
p

l
k , O

(
D̃ log σ + ñ log n

)
, O(r)

)
︸ ︷︷ ︸

string exchange and group assignment

.

Observe that the factor r in latency of multi-level Bloom filter dominates the factor log2 p of
hypercube quicksort. Furthermore, note the additional factor log d̂ in latency due to prefix
doubling. The term O(D̂) local work for prefix approximation is dominated by the local
work for a single level of sorting.

40

5. Space-Efficient String Sorting

A well-established characteristic of distributed-memory systems is founded in their limitations
in terms of working memory provided per PE. While the system as a whole may provide
massive amounts of memory in total, individual PEs only have access to a small portion
thereof. Whereas shared-memory systems might nowadays provide in the order of multiple
terabytes of memory to their processes, the same is usually not feasible in systems with
many thousands of independent nodes. For example, the system used in our experimental
evaluation only provides 96GB per compute node, which amounts to 2GB memory per PE
(cf. Section 6.2.1). Applied to the setting of string sorting, where a single string may easily
contain thousands of characters, this imposes substantial constraints on the size of inputs
that can be processed with a given number of PEs.

Considering these memory limitations, it is only natural to explore ways of reducing the
memory-footprint of string sorting algorithms. To this end, it can be observed that certain
families of string sets requiring sorting, do not consist of wholly independent strings. Instead,
there is often a significant overlap between strings in the same input, especially if strings are
sections of a larger text. A symptomatic—even pathological—example for such inputs are
suffix arrays, where an instance of n characters represents a set of strings with a combined
length of approximately n2/2 characters. However, a generic string sorting algorithm is
unlikely to prove competitive with specialized suffix sorters. More relevant instances might
consist of overlapping (possibly fixed-sized) substrings taken at larger intervals, e.g., taking
strings of length ℓ starting at every kth character where ℓ > k. A real-world example of
this principle are difference cover samples used by the DCX suffix sorting algorithm—which
we cover in greater detail in Section 5.3 and use in the experimental evaluation. Figure 5.1
illustrates compressed and uncompressed character arrays for a difference cover sample of a
short text.

m i s s i s s i p p i
0 1 2 3 4 5 6 7 8 9 10

m i s i s s s i s i s s s i p i p p p i i
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ci

Si

C(Si)

compressed

uncompressed

Figure 5.1.: Compressed and uncompressed character arrays for a given string
array. The string array is a difference cover sample of Ci for DC3.

41

5. Space-Efficient String Sorting

By using a compressed input format, where shared sections of character arrays are not
duplicated, it is possible to construct instances that would ordinarily far exceed the available
memory. For sequential algorithms and parallel algorithms in shared-memory systems such a
format is easily implemented, because character arrays are usually not modified during sorting.
In distributed systems however, strings must be redistributed onto different PEs according
to their lexicographical order. This requires materializing strings to an uncompressed format
and thereby duplicating shared sections. It follows that any compression by deduplication
cannot be maintained outside the initial PE, which means that inputs may no longer fit into
memory after being exchanged. In this chapter, we introduce an algorithmic framework, as
well as concrete implementations therefore, to overcome this limitation. We broadly term
the resulting algorithms as space-efficient distributed string sorting algorithms.

To formalize compressed inputs, let Ci denote an array of character on each PE i. Strings
in the string arrays Si are backed by subsequences of Ci. This may alternately be realized
using pairs of index and length, pairs of start and end index, or with pointers instead of
indices. Though we leave the exact details open, suffice it to say that constant time access to
characters and length are required for any representation. Crucially, strings can no longer be
assumed to be terminated by a sentinel. Note the difference between the implicitly defined
character array C(Si) which contains the concatenation of all strings in Si and the concrete
array Ci. For reasonable instances, we may generally assume that all characters in Ci are part
of at least one string or, at the very least, that |Ci| ≤ |C(Si)|. Global string and character
arrays are defined as S := S0 + · · ·+ Sp−1 and C := C0 + · · ·+ Cp−1. Definitions of n, N ,

ˇ
ℓ,

and ℓ̂ remain unchanged. We additionally define the global size of compressed character
arrays as M := |C| in contrast to the uncompressed size N .

Section 5.1 proposes a high-level framework for space-efficient distributed string sorting
algorithms. It reduces large instances to multiple smaller ones and assumes a black-box
distributed sorter to solve subproblems. The framework is realized in Section 5.2 using
the previously established merge sort implementations, i.e., (multi-level) MS and PDMS.
Several merge sort-specific optimizations are developed to make better use of the available
preconditions. Finally, Section 5.3 develops a slight variation of the algorithm with the
aforementioned application in distributed suffix sorting.

5.1. Algorithmic Framework

As already stated, our goal is to be able to sort inputs where the uncompressed character
array C(Si) would not fit into memory. Let X be the size in characters of the largest instance
that can be sorted with some distributed string sorting algorithm A. In other words, any
input with at most X characters in C(Si) on every PE, can be sorted directly using A. We
also assert that the inverse is true; i.e., if the size of any local character array exceeds X,
then sorting the input with A fails. To arrive at a space-efficient algorithm, the idea is to
split larger instances into multiple smaller subproblems of size at most X and sort each
individually using the sorting algorithm A. Thus, only the strings of a single instance need
to be materialized at a time. If subproblems are chosen appropriately, then it is possible to
obtain a globally sorted permutation for the original instance by combining the separate
results. The following paragraphs elaborate on how the required subproblems are obtained
and how the results must be combined to ensure a correct overall permutation. Figure 5.2

42

5.1. Algorithmic Framework

S

S1

S2

S3O1

O2

O3P1

P2

P3

P
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

sT0 sI1 sG2 sB3 sM4 sE5 sQ6 sL7 sA8 sC9 sO10 sJ11 sP12 sN13 sS14 sD15 sK16 sH17 sR18 sF19

sG2 sB3 sE5 sA8 sC9 sD15 sF19

sI1 sM4 sL7 sJ11 sN13 sK16 sH17

sT0 sQ6 sO10 sP12 sS14 sR18sA8 sB3 sC9 sD15 sE5 sF19 sG2

sH17 sI1 sJ11 sK16 sL7 sM4 sN13

sO10 sP12 sQ6 sR18 sS14 sT06 1 4 0 2 3 5

1 5 4 2 6 3 0

5 2 0 1 4 3

19 8 6 1 12 4 16 11 0 2 14 9 15 13 18 3 10 7 17 5

1s
t

qu
an

ti
le

2n
d

qu
an

ti
le

3r
d

qu
an

ti
le

materialization

sorting

inversion

write-back (∆2 = 7)

Figure 5.2.: Simplified illustration of the space-efficient sorting scheme without details of
distributed execution. The string array S contains elements sci where i indicates
initial position and c indicates lexicographical order. Execution steps are detailed
for the second round of sorting.

illustrates the principle of space-efficient string sorting for a simple example. In practice, the
precise value of X may depend on a multitude of factors and is unlikely to be available for
any realistic sorting algorithm. It can, in fact, not be assumed to be a constant at all, but
rather to vary between inputs, for example, due to differing levels of prefix repetition and
resulting gains through LCP compression. Even more removed from a theoretical viewpoint,
are considerations such as multiple PEs in the same node sharing memory and, as a result,
being subject to a cumulative limit on input size. With the aforementioned caveats in mind,
the value of X can be seen as the primary tuning parameter for the space-efficient algorithms
in this chapter.

To arrive at the desired subproblems, we compute a globally ordered partition of the local
string arrays, similar to the partition used in distributed merge sort. Formally, for some as,
yet undefined, value ψ, the arrays Si are split into local quantiles S1i , . . . ,S

ψ
i which yields

ψ global subproblems Sj := Sj0 + · · · + S
j
p−1, a.k.a. global quantiles. Per the requirement

for an ordered partition, the familiar invariant for all quantiles i < j and strings si ∈ Si
and sj ∈ Sj , the order si < sj must hold1. By sorting each quantile individually, a globally
sorted order for the global instance is therefore induced via simple concatenation in order.
It remains to find a viable format that can be used to incrementally build the order of S.
Storing entire strings is clearly not an option due to the established memory limitations.
More generally, any format where the result is distributed according to lexicographical order
is also not feasible, since it would require that a single PE gather results for a round of
sorting from all other PEs in the worst case. This rules out a distributed permutation per
Definition 1. We therefore propose to use an inverse permutation as described in Definition 2.
Recall that an inverse permutation is an array P i of the same size as Si that stores the

1To make some of the notation in this chapter easier to follow, note that, when used in reference to an array,
indices in the superscript always refer to a quantile, while indices in the subscript always refer to a PE.

43

5. Space-Efficient String Sorting

globally sorted rank of each string. The working principle for space-efficient algorithms
follows intuitively:

(1) Compute an ordered partition of S into ψ parts and derive local quantiles S1i , . . . ,S
ψ
i .

(2) For each quantile j = 1, . . . , ψ:

(2.1) Globally sort the jth quantile Sj using algorithm A to obtain a distributed inverse
permutation Pji on each PE.

(2.2) Use Pji to determine the rank of each string in Sji with respect to the original
array S and write them into an inverse permutation P i at their position in Si.

To formalize how ranks are determined for the combined inverse permutation P i, we require
a mapping from quantile to the original string array. This can be realized with functions
ϕji that map positions in the jth quantile Sji to positions in Si on PE i. Thus, for every
position l the corresponding strings Si[ϕji (l)] and Sji [l] must be equal. The transformation of
ranks—which basically adds the number of strings in previous quantiles to the rank—can
easily be formalized for PE i and quantile j as

P i
[
ϕji (l)

]
= ∆j + Pji [l] where ∆j :=

j−1∑
l=1

∣∣S l∣∣.
Functions ϕji can be realized by storing the permutation computed during local sorting.
The value of ∆j requires global knowledge and can be computed using a single all-reduce
operation per round of sorting to compute the sum |Sj0 |+ · · ·+ |S

j
p−1|.

It remains to determine a suitable number of a quantiles ψ for given set of strings. Ideally, if
the runtime of the employed string sorting algorithm A is roughly linear in the input size,
one may be inclined to minimize ψ—and thus the number of sorting rounds—by ensuring
that each local quantile contains the maximum X characters, except for rounding errors. In
this case, the number of quantiles would be ⌈N/pX⌉ with each containing approximately pX
characters globally. This approach, however, is not feasible in general and may not even be
desirable, given the established constraints on knowledge of X. An ordered partition where
each local quantile contains the same number of elements requires a uniformly random input
distribution, completely independent of lexicographical order. This reveals a fundamental
limitation of our space-efficient algorithms: Even for initially balanced inputs, where each
PE starts out with an equal workload, it is possible to construct instances that induce
arbitrarily imbalanced local quantiles. Simply require that local inputs arrays Si are already
globally ordered and ensure character size ∥Si∥ is greater than X. Every ordered partition
with no more than X characters in any local quantile will contain strings from at most two
consecutive PEs in any global quantile. Consequently, the number of quantiles would need to
be in Θ(N/X), a factor p worse than the minimum. Such a scenario could usually be resolved
through an initial random redistribution of elements—as is the case for RQuick. However,
due to the compressed input format, it is not possible to redistribute strings independently
without materializing the input first and losing any benefit of compression.

The preceding observation leads us to require a number of constraints on inputs to space-
efficient algorithms. As with the analysis of multi-level algorithms from Chapter 4 local
arrays must be balanced, i.e., |Si| = Θ(n/p) and ∥Si∥ = Θ(N/p) on every PE i. We also

44

5.1. Algorithmic Framework

assume that the input is randomly distributed and choose ψ such that the probability of local
quantiles greater than X is sufficiently small. Hence, there is a small probability that our
algorithm fails because A is unable to sort at least one of the computed quantiles. It would
be possible to handle such cases correctly, for example by further partitioning offending
quantiles. We did however not investigate this possibility further, due to the established
uncertainty around the value of X and to allow reasonable runtime analysis.

For the following proofs, we introduce notation (T)ba := [s ∈ T | a ≤ s < b] to denote the
quantile of any string array T defined by lower bound a and upper bound b. The following
lemma and theorem assume that in addition to strings, characters are also distributed
randomly, i.e., for a global quantile (S)ba, the expected value for the number of characters on
each PE is ∥(S)ba∥/p.

Lemma 7. Let a and b be strings from S ∪ {−∞,+∞}, and let ε ∈ R with 0 < ε < 1. If
the characters in (S)ba are distributed over PEs uniformly at random and (S)ba ≤ εpX, then
the probability P

(∥∥(Si)ba∥∥ > X
)

is less than e−(1−ε)
2/(ε+1)X for all i ∈ [0, p).

Proof. Let a, b, and ε be defined as required by the lemma. Characters in (S)ba are assumed
to be randomly distributed over PEs. The number of characters on a specific PE can therefore
be seen as the sum of independent and identically distributed random binary variables, i.e.,
Bernoulli variables. We can therefore apply a Chernoff bound [21] to estimate the desired
probability. It can be seen that the probability is maximized for (S)ba = εpX which yields
an expected value of εX for every (Si)ba. The stated bound follows by rewriting with simple
arithmetic identities:

P
(∥∥∥(Si)ba∥∥∥ > X

)
= P

(∥∥∥(Si)ba∥∥∥ > 1

ε
E
(∥∥∥(Si)ba∥∥∥))

≤ exp

(
−(1/ε− 1)2

1 + 1/ε
εX

)
= exp

(
−(1− ε)2

1 + ε
X

)

Lemma 7 states the probability of a single local quantile exceeding X characters for a given
value of ε. Using this result, we can show that space-efficient sorting is unlikely to fail for a
particular choice of parameters. The following theorem assumes a quantile imbalance due to
imperfect partitioning of at most two and estimates the desired probability for a choice of
ε := 1

2 . The parameters yield and overpartitioning factor for quantiles of γ := 4.

Theorem 13. For quantile imbalance δ := 2 and parameter ε := 1
2 , let γ := δ/ε and

ε′ := (1+ε)/(1− ε)2. If characters are distributed over PEs uniformly at random, A can sort
at least X ≥ ε′ log(N/p) characters, there are ψ := γN/pX quantiles, N = ω(p) characters in
total, and at most δpX/γ characters per global quantile, then space-efficient sorting succeeds
with high probability.

Proof. Space-efficient sorting succeeds if no local quantile exceeds X characters—or equiva-
lently if every local quantile contains at most X characters. The success-probability Psucc

can therefore be estimated using the bound from Lemma 7. With overpartitioning factor γ
and imbalance parameter δ, each quantile contains at most δpX/γ characters. Hence, let a

45

5. Space-Efficient String Sorting

and b be defined as stated in Lemma 7 with ε from the theorem. Noting that the probability
is negated, this yields inequality (i). Furthermore, the success probability is minimized for
the smallest value of X, since the number of quantiles is maximized for this choice. With
(1− ε)2/(1 + ε) canceling out ε′ in the scaling factor of X, inequality (ii) follows.

Psucc = P
(
∀i
∥∥∥(Si)ba∥∥∥ ≤ X) =

(
1−P

(
∃i
∥∥∥(Si)ba∥∥∥ > X

))ψ
(i)
≥

(
1− exp

(
−(1− ε)2

1 + ε
X

)) γN
pX

(ii)
≥
(
1− exp

(
− log

N

p

)) γN/p

ε′ log(N/p)

=

(
1− 1

N/p

) 6N/p
log(N/p)

It remains to show that the stated lower bound is sufficient to demonstrate high success
probability. Here, we can apply the precondition N = ω(p), i.e., N dominates p asymptoti-
cally. We can therefore see the term N/p as increasing towards infinity and, by substituting
for x, obtain the following limit:

lim
x→∞

(
1− 1

x

)x/ log x
= 1

The additional factor 6 in the exponent does not change this result, which finally justifies
the claim that no local quantile exceeds X characters with high probability.

The usefulness of Theorem 13 may not be immediately clear due to the number of necessary
preconditions. To summarize, given a partition of S into a number of quantiles that is only
worse than the optimal value by a constant factor. With additional preconditions on the
input size and the minimum capability of A, and if global quantiles are imbalanced by a
factor at most two, then space-efficient sorting is likely to succeed with high probability.
Equivalent statements could be shown for quantiles with greater imbalance parameters δ.

5.2. Space-Efficient Merge Sort

Having established the basic framework for space-efficient string sorting, we can now use
distributed string merge sort instead of the black-box A to realize it. We call the result
Space-Efficient String Merge Sort (SEMS) regardless of whether single- or multi-level, MS
or PDMS is used. Rather than a straightforward implementation of the framework, we
also propose a number of optimizations to improve runtime. Section 5.2.1 focuses on the
partitioning phase of SEMS and Section 5.2.2 aims to reduce the number of quantiles by
applying distinguishing prefix approximation. Finally, the resulting algorithm’s complexity
is analyzed in Section 5.2.3.

5.2.1. Sorting First versus Partitioning First

The framework for space-efficient sorting leaves the details of ordered partitioning unspecified.
Here, the opportunity presents itself to reuse the distributed ordered partitioning algorithm

46

5.2. Space-Efficient Merge Sort

from Section 3.2 for SEMS. Recall that this requires sampling Si, sorting the samples, and
drawing the final splitters at regular intervals. To apply the bounds on bucket imbalance for
regular sampling, we need to ensure that local arrays are sorted before sampling. Alterna-
tively, we could restrict ourselves to using a random sampling technique without the same
precondition. This yields two possible variants of SEMS:

(a) Locally sort string arrays Si, then compute an ordered partition of S, and obtain
quantiles as contiguous intervals of Si.

(b) Compute an ordered partition of S, obtain quantiles as non-contiguous subsets of Si,
and locally sort each quantile individually.

Sorting first has the advantage that quantiles consist of successive element in the string
array. We may therefore find intervals of Si using as a single scan thereof, which can exploit
available LCP information. However, sorting the string array as a whole, instead of only
sorting quantiles individually, may be undesirable, especially for algorithms with superlinear
complexity. On the other hand, partitioning an unsorted array cannot use LCP values to
speed up string comparisons. Rather than being able to find the position of splitters within
Si to obtain intervals thereof, we instead need to locate each string in the sequence of ψ − 1
splitters. A naive approach could compute LCP values of splitters and use linear search for a
runtime in O(∥Si∥+ψ|Si|). The second term can be improved to a factor logψ using binary
search. This requires constant time range minimum queries (RMQs) to efficiently compute
LCP values for any pair of splitters. An appropriate data structure can be constructed with
linear preprocessing time [17]. Table 5.1 compares runtimes of both variants with MSD
radix sort as local string sorter. We assume that both approaches use the same distributed
algorithm to obtain splitters and omit the corresponding runtime.

phase — Variant (a) — — Variant (b) —
sort first partition first

local sorting O(D(Si) + |Si| log σ) O

 ψ∑
j=1

(
D
(
Sji
)
+ |Sji | log σ

)†
partitioning O

(
D(Si) + |Si|+ ψℓ̂

)‡
O
(
∥Si∥+ |Si| logψ + ψℓ̂

)‡
total O

(
D(Si) + |Si| log σ + ψℓ̂

)
O
(
∥Si∥+ |Si| log(ψσ) + ψℓ̂

)
† the sum simplifies to O(D(Si) + |Si| log σ) because

∑ψ
j=1D(S

j
i) ≤ D(Si)

‡ the term O(ψℓ̂) accounts for computation of splitter LCP values and construc-
tion of an RMQ data structure (assumes ℓ̂ > 0)

Table 5.1.: Comparison of local work to obtain quantiles on a specific PE i by
sorting before or after partitioning.

We can conclude that it is preferable to sort the entire, compressed string arrays prior to
partitioning if MSD radix sort is used. Partitioning string arrays first incurs character
comparisons outside the distinguishing prefix and adds a component O(|Si| logψ) to the
runtime. Accordingly, the remainder of this chapter, as well as the experimental evaluation
thereafter, will use Variant (a) of the algorithm.

47

5. Space-Efficient String Sorting

5.2.2. Prefix Approximation First versus Partitioning First

Similar considerations to the preceding section on local sorting can be made for distinguishing
prefix approximation when it is applied to space-efficient sorting. It is again possible to
partition the input into quantiles first and apply duplicate detection to each subset of strings.
Alternatively, prefixes can be approximated with respect to the complete array S, which is
then partitioned based on the resulting prefixes.

(c) Compute an ordered partition of S to obtain quantiles S1, . . . ,Sψ. Separately approxi-
mate distinguishing prefixes of each quantile and sort the resulting prefixes.

(d) Approximate distinguishing prefixes of S to obtain S̃. Compute an ordered partition
of the resulting prefixes into ψ′ quantiles as S1, . . . ,Sψ′ and sort the result.

We can again consider advantages and disadvantages of either variant. By approximating
distinguishing prefixes first and using the shortened strings to compute quantiles, we reduce
the total number of characters and therefore the number of required quantiles. Otherwise,
especially if D ≪ N , each quantile may contain significantly fewer characters than could
be sorted with the available memory. If the number of quantiles is in Θ(N/pX) for the
original strings, then it is in Θ(D(S)/pX) for the reduced strings. Hence, the usage of ψ
and ψ′ with ψ′ ≤ ψ to disambiguate both cases. We also need to take the size of resulting
distinguishing prefixes into account. For any partition S1, . . . ,Sψ, regardless of whether
it is ordered, the sum of distinguishing prefixes of individual quantiles is no larger than
for the original array. However, because the partition is ordered, each additional quantile
decreases the sum by at most ℓ̂ characters. Thus, at least for small values of ℓ̂, partitioning
first does not yield significantly improved distinguishing prefixes. Partitioning first means
that the prefix approximation algorithm needs to be run ψ times which adds a corresponding
factor to latency. Individual executions, however, can use smaller Bloom filters, i.e., hash
functions with fewer possible values, to achieve the same false positive rates. On the other
hand, approximating distinguishing prefixes first has the advantage that we may use the
length of the longest distinguishing prefix to bound the runtime of partitioning. Runtimes
for distinguishing approximation and ordered partitioning are summarized in Table 5.2.

Table 5.2 shows that Variant (c) has overall worse runtime. Aside from bounds for partitioning
using ℓ̂ rather than d̂, distinguishing prefix approximation also results in unfavorable worst-
case bounds. It is possible to construct instances where individual quantiles concentrate
strings on single PEs. This results in a longer critical path during execution. Therefore, using
the maximum distinguishing prefix to bound the sum of maxima for individual quantiles
would not be valid. Thus, the following analysis assumes that distinguishing are approximated
first, i.e., Variant (d).

5.2.3. Runtime and Communication

Having considered different variants of SEMS and having already analyzed the complexity of
individual phases in preceding sections, the following provides bounds for the algorithm’s
runtime and communication in their entirety. The following analysis uses basic single-level
merge sort without prefix approximation to keep bounds simple and because we do not aim to
evaluate the complexity of individual merge sort variants. We use the established distributed

48

5.2. Space-Efficient Merge Sort

— Variant (c) — — Variant (d) —
partition first approximate first

prefix approximation

local work O

(
log d̂

ψ∑
j=1

max
i
DSj (S

j
i)

)
O

(
log d̂max

i
DS(Si)

)
latency O

(
αψk k
√
p log d̂

)
O
(
αk k
√
p log d̂

)
communication O

(
ψ∑
j=1

βkmax
i
|Sji | log d̂ log p

)
O

(
βk
n

p
log d̂ log p

)
ordered partitioning

local work O

(
n

p
log σ + ψℓ̂ log p

)
O

(
n

p
log σ + ψ′d̂ log p

)
latency O

(
α log2 p

)
communication O

(
βψℓ̂ log p log σ

)
O
(
βψ′d̂ log p log σ

)
Table 5.2.: Comparison of runtimes for distinguishing prefix approximation

and distributed ordered partitioning depending on the order of
execution. Runtimes assume the multi-level Bloom filter from
Section 4.2.1 and LCP-RQuick. Order in the table does not corre-
spond to the order of execution.

ordered partitioning algorithms with character-based regular sampling to determine quantiles
and to determine buckets during each sorting round.

As discussed in Section 5.1, space-efficient sorting by definition only succeeds if no local
quantile exceeds X characters. Theorem 13 states that the algorithm succeeds with high
probability for ψ := 4N/pX quantiles if each global quantiles contains at most 2N/ψ
characters. We therefore need to ensure that partitioning yields quantiles that fulfill this
requirement. Recall Theorem 3 which states that character-based regular sampling yields
buckets of size at most N/ψ+N/v+(pv/ψ+ p)ℓ̂ with v samples per PE. Unfortunately, the
final term cannot be meaningfully bounded without additional assumptions. If the number
of samples is chosen as Θ(ψ), say v = µψ for some 1 < µ ∈ N, then the bound simplifies to
(1 + 1/µ)N/ψ + (µ+ 1)pℓ̂. To stay below 2N/ψ characters per local quantile, the second
term must therefore be bound by

(µ+ 1)pℓ̂ ≤ µ− 1

µ
· N
ψ

=
µ− 1

µ
· NpX

4N
=
µ− 1

4µ
pX.

Thus, if the length of the longest string is bounded by X as follows, then global quantiles
are guaranteed not to exceed pX/2 characters, and the algorithm succeeds with high
probability.

ℓ̂ ≤ µ− 1

4(µ2 + µ)
X

Obviously, the term µ2 in the denominator means that increasing the number of samples
places tighter restrictions on ℓ̂. Due to the nature of string sorting, where it is always possible

49

5. Space-Efficient String Sorting

to construct instances with disproportionately long strings, this is the most general statement
we were able prove. Keep in mind that this does not imply that SEMS is necessarily likely
to fail in cases where the guarantees provided here do not hold. For the following runtime
analysis, we simply choose a value ψ and assume that the algorithm succeeds.

Theorem 14. If algorithm SEMS succeeds with ψ = O(N/pX) quantiles, then it has expected
running time in

O

(
N

p
+

(
n

p
+ ψpℓ̂

)
log(σp) + αψp+ β

(
N

p
log σ +

n

p
log n+ ψpℓ̂ log p log σ

))
.

Proof. As ever, MSD radix sort can be used to sort local string arrays in time O(N/p +
n/p log σ). Obtaining quantiles with the ordered partitioning algorithm from Section 3.2
requires time in

O
(
ψ log σ + ψℓ̂ log p+ α log2 p+ β

(
ℓ̂ log2 p+ ψℓ̂ log p

)
log σ

)
to sort Θ(ψ) samples using hypercube quicksort. It can be seen that this is dominated by
the bound stated in the theorem. Additional work to obtain samples and to locate splitters
is in O(N/p+ ψℓ̂).

For the actual sorting phase of the algorithm, it is necessary to establish bounds for the size
of quantiles. It is known that the number of characters in local quantiles, i.e., local character
arrays during sorting rounds, is in O(X) = O(N/pψ) since we can assume that the algorithm
succeeds. With character-based regular sampling, this yields buckets containing O(N/p+ pℓ̂)
characters. For space-efficient sorting, unlike for multi-level sorting in Section 4, we make the
assumption that there exists no correlation between string length and lexicographical order.
We can therefore bound the number of strings, at least in expectation, by O(n/pψ). By
substituting the bounds for local quantile sizes into the established runtime for single-level
string merge sort we obtain the following expected complexity for the ψ sorting rounds of
SEMS:

O

ψ

local merging︷ ︸︸ ︷
N

pψ
+ pℓ̂+

n

pψ
log p +

string exchange︷ ︸︸ ︷
αp+ β

((
N

pψ
+ pℓ̂

)
log σ +

n

pψ
log n

)
+ p log σ + pℓ̂ log p+ α log2 p+ β

(
ℓ̂ log2 p+ pℓ̂ log p

)
log σ︸ ︷︷ ︸

partitioning

The bound from the theorem follows with a number of simplifications and by combining
the terms ψp log σ and ψpℓ̂ log p. Note that imbalance introduced by imperfect partitioning,
i.e., pℓ̂ in string exchange, is dominated by the term for partitioning. Finally, in the
single-level context, writing the inverse permutation back to original PEs requires time in
O((1 + β log n)(n/pψ)) which is the same as LCP-value exchanges.

At least for this simple variant of SEMS, the factor ψ introduced by multiple sorting rounds
is partially canceled out, in terms of local work and communication, by the factor 1/ψ
in quantile size. For multi-level variants using the Exch(·) black-box for communication
or variants using prefix approximation, similar guarantees cannot be established as easily.

50

5.3. Application in Suffix Sorting

Obviously, latency and the overhead for distributed partitioning increase linearly with ψ
in all cases. In scenarios where performance is dominated by string exchange and merging
times, it is therefore not inherently beneficial to reduce the number of quantiles.

5.3. Application in Suffix Sorting

The preceding sections have already introduced space-efficient string sorting and have shown
how it can be used to sort inputs that would otherwise exceed the memory limits of PEs
in a distributed system. In this section, we describe how the scheme can be used, with a
slightly tweaked output format, as subroutine to the DCX suffix sorter. Provided additional
future work, this could make it possible to use DCX with much larger difference covers
than previously possible on realistic distributed systems. Larger difference covers use longer
substrings during sorting which means fewer duplicates and therefore faster overall suffix
array construction.

For the new context of suffix sorting, we require a number of additional definitions. A
text T is an array of m characters which is distributed over PEs in consecutive slices of
Θ(m/p) characters. The suffix array of T defines a sorted permutation of T ’s suffixes.
Proposed by Kärkkäinen and Sanders [26, 27], DC3 and its generalization DCX are linear
time suffix array construction algorithms. They broadly work by sampling fixed length
substrings of T at regular intervals, sorting the samples, and using the resulting ranks to
obtain the order of corresponding suffixes. If samples are not unique, then the suffix array
over the resulting ranks is computed recursively using the same principle. This section
describes how the required samples are obtained for a given text such that they can be sorted
using space-efficient string sorting. It is also shown how the existing output format can be
adapted to conform to the requirements set out by DCX. We explicitly do not cover how
the result needs to be processed to compute ranks for sampled suffixes. Furthermore, details
for recursive sorting steps are left unspecified. Sorting ranks rather than characters, i.e.,
texts over an alphabet of size O(m) rather than of small, independent size σ, may require
additional considerations in the implementation of sorters. For example, any algorithm
storing arrays with entries for every characters of the alphabet, such as MSD radix sort, are
no longer viable due to memory limitations. On realistic, byte-addressable systems, where
string ranks are represented as machine words, an alternative to having a separate sorting
variant for the recursive case is obtained by exploiting the memory representation of integers.
Given an appropriate byte-order, it is possible to interpret integer arrays as character arrays
and therefore to sort both types of strings with the same implementation of space-efficient
sorting.

Sampling positions for DCX are obtained from a difference cover modulo X—hence the
algorithm’s name. Since we already use X to refer to the character limit for quantiles in
space-efficient sorting, we adhere to convention and use v to refer to the modulus.

Definition 3 (Difference Cover [27, Definition 4.1]). A set DC ⊆ [0, v) is a difference cover
modulo v if {(i− j)mod v | i, j ∈ DC} = [0, v).

A difference cover DC modulo v is optimal if there exists no difference cover DC′ modulo
v with |DC′| < |DC|. For example, DC = {0, 1, 3} is optimal for v = 7. Optimal difference

51

5. Space-Efficient String Sorting

covers are known for at least v ≤ 111 [28] and difference covers with no optimality guarantees
can be obtained for any value of v [13]. If a range of numbers is sampled at intervals defined
by a difference cover, we obtain a difference cover sample.

Definition 4 (Difference Cover Sample [27, Definition 4.2]). A difference cover sample of [0, n)
for a difference cover DC modulo v is a v-periodic sample CS := {i ∈ [0, n) | imod v ∈ DC}.

For a given difference DC modulo v and difference cover sample CS, we can define the global
string array S to contain the string T [i,min{i+ v,m}) for every sampled position i ∈ CS.
Disregarding shortened samples near the end of the text, the resulting string array has
uncompressed size of roughly m|DC| characters which yields a compression ratio of |DC| : 1
for the resulting character array C. Local string arrays Si can be obtained by assigning
each string to the PE where its first referenced character in T is located. Strings therefore
reference up to v − 1 characters succeeding PEs. The additionally required characters can
be received with constant latency, through “shifting” copies of characters to the left by one
PE, assuming that each slice of T contains at least v characters.

It is necessary for the correctness of DCX, that identical strings receive equal ranks in the
sorted order. Essentially, the result is still an inverse permutation per Definition 2, but
with a different meaning of a string’s rank. The desired property for an array of ranks R is
sufficiently defined by the following condition:

∀i, j ∈ [0, n) : S[i] < S[j]⇐⇒ R[i] < R[j]

Note that R is not generally a permutation of [0, n). Observe also that the result is unique
if we additionally require that the maximum of R is minimal. For a single quantile of
space-efficient sorting the desired ranks can be computed by checking sorted local string
arrays Oi for duplicates. This can be integrated into the procedure for obtaining an inverse
permutation described in Section 4.2.2, by only incrementing the current rank if strings are
distinct. If up-to-date LCP values are available—as is the case for SEMS—no characters
need to be compared and it instead suffices to check if a string’s LCP value is equal to its
length. The result is still correct if distinguishing prefix approximation has been applied and
only shortened strings are available. Comparison of strings on different PEs is not necessary
for implementations of space-efficient sorting, such as SEMS, that guarantee strict ordering
between PEs. Otherwise, the last string on each PE would additionally need to be compared
to the first string on the next non-empty PE with appropriate handling for empty string
arrays. Regardless of implementation, the lexicographically smallest string of each quantile
must be compared to the largest string from the preceding one. Here it should be noted that
prefixes must be approximated with respect to the complete input, not individual quantiles,
i.e., using Variant (d) from Section 5.2.2. If prefixes are only unique among the strings of a
given quantile, then comparisons between shortened strings from different quantiles may be
incorrectly classified as equal or vice versa.

Finally, it is important to note that the ranks in R are not in the correct order for suffix
sorting and would require additional reordering. The global string array is ordered such that
strings start out on the same PE as referenced characters, which interleaves members of the
difference cover. For usage with DCX, the ranks must be reordered with every sample for
a given k ∈ DC in series and resulting subsequences delimited by sentinel characters. This
completes the topic of applying space-efficient sorting to suffix sorting with DCX.

52

6. Experimental Evaluation

For distributed-memory algorithms in general, and for string sorting algorithms in particular,
a purely asymptotic analysis is not sufficient to satisfactorily establish performance char-
acteristics of any particular algorithm. This chapter therefore comprises an experimental
evaluation of practical implementations of the algorithms introduced throughout this thesis.
Section 6.1 gives an overview of what has been implemented and discusses some details
thereof. Section 6.2 introduces the experimental setup with specifics regarding the systems,
algorithms, and inputs employed. The evaluation itself is split into two parts according to
the major topics of this thesis: Section 6.3 is primarily concerned with multi-level merge
sort, while Section 6.4 focuses on space-efficient merge sort.

6.1. Implementation Details

We implemented a number of algorithms and concepts proposed in this thesis for the purposes
of the experimental evaluation. Our code is written in C++ with MPI [30] as standard
for interprocess communication and uses the kaMPIng [24] library to wrap around MPI’s
interface. The implementation is available in a public repository1 and directly based on
Schimek’s implementation of single-level MS and PDMS [36]. In the following sections we
give a short overview of what has been implemented with additional details for noteworthy
aspects.

6.1.1. String Layout and Communication

Unlike with atomic objects, it is not possible to compactly store strings in a contiguous array
while allowing efficient implementations of operations like indexing or swapping of elements.
Instead, we represent a given string array S using a data structure with two separate memory
allocations. The first allocation stores a contiguous array of characters—compressed or
uncompressed depending on the context. Strings may likewise be null-terminated or left
without sentinel depending on the use case. The data structure used for regular string
sorting assumes null-terminators which gives some additional room for optimization. For
space-efficient sorting, due to the compressed input format, strings cannot be assumed to be
null-terminated. The second allocation contains an array of structures with an entry for each
string consisting of at least a pointer to the string’s first character and its length. Depending
on the exact sorting algorithm used—specifically, the desired output format—additional
information is stored per entry. A distributed permutation requires two additional integers
to store the initial rank and index of each string. Inverse permutations need an integer to
compute the permutation obtained from local sorting and an integer to record the sending PE

1https://github.com/pmehnert/distributed-string-sorting

53

https://github.com/pmehnert/distributed-string-sorting

6. Experimental Evaluation

during local merging after every all-to-all exchange. Notably, for an inverse permutation, it
is never necessary to store both pieces of information concurrently, since they are transferred
to and stored in separate arrays after local sorting or merging. It therefore suffices to reserve
only a single integer field in the structure. This field, as well as the length, can be stored
using 32-bit unsigned integers because it is unrealistic for the length of a single string or
the total number of strings to exceed 232 − 1 on the given system (cf. Section 6.2.1). With
these layout optimizations, the structure can be stored using only two 8-byte machine words.
Figure 6.1 shows the memory layout of strings for sorting without permutation, with regular
permutation, and with inverse permutation.

pointer
0 63

length
64 127

pointer
0 63

length
64 127

rank
128 191

index
192 255

pointer
0 63

length
64 95

rank/index
96 127

Figure 6.1.: From top to bottom, layout and size in bits of strings without permutation,
with distributed permutation, and with distributed inverse permutation.

Strings are exchanged using MPI operations by converting them to a raw format consisting of
a single character array. Here, strings are always null-terminated and common prefixes may
be omitted for LCP compression. String arrays are reconstructed after the exchange using
null characters to determine string boundaries. Communication uses either built-in all-to-all
exchanges with MPI_Alltoallv or direct exchanges with MPI_Isend and MPI_Irecv. The
latter can be used if the size of any sent or received character array exceeds the maximum
allowed by collective operations, which is defined by the size of a C int in practice (i.e.,
usually 231−1). Direct exchanges are also preferable if nontrivial group assignment strategies
are used, as built-in all-to-all exchanges are likely not optimized for sparse communication
with roughly one out of p′ PEs being sent to or received from.

Constructing permutations may require additional communication during string exchanges.
Specifically, for a distributed permutation, the original rank and string index need to
be exchanged using separate all-to-all (or direct) exchanges. For inverse permutations,
the required ranks can be inferred from receive counts and do not need to be explicitly
communicated. Note that Schimek’s original implementation uses a special case of distributed
permutations where string indices refer to the locally sorted order of string arrays. The
author is thereby able to obtain ranks from receive counts using the same optimization we
applied to inverse permutations. By determining the index of the first string received from
any PE, the remaining indices can be assigned sequentially. This approach does not work for
a multi-level implementation, since the string indices can only be inferred for single round of
string exchanges.

6.1.2. LCP-Hypercube Quicksort

We implemented hypercube quicksort in the vein of RQuick and LCP-RQuick from Sec-
tion 3.1. Our implementation supports sorting with and without LCP-based optimizations
which can be configured by passing an appropriate type of string array. The implementation

54

6.1. Implementation Details

also supports a tie-breaking scheme to handle duplicate strings. Local string sorting employs
the CI3 variant of MSD radix sort from tlx [9], which uses a 16-bit super-alphabet and
therefore requires 216 words for each entry of the recursion stack. Merging during recursion
level uses either std::merge from the C++ standard library or our own binary LCP-merge
implementation. Similarly, either std::lower_bound or an implementation of the same logic
which exploits LCP information is used to locate the median. The implementation uses
range-based communicators (RBC) as proposed and implemented by Axtmann et al. [4].
These wrap around built-in MPI communicators, allowing the creation of subcommunicators
without communication overhead through the manual reimplementation of collective commu-
nication operations. Our implementation uses RBC to obtain communicators for the current
hypercube, which simplifies addressing. String and LCP-value exchanges use (non-blocking)
point-to-point communication, and thus do not strictly require any particular communicator.
However, median approximation uses a broadcast to distribute the result which is made easy
using RBC communicators.

6.1.3. Multi-Level Merge Sort

The first major part of our implementation consists of an implementation of multi-level MS
and PDMS. Our implementation works for an arbitrary number of levels and only requires
that every r is greater than one and is a divisor of (the current value of) p. The size and
total number sorting levels is determined by a sequence of descriptors where each defines a
sorting level. For a given PE and level, such a descriptor consists of (references to) three
MPI communicators containing the following sets of PEs:

1. All PEs in the same group on the current sorting level

2. Only PEs that need to communicate during a string exchange

3. All PEs in the same group on the next sorting level

The first and third communicators are uniquely defined for a particular set of parameters,
whereas the constituents of the second may vary depending on the employed group as-
signment strategy. If grid-wise assignment is used, the communicator consists of PE rows;
otherwise, it contains the entire group of PEs. The final level of sorting is handled separately,
without group assignment, and only uses a single communicator. All subcommunicators are
constructed prior to sorting, though we include construction times in overall sorting times.
Albeit, if string sorting is used as a subroutine to a more extensive algorithm, appropriate
subcommunicators may already be available. Construction times were generally negligible
using MPI_Comm_create, which only requires communication between PEs that belong to
the new group, unlike MPI_Comm_split. Template metaprogramming can be used to entirely
disable intermediate sorting levels.

Initial local sorting and LCP-array construction again uses the CI3 variant of MSD radix
sort from tlx. Local merging after string exchanges uses an implementation of LCP-aware
loser trees by Bingmann et al. [10]. String exchanges may optionally use LCP compression
on strings.

We implemented a number of the assignment strategies from Section 3.3. Grid-wise assignment
and naive strategy where strings on PE i are assigned to PE ⌊i/r⌋ of each group are trivial.
String- and character-based versions of simple assignment were also implemented and work

55

6. Experimental Evaluation

by manipulating send counts to match the assignment. We only provide a proof of concept for
deterministic assignment. This implementation does not use the merging algorithm described
by Axtmann et al. and has latency in O(p)—defeating the algorithm’s point compared to
simple assignment.

For PDMS, we implemented the multi-level Bloom filter as described in Algorithm 6. Hash
values are generated using a C++ port of xxHash2,3 (specifically 64-bit XXH3). Initial sorting
of hash values uses sequential In-place Parallel Super Scalar Sample Sort (IPS4o) [5]. We
employ a multi-way merging implementation using loser trees provided by tlx to merge
received sequences of hash values after each round of exchanges. Local and remote duplicate
detection remain conceptually unchanged from Schimek’s implementation.

6.1.4. Space-Efficient Merge Sort

The second major part of our effort consists of an implementation of space-efficient string
sorting, specifically, SEMS using multi-level string merge sort as subroutine. The user
specifies the desired size of quantiles X, from which the required number of quantiles
ψ := maxi⌈∥Si∥/X⌉ is derived. Quantiles are computed using the implementation of
distributed ordered partitioning that is also employed to compute buckets during sorting.
Inputs are sorted locally first and partitioned afterwards, i.e., variant (a) from Section 5.2.1.
We provide implementations with and without prefix approximation, in the latter case,
prefixes are approximated before partitioning according to variant (d) from Section 5.2.2.
Quantiles are sorted with the implementations of multi-level MS and PDMS, using template
metaprogramming to add logic necessary for deriving inverse permutations for the whole
input from sorted orders of individual quantiles. Our implementation supports building an
inverse permutation using the procedure described in Section 5.1. Alternatively, the variant
necessary for DCX, where equal strings receive equal ranks, can also be configured. Because
we optionally use a tie-breaking scheme during partitioning, where string are made unique
using their global position in the input, it is possible that lexicographically equal strings end
up on different PEs after sorting. It is therefore also necessary to compare the last string on
every PE to the globally subsequent one. We use an implementation that is optimal when no
PEs are empty, but incurs latency in O(p) in the worst case. The implementation requires
at least two arrays with an integer entry for each string in the original input, to store the
inverse permutation and the permutation obtained from local sorting—which needs to be
considered when configuring the quantile size.

6.2. Experimental Setup

We evaluate the implemented algorithms in a number of configurations and on a variety of
inputs to analyze their performance. This section aims to give an overview of what is being
evaluated. Section 6.2.1 describes the systems used to run experiments. Section 6.2.2 lists
the evaluated variants of each algorithm. Finally, Section 6.2.3 introduces inputs used in our
experiments and establishes important properties.

2https://github.com/RedSpah/xxhash_cpp
3https://xxhash.com/

56

https://github.com/RedSpah/xxhash_cpp
https://xxhash.com/

6.2. Experimental Setup

6.2.1. Platforms

All experiments with distributed-memory algorithms were performed on thin nodes of the
supercomputer SuperMUC-NG Phase 1 [23] at Leibniz Supercomputing Centre (LRZ) of the
Bavarian Academy of Sciences and Humanities (BAdW). Distributed over eight islands, the
system comprises 6336 thin nodes with 792 nodes per island. Each node consists of two Intel
Skylake Xeon Platinum 8174 processors with 24 cores each, for a total of 48 cores. Of the
system’s total 304 128 cores we used up to 24 576 in our experiments. The processors run at
2.7GHz base frequency in regular operational mode and have 33MiB L3, 24 × 1MiB L2,
24× 32KiB L1d, and 24× 32KiB L1i cache. Nodes also contain 96GiB of main memory
shared between both processors. Communication between nodes is provided via a 100Gbit/s
Omni-Path network. The network uses a fat tree topology within islands, with inter-island
connections pruned at a ratio of 1 : 4. For our experiments, we ensured that all nodes were
allocated within a single island. Furthermore, Energy Aware Runtime (EAR) was disabled
for all benchmarks. We used Open MPI v4.0.7 as implementation of the MPI standard.
Programs were compiled using GCC 11.2.0 with flags -O3 and -march=native. Additionally,
link time optimizations (i.e., flag -flto) were enable for code in tlx.

Experiments with shared-memory algorithms were performed on one of two mostly identical
systems at the Institute of Theoretical Informatics, Algorithm Engineering. Both machines
consist of a single AMD Epyc Rome 7702P processor with 64 cores running at 2GHz base
and up to 3.35GHz boost frequency. The processor contains 256MiB L3, 64× 512KiB L2,
64× 32KiB L1d, and 64× 32KiB L1i cache. In total, 1024GiB of DDR4 ECC main memory
of differing speeds are available to either system. Programs were compiled using GCC 12.1.0,
again with flags -O3 -march=native and -flto for tlx.

6.2.2. Algorithms

Our experimental evaluation compares the performance of a variety of algorithms and versions
thereof. This section provides an overview of the algorithms, their configuration, and the
notation used to refer to them. First up are the following variants of hypercube quicksort:

• RQuick/LCP-RQuick: Implementation of hypercube quicksort with or without LCP-
based optimizations. The input is distributed over all available PEs.

• RQuick∗/LCP-RQuick∗: Much like [LCP-]RQuick except that the input is only dis-
tributed over 32 PEs per node to make the algorithms more efficient.

A fundamental drawback of hypercube-based algorithms is that the number of PEs must
be a power of two. For hypercube quicksort this entails an initial data reduction phase
(cf. Section 3.1), after which up to half of PEs no longer participate in sorting. For our
particular experimental setup on SuperMUC-NG, with 48 PEs per node and with the number
of nodes a power of two, this means that one out of three PEs is inactive for the majority of
the algorithm4. Even worse, due to the sequential assignment of ranks, a third of nodes will
be entirely idle. To make the algorithm more competitive and to measure only the actual
sorting phase, we add variants RQuick∗ and LCP-RQuick∗. Here, the system is configured with
only 32 active PEs per node using mpiexec. Provided the number of nodes is a power of two,

4For 2h nodes we get p = 48 · 2h = (24 + 25) · 2h = 24+h + 25+h PEs of which 24+h are idle.

57

6. Experimental Evaluation

so is the number of PEs, and therefore no data reduction phase is necessary. This obviously
does not correspond to how RQuick is used to sort samples during the partitioning phase of
MS and PDMS. It may however be argued that similar effects could be achieved in practice,
by providing an implementation of partitioning that uses appropriate subcommunicators to
achieve a comparable effect.

Next up are the following variants of single- and multi-level string merge sort with and
without prefix approximation.

• MSk: Multi-level string merge sort with k levels of recursion. Single-level variants are
obtained by configuring k = 1.

• PDMSk: Multi-level prefix doubling string merge sort including prefix approximation
using grid-wise Bloom filter with k levels of recursion.

• PDMS▽k : Much like PDMSk, except prefix approximation does not use the multi-level
algorithm. This variant is equivalent to PDMSk for k = 1.

All variants use string-based regular sampling with oversampling factor two. We generally
use the hypercube quicksort implementation with LCP optimizations to sort samples. If
necessary, tie braking is used during partitioning for datasets that otherwise yield poor bucket
imbalance. Only naive, grid-wise group assignment is used because we can generally assume
that inputs are randomly distributed (cf. Section 3.3.1). LCP compression is used during
string exchange phases for datasets where significant common prefixes can be expected.

Multi-level variants always ensure one group per node, i.e., groups of size 48, on the final
level of sorting. This means that k-level variants fall back to only k − 1 or k − 2 levels of
sorting for p < 2k−148. For three-level variants, group sizes for the first two levels are chosen
such that splitting factors are as close as possible with a preference for fewer groups on the
first level. Table 6.1 lists the resulting values of r for all tested values of p.

nodes (p/48)

k level 1 2 4 8 16 32 64 128 256 512

1 1 48 96 192 384 768 1536 3072 6144 12 288 24 576

2 1 — 2 4 8 16 32 64 128 256 512
2 48 48 48 48 48 48 48 48 48 48

3
1 — — 2 2 4 4 8 8 16 16
2 — 2 2 4 4 8 8 16 16 32
3 48 48 48 48 48 48 48 48 48 48

Table 6.1.: Configured splitting factors, i.e., values of r, for each level of multi-level
merge sort with k ∈ {1, 2, 3} levels and relevant choices of p. Missing entries
indicate cases where p is too small to split k times.

58

6.2. Experimental Setup

The following variants of the space-efficient sorting merge sort implementation are used:

• SEMSk: Implementation of SEMS using multi-level MS with k levels of recursion to sort
quantiles.

• PDSEMSk: Implementation of SEMS with prefix approximation and using multi-level
PDMS with k levels of recursion to sort quantiles.

The configuration of PE groups, sampling parameters, and LCP optimizations are equivalent
to MSk and PDMSk. By default, quantiles are configured to 100MiB and obtained using the
same parameters used to compute buckets during sorting.

Finally, a number of experiments use a shared-memory implementation of parallel Super Scalar
String Sample Sort (pS5) [10] from the tlx library. To our knowledge, the implementation is
still highly competitive in practice.

6.2.3. Inputs

Our experimental evaluation uses a number of real-world and generated inputs. This section
lists the used datasets, how they were obtained, and states some basic characteristics.

Fixed D/N Ratio with Uncompressed Strings

The first class of inputs aims to generate string sets with a predictable and configurable
D/N ratio (using the established definitions of D and N). Here, the intention is to influence
runtimes of local sorting, the effectiveness of LCP compression, and the length of distinguish-
ing prefixes by varying the D/N ratio. For “normal” string sorting, i.e., not space-efficient
sorting, we use the DNGenerator proposed by Schimek [36]. Given a number of strings n, a
string length ℓ, and a desired D/N ratio q ∈ (0, 1), the idea is to assign a number i from
[0, n) to each string and use the unique σ-ary representation of i to distinguish them. Let
reprΣ(i) be the desired representation mapped to the characters of Σ. If the requested length
and D/N ratio are sufficiently large, i.e., if ⌊ql⌋ ≥ ⌈logσ(n − 1)⌉, then the ith string si is
defined as

si := a+ · · ·+ a+ reprΣ(i)︸ ︷︷ ︸
⌊qℓ⌋

+ a+ · · ·+ a︸ ︷︷ ︸
⌈(1−q)ℓ⌉

where a := minΣ.

In our experiments we refer to D/N = 0: this is not possible for nonzero n by definition
and is simply a placeholder for the smallest achievable ratio. Every string’s distinguishing
prefix with respect to S := {s0, . . . , sn−1} consists of its first ⌊qℓ⌋ characters. The global
distinguishing prefix of S is therefore D = n⌊qℓ⌋ which, if ℓ is divisible by 1/q, is equal to qN
as desired. Schimek provides more details and proves that the stated distinguishing prefixes
are correct. Local string arrays are obtained by distributing strings to PEs uniformly at
random and shuffling locally. Improving on the implementation by Schimek, we developed a
simple distributed algorithm to distribute strings in time O(n/p) rather than O(n) which
provides a significant speedup for large values of p. We refer to the resulting generated
datasets as DNData inputs.

59

6. Experimental Evaluation

Fixed D/N Ratio with Compressed Strings

To exploit the capabilities of space-efficient sorting, we propose DNDataSE inputs as a
compressed counterpart to DNData. The idea is to construct a sequence of characters
such that, by moving a fixed size window over the characters, the resulting strings have the
desired D/N ratio. Formally, let n be the number of strings, ℓ be the length of strings, and
q ∈ (0, 12] the desired D/N ratio. Note that ratios greater than 1/2 are not supported. The
local character arrays consist of blocks, each of which is used to generate ⌊2qℓ⌋ ≥ 1 strings.
Each block is ⌊2qℓ⌋+ ℓ− 1 characters long and, similar to DNData, has ⌊2ql⌋ − 1 leading
padding characters. The remaining ℓ characters are chosen randomly. Let a := minΣ be the
padding character as before. We can define the ⌈n/⌊2qℓ⌋⌉ blocks bi using random variables
r0i , . . . , r

ℓ−1
i with uniform distribution over the remaining characters Σ \ {a} as

bi := a+ · · ·+ a︸ ︷︷ ︸
⌊2qℓ⌋−1

+ r0i + · · ·+ rℓ−1i︸ ︷︷ ︸
ℓ

.

The corresponding strings are be defined as sji := bi[j, j + ℓ) for j ∈ [0, 2qℓ) with S the set
of all strings thus obtained. Local string and characters arrays can be derived by evenly
distributing blocks and associated strings to PEs. Strings with equal length are randomly
distributed according to the trailing characters. However, note that strings from the same
block are ordered according to the number of leading a-characters which makes it necessary
to shuffle local string arrays. Figure 6.2 illustrates DNDataSE inputs for two combinations
of parameters. Observe that the compression ratio of generated strings is determined by the
combination of ℓ and q, i.e., ratio ⌊2qℓ⌋ℓ : ⌊2qℓ⌋+ ℓ− 1.

C

S

a a a a a a a b h g p c s d w

s01 s11 s21 s31 s41 s51 s61 s71

b1

C

S

a a n l t t g a a u l y r k

s01 s11 s21 s02 s12 s22

b1 b2

Figure 6.2.: Character and string arrays for two DNDataSE instances over the alphabet
Σ = {a, b, . . . , z} for (n, ℓ, q) =

(
8, 8, 12

)
on the left and

(
6, 5, 13

)
on the right.

Distinguishing prefixes consist of the leading a-characters and some of the random characters.
Because q is by definition at most 1/2, and thus ⌊2qℓ⌋ ≤ ℓ− 1, the sum of leading characters
is
∑⌊2qℓ⌋−1

i=0 i per block. Assuming strings divide evenly into blocks (i.e., 2qℓ divides n) the
sum of leading characters for the whole string array is

n

⌊2qℓ⌋

⌊2qℓ⌋−1∑
i=0

i =
n

⌊2qℓ⌋
· (⌊2qℓ⌋ − 1)⌊2qℓ⌋

2
=
n(⌊2qℓ⌋ − 1)

2

which also provides a lower bound for the size of D. We can estimate the expected size of
the distinguishing prefix of character blocks. The probability that the random part of two
blocks bi and bj share exactly k leading characters is

P

(
argmin
h∈[0,ℓ)

(
rhi ̸= rhj

)
= k

)
=

(
1

σ − 1

)k(
1− 1

σ − 1

)
=

σ − 2

(σ − 1)k+1
.

60

6.2. Experimental Setup

Let the result of argmin(·) be defined as ℓ in the case where all characters are equal. Using
the sum of the infinite series

∑∞
k=1 kr

k = r/(1− r)2 where |r| < 1, the expected value can
be bound as follows:

E

(
argmin
k∈[0,ℓ)

(
rki ̸= rkj

))
=

ℓ∑
k=0

k
σ − 2

(σ − 1)k+1
≤ σ − 2

σ − 1

∞∑
k=1

k
1

(σ − 1)k
=

1

σ − 2

Because leading and random characters are distinct, the expected value for the distinguishing
part of random characters is n/(σ−2). If we additionally assume that 2qℓ is a whole number,
then we can establish both a lower bound for and the expected value of the D/N ratio:

D

N
≥ n(2qℓ− 1)

2nℓ
= q − 1

2ℓ
E

(
D

N

)
= q − 1

2ℓ
+

1

σ − 2

This is sufficient for our purposes with large enough values of ℓ and σ and was confirmed
empirically, by measuring D/N ratios of the resulting instances. Though, for a more precise
analysis, one may chose q to compensate for the error.

Real-World Datasets

Next to the generated inputs with fixed D/N ratios, we also use the following large, real-world
datasets to evaluate performance:

• CommonCrawl A dataset consisting of WET files from the September/October
2023 Common Crawl archive (CC-MAIN-2023-40)5. Files in the WET format consist
mostly of plain text with only small headers containing minimal metadata. We were
unable to obtain consecutive files from the archive due to unpredictable rate limiting
behavior during retrieval. The dataset contains 2.5TB in total.

• WikipediaFull A dataset consisting of a prefix of a dump, from 2023-10-01, of all
pages in the English Wikipedia with full edit history (pages-meta-history) in XML
format6. Like CommonCrawl, the dataset contains 2.5TB in total.

• Wikipedia A dataset consisting of a dump, from 2023-12-20, of all pages in the
English Wikipedia in XML format without edit history (pages-articles)7. The
dataset comprises 97.7GB and is less repetitive than WikipediaFull.

• WikipediaText A dataset derived from Wikipedia by deleting all XML metadata,
i.e., any lines starting with “<”.

More information on the parameters of each dataset, such as D/N ratios, is provided in the
evaluation where appropriate.

5https://index.commoncrawl.org/CC-MAIN-2023-40/
6https://dumps.wikimedia.org/enwiki/20231001/
7https://dumps.wikimedia.org/enwiki/20231220/

61

https://index.commoncrawl.org/CC-MAIN-2023-40/
https://dumps.wikimedia.org/enwiki/20231001/
https://dumps.wikimedia.org/enwiki/20231220/

6. Experimental Evaluation

Difference Cover

In the experimental evaluation, difference cover inputs are used in conjunction with the
preceding real word datasets, both for their variable compression ratio and their relevancy
to suffix sorting. We use the procedure described in Section 5.3 to construct difference cover
samples for a global text by duplicating v − 1 characters and shifting them to the previous
PE. To our knowledge, no difference covers with accompanying proofs for minimality have
been found for v > 128. In their paper on quorums, Colbourn and Ling show that it it
is possible to construct nontrivial difference covers for any v, though without claiming to
maintain minimal size [13].

Theorem 15 ([13, Corollary 2.3]). For nonzero r, v ∈ N, there exists a difference cover
modulo v of size 6r + 4 if v ≤ 24r2 + 36r + 13.

Theorem 15 is constructive, as the authors provide a method for constructing the claimed
difference cover. We define members of the difference cover as d0, . . . , d6r+3 using matching
offsets δ0, . . . , δ6r+2. With initial value d0 := 0, each subsequent value is obtained by adding
the corresponding offset, i.e., di+1 := di + δi. Offsets are defined in six chunks as follows:

δi := 1 i ∈ [0, r) δi := r + 1 i = r

δi := 2r + 1 i ∈ [r + 1, 2r + 1) δi := 4r + 3 i ∈ [2r + 1, 4r + 2)

δi := 2r + 2 i ∈ [4r + 2, 5r + 3) δi := 1 i ∈ [5r + 3, 6r + 3)

(6.1)

The authors show that DC := {d0, . . . , d6r+3} is a difference cover modulo 24r2 + 36r + 13,
and thus also for any smaller value of v by extension. We use difference covers modulo v for
powers of two 512, 1024, 2048, 4096, and 8192 in our experiments; suitable parameters r
and resulting difference cover sizes are listed in Table 6.2. Smaller values of v were ruled out
due to the overhead of storing sampled strings. For each element of a difference cover, a
strings needs to be constructed every v characters of a text, which yields a string to character
ratio of roughly |DC|/v. With the memory layout from Section 6.1.1, each string requires
sixteen bytes of memory. For v = 512 with a difference cover of size 28 and one byte per
character, the size of the string array is 7/8 that of the original text. This ratio improves for
larger values of v. Going beyond v = 8192 is possible and may be desirable to obtain fewer
duplicate strings—the computed difference cover for 16 384 has size 160. However, recall
that this is also the compression ratio for the resulting set of strings and therefore results in
proportionally more work during sorting.

difference cover (v)

512 1024 2048 4096 8192

r 4 6 9 13 18
|DC| 28 40 58 82 112

Table 6.2.: Size and parameter r of difference covers
modulo v computed using Equation (6.1).

62

6.3. Multi-Level String Merge Sort

6.3. Multi-Level String Merge Sort

Having established our implementation and the experimental setup, we proceed with the
actual evaluation. This section focuses on multi-level merge sort, with a number of ex-
periments to evaluate the influence of PE count, n/p ratio, and D/N ratio. Section 6.3.1
includes two weak-scaling experiments using DNData inputs with variable n/p and D/N
ratios. Section 6.3.2 comprises a strong-scaling experiment on real-word data sets. Finally,
our observations are summarized in Section 6.3.3.

6.3.1. Fixed D/N Ratio Weak-Scaling

Our first experiment uses a weak-scaling setup with DNData inputs and strings of length 500.
The experiment is split into two series of runs to compare different aspects of performance.

Comparing n/p Ratios

For the first series, the D/N ratio is fixed at 1/2 and the number of strings per PE, i.e., the
n/p and N/p ratios, is chosen from 104, 105, and 106. This represents a selection of small,
medium, and large inputs which serves to illustrate the relative scaling behavior of single-
and multi-level merge sort. With character arrays containing 5MB, 50MB, and 500MB
per PE, the largest input is near the realistic limit for this system with roughly 2GB RAM
per PE. We compare runtimes for MSk and PDMSk with k ∈ {1, 2, 3} on up to 512 nodes
(24 576 PEs) which is the most of any of our experiments. The experiments also includes
all four variants of hypercube quicksort. For the largest instances and using all nodes, this
yields a total input size of more than 12TB distributed over the system. Figure 6.3 shows
the result for the first series of runs. Table A.1 in the Appendix contains exact sorting
times. The topmost row of plots shows the overall sorting time for all six variants of MSk
and PDMSk. To gain further insight into the performance of each variant, the sorting times
are broken down for each major sorting phase and per level of sorting. Phases correspond to
the algorithmic steps from Sections 4.1 and 4.2 which include local sorting, distinguishing
prefix approximation (a.k.a. Bloom filter), ordered partitioning, string exchange, and local
merging. Wall times per phase were measured during execution on each PE, with a barrier
after each measurement to ensure synchronization. The final measurement for a single run
is the maximum value of any PE per phase; which means that the sum of phase times can
exceed the listed overall sorting time. All measurements are chosen as the median of five
runs. Results for MSk are shown in the middle row and for PDMSk in the bottom row of the
figure. For reasons of compactness, phase breakdowns are only shown for p/48 ∈ {4, 32, 256}
nodes.

The results of Figure 6.3 broadly reveal the expected relation between input size and scaling
behavior of algorithms. Two-level merge sort significantly outperforms the single-level version
on all input sizes for sufficiently large values of p. Adding a third level only leads to further
improvements in few cases and substantially deteriorates performance otherwise. As expected,
the improvement is most obvious for the smallest inputs with n/p = 104. Here, the single
level algorithm scales roughly linearly with the number of PEs, as runtimes approximately
double for every doubling of p. For MS1 the scaling behavior can mostly be attributed to

63

6. Experimental Evaluation

4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

w
al

lt
im

e/
s

n/p = 104

4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
n/p = 105

MS1 MS2 MS3 PDMS1 PDMS2 PDMS3
RQuick LCP-RQuick RQuick∗ LCP-RQuick∗

4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

0

2

4

6

8

10

12

14

16
n/p = 106

.00

.04

.08

.12

.16

.20

.24

w
al

lt
im

e/
s

0.0

0.3

0.6

0.9

1.2

1.5

1.8

0

2

4

6

8

10

12

4 32 256
.00

.04

.08

.12

.16

.20

.24

nodes (p/48)

w
al

lt
im

e/
s

4 32 256
0.0

0.3

0.6

0.9

1.2

1.5

1.8

nodes (p/48)

4 32 256
0

2

4

6

8

10

12

nodes (p/48)

Local sorting Bloom filter Partitioning String exchange Local merging

MS1 / PDMS1 MS2 / PDMS2 MS3 / PDMS3

Figure 6.3.: Median overall sorting times (top row) and runtimes per sorting phase for MSk (middle
row) and PDMSk (bottom row) for the weak-scaling experiment using DNData inputs
with ℓ = 500, D/N = 1/2, and n/p ∈ {104, 105, 106}. Sorting phases are in order of
execution starting from the bottom.

64

6.3. Multi-Level String Merge Sort

the time required for partitioning, with Θ(p) samples on each PE needing to be sorted.
String exchange phases however also account for a notably larger proportion of overall
runtime, as latency in O(p) appears to dominate the time for actual data exchange. Prefix
approximation dominates runtime for PDMS1 which means that using whole strings is actually
faster on more than 64 nodes. At 256 nodes, approximately 54% of overall runtime is used
for prefix approximation. Already for 8 nodes, two-level merge sort yields improved runtimes
regardless of whether distinguishing prefix approximation is applied. Looking at runtimes of
the prefix approximation phases, it is clear that the multi-level variant scales well. With
a two-level Bloom filter, runtimes less than quadruple for 64 times increase in the number
of PEs. Three-level versions provide an additional improvement in overall sorting times for
256 and 512 nodes with a speedup of roughly 1.5 for the latter. It is however also apparent
that for more than 128 nodes, the time for partitioning also dominates the runtime for
multi-level variants. Especially for PDMS2 and PDMS3, the runtime is mostly determined by
partitioning during the first round of sorting. Compared to single-level variants, hypercube
quicksort performs worse up to 32 nodes but outperforms both MS1 and PDMS1 otherwise.
With speedups up to four for MS3 and five for PDMS3, multi-level variants are always better,
but a trend is clearly visible, indicating that, for around 1024 to 2048 nodes, they are likely
to be inferior. LCP-based optimizations provide speedups up to 1.12 for LCP-RQuick over
RQuick.

On medium-sized inputs (n/p = 105), the behavior of single- and two-level versions are
similar, with a crossover point between 16 and 64 nodes depending on whether MS2 or PDMS2
is used. A third level never yields an unambiguous improvement and instead clearly degrades
performance for MS3 with slowdowns ranging form 1.2 to 1.5. For the algorithm without
prefix approximation, this can be attributed to the communication overhead caused by an
additional string exchange phase. If PDMSk is used, local sorting contributes the greatest
proportion to overall runtimes and local merging dominates additional sorting levels. Both
observations can be explained by the make-up of DNData instances, with only small parts
of each string needing to be exchanged. For strings of 500 characters and D/N ratio 1/2, all
distinguishing prefixes can be expected to be 256 characters long because of prefix doubling.
Together with LCP compression, the algorithm ends up exchanging less than 15 characters
per string. In either case, partitioning barely contributes to runtimes for multi-level variants.
Hypercube quicksort only outperforms single-level variants on at least 512 nodes. Multi-level
variants are unambiguously superior, with speedups up to five for MS2 and up to seven for
PDMS3 compared to LCP-RQuick on 48 PEs per node. Speedups for LCP-based optimizations,
hovering around 1.1, are similar to the smaller instances.

Finally, for the largest input size (n/p = 106), the disadvantage of single-level merge sort is
less pronounced, as partitioning proportionally accounts for less of the overall runtime. The
two-level version still exhibits better scaling behavior and, at least for PDMS2, never leads to
a slowdown of more than 0.85. Meanwhile, three sorting levels are always worse compared
to two levels, with even more pronounced slowdowns between 1.3 to 1.6 for MS3. It is plainly
visible that the first and second sorting-levels require roughly equal time and are at most
marginally faster than the first level of two-level variants. Interestingly, there is marked
decrease in runtime for MS3 between 4 and 32 nodes which seems to be caused by faster
merging times in the latter case. Given that at 4 nodes the first two levels use only two groups
each, we disregarded this observation. Runs for the hypercube quicksort variants consistently
failed for the largest input size due to memory exhaustion. An implementation with a more
conservative approach to buffer allocations could likely overcome this limitation.

65

6. Experimental Evaluation

Comparing D/N Ratios

The first series of runs has already shown that multi-level merge sort exhibits improved
scaling behavior and that two sorting level are generally preferable for our input sizes. We
now aim to further evaluate performance with a second series of runs using DNData inputs.
Here, the goal is also to gauge the influence of different D/N ratios. Strings are again 500
characters long, with 105 strings per PE. This is equivalent to the medium sized inputs
from the first series of runs, which should provide relevant sorting times and clearly show
the effects of multi-level variants. Global D/N ratios are varied by choosing the parameter
q of DNData inputs in steps of 1/4 which yields five classes with q ∈ {0, 14 ,

1
2 ,

3
4 , 1}. The

preconditions for n, q, and ℓ never permit q = 0 and we actually use the minimum values of
q such that ⌊qℓ⌋ ≥ ⌈logσ(n− 1)⌉ instead. For the remainder of this section we refer directly
to the desired D/N ratio rather than the parameter q to make statements more clear. The
set of evaluated algorithms includes single- and two-level versions of MSk and PDMSk. No
three-level variants are part of this or any other experiment going forward. The additional
level only yields clearly better performance for 512 nodes, which is also not included in any
further experiments due to computing budget constraints. We again evaluate all four variants
of RQuick as an alternative distributed string sorting algorithm. To provide a baseline for
the performance of distributed- compared to shared-memory algorithms, runtimes for pS5

are also included. Here, the number of available cores is left constant (at 64) and the input
size is chosen to match the combined input for a given number of PEs.

Results for the experiment on 4 to 128 nodes (192 to 6144 PEs) are shown in Figure 6.4.
Exact sorting times are listed in Table A.2 in the Appendix. Due to memory limitations,
pS5 could only be run for the equivalent of up to 64 nodes, i.e., 48× 64× 105 strings totaling
153.6GB in characters. As before, the topmost row shows overall sorting times for each
algorithm. The bottom row again shows a breakdown of sorting times for MSk and PDMSk
into major phases; this time only for 4 and 128 nodes. The middle row is new and gives
an approximation for the number of bytes sent per string for the distributed algorithms.
Communication volume is measured on each PE during execution using the size of buffers
passed to MPI routines and summed afterwards to arrive at the final value. Different
rules are applied depending on the used routine: For example, calls to MPI_Alltoall and
MPI_Alltoallv, as well as reduce and scan operations count the size of send buffers on all
PEs. Calls to MPI_Bcast only count the send buffer on the root PE and multiply its size by
p. The result is only an approximation of the actual communication volume for at least two
reasons. Most importantly, the measurements are idealized and do not exactly correspond to
actual communication performed by MPI—especially for broadcast and reduction operations.
Communication of collective exchange operations may be overestimated if send buffers
include data which is already on the correct PE and does not need to be sent. With these
caveats in mind, the resulting data still provides useful insight into performance.

We first consider the results for MSk and PDMSk. The influence of D/N ratio on overall sorting
times is clearly visible, as variants with prefix approximation outperform variants without
on instances with ratio up to 1/2. For ratios 3/4 and 1, the Bloom filter only adds runtime
without providing any benefit as can be seen in the phase breakdowns. Prefix doubling cannot
yield shortened strings for the given input sizes, because the nearest tested prefix length is
512 characters. Instead, LCP compression is highly effective due to the nature of DNData
inputs. As before, multi-level variants outperform single-level counterparts, usually with a

66

6.3. Multi-Level String Merge Sort

0

1

2

3

4

5

6

w
al

lt
im

e/
s

D/N = 0 D/N = 1/4 D/N = 1/2

MS1 MS2 PDMS1 PDMS2 pS5

RQuick LCP-RQuick RQuick∗ LCP-RQuick∗

D/N = 3/4 D/N = 1

4 8

1
6

3
2

6
4

1
2
8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

by
te

s
se

nt
pe

r
st

ri
ng

/
k
B

4 8

1
6

3
2

6
4

1
2
8 4 8

1
6

3
2

6
4

1
2
8 4 8

1
6

3
2

6
4

1
2
8 4 8

1
6

3
2

6
4

1
2
8

4 128
0.0

0.5

1.0

1.5

2.0

2.5

3.0

nodes (p/48)

w
al

lt
im

e/
s

4 128

nodes (p/48)

4 128

nodes (p/48)

4 128

nodes (p/48)

4 128

nodes (p/48)

Local sorting Bloom filter Partitioning String exchange Local merging

MS1 MS2 PDMS1 PDMS2

Figure 6.4.: Median overall sorting times (top row), bytes sent per string (middle row), and runtimes
per sorting phase (bottom row) for the weak-scaling experiment using DNData inputs
with ℓ = 500, n/p = 105, and D/N ∈

{
0, 14 ,

1
2 ,

3
4 , 1
}
. Sorting phases are in order of

execution starting from the bottom.

67

6. Experimental Evaluation

crossover point at 32 nodes. The gap seemingly increases for larger D/N ratios, e.g., for MSk
on 128 nodes the speedups are 1.56 and 1.78 for ratios 0 and 1 respectively. This can partially
be explained if communication volume is considered. On fewer PEs, two-level variants cause
roughly twice the communication volume because string exchange phases dominate. At
D/N = 0, sending 0.5 kB and 1 kB per string is roughly equivalent to exchanging every
string once and twice respectively. Communication increases for single-level variants with
the number of PEs as partitioning requires more samples to be sorted. String exchanges
send fewer characters for larger D/N ratios due to LCP compression, sample sorting remains
roughly constant. A hypercube quicksort implementation with LCP compression could
improve this communication inefficiency.

It is notable that for multi-level variants and large D/N ratios, sorting times are almost
entirely determined by the time required for local sorting. Here, MSD radix sort causes almost
250 redundant 16-bit sorting steps to scan over the padding characters of each string. With
per-phase runtimes of MSk and PDMSk next to each other, it also becomes evident that local
sorting is slightly slower for PDMSk. This discrepancy may be explained with the datatype
used to store strings. For this experiment, PDMSk uses the less efficient representation with
32 bytes per strings, whereas MSk only stores string and length in 16 bytes.

A note on an irregularity in our results. For single-level merge sort with prefix approximation,
i.e., for PDMS1, a discontinuity in overall sorting times is clearly visible in Figure 6.4 for
D/N ratios 3/4 and 1 at 64 nodes. Here, the runtime to sort samples during partitioning
fluctuates, seemingly at random, between “normal” values and ones that are three times
higher (roughly 330ms and 1 s). This exact behavior was observed in multiple experiments,
with two entirely distinct implementations of RQuick, and only at 64 nodes. It only occurs
if prefix approximation is run prior to partitioning even though, with the given parameters,
distinguishing prefixes are equal to the original strings. Thus, in practice, there should not
exist a difference in execution to MS1. We were unable to find the cause of this issue and can
only speculatively attribute it to an MPI performance bug.

Next we consider the results for RQuick. Overall, for the given input sizes, all variants are
slower than basic multi-level merge sort by factors between 2 to 5.4. Runtimes roughly show
the expected logarithmic scaling with the number of PEs, as determined by the factor log p
communication volume (note that the x-axis has a logarithmic scale). Viewed in isolation, it
is clear that, at least for DNData inputs, the LCP-based optimizations are effective, with
LCP variants consistently performing better. With increasing D/N ratio and corresponding
LCP values, the gap between RQuick and LCP-RQuick increases. The reduction in local
work results in a speedup of approximately 1.15 at D/N = 1. Increases in runtimes with
larger D/N ratio are also due to higher local sorting times (cf. phase breakdowns of merge
sort). As expected with long strings, the additional communication caused by sending LCP
values is negligible—roughly 1.5% which closely matches the ratio of bytes per LCP value
to bytes per string (8/500 ≈ 0.016). Interestingly, even for D/N = 0 there exists a small but
measurable improvement in sorting times even though LCP values should be minimal. This
could be down to more favorable memory access behavior of procedures using LCP values, as
fewer cache misses are incurred for accesses to the character arrays. Comparing runs with 48
to runs with 32 PEs per node, i.e., RQuick vs. RQuick∗, there is a clear advantage in more
evenly distributing active PEs over the available nodes. Avoiding the initial redistribution
phase results in a 5% to 10% reduction in communication volume and a speedup between

68

6.3. Multi-Level String Merge Sort

1.3 to 1.4. It may be worth considering system-specific optimizations for the partitioning
phase of merge sort implementations to exploit this observation.

Comparing runtimes of merge sort and quicksort to shared-memory pS5 again shows a
correlation to D/N ratios. Running on a machine with only 64 cores, pS5 outperforms
merge sort without prefix approximation on up to 1536 PEs at D/N = 0. These instances
are particularly difficult for MSk, since almost the entire character arrays still need to be
exchanged, whereas the runtime pS5 is more tightly bounded by the distinguishing prefix.
A slight advantage for pS5 still exists at D/N = 1/4 but only up to around 4 to 8 nodes.
At higher D/N ratios, the shared-memory sorter never outperforms MSk, even on 48 or 96
PEs. If prefix approximation is applied, pS5 only outperforms at least one variant of PDMSk
in three cases, at D/N = 0 and p ≤ 192 (cf. Table A.2). In all other cases, PDMS1 and PDMS2
both yield faster sorting times than pS5 for all tested values of p. In contrast, runtimes of
hypercube quicksort are much less competitive with pS5. For inputs with minimal D/N
ratio, no variant of RQuick manages faster sorting times at any tested value of p. In fact,
pS5 requires roughly the same time to sort 153.6GB using 64 cores, as the fastest variant
of hypercube quicksort needs to sort 9.6GB on 192 PEs. Even extrapolating runtimes of
pS5 to the equivalent of 6144 PEs, the shared-memory algorithm is still expected to be
competitive. The picture improves for higher D/N ratios and all variants of hypercube
quicksort outperform pS5 somewhere between 8 to 64 nodes.

6.3.2. Real-World Strong-Scaling

Our final experiment, to evaluate the performance of multi-level merge sort, uses a strong-
scaling setup with two real-world datasets. The first dataset is derived from Common-
Crawl, by only using the first 100GB. The second and third datasets are Wikipedia
and WikipediaText. Strings are defined using the lines of each dataset. Local string arrays
are obtained by distributing characters over all PEs in equally sized chunks and shifting
overlapping lines to the previous PE. Table 6.3 lists key characteristics, such as the average
string length N/n, average LCP length L/n, and D/N ratio of each dataset. Common-
Crawl contains the largest number of strings, has the shortest average string length, and
highest D/N ratio. Being obtained by removing XML metadata, WikipediaText obviously
contains fewer strings and characters than Wikipedia with higher average string length
and lower D/N ratio. The longest string (i.e., line) in each dataset is over a megabyte
in size. We evaluated sorting times on 4 to 256 nodes for single- and two-level MSk and
PDMSk as well as PDMS▽2 which uses the single-level Bloom filter. At 256 nodes, the 100GB of
CommonCrawl only account for roughly 8.1MB of characters on each PE.

n/109 N/109 N/n L/n D/N ℓ̂/106

CommonCrawl 2.13 100.0 46.98 31.27 .726 1.04
Wikipedia 1.42 97.7 68.59 25.82 .415 2.07
WikipediaText 0.97 81.7 84.21 25.27 .336 2.07

Table 6.3.: Characteristics of real-world datasets used in the strong-
scaling experiment.

69

6. Experimental Evaluation

Results of the experiment are shown in Figure 6.5 and exact sorting times are listed in
Table A.3 in the Appendix. As ever, overall sorting times are provided by the topmost plots
and sorting times per phase are in the bottom row for 8, 32, and 128 nodes. The two middle
rows contain speedups in overall sorting times relative to PDMS1—values greater than 1 mean
shorter runtimes.

We first consider the results for CommonCrawl. Note that PDMS2 failed to sort the input
on 4 node likely due to memory limitations caused by imbalances introduced during the first
string exchange. With 100GB characters in total, each PE holds roughly 500MB which is
already near the limit for 2GB memory per PE. Comparing single- and two-level MSk reveals
no clear advantage for either variant. String exchanges and local merging dominate runtime
in both cases which means that reduced partitioning times do not yield substantial speedups
even at 128 nodes. For PDMSk the difference is more pronounced with two levels clearly
outperforming a single level at a speedup of roughly 1.9. The improvement can mostly be
attributed to the prefix approximation phase which is made clear by looking at runtimes
per sorting phase and also by the overall sorting times for PDMS▽2 . All three variants exhibit
disproportionately high local merging times during the second sorting level. This can be
partially explained by the make-up of CommonCrawl with many, relatively short strings,
and long common prefixes on average (cf. Table 6.3). However, the majority of runtime
(approximately 75%) is actually spent undoing LCP compression after merging. Further
to explaining these runtimes, it should be noted that there exists a significant character
imbalance after sorting for this dataset. For two-level sorting, the maximum number of
characters on any PE is more than 2GB. Compared to the 8MB per PE for an even
distribution, this goes a long way in explaining the high variance in merging times between
PEs. While different sampling and group assignment techniques could improve character
balance, the CommonCrawl dataset inherently contains many duplicated strings—such
as standard legal disclaimers—which are always assigned to a single PE and cannot be
shortened with prefix approximation.

Changing focus to Wikipedia and WikipediaText we see a wider spread in runtimes
between variants. Sorting failed to complete successfully for MS2 on 4 nodes. Clearly, prefix
approximation is more effective for both datasets due to lower D/N ratios. As before, PDMS2
is slightly slower than PDMS1 on fewer PEs (slowdown less than 1.25) but is significantly faster
otherwise (speedup up to 3.9). The poor scaling behavior of the single-level Bloom filter is
even more apparent, with a clear increase in overall runtimes on more than 64 nodes. As a
result, even variants of MSk outperform single-level PDMS1 at 128 nodes. String exchange and
local merging times are also much reduced due to the less repetitive nature of the datasets.
At 128 nodes, sorting times are split roughly equally between initialization (local sorting
and Bloom filter) and distributed sorting phases.

6.3.3. Summary

The preceding experiments show that multi-level MS and PDMS clearly outperform single-
level variants for sufficiently many PEs, and, on at least medium sized inputs, exhibit
desirable scaling behavior. While the gap is more pronounced and occurs at fewer PEs for
smaller inputs, it also exists at the largest tested input size, which is also near the limit of
what is possible on the given system. In our experiments, three-level variants did not yield
clearly better runtimes compared to two levels and generally come with significant overhead.

70

6.3. Multi-Level String Merge Sort

0

4

8

12

16

w
al

lt
im

e/
s

CommonCrawl Wikipedia

MS1 MS2 PDMS1 PDMS2 PDMS▽2

WikipediaText

4 8 16 32 64 128 256
0.0

0.5

1.0

1.5

2.0

2.5

3.0

sp
ee

du
p

4 8 16 32 64 128 256 4 8 16 32 64 128 256

8 32 128
0

1

2

3

4

5

6

nodes (p/48)

w
al

lt
im

e/
s

8 32 128

nodes (p/48)

8 32 128

nodes (p/48)

Local sorting Bloom filter Partitioning String exchange Local merging

MS1 MS2 PDMS1 PDMS2 PDMS▽2

Figure 6.5.: Median overall sorting times (top row), speedup in overall sorting time relative to
MS1 (middle row), and runtimes per sorting phase (bottom row) for the strong-scaling
experiment using real-world inputs. Sorting phases are in order of execution starting
from the bottom.

71

6. Experimental Evaluation

Notably, partitioning still contributes disproportionately for the smallest tested inputs on
more than 256 nodes. On generated DNData inputs, local sorting and merging usually
dominate overall sorting times of multi-level variants for large values of p. For real-world data
sets the results are less clear, though multi-level variants still provide an improvement and
especially the multi-level Bloom filter is highly effective. As expected, hypercube quicksort is
up to multiple times slower than merge sort variants, though LCP optimizations do provide
a small but noticeable improvement.

6.4. Space-Efficient String Sorting

This section comprises an experimental evaluation of space-efficient merge sort. The main
goal is to determine whether the algorithm scales well with regard to input size per PE and
to quantify the influence on overall sorting times of the number of quantiles. As before, we
start, in Section 6.4.1, with experiments using DNDataSE instances with fixed D/N ratio.
Section 6.4.2 focuses on difference cover samples of real-word datasets. The limiting factor
for the experiments in this section are often overall runtimes as they can be expected to
grow at least linearly with the number of characters per PE.

6.4.1. Fixed D/N Ratio Weak-Scaling

The first experiment with space-efficient sorters uses DNDataSE inputs to vary both the
D/N ratio and the number of strings per PE. Varying the D/N ratio can be used to
demonstrate the efficacy of using prefix approximation to reduce the number of required
quantiles and the total work during sorting. Using instances with more strings per PE, i.e.,
increasing the n/p ratio, highlights the capability of space-efficient sorting to handle higher
data volumes. The experiment uses inputs consisting of 2, 4, and 8 million strings per PE,
1000 characters per strings, and with D/N ratios 1/8, 1/4, and 1/2. Recall that DNRatioSE
does not permit D/N ratios greater than 1/2 and that compression and D/N ratios are
proportional. All input sizes would either exceed or entirely fill the available memory of
roughly 2GB per PE in their uncompressed form. For the largest inputs, each PE holds
roughly 8GB of uncompressed data with distinguishing prefixes of roughly 4GB. Figure 6.6
shows results for single- and two-level SEMSk and PDSEMSk on 2 to 64 nodes. Overall sorting
times are listed in Table A.4 in the Appendix. Experiments were not performed with more
PEs, to limit expenditure of computing budget due to high runtimes and the large number
of variants (3× 3× 4).

The results broadly confirm the expected behavior for the given input parameters. Space-
efficient sorting appears to be effective, since the tested implementations are able to process
inputs that would otherwise exceed the available memory. As expected, sorting times increase
at least proportionally to input size which places clear limits on the inputs we can sort
with reasonable runtimes. The longest sorting time in this experiment is almost 170 s to
sort an input which globally contains approximately 24.6TB. Table 6.4 lists the number of
quantiles used during sorting for every combination of D/N and n/p ratio, with and without
prefix approximation. Clearly, SEMSk always yields an equal number of quantiles for the
given inputs—exactly (n/p)× 10−5 in this instance. For PDSEMSk the number could vary, at
least in theory, though this is did not occur and is exceedingly unlikely given the expected

72

6.4. Space-Efficient String Sorting

0

10

20

30

40

w
al

lt
im

e/
s

D/N = 1/8 D/N = 1/4 D/N = 1/2

0

20

40

60

80

w
al

lt
im

e/
s

2 4 8 16 32 64

0

40

80

120

160

nodes (p/48)

w
al

lt
im

e/
s

2 4 8 16 32 64

nodes (p/48)

SEMS1 SEMS2 PDSEMS1 PDSEMS2

2 4 8 16 32 64

local sorting

nodes (p/48)

n
/
p
=

2
×

1
0
6

n
/
p
=

4
×

1
0
6

n
/
p
=

8
×

1
0
6

Figure 6.6.: Median overall sorting times for the weak-scaling experiment using
DNDataSE inputs with ℓ = 1000, D/N ∈

{
1
8 ,

1
4 ,

1
2

}
, and n/p ∈

{2, 4, 8}×106. Sorting requests quantiles of size 100×220 characters.
Horizontal lines indicate average local sorting times.

distinguishing prefix size for DNDataSE and the probability of false positives with the used
hash function.

We first compare results for different input parameters before focusing on individual variants
of the algorithm. Per doubling of the number of strings per PE, the sorting times for each
algorithm and at every D/N ratio increase by factors between 1.97 to 2.26. Interestingly,
slowdown factors are consistently higher for variants with prefix approximation (median
slowdown 2.08 compared to 2.14) even though the lengths of computed distinguishing prefixes
barely vary between n/p ratios. For increasing D/N ratios, average lengths are 172, 342, and
667 characters. Observe that prefix doubling overestimates the actual size of distinguishing
prefixes. Comparing relative runtimes for varying D/N ratios reveals a somewhat different
picture. As can be expected, performance of SEMSk is generally less affected by increases in
D/N ratio. SEMS1 yields average slowdowns 1.15 (maximum 1.27) per doubling of D/N ratio
and for every n/p ratio, while SEMS2 only exhibits slowdowns of 1.01 on average (maximum

73

6. Experimental Evaluation

D/N = 1/8 1/4 1/2

n/p SEMSk PDSEMSk SEMSk PDSEMSk SEMSk PDSEMSk

2× 106 20 4 20 7 20 14
4× 106 40 7 40 14 40 27
8× 106 80 14 80 28 80 54

Table 6.4.: Number of quantiles used during sorting for the weak-scaling experiment
with DNDataSE inputs. Values are identical for every run and all values
of p and k.

1.06). The difference is at least partially due to the single-level variant being proportionally
more affected by increased local work of RQuick. Slowdowns are between 1.61 and 1.97
(average 1.72) for PDSEMS1 and slightly lower for PDSEMS2 (1.46–1.75, average 1.65).

Shifting focus to the results for individual algorithms reveals the recurring trade-off between
different variants of merge sort. First, note that local sorting contributes significantly to
overall sorting times, as can be expected given the size of distinguishing prefixes involved.
For PDSEMSk, local sorting local makes up more than 50% of overall sorting in most cases and
never less than 40%. Generally, variants with prefix approximation clearly outperform those
without. The relative runtimes clearly correlate to D/N ratio with much reduced speedups
of PDSEMSk over SEMSk for larger ratios, as average approximated prefixes comprise a greater
proportion of each string. This observation is reinforced if we again consider Table 6.4 and
assume that the expected cost of sorting a single quantile for a fixed number of PEs is
roughly constant. With higher D/N ratio, the relative numbers of quantiles—and thus the
expected sorting time—converge. There also exists a relationship between the D/N ratio
and relative runtimes of single- and two-level variants roughly opposite to the correlation
with prefix approximation. For instances with small ratios less than 1/2, multi-level variants
never provide a benefit compared to the base variants for the tested PE numbers. With
D/N = 1/2 at 64 nodes, we observe speedups of roughly 1.22 for SEMS2 and 1.15 for PDSEMS2.
For SEMSk, the trend is already apparent at 1/4. The observed behavior is likely due to LCP
compression being less effective at lower D/N ratios.

We also performed an experiment to gauge the influence of configured quantile sizes on overall
sorting times. The setup is mostly identical to the preceding experiment—DNDataSE
inputs with strings of length 1000, n/p = 4× 106 string per PE, and D/N ratios 1/8, 1/4,
and 1/2. Runtimes were only measured for single-level PDSEMS1 to provide a reasonable range
for the number of quantiles, but general trends should translate to other variants too. Runs
for the preceding experiment were all performed by requesting quantiles of size 100MiB,
which we increased and decreased by factors 2 and 4—yielding sizes 25, 50, 100, 200, and
400MiB. Sorting quantiles significantly larger than 400MiB is not feasible with the available
memory. Results for the experiment are shown in Figure 6.7 for 1 to 64 nodes. Runtimes
using quantiles less than 100MiB are generally worse for all D/N ratios. While there are
small speedups at low PE counts, the overhead of additional partitioning phases clearly
shows for higher values of p. At D/N = 1/2 the algorithm requires 54 and 107 quantiles,
resulting in slowdowns up to 1.24 and 1.71. Results are not as clear for quantiles larger than
100MiB. While we observe noticeable speedups for larger PE counts (up to 1.14), at lower

74

6.4. Space-Efficient String Sorting

1 2 4 8 16 32 64

0.6

0.7

0.8

0.9

1.0

1.1

1.2

nodes (p/48)

sp
ee

du
p

D/N = 1/8

1 2 4 8 16 32 64

nodes (p/48)

D/N = 1/4

X = 25MiB X = 50MiB X = 100MiB X = 200MiB X = 400MiB

1 2 4 8 16 32 64

nodes (p/48)

D/N = 1/2

n
/
p
=

4
×

1
0
6

Figure 6.7.: Speedup in overall sorting time for the weak-scaling experiment with
PDSEMS1 requesting quantiles of local size

{
1
4 ,

1
2 , 1, 2, 4

}
× 222 bytes on

DNDataSE inputs with ℓ = 1000, D/N ∈
{
1
8 ,

1
4 ,

1
2

}
, and n/p = 4× 106.

values the opposite is true with slowdowns up to 1.1. For the following experiment with
real-world datasets, we resolve to use quantiles of 100MiB as a safe choice. Larger values
may often be possible, but can become impractical due to the non-uniform nature of input
distribution, where local quantile sizes vary significantly and are often much larger than the
configured value.

6.4.2. Difference Cover Weak-Scaling

With the final experiment, we aim to evaluate the performance of space-efficient sorting
on realistic inputs. As a secondary goal, the experiment should also try to approach the
limit of input sizes that can reasonably be sorted on the given system. To this end, we use
difference covers samples of real-word datasets for generated difference covers modulo 512,
1024, 2048, 4096, and 8192 (cf. Section 6.2.3). The experiment uses a weak-scaling setup,
where a text, consisting of a prefix of each dataset, is distributed over PEs in fixed-size
chunks and a difference cover is constructed as previously described. Inputs are limited
to 100MB and 200MB chunks per PE on up to 256 nodes for the smaller size and 128
nodes for the larger. These parameters are constrained by several factors: Most immediate
is the problem of obtaining and storing sufficiently large and suitable datasets. With 256
nodes and 100MB per PE, the experiment requires a dataset consisting of almost 1.23TB
and the same for 128 nodes at 200MB. We use CommonCrawl and WikipediaFull as
introduced in Section 6.2.3. Note that 2.5TB were obtained for both datasets which could
facilitate a further doubling of p or the size of text chunks, but we elected not to perform
corresponding experiments due to unreasonably high running times. Nevertheless, with the
given number of characters per PE, each uncompressed local character array contains 11.2GB
and 22.4GB for the largest difference cover. At 256 and 128 nodes respectively, this yields
global uncompressed character arrays of size 137.6TB. The experiment only includes multi-
level variants, since runs are performed beyond 64 nodes, which makes single-level algorithms
impractical (cf. Figure 6.6). Measurements of variants without prefix approximation are
limited to 100MB and up to 128 nodes. All runs use a combination of built-in all-to-all

75

6. Experimental Evaluation

exchanges and direct messaging, where the former is used if possible and the latter serves
as a fallback if the total number of elements sent to or received from any PE exceeds
the numeric limits of a 32-bit C int. Using only native all-to-all exchanges, we would
regularly exceed this limit and encounter numeric overflows as a result. Measurement with
CommonCrawl were preformed without LCP compression, because it proved ineffective;
runs with WikipediaFull do use LCP compression. We elaborate on the reason for this
difference later in this section. Runtimes were also measured for pS5, to gauge the efficiency
of distributed- compared to shared-memory sorting for texts up to 64×48×100MB (roughly
307GB)—equivalent to 64 and 32 nodes respectively.

1 2 4 8 16 32 64 128 256
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

w
al

lt
im

e/
m
in

CommonCrawl

1 2 4 8 16 32 64 128 256

WikipediaFull

1 2 4 8 16 32 64 128
0

1

2

3

4

5

6

nodes (p/48)

w
al

lt
im

e/
m
in

1 2 4 8 16 32 64 128

nodes (p/48)

v = 512 v = 1024 v = 2048 v = 4096 v = 8192

SEMS2 PDSEMS2 pS5

M
/
p
=

1
0
0
M
B

M
/
p
=

2
0
0
M
B

Figure 6.8.: Median overall sorting times for the weak-scaling experiment using
difference cover samples modulo v ∈

{
29, 210, 211, 212, 213

}
of real-

world datasets with chunks of M/p = 100MB per PE.

Figure 6.8 shows results for the experiment with CommonCrawl on the left, Wikipedi-
aFull on the right, 100MB at the top, and 200MB below. Overall sorting times are listed in
Table A.5 in the Appendix. It is immediately obvious that the two datasets yield remarkably
different results. Sorting times for CommonCrawl broadly increase with the number of
PEs and the size of difference covers. In comparison, absolute runtimes for WikipediaFull
are significantly higher in general and exhibit much more unpredictable scaling behavior.

76

6.4. Space-Efficient String Sorting

M/100MB CommonCrawl WikipediaFull

/48 /96 512 1024 2048 4096 8192 512 1024 2048 4096 8192

1 — .189 .141 .105 .077 .055 .983 .962 .918 .824 .657
2 1 .237 .178 .134 .100 .074 .982 .961 .914 .814 .642
4 2 .304 .231 .173 .128 .093 .978 .951 .895 .784 .603
8 4 .382 .298 .226 .166 .118 .979 .955 .901 .795 .620

16 8 .454 .372 .291 .216 .154 .975 .945 .884 .767 .587
32 16 .504 .431 .353 .272 .199 .971 .938 .872 .751 .570
64 32 .512 .439 .361 .281 .208 .973 .942 .878 .761 .583

128 64 .518 .445 .368 .288 .216 .972 .939 .874 .755 .575
256 128 .522 .449 .373 .296 .224 .972 .940 .876 .757 .579

Table 6.5.: List ofD/N ratios for difference cover samples modulo v ∈
{
29, 210, 211, 212, 213

}
of real-word datasets for M equal to multiples of 48×100MB and 48×200MB.

In an attempt to explain these discrepancies, we computed D/N ratios of difference cover
samples at every used text size. Table 6.5 lists the resulting ratios for CommonCrawl and
WikipediaFull. Values in the two leftmost columns correspond to the number of PEs
at 100MB and 200MB chunks. Both datasets can, in some sense, be classified as highly
repetitive based on the measured ratios.

We first consider results for CommonCrawl in more detail. Note that runs with difference
cover sample modulo 512 for 200MB chunks on more than one node were consistently
terminated by the job scheduler. While no specific reason was forthcoming, we generally
observed this behavior in cases of memory exhaustion. Also note the “bump” in runtimes for
SEMS2 between one and two nodes, which is due to the algorithm using only one sorting level
at 48 PEs and two levels at 96 PEs (cf. Section 6.2.2). As already pointed out, overall sorting
times clearly correlate to the difference cover size, with larger difference covers resulting in
higher runtimes. Looking only at the results for SEMS2, each doubling in difference cover size
yields average slowdowns between 1.31 to 1.38. This lines up closely with the increases in
compression ratio between difference covers, e.g., going from v = 4096 with 82 members
to v = 8192 with 112 members is a factor 1.37. With average slowdowns between 1.1 and
1.17, the relation is less pronounced for PDMS2, since sorting times are also dependent on the
length of approximate prefixes. Interestingly, results for pS5 broadly exhibit the opposite
correlation between the size of difference cover and sorting times. Being a shared-memory
algorithm, pS5 has no need to exchange strings and therefore sorting times are much less
determined by the total (character) input size. Instead, distinguishing prefix sizes are of
much greater importance, and thus longer strings from samples for larger difference covers
are less detrimental to performance, due to their lower D/N ratios.

For the CommonCrawl dataset, prefix approximation is generally highly effective. This
can be sufficiently explained, considering the D/N ratios listed in Table 6.5. As one would
expect from shorter strings, samples for smaller difference covers have higher D/N ratios,
with only v = 512 exceeding 1/2 while v = 8192 is never more than 1/4 on the tested
input sizes. For all difference covers, D/N ratios steadily increase as more chunks of the
dataset are used. This is primarily due to the semi-random make-up of CommonCrawl,

77

6. Experimental Evaluation

where duplicate strings can be expected to be spread out evenly over the entire dataset.
As previously mentioned, duplicates often consists of legal disclaimers, policies, and similar
standard passages, where little local coherence exists. From higher D/N ratios follow longer
approximated prefixes, which directly leads to more quantiles needing to be sorted. For
100MB chunks, the average number of quantiles roughly doubles (15⇝ 34) for v = 512 and
more than triples (22⇝ 72) for v = 8192 going from one node to 256 nodes.

Focusing instead on results for WikipediaFull, none of the preceding observations seem to
apply. There is no clear correlation between difference cover size and sorting times, nor a
steady increase for larger values of p. This can again be explained with the D/N ratios from
Table 6.5. Overall, D/N ratios are much—in fact strictly—greater than for CommonCrawl
and never fall below 0.57. For v = 512, distinguishing prefixes are virtually equal to the
original strings and hence, sorting times of SEMS2 and PDSEMS2 barely differ. The same
is true, to a similar extent, for the difference covers modulo 1024, 2048, and 4096. Only
v = 8192 shows a significant speedup for PDSEMS2 over SEMS2. Running entirely contrary to
CommonCrawl, D/N ratios actually slightly decrease for samples of larger chunks. This
is again an inherent characteristic of the dataset. Whereas CommonCrawl consists of a
mostly random sequence of web pages, WikipediaFull has high local coherence where
the entire edit history for a page is listed consecutively. Interestingly, this also means that
LCP compression is much more effective for WikipediaFull because common prefixes are
likely to be located on the same PE before the first string exchange. Regardless, using larger
chunks of the dataset is unlikely to significantly increase the number of duplicates or the
D/N ratio.

A note on the conspicuous jump of sorting times at 128 nodes for difference covers of
WikipediaFull modulo 2048 and 4096 and chunk size 100MB. Here, runtimes increase by
45.4 s (37.6%) and 66.3 s (53.2%) respectively for a single doubling of p. Further investigation
of the results revealed that this is closely matched by increases in maximum local sorting
times (40.8 s and 57.1 s). We can only speculate that a section of WikipediaFull, which
is first part of the input here, is especially repetitive. There also exist significant increases
in local sorting times going from 16 to 32 and 32 to 64 nodes whereas they are otherwise
fairly stable. In general, D/N ratios no longer decrease consistently at 32 nodes and above
(cf. Table 6.5).

6.4.3. Summary

Overall, our experiments demonstrate that space-efficient string sorting is effective in increas-
ing the scalability of distributed string sorting, by allowing for a higher number of characters
per PE. We have shown that it is possible to handle inputs with up to 22.4GB uncompressed
characters on a system with only 2GB memory. This is more than a twentyfold improvement
compared to a normal distributed sorting algorithm, where a realistic implementation, to
allow for send and receive buffers, can only be expected to be capable of sorting inputs up to
1GB with the available memory. Other than proportionally higher sorting times, there is no
reason to expect that further increases in local input size should not be achievable. It is also
clear that the number of quantiles plays a crucial role in determining sorting performance.
Aside from aiming to configure quantiles as large as possible, this also means that prefix
approximation can be especially effective at reducing sorting times.

78

7. Conclusion

In this thesis, we have presented two new techniques to increase the scalability of string sorting
algorithms in distributed-memory parallel systems. By applying a multi-level approach [6]
to existing multi-way string merge sort algorithms MS and PDMS [11], we have been
able to reduce the minimum number of characters per PE at which both algorithms are
efficient. This makes it feasible to sort a given input using more PEs without incurring
disproportionate costs for partitioning. At least for multi-level MS, we were able to formally
quantify this improvement under a number of simplifying assumptions. In order to provide
bounds on workload imbalance in the multi-level context, we have also slightly generalized
existing regular sampling techniques, as well as adapting group assignment methods to allow
character-based worst-case guarantees. We also proposed a multi-level Bloom filter as an
approach to achieve sublinear latency for prefix approximation. In our experiments we were
able to demonstrate that the multi-level algorithms generally outperform their single-level
counterparts for large values of p. On up to 24 576 PEs, we observed speedups up to five
over the closest existing competitors. While multi-level merge sort proved especially effective
for synthetic instances in a weak-scaling setup, we nonetheless observed an improvement for
real-word datasets in a strong-scaling experiment.

The second primary contribution of this thesis is to introduce the concept of space-efficient
string sorting for distributed systems. We proposed an algorithmic framework, which accepts
a deduplicated representation of string arrays, partitions inputs into smaller parts of limited
size so-called quantiles, and only works on a single quantile at a time. By not having to
materialize the entire input at once, it is possible to derive sorted (inverse) permutations for
string arrays that would otherwise not fit into the available memory. The result no longer
fulfills the strictest definition of a sorting algorithm, yet still solves a closely related problem.
With the aforementioned distributed multi-level merge sort algorithms to sort quantiles, and
by applying some additional optimizations, as well as optional prefix approximation, we
obtained a family of algorithms which we collective refer to as space-efficient merge sort
(SEMS). In our experiments, an implementation of SEMS proved effective at sorting inputs of
uncompressed size up to eleven times greater than the actually available memory per PE. We
furthermore proposed an application for space-efficient sorting as a subroutine to suffix array
construction with DCX. To demonstrate the viability of SEMS in this context, we performed
experiments using large difference cover samples for real-world datasets. Space-efficient
sorting seems particularly well-suited for such instances, given their high level of overlap
between strings and corresponding compression ratio.

As a tertiary result, we also reevaluated hypercube quicksort for small string arrays, by
applying LCP-based optimizations to local merging and to the process of locating the splitter.
The resulting variant—LCP-RQuick—cannot overcome the basic communication inefficiency
of the algorithm, but did provide a slight improvement in practice for inputs with long
common prefixes.

79

7. Conclusion

7.1. Future Work

Because distributed string sorting algorithms have only received limited attention so far,
there exists significant room for future work on the topic. First of all, the multi-level string
merge sort algorithms developed in this thesis could benefit from a thorough worst-case
analysis to simplify some of the more convoluted runtime bounds. In the context of PDMS,
it is still an open question whether our multi-level Bloom filter actually manages to achieve
the conjectured runtime, and whether it, in fact, provides any benefit over a solution using
regular hypercube or grid all-to-all exchanges. Originally intended as part of this thesis,
random (character-based) sampling techniques still require theoretical analysis to determine
whether they could be used as part of the partitioning algorithm to obtain improved runtime
guarantees in expectation. While not included in the experimental evaluation, we noticed
that multi-level variants performed especially poorly using character-based regular sampling
on real-world data sets. In our assessment, this is due to a disproportionate number of
strings being sent to the same PE by the partitioning algorithm. Incurring string imbalances
in the order of multiple magnitudes in exchange for balanced character arrays seems to be
an unfavorable trade-off, since it introduces high variance in sorting times between PEs on
subsequent sorting levels. Future work could attempt to reconcile this gap between theory
and practice, by acknowledging the importance of the number of strings in determining
performance.

The distribution of strings relative to their lexicographical order poses a significant hindrance
for the analysis of space-efficient string sorting. Skewed input distributions directly degrade
the algorithm’s performance, increasing latency and the cost for partitioning by up to an
additional factor p, and can cause the algorithm to fail outright if too many strings are
concentrated on a single PE. In this thesis we made strong assumption about the uniformity
of input distributions in order to apply a Chernoff bound and thereby show that the algorithm
succeeds with high probability for a very limited range of inputs and parameters. We also have
to contend with the additional imbalance introduced by partitioning via regular sampling.
A more extensive analysis could seek to better classify and describe inputs that can be
processed using space-efficient sorting with a particular set of parameters. For practical
applications, the implementation of SEMS could be improved with special handling for
quantiles over a certain threshold, for example, by recursive partitioning or by redistributing
strings from overpopulated PEs to those with free capacity.

Building on the foundations laid in this thesis, a full-fledged distributed suffix sorter based
on DCX could be implemented in the future and would require additional effort in several
aspects: First, the ranks computed during sorting need to be reordered to create the supertext
required for recursive sorting. Next, we need to consider the aforementioned recursive sorting
step, which requires at least a different variant of SEMS or, more likely, an altogether
distinct algorithm. Finally, the merging step—to sort sample and nonsample suffixes—is
more involved in the general case of v ̸= 3 and requires work to be implemented efficiently.

In Section 1 we already discussed several improvements that could be applied to LCP-RQuick.
From a theoretical standpoint, bounding the local work for merging and using character-based
median approximation could yield improved runtime guarantees. More practically speaking,
prefix approximation and LCP compression could prove useful in reducing the algorithm’s
communication inefficiency.

80

Bibliography

[1] Lars Arge et al. “On Sorting Strings in External Memory (Extended Abstract)”. In:
Proceedings of the 29th Annual ACM Symposium on Theory of Computing. ACM, May
1997, pages 540–548. doi: 10.1145/258533.258647.

[2] Michael Axtmann. “Robust Scalable Sorting”. PhD thesis. Karlsruhe Institute of
Technology (KIT), May 2021. doi: 10.5445/IR/1000136621.

[3] Michael Axtmann and Peter Sanders. “Robust Massively Parallel Sorting”. In: 2017
Proceedings of the Meeting on Algorithm Engineering and Experiments (ALENEX).
Proceedings. SIAM, January 2017, pages 83–97. doi: 10.1137/1.9781611974768.7.

[4] Michael Axtmann, Armin Wiebigke, and Peter Sanders. “Lightweight MPI Communi-
cators with Applications to Perfectly Balanced Quicksort”. In: Proceedings of the 2018
IEEE International Parallel and Distributed Processing Symposium (IPDPS). May
2018, pages 254–265. doi: 10.1109/IPDPS.2018.00035.

[5] Michael Axtmann et al. Engineering In-Place (Shared-Memory) Sorting Algorithms.
Computing Research Repository (CoRR). September 2020. arXiv: 2009.13569.

[6] Michael Axtmann et al. “Practical Massively Parallel Sorting”. In: Proceedings of the
27th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA). ACM,
June 2015, pages 13–23. doi: 10.1145/2755573.2755595.

[7] Jon L. Bentley and Robert Sedgewick. “Fast Algorithms for Sorting and Searching
Strings”. In: Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms. SIAM, January 1997, pages 360–369. isbn: 0-89871-390-0.

[8] Timo Bingmann. “Scalable String and Suffix Sorting: Algorithms, Techniques, and
Tools”. PhD thesis. Karlsruhe Institute of Technology (KIT), July 2018. doi: 10.5445/
IR/1000085031.

[9] Timo Bingmann. TLX: Collection of Sophisticated C++ Data Structures, Algorithms,
and Miscellaneous Helpers. 2018.

[10] Timo Bingmann, Andreas Eberle, and Peter Sanders. “Engineering Parallel String
Sorting”. In: Algorithmica 77.1 (January 2017), pages 235–286. doi: 10.1007/s00453-
015-0071-1.

[11] Timo Bingmann, Peter Sanders, and Matthias Schimek. “Communication-Efficient
String Sorting”. In: 2020 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). May 2020, pages 137–147. doi: 10.1109/IPDPS47924.2020.
00024.

[12] Burton H. Bloom. “Space/Time Trade-Offs in Hash Coding with Allowable Errors”. In:
Communications of the ACM 13.7 (July 1970), pages 422–426. doi: 10.1145/362686.
362692.

81

https://doi.org/10.1145/258533.258647
https://doi.org/10.5445/IR/1000136621
https://doi.org/10.1137/1.9781611974768.7
https://doi.org/10.1109/IPDPS.2018.00035
https://arxiv.org/abs/2009.13569
https://doi.org/10.1145/2755573.2755595
https://doi.org/10.5445/IR/1000085031
https://doi.org/10.5445/IR/1000085031
https://doi.org/10.1007/s00453-015-0071-1
https://doi.org/10.1007/s00453-015-0071-1
https://doi.org/10.1109/IPDPS47924.2020.00024
https://doi.org/10.1109/IPDPS47924.2020.00024
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692

Bibliography

[13] Charles J. Colbourn and Alan C. H. Ling. “Quorums from Difference Covers”. In:
Information Processing Letters 75.1 (2000), pages 9–12. doi: 10.1016/S0020-0190(00)
00080-6.

[14] Andrew Davidson et al. “Efficient Parallel Merge Sort for Fixed and Variable Length
Keys”. In: 2012 Innovative Parallel Computing (InPar). May 2012, pages 1–9. doi:
10.1109/InPar.2012.6339592.

[15] Jonas Ellert, Johannes Fischer, and Nodari Sitchinava. “LCP-Aware Parallel String
Sorting”. In: 26th International European Conference on Parallel and Distributed
Computing (Euro-Par). LNCS. Springer, 2020, pages 329–342. doi: 10.1007/978-3-
030-57675-2_21.

[16] Rolf Fagerberg, Anna Pagh, and Rasmus Pagh. “External String Sorting: Faster and
Cache-Oblivious”. In: 23rd Annual Symposium on Theoretical Aspects of Computer
Science (STACS). LNCS. Springer, 2006, pages 68–79. doi: 10.1007/11672142_4.

[17] Johannes Fischer and Volker Heun. “Theoretical and Practical Improvements on
the RMQ-Problem, with Applications to LCA and LCE”. In: Combinatorial Pattern
Matching. LNCS. Springer, 2006. doi: 10.1007/11780441_5.

[18] Johannes Fischer and Florian Kurpicz. “Lightweight Distributed Suffix Array Construc-
tion”. In: 2019 Proceedings of the Meeting on Algorithm Engineering and Experiments
(ALENEX). SIAM, January 2019, pages 27–38. doi: 10.1137/1.9781611975499.3.

[19] Pierre Fraigniaud and Emmanuel Lazard. “Methods and Problems of Communication
in Usual Networks”. In: Discrete Applied Mathematics 53.1 (September 1994), pages 79–
133. doi: 10.1016/0166-218X(94)90180-5.

[20] Alexandros V. Gerbessiotis and Leslie G. Valiant. “Direct Bulk-Synchronous Parallel
Algorithms”. In: Journal of Parallel and Distributed Computing 22.2 (August 1994),
pages 251–267. doi: 10.1006/jpdc.1994.1085.

[21] Torben Hagerup and Christine Rüb. “A Guided Tour of Chernoff Bounds”. In: Infor-
mation Processing Letters 33.6 (February 1990), pages 305–308. doi: 10.1016/0020-
0190(90)90214-I.

[22] Torben Hagerup and Christine Rüb. “Optimal Merging and Sorting on the EREW
PRAM”. In: Information Processing Letters 33.4 (December 1989), pages 181–185. doi:
10.1016/0020-0190(89)90138-5.

[23] Hardware of SuperMUC-NG Phase 1. Leibniz-Rechenzentrum (LRZ). url: https:
//doku.lrz.de/hardware-of-supermuc-ng-phase-1-11482553.html (visited on
01/19/2024).

[24] “KaMPIng: Karlsruhe MPI next Generation”. Unpublished software. Institute of Theo-
retical Informatics, Algorithm Engineering – Karlsruhe Institute of Technology, 2024.

[25] Juha Kärkkäinen and Tommi Rantala. “Engineering Radix Sort for Strings”. In: String
Processing and Information Retrieval (SPIRE). LNCS. Springer, 2009, pages 3–14. doi:
10.1007/978-3-540-89097-3_3.

[26] Juha Kärkkäinen and Peter Sanders. “Simple Linear Work Suffix Array Construction”.
In: Automata, Languages and Programming. LNCS. Springer, 2003, pages 943–955.
doi: 10.1007/3-540-45061-0_73.

82

https://doi.org/10.1016/S0020-0190(00)00080-6
https://doi.org/10.1016/S0020-0190(00)00080-6
https://doi.org/10.1109/InPar.2012.6339592
https://doi.org/10.1007/978-3-030-57675-2_21
https://doi.org/10.1007/978-3-030-57675-2_21
https://doi.org/10.1007/11672142_4
https://doi.org/10.1007/11780441_5
https://doi.org/10.1137/1.9781611975499.3
https://doi.org/10.1016/0166-218X(94)90180-5
https://doi.org/10.1006/jpdc.1994.1085
https://doi.org/10.1016/0020-0190(90)90214-I
https://doi.org/10.1016/0020-0190(90)90214-I
https://doi.org/10.1016/0020-0190(89)90138-5
https://doku.lrz.de/hardware-of-supermuc-ng-phase-1-11482553.html
https://doku.lrz.de/hardware-of-supermuc-ng-phase-1-11482553.html
https://doi.org/10.1007/978-3-540-89097-3_3
https://doi.org/10.1007/3-540-45061-0_73

[27] Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt. “Linear Work Suffix Array
Construction”. In: Journal of the ACM 53.6 (2006), pages 918–936. doi: 10.1145/
1217856.1217858.

[28] Wai-Shing Luk and Tien-Tsin Wong. “Two New Quorum Based Algorithms for Dis-
tributed Mutual Exclusion”. In: Proceedings of 17th International Conference on Dis-
tributed Computing Systems. 1997, pages 100–106. doi: 10.1109/ICDCS.1997.597862.

[29] Peter M. McIlroy, Keith Bostic, and M. Douglas McIlroy. “Engineering Radix Sort”.
In: Computing Systems 6 (1993), pages 5–27.

[30] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard Version
4.0. manual. November 2023. url: https://www.mpi-forum.org/docs/mpi-4.0/
mpi40-report.pdf.

[31] Alistair Moffat and Andrew Turpin. Compression and Coding Algorithms. Springer
US, 2002. doi: 10.1007/978-1-4615-0935-6.

[32] Peter Sanders and Thomas Hansch. “Efficient Massively Parallel Quicksort”. In: Solv-
ing Irregularly Structured Problems in Parallel. Volume 1253. LNCS. Springer, 1997,
pages 13–24. doi: 10.1007/3-540-63138-0_2.

[33] Peter Sanders, Sebastian Schlag, and Ingo Müller. “Communication Efficient Algorithms
for Fundamental Big Data Problems”. In: 2013 IEEE International Conference on Big
Data. October 2013, pages 15–23. doi: 10.1109/BigData.2013.6691549.

[34] Peter Sanders, Jochen Speck, and Jesper Larsson Träff. “Two-Tree Algorithms for Full
Bandwidth Broadcast, Reduction and Scan”. In: 14th European PVM/MPI Users Group
Meeting 35.12 (December 2009), pages 581–594. doi: 10.1016/j.parco.2009.09.001.

[35] Peter Sanders et al. Sequential and Parallel Algorithms and Data Structures: The Basic
Toolbox. Springer International Publishing, 2019. doi: 10.1007/978-3-030-25209-0.

[36] Matthias Schimek. “Distributed String Sorting Algorithms”. Master’s thesis. Karlsruhe
Institute of Technology (KIT), July 2019. doi: 10.5445/IR/1000098432.

[37] Hanmao Shi and Jonathan Schaeffer. “Parallel Sorting by Regular Sampling”. In:
Journal of Parallel and Distributed Computing 14.4 (April 1992), pages 361–372. doi:
10.1016/0743-7315(92)90075-X.

83

https://doi.org/10.1145/1217856.1217858
https://doi.org/10.1145/1217856.1217858
https://doi.org/10.1109/ICDCS.1997.597862
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://doi.org/10.1007/978-1-4615-0935-6
https://doi.org/10.1007/3-540-63138-0_2
https://doi.org/10.1109/BigData.2013.6691549
https://doi.org/10.1016/j.parco.2009.09.001
https://doi.org/10.1007/978-3-030-25209-0
https://doi.org/10.5445/IR/1000098432
https://doi.org/10.1016/0743-7315(92)90075-X

A. Appendix

A.1. Running Times – Multi-Level Merge Sort

wall time/s

p = 96 192 384 768 1536 3072 6144 12 288 24 576

n/p = 104

MS1 0.040 0.051 0.067 0.103 0.220 0.455 0.911 1.170 1.988
MS2 0.056 0.057 0.059 0.067 0.070 0.079 0.127 0.175 0.387
MS3 0.056 0.090 0.091 0.092 0.095 0.107 0.132 0.165 0.269
PDMS1 0.040 0.042 0.055 0.104 0.203 0.434 1.968 3.217 7.086
PDMS2 0.037 0.037 0.038 0.049 0.050 0.059 0.083 0.148 0.299
PDMS3 0.039 0.048 0.047 0.050 0.055 0.061 0.079 0.109 0.199

RQuick 0.193 0.254 0.293 0.332 0.374 0.445 0.502 0.591 0.657
LCP-RQuick 0.171 0.228 0.270 0.303 0.342 0.407 0.460 0.563 0.637
RQuick∗ 0.230 0.261 0.295 0.324 0.369 0.424 0.476 0.567 0.590
LCP-RQuick∗ 0.194 0.222 0.250 0.276 0.309 0.358 0.411 0.491 0.509

n/p = 105

MS1 0.603 0.646 0.679 0.811 0.831 1.071 1.766 2.890 5.550
MS2 0.838 0.827 0.830 0.842 0.920 0.966 1.024 1.053 1.228
MS3 0.836 1.225 1.215 1.136 1.148 1.199 1.276 1.342 1.511
PDMS1 0.570 0.600 0.605 0.647 0.754 0.994 1.653 3.723 11.393
PDMS2 0.650 0.628 0.632 0.646 0.668 0.681 0.724 0.788 0.948
PDMS3 0.655 0.781 0.760 0.727 0.729 0.736 0.763 0.807 0.903

RQuick 2.179 2.888 3.298 3.701 4.140 4.884 5.403 6.266 6.888
LCP-RQuick 1.968 2.647 3.043 3.408 3.793 4.493 4.995 5.798 6.384
RQuick∗ 1.809 2.157 2.339 2.592 2.900 3.363 3.892 4.468 4.699
LCP-RQuick∗ 1.723 1.887 2.141 2.339 2.583 2.930 3.393 4.043 4.223

n/p = 106

MS1 4.849 5.204 5.440 5.628 5.790 6.575 8.236 9.346 12.336
MS2 7.385 7.180 7.143 7.207 7.368 7.848 8.402 8.312 8.421
MS3 7.389 11.360 11.020 10.316 10.332 10.512 11.447 11.430 11.832
PDMS1 4.560 4.631 4.773 4.829 5.123 5.333 6.408 8.533 15.213
PDMS2 5.387 5.235 5.234 5.301 5.393 5.423 5.456 5.615 5.845
PDMS3 5.377 6.654 6.444 6.146 6.185 6.112 6.180 6.329 6.546

Table A.1.: Median overall sorting times for the weak-scaling experiment using DNData inputs
with ℓ = 500, D/N = 1/2, and n/p ∈ {104, 105, 106}. Runtime of the best variant is
printed bold for every combination of p and n/p ratio per family of algorithms.

85

A. Appendix

wall time/s

p = 48 96 192 384 768 1536 3072 6144

D/N = 0

MS1 0.265 0.342 0.412 0.466 0.541 0.735 0.881 1.410
MS2 0.265 0.717 0.694 0.714 0.807 0.796 0.861 0.986
PDMS1 0.097 0.097 0.105 0.129 0.134 0.173 0.230 0.406
PDMS2 0.087 0.131 0.129 0.133 0.143 0.153 0.170 0.191

RQuick 0.916 1.528 2.104 2.481 2.876 3.390 3.829 4.647
LCP-RQuick 0.880 1.492 2.018 2.402 2.777 3.288 3.715 4.515
RQuick∗ 1.187 1.444 1.537 1.807 1.978 2.349 2.716 3.210
LCP-RQuick∗ 1.123 1.276 1.524 1.687 1.967 2.203 2.576 3.083

pS5 0.061 0.075 0.120 0.205 0.416 0.812 1.576 —

D/N = 1/4

MS1 0.414 0.477 0.527 0.567 0.641 0.770 0.973 1.541
MS2 0.421 0.789 0.763 0.784 0.826 0.844 0.915 0.992
PDMS1 0.322 0.333 0.347 0.377 0.399 0.468 0.631 1.118
PDMS2 0.321 0.382 0.374 0.380 0.387 0.399 0.421 0.448

RQuick 1.185 1.847 2.456 2.858 3.262 3.765 4.217 5.062
LCP-RQuick 1.077 1.704 2.310 2.707 3.089 3.561 3.997 4.812
RQuick∗ 1.322 1.573 1.828 2.074 2.299 2.609 2.980 3.536
LCP-RQuick∗ 1.432 1.538 1.691 1.898 2.133 2.413 2.703 3.239

pS5 0.463 0.452 0.568 0.786 1.553 2.864 5.654 —

D/N = 1/2

MS1 0.563 0.605 0.647 0.699 0.794 0.880 1.057 1.673
MS2 0.567 0.841 0.828 0.861 0.850 0.944 0.928 1.006
PDMS1 0.555 0.576 0.584 0.610 0.662 0.762 1.001 1.710
PDMS2 0.555 0.654 0.634 0.658 0.654 0.655 0.682 0.723

RQuick 1.501 2.183 2.887 3.306 3.726 4.239 4.711 5.561
LCP-RQuick 1.316 1.986 2.635 3.025 3.432 3.903 4.316 5.116
RQuick∗ 1.589 1.795 2.119 2.368 2.589 2.886 3.355 3.860
LCP-RQuick∗ 1.456 1.683 1.878 2.154 2.360 2.595 2.911 3.458

pS5 1.076 1.065 1.010 1.375 2.856 4.872 9.657 —

D/N = 3/4

MS1 0.753 0.776 0.805 0.844 0.882 1.013 1.258 1.835
MS2 0.753 0.948 0.935 0.936 0.962 1.005 1.036 1.064
PDMS1 0.861 0.890 0.922 0.991 1.046 1.194 2.184 2.461
PDMS2 0.863 1.074 1.060 1.064 1.080 1.114 1.134 1.220

RQuick 1.830 2.614 3.357 3.806 4.225 4.752 5.236 6.124
LCP-RQuick 1.570 2.300 3.009 3.374 3.778 4.251 4.703 5.494
RQuick∗ 1.801 2.167 2.456 2.694 2.961 3.236 3.736 4.289
LCP-RQuick∗ 1.637 1.842 2.078 2.336 2.544 2.756 3.154 3.747

pS5 1.222 1.233 1.439 1.988 4.152 7.029 13.749 —

Table A.2.: Median overall sorting times for the weak-scaling experiment using DNData inputs
with ℓ = 500, n/p = 105, and D/N ∈

{
0, 14 ,

1
2 ,

3
4 , 1
}
. Runtime of the best variant is

printed bold for every combination of p and D/N ratio per family of algorithms.

86

A.1. Running Times – Multi-Level Merge Sort

wall time/s

p = 48 96 192 384 768 1536 3072 6144

D/N = 1

MS1 0.892 0.898 0.916 0.932 0.973 1.096 1.356 1.942
MS2 0.889 1.004 0.987 0.994 0.991 1.021 1.012 1.075
PDMS1 1.023 1.038 1.054 1.088 1.191 1.312 2.401 2.623
PDMS2 1.023 1.148 1.129 1.136 1.143 1.159 1.160 1.236

RQuick 2.127 2.965 3.779 4.229 4.698 5.225 5.766 6.611
LCP-RQuick 1.779 2.568 3.293 3.707 4.087 4.569 5.000 5.822
RQuick∗ 2.069 2.311 2.821 3.071 3.317 3.649 4.134 4.678
LCP-RQuick∗ 1.845 2.083 2.257 2.517 2.763 2.944 3.349 3.937

pS5 1.691 1.652 1.984 2.632 5.340 9.023 17.452 —

Table A.2.: (Continued)

wall time/s

p = 192 384 768 1536 3072 6144 12 288

Commoncrawl

MS1 11.059 8.172 6.433 4.828 3.549 3.134 3.863
MS2 13.722 7.844 5.736 4.387 3.746 3.372 3.024
PDMS1 15.938 10.449 7.702 5.640 4.346 5.197 10.120
PDMS2 ∗∗ 10.514 7.060 5.092 3.631 2.700 1.812
PDMS▽2 19.474 10.466 7.031 5.241 4.844 5.118 7.677

Wikipedia

MS1 16.145 8.819 5.957 5.207 2.984 2.079 2.309
MS2 ∗∗ 10.926 8.983 5.861 3.590 2.105 1.160
PDMS1 9.666 5.374 3.113 2.166 1.675 2.506 5.769
PDMS2 11.533 6.001 3.503 2.037 1.161 0.695 0.470
PDMS▽2 11.478 6.014 3.568 3.069 1.628 2.312 4.945

WikipediaText

MS1 10.299 6.892 5.947 4.068 2.261 1.742 2.218
MS2 13.190 8.483 8.399 4.980 2.725 1.560 0.929
PDMS1 6.876 3.756 2.363 1.673 1.416 2.191 6.163
PDMS2 8.500 4.456 2.592 1.559 0.895 0.562 0.396
PDMS▽2 8.452 4.455 2.669 1.792 1.351 1.835 5.080

Table A.3.: Median overall sorting times for the strong-scaling experiment using
real-world inputs. Runtime of the best variant is printed bold for all
datasets and values of p. Failed runs (due to memory exhaustion)
are marked “∗∗”.

87

A. Appendix

A.2. Running Times – Space-Efficient Merge Sort

n

p
D

N

wall time/s

p = 48 96 192 384 768 1536 3072

2× 106
1

8

MS1 11.97 14.75 16.93 18.30 19.96 22.27 28.53
MS2 12.05 28.11 27.24 27.11 28.69 31.25 33.57
PDMS1 5.01 5.46 5.90 6.14 6.52 7.27 8.26
PDMS2 4.98 6.87 7.29 7.65 8.20 8.27 9.19

2× 106
1

4

MS1 13.45 16.01 17.92 19.43 21.12 24.43 31.76
MS2 13.52 27.84 27.30 27.08 28.27 31.02 32.85
PDMS1 8.21 8.93 9.66 9.98 10.80 11.89 13.62
PDMS2 8.21 11.30 11.92 12.00 13.20 12.68 13.44

2× 106
1

2

MS1 16.64 18.40 20.07 21.49 23.77 28.34 38.15
MS2 16.64 27.61 27.24 27.30 27.84 30.10 31.38
PDMS1 14.27 15.30 16.31 17.20 18.66 21.23 26.07
PDMS2 14.16 19.42 19.88 20.51 20.76 21.44 22.56

4× 106
1

8

MS1 25.12 30.69 35.14 37.69 41.11 45.76 58.07
MS2 25.36 57.52 55.83 55.43 58.62 63.51 68.60
PDMS1 11.38 12.14 12.87 13.55 14.21 15.07 16.62
PDMS2 11.27 15.18 15.51 15.83 16.43 17.29 18.07

4× 106
1

4

MS1 29.43 34.41 38.29 40.98 44.60 51.05 65.25
MS2 29.61 58.48 56.84 56.49 58.65 64.28 67.99
PDMS1 18.88 19.97 21.19 21.87 23.12 25.14 28.32
PDMS2 18.85 24.94 25.62 26.06 26.39 27.09 28.19

4× 106
1

2

MS1 37.89 41.51 44.60 47.28 51.92 60.88 80.75
MS2 37.86 59.74 58.60 58.16 59.06 63.86 66.89
PDMS1 32.92 34.64 36.48 37.73 40.35 45.53 55.11
PDMS2 32.87 43.33 43.43 43.61 44.08 45.56 48.11

8× 106
1

8

MS1 52.15 62.93 72.15 77.24 82.24 93.21 117.91
MS2 52.42 117.47 113.17 112.22 118.97 128.92 138.86
PDMS1 24.66 26.11 27.51 28.83 29.51 30.91 34.38
PDMS2 24.58 32.30 32.69 33.17 34.48 34.87 37.01

8× 106
1

4

MS1 62.84 72.68 80.72 86.20 93.32 106.22 133.37
MS2 63.13 121.01 117.63 116.83 121.12 132.65 140.31
PDMS1 41.85 44.17 46.13 47.38 49.53 52.94 59.63
PDMS2 41.90 54.31 54.71 54.83 56.06 57.54 59.36

8× 106
1

2

MS1 83.57 90.79 97.04 102.59 111.99 129.58 169.50
MS2 83.68 127.67 124.88 123.65 126.26 136.12 141.73
PDMS1 73.93 77.36 80.39 83.36 88.13 97.29 117.56
PDMS2 73.94 94.90 93.87 94.16 95.30 97.42 102.83

Table A.4.: Median overall sorting times for the weak-scaling experiment using DNDataSE
inputs ℓ = 1000, n/p ∈ {2, 4, 8} × 106, and D/N ∈

{
1
8 ,

1
4 ,

1
2

}
. Runtime of the best

variant is printed bold per value of p and every combination of n/p and D/N ratios.

88

A.2. Running Times – Space-Efficient Merge Sort

algorithm
(M/p)

wall time/s

v p = 48 96 192 384 768 1536 3072 6144 12 288

CommonCrawl

pS5

(100MB)

512 2.6 5.6 12.0 25.4 55.1 119.0 247.8 — —
1024 2.0 4.2 9.1 20.7 45.7 100.4 208.8 — —
2048 1.6 3.4 7.5 17.5 40.4 90.3 186.6 — —
4096 1.3 3.0 6.7 15.7 40.0 90.8 169.3 — —
8192 0.9 2.1 4.9 11.6 31.4 78.0 156.4 — —

SEMS2
(100MB)

512 14.2 32.3 35.1 36.9 39.9 46.6 59.3 81.6 —
1024 17.6 42.7 46.3 49.4 53.8 60.8 76.7 104.1 —
2048 22.7 58.3 63.8 68.3 72.9 84.4 107.0 145.0 —
4096 30.1 80.6 88.0 93.4 99.7 116.3 141.9 197.5 —
8192 38.5 103.7 114.4 123.9 134.3 155.5 189.7 250.0 —

PDSEMS2
(100MB)

512 11.3 19.7 23.8 29.5 35.5 40.4 45.3 49.2 52.0
1024 9.9 17.7 23.3 30.0 37.0 44.6 53.5 54.3 59.4
2048 9.1 17.2 23.7 31.5 39.9 50.5 63.0 64.7 72.3
4096 8.0 17.3 24.4 32.4 44.1 59.0 69.4 78.7 91.2
8192 7.4 17.1 25.4 35.7 50.1 66.1 85.5 94.6 112.4

PDSEMS2
(200MB)

512 25.3 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ —
1024 22.3 42.5 54.6 66.4 78.7 91.6 100.4 108.7 —
2048 20.9 40.3 54.9 72.9 88.6 100.7 115.9 129.7 —
4096 20.0 42.7 58.9 77.7 102.1 117.2 137.1 157.2 —
8192 18.7 41.9 60.7 82.1 111.2 128.7 157.4 186.3 —

WikipediaFull

pS5

(100MB)

512 5.8 21.4 23.1 46.2 93.1 186.4 371.0 — —
1024 12.4 13.2 25.5 51.5 100.5 196.8 395.5 — —
2048 14.1 14.5 28.0 56.9 110.2 212.0 427.6 — —
4096 17.3 16.7 31.5 64.0 121.8 233.0 429.2 — —
8192 12.8 13.2 24.3 50.1 93.3 177.3 363.5 — —

SEMS2
(100MB)

512 71.5 76.6 78.2 80.2 81.8 83.0 84.9 92.3 —
1024 87.4 94.8 97.8 99.1 101.0 104.0 109.8 114.6 —
2048 86.9 99.3 104.7 107.3 112.0 116.5 125.7 172.4 —
4096 55.2 77.2 88.9 94.4 102.0 122.5 134.9 192.3 —
8192 53.0 92.9 113.6 122.3 134.9 153.2 172.5 197.7 —

PDSEMS2
(100MB)

512 75.4 81.0 81.3 83.0 85.3 86.3 87.5 94.5 96.5
1024 91.0 98.6 100.7 102.1 103.4 105.1 110.8 113.9 121.2
2048 89.6 101.0 104.7 107.2 109.2 111.9 120.9 166.3 174.6
4096 58.0 76.0 82.1 87.2 89.6 108.6 124.5 190.7 208.3
8192 40.8 62.0 69.6 76.4 80.1 87.2 105.4 121.3 161.5

PDSEMS2
(200MB)

512 122.4 131.7 156.4 163.1 164.5 170.7 174.1 176.2 —
1024 141.1 154.6 186.7 190.3 192.7 196.9 218.2 260.9 —
2048 161.8 183.9 190.7 196.1 202.2 264.9 272.2 290.9 —
4096 130.8 161.4 174.7 180.6 185.9 253.5 304.7 324.0 —
8192 92.3 132.9 151.1 158.5 183.1 219.4 277.9 318.0 —

Table A.5.: Median overall sorting times for the weak-scaling experiment using difference cover
samples modulo v for real-world datasets with chunks of M/p characters per PE.
Failed runs are denoted as “∗∗”, missing runs are indicated “—”.

89

	Abstract
	Zusammenfassung
	Introduction
	Contribution
	Outline

	Preliminaries
	Definitions and Notation
	Model of Computation
	Sequential String Sorting
	Related Work

	Techniques
	LCP-Hypercube Quicksort
	Distributed Ordered Partitioning
	Partitioning Algorithm
	String-Based Regular Sampling
	Character-Based Regular Sampling

	Distributed Group Assignment
	Grid-Wise Assignment
	Simple Assignment
	Deterministic Assignment

	Multi-Level String Merge Sort
	Multi-Level Merge Sort
	Algorithmic Details
	Runtime and Communication

	Multi-Level Prefix Doubling Merge Sort
	Multi-Level Bloom Filter
	Distributed Permutations
	Runtime and Communication

	Space-Efficient String Sorting
	Algorithmic Framework
	Space-Efficient Merge Sort
	Sorting First versus Partitioning First
	Prefix Approximation First versus Partitioning First
	Runtime and Communication

	Application in Suffix Sorting

	Experimental Evaluation
	Implementation Details
	String Layout and Communication
	LCP-Hypercube Quicksort
	Multi-Level Merge Sort
	Space-Efficient Merge Sort

	Experimental Setup
	Platforms
	Algorithms
	Inputs

	Multi-Level String Merge Sort
	Fixed D/N Ratio Weak-Scaling
	Real-World Strong-Scaling
	Summary

	Space-Efficient String Sorting
	Fixed D/N Ratio Weak-Scaling
	Difference Cover Weak-Scaling
	Summary

	Conclusion
	Future Work

	Bibliography
	Appendix
	Running Times – Multi-Level Merge Sort
	Running Times – Space-Efficient Merge Sort

