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Abstract 

The objective of greenhouse gas-neutral economies and associated advancements in low-carbon tech-

nologies lead to a transformation of the way electricity and heat are supplied and consumed. Across the 

residential sector, rising energy procurement costs alongside decreasing capital costs for renewable en-

ergy technologies have driven recent trends toward individual and independent energy supply systems. 

Further, the electrification of mobility and heating will fundamentally change the structure of electricity 

demand. A comprehensive understanding of the underlying drivers that shape residential energy demand 

and supply is essential for designing future energy systems. Models representing fundamental connec-

tions that shape energy supply and demand and extrapolate techno-economic framework conditions are 

needed to predict future dissemination and impacts of building energy systems. 

In this thesis, neural network-based approaches from the field of natural language processing are intro-

duced to the field of behavioral modeling. The proposed methodology enables the generation of syn-

thetic activity and mobility schedules of household occupants, which form the basis for a consistent 

simulation of residential electricity, heat, and mobility demand. Based on a detailed understanding of 

residential energy demand, a bottom-up framework for determining the cost-minimal design and oper-

ation of residential energy systems is presented for analyzing buildings under diverse techno-economic 

framework conditions. Finally, a building owner's microeconomic perspective is expanded by a central 

planner's macroeconomic perspective to comprehensively analyze the transformation of residential 

building stocks within the transformation of the surrounding municipal and national energy systems. 

Through the detailed representation of the heterogeneity and temporal inertia of local building stocks, 

existing shortcomings of a highly aggregated building stock representation are overcome. 

The bottom-up framework is applied to evaluate the potential of a self-sufficient energy supply for 41 

million single-family buildings in the European building stock. Cost-minimal and self-sufficient energy 

systems are calculated for 4,000 representative buildings on a high-performance computing cluster. Fi-

nally, surrogate models transfer the results to the entire building stock. The results show that under 

current techno-economic conditions, 53% of the 41 million buildings can technically supply themselves 

by only using local rooftop solar irradiation. If building owners would be willing to pay a premium of 

up to 50% compared with grid-dependent systems with electrified heat supplies, over two million build-

ings could leave the grid by 2050. Results for municipal building stock transformations from the per-

spective of a central planner for the exemplary city of Karlsruhe indicate that an increase of the retrofit 

rate to 2% per year and substantial electrification of the heat supply in the building sector is economi-

cally and ecologically beneficial. 
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Overview 
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1 Introduction 

The German residential sector accounted for 28% of the total final energy demand in 2021 and was 

responsible for 24% of the caused greenhouse gas emissions1. 45% of the residential sector-related emis-

sions were generated directly through the combustion of fossil fuels to provide heat within buildings. 

The remaining emissions originated outside the building boundary in the energy carrier supply chains. 

These emissions must be cut to achieve climate neutrality in Germany by 2045 (Bundesregierung 2021). 

The development of pathways to achieve a greenhouse gas-neutral energy system is a highly complex 

task that requires the consideration of a multitude of interests among stakeholders and is subject to many 

uncertainties. Specifically, in the residential sector, the increasing diffusion of novel technologies for 

the generation, storage, and conversion of electricity and heat, along with the growing popularity of 

electromobility, creates interfaces between sectors that were previously analyzed independently. In re-

cent studies, sector-coupling measures in the building sector are often underrepresented, with a greater 

emphasis on reducing direct emissions through efficiency measures and low-carbon heat provision tech-

nologies (SKN et al. 2022). Studies focussing on sector-coupling within residential buildings or between 

the residential building stock and the overarching energy system highlight the importance of integrated 

approaches, especially for the evaluation of sector-coupling technologies like heat pumps, co-generation 

units, and photovoltaic systems (Kotzur 2018; Zeyen et al. 2021).  

To examine sector-coupled residential building energy systems with an integrated consideration of the 

demand for thermal comfort, electric devices, and mobility, fundamental dependencies that shape the 

timing of energy demand need to be understood. Over the last years, a variety of bottom-up models have 

been published to simulate household energy demand based on occupant behavior (Proedrou 2021). 

While these models can represent aggregate energy demand fluctuations of multiple households, indi-

vidual demand profiles are of low quality, often due to a poor representation of the underlying occupant 

behavior. Therefore, models capable of representing complex dependencies in occupant activity and 

mobility data are needed to provide a basis for consistent electricity, heat, and mobility demand profiles. 

Based on a fundamental understanding of the timing of household energy demand, investments in resi-

dential renewable energy supply and storage technologies can be evaluated. While investments in energy 

retrofits and renewable energy technologies are mainly motivated by financial benefits, recent empirical 

studies indicate that building owners are willing to pay extra for high degrees of self-sufficiency (Acht-

nicht and Madlener 2014; Balcombe et al. 2014; Ecker et al. 2018). To anticipate the possibility of 

 
1 Calculated according to the polluter principle, see Figure 1 for more information. 

file://///iipsrv-file1.iip.kit.edu/synergie/Group_DEN/Max/000_Dissertation/Rahmenkapitel/Big%23_CTVL001a7b5366a7687449e148f4b2e118b465f
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residential buildings leaving the grid, temporal highly resolved models are needed that are capable of 

evaluating innovative technologies under varying climatic and techno-economic conditions from the 

perspective of building owners. 

In addition to approaches for examining cost-minimal building energy systems from a microeconomic 

perspective, macroeconomic approaches are needed to evaluate building stock transformations from the 

viewpoint of a central planner to identify optimal transformation strategies. The transformation of the 

residential building stock should not be examined in isolation from the transformation of the surrounding 

energy system but instead embedded in municipal and national transformation strategies. Therefore, 

tools are needed to support local planners in determining optimal energy system transformations. These 

tools should account for national objectives like renewable expansion targets but also for local condi-

tions such as renewable potentials and local building stock properties. 

To overcome the above needs, this thesis contributes to existing research by developing a neural net-

work-based approach to better represent occupant behavior in bottom-up household energy demand 

models (Paper A). Further, a bottom-up framework is presented for determining cost-minimal energy 

systems for residential buildings within the European building stock under current and future techno-

economic conditions (Paper B). Finally, the municipal energy system optimization model RE3ASON 

(Mainzer 2019; Weinand 2020) is extended to analyze municipal energy system transformations in line 

with national greenhouse gas reduction strategies while accounting for temporal dynamic changes and 

the heterogeneity of the residential building stock (Paper C). Thereby, the following research questions 

are answered: 

• How can long-term dependencies in occupancy behavior be adequately represented in bottom-up 

household energy demand models to provide a basis for consistent electricity, heat, and mobility 

demand profiles? (Paper A) 

• What is the potential for self-sufficient residential building energy supply under current and future 

(2050) techno-economic framework conditions in Europe? (Paper B) 

• How can temporally dynamic developments in the residential building stock be represented within 

a municipal energy system transformation in line with national greenhouse gas reduction strat-

egies? (Paper C) 

This thesis is organized in two parts. Part I provides the framework of the three papers included in the 

thesis. Part II contains the manuscript versions of Papers A-C.  

Part I is structured as follows. First, Chapter 2 explores the evolution, current status, and future of resi-

dential energy systems, covering the dynamics of energy demand, the shift towards local self-supply, 

and the necessity for integrated building stock transformation approaches within municipal energy sys-
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tems. Chapter 3 provides an overview of the used and developed models and highlights the methodo-

logical research delta of this thesis. Chapter 4 summarizes the three papers and presents their key find-

ings. Chapter 5 critically reflects the limits of the proposed methods and provides suggestions for further 

research. Finally, Chapter 6 summarizes the main novelties of this work and derives conclusions. 
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2 Background 

The impacts of human-induced climate change are already visible today through increasing extreme 

weather events (IPCC 2023). Globally, the energy sector is the main emitter of greenhouse gases, ac-

counting for over 75% of total emissions (IEA 2023). A swift transition from fossil-fuelled power plants 

to a climate-friendly, renewable energy-based system is essential to reduce greenhouse gas emissions 

rapidly. Achieving a secure, economic, and environmentally friendly energy system based on 100% 

renewable energy requires breaking existing paradigms like "demand follows supply". Future energy 

systems must balance demand and supply spatially through a highly interconnected grid and locally by 

utilizing demand-side flexibilities. Alongside the industrial, tertiary, and mobility sectors, the residential 

sector plays a key role in the decarbonization ambitions of several countries, with buildings and house-

holds accounting for significant portions of energy demand and associated emissions. 

This chapter discusses the current state and future transformation of residential energy systems. Sec-

tion 2.1 describes the evolution of residential energy demand and discusses the underlying drivers. Sec-

tion 2.2 analyses the trend towards local residential self-supply by discussing techno-economic frame-

work conditions and non-monetary drivers. Further, a definition of self-sufficient energy systems and a 

literature review on self-sufficient residential energy supply systems are provided. Due to the interde-

pendencies of the residential building stock and the surrounding energy system, integrated approaches 

are needed to identify optimal transformation processes. Therefore, Section 2.3 provides the background 

and discusses the need for integrated building transformation strategies within municipal energy sys-

tems. 

2.1 Residential energy demand 

2.1.1 Residential energy demand composition 

The residential sector in Germany consumed 28% of the overall final energy in 2021 and was therefore 

responsible for 24% of the greenhouse gas emissions (see Figure 1). In the residential sector, the major-

ity of the final energy served the energy service demand for space heating (67%) and domestic hot water 

(16%) (RWI 2022). The remaining 17% was used to serve the demand for process heating (e.g., cooking 

and washing - 6%), process cold (e.g., cooling and freezing of food - 5%), and other applications like 

lighting (2%), and information and communication technologies (3%) (RWI 2022).  
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The composition of the greenhouse gas emissions shows (see Figure 1) that nearly all of the direct 

emissions in the residential sector, which are caused by the local combustion of fossil fuels, can be 

traced back to heat supply applications. Therefore, the contribution of process heating through cooking 

with gas is negligible compared to the provision of heat for space heating and domestic hot water. The 

indirect emissions shown in Figure 1 arise in the energy carrier supply chains, e.g., when electricity or 

heat for district heating is generated in fossil power plants. While these emissions are attributed to the 

residential sector in Figure 1 (polluter principle), other studies allocate the emissions to the energy sector 

(source principle) (see, e.g., UBA (2023a)).  

 

Figure 1: Composition of final energy consumption and greenhouse gas emissions in Germany. Greenhouse 

gas emissions are differentiated with regard to the energy service application and the location of their origin. 

Direct CO2 emissions are caused by burning fossil fuels within the dwelling boundary, while indirect emis-

sions are associated with the energy carrier supply chains. The visualizations are based on own calculations 

based on data from (AGEB 2023; UBA 2023a, 2023b; RWI 2022; KEA-BW 2023). 
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2.1.2 Evolution of residential energy demand 

Between 1990 and 2021, the final energy demand in the German residential sector increased by 2%, 

while the living area increased by 39% (AGEB 2022; BMWK 2023a). As a result, the energy intensity, 

i.e., the total final energy consumption divided by living area, decreased by 26% (BMWK 2023a). The 

main drivers behind the decrease in energy intensity were higher energy standards for new constructions 

and retrofit measures for existing buildings. These measures led to a decrease in the energy demand for 

space heating from above 200 kWh/m² in 1990 to 125 kWh/m² in 2012 (Enerdata 2022; BMWK 2023a). 

Since then, the energy demand for space heating per living area has remained consistent. Other effi-

ciency measures, such as using more energy-efficient consumer electronics or replacing light bulbs with 

more modern lighting, have a minor impact on final energy demand reduction. Trends towards more 

households, more living space, and fewer persons per household have even led to an overall slight in-

crease in final energy demand between 1990 and 2021 (BMWK 2023a). 

However, despite the slight increase in final energy demand, CO2 emissions in the residential sector 

could be reduced by 40% between 1990 and 2021 (Enerdata 2022). Direct emissions decreased by 36%, 

mainly due to the shift from coal and heating oil to energy sources with lower carbon emissions, such 

as gas and renewable energy carriers (AGEB 2022; Enerdata 2022). Indirect emissions were reduced by 

44% as a result of the ongoing decarbonization of the German electricity and district heating mix (UBA 

2023b; AGEB 2022). 

To comply with the objectives of the German Climate Protection Act, greenhouse gas emissions need 

to be reduced by 65% by 2030 and 88% by 2040 relative to 1990 levels, aiming to achieve greenhouse 

gas neutrality in Germany by 2045 (Bundesregierung 2021). Therefore, the residential sector has to 

reduce direct emissions by 40% by 2030 compared to 2022 levels, which means that the emission re-

duction speed needs to double compared to the last decade (Bundesregierung 2021; UBA 2023a). To 

accomplish this goal, the renovation rate of residential buildings, which has plateaued at 1% in recent 

years, must rise to at least 1.6% by 2030 (SKN et al. 2022). In scenarios that are in line with the German 

Climate Protection Act, the final energy demand for heat in the residential building sector has to be 

reduced by 15 to 19% by 2030 and by 35 to 47% by 2045 (BCG and BDI 2021; Prognos et al. 2021; 

Mellwig 2022).  

In addition to reducing the final energy demand, transforming the final energy demand composition 

represents the second important cornerstone for achieving the climate goals. In most scenarios exam-

ined, a high degree of electrification of the residential heat demand through heat pumps is expected 

(SKN et al. 2022). The number of installed heat pumps in Germany is expected to increase from one 

million heat pumps in 2020 to five to six million in 2030 and 14 to 18 million in 2045 (Mellwig 2022; 

BCG and BDI 2021; Prognos et al. 2021; Luderer et al. 2021). The remaining heat demand is covered 

file://///iipsrv-file1.iip.kit.edu/synergie/Group_DEN/Max/000_Dissertation/Rahmenkapitel/Big%23_CTVL001a7b5366a7687449e148f4b2e118b465f
file://///iipsrv-file1.iip.kit.edu/synergie/Group_DEN/Max/000_Dissertation/Rahmenkapitel/Big%23_CTVL001a7b5366a7687449e148f4b2e118b465f
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mainly by district heating networks in areas with high heat densities, with about four to five million 

connected buildings in 2045 (Mellwig 2022; BCG and BDI 2021; Prognos et al. 2021). Biomass energy 

and renewable gases play a limited role in high electrification scenarios, primarily used for buildings 

that are challenging to decarbonize because of factors such as insulation restrictions due to monument 

protection (Prognos et al. 2021). In other scenarios where an increased prevalence of renewable gases 

in the building sector is expected by 2045, the primary differences from the high-electrification scenarios 

occur between 2030 and 2045 (Mellwig 2022; EWI 2021). Up to 2030, limited availability of green-

house gas-neutral liquid and gaseous energy carriers is assumed, so climate goals are primarily expected 

to be achieved through efficiency measures and the expansion of heat pumps (ITG 2021). From 2030 

onward, higher availability of renewable liquid and gaseous energy carriers is anticipated, which will 

reduce the pressure on buildings to be renovated and heating system technology to be exchanged (ITG 

2021). Mellwig (2022) describes these scenario paths as inconsistent, as a shift towards more heat pumps 

is initially expected until gas boilers are resurgent. 

In addition to the development of energy demand for electrical household appliances and the provision 

of thermal comfort, the electrification of the mobility sector (excluded in Figure 1) will increasingly 

influence the electric energy demand in the residential sector. At the beginning of 2023, Germany sur-

passed the mark of one million purely battery-electric vehicles (Kraftfahrt-Bundesamt 2023). 77% of 

charging processes occur at home (EUPD Research 2021), resulting in additional electricity demand of 

2.2 TWh per year2 in the residential sector due to electromobility. By 2045, 35 to 52 million battery-

electric passenger cars are expected in Germany (TSO 2023; SKN et al. 2022). With a constant propor-

tion of home chargers, the electrical household demand could increase by 75 to 112 TWh per year2, an 

increase of 54 to 81% compared to the electricity demand of the residential sector in 2021 (AGEB 2023). 

Finally, it can be concluded that the transformation of the final energy demand of the residential sector 

can be primarily described by three trends: 

• Reduction of energy demand through efficiency measures 

• Decarbonization of heat supply through heat pumps and district heating 

• Decarbonization of passenger transport through battery-electric vehicles 

The effects of the described trends on the transformation of the final energy demand of a representative 

German household can be seen in Figure 2. 

 
2 Based on 14,000 km per year and 20 kWh/100km 

file://///iipsrv-file1.iip.kit.edu/synergie/Group_DEN/Max/000_Dissertation/Rahmenkapitel/Big%23_CTVL001a7b5366a7687449e148f4b2e118b465f
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Figure 2: Composition of the final energy demand of a German household in 2021 and 2045. Calculations 

are conducted for an average German household size of two persons (Statista 2023a, 2023b) and a specific 

living area of 47 m²/person (Statista 2023c). The development and composition of the energy demand of 

electrical household appliances is based on the “T45-Strom” scenario presented in Mellwig (2022). For the 

provision of final energy demand for mobility in passenger cars and the provision of heat, the technology 

option most widespread in the respective year was chosen. The calculation of energy demand for mobility is 

based on current and future passenger car kilometers (see SKN et al. (2022)), an average occupancy rate for 

cars of 1.5 (FIS 2023), and assumptions about the average consumption of direct-electric cars (20 

kWh/100km (Galvin 2022; Gaete-Morales et al. 2020)) and cars with combustion engines (7.7 liters of gas-

oline per 100km (Enerdata 2022)). The final energy demand for heating applications is based on current (140 

kWh/m² (Enerdata 2022)) and future projected demands (70 kWh/m² (BCG and BDI 2021)) and an assumed 

coefficient of performance of the heat pump of 3.1 (Mellwig 2022). 

2.1.3 Flexibility and timing of residential energy demand 

In addition to decarbonizing household energy demand through efficiency measures and low-carbon 

technologies, flexible household loads must be identified and utilized in energy systems to help balance 

the fluctuating generation of renewable supply technologies (Lund et al. 2015). While the principle 

“supply follows demand” applied in the past, following this principle in the future would lead to over-

sized capacities in a highly weather-dependent energy system (Müller and Möst 2018). To avoid over-

capacities and to reach an efficient future energy system, the electricity demand needs to adapt to de-

mand-side fluctuations. For the integration of an increasing share of intermittent energy supply, models 

with high temporal and spatial resolution in combination with an appropriate representation of techno-

economic flexibility are required (Cruz et al. 2018). An adequate representation of flexibility potentials 

poses a significant challenge, especially due to the high diversity of potential flexibility providers within 

and between the different sectors (Kachirayil et al. 2022). This challenge is even intensified by the need 

to consider non-technical constraints, such as potential limitations in flexibility arising from social ac-

ceptance or environmental concerns (Savvidis et al. 2019). 

file://///iipsrv-file1.iip.kit.edu/synergie/Group_DEN/Max/000_Dissertation/Rahmenkapitel/Big%23_CTVL001a7b5366a7687449e148f4b2e118b465f
file://///iipsrv-file1.iip.kit.edu/synergie/Group_DEN/Max/000_Dissertation/Rahmenkapitel/Big%23_CTVL001a7b5366a7687449e148f4b2e118b465f
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The electricity demand profile of the residential sector is highly correlated with electricity market prices, 

especially during peak demand (see Figure 3). Therefore, the flexibilization of household demand offers 

a particularly high potential for achieving a more efficient electricity market. Both electricity demand 

and market prices peak around 7 pm when people come home from work and the sun goes down. By 

shifting demand away from peak hours to hours with lower electricity market prices, overall system 

costs could be reduced (Torriti 2014). Furthermore, high electricity market prices are correlated with 

high CO2 emissions caused by fossil peak-load power plants. Therefore, a less pronounced household 

demand profile could reduce emissions, especially during peak demand.  

In the future, the residential sector's overall and peak electricity demand are expected to increase signif-

icantly due to the expected high degree of electrification of heating and mobility demand (Fischer et al. 

2020; SKN et al. 2022). Both the supply side of the electricity system and the demand side will become 

highly dependent on weather-related fluctuations, as seen in Figure 4. Seasonal fluctuations are mainly 

dominated by the seasonality of heat pump electricity demand for space heating. Without the introduc-

tion of demand response countermeasures, peak load demand in the residential sector could increase 

heavily, especially on cold winter evenings, due to the potential for high simultaneity of electric vehicle 

charging in combination with high space heating demand and relatively low heat pump efficiencies (Liu 

2017; Samweber 2018). In addition to the effects on the electricity market (see above), the described 

developments could increase the frequency of grid congestion and voltage band violations, especially 

in low-voltage distribution grids to which residential buildings are typically connected (Stute and 

Kühnbach 2023). 

file://///iipsrv-file1.iip.kit.edu/synergie/Group_DEN/Max/000_Dissertation/Rahmenkapitel/Big%23_CTVL001a7b5366a7687449e148f4b2e118b465f
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Figure 3: Daily household electricity supply, demand, and activity profiles. The average daily residential 

sector electricity demand profile was calculated based on smart meter data from Tjaden et al. (2015) and 

scaled to meet an average German yearly household demand of 2,560 kWh (Sensfuß et al. 2022). Average 

daily electricity provision by production type and day-ahead market prices are shown for 2020 (BNetzA 

2023b; ENTSO-E 2023). The decomposition of the aggregated demand profile to device categories is based 

on measured data from the UK (Zimmermann et al. 2012). Energy-relevant occupant activity shares were 

calculated using German time use data (Destatis 2006). The average daily solar irradiation profile for a central 

German location was calculated based on data provided by Copernicus Climate Change Service (2017). 

Greenhouse gas (GHG) emissions of the German electricity mix were taken from FFE (2022). 



Background 

14 

By incentivizing flexible consumption behavior through methods like dynamic electricity price tariffs 

that reflect the cost of electricity generation and enhance the efficiency of the distribution grid, grid 

expansion can be delayed or even avoided (Hillemacher 2014; Venkatesan et al. 2011). Dynamic elec-

tricity tariffs include pricing based on power demand capacity, real-time pricing, critical peak pricing, 

and time-of-use (Yunusov and Torriti 2021). At the EU level, regulators have mandated utilities to offer 

dynamic tariffs to their customers (European Parliament and Council of the European Union 2019). 

Electricity suppliers in Germany must provide dynamic electricity tariffs from January 1, 2025, for all 

electricity suppliers according to German law (EnWG §41a). However, a technical prerequisite for the 

widespread adoption of dynamic electricity price tariffs is the presence of smart meters, which allow for 

measuring electricity demand with a high temporal granularity. Germany's smart meter roll-out is lag-

ging, with less than 1% of households currently equipped with a smart meter (BNetzA 2022).  

 

Figure 4: Current and projected (2045) variations in household electricity demand. The demand shapes of 

electrical household devices were calculated based on 74 yearly demand profiles provided by Tjaden et al. 

(2015) and scaled to meet an average German annual demand of 2,560 kWh in 2020 and 1,802 kWh in 2045 

(Sensfuß et al. 2022). The electric vehicle's home charging electricity demand profile is based on the resi-

dential L1 and L2 profiles (50%/50%) presented by the California Energy Commission (2018). Temperature 

dependency of electric vehicle demand is considered according to Al-Wreikat et al. (2022). Further, 10,790 

km per person per year (SKN et al. 2022), 1.5 people per car (infas et al. 2019), and an average household 

file://///iipsrv-file1.iip.kit.edu/synergie/Group_DEN/Max/000_Dissertation/Rahmenkapitel/Big%23_CTVL001a7b5366a7687449e148f4b2e118b465f
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size of two are assumed for 2045. Domestic hot water (DHW) demand is modeled according to Fischer et al. 

(2016), assuming a daily hot water use of 45 liters per person per day and system losses of 20% (Fuentes et 

al. 2018). Electricity demand profiles of the heat pump for space heating (SH) were calculated according to 

Ruhnau et al. (2023) based on German weather data and assumptions for the start and the end of the heating 

period (threshold temperature 12 °C for at least three consecutive days). The overall yearly heat demand is 

finally scaled to match 70 kWh per m² for space heating and domestic hot water (BCG and BDI 2021). 

2.1.4 Discussion and research needs 

An accurate representation of energy demand is an essential component in modeling the operation and 

design of building energy systems. While fluctuations on the energy supply side are mostly understood, 

a fundamental understanding of the underlying drivers that shape the dynamics of residential energy 

demand is missing. A methodology developed in 1999 for calculating the H0 standard load profile (SLP) 

for household customers is still used today in research (Camargo et al. 2019) and by energy utilities 

(Stromnetz Berlin 2023), even outside of Germany (E-Control 2023), without any major modifications 

(VDEW 1999). One reason for this is the low availability of energy consumption data on the residential 

level, which is hard to obtain, especially in combination with rich metadata (Anvari et al. 2022; Proedrou 

2021).  

Anvari et al. (2022) have shown that modern residential electricity load profiles strongly differ from the 

H0 SLP and provide a data-driven approach to extract trends and fluctuations based on smart-meter data 

to resolve issues related to the SLP. However, even if a substantial amount of historical smart-meter 

data were available to train such models, these data typically contain only aggregated information re-

garding energy demand (usually at the household level), obscuring the underlying devices and energy-

related activities that cause the consumption. Therefore, purely data-driven approaches based on smart-

meter data are suitable for representing historical or near-present trends and fluctuations in energy de-

mand. However, they won't be helpful for predicting long-term changes that might be caused by funda-

mental shifts in energy-related activities, for example, through the introduction of dynamic electricity 

price tariffs or new technologies. 

For the development of effective demand management and intelligent control systems, a detailed under-

standing of the diversity of energy requirements and energy-related behaviors plays a major role. Activ-

ity data-driven models offer the opportunity to explore the dependencies between household activities 

and the associated energy demand loads (see Figure 3) (Yamaguchi et al. 2018; Proedrou 2021). By 

putting individual occupants at the core of the modeling efforts, activity data-driven models are capable 

of representing the underlying connections between energy-related activities (e.g., cooking), energy ser-

vice demand (e.g., 100°C hot water), household technologies (e.g., a stove), and the resulting energy 

demand (e.g., 1 kW of electricity). Only based on an understanding of these relationships that form 
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residential energy demand will we be able to fully assess the flexibility potential of the residential sector 

in a future low-carbon energy system. 

An overview of existing activity data-driven models can be found in Yamaguchi et al. (2018) and 

Proedrou (2021). The applications of the presented models are diverse and range from forecasts of en-

ergy demand (Muratori 2018; Fischer et al. 2020), energy system analyses of residential buildings 

(Kotzur 2018), demand side management (Ramirez-Mendiola et al. 2022) to the evaluation of distribu-

tional effects of dynamic electricity price tariffs (Yunusov and Torriti 2021). 

Most of the foundational activity models described in the literature, which serve as the basis for energy 

demand modeling, utilize time-use survey data and Markov chains. Time-use survey data provide infor-

mation on the temporal course of occupant activities over single days and are available for various coun-

tries (Eurostat 2024). Due to the nature of the time-use survey data (only single days are recorded) and 

the Markov property, which refers to the memorylessness of a stochastic process, it is not possible to 

consider long-term dependencies over several days with existing occupant behavior models. However, 

an accurate mapping of long-term dependencies in behavior is of increasing interest, especially for the 

representation of mobility patterns, which play an important role in the derivation of charging flexibility 

potentials (Fischer et al. 2019). To accurately represent mobility patterns in activity data-driven models, 

approaches are needed that are capable of capturing complex long-term dependencies in occupant be-

havior. Furthermore, time-use survey datasets need to be augmented by mobility data that provide ad-

ditional information on mobility patterns over multiple days.  

Ultimately, future foundational activity models must be able to accurately represent the stability in in-

dividuals' or households' behaviors (high fidelity (Alaa et al. 2021)). This is essential to assess the po-

tential for energy demand flexibility and to make informed investment decisions on the single-building 

level. At the same time, future models need to account for the diverse behaviors observed across differ-

ent individuals or households (high diversity (Alaa et al. 2021)). This ensures a proper evaluation of 

potential system impacts of low-carbon technologies, such as the widespread dissemination of electric 

vehicles and heat pumps. By producing high-quality activity data, these foundational activity models 

lay the groundwork for an in-depth analysis of the primary factors influencing household energy demand 

in a sector-coupled energy system. 
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2.2 Residential energy system design  

Besides the trend toward decarbonized residential heat supply, there is a growing interest in local resi-

dential energy supply systems motivated by rising energy procurement prices (Eurostat 2023a, 2023c), 

decreasing costs for renewable technologies (Way et al. 2022; Xiao et al. 2021) and other non-monetary 

criteria (Engelken et al. 2018). Photovoltaic (PV) systems are the key technology for the local provision 

of electricity in residential buildings. In 2022, the 27 EU Member States connected over 41 GW of PV 

capacity to the grid, which resulted in an increase of 47% compared to 2021 and led to a cumulative 

installed capacity of 209 GW (SolarPower Europe 2022b). The share of PV systems with a capacity of 

lower than 20 kW, which corresponds to the size of residential PV systems, accounted for 20% in 2020 

(Eurostat 2023b).  

Figure 5 presents the development of small-scale PV systems (< 20 kW) and residential battery storage 

systems in the EU27 and Norway. The inability of PV support schemes in some of the EU Member 

States to react fast enough to extremely rapid growth rates lead to a sharp increase in annual installed 

capacity till 2011 (Lacal Arantegui and Jäger-Waldau 2018). Subsequent sudden and unpredictable pol-

icy shifts dampened investment confidence, leading to a decline in annual installation rates till 2016. 

Since 2013, particularly in Germany, declining PV electricity remuneration payments combined with 

relatively high household electricity prices and subsidy programs for residential battery storage systems 

led to an increase in residential battery storage installations (see Figure 5) (Figgener et al. 2020). Sup-

ported by the recent growth of the European residential solar market, which builds the foundation for a 

growing residential battery storage market, the average attachment rate between residential battery stor-

age and PV systems has grown to 27% in 2021 (SolarPower Europe 2022a). 
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Figure 5: European small-scale photovoltaic and residential battery storage capacity. Visualized data for PV 

capacity development and per capita capacity are shown for the EU27 plus Norway (Eurostat 2023b, 2023d). 

Visualized data for residential battery capacity relate to the overall European market, with Germany (59%) 

and Italy (14%) as the largest sales markets in 2021 (SolarPower Europe 2022a). 

2.2.1 Economic framework conditions 

To better understand historical developments and to predict future dissemination of low-carbon tech-

nologies in the residential building sector, the fundamental motives on the basis of which investments 

in renewable technologies are made by building owners need to be understood. Profitability plays a key 

role in the decision whether to invest in a PV battery system (Alipour et al. 2022; Kairies et al. 2019; 

Engelken et al. 2018). Key factors that have an influence on the profitability of local building energy 

systems are energy carrier prices, technology costs, and the design of remuneration tariffs and other 

subsidies. In Figure 6, the development of these key factors over time can be seen for residential PV 

battery systems in Germany, the country with the highest number of installed residential battery storage 

systems in Europe (SolarPower Europe 2022a). 
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Figure 6: German economic framework conditions for PV-battery systems. German household electricity 

price, PV feed-in tariff (< 10 kWp), and levelized cost of electricity/storage (LCOE, LCOS) for residential 

PV and battery systems. The household electricity prices (BDEW 2023) and feed-in tariffs (BNetzA 2023a) 

shown are average yearly values. The LCOE and LCOS ranges are calculated based on residential PV and 

battery system prices without value added taxes (capex) (Kraschewski et al. 2023; Jaeger-Waldau 2016; Fig-

gener et al. 2022) and further technical assumptions (PV (ISE 2021)→ lifetime (T): 25 years, annual degra-

dation (ad): 0.25%, operational expenditures (opex): 26 €/kWp, output (E0): 800-1200 kWh/kWp/year; bat-

tery (Schmidt et al. 2017)→ T: 10-20 years, ad: 0.5%, opex: 0 €, depth of discharge (dod): 80%, full charging 

cycles (cycles): 250 per year; real interest rate (i): 4%/year).  

Germany has one of the highest household electricity prices in Europe (Eurostat 2023a). Since 2004, 

household electricity prices have experienced an inflation-adjusted average annual growth of 3.4% (2% 

until 2021). Before the recent energy crisis, grid fees, taxes, and levies constituted the main components 

of the electricity price. Since 2022, the increased costs of electricity procurement on the wholesale mar-

ket have become the primary factor, which led to a significant overall household electricity price in-

crease, even despite the elimination of the EEG (the German Renewable Energy Act) levy (BDEW 

2023). In 2023, prices on the electricity wholesale market decreased again in comparison to the price 

peak of 2022. These price developments are not yet reflected in the procurement share of the average 

German household electricity price (see Figure 6). However, wholesale market prices are expected to 

remain at a higher average level in the coming years compared to the years before 2021 (EWI 2022; 

BNetzA 2023b). Electricity rates in Germany typically consist of two parts: a fixed monthly fee and a 

volume-based unit charge (in €/kWh) (Hinterstocker and Roon 2017). High volume-based charges serve 

as an incentive for self-consumption of locally generated electricity (Schill et al. 2017).  
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In 2000, feed-in tariffs for PV generation were introduced by the Renewable Energy Act. These tariffs 

guarantee a fixed remuneration over 20 years per kWh of PV electricity fed into the grid. The rate of the 

feed-in tariff depends on the system size and installation date. Over time, the feed-in tariff decreased in 

tandem with the falling costs of PV systems, which are reflected by the LCOE shown in Figure 6. The 

LCOEs of PV systems and LCOS of battery storage systems are calculated according to Equation 1 

(Ahangharnejhad et al. 2022) and Equation 2 (Schmidt et al. 2017). Costs for the provision of electricity 

are not included in the LCOS.  

LCOE =  
capex + ∑

opex𝑡

(1 + 𝑖)𝑡
𝑇
𝑡=1

∑
𝐸0 ∙ (1 − ad)𝑡

(1 + 𝑖)𝑡
𝑇
𝑡=1

 
Equation 1 

LCOS =  
capex + ∑

opex𝑡

(1 + 𝑖)𝑡
𝑇
𝑡=1

cycles ∙ dod ∙ ∑
(1 − ad ∙ 𝑡)

(1 + 𝑖)𝑡
𝑇
𝑡=1

 
Equation 2 

The decline in PV system prices has led to grid parity in many European countries (Bódis et al. 2019; 

Breyer and Gerlach 2013; Karneyeva and Wüstenhagen 2017), which refers to the point at which the 

cost of producing electricity is less than or equal to the cost of purchasing electricity from the grid. 

According to Figure 6, this point was reached in Germany around 2009. Since around 2012, the feed-in 

tariff for small PV systems (< 10 kWp) in Germany has fallen below the price for grid electricity. Since 

then, the self-consumption of PV electricity has been economically advantageous to feeding the elec-

tricity to the grid. It should be noted that this setting is mainly created by the volumetric charging of 

levies, taxes, and grid fees. 

Due to the decline of the LCOE and LCOS of PV battery systems and the persistently high level of 

household electricity prices, investing in electricity storage has become increasingly interesting over the 

last years. However, in 2022, the cost of generating and storing one kWh of electricity still exceeded the 

cost of obtaining one kWh from the grid3 minus the revenues for the electricity feed-in (LCOS = 46/75 

€-cent (lower/upper limit w.r.t. Figure 6) > Pel - Pfeed-in = 25 €-cent). 

In addition to the support already mentioned for local electricity generation and storage, facilitated 

through high volumetrically billed electricity charges and feed-in tariffs, investments in PV and battery 

systems received and receive further support. Support measures include a premium for self-consumed 

electricity (2009 to 2012), low-interest loans and subsidies for residential battery storage systems (2013 

 
3 The volume-based charge is assumed to be 85% of the average yearly electricity price shown in Figure 

6, based on a market analysis (Verivox 2023).  
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to 2018), and exemptions from value-added taxes (since 2023) (Schill et al. 2017; Kairies et al. 2015; § 

12 UStG).  

2.2.2 Investment motives 

In addition to expected economic benefits, non-monetary criteria such as environmental awareness, in-

creased self-sufficiency through independence from rising energy carrier prices, and technology affinity, 

among others, play an important role when investing in PV battery systems (Engelken et al. 2018; Ecker 

et al. 2018; Römer et al. 2015). Kairies et al. (2019) show, based on a survey conducted between 2013 

and 2017 among German home storage operators, that the main drivers for investing in battery storage 

systems were hedging against future increases in electricity prices and the wish to proactively participate 

in the transition towards renewable energies (important for over 80% of participants). Additional drivers 

were a general interest in the technology (55%) and protection against power failures (25%). Engelken 

et al. (2018) investigate the motivational factors of private households in Germany to purchase renewa-

ble energy system components with the objective of partial energy self-supply. They found that per-

ceived financial advantages and self-sufficiency benefits are the primary attitudinal factors influencing 

the intention to purchase renewable energy technologies. Römer et al. (2015) confirm that social norms, 

affinity toward autarky, and concerns about the security of supply influence the adoption of residential 

storage systems. Based on their previous findings, that independence of supply (autarky) and the ability 

to control one's own energy supply (autonomy) are the key drivers for the adoption of residential battery 

storage systems (Ecker et al. 2017), Ecker et al. (2018) further investigate the relative strength of the 

two factors for investment decisions in the realm of decentralized renewable energy system. By sketch-

ing diverse future decentralized energy scenarios, they examined homeowners’ willingness to pay extra 

and experimentally varied the individual autarky and autonomy attained in the scenarios. They show 

that only autarky has a significant effect on homeowners’ willingness to pay extra. In contrast to previ-

ous studies, Alipour et al. (2022) examine adoption motivations as well as barriers and show that in the 

mature PV market in Australia, high system costs are the main barrier to the adoption of solar PV and 

battery storage.  

2.2.3 The definition of self-sufficiency 

The expanding body of research on self-sufficient energy systems employs various terms to define the 

concept, including “energy autarky”, “energy autonomy”, or “off-grid”, “stand-alone”, and “island en-

ergy systems”, among others (Weinand et al. 2020b). These differing terms reflect the concept's diverse 

interpretations in the literature. While Ecker et al. (2018), e.g., distinguish between the terms “energy 

autarky” and “energy autonomy” (see Section 2.2.2), many others use the terms synonymously (Wei-

nand et al. 2020b). The terms “energy self-sufficiency”, “energy autonomy”, and “energy autarky” are 
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used as synonyms from here on and refer to the independence of external energy supply. McKenna et 

al. (2015b) review multiple definitions of the concept of energy autonomy, highlight the most important 

elements, and derive a working definition. In addition to the spatial system boundary and the types of 

energy considered, McKenna et al. (2015b) emphasize the degree of self-sufficiency (DSS) as a crucial 

factor in discussions about self-sufficient energy systems. Many residential building studies calculate 

the DSS according to Equation 3 (see Schreiber and Hochloff (2013), Weniger et al. (2014), Widén 

(2014), Luthander et al. (2015), Quoilin et al. (2016), McKenna et al. (2017), Schmid and Behrendt 

(2022)). 

DSS =
self-consumption

demand
= 1 −

import

demand
 Equation 3 

The DSS is defined as the share of energy demand that is covered by self-consumption of locally sup-

plied energy. Since electricity and heat are different forms of energy, assumptions regarding the ener-

getic value of these energy forms are necessary for calculating the DSS in an integrated energy system 

analysis, such as employing weighting based on exergy content. From the mentioned studies that calcu-

late the DSS according to Equation 3, only McKenna et al. (2017) and Schmid and Behrendt (2022) 

consider the building energy demand for heating. While McKenna et al. (2017) avoid making assump-

tions by only calculating the degree of electrical self-sufficiency, Schmid and Behrendt (2022) consider 

the heating demand indirectly by including the electricity demand of the heat pump. However, heat is 

also provided by the electrolyzer and the fuel cell, which is not considered when calculating the DSS. 

To avoid making assumptions about the energetic values of electricity and heat in integrated energy 

system analysis, the DSS in this study is defined based on the system boundary depicted in Figure 7 and 

can be calculated using Equation 4. The central requirement of the building energy system is to cover 

the energy service demand of the household(s) under consideration. Based on this requirement, multiple 

energy systems with different equipment of energy technologies, household devices, and retrofit levels 

can be compared. For the calculation of the DSS, a reference system needs to be defined in advance. In 

Kleinebrahm et al. (2023b), e.g., the reference system is defined to be the system with maximum grid 

dependency, which would be the lowest cost building energy system in a theoretical world with very 

low energy carrier prices (energy carrier prices → 0 €/kWh).  

DSS = 1 −
import

importreference
= 1 −

∑ 𝑤ec ∫ importec(𝑡)𝑑𝑡
𝑇

𝑡
EC
ec

∑ 𝑤ec ∫ importec
reference(𝑡)𝑑𝑡

𝑇

𝑡
EC
ec

 
Equation 4 

If the energy import for the building energy system under consideration is zero, the DSS reaches 100%, 

indicating that the energy service demand is covered completely independent of external infrastructures. 

Equation 4 explicitly considers varying time dimensions (T) and types of energy carriers (EC), for which 
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weighting factors (wec) must be defined. In contrast to the definition of the DSS by Equation 3, fewer 

energy imports always lead to higher DSS.  

 

Figure 7: Definition of the system boundary of a residential building energy system. 

McKenna et al. (2015b) categorize three types of self-sufficient energy systems: completely self-suffi-

cient systems (DSS = 100%), systems with balanced self-sufficiency (export ≥ import), and systems 

with a tendency towards self-sufficiency (export < import, self-generation > 0). Rae and Bradley (2012) 

further derive three basic criteria a self-sufficient system must exhibit: 

• Energy supply ≥ energy demand 

• Temporal energy shifting possibilities to compensate for supply/demand mismatch 

• Capability to operate off-grid (for example, frequency maintenance) 

These three criteria form the foundation for defining a self-sufficient building in this study. Buildings 

that meet only, for example, the criteria for balanced self-sufficiency are classified as partially self-

sufficient buildings from now on. 

2.2.4 Self-sufficient residential energy supply 

Over the last decades, multiple studies have analyzed the economics of (partly) self-sufficient residential 

building energy systems under varying geographical, technical, and economic framework conditions.  

Many of these studies limit their investigations to the self-supply of electrical demand with PV-battery 

systems, whereby demand-side management measures are sometimes considered (see, e.g., Widén 

(2014)). With a photovoltaic system alone and without behavioral interventions,  an average European 

household can cover about a third of its electricity demand on its own (Quoilin et al. 2016; Luthander 

et al. 2015). Based on the presented residential battery system price developments (see Section 2.2.1) 

multiple studies analyzed the possibility of leaving the grid based on PV-battery systems (Sabadini and 

Madlener 2021; Gorman et al. 2020; Liu et al. 2019; Ramirez Camargo et al. 2018; Quoilin et al. 2016; 

Khalilpour and Vassallo 2015; Bianchi et al. 2014; Goldsworthy and Sethuvenkatraman 2018). Most of 
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the studies conducted for European residential buildings conclude that PV-battery systems must be dras-

tically oversized to reach degrees of electrical self-sufficiency above 80% (see also Figure 8) (Quoilin 

et al. 2016; Khalilpour and Vassallo 2015; Sabadini and Madlener 2021; Vögele et al. 2022). A Study 

analyzing US households also finds that the current grid defection potential is low but could increase 

with utilities shifting to increased fixed charges in order to cover their non-variable costs (Gorman et al. 

2020). In regions with good solar resources and high utility costs, regulators and utilities should be 

mindful of the scope of significant grid defection. Goldsworthy and Sethuvenkatraman (2018) analyze 

28 Australian households and show that demand-side adjustments can significantly improve the eco-

nomics of self-sufficient building energy systems. Even at current prices, off-grid PV-battery supply 

systems may be economical for some Australian households if the occupants are willing to adjust their 

consumption patterns in order to coincide with peak irradiance. Therefore, the authors conclude that 

although households disconnecting from the electricity grid might not be ideal from a macroeconomic 

perspective, this trend could become more prevalent. 

 

Figure 8: Levelized Cost of Electricity of PV-battery systems in Germany in 2050. Levelized Cost of Elec-

tricity (LCOE) for PV-battery systems in single-family buildings (SFBs) in Germany by 2050, varying with 

the degree of electrical self-sufficiency. The three battery price scenarios are outlined in Vögele et al. (2022). 

The LCOE variations within the degree of electrical self-sufficiency categories reflect analysis from 200 

representative single-family buildings in Germany. Own figure similar to Vögele et al. (2022). 

A more holistic form of local energy supply is a self-sufficient building energy system, which supplies 

the electricity and thermal demand 100% independent from external infrastructures. While the above 

studies focus exclusively on electrical self-sufficiency, the definition of self-sufficiency is extended to 



Background 

25 

include the entire residential energy demand for electrical appliances, domestic hot water, and space 

heating in the following (see Figure 7).  

Figure 9A shows that taking thermal energy demand into account increases the seasonal mismatch be-

tween energy supply and demand. Furthermore, as depicted in Figure 9B, even without considering the 

limited rooftop potential for PV, it is evident that even large PV-battery systems (40 kWp + 40 kWh) 

can only meet 93% of the electricity demand for household devices and electrified heating of the average 

German household under consideration. Additionally, over 90% of the generated PV electricity is fed 

back into the power grid. Due to the relatively high capacity-specific costs of battery storage and the 

strong seasonal fluctuations in photovoltaic feed-in, alternative storage technologies, such as seasonal 

thermal or hydrogen storage systems, and electricity generation technologies, such as small wind tur-

bines, are being investigated in the literature. Lacko et al. (2014) analyze an isolated residential building 

in Slovenia’s coastal region and compare alternative supply systems to cover heat and electricity supply. 

In addition to the PV system, a small wind turbine is used as a second electricity source, together with 

a hybrid storage system composed of a battery, seasonal thermal storage, and a hydrogen storage system. 

The authors conclude that 100% renewable supply systems are technically feasible and can be cost-

competitive to fossil fuel-based off-grid energy supply systems. Knosala et al. (2021) compare self-

sufficient energy supply systems with grid-connected systems for a single-family building in Germany. 

They focus on different hydrogen storage concepts and show that a reversible solid oxygen cell com-

bined with a liquid organic hydrogen carrier system together with advanced heat integration can reduce 

system cost by 80% in comparison to a PV-battery-based system in 2030. However, the system cost of 

a 100% grid-dependent system is still 33% lower. Gstöhl and Pfenninger (2020) analyze 16 residential 

buildings in Switzerland for techno-economic conditions in 2050 and find that self-sufficient residential 

buildings may be economically viable in temperate climates, depending on storage and fossil fuel costs 

and available PV potential. Single-family buildings with low electricity use and urban mobility patterns 

are more likely to achieve self-sufficiency, while multi-family buildings with high demand and rural 

mobility patterns face greater challenges in grid disconnection.  
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Figure 9: Photovoltaic supply, electricity demand, and the degree of self-sufficiency. Seasonal mismatch 

between photovoltaic supply and electricity demand (A). Degree of self-sufficiency dependent on PV-battery 

system size (B). The presented PV feed-in profile is calculated for a central German location based on his-

torical weather data from 2019 and an assumed tilt (35°) and azimuth (180°) (Staffell and Pfenninger 2016). 

Information about the composition of the demand can be found in the caption of Figure 4. (BS: battery sys-

tem). 

In practice, alongside scientific research, there are already implemented concepts for energy-self-suffi-

cient residential buildings and scalable energy systems that enable existing buildings to operate inde-

pendently from the electricity grid. Prominent examples of energy-self-sufficient residential buildings 

include the "Solar House Freiburg" in Germany (Voss et al. 1996) and the "first energy self-sufficient 

multi-family house" in Switzerland (UAS 2023). Both buildings were equipped with PV and an energy 

storage system consisting of a battery and hydrogen storage. The building concept 'VitalSonnenhausPro' 

does not rely on hydrogen storage. It optimizes the use of photovoltaic and solar thermal potential in 

combination with a large thermal storage system and a battery (Leitl 2016). Home Power Solutions in 

Germany and Nilsson Energy in Sweden offer hybrid long-term storage solutions for residential build-

ings, specifically hydrogen/battery systems (Home Power Solution 2022; Nilsson Energy 2022). As of 

2022, 80 PICEA units by Home Power Solutions have been installed, with an additional 300 units or-

dered in Germany (VDI 2022). For a comprehensive overview of scientific studies and practical exam-

ples of self-sufficient residential buildings, please refer to the Supplemental Information in Kleinebrahm 

et al. (2023b). 

2.2.5 Discussion and research needs 

In light of decreasing costs of renewable technologies and increasing household electricity prices over 

the last years, an increasing number of studies analyze the economics of (partly) self-sufficient residen-

tial energy supply systems. Despite the temporary spike in battery system costs in 2022, long-term pro-

jections indicate further decreasing costs for renewable technologies (Few et al. 2018; Schmidt et al. 

2017; Schmidt et al. 2019). Additionally, empirical investigations show that homeowners’ main non-
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monetary motivation for investing in renewable energy supply systems is the desire for self-sufficiency, 

which motivates homeowners to pay extra (Engelken et al. 2018; Ecker et al. 2018). Given these devel-

opments, investigating the possibility of larger-scale dissemination of self-sufficient residential build-

ings becomes important in order to be able to counteract potentially suboptimal developments from a 

macroeconomic perspective at an early stage. Existing studies on self-sufficient residential buildings are 

limited in scope, focusing either on individual buildings at specific locations or only taking into account 

PV-battery systems when looking at a larger scale. Therefore, a large-scale study based on a unified 

model approach and a unified set of techno-economic assumptions is needed to analyze the current and 

future techno-economic potential of self-sufficient buildings, considering the diversity among building 

stocks of different countries, climates, building types, and household consumption characteristics. 

2.3 Municipal energy system transformation 

The Paris Agreement, signed in 2015, aims to reduce greenhouse gas emissions from human activities 

as soon as possible. Its goal is to limit global warming to well below 2°C, preferably to 1.5°C, compared 

to pre-industrial levels, by the end of the 21st century (UNFCCC 2015). To reach this objective, climate 

change mitigation strategies and energy political framework conditions with expansion targets for re-

newable energy sources are defined at the continental and national levels (Section 2.3.1). Due to the 

characteristics of renewable energy sources, their expansion is mostly decentralized. Cities, municipal-

ities, and local stakeholders have a great interest in climate protection and sustainability, which is re-

flected in a multitude of initiatives at the regional and municipal level (see, e.g., Wierling et al. (2023) 

and Mainzer (2019)). However, small municipalities with great potential for the expansion of renewable 

energies often have little resources and expertise for developing energy system concepts that are in line 

with overarching climate protection strategies. Therefore, there is a need for automated tools to support 

local actors in the design process of municipal energy systems (Section 2.3.2). 

2.3.1 Energy political framework conditions  

Since 1990, the European Union (EU) has steadily decreased its greenhouse gas emissions, reaching a 

32.5% reduction in 2022 (see Figure 10). However, to align with the legally binding targets of the EU 

Green Deal, which aim to reduce net greenhouse gas emissions by at least 55% by 2030 compared to 

1990 levels and to achieve climate neutrality by 2050, there is a need to accelerate the pace of emissions 

reduction (European Parliament 2021). The goal of the “Fit for 55” legislative package is to revise and 

update EU legislation to align with the EU’s enhanced climate targets. 

Key instruments for achieving these targets are the EU Emissions Trading System (EU ETS) and the 

Effort Sharing Regulation (ESR). The EU ETS covers around 36% of the EU’s total greenhouse gas 
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emissions in the sectors energy, industry, and aviation (European Commission 2023). The ESR, on the 

other hand, targets emissions reductions in the sectors transport, buildings, agriculture, small industries, 

and waste, collectively accounting for 60% of the EU's total greenhouse gas emissions (European Com-

mission 2023). The ESR is implemented in the form of binding national targets. These instruments are 

complemented by additional directives, such as the Renewable Energy Directive and the Energy Effi-

ciency Directive, which mandate increased utilization of renewable energy and enhanced energy effi-

ciency measures. However, even though the EU is at the forefront of global climate protection with 

these instruments, Figure 10 indicates that the combined emissions of the individual EU member states, 

even when considering planned future measures, are currently not in line with the goals of the EU Green 

Deal.  

 

Figure 10: Development of greenhouse gas emissions in the EU-27 member states. Greenhouse gas emissions 

(excluding international aviation) and removals, linear trajectories to EU targets, and greenhouse gas emis-

sion projections from the EU-27 member states. Historical data on sector-specific greenhouse gas emissions 

were taken from (EEA 2023). Future trajectories, targets, and projections were taken from (European Com-

mission 2023). Own illustration based on (European Commission 2023). (GHG, greenhouse gas; PPU, pro-

cesses and product use; LULUCF, land use, land-use change and forestry; WEM, with existing measures; 

WAM, with additional planned measures). 

The implementation of concrete measures and the development of long-term strategies for greenhouse 

gas reduction is the responsibility of the individual member states. In the German Climate Protection 
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Act, Germany has committed to reducing its greenhouse gas emissions by 65% by 2030 and 88% by 

2040, relative to 1990 levels, with the goal of achieving greenhouse gas neutrality by 2045 (Bundesre-

gierung 2021). With the objective of complying with these goals, the German government implemented 

multiple measures across the transport, energy, building, industry, and agriculture sectors (Bundesre-

gierung 2023). One of these measures was the amendment of the EEG in January 2023, which lays the 

foundation for the expansion of renewable energies (see Figure 11). By 2030, over 80 percent of Ger-

many's electricity consumption is expected to come from renewable energy sources (§ 1 EEG 2023). 

This means almost a doubling of the share in total electricity consumption. In order to keep up with the 

expansion rates, a land area target of 2% for onshore wind energy and specific area targets for federal 

states were legally established, minimum distance regulations were relaxed, and measures to accelerate 

the planning of PV and wind energy projects were implemented (Bundesregierung 2023). 

 

Figure 11: Historical and future targeted renewable capacity expansion in Germany. Own illustration based 

on historical data from the BMWK (2023b) and expansion targets from § 4 EEG (2017, 2021, 2023) and § 1 

WindSeeG (2021, 2023). 

In the building sector, around 80% of the heat demand in buildings is currently covered by the use of 

fossil fuels such as gas and oil (DENA 2023). Through the implementation of the measures from the 

Building Energy Act (GEG), the federal funding for efficient buildings (BEG), and the introduction of 

a national emission trading system in the Fuel Emissions Trading Act (BEHG), the goal is to decarbonize 

50% of building heat supply by 2030. Additionally, a rapid and significant increase in renovation dy-

namics and depth must be achieved to reduce overall heat demand.  

Particularly in the design of heating supply concepts, the most suitable and cost-effective local approach 

to a climate-friendly heating supply should be adopted, taking into account local waste heat and renew-

able energy potentials. Therefore, each planning authority should strategically plan how different areas 



Background 

30 

are to be supplied with heat, such as through decentralized or grid-connected technologies. To ensure 

the development of local heat supply concepts, the Heat Planning Act should be passed by the Bundestag 

in January 2024 (BMWSB 2023). The core of the Heat Planning Act is the obligation for states to ensure 

that municipalities create heat plans with the aim of improving planning and investment security for 

local actors. 

However, although Figure 11 shows that the German government's new targets (2023) are significantly 

more ambitious compared to the old ones (2021), it must be noted, even with all currently planned 

measures taken into account, it is anticipated that Germany will fall short of its greenhouse gas reduction 

targets by a cumulative total of 200 million tons of CO2 equivalents till 2030 (Bundesregierung 2023). 

Therefore, future adjustments to the currently planned measures are needed. 

2.3.2 Discussion and research needs 

In the planning of municipal heating supply concepts and the expansion of renewable energies, local 

conditions in the form of renewable and waste heat potentials, local infrastructures, and local energy 

demand structures of buildings, industry, mobility, and the tertiary sector must be considered in an in-

tegrated manner. Section 2.3.1 shows that local planning authorities – often municipalities – are pro-

gressively involved in the planning of local energy systems, even at the legislative level. However, par-

ticularly small municipalities, which often have a high potential for renewable energies (see Mainzer et 

al. (2014)) and are mandated to develop heating supply concepts by 2028 (BMWSB 2023), often lack 

the expertise to design coherent energy supply concepts. On the other hand, local actors show great 

interest in participating in the local energy transition, which becomes evident by the fact that the majority 

of renewable energy plants in Germany are owned and operated by private individuals, farmers, and 

communities (Bringault et al. 2017). Further, studies show that cities and municipalities are especially 

successful in engaging private building owners at the local level, using regional ties and educational 

events to influence their investment decisions (Wagner and Sager 2015). Consequently, transferable 

tools are needed to support local actors in planning energy systems and enable citizens to actively par-

ticipate in the planning process (McKenna et al. 2018). 
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3 Methodology 

Section 3 provides an overview of the methodological approaches used and developed in this thesis. 

First, in Section 3.1, approaches for residential energy demand modeling are discussed. It is shown that 

an adequate representation of household behavior builds the foundation for consistent bottom-up energy 

demand modeling. In Section 3.2, shortcomings of existing occupancy and mobility simulation models 

are identified. A neural network-based approach is introduced to overcome these shortcomings. In Sec-

tion 3.3, a framework for bottom-up residential energy system design for buildings within the European 

building stock is developed. Finally, Section 3.4 introduces a municipal energy system optimization 

model, which is extended in this thesis to analyze the residential building stock transformation of a 

municipality within the context of national greenhouse gas reduction strategies. 

3.1 Residential energy demand modeling 

Residential energy demand models enable the study, understanding, and forecasting of the dependencies 

between socio-demographic household determinants, technical and environmental parameters, occupant 

behavior, and the associated energy demands. Models can be divided into two categories: bottom-up 

and top-down models (Swan and Ugursal 2009). Bottom-up models calculate the individual dwellings' 

energy consumption based on all energy consumption devices of the household (see Figure 12). Top-

down models, on the other hand, use macro-economic indicators, such as gross domestic product or 

construction rates, to describe long-term changes in energy consumption on an aggregate level and break 

it down to the level of individual dwellings based on the structural characteristics of these dwellings 

(Swan and Ugursal 2009; Proedrou 2021). Top-down models are helpful in evaluating the impact of a 

changing economy on energy demand on a regional or national level (Swan and Ugursal 2009). How-

ever, since top-down models heavily rely on historical energy consumption data, they are not well-suited 

to function effectively in discontinuous settings, such as those involving disruptive events that lead to 

structural changes. For example, a technological breakthrough can be regarded as such a disruptive 

event. Proedrou (2021) further introduces the category of hybrid models. This category includes models 

that combine bottom-up and top-down approaches. The extent to which the respective approach charac-

teristics are adopted depends on the application. 

This thesis focuses on bottom-up models with the objective of better understanding the effects and in-

teractions of technologies in residential energy systems under various techno-economic conditions. 

Challenges associated with bottom-up models are their high computational complexity and demand for 
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data due to the high level of detail. However, the growing interest in residential energy demand has 

driven the development of a number of bottom-up models that try to represent the temporal variations 

in energy demand for electric household devices, domestic hot water, space heating, and mobility 

(Proedrou 2021; Yamaguchi et al. 2018; Grandjean et al. 2012). Proedrou (2021) reviews 32 residential 

electricity load profile models based on their general approach (bottom-up, top-down, hybrid), the sam-

pling rate of the output (one second to one hour), application (demand side management; planning, 

control, and design of energy systems) and their main statistical methods. To simulate the stochasticity 

in device starts and occupancy behavior, Markov chain models, non-Markov probabilistic models, and 

Monte Carlo methods are used as statistical methods. Yamaguchi et al. (2018) further review appliance 

modeling methods within bottom-up models and distinguish between approaches based on time-use data 

and those solely based on empirically measured device-specific load profiles. In the latter, time-depend-

ent switch-on probabilities are derived from power demand measurements. Time use data, on the other 

hand, provide nationally representative information on individuals' daily routines with high temporal 

resolution and also contain rich information on socio-demographic characteristics (Eurostat 2024). 

Therefore, this thesis adopts a time-use data-based approach, on the basis of which consistent demand 

profiles for thermal comfort, mobility, and other energy services can be derived. The general structure 

of time use data-based load profile models can be seen in Figure 12. Research shows that especially 

under rising building performance standards, the influence of occupant behavior on building perfor-

mance increases, and occupant behavior is acknowledged as a main source of discrepancy between pre-

dicted and actual performance (Gaetani et al. 2016; Jia et al. 2017; Yoshino et al. 2017). Therefore, a 

sophisticated representation of occupant behavior is of great importance, not only for thermal demand 

models but especially for integrated modeling approaches (as can be seen in Figure 12). A detailed 

overview of modeling approaches for the representation of residential activity patterns in building en-

ergy system models is given in Section 3.2.  
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Figure 12: Bottom-up residential energy demand modeling framework. The occupancy + mobility module – 

highlighted in orange – is discussed in detail in Section 3.2. The modules surrounded by a dashed line are 

represented as flexibility options in the energy system optimization model, as presented in Section 3.3.2 (in 

detail: (Kleinebrahm et al. 2018) and (Kleinebrahm et al. 2023b)). The flexible operation of white goods is 

considered in (Kleinebrahm et al. 2018). Flexible electric vehicle charging strategies are analyzed within a 

multi-family house setting (Braeuer et al. 2022). The flexible provision of thermal comfort, taking into ac-

count the thermal inertia of the building, is represented as analogous to (Schütz et al. 2017a) in the building 

energy system optimization used in (Kleinebrahm et al. 2023b). 

3.2 Residential activity modeling 

Over the last years, various approaches have been developed to better understand and simulate occupant 

behavior and its impact on energy consumption (Osman and Ouf 2021; Gaetani et al. 2016). Initially, 

models like the one developed by Capasso et al. (1994) employed simplistic two-state (available, una-

vailable) simulations using Monte Carlo methods. In recent years, advancements have shifted towards 

more sophisticated techniques, including the use of empirical data from time-use and mobility surveys, 

where participants log their daily activities over several days. Time-use surveys, conducted every 5 to 

10 years in over 100 countries worldwide, have been utilized in 93 research studies for building energy 

and occupancy analysis (Osman and Ouf 2021). In this thesis, the German part of the Harmonized Eu-

ropean Time Use Survey is used, which provides detailed information on the activities of individual 

persons over three days (Destatis 2006; Eurostat 2024). Mobility surveys, on the other hand, provide 

information on daily or weekly mobility patterns and are used to analyze electricity demand associated 

with electric vehicle transport (Fischer et al. 2019; Kaschub et al. 2016). Exemplary artificial individual 

activity and mobility schedules can be seen in Figure 13. 
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Figure 13: Activity and mobility schedules from time use survey and mobility panel data. Exemplary artificial 

individual diary entries are based on the structure of the German TUS (Destatis 2006) and the German mo-

bility panel (MOP) (Weiss et al. 2016). 

Since time-use and mobility survey data are often subject to strict privacy guidelines, generative models 

that can learn the distribution of the original data and generate synthetic data with the same characteris-

tics are needed. The trained models, or the synthetic data they generate, can further be used as a basis 

for open-source models. 

When choosing a model, it is important to ensure that the model can capture the complexity in the data 

while also preventing overfitting, which occurs when a model excessively learns the specifics of the 

dataset rather than generalize from it. Alaa et al. (2021) propose the usage of three criteria for the eval-

uation of synthetic data: fidelity, diversity, and generalization. Fidelity refers to the quality of individual 

samples, while diversity relates to the extent to which these samples cover the full variability of the 

original data. Further, generalization evaluates the extent to which a model overfits. In the following, an 

overview of existing methods for residential activity modeling and their shortcomings is provided. Sub-

sequently, the methodological approach developed as part of this work is presented. 

3.2.1 Markov chain approach 

Markov chains have become the most common approach for modeling the evolution of daily activity 

sequences. They abstract the way people go about their lives as transitioning from one activity state into 

another (Ramírez-Mendiola et al. 2019). The Markov chain is thereby defined by a state space, the set 

of all possible states, and the transition probabilities between the states. Thereby, the transition proba-

bility between states depends on the current state (first-order Markov chain) or the current and past states 

(higher-order Markov chain).  
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Multiple studies use first-order Markov chains with time-inhomogeneous transition probabilities to de-

scribe the behavior of individuals or whole households throughout the day (see Table 1). These ap-

proaches produce low-fidelity activity sequences since first-order Markov chains are constrained by the 

Markov property, which refers to the memorylessness of a stochastic process. Memorylessness is char-

acterized by the fact that the transition probability of the current state to the subsequent state is only 

conditioned on the current state, while previously observed states are neglected. Since activity schedules 

of occupants are subject to more complex processes, a variety of more complex Markov models have 

been proposed over the last years, including semi-Markov chains, higher-order Markov chains, and 

Markov chains with variable memory length (see Table 1). An abstract representation of the activity 

sequence generation processes of the respective models can be found in Figure 14. Although the more 

complex Markov models have partly overcome the memorylessness problem, their effectiveness in cap-

turing complex long-term dependencies remains constrained. This limitation arises because higher-order 

Markov models are hindered by an exponential increase in their number of free parameters as the mod-

el's order increases. This complexity restricts the practical use of past observations for predictions of 

future states. 

 

Figure 14: Representation of the sequence generation process with different model approaches. 1. First order 

Markov chain, 2. Semi-Markov chain, 3. Higher order Markov chain, 4. Markov chain with variable memory 

length, 5. First order Markov chain with 24h correlation, 6. Recurrent neural network, 7. Transformer neural 

network. 
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3.2.2 Hierarchical regression approach 

An alternative to a Markov chain approach is provided by Hilgert et al. (2017), who present a utility-

based stepwise hierarchical regression approach to generate mobility schedules for travel demand mod-

els. While the approaches presented in Section 3.2.1 are solely based on time-use survey data, Hilgert 

et al. (2017) use weekly mobility data (see Figure 13) and try to represent higher-level mobility patterns 

instead of detailed household activities. The proposed approach differs fundamentally from the previ-

ously discussed Markov models, primarily due to its one-week observation period, which necessitates a 

more comprehensive representation of mobility sequences, capturing both the day-to-day stability and 

variability of personal behavior. Rather than evolving activity sequences over time, the mobility sched-

ule generation process is split into smaller decisions due to the high complexity of constructing the entire 

schedule at once (Bowman 1998). For each of the small decision problems, a logistic regression model 

is fitted. Due to the high number of sequential decisions and the associated large number of assumptions, 

the proposed model has a high assumption bias and cannot easily be transferred to other domains. 

Table 1: An overview of selected models for modeling occupancy behavior. 

Study Database Approach Object 

(Richardson et al. 2008) TUS (UK) Markov - 1st order Household 

(McKenna et al. 2015a) TUS (UK) Markov - 1st order Household 

(Widén and Wäckelgård 2010) TUS (SE) Markov - 1st order Individual 

(Santiago et al. 2014) TUS (ES) Markov - 1st order Individual 

(Wilke 2013) TUS (FR) Markov - semi Individual 

(Bottaccioli et al. 2019) TUS (IT) Markov - semi Individual 

(Aerts et al. 2014) TUS (BE) Markov - semi Individual 

(Nijhuis et al. 2016) TUS (NL) Markov - 1st order (+24h) Individual 

(Flett and Kelly 2016) TUS (UK) Markov - higher order Individuals 

(Ramírez-Mendiola et al. 2019) TUS (UK) Markov - variable length Individual 

(Hilgert 2019) MOP (DE) Hierarchical regression Individual 

(Osman et al. 2023) TUS (CA) Markov - semi Individual 

(Kleinebrahm et al. 2021) MOP+TUS (DE) Deep neural networks Individual 

 

3.2.3 Neural network approach 

Shove et al. (2012) and Torriti (2017) advocate for more holistic examination approaches of activity 

schedules to better understand higher-level patterns. Having this in mind, the method developed in this 

thesis has the objective of not only describing the behavior of a person more holistically within the 
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temporal dimension but also capturing higher-level patterns that shape the structure of people's activity 

schedules.  

Deep neural networks, which built the basis for the latest breakthroughs in natural language processing 

(OpenAI 2023a), image recognition (Krizhevsky et al. 2012), and protein folding (Jumper et al. 2021), 

among others, are capable of learning complex patterns and higher-level concepts from data. Since both 

activity schedules and natural language can be interpreted as categorical sequences, the same approaches 

that are successfully used to generate natural language are applied in this thesis to generate residential 

activity schedules. To process text or activity schedules with neural networks, the input must first be 

tokenized. In natural language processing, tokenization refers to the process of splitting up a text into 

words, subwords, or characters, which then are converted to numbers (IDs) through a look-up table. For 

example, the language models GPT-4 and Llama use subword tokenization, with Llama featuring a 

vocabulary size of 32k tokens (OpenAI 2023b; Touvron et al. 2023). In this thesis, the chosen activity 

state space is significantly smaller when generating mobility (6 states) and activity sequences (14 states).  

The tokenized sequences are used as input for the neural network. In the first layer, the tokens are con-

verted into embeddings, which are dense vector-space representations learned during the training pro-

cess of the neural network (Mikolov et al. 2013). The basic concept of embeddings is shown in Figure 

15 for an exemplary use case with four aggregate activity states and an embedding space of dimension 

two. Large language models currently use significantly larger embedding spaces, with up to 8192 di-

mensions (Touvron et al. 2023). 

 

Figure 15: Explanation of the concept of an embedding layer. In the bottom left part of the figure, the em-

bedding layer is described as a linear layer that takes a one-hot encoded vector as input. However, in practice, 

embedding layers are implemented as look-up tables for efficiency reasons since one-hot encoded vectors 
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are sparse and high-dimensional, leading to inefficient computations. The embedding weights represent the 

state-specific embeddings. Own illustration based on Kuhlmann (2021). 

In this work, two kinds of neural network architectures are considered: recurrent neural networks and 

transformer-based neural networks (Hochreiter and Schmidhuber 1997; Vaswani et al. 2017). A recur-

rent neural network processes each token at a time and thereby inherently learns the sequential structure 

of the input (see Figure 14). The transformer, on the other hand, which is currently the most widespread 

neural network architecture for large language models, is based on the attention mechanism (Vaswani 

et al. 2017). In contrast to recurrent neural networks, the attention mechanism allows the processing of 

all information within its attention span at once when predicting the next token. This is beneficial for 

parallelization, but since the transformer processes every step of the sequence independently, the infor-

mation on the order of the sequence gets lost. Therefore, positional information in the form of positional 

encodings, which provide context information, is added to the embeddings. Subsequently, dependencies 

between the states within a sequence are learned by layer one through N of the neural network. The 

layers are implemented as Long Short-Term Memory (LSTM) layers or transformer layers (Hochreiter 

and Schmidhuber 1997; Vaswani et al. 2017). The general architecture of the described neural network 

can be seen in Figure 16.  

 

Figure 16: Neural network architecture and the information flow during training process. Black arrows indi-

cate the forward pass of information through the neural network, while the pink arrow indicates the backward 

pass of information for the update of the weights through backpropagation. 

When training autoregressive models to generate activity or mobility sequences, future states are pre-

dicted exclusively based on previously observed states. Further, imputation models are developed in this 

thesis to enrich aggregated mobility schedules with more granular activity information from time-use 

surveys. For further information on the architecture of the imputation models, please refer to Kleine-

brahm et al. (2021).  
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After the information has been processed in layer one through N, probabilities for the individual states 

are calculated for each step using a linear layer and the softmax function. To do this, the linear layer 

first projects the output of layer N into a K-dimensional vector space, where K corresponds to the car-

dinality of the state space (in the above example, K = 4). Further, the unscaled output of the linear layer, 

called logits, is transferred to probabilities using the softmax function. The cross-entropy loss is calcu-

lated based on the calculated probabilities for the occurrence of the respective states and the actual oc-

curring states (ground truth). Based on calculated loss, the weights of the layers are updated using back-

propagation. 

By using neural networks in combination with mobility and behavioral data, in contrast to the Markov 

approaches presented, complex long-term time dependencies in the behavior of individuals can be cap-

tured, and thus, the problem of memorylessness can be overcome. At the same time, compared to the 

approach of Hilgert et al. (2017), significantly fewer domain-specific assumptions need to be made, 

which increases the transferability and quality of the approach presented. Further, the presented ap-

proach enables the generation of synthetic behavioral data with high fidelity and diversity and, therefore, 

builds a promising basis for the application in building energy demand simulations. 

3.3 Residential building stock energy system optimization 

The complexity of designing future renewable-based building energy systems is vastly increasing due 

to the growing number of investment options in generation, conversion, storage, and retrofit technolo-

gies. Further, the fluctuating supply of renewable energy technologies necessitates modeling with the 

increased temporal resolution, which directly impacts the size of the optimization problem. Therefore, 

advanced mathematical models are needed since traditional analytical solving is, in many cases, not 

possible anymore (Baños et al. 2011).   

Investments in energy retrofits and renewable energy technologies for residential buildings are mainly 

motivated by financial benefits (Achtnicht and Madlener 2014; Balcombe et al. 2014; Kairies et al. 

2019). Consequently, in this thesis, a framework is developed on the basis of which techno-economic 

optimal renewable-based energy systems for residential buildings can be determined, taking into account 

various technology options and efficiency measures. To be able to infer techno-economic potentials for 

entire building stocks from results for individual buildings, a dynamic approach is developed for iden-

tifying representative buildings, which is based on a synthetic representation of building stocks. Core 

indicators of the energy system analyses of the representative buildings are ultimately transferred to all 

examined buildings of the synthetic building stock by using a surrogate model without excessive use of 

computational resources. The proposed framework builds upon and extends existing literature (see Ta-

ble 2).   



Methodology 

40 

Table 2: Overview of the developed framework modules. 

Framework modules 
 Main foundational 

methodological studies 

Main research contributions 

1. Data collection  Combination of data sources and data imputa-

tion for EU27, NO, UK. 

2. Synthetic building stock (Huang and Elsland 2019) 

Development of a spatial microsimulation ap-

proach for the derivation of local synthetic 

building stocks at the NUTS3 level. 

3. Representative buildings (Kotzur et al. 2019) 
k-means clustering to determine representative 

buildings based on building energy system rel-

evant features. 

4. Energy system model formulation 

(Kotzur 2018) 

(Kaschub 2017) 

Technology set expansion to account for, e.g., 

small wind turbines, flexible operation of de-

mand-side technologies, like white goods, and 

the renewal of the heat distribution system. 

Implementation of the Tenant-landlord per-

spective according to the German tenant elec-

tricity law (see Braeuer et al. (2022)). 

 

 

4.1 Occupancy simulation 

4.2 Solar radiation simulation 

4.3 Electric appliance simulation 

4.4 Domestic hot water simulation 

4.5 Optimization integrated thermal 

5R1C model 

4.6 Time series aggregation 

4.7 Robust energy system design 

4.8 Solution algorithm 

(Richardson et al. 2008) 

(Andrews et al. 2014) 

(Richardson et al. 2010) 

(Richardson et al. 2010) 

(Schütz et al. 2017a) 

 

(Kotzur et al. 2018b) 

 

(Kotzur 2018) 

 

Integration of German behavioral data for oc-

cupancy modeling. 

Metaheuristic for time series aggregation for 

trade-off aggregation error vs. computation 

time. 

Robust energy system design through a multi-

step optimization against 30 historical weather 

years. 

5. Surrogate model (Weinand et al. 2020a) 

Development of a regression/classification-

based approach to transfer individual building 

results to building stocks to derive large-scale 

techno-economic potentials from bottom-up 

models. 

 

In this thesis, the framework is used to calculate the techno-economic potential for a self-sufficient res-

idential energy supply of 41 million freestanding single-family buildings within the European building 

stock. Beyond the utilization in this thesis, the developed framework is applied in multiple other publi-

cations, demonstrating its wider transferability. Kleinebrahm et al. (2018) designed optimal renewable 

energy-based systems for the self-sufficient energy supply of a residential building in Germany, ac-

counting for the flexible operation of demand-side technologies and flexible electric vehicle charging. 
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In Vögele et al. (2022), the framework was used to calculate the techno-economic potential of PV-

battery systems in the German residential sector up to 2050. In Braeuer et al. (2022), optimal energy 

systems for energy communities in multi-family buildings were designed under the consideration of the 

German tenant electricity law. A visualization of the proposed framework can be seen in Figure 17. The 

individual components of the framework are briefly presented in the following sections. A more detailed 

description can be found in Kleinebrahm et al. (2023b). 

 

Figure 17: A framework for the evaluation of residential energy systems. The framework is based on a data-

base, which combines spatially resolved building stock data with building energy system-relevant attributes. 

In the first step, spatial microsimulation is conducted to integrate the building attributes into a synthetic 

representation of the building stock. A k-means clustering approach is further utilized to identify representa-

tive buildings. Subsequently, building energy systems are computed with an optimization model using a high-

performance computing cluster. Finally, the findings from these energy system optimizations are extrapo-

lated to the entire synthetic European building stock using a surrogate model. Own visualization published 

in Kleinebrahm et al. (2023b). 

3.3.1 Synthetic building stock 

Spatially resolved data for individual buildings are needed for the analysis of building energy systems. 

For building age, building living area, and household size, only one-dimensional distributions are pro-

vided at the NUTS3 level. To address the limitations of aggregated one-dimensional data, spatial mi-

crosimulation is used to generate synthetic building stocks for each European NUTS3 region. Therefore, 

household data from the Socio-Economic Panel are used as individual-level microdata and combined 

with the aggregated one-dimensional distributions using iterative proportional fitting (Liebig et al. 2019; 

Blocker 2022). The generated synthetic building stock provides spatial microdata (i.e., empirically-

based combinations of the one-dimensional data) while preserving the spatially aggregated statistics for 

each NUTS3 region. In further steps, the synthetic building stock is enhanced by integrating additional 
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information relevant to the design of building energy systems. For example, information on weather, 

building geometry, U-values, and energy carrier prices. 

3.3.2 Energy system design 

An integrated heat and electricity building energy system optimization approach is developed for the 

determination of the techno-economically optimal design of building energy systems under varying 

framework conditions in Europe. To account for weather and country-dependent variations of renewable 

energy feed-in, conversion efficiencies, solar heat gains, thermal heat losses, lighting, and domestic hot 

water demand, multiple existing tool chains have been combined to provide input for the building energy 

system optimization (see Table 2). Further, adjustments were made to account for, e.g., country-specific 

household appliance equipment or annual appliance and domestic hot water demand. 

Based on the available temporally resolved and time-invariant inputs, a model class was selected that is 

capable of representing the complexity of a highly renewable-based building energy system and is solv-

able in a feasible time. Kotzur (2018) and Schütz et al. (2017a) show that mixed integer linear program-

ming (MILP) approaches can adequately represent renewable energy supply and demand fluctuations, 

multiple investment options in building envelope and energy system technologies, thermal building in-

ertia and can be solved within a reasonable timeframe when designing building energy systems. There-

fore, a MILP optimization approach is chosen for the determination of cost-minimal building energy 

system design and operation while accounting for all investment options shown in Figure 18. More 

details on the model can be found in Kleinebrahm et al. (2018), Kleinebrahm et al. (2023b), and Braeuer 

et al. (2022). 
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Figure 18: Overview of the energy system components represented in the optimization model. (F/RT-PV, 

free-standing/rooftop photovoltaic; SWT, small wind turbine; F/RT-ST, free-standing/ rooftop solar thermal; 

mCHP, micro-combined heat and power; BS, battery storage; HP, heat pump; AC, air conditioner; HR, heat-

ing rod; EC, electrolyzer; FC, fuel cell; H2-S, hydrogen storage; HS, heat storage; EV, electric vehicle; DSM, 

demand-side management; Del, electrical demand; Dth, thermal demand; th. dist, thermal distribution; LT, 

low temperature). 

3.3.3 Complexity reduction  

A key challenge in energy system modeling is to find a good compromise between model scope, reso-

lution, and computational feasibility. The computational complexity of the MILP optimization problem 

leads to long model runtimes due to multiple time-coupling constraints and binary decision variables. 

For example, the optimization problem presented in Kleinebrahm et al. (2023b) for self-sufficient resi-

dential buildings cannot be solved in reasonable time using the full-time series over one year in hourly 

resolution (for one building and MIP Gaps <1% the model needs >24 hours).  

Therefore, three measures are introduced to reduce the complexity of the underlying problem, with the 

aim of deriving general statements for building stocks within a reasonable timeframe and with adequate 

accuracy. In the first step, building archetypes that best represent the diversity of the synthetic building 

stock are derived. In the second step, the building optimization problem is decomposed into a multi-step 

optimization to reduce complexity and allocate computational resources as efficiently as possible. After 
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cost-minimal energy systems for all archetype buildings have been calculated, a surrogate model is pa-

rameterized to transfer the results of the individual energy system optimizations to all buildings of the 

examined building stock. 

Archetype building derivation. It is not practicable to calculate building energy systems for all build-

ings of a national or even continental building stock due to computational restrictions and time con-

straints. Therefore, the problem size is reduced by the determination of representative archetype build-

ings based on building features that are relevant to the design of the energy system.  

The k-means clustering approach is used for the identification of representative buildings due to the 

feasible time complexity and high computing efficiency (Xu and Tian 2015). An additional benefit of 

the k-means algorithm lies in its requirement to predefine the number of clusters tailored to the compu-

ting resources available for the energy system optimization model. Once the cluster centroids are iden-

tified, the nearest building to each centroid within the synthetic building stock is selected, for which 

optimal energy systems are subsequently determined. 

In contrast to the approach presented by Kotzur et al. (2019), who directly derive archetype buildings 

from spatially aggregated one-dimensional data, the approach presented in this thesis enables the con-

sideration of correlations between building features, such as between household size and residential 

building area. A comprehensive overview of methods for archetype building selection and building 

stock synthesis can be found in the supplementary material of Kleinebrahm et al. (2023b). 

Multi-step optimization. To reduce the problem size of the building energy system design optimization, 

a multi-step optimization approach is introduced based on the work presented by Kotzur et al. (2018b), 

Kotzur et al. (2018a), and Bahl et al. (2017). In the first step, a time series aggregation approach based 

on typical days is used to reduce the complexity of the optimization problem (Kotzur et al. 2018b). 

Further, the reduced problem is solved by determining the technology components of the energy system. 

In the second step, binary decision variables are predetermined based on the results of the first step, and 

the energy system components are scaled considering the full-time series over the entire year (Bahl et 

al. 2017). Finally, in the third step, the energy system is optimized against multiple historical weather 

years to ensure a robust energy system design. 

A metaheuristic is introduced to keep the time series aggregation-induced error low and to use the com-

puting capacity as efficiently as possible. The metaheuristic identifies trade-offs between calculation 

time and optimization error based on hyper-parameters, such as the number of typical days or the devi-

ation between the objective function value of the reduced and full optimization problem. Hyper-param-

eters are derived on the basis of a micro synthetic building stock (in Kleinebrahm et al. (2023b), 347 

buildings). Based on the derived settings, the mean calculation time per building can be used to define 

the number of archetype buildings to be analyzed with regard to the available computational resources 
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(in Kleinebrahm et al. (2023b), 4,000 buildings). The identification of an optimal trade-off between 

computing time and optimization error enables the generation of a large data set of high-quality individ-

ual samples. Details of the metaheuristic can be found in the supplementary material of Kleinebrahm et 

al. (2023b). 

Surrogate model. Finally, a surrogate model is employed to approximate key indicators for all buildings 

in the synthetic building stock. The objective of the surrogate model is to establish a functional relation-

ship between the inputs of the energy system optimization and key output parameters. The derived model 

can be used to extrapolate the results of the energy system optimizations to the entire synthetic building 

stock while using significantly fewer computational resources compared with optimizing the energy 

system of each individual building. Depending on the kind of key indicator to be estimated, a regression 

or classification approach is utilized. 

3.4 Municipal energy system transformation 

To analyze the transformation of the residential building stock energy supply within the overarching 

municipal and national energy system transformation, the Renewable Energies and Energy Efficiency 

Analysis and System OptimizatioN model (RE³ASON, cf. Mainzer (2019) and Weinand (2020)) was 

used and extended. 

The RE³ASON model consists of two parts, “input data determination” and “energy system optimiza-

tion”. The development of the first part (“input data determination”) was motivated by the large amount 

of data required to model municipal energy systems, such as renewable potentials and information on 

the local building stock. Since local municipal energy planners often lack the expertise and financial 

resources to acquire these data, RE³ASON minimizes the effort involved in data collection. Based on 

the name of the municipality, local weather data, spatially resolved population, building stock infor-

mation, and land use potentials for renewable energy sources are gathered and further processed to de-

rive local energy demand and technology-specific available capacities and potentials. All necessary data 

sources are publicly available, which makes the RE³ASON model easily transferable to all German 

municipalities. Based on the gathered data, a municipal energy system optimization model was devel-

oped as the second part of the RE³ASON model. The objective of the optimization model is to minimize 

the total discounted system cost from a macroeconomic municipality planner perspective to identify 

cost-minimal energy system transformation strategies. Within this macroeconomic perspective, taxes, 

subsidies, and Levies are not considered. The model is implemented in the form of a MILP optimization 

problem and calculates optimal investments and dispatch for energy system technologies. Thereby, the 

model considers multiple investment options in energy supply technologies at the municipal level (see 

Table 3) and at the residential building level (e.g., investments in insulation, heating technologies, or 



Methodology 

46 

efficient appliances). In this thesis, long-term municipal energy system transformations are analyzed 

from 2020 to 2050, whereby each 10th year is modeled. 

In this thesis, the RE³ASON model is further extended to be able to optimize the local municipal energy 

system transformation while considering the transformation of final energy demand in the industry, ter-

tiary, transport, and residential sectors in line with national greenhouse gas reduction strategies. A sto-

chastic, spatially resolved building stock simulation is introduced to consider temporal dynamic changes 

and the heterogeneity in the municipal residential building stock within the energy system optimization. 

To maintain realistic growth rates for renewable technologies, local maximum annual expansion rates 

are set in line with national trends. The range of energy supply technologies in the model is broadened 

to encompass all significant options found in national energy transformation scenarios. An overview of 

the model extensions made in this thesis can be found in Table 3. In the following section, the adjust-

ments made to the objective function of the optimization model (Section 3.4.1) and the developed sto-

chastic building stock simulation model (Section 3.4.2) are presented. 

Table 3: Extensions of the municipal energy system optimization model RE³ASON. 

RE³ASON RE³ASON + model extensions in this thesis 

Aggregated building stock representation by arche-

type buildings, no consideration of temporal inertia 

Multiple stochastic building stock scenario simulations as binary de-

cision variables in energy system optimization 

Constant tertiary, industry, and transport sector en-

ergy demand 

Integration of transport, tertiary, and industry sector energy demand 

transformation  

Existing supply side technologies: Wind turbines, 

rooftop PV, biomass plants, and geothermal plants 

(see Mainzer (2019) and Weinand et al. (2021)) 

Existing technologies + freestanding PV&ST, H2 infrastructure, 

CO2-flows and CO2 mitigation technologies + consideration of tech-

nology expansion rates 

One-step optimization based on four typical weeks 

per year  

Two-step optimization solving approach taking into account hourly 

resolution 

 

3.4.1 Municipal energy system optimization 

The different cost components of the objective function of the MILP optimization problem are high-

lighted in Figure 19. Energy system technology investments 𝑥𝑖,𝑗
𝑖𝑛𝑣 are made between the representative 

years of consideration 𝑎 ∈ 𝐴 in the intervals 𝑖 ∈ 𝐼𝑛𝑡. The expansion costs 𝑐𝑖,𝑗
𝑖𝑛𝑣 and costs for operation 

and maintenance 𝑐𝑎,𝑗
𝑜𝑝

 are highlighted by the blue and green areas. The connections in orange and grey 

to the national energy system represent energy carrier and CO2 flows. The extend of exchange with the 

national energy system depends on the long-term price projections for energy carriers 𝑐𝑎,𝑡,𝑗
𝑒𝑖   and CO2 
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emissions 𝑐𝑎,𝑗
𝑒𝑚, which are derived from overarching national scenarios. The red area represents the res-

idential building stock transformation scenarios, which are calculated in a stochastic upstream simula-

tion model. Within the energy system optimization, one scenario is chosen by a discrete decision varia-

ble 𝑥ℎ
𝑠𝑐𝑒𝑛. The costs connected to the respective scenario 𝑐ℎ

𝑠𝑐𝑒𝑛 are also calculated in the upstream 

simulation model. Thereby, in this thesis, investment decisions regarding heat supply technologies and 

retrofit measures are made at the level of individual residential buildings outside the optimization model. 

This allows for the consideration of the high heterogeneity of the residential building stock without 

making the model intractable. Furthermore, this approach facilitates a detailed analysis of the building 

stock's dynamics, considering aspects such as the rate and depth of retrofits, modernization rates for 

heating technologies, and the integration of technologies like heat recovery units and air conditioners. 

 

Figure 19: Composition of the municipal energy system optimization objective function. Own visualization 

published in Kleinebrahm et al. (2023a). 

3.4.2 Residential building stock transformation 

Multiple existing studies only consider an aggregated final energy demand of the residential building 

sector (Thellufsen et al. 2020; Thellufsen and Lund 2016; Østergaard and Lund 2011) or use a small 

number of representative archetype buildings (Weinand et al. 2019c). In Weinand et al. (2019c), already 

a small number of archetype buildings (~10) lead to long runtimes of the optimization model. As a result, 

the model was unable to fully represent the diversity of the building stock, and no constraints on maxi-

mum rates of retrofit and achievable rates of technology modernization were imposed. This approach 

allowed for optimal investment decisions at the building level but neglected to consider temporal con-

straints related to the dynamics of the building stock. This thesis addresses this limitation by introducing 
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a stochastic model for the building stock transformation (see Figure 20), which is linked with the mu-

nicipal energy system optimization. By considering each residential building individually, this approach 

captures the diversity of the residential building stock. Furthermore, the building stock model accounts 

for the temporal dynamics of building stock transformation by incorporating trends with regard to ret-

rofit rates4, retrofit depth, technology modernization, and expansion rates.  

 

Figure 20: Stochastic process for the generation of residential building transformation scenarios. Own visu-

alization published in Kleinebrahm et al. (2023a). 

 
4 Defined as full retrofit equivalents according to Cischinsky and Diefenbach 2018. 
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4 Summaries of papers and results 

This chapter summarizes each of the three papers of this cumulative dissertation in a separate section. 

More specifically, the study context and the scientific contribution of the articles are presented first, 

followed by the results and their discussion. The corresponding research papers are included in Part II 

of the dissertation. 

4.1 Paper A: Using neural networks to model long-term 

dependencies in occupancy behavior 

The following subsections refer to the article “Using neural networks to model long-term dependencies 

in occupancy behavior”, co-authored with Jacopo Torriti, Russell McKenna, Armin Ardone, and Wolf 

Fichtner. The article was published in the journal Energy & Buildings and is cited in this thesis by 

Kleinebrahm et al. (2021). The graphical abstract of the article is presented in Figure 21. 

 

Figure 21: Two-step approach for the generation of weekly activity schedules. Own visualization published 

in Kleinebrahm et al. (2021). 

Study context and contributions. 

Section 2.1.2 showed that most future energy system scenarios anticipate a significant shift towards 

electrified heat generation to decarbonize residential heat supply. This trend is already evident, as heat 

pumps have become increasingly popular, demonstrated by a 34% market growth and over two million 

sold units in 2021 in the EU-27 (Rosenow et al. 2022). Further, from 2019 to 2022, the share of new 

registrations of electric cars in the EU-27 increased from 3% to 22%, which is reflected in over one 

million cars sold in 2022 (EEA 2023). These trends, which are expected to accelerate in the future, will 
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fundamentally change the characteristics of the course of electricity demand in the residential sector. 

Furthermore, different types of storage technologies will enable shifting energy over periods of single 

days and, therefore, open up flexibility potentials. In order to use these flexibilities, fundamental de-

pendencies that shape household energy demand need to be understood. Occupant behavior has already 

been identified to have a significant impact on household energy demand and is regarded to be the main 

source of discrepancy between predicted and actual demand (Gaetani et al. 2016; Yoshino et al. 2017). 

With rising building performance standards and the growing demand for electric mobility, the impact 

of household behavior is even expected to become more pronounced in the future. Therefore, in this 

article, a neural network-based two-step approach for a better representation of occupant and mobility 

behavior in bottom-up household energy demand models is proposed. 

4.1.1 Objective and significance 

Over the last years, there has been a growing research interest in behavioral modeling with the objective 

of better representing the dynamics in residential energy demand through energy-related activities (Tor-

riti 2017, 2014). The majority of models discussed in the literature rely on time-use survey data and 

Markov chains (see Table 1). However, due to the characteristics of the time use survey data and the 

inherent limitations of the Markov property, these models are not capable to account for long-term de-

pendencies in behavior that span over multiple days. Therefore, while existing models are capable of 

simulating the stochastic nature of aggregate residential sector energy demand, they fall short in accu-

rately representing the characteristics of individual households. Accurately capturing long-term behav-

ioral dependencies is becoming increasingly important, particularly for evaluating investment options 

in renewable technologies or assessing the flexibility potential of individual households. In order to 

overcome the shortcomings of existing approaches, the objective of this article is to develop a model 

that combines highly detailed activity information of time use survey data with information on weekly 

mobility patterns provided by the German mobility panel. Thereby, the presented methodology not only 

tries to capture the stochasticity in behavior on an aggregate level but also to generate high-quality 

weekly activity data at the individual level. 

4.1.2 Methodology 

The developed two-step approach for the generation of weekly activity schedules is shown in Figure 21. 

In the first step, an autoregressive model is presented, which generates synthetic weekly mobility sched-

ules of individuals and thereby captures long-term dependencies in mobility behavior. The developed 

autoregressive model is implemented as a deep neural network and compared against a first-order Mar-

kov chain model. Due to the parallels in the foundational problem, the choice of models employed is 

based on the models that define the state of the art in the field of natural language processing. Two kinds 
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of deep neural networks are proposed: a long, short-term memory-based model and an attention-based 

transformer model.  

In the second step, an imputation model augments the weekly mobility schedules with detailed infor-

mation about energy relevant 'at home' activities learned from time-use survey data. Two imputation 

models are compared: a bidirectional LSTM-based neural network and a neural network with a trans-

former architecture. In the prediction process, the synthetically created weekly mobility schedules serve 

as input for the imputation model, wherein the 'at home' state is enriched with energy-related activities. 

In contrast to the autoregressive model of the first step, the imputation model takes into account future 

state changes from the mobility schedule when predicting 'at home' activities. In this way, the proposed 

model combines the advantages of the mobility data set, stability in day-to-day mobility patterns, with 

the advantages of time use survey data and temporally highly detailed information on a diverse set of 

at-home information in one synthetic dataset. 

4.1.3 Key findings and discussion 

The presented article shows that current Markov chain models in the field of behavioral modeling are 

not able to record long-term dependencies in activity patterns and are, therefore, not capable of ade-

quately representing occupancy behavior on an individual level. The proposed neural network-based 

approach can generate synthetic weekly activity schedules that have stochastic properties similar to the 

empirically collected data on both the individual and the aggregated levels. The generated data builds 

the basis for a consistent simulation of energy demand profiles from electric mobility, household de-

vices, space heating, and domestic hot water. By conditioning the developed models on the socio-de-

mographic information of the two basic data sets, activity schedules could be generated representative 

of different socio-demographic groups. Further, it was shown that the developed approach did not overfit 

the raw data but learned the general stochastic relationships in human behavior. Further work is needed 

to train the developed models in a differentially private way in order to be able to provide them publicly 

available to the scientific community without publishing private information about the underlying da-

tasets.  

4.2 Paper B: Two million European single-family homes could 

abandon the grid by 2050 

The following subsections refer to the article “Two million European single-family homes could aban-

don the grid by 2050”, co-authored with Jann Weinand, Elias Naber, Russell McKenna, Armin Ardone, 

and Wolf Fichtner. The article was published in the journal Joule and is cited in this thesis as Kleine-

brahm et al. (2023b). 
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Study context and contributions 

The concept that large, highly interconnected energy systems are the most cost-effective is driven by 

the principles of economies of scale and the effects of temporal smoothing. However, the impact of 

economies of scale is less prominent with renewable technologies. Further, heat is typically not trans-

ported over long distances, and the regulatory and organizational complexity grows with system size. 

Having this in mind, this article analyzes the technical and economic potential of 41 million freestanding 

single-family homes in Europe for off-grid energy self-sufficiency under current and future (2050) con-

ditions. 

4.2.1 Objective and significance 

Declining capital costs for renewable energy technologies, together with rising energy procurement 

costs, have stimulated recent trends toward individual and independent energy supply systems across 

the residential sector. Besides the perceived financial benefits, the desire for self-sufficiency is the main 

driver behind households' intentions to purchase renewable energy technologies (see Section 2.2.2). 

Further falling prices of PV and battery systems could lead to a multitude of consumers covering most 

or all of their energy demand on their own, using the grid only as a backup. However, McKenna et al. 

(2017) show that partially self-sufficient buildings can put an even greater strain on the electrical grid 

than traditional end-of-pipe customers. 100% self-sufficient systems, on the other hand, could reduce 

the need for centralized generation and transmission capacity but currently come with high costs and 

low stability (McKenna 2018; Tröndle et al. 2020; Tröndle et al. 2019; Khalilpour and Vassallo 2015).  

Evidence from practical use cases and scientific case studies suggests that achieving energy self-suffi-

ciency in residential buildings is technically possible, even in conditions that are not ideal for renewable 

energy sources (Leonard and Michaelides 2018; Knosala et al. 2021; Gstöhl and Pfenninger 2020; 

Goldsworthy and Sethuvenkatraman 2018; Lacko et al. 2014). Under current energy-political frame-

work conditions, the decreasing marginal utility at very high degrees of self-sufficiency hinders the 

economical operation of 100% off-grid systems in central Europe. However, considering future decreas-

ing prices of small-scale hydrogen storage systems, efficiency measures, and further demand side flex-

ibility could lower the exponential increase in cost at high degrees of self-sufficiency (Knosala et al. 

2021; Leonard and Michaelides 2018; Gstöhl and Pfenninger 2020). Existing studies on 100% self-

sufficient residential energy supply only focus on PV-battery systems to cover electrical demand and 

thereby disregard the synergies of an integrated analysis of electrical and thermal energy demand or are 

limited to individual buildings and are therefore not able to derive representative statements. Conse-

quently, a large-scale analysis is needed to provide comprehensive insights and comparability across the 

building stocks of different countries, climates, building types, and household consumption characteris-

tics. Therefore, this article explores the techno-economic potential of 41 million freestanding single-
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family buildings in the EU-27, United Kingdom (UK), and Norway (NO) for off-grid energy self-suffi-

ciency. 

4.2.2 Methodology 

The framework presented in Section 3.3 is used for the analysis of the energy systems of the 41 million 

single-family buildings in this article (see Figure 17). Based on these 41 million buildings, over 4000 

representative building archetypes were identified on the basis of which self-sufficient robust energy 

systems were designed in parallel in individual energy system optimizations on high-performance com-

puting clusters for 30 historical weather years. The results of the energy system optimizations were used 

to train surrogate models with the objective of approximating the function between the aggregate energy 

system optimization input and key output parameters. In the final step, the neural network-based surro-

gate models were used to calculate the technical and economic potential for the entire synthetic building 

stock.  

A building is regarded to have a technical potential for self-sufficiency if the entire energy demand for 

electrical appliances, domestic hot water, and space heating can be covered at every hour of the year by 

only using the local rooftop renewable potential as an energy source. Further, a building is regarded to 

have an economic potential for self-sufficiency if the total annual system cost (TAC) of a 100% off-grid 

energy system (NoGridref) is lower than the total annual system cost of an optimized reference system 

with grid connection and without local self-generation (Gridref). 

4.2.3 Key findings and discussion 

The findings of this article show that a cost-minimal PV-based system for achieving residential building 

energy self-sufficiency in Central Europe should include both short-term battery storage and long-term 

seasonal hydrogen storage. Even under suboptimal conditions in Finland, individual buildings are capa-

ble of supplying all of their energy demand on their own. These results support the findings of previous 

studies on individual energy self-sufficient residential buildings (Knosala et al. 2021; Gstöhl and Pfen-

ninger 2020; Lacko et al. 2014; Puranen et al. 2021; Schmid and Behrendt 2022). 

However, while previous studies only focus on individual buildings, no other article was found that 

covers a similar level of scale at the spatial dimension and with regard to the complexity of the building 

energy system. The developed methodology makes it possible for the first time to identify whole regions 

or climate and economic framework conditions that have a particular potential for self-sufficiency at the 

individual building level.  

Thereby, the results of this article show that even though it is possible for individual buildings to reach 

100% energy self-sufficiency in northern regions of Europe, the overall techno-economic potential of 
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100% self-sufficient buildings is low, even under assumed future techno-economic conditions of 2050. 

Regions characterized by low seasonal variations (such as Spain, Italy, Portugal, and Cyprus) and with 

high electricity prices (like Germany) show a pronounced potential for self-sufficient buildings. Under 

current conditions, 53% of the examined 41 million buildings can technically cover their energy demand 

on their own by only using local rooftop solar irradiation, and this share could increase to 75% by 2050. 

If building owners are willing to pay a premium of up to 50% compared with grid-dependent systems 

with electrified heat supplies, over two million buildings could abandon the grid by 2050. 

Given the findings of this article, alongside rising retail energy prices, concerns about energy supply 

stability, the shift towards local energy sourcing, and technological progress, it's likely that self-suffi-

cient residential buildings will see increased popularity in the future. While this article investigated the 

technological and economic feasibility from the perspective of building owners, future research should 

examine system impacts under the consideration of increased dissemination of self-sufficient residential 

buildings. 

4.3 Paper C: Analysing municipal energy system 

transformations in line with national greenhouse gas 

reduction strategies 

The following subsections refer to the article “Analysing municipal energy system transformations in 

line with national greenhouse gas reduction strategies”, co-authored with Jann Weinand, Elias Naber, 

Russell McKenna, and Armin Ardone. The article was published in the journal Applied Energy and is 

cited in this thesis as Kleinebrahm et al. (2023a). The graphical abstract of the article is presented in 

Figure 22. 

Study context and contributions 

Strategies for mitigating climate change with expansion targets for renewable energy technologies are 

often formulated at the national level. However, due to the decentralized character of renewable energy 

sources, their expansion happens mostly in local communities. Further, the implementation of energy 

efficiency measures, like building insulation, requires individual decisions. While some local initiatives 

exist, like the Covenant of Mayors, where local authorities voluntarily commit to renewable energy 

deployment targets, these local targets may not always align with broader national strategies. Due to the 

heterogeneity of municipalities in renewable energy potential, energy demand, and size, a direct transfer 

of national strategies to the local level is not easily possible (Weinand et al. 2019b; Weinand et al. 

2019a). Having all of this in mind, aligning local emission reduction strategies with national objectives 

demands significant coordination, and transferable tools are needed to support local actors in the plan-

ning of municipal energy system transformations. 
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Figure 22: Municipal energy system components and energy carrier flows. Own visualization published in 

Kleinebrahm et al. (2023a). 

4.3.1 Objective and significance 

In this article, the municipal energy system model RE³ASON is extended to account for temporally 

dynamic transformation processes of the local energy system supply and demand side in line with na-

tional energy system transformation strategies. Most previous studies on municipal energy systems use 

an overnight transformation approach, which defines the final state of the desired energy system but 

does not provide information in terms of how and when to reach this state. Therefore, there is a demand 

for models that, starting from a predefined energy system, outline a transformation path towards a green-

house gas-neutral energy system, consisting of specific energy system expansion and efficiency 

measures. While the original RE³ASON model took into account temporal changes with regard to en-

ergy carrier and technology prices, temporal dynamic developments in the form of expansion rates of 

renewable energy technologies and efficiency measures like building retrofits were not explicitly con-

strained. This leads to an overly rapid adoption of measures relative to the national system's transfor-

mation once they become economically viable, as observed in studies like Weinand et al. (2021). An 

unrealistically fast implementation of, e.g., residential building retrofit measures is especially favored 

by an aggregated representation of the building stock. 
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4.3.2 Methodology 

To overcome the identified issues, this article links a stochastic building stock simulation approach with 

an energy system optimization model to better represent the heterogeneity and temporal inertia of local 

building stock transformations. By incorporating overarching framework parameters from national sce-

narios and the initial conditions of local building stocks, multiple household transformation scenarios 

can be generated ahead of the municipal energy system optimization. The generated scenarios are further 

represented as binary decision variables associated with their final energy demands and cost in the op-

timization model. To comprehensively account for the transformation of local energy demand, 

RE³ASON is further expanded to consider final energy demand transformations across the industrial, 

tertiary, and transport sectors. Additionally, the portfolio of energy system supply technologies is ex-

panded to consider all relevant technology options represented in the respective national energy system 

transformation scenarios. Finally, a two-step optimization approach is proposed to solve the municipal 

energy system optimization problem with reasonable time and accuracy (similar to the approach pre-

sented in Section 3.3.3). 

4.3.3 Key findings and discussion 

To demonstrate the extensions of the presented methodology, an exemplary case study was conducted 

for the Central European city of Karlsruhe in Germany. 192 building stock transformation scenarios 

were simulated, which differ in terms of the retrofit rate (8x), the level of the target U-values of retrofit 

measures (3x), the dissemination of heat recovery units (2x), and the dissemination of the heating system 

technologies (4x). The results of the building stock transformation show that substantial electrification 

of the heat supply with a high share of heat pumps and an annual retrofit rate of 2% per year, together 

with less ambitious U-value requirements, leads to the lowest total discounted system cost and CO2 

emissions. Scenarios with high U-value requirements and high proportions of heat recovery units lead 

to higher total discounted system costs. This could be explained by the high marginal cost of saving the 

last few kilowatt-hours in comparison to the cost per kilowatt-hour of heat supplied. The results of the 

municipal energy system transformation indicate that an accelerated expansion of photovoltaics com-

pared to the national expansion rates can be economically advantageous and lead to lower overall CO2 

emissions. By taking into account anticipated transformations, e.g., the discontinuation of local waste 

heat sources, it was shown that available biomass and geothermal potentials are used to cover the base 

load of district heating demand, while large-scale heat pumps and gas boilers are used during peak times. 

It should be considered that this article does not explore the impact of local energy system transfor-

mations on the broader national energy system, and as a result, the simulated exchange with the over-

arching energy system has no influence on market pricing. However, if many municipalities decide to 
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accelerate renewable energy expansion, this will impact market prices and could lower the market value 

of renewable feed-in, possibly influencing future investment choices. 
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5 Critical reflection 

Models are only capable of representing reality to a limited extent. Therefore, it is crucial to approach 

these representations with a clear awareness of their limitations and the assumptions they embody. This 

critical reflection chapter aims to illustrate the inherent constraints, simplifications, and necessary trade-

offs within the models developed in this thesis. Additionally, for each aspect discussed, insights into 

potential promising avenues for future research are provided. For more detailed insights into critical 

aspects, please refer to the discussion sections of each respective paper. 

Individuals vs. Households   Paper A of this thesis focuses on the simulation of the behavior of indi-

vidual occupants instead of whole households (see Table 1). This means that one training sample is 

defined as one activity sequence plus the socio-demographic meta-information of one occupant. This 

way, dependencies between socio-demographic parameters and temporal dependencies between activity 

states can be learned by the model. However, intra-household dependencies in the behavior between 

occupants within one household can’t be represented in the synthetic data. A holistic simulation of the 

household, as opposed to individual members, is especially important for adequately representing activ-

ities with a high degree of synchronization, such as joint mobility activities. Future experimental setups 

should consider intra-household dependencies by defining one training sample as one household, which 

consists of the activity sequences of its occupants plus meta-information. However, using whole house-

holds instead of individual occupants does not come without additional challenges. Enough data are 

needed to sufficiently represent intra-household dependencies in order to train deep neural networks, 

which at the current stage are very data-hungry (Adadi 2021). Additionally, the complexity and, there-

fore, memory and time requirements of the attention mechanism in transformer-based neural networks 

scale quadratically with respect to sequence length. Therefore, accounting for five household members 

rather than just one leads to a twenty-five-fold increase in complexity. Consequently, more data sources 

together with more efficient memory mechanisms in neural networks should be considered in future 

approaches (see, e.g., Dao et al. (2022), Xiong et al. (2021), Schlag et al. (2021)).  

Explainability vs. Accuracy vs. Privacy   Bottom-up activity data-based energy demand simulations 

are used as decision support tools. Yunusov and Torriti (2021), for example, identify socio-demographic 

groups that may be financially advantaged or disadvantaged by the introduction of time-of-use tariffs. 

Based on their results, time-of-use tariffs could be redesigned. Consequently, it is important that the 

underlying tools on the basis of which decisions are made are transparent and explainable. In comparison 

to existing approaches (see Table 1), the learned connection between inputs and outputs of the neural 
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networks presented in Paper A can’t be explained easily. Therefore, procedures must be developed to 

ensure that the generated synthetic data not only accurately represents the original data but also is subject 

to high standards with regard to fairness, privacy, accountability, and transparency (Lo Piano 2020). To 

ensure that no sensitive data about individual samples in the empirical data is leaked, follow-up work 

could use algorithms from the field of "differential privacy" when training deep neural networks (Dwork 

and Roth 2014; Abadi et al. 2016). However, training neural networks in a differentially private way is 

always accompanied by a loss of model accuracy (Dwork et al. 2019).  

Historical Data vs. Future Projections   Analyzing future developments based on historical data comes 

with multiple challenges and is often based on a variety of uncertain assumptions. When analyzing the 

scenarios presented in this thesis, they should be used to better understand isolated causal relationships 

and should not be seen as a clear picture of the future. 

“Probabilities encode our beliefs about a static world, causality tells us whether and how probabilities 

change when the world changes, be it by intervention or by act of imagination” (Pearl and Mackenzie 

2018). In this thesis, neural networks are trained to learn probability distributions, which are encoded 

within their structures, using historical data on the behavior of individuals. The learned distributions are 

conditioned on the socio-demographic parameters of the individuals. Therefore, based on the imagina-

tion of a future world with a different distribution of socio-demographic parameters, changes in the 

overall behavior of the population could be analyzed. However, future behavior will not only change 

due to changing demographics. Recent history has shown that disruptive events, such as the Covid-19 

pandemic or the energy crisis, can lead to significant changes in behavior and, therefore, the way energy 

is consumed (Lorincz et al. 2022; Buechler et al. 2022; Roth and Schmidt 2023). The energy sector has 

witnessed numerous innovations that have impacted people's behavior in the past, such as the advent of 

the internal combustion engine in transportation and the rise of information and communication tech-

nology. In the future, technological advancements will continue to fundamentally alter energy service 

demand and impact human behavior, for example, through the introduction of autonomous vehicles and 

smart home technologies.  

Another prominent source of uncertainty is introduced by the use of historical weather data. In Paper B, 

robust, self-sufficient residential energy systems are designed based on 30 years of historical weather. 

In Paper C, only one representative weather year is used. The impact of climate change on energy de-

mand, generation, and infrastructure is well-recognized (Spinoni et al. 2018; Perera et al. 2023; Perera 

et al. 2020). Future research should incorporate the impact of climate change by utilizing high-resolution 

climate projection datasets, such as those from the EURO-CORDEX project (Bartók et al. 2019). Par-

ticularly, high-probability, low-impact conditions should be considered when designing robust future 
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energy system designs, as they can notably influence the integration of renewable energy and overall 

system costs (Perera et al. 2020).  

Technical Detail vs. Scope   In the development of computer models, many assumptions must be made 

about trade-offs between the level of detail and the scope of representation. Thereby, it must be ensured 

that the model has the necessary degree of detail with regard to the research question to be analyzed but 

is still solvable with reasonable time and accuracy.  

As written above, the complexity of the attention mechanism scales quadratically with sequence length. 

Therefore, in Paper A, mobility data were aggregated from a 1-minute to a 10-minute time resolution. 

While information is lost in this aggregation step, the complexity of the underlying problem is reduced 

by a factor of 100. The aggregation process might result in the loss of very short mobility activities, 

leading to unrealistic state changes in the aggregated data. Thus, future research should focus on either 

employing more efficient algorithms that eliminate the need for data aggregation or, alternatively, care-

fully consider the information loss in subsequent applications. 

In the development of the energy system models presented in Paper B and Paper C, a multitude of 

assumptions had to be made to achieve a good trade-off between temporal and spatial resolution and the 

level of detail with regard to the technologies and operation strategies considered. In both studies, an 

hourly temporal resolution is used, which could be particularly critical in the analysis of 100% self-

sufficient energy systems as short-term power peaks get smoothed out. Therefore, future work should 

further focus on the impact of short-term power peaks on the design of off-grid energy systems (see, 

e.g., Omoyele et al. (2024)). In addition to the possibility of covering the power peaks, the potential for 

demand-side reduction should also be examined. Since there were almost no economic incentives in the 

past due to mainly volumetric electricity pricing, it can be assumed that there is a certain potential for 

peak power reduction, for instance, through smart control of consumer devices (Hinterstocker and Roon 

2017). Furthermore, the inclusion of part-load efficiencies for inverters, generators, electrolyzers, or fuel 

cells, such as through nonlinear performance functions, was omitted in the analyses to avoid substan-

tially increasing the complexity of the optimization problem. Others, such as Schütz et al. (2017b), 

Goderbauer et al. (2016), and Milan et al. (2015), approximate these nonlinear functions by using piece-

wise linearization or iterative approaches. However, these measures also rapidly increase the complexity 

of the problem and quickly lead to long model runtimes, even for small systems. Further, the problem 

of perfect foresight in closed-form energy system optimization models leads to an underestimation of 

the uncertainty in future developments. In Paper B, dispatchable technologies in the form of hybrid 

storage systems and power-to-heat technologies are operated with certainty about future weather and 

energy demand developments, which in reality can only be predicted with uncertainty. Future studies 

could use the proposed system configurations of this thesis and further develop operation strategies 
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using, e.g., a rolling horizon stochastic optimization approach to account for uncertainties (Hou et al. 

2020). Since it is unlikely that the optimal operation will be perfectly approximated, the energy system 

components would subsequently need to be rescaled using a heuristic approach until a certain level of 

supply security can be ensured. In Paper C, investments can be made at multiple stages during the trans-

formation process. Therefore, not only are short-term uncertainties underestimated, but also longer-term 

uncertainties in, e.g., technological and climate parameters. Thus, the optimizer's reliance on anticipated 

future developments, which are based on assumptions with significant uncertainty, can lead to less cli-

mate action at earlier stages. Technologies that are still under development, like direct air capture, should 

not be used as a justification for increasing emissions today with the expectation of offsetting them in 

the future. 

Macro- vs. Microeconomic Perspective   In Paper C, municipal energy systems are calculated from 

the perspective of a public welfare-oriented central planner. In this macroeconomic approach, no taxes 

and levies are considered in order to ensure technology neutrality. Since the perspectives of individual 

stakeholders are not taken into account, a direct implementation of the determined measures is difficult 

to achieve in reality. In Paper B and in Braeuer et al. (2022), the proposed framework in Section 3.3 is 

used to determine cost-minimal residential energy systems, taking into account different microeconomic 

perspectives. By considering taxes and levies on energy procurement, as well as feed-in tariffs, different 

framework conditions arise, which lead to a different assessment of investment measures in comparison 

to macroeconomic assessments. Therefore, the design of taxes, levies, and further subsidies constantly 

needs to ensure a just transformation process to a greenhouse gas-neutral energy system. 

Techno-economic Modeling vs. Socio-technical Realities   In this thesis, two techno-economic mod-

eling approaches are proposed with the objective of identifying technically feasible, cost-minimal en-

ergy systems. However, energy systems can be regarded as complex socio-technical constructs, possibly 

consisting of different decision-making entities and technological artifacts governed in a multi-level 

institutional space (Koirala et al. 2016). Research on the energy-efficiency gap reveals that although 

technologies have the potential to lower financial expenses and environmental damages linked to energy 

use, they are not being adopted to the extent that would be justified, even from a strictly financial per-

spective (Gerarden et al. 2017). To better predict the dissemination of local technologies, social rela-

tionships among stakeholders need to be considered since they represent major drivers or barriers to 

adoption (Rae and Bradley 2012). Understanding adoption behavior is valuable for identifying the bar-

riers to new technologies and determining which policies are crucial for enhancing their diffusion. Con-

sequently, the spread of low-carbon technologies in residential buildings is not just a matter of technical 

feasibility but also a matter of individual behavior and group dynamics. Future approaches should, there-

fore, try to better account for factors influencing individual adoption behavior and group dynamics, e.g., 



Critical reflection 

63 

by considering social factors influencing the acceptance of technologies in energy system models (Wei-

nand et al. 2021). 
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6 Summary, conclusion, and outlook 

While in the past, the electrical energy demand for household devices was mainly provided by the elec-

tricity grid, and the heat was primarily generated with fossil fuels, future residential buildings will be 

mostly electrified. The buildings will contribute to integrating fluctuating renewable energies by in-

stalling small-scale photovoltaics and providing flexibility to the overall energy system. Further, inte-

grating the electricity, heat, and transport sectors within residential buildings will fundamentally change 

the characteristics of residential energy demand. A comprehensive understanding of these changes is 

essential to design future energy systems efficiently. Thus, this thesis follows the objective of develop-

ing novel methods for the technical, economic, and environmental evaluation of sector-coupled residen-

tial building energy systems, taking a diverse set of perspectives.  

In this thesis, neural network-based approaches from the field of natural language processing were in-

troduced to the field of behavioral modeling to better understand the fundamental connections that shape 

the structure of future residential energy demand. By combining mobility and activity data to generate 

high-quality occupant activity schedules, the presented approach accurately represents long-term de-

pendencies in occupant behavior and, therefore, builds the basis for a consistent simulation of residential 

electricity, heat, and mobility demand. In addition, based on the detailed understanding of the drivers of 

residential energy demand, a bottom-up framework for determining the cost-minimal design and oper-

ation of residential energy systems was proposed for analyzing 41 million European single-family build-

ings under diverse framework conditions. Finally, to extend the microeconomic perspective of a building 

owner, a macroeconomic perspective of a central planner was taken to comprehensively consider the 

transformation of the residential building stock within the transformation of the overarching energy 

system.  

To overcome the shortcomings of previous approaches that aim to capture relationships in activity pat-

terns to explain residential energy demand, a two-step neural network-based approach was presented to 

combine the advantages of German weekly mobility data and time-use survey data. While previous 

approaches are not capable of representing long-term dependencies in occupant behavior and, therefore, 

fail to generate high-quality individual occupant schedules, the proposed approach is capable of repre-

senting complex dependencies in mobility and activity patterns and, at the same time, adequately cap-

tures the diversity in behavior across the entire population. By combining an autoregressive generative 

model with an imputation model, synthetic occupant activity schedules are generated, which build the 

basis for the simulation of residential energy demand and the examination of flexibility potentials needed 
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for the integration of volatile renewable energy sources. Future studies should consider whole house-

holds as input data in contrast to individual occupants. Thereby, intra-household dependencies, which 

are important for synchronizing occupant activities within households, could be represented in the syn-

thetic data.  

Furthermore, in light of diminishing capital costs for renewable energies and rising energy procurement 

expenses, the developed bottom-up framework was utilized to investigate the viability of energy self-

sufficiency for all owner-occupied freestanding single-family buildings in the EU-27, United Kingdom, 

and Norway. By combining spatial microsimulation, advanced spatial and temporal complexity reduc-

tion techniques, building energy system optimization, and neural network-based surrogate models, cli-

mate and economic framework conditions that are especially suitable for self-sufficiency were identi-

fied. A pronounced potential for self-sufficient buildings was apparent in regions with low seasonality, 

such as Spain, and high household electricity prices, such as Germany. Under current technological 

conditions, 53% of the 41 million buildings can technically supply themselves independently from ex-

ternal infrastructures by only using local rooftop solar irradiation. In 2050, this proportion could increase 

to 75%. Due to the high marginal costs to achieve the final degrees of self-sufficiency, an energy-self-

sufficient building is not an optimal economic option, particularly as long as no fixed grid charges are 

introduced. However, if building owners are willing to pay a premium of up to 50% compared with grid-

dependent systems with electrified heat supplies, over two million buildings could abandon the grid by 

2050. While this thesis analyzes the technological and economic feasibility of self-sufficiency from the 

microeconomic perspective of building owners, future studies could examine system impacts and trans-

formations considering increased dissemination of self-sufficient buildings. 

In a third study, a municipal energy system model was developed to investigate the residential building 

stock transformation within a municipal energy system, in line with national greenhouse gas reduction 

strategies. Existing shortcomings of a highly aggregated building stock representation were overcome 

by the development of a stochastic building stock model to better capture the temporal inertia and the 

high heterogeneity of residential buildings in the transformation process. Based on superordinate pa-

rameters such as retrofit rates and heating technology diffusion, the stochastic model generates multiple 

informative building stock scenarios used as input in municipal energy system optimization. 192 resi-

dential building stock transformation scenarios were calculated for the exemplary case study of the Ger-

man city of Karlsruhe. The results showed that an increase in the retrofit rate to 2% per year, together 

with a substantial electrification of the heat supply in the building sector, is economically and environ-

mentally beneficial.  
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The developed approaches in this thesis have been validated where possible and checked for plausibility 

at multiple stages. Furthermore, extensive sensitivity analyses are provided with regard to relevant ex-

ogenous assumed parameters to ensure the robustness of the results. The transferability of the developed 

bottom-up framework presented in Paper B has already been further demonstrated by its use in multiple 

other studies (see, e.g., Vögele et al. (2022), Braeuer et al. (2022), Kleinebrahm et al. (2018)). 

However, while the proposed models already provide important results, there is still space for method-

ological extensions to increase their usability for practical use cases. The neural network-based approach 

presented in Paper A currently provides a promising proof of concept and, therefore, should be extended 

in future studies by incorporating further data sources and differential private training methods to finally 

provide a synthetic open access dataset of residential occupancy and mobility behavior. Due to the scope 

of the proposed bottom-up framework utilized in Paper B, multiple assumptions had to be made to cal-

culate the techno-economic potential of self-sufficient residential buildings in the European building 

stock. For example, archetypal buildings were used with basic assumptions regarding azimuth, tilt, and 

utilization factors for solar systems. Future studies could include satellite image-based analyses to ac-

count for physical obstructions. Furthermore, the willingness to pay extra for a self-sufficient residential 

energy supply could be investigated in empirical studies to better predict the dissemination of off-grid 

buildings. Finally, the methodology presented in Paper C could be further extended to account for the 

preferences of local stakeholders in the modeling process. Thus, the social acceptance of novel technol-

ogies, such as wind power plants, open-space photovoltaic, and geothermal plants, could already be 

taken into account during the planning process of the municipal energy system.
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Models simulating household energy demand based on different occupant and household types and their
behavioral patterns have received increasing attention over the last years due the need to better under-
stand fundamental characteristics that shape the demand side. Most of the models described in the lit-
erature are based on Time Use Survey data and Markov chains. Due to the nature of the underlying
data and the Markov property, it is not sufficiently possible to consider long-term dependencies over sev-
eral days in occupant behavior. An accurate mapping of long-term dependencies in behavior is of increas-
ing importance, e.g. for the determination of flexibility potentials of individual households urgently
needed to compensate supply-side fluctuations of renewable based energy systems. The aim of this study
is to bridge the gap between social practice theory, energy related activity modelling and novel machine
learning approaches. The weaknesses of existing approaches are addressed by combining time use survey
data with mobility data, which provide information about individual mobility behavior over periods of
one week. In social practice theory, emphasis is placed on the sequencing and repetition of practices over
time. This suggests that practices have a memory. Transformer models based on the attention mechanism
and Long short-term memory (LSTM) based neural networks define the state of the art in the field of nat-
ural language processing (NLP) and are for the first time introduced in this paper for the generation of
weekly activity profiles. In a first step an autoregressive model is presented, which generates synthetic
weekly mobility schedules of individual occupants and thereby captures long-term dependencies in
mobility behavior. In a second step, an imputation model enriches the weekly mobility schedules with
detailed information about energy relevant at home activities. The weekly activity profiles build the basis
for multiple use cases one of which is modelling consistent electricity, heat and mobility demand profiles
of households. The approach developed provides the basis for making high-quality weekly activity data
available to the general public without having to carry out complex application procedures.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

In the course of the decarbonisation of domestic heat demand, it
is expected that a large part of the heat will be generated by elec-
tricity (e.g. through heat pumps) Paardekooper and Lund [26]. In
order to decarbonise the mobility sector, the aim is to increase
the amount of electric vehicles in the European union from 1.3 mil-
lion in 2020 to at least 33 million by 2030 [38]. Due to the expected
developments, fundamental characteristics will change in the
course of energy demand in the household sector. Furthermore,
the introduction of stationary and mobile electricity storage sys-
tems as well as stationary heat storage systems enable the storage
of energy over periods of single days and therefore open up flexi-
bility potentials in the residential sector, which can support the
integration of fluctuating renewable energies. To evaluate these
flexibility potentials, fundamental relationships that shape house-
hold energy demand must be understood.

Occupant behavior has been identified as having a significant
impact on household energy demand [32]. Therefore, there has
been an increasing research interest in the field of behavioral mod-
elling over the last years with the aim to explain dynamics in res-
idential energy demand based on energy related activities [36,37].
A large number of studies focus on the modelling of activity
sequences of single households or individuals with the objective
to describe occupant behavior on an aggregated level for socio-

http://crossmark.crossref.org/dialog/?doi=10.1016/j.enbuild.2021.110879&domain=pdf
https://doi.org/10.1016/j.enbuild.2021.110879
mailto:max.kleinebrahm@kit.edu
https://doi.org/10.1016/j.enbuild.2021.110879
http://www.sciencedirect.com/science/journal/03787788
http://www.elsevier.com/locate/enb
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demographic differentiated groups [2,17,29,42]. Time use data
(TUD) are used as a data basis, which provide information on the
temporal course of occupant activities over single days and are
available for various countries in the form of population represen-
tative samples [15]. Based on occupant behavior, different
approaches were developed that connect occupant activities with
electrical household appliances and thus generate synthetic elec-
tricity demand profiles Yamaguchi et al. [46]. The aim of these
studies is to gain a deeper understanding of household electricity
demand in order to e.g. be able to evaluate device-specific effi-
ciency measures, time-dependent electricity tariffs or load shift
potentials.

However, TUD only provide information on activity patterns of
individual days, therefore longer-term dependencies in mobility
behavior and energy relevant at home activities that extend over
several days are not captured in existing TUD based models.
Fig. 1 compares the autocorrelation of power consumption data
generated on the basis of TUD with measured power consumption
data. The autocorrelation in the generated data is underestimated.
Especially, dependencies between subsequent days (48 lags) are
not properly reproduced by the examined models.

Models based on device-specific power consumption data avail-
able over periods longer than one day are able to account for day-
to-day variability in electricity demand [47]. However, due to the
data underpinning these approaches, not much is known about
the occupants and their behavior, therefore it is not (easily) possi-
ble to calculate consistent heat and mobility demand profiles
matching the electricity demand. One possible way to infer the
occupancy behavior would be to use non-intrusive occupancy
monitoring methods in order to calculate internal heat gains
(metabolic gains and device-specific heat losses) [9]. However,
integrating demand through electrical vehicles would be another
challenge.

The objective of this study is to develop a methodology that
enables the generation of synthetic weekly activity schedules in
which long-term dependencies in mobility behavior and energy
relevant at home activities are captured on an individual level.
These schedules can be used as a basis for generating consistent
energy service demand profiles, taking into account heating,
mobility and device specific energy service demand. In order to
identify trends and potentials at the individual household level,
like flexible charging behavior of electric vehicles, day-to-day vari-
ability in mobility patterns needs to be captured in the proposed
approach. Therefore, novel machine learning based algorithms
from the field of natural language processing (NLP) which are cap-
able of capturing long-term dependencies in time series are trans-
Fig. 1. Mean autocorrelation and 95% confidence interval of electricity consump-
tion profiles of the three load profile generators (LPG [27], CREST [30], SynPro [16])
and empirical smart meter data (I: HTW [35], II: (described in [23])).

2

ferred to the field of activity modelling. To answer the research
question to what extent these algorithms are able to capture
long-term dependencies in individual energy related occupancy
patterns while maintaining the diversity of occupancy behavior
on an individual and aggregated level, two behavioral data sets
are combined in a two-step approach. Mobility data are used
which provide information about weekly mobility patterns and
combined with time use survey data which provide detailed infor-
mation about daily activities (sleeping, cooking, eating, . . .).

The two-step approach enables to combine the advantages of
mobility data (long-term dependencies in mobility behavior) with
the advantages of TUD (detailed information about activities) and
generates high quality weekly activity schedules. Novel machine
learning algorithms which are used in the area of NLP are used
for the first time to model occupancy behavior. These models have
fundamental advantages over Markov chains, because they provide
the capability to learn long term dependencies in time series. In
comparison to existing approaches which were developed to
reproduce aggregated occupancy behavior the proposed approach
reproduces aggregated occupancy behavior and at the same time
provides high quality individual activity schedules. Therefore, the
synthetic activity schedules can be used to analyse trends in the
household sector on an individual level and to examine their
impact on an aggregated level at the same time. Due to the rich
socio-demographic information in the underlying data sets, differ-
ences in behavior between socio-demographic groups can be anal-
ysed based on the synthetic activity schedules.

The paper is structured as follows. Section 2 presents an over-
view about current approaches to activity based residential
demand modelling and gives a short introduction to the field of
social practice theory. Furthermore, the latest developments in
the field of NLP are summarized. Section 3 presents the mobility
and activity data used in this work. Subsequently, two autoregres-
sive models are presented for the generation of weekly mobility
schedules and two imputation models are presented for enriching
the synthetic mobility schedules with energy related activity infor-
mation. The section concludes with a presentation of the metrics
used to evaluate the activity plans. In Section 4 the generated
activity schedules are evaluated. Finally, the results are discussed
and an outlook on future work is given in Section 5 before conclu-
sions are drawn in Section 6.
2. Introducing NLP to activity modelling

The majority of studies in the residential energy demand mod-
elling literature simulate residential energy demand based on
activity patterns. The most important data basis for modelling
activity sequences is TUD. TUD are large-scale surveys which pro-
vide detailed information about how people spend their time. The
mean of data collection is the time-diary instrument in which the
respondents enter their activities in regular time steps. These so-
called time-diaries contain activity sequences for the period of
usually one single day. When selecting households for the study,
care is taken to select a sample of households representative of
the population. Time diaries are collected for all persons in the
households except for young children for usually one weekday
and one weekend day to capture the differences between the days.
Since TUD are collected in a harmonised procedure in most coun-
tries in Europe, these data provide a good basis for a variety of sim-
ilar models for modelling activity sequences. In the following,
different model approaches are presented which generate activity
sequences based on TUD and similar activity-based data sets. Fur-
thermore, the weaknesses of the models reviewed in the literature
is described and a short insight into social practice theory is given.



ig. 2. Graphical representation of the process of sequence generation with
ifferent kinds of Markov chains (1. first order Markov chain, 2. semi Markov
hain, 3. higher order Markov chain, 4. Markov chain with variable memory length).
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Finally, the field of NLP is briefly introduced due to similarities in
modelling human behavior and language.

2.1. Markov chain based approaches

One of the most commonly used approaches to map activity
sequences is to describe them as Markov chains. A Markov chain
is a stochastic process that describes a sequence of possible states
in which the probability of each state depends only on the previous
states. The state space of a Markov chain describes the set of possi-
ble states and their corresponding state transition probabilities. The
abstract idea behind the modelling of activity sequences that
describe the behavior of individuals is that individuals go about
their lives by transitioning between different elements of a set of
potential states of activity [28]. Richardson et al. have developed
an occupancy model which uses a first order Markov chain and dis-
tinguishes between the states ‘active at home’ and ‘not active at
home’ for each person of a household [29]. Based on aggregated
household states they calculate transition probabilities in order to
model the activity level of the household over the timeframe of
one day. By modelling households in an aggregated way instead
of individual persons, inter personal relations are better repre-
sented than in models where individuals are modelled individually
[24]. First order Markov models are adequately suited to describe
processes that fullfill the Markov property. The term Markov prop-
erty refers to the memorylessness of a stochastic process. For a first
order Markovmodel, this means that the transition to a subsequent
state depends only on the current state and is independent of pre-
viously observed states in the evolution of the process. It is obvious
that residential activity schedules represent more complex pro-
cesses and therefore cannot easily be represented by a first order
Markov model. To overcome this problem, a variety of more com-
plex Markov models have been presented in recent years. In con-
trast to first order Markov models, so-called semi-Markov models
determine not only the subsequent state but also the duration of
the subsequent state. As this kind of models represent an improve-
ment to first order Markov Chains, due to a better mapping of state
durations, they are used in various studies for activity modelling
[2,42,5]. Flett et al. [17] present aMarkovmodel for occupancy sim-
ulation that uses transition probabilities which are calculated based
on the current state and the length of the current state. By consid-
ering the state length of the current state, this model represents an
improvement over previous models, so that this model cannot be
called memoryless. The logical next step would be to develop
higher order Markov models, which allow any number of past
states to be taken into account when choosing the subsequent state.
However, two serious issues can be associated with higher-order
Markov chains. On the one hand the number of free parameters
in the model increases exponentially with the order of the model
and on the other hand the collection of all possible full high-order
Markov chain models is limited and completely stratified [28].
Ramírez-Mendiola et al. [28] addressed this issues by presenting
a Markov chain model with variable memory length which allows
the order of themodel to vary during the evolution of the stochastic
process. In order to find relevant portions of the past based on the
influence on the outcomes of the transition probabilities to subse-
quent states the authors present a novel algorithm based on the
Kullback-Leibler divergence and the log-likelihood test.

A graphical overview of the different Markov chain variations
can be seen in Fig. 2. It can be concluded that over the last few
years more and more complex models based on Markov chains
have been developed, which partly overcome the memorylessness
problem. However, due to their structure, Markov models are only
able to capture the states of the short-term past in order to predict
subsequent states. Long-term relationships in daily schedules can-
not be adequately represented by these types of models.
3

F
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c

2.2. Timing of social practices

Markov chain approaches are based on the assumption that
activities develop over time and are only dependent on the evolu-
tion of previous states. However, social practice theory literature
points out that in order to understand people’s daily/weekly sched-
ules these should be treated as a whole [31,37]. While practice the-
oretical accounts of social life vary, they remain consistent on at
least two counts: (1) that practices are shared (socially/as part of
the social i.e. performed by more than one person) and, because
of that, (2) are repeated (performed more than once). If we also
add that practices are connected and depend more and less on each
other in being reproduced, it follows that we need to know more
about how practices are repeated and with what effect for the rel-
ative strengths of their dependencies, connections, and extended
relationships. In order to do justice to this statement in the pat-
terning of activities, models must be developed which not only
make it possible to capture connections between activities from
the short-term past in order to predict the future, but also capture
higher-level patterns which shape patterns of people’s activities. In
other words, models need to understand how temporal dynamics
are embedded in the social world in order to understand how
activities and thus energy consumption change and vary over time
[40]. The majority of people structure their lives in daily rhythms,
which are based on regular working hours, meal times and other
constraints. These constraints form the basis for a certain degree
of synchronization of social activities and thus for demand patterns
[40]. Future models should be able to recognize and reproduce log-
ical sequences in activity patterns, so that dependencies in activi-
ties are taken into account. For instance, food should first be
prepared and then eaten.

Hilgert et al. [19] use a utility-based stepwise regression
approach to generate weekly activity schedules for travel demand
models. Due to the observation period of one week and the associ-
ated extended requirements for the mapping of activity sequences
(day to day stability and variability of personal behavior), this
approach differs from the approaches presented so far. Compared
to Markov chain based approaches, activity sequences do not
evolve over time but are the result of regression based utility func-
tions and time budgets. Based on Bowman [6] the construction
process of activity schedules is split into smaller decisions due to
the high complexity of constructing the entire schedule directly.
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These small decisions are then integrated downward vertically in
the form of many logistic regression models. Due to the large num-
ber of regression models and their integration, many assumptions
must be made when creating such a model, which increase the
assumption bias. Future approaches should be less assumption dri-
ven to be easily transferable to different applications and datasets.
To capture the high complexity of a complete activity plan without
many intermediate steps, as described by Bowman, data-driven
approaches could be used that need less assumptions and can cap-
ture complex relationships due to their structure. Table 1 gives an
overview of the approaches presented in this section and compares
them with the approach presented in this study.
2.3. A brief review of natural language processing

The term natural language processing covers applications such
as text classification, text understanding, text generation and text
translation. NLP algorithms give machines the ability to read,
understand and derive meaning from human languages. Over the
last years NLP evolved from the era of punch cards and batch pro-
cessing, in which the procession of a sentence could take up to
7 min, to the era of Transformer based model architectures like
Googles BERT or OpenAIs GPT-3 with models up to 175 Billion
parameters which are trained on large web corpora like Wikipedia
and are able to generate articles which human evaluators have dif-
ficulty distinguishing from articles written by humans [48,7,12].

The first neural language model was based on a feed-forward
neural network [4]. Vector representations of the n previous words
are taken from a table and used as input in order to predict the
probabilities of the following words. Nowadays dense vector repre-
sentations of words or word embeddings are trained in an efficient
way while training the neural network and are capable of captur-
ing the context of words in a document [25].

From 2013 on neural network models in the form of recurrent
neural networks (RNN), convolutional neural networks (CNN),
and recursive neural networks got adopted in the field of NLP
[33,22]. RNNs are the obvious choice to deal with dynamic word
sequences as they process the sequences from left-to-right or
right-to-left and provide some kind of memory in the form of the
hidden state [14]. RNNs in the form of long-short term memory
networks (LSTM) proved to be more resilient to the vanishing gra-
dient problem and therefore be able to better represent long-term
dependencies in time series [20]. The in 2014 presented sequence-
to-sequence approach builds the basis for multiple machine trans-
lation applications. First, an LSTM-based encoder is used to com-
press an input sequence into a vector representation and then a
decoder network, also based on LSTMs, predicts the target
sequence step by step [34]. The main shortcoming of the
sequence-to-sequence approach is that the input sequence needs
to be compressed into a fixed-size vector. The Attention mecha-
nism tackles this shortcoming by allowing the decoder to look back
at the input sequence hidden states, which are provided as addi-
tional input to the decoder [3]. A rare feature of the Attention
Table 1
An overview of selected models for modelling occupancy behavior.

Study Database Approach

[29] TUD Markov – 1st order
[42] TUD Markov – semi
[5] TUD Markov – semi
[2] TUD Markov – semi
[17] TUD Markov – higher or
[28] TUD Markov – variable l
[19] MOP Regression
This study MOP + TUD Neural networks

4

mechanism is, that it provides superficial insides about the learn-
ing process by providing information, through the attention
weights, about which parts of the input are relevant for particular
parts of the output. In 2016 Google presented their neural machine
translation system which consisted of a deep LSTM network com-
bining multiple encoder and decoder layers using residual connec-
tions and the attention mechanism [45]. However, in 2017 the
paper ‘‘Attention is all you need” was presented, which builds
the basis for numerous transformer architectures which work on
the principle of self-attention and define the state of the art in mul-
tiple NLP tasks [39,7]. It was shown that the sequential nature can
be captured by only using attention mechanisms and positional
encodings without the use of RNNs. Due to the fundamental con-
straint of sequential computation of RNNs, it is not possible to par-
allelize training, therefore it is hard to learn on long sequences.
Transformer models are fully based on fully connected layers and
can be easily parallelized. Since 2017 multiple different trans-
former based architectures were introduced, consisting of multiple
encoder and/or decoder blocks and an increasing number of train-
able parameters [44]. In Fig. 3 the model architecture of a sequence
to sequence RNN based model is compared to the model structure
of an attention based transformer, consisting of an encoder and
decoder block.

Adversarial learning methods have gained increased intention
especially in the area of image processing/generation and have also
been used in different forms in NLP over the last years. Generative
adversarial networks (GANs) for example are able to generate syn-
thetic data with similar statistical properties as real data by using
two neural networks, a generator and a discriminator [18]. The
generator produces synthetic data and the discriminator classifies
generated data as fake and real data as real. Both networks are
trained in an iterative way while trying to minimizes the reverse
Kullback-Leibler divergence. Therefore, in comparison to the previ-
ously presented model architectures, GANs are not trained by max-
imum likelihood estimation (MLE) and thus are said to be less
vulnerable to suffer from the exposure bias in the inference stage:
the model generates a sequence iteratively and predicts next token
conditioned on its previously predicted ones that may be never
seen in the training data [49]. With that in mind many GAN based
architectures were developed for natural language generation
based on the approach presented in [49] which combines GANs
with a reinforcement learning policy in order to deal with the dif-
ferentiability problem. However, it was shown that MLE based
approaches still dominate GANs when quality and diversity met-
rics are taken into account [8]. Therefore, GAN architectures are
not considered further in this work, even if they form a promising
basis for future work.
3. Data and methodology

The German Mobility Panel (MOP) and German Time Use Data
are used as an exemplary data source for analysing activity pat-
terns in this study. In Section 3.1 the data preparation of the two
Object of consideration Country

Household UK
Individual FR
Individual IT
Individual BE

der Individuals UK
ength Individual UK

Individual DE
Individual DE



Fig. 3. Abstract graphical representation of the RNN based sequence-to-sequence architecture (left) [34] and an encoder/decoder based transformer architecture on the right
[39].
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data sets is described and the processed data is visualized. Further
on, Section 3.2 presents the methodology developed to generate
weekly activity schedules. Finally, Section 3.3 describes the metrics
that are used to evaluate the activity plans.

3.1. Data

3.1.1. German mobility panel
The MOP collects information on the mobility behavior of the

German population every year since 1994. About 1500 to 3100 per-
sons (10 years and older), who make up about 900–1900 house-
holds, fill out travel diaries over a period of one week. The travel
diaries contain information about all trips during the week (start
and arrival time, distance, modes used, purpose). In addition,
socio-demographic information and information on refuelling
behavior are recorded in the form of personal, household and fuel
diaries. The survey is conducted every year in autumn to avoid dis-
tortions caused by holidays. The data is representative of the travel
behavior of the German population. The Institute for Transport
Studies at the Karlsruhe Institute of Technology is responsible for
the implementation and design of the survey [41,50]. Due to
changes in the survey design, data from the surveys from 2001
to 2017 are used in this study.

3.1.2. German time use survey
For the analysis of energy relevant activities, the German part of

the Harmonized European Time Use Survey, supplied by the Ger-
man Statistic Office, was used [11,15]. Since the current version
of 12/13 incorrectly recorded the location of the people, this data
is not used. The data set contains activity diaries and socio-
demographic information for 11,921 individual persons (age
>10 years) out of 5443 households. Most of the participants pro-
vided diaries on two weekdays and one weekend-day in a 10-
minute resolution. In this study time dependent data about pri-
mary activities and location as well as socio-demographic informa-
tion are used.

3.1.3. Data preparation
In general, neural networks based machine learning methods

have good adaptive feature learning ability. But in the present
5

study the employed datasets are of a very different format, there-
fore they need to be aligned before the training. In order to create
activity plans from the travel diaries, the basic dataset consisting of
833,986 travel entries for 35,014 person-weeks is converted into
weekly activity plans with a time resolution of 10 min. The gener-
ation of activity plans is inspired by Hilgert et al. [19]. In a first
step, person weeks with missing or unrealistic entries are elimi-
nated so that finally 26,610 person-weeks can be used for further
analysis. Based on the travel entries and their purpose, states are
determined for each time interval of the week. The choice of the
initial state is based on the final state of the time series. Subse-
quently, the data are aggregated from a 1-minute resolution to
10-minute resolution, assuming the state that is most frequently
taken in the respective 10-minute interval. The reason for the
reduction of the temporal resolution of the data is, on the one
hand, the increased information density, since machine learning
algorithms have problems with sparse data. On the other hand,
TUD data are also recorded in 10-minute resolution.

The diary entries in the German TUD consist of >200 activity
codes describing activities in the everyday life of human beings.
Before the diary data is used as input for further processing, these
activities are aggregated to activities relevant for household energy
demand. The choice of activities is based on similar studies [16,30].
The aggregated activities are visualized in Fig. 4. In the upper two
figures, the time course of the aggregated state probabilities of the
two data sets is provided over a week. The lower two partial figures
show example artificial activity plans for individual persons. Inter-
day dependencies in behavior from Monday to Friday can be easily
recognized from the visualization of the mobility schedule. The
example activity plan, on the other hand, provides detailed daily
information on energy-related home, sleep and mobility activities.
Further comparative analyses based on socio-demographic charac-
teristics of the data sets can be found in Section 5 and in the
appendix.
3.2. Methodology

The approach for the generation of weekly activity schedules
with a time resolution of 10 min is presented in Fig. 5. In the first
step, weekly mobility schedules of individual persons from the



Fig. 4. Visualization of aggregated state probabilities and exemplary artificial individual diary entries based on the MOP [41] and the TUD [11].

Fig. 5. Two-step model approach for generating weekly activity schedules.
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German Mobility Panel are used as input data. The objective of the
first step is to generate synthetic mobility schedules with statisti-
cal properties similar to the empirical schedules. The developed
approaches are autoregressive. This means that it is assumed that
the choice of the next mobility state mstþ1 only depends on all the
states ms0���t that have already been observed. In Section 3.2.1, an
LSTM-based and an attention-based approach for sequence gener-
ation of mobility states are presented. Due to the similarity of the
underlying problem, the selection of the methods used in this
paper is based on the models that define the state of the art in
the field of NLP. These are currently attention-based transformer
architectures. Before that, LSTM based neural networks were used
as described in Section 2.3.

The objective of the second model step is to enrich the synthetic
mobility plans with energy-related at home activities. For this pur-
6

pose, two imputation models are presented in Section 3.2.2. Bidi-
rectional LSTM model architectures are compared with attention-
based architectures. Time Use Survey data from individuals are
used to train the models. During the prediction process, the syn-
thetically generated weekly mobility schedules are fed into the
imputation model as input and the at home state is replaced by
energy-relevant activities. A graphic representation of the step by
step procedure of the autoregressive and imputation models can
be found in Fig. 7a.
3.2.1. Autoregressive models for weekly mobility schedule generation
To generate high-quality mobility plans on an individual level

and at the same time representative mobility plans on an aggre-
gated level that adequately describe the diversity of human behav-
ior, approaches are required that capture the complex
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relationships in human behavior. In contrast to the Markov-based
approaches used in the majority of the studies described in Sec-
tion 2.1, LSTM and attention-based approaches can take into
account longer-term time dependencies in the timing of individual
activities due to their different memorisation mechanisms. While
in Markov models probabilities are assigned to individual activity
sequences and thus the number of free parameters increases expo-
nentially with the order of the model, these kind of models are not
suitable to take into account long-term dependencies in behavior
between single days [28].

LSTM based models process time series sequentially and take as
input the current state vector xt 2 Rd the hidden state vector
ht�1 2 Rh and the cell state vector ct�1 2 Rh. The dimension of the
hidden state and the cell state vector h is the number of LSTM units
which define the memory capacity of the LSTM cell. The cell states
are adjusted every timestep using different gating mechanisms (in-
put gate, output gate, forget gate) and activation functions. Due to
the additive structure of the LSTM cells they partly solve the van-
ishing gradient problem and therefore are able to capture long-
term dependencies in time series [20].

Attention based models do not process time series sequentially
and therefore are suitable to better parallelize the learning process.
The time dependencies between individual time steps are learned
from scratch. To make this easier, positional encodings are added
to the individual states in this study, which provide information
about the relative position of the state in the time series. To calcu-
late the masked dot product attention matrix, the matrices
Q ;K;V 2 RT;d (query, key, value) and the mask M 2 RT;T are
required as input according to Fig. 6. In the case of self-attention
Q ;K;V are the same. The mask shown in Fig. 6 is a look ahead
mask. The masked (black) cells contain high negative values and
are added to the scaled result of the matrix multiplication of Q
and K. The subsequent use of the softmax function prevents to
put attention on dependencies between already observed and
future states. The Softmax function transforms a T-dimensional
vector with real components into a T-dimensional vector rðzÞ also
as a vector of real components in the value range [0,1], where the
components add up to 1.

rðzÞt ¼
ezt

PT
t¼0ezt

t ¼ 1; � � � ; T ð1Þ

Before the dependencies between individual states can be
learned in the LSTM/attention layers, layers must be introduced
that use all the available information of a single state as input
and learn its state representation in a multidimensional space.

Fig. 7b./c. show the different kinds of input provided to the
autoregressive and imputation models and their first layers. Input
to the autoregressive model is provided in the form of the mobility
state msp;t , the time of the day/week st , the day of the week dt of
person p at timestep t and as socio-demographic information
sdi;p. The time of the day/week is translated into a sinusoidal posi-
Fig. 6. Illustration of the masked scaled dot product self-attent
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tional encoding using periods of one day/week. This is a typical
approach to provide information about cyclical characteristics in
time series (e.g. daily/weekly patterns) to the model. All other
model inputs (msp;t , dt ,sdi;p) are categorical and are therefore
inserted into an embedding layer. Through the embedding layer
the categorical information is mapped into a m-dimensional con-
tinuous space. The weights of the embedding layer and therefore
the way the categorical variables are represented in the m-
dimensional space are learned during the training process of the
model. Further on, all the time step specific information are con-
catenated. The input time series is shifted one time step to the
right (t ¼ 0 � � � T � 1Þ and starts with a dummy time step at t ¼ 0,
which is composed of a start token consisting of the start time
and day and socio demographic information of the specific person.
This training method is called teacher forcing [43].

Fig. 8a. describes the central components of the LSTM based
autoregressive model. After concatenating the time specific infor-
mation, the vector state representations are fed into a linear dense
layer before the state representations are inserted into a sequence
to sequence LSTM layer. The final dense layer contains msj j ¼ 6
neurons which represent the probabilities (logits) of each mobility
state msp;tðt ¼ 1 � � � TÞ.

Fig. 9 describes the architecture of the attention based trans-
former model. The transformer layer consists out of three linear
dense layers for Q ;K;V , the attention layer consisting of the scaled
dot -product attention and two feed forward dense layers with
dropout similar to [39]. Both models are trained by minimizing
the cross entropy loss between the ground truth and the predicted
probabilities.
3.2.2. Energy related activity imputation / enrichment
In the second model step, the generated weekly mobility plans

are enriched with energy-related activities. A bidirectional LSTM
model (Fig. 8b.) is compared with an attention-based transformer
model (Fig. 9b.). In contrast to the first model step, information
about individual mobility behavior over the entire week is already
available when the first ‘‘at home” activity is estimated, this infor-
mation has an impact on the activity choice. The procedure of the
prediction process of the imputation model can be found in Fig. 7a.

As input data during the training process, the model is provided
with activity time series of individual persons over 3 days (2�
weekday, 1� weekend), the time and day of the week as well as
socio-demographic parameters (job, age). The time step specific
input processing can be seen in Fig. 7c. In contrast to the autore-
gressive models, the imputation models do not necessarily receive
consecutive days as input, as this is not possible due to the struc-
ture of the time use survey. The connection between the three
respective days is learned in the training process and applied to
a whole week in the imputation process. In contrast to Fig. 8a., it
can be seen in Fig. 8b. that the bidirectional LSTM architecture also
takes future states into account when predicting the current state.
ion mechanism of an autoregressive model based on [39].



Fig. 7. a.) Illustration of the relevant time step specific dependencies in the autoregressive and imputation models, b./c.) training input of the autoregressive/imputation (b./
c.) models and visualization of their first layers.

Fig. 8. a.) LSTM based autoregressive model architecture and b.) BiLSTM based imputation model architecture.
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In contrast to the autoregressive transformer model, the impu-
tation transformer does not use self-attention. The query vector Q
of the first transformer layer contains the information about the
unknown home states (unknown state, time, day, socio-
demographic information). The key and value vector are identical
and contain information about the mobility states of the three days
(during training) or the week (during prediction). During the train-
ing process, at home activities of the TUD are masked and fed to the
model as input. In all of the following Transformer layers, the out-
put of the previous Transformer layer represents the query vector
Q . The imputation models are trained using the cross entropy loss
function.
8

3.3. Metrics

To evaluate the models presented, metrics must be introduced
on the basis of which the model output can be assessed on an indi-
vidual and aggregated level. The metrics presented below are gen-
erated and visualized at constant intervals during the training
process.

The model-specific metrics are the cross entropy loss, which is
minimized during the training process, and the model accuracy
which provides information about how well the model predicts
the next state. For the evaluation of the generated activity sched-
ules, metrics are used to assess whether the proposed models



Fig. 9. a.) Transformer based autoregressive model architecture and b.) Transformer based imputation model architecture (residual connections are not visualized).
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reflect the variability in human behavior. Furthermore, metrics
describing the variability of intrapersonal behavior are used to
assess the consistency within a person’s activity plan.

The aggregated state probability (sp) describes the aggregated
probability sps;t of a state s 2 S at time step t 2 T over a sample with
the sample size N.

sps;t ¼
PN

i¼1xi;s;t
N

8s 2 S; t 2 T ð2Þ

State durations (sd) are calculated for all states s 2 S and are
visualized by their cumulative distributions. The distribution of
the duration of states can be used as a first indicator to evaluate
the models with regard to the consideration of long-term time
dependencies. For the evaluation of the intrapersonal variability
within an activity schedule, the number of activities per week
(na), the autocorrelation (ac) and the Hamming distance (hd) are
calculated for each activity schedule of a sample. The autocorrela-
tion is calculated for each activity state and each individual and is
used to obtain information about the regularity of activities. The
Hamming distance is calculated between all working days
d 2 f1 � � �5g of the week and thus provides information about the
similarity of the daily behavior of individuals.

hdn ¼
X5

d1¼1

X5

d2¼1

j t 2 1; � � � ; Tdf gjsd1 ;t–sd2 ;t
� �j8n 2 N ð3Þ

From the variability of these metrics (na, ac, hd), information
about the diversity in behavior can be obtained.
4. Results

The results presented below were calculated with an XLA com-
piler and a ‘‘Tesla V100-SXM2-16 GB” GPU in Tensorflow 2.3. To
provide the models from overfitting, the data sets are randomly
split up into training data (9-fold cross validation ? 80% training,
10% validation) and test data (10%).
9

4.1. Mobility schedule generation

As a reference model for the presented autoregressive models, a
time-inhomogeneous first order Markov model is used. The first
order Markov model characteristics are representative for the
models presented in Section 2.1, since marginal changes in the
metrics can be achieved by using more complex Markov chains,
but the basic problems remain (no long-term memory). The intro-
duced metrics are visualized in Fig. 10. All metrics shown are cal-
culated based on a sample size of N = 2000 unless explicitly stated
otherwise. The course of the aggregated state probability of the
state outside deviates only slightly from the empirical course. The
averaged root mean square error (rmse) over all states of the
aggregated state probability is 0.53% and tends towards zero with
increasing sample size. From the course of the cumulative state
durations of the statemobile (car driver) and the other states shown
in Fig. 16 it can be observed that the state durations of the sched-
ules produced by the first order Markov model partly deviate from
the empirical data. Furthermore, the distribution of the Hamming
distance and the autocorrelation clearly differ between the data
generated by the Markov model and the empirical data, which is
reflected in large deviations in the rmse of the autocorrelation
and the mean absolute error of the Hamming distance. The peak
in the autocorrelation in mobility behavior after 144 lags (one
day) describes daily mobility patterns in the mobility behavior of
individual persons. This peak, which can be clearly identified in
the empirical data, is not represented in the synthetic mobility
schedules of the Markov model. Compared to the empirical distri-
bution, the distribution of the Hamming distances is shifted to the
right, towards higher distances. Consequently, subsequent days of
single individuals differ more from one another than in the empir-
ical data. The distribution of number of activities per week indi-
cates that the Markov model matches the empirical data well on
average, but the boxplot indicates that the diversity in behavior
deviates from the one observed in the empirical data.

The autoregressive models presented in Section 3.2.1 are
trained to predict the multinomial state distribution of the subse-



Fig. 10. Visualization of the metrics for empirical MOP data (N = 26,610) and data generated with a first order Markov model (N = 2000) (blue). The shown state dependent
errors are calculated over all states and the mean is presented. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

Fig. 12. Loss and accuracy development during LSTM training.
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quent state. To achieve this, the cross entropy loss is minimized.
Figs. 11 and 12 describe the course of the cross entropy loss during
the training process. An epoch is defined as one training step of the
nine-fold cross validation. After nine epochs, the training and val-
idation data set are reshuffled and divided into nine new participa-
tions. During the training of the attention-based models, the loss
function converges continuously for the training and test dataset.
In the LSTM-based model, however, it can be seen that the course
of the loss and accuracy function of the test data set diverges from
the course of the training and validation data after around 14
epochs. From this point on, the model overfits on the training data
and the training process can be stopped. In order not to use over-
trained models, the weights of the model are saved at constant
intervals during the training process. Furthermore, the develop-
ment of the model accuracy during the training process is shown.
This converges to a value of approx. 96.3%. This means that 96.3%
of the time the correct value is predicted in the training process.
Of course, the prediction is easier during the night when people
are asleep than, for example, in the afternoon when there are many
Fig. 11. Loss development during training of the autoregressive transformer (L1/L4:
1/4 transformer layers).
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changes in activity. Fig. 11 shows the course of the cross entropy
loss for two model configurations, with one transformer layer
and with four transformer layers. By increasing the depth of the
neural network, the model can better map the complexity of
mobility behavior. However, only marginal improvements can be
achieved by further increasing the number of transformer layers
from four to eight (Table 3). Since the performance of the models
presented depends heavily on the choice of hyperparameters, var-
ious parameter settings were tested during the training phase for
the LSTM and the attention based models. The parameter settings
varied during the training process and the corresponding metrics
can be found in Tables 2 and 3. In addition to the learning rate
and the batch size, the number of LSTM units was varied, which
limits the complexity of the internal state of the LSTM and is there-
fore important to capture temporal dependencies in behavior. The
number of dense neurons (LSTM) or the model dimension (trans-
former) was varied to ensure that state-specific information is
appropriately represented. Furthermore, the depth of the neural
networks was varied, as this enables the neural network to learn
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higher level representations in human behavior. The results of the
parameter variations show that the attention-based models are
slightly superior to the LSTM-based models in most metrics, conse-
quently, the attention-based model no. 3 from Table 3 is used for
the presentation of the mobility schedule specific metrics.

Selectedmobility schedule specific metrics for the attention based
autoregressive model described in Table 3 (model no. 3) are pre-
sented in Fig. 13. A holistic overview of all metrics for all states can
be found in the appendix (Fig. 16). In contrast to the first order Mar-
kov model, the aggregated state probability is represented slightly
worse by the attention basedmodel. The rmse of the state probability
averaged over all states and time steps is higher than the error of the
first-order Markovmodel for all themodels shown in Table 2 and 3 in
the appendix. The Markov error corresponds to the standard error
that arises with a sample size of 2000. The standard error was calcu-
lated by randomly sampling 2000 samples 30 times from the entire
population and calculating their deviation from the metrics of the
entire population (N = 26,610). The mean value of the error of the
30 samples is called the standard error. The mean absolute error of
the number of weekly activities in the attention-based model is also
higher than that of the Markov model (3.6 > 0.73). The diversity of
the number of weekly activities is, however, recorded much more
accurately by the attention-based model, which is shown in the
lower right illustration in Fig. 13 for the state mobile (car driver)
and in Fig. 16 for all other states. While the machine learning models
presented in this work have slight deviations in the description of the
averaged behavior and therefore perform slightly less accurately than
Markov models, the mobility schedules generated differ fundamen-
tally on the individual level, which is shown by the distribution of
the cumulative state durations, the Hamming distance between
weekdays and the autocorrelation of the individual states. Using
the Hamming distance and the autocorrelation, it can be clearly seen
that day-to-day dependencies in behavior are very accurately taken
into account by the models presented in this work. In order to be able
Fig. 13. Visualization of the metrics for empirical MOP data (N = 26,610) and data generat
in Table 3 (no. 3). The shown state dependent errors are calculated over all states and th
center-bottom graph describe the 25%/75% quantiles. (For interpretation of the referenc
article.)
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to adequately capture daily rhythms in mobility behavior, it is very
important that the peak in the autocorrelation graph is captured well
after 24 h (144 10-minute time steps), which can be seen in the bot-
tom center graph in Fig. 13. From the course of the mean values and
the ranges of the 25%/75% quantile, it becomes clear that both these
dependencies in the mean and in the spread are well represented
across the entire population. These visual findings are also reflected
in the significantly lower rmse of the autocorrelation compared to
the Markov model (0.54 < 3.79).

The difference between LSTM-based models and attention-based
models is particularly evident from the autocorrelation peak in
mobility behavior after 24 h. LSTM models are also able to recognize
relationships over such long periods of time, but in this work it was
not possible to reproduce the peak as well with LSTM-based models
as it can be seen in Fig. 13 (bottom center) with the attention-based
model. In addition to the low deviation of the mean error in the dis-
tribution of the Hamming distance (5 < 908), it can also be clearly
recognized from the form of the distribution that the diversity in
the profiles generated matches the real distributions much better
than that of the Markov models, in which individual weekdays of a
person do not have the similarities found in the empirical data.
4.2. Energy-related activity imputation

Since the model approach presented in this paper (step-by-step
simulation of mobility behavior and subsequent enrichment of the
results with energy-related activities based on different data sets) is
new and no classical comparable applications in the field of behav-
ioral modeling are known, only the results of the imputation models
presented in Section 3.2.2 are benchmarked against each other in this
section. As with the autoregressive models, the model performance of
the imputation models is strongly dependent on the choice of hyper-
parameters. The parameters of the BiLSTM-based and the attention-
based imputation model that were varied during the training process
ed with an attention based model (N = 2000) (green). Model parameters can be seen
e mean is presented. The overlapping green and red ranges in the left-bottom and
es to colour in this figure legend, the reader is referred to the web version of this
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can be found in Tables 4 and 5 in the appendix. To ensure that depen-
dencies between time steps can be adequately captured by themodel,
sufficient amounts of LSTM units and attention layers must be pro-
vided. The dimension of the model must be chosen so that all time-
step-specific information can be mapped well. In the following, the
activity schedule-specific metrics for the attention-based model no.
6 from Table 5 are compared with the empirically collected TUD data.
The metrics are visualized for specific states in Fig. 14. A holistic over-
view of all metrics for all states and the development of the model
loss and accuracy can be found in the appendix (Fig. 17/Fig. 18.

Similar to the autoregressive models, it can be seen from the
course and the rmse of the aggregated state probability that this
differs slightly from the empirically collected data. The averaged
errors over all states and time steps can be taken from Fig. 14,
Table 4 and 5 for the various model variants. The error in the sim-
ulation of the state durations, on the other hand, is smaller than
that which occurs when modelling activities with a first-order
Markov chain (no imputation model). Since the German TUD data
set contains diary entries for three days of the week, the model can
also learn day-to-day dependencies between energy-relevant
activities. The autocorrelation graphs in Fig. 18 show that the
imputation model is able to recognize and reproduce these depen-
dencies. For example, daily sleep rhythms can be reproduced in the
synthetic data, which is another unique selling point of this work.

When comparing the metrics shown in Table 4 and 5, it is
noticeable that the attention-based models perform slightly better
in representing the aggregated state probability, while the BiLSTM-
based models tend to map the duration of states and autocorrela-
tion better. This could be attributed to the fact that when repre-
senting energy-relevant activities, short-term temporal
dependencies between individual states are of higher importance
than the one seen in the mobility schedules and the sequential
character of the BiLSTM depicts these dependencies well, while
Fig. 14. Visualization of the metrics for empirical TUD data (N = 35,691 dairy days) and
parameters can be seen in Table 5 (model no. 6). The shown state dependent errors are
ranges in the left-bottom and center-bottom graph describe the 25%/75% quantiles. The
minute timesteps. (For interpretation of the references to colour in this figure legend, th
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attention-based models tend to capture individual states and their
time-dependent probability of occurrence more strongly than
short-term sequential dependencies.
4.3. Generation of weekly activity schedules

After the training processes of the autoregressive models and the
imputation models have been described and evaluated in Sections
4.1 and 4.2, synthetic weekly activity plans are now generated for
various socio-demographic groups and compared with empirical
data. Table 6 in the appendix gives an overview of the socio-
demographic composition of the empirical data. The age distribution
of the MOP data shows that older population groups are overrepre-
sented in contrast to the TUD data. Younger groups of the population
such as students and part-time workers, on the other hand, are
under-represented. Due to the consideration of socio-demographic
factors when coupling the data sets in the approach presented, a dif-
ferent distribution of the socio-demographic groups in the individual
data sets is not problematic. When considering the sample sizes of
the MOP and TUD data, it must be taken into account that the TUD
samples, in contrast to the MOP samples, only consist of two to three
days. The MOP data set with 10-minute time resolution has more
than five times as many data points as the TUD data set. From the
rmse of the aggregated state probabilities for the different socio-
demographic groups, it can be seen that the data sets differ in some
cases more strongly (rmse (age < 18): 4.0%). In the synthetic profiles,
the mobility behavior is generated on the basis of the MOP data, con-
sequently, when looking at the rmse, fewer errors can be found
between the synthetically generated data and the MOP data, both
when looking at the socio-demographic groups in a differentiated
manner and when looking at the aggregate as a whole dataset.

Finally, Fig. 15 shows the course of the aggregated state proba-
bilities over a week and two exemplary activity plans of syntheti-
data generated with an attention based model (N = 2000 diary days) (green). Model
calculated over all states and the mean is presented. The overlapping green and red
autocorrelation graphs were calculated based on the two work days over 288 10-
e reader is referred to the web version of this article.)



Fig. 15. The top two figures represent the course of the aggregated state probability for 1,500 generated activity plans for persons under 18 years of age and for full time
employees. The lower two representations are two exemplary activity plans for a person under the age of 18 and a full-time employee (A legend can be found in Fig. 4).
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cally generated schedules for two socio-demographic groups
(age < 18, full time employees). From the visualization of the
aggregated state probabilities it can be seen that children under
the age of 18 are mainly out of the home in the mornings and have
two pronounced mobility peaks at around 8 am and 1 pm, while
full-time employees are mainly outside during the day. Rhythmic
behavior within the working days can be seen in the exemplary
individual profiles. In the activity plan of the student on Friday
morning, the student changes from an at home state to an outside
state without a mobility activity in between. At first glance, this
seems unrealistic, but these transitions can also be found in the
empirical data due to the temporal aggregation of the mobility
data over 10 min.

5. Discussion

The results of Section 4.1 show that the Markov model used as a
reference model is not able to record long-term dependencies in
activity patterns and, due to the structure of the approach, is not
able to adequately record the diversity in occupancy behavior.
Consequently, synthetic activity schedules generated with Markov
chains cannot be used to analyse occupancy behavior on an indi-
vidual level and are only suitable for studies on an aggregated
level. The approach presented in this paper combines weekly
mobility data with a large sample size with high-resolution activity
data with the help of new machine learning algorithms. The
approach creates a new data basis which can be used for further
analyses of home occupancy and mobility behavior. The profiles
generated have similar stochastic properties as the empirically col-
lected data on both the individual and the aggregated level.

By adequately capturing long-term dependencies in people’s
activities, the behavior of individual people can be reproduced. As a
result, the data generated represent the basis for a variety of potential
applications, one of which is the examination of potential charging
13
periods of people with electric vehicles, assuming that electric mobil-
ity does not change mobility behavior. By combining the detailed
mobility data with high-resolution activity data, a unique data basis
is created which offers the possibility of consistently simulating the
energy demand from personal mobility, the electrical demand for
household devices and the heat demand for space heating and
domestic hot water. Therefore, simultaneity effects in energy
demand can be analysed based on one fundamental data set.

When analyzing such future developments, it should be taken
into account that the data sets on which this work is based describe
historical behavior (MOP: 2001–2017, TUD: 2001/02). Not taking into
account the dynamics in people’s behavioral habits could lead to sig-
nificant errors, depending on the application. The energy sector
includes many examples of innovations that have changed people’s
behavior for example, the internal combustion engine for transport
and the development of ICT in recent decades. Hence ground-
breaking/disruptive technologies could change the nature of the
energy service demand itself (e.g. autonomous electric vehicles and
smart home applications). In order to take into account temporal
changes in behavior in the data set, the survey year of the respective
sample could be provided as additional information in future studies.
Furthermore, the data sets used differ in their temporal resolution,
while the mobility data (MOP) are available in minute resolution,
activities in the TUD are recorded in ten-minute resolution. The
aggregation of the mobility data to a temporal resolution of 10 min
can lead to distortions in short mobility states.

Through the use of machine learning approaches the assump-
tion bias in the presented approach is low in comparison to e.g.
utility-based stepwise regression approaches [19], therefore the
developed approach is highly transferable. TUD data are collected
uniformly in several European countries, but there are some differ-
ences in the design of the surveys. Some countries only provide
activity time series for one weekday and one weekend day, which
makes it harder to capture interday dependencies in activities.
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Longitudinal surveys of mobility behavior are not carried out in a
harmonized way at the European level. However, similar mobility
studies are available, for example in the UK and the Netherlands,
which examine the mobility behavior over a whole week of a sam-
ple that is representative of the nation [10,21]. The approach pre-
sented could therefore easily be applied to behavioral data in the
UK and the Netherlands. Instead of training individual models for
different countries, it would make more sense to implement the
country information as a socio-demographic parameter in a
transnational model in order to learn country-specific behavior
and at the same time provide the model with a larger database
for learning general behavioral relationships.

In this work, the focus was placed on the mapping of the
mobility and activity behavior of individual persons and there-
fore no interpersonal relationships in the behavior of several
individuals in a household were taken into account. However,
the presented approach can and will be extended to represent
household behavior in order to capture interpersonal relation-
ships. Furthermore, only socio-demographic behavioral differ-
ences based on age and employment are currently taken
into account in the model. Since the underlying data sets
contain significantly more socio-demographic differentiations,
an extension to include further socio-demographic characteris-
tics is possible.

Since the training process is stopped before the presented mod-
els overfit, it can be stated that the models have learned the gen-
eral stochastic relationships in human behavior and not simply
learned the raw data sets by heart. This statement is supported
by Fig. 18 in the appendix, which describes the distribution of
the minimum distances of a sample of data set a with all samples
of data set b. The distribution of the minimum distances between
the synthetic mobility schedules and the raw data is similar to
the distribution of the minimum distances within the empirically
collected data. However, even if the raw data used in this paper
are already provided in anonymized form, it must be ensured that
no information about individual samples in the empirical data is
revealed by the synthetic data sets. Consequently, in follow-up
work, prior to making the models presented in this paper available
to the general public, algorithms from the field of ‘‘differential pri-
vacy” must be used to ensure that no information about individual
samples is provided [13]. Algorithms that ensure the privacy of
individuals have been developed in recent years for deep learning
applications [1]. Ensuring differential privacy is always accompa-
nied by a loss of quality in the model, whereby this trade-off
between quality and privacy can be clearly quantified by the so-
called privacy budget.
6. Conclusion and outlook

Over the past few years, many models have been published that
aim to capture relationships in activity patterns to explain residen-
tial energy demand. Most of these models are different Markov
variants or regression models that have a strong assumption bias
and are therefore unable to capture complex long-term dependen-
cies and the diversity in occupancy behavior. In this work it was
shown that machine learning models from the field of natural lan-
guage processing are able to capture long-term dependencies in
mobility and activity patterns and at the same time adequately
depict the diversity in behavior across the entire population. In a
14
first step, two autoregressive models are presented which are able
to recognize and reproduce weekly mobility patterns. In a second
step, two imputation models are trained with time use data, which,
based on the mobility information of individual people, enrich
them with energy-related activities. Finally, the two models are
combined to generate weekly activity plans. By combining an
autoregressive generative model with an imputation model, the
advantages of two data sets are combined and new data are gener-
ated which are beneficial for multiple use cases. One of which is
the examination of flexibility potentials of individual households
which is urgently needed for the integration of volatile renewable
energy sources. Furthermore, metrics were introduced that enable
activity profiles to be investigated in terms of intrapersonal and
interpersonal variability. Based on these metrics, it is shown that
the synthetically generated activity plans represent weekly mobil-
ity patterns and day-to-day dependencies of the energy-relevant
activities with a high quality on an individual and aggregated level.
The evaluation metrics show that LSTM and attention-based neural
networks outperform existing approaches on an individual level by
a large margin and at the same time have only slight deviations in
the aggregated behavior.

Due to the availability of rich socio-demographic information in
the two basic data sets, activity plans can be generated for different
socio-demographic groups and can be used in future work to sim-
ulate consistent energy demand profiles from electric mobility,
household devices and space heating. The approach developed pro-
vides the basis for making high-quality weekly activity data avail-
able to the general public without having to carry out complex
application procedures. It was shown that the presented approach
does not learn the training data by heart, however, it must be
ensured that no private information about individuals is revealed
by the model before the synthetic data can be provided to the com-
munity, which cannot be ensured at the current time. Therefore, in
further work the model will be trained in a differential private way.
Furthermore, the presented methodology can be trained with
behavioral data from different European countries in order to
develop a transnational model. Instead of individual behavior,
household behavior could be learned to take interpersonal depen-
dencies into account.
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Fig. 16. Comparison of all metrics and all states for the mop data (red), the attention based autoregressive model described in Table 3 (no. 3) (green) and a first order Markov
model (blue). The mobility schedule specific metrics of the attention based model are calculated based on the model weights after epoch 7. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 17. Part a: Comparison of all metrics and all states for the TUD data (red), the attention based imputation model described in Table 5 (model no. 6) (green) and a first
order Markov model (blue – no imputation model). The mobility schedule specific metrics of the attention based model are calculated based on the model weights after epoch
37. The autocorrelation graphs were calculated based on single days. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 18. Part b: Comparison of all metrics and all states for the TUD data (red), the attention based imputation model described in Table 5 (model no. 6) (green) and a first
order Markov model (blue – no imputation model). The mobility schedule specific metrics of the attention based model are calculated based on the model weights after epoch
37. The autocorrelation graphs were calculated based on single days. Furthermore, the course of the model loss and accuracy is visualized. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 19. Distribution of the minimum Hamming distances of the samples from dataset a (sample size N = 500) to the samples in dataset b (dataset a/ dataset b).

Table 2
Hyperparameter configurations and model metrics for the LSTM based autoregressive model. Metrics were calculated based on a sample size of N = 2000. Furthermore, a mean
standard error due to the sample size of 2000 is given.

No. LSTM units/Learning rate/Batch size/Dense neurons Sp
rmse
[%]

Sd
rmse
[%]

Ac
rmse
[%]

Na
mae
[]

Hd
mae
[]

Cross-entropy
Loss

Accuracy
[%]

CV
Epochs

1 512/0.0005/512/32 0.99 0.13 0.71 1.11 144 0.133 96.27 14
2 128/0.0005/512/32 1.03 0.17 1.65 1.57 423 0.142 96.12 8
3 512/0.001/512/32 1.05 0.18 0.66 3.04 235 0.131 96.30 11
4 512/0.0005/64/32 1.27 0.22 0.89 3.39 114 0.134 96.26 3
5 512/0.0005/512/64 0.90 0.18 0.80 0.67 98 0.131 96.29 17
6 512/0.0005/256/32 0.90 0.13 0.60 1.85 83 0.131 96.29 11
7 2x256/0.001/512/32 0.69 0.14 0.95 2.08 120 0.131 96.29 12
8 2x256/0.0005/256/32 0.97 0.19 0.63 3.61 1.5 0.132 96.28 10
Standard error (N = 2000) 0.52 0.09 0.24 0.6 13 – – –

Table 3
Hyperparameter configurations and model metrics for the attention based autoregressive model. 2xh means that two attention heads are used (see [39]). Results in this work are
generated with model configuration no. 3.

No. Transformer layers/D_model/Learning rate/Batch size Sp Sd
rmse

Ac
rmse

Na
mae

Hd
mae

Cross-entropy
Loss

Accuracy CV
Epochs

1 1/64/0.001/64 0.83 0.31 1.32 2.96 244 0.14 95.95 9
2 4/64/0.001/64 0.91 0.16 0.70 2.53 33 0.128 96.34 15
3 8/64/0.001/64 0.86 0.17 0.54 3.6 5 0.127 96.36 7
4 4/64/0.001/128 0.95 0.22 0.54 3.28 44 0.130 96.29 3
5 4/128/0.001/128 0.89 0.24 0.59 3.60 9 0.128 96.33 6
6 4/64/0.0005/64 0.86 0.18 0.48 4.78 6 0.128 96.33 20
7 2(2xh)/64/0.001/64 0.97 0.22 0.60 6.33 74 0.129 96.31 11
8 4(2xh)/64/0.001/64 1.20 0.20 0.42 4.52 126 0.127 96.35 8
Standard errors (N = 2000) 0.52 0.09 0.24 0.6 13 – – –

Table 4
Hyperparameter configurations and model metrics for the BiLSTM based imputation model. Metrics were calculated based on a sample size of N = 2000 diary days. Furthermore, a
mean standard error due to the sample size of 2000 diary days is given.

No. LSTM units/D_model/Learning rate/Batch size Sp
rmse

Sd
rmse

Ac
rmse

Na
mae

Cross-entropy
Loss

Accuracy CV
Epochs

1 64/32/0.001/64 0.70 0.27 0.36 0.88 0.434 87.48 21
2 128/32/0.001/64 0.74 0.28 0.44 0.86 0.435 87.36 11
3 256/32/0.001/64 0.60 0.26 0.37 0.59 0.432 87.46 9
4 128/64/0.001/128 0.75 0.26 0.42 0.96 0.432 87.54 13
5 128/32/0.001/128 0.71 0.42 0.48 0.98 0.433 87.44 11
6 128/32/0.0005/128 0.64 0.28 0.43 1.27 0.434 87.48 12
7 64/32/0.0005/128 0.60 0.30 0.38 0.62 0.434 87.39 33
8 64/32/0.0005/64 0.62 0.34 0.44 0.82 0.434 87.43 33
Standard errors (N = 2000) 0.40 0.19 0.24 0.33 – – –
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Table 5
Hyperparameter configurations and model metrics for the attention based imputation model. Metrics were calculated based on a sample size of N = 2000 diary days. Furthermore,
a mean standard error due to the sample size of 2000 diary days is given. Results in this work are generated with model configuration no. 6.

No. Transformer layers/D_model/Learning rate/Batch size Sp
rmse

Sd
rmse

Ac
rmse

Na
mae

Cross-entropy
Loss

Accuracy CV
Epochs

1 1/64/0.001/256 0.58 0.39 0.50 0.50 0.469 86.97 158
2 4/64/0.001/256 0.58 0.39 0.44 0.62 0.436 87.32 22
3 4/64/0.001/64 0.57 0.38 0.36 0.90 0.436 87.35 8
4 4/64/0.001/128 0.63 0.39 0.46 1.05 0.438 87.31 12
5 4/64/0.0005/64 0.59 0.36 0.39 0.72 0.435 87.35 10
6 4/64/0.0005/128 0.49 0.39 0.39 0.66 0.431 87.41 37
7 4/14/0.0005/64 1.27 0.54 0.72 1.42 0.458 87.14 46
8 4/14/0.0005/128 0.84 0.60 0.61 0.65 0.459 87.14 47
Standard errors (N = 2000) 0.40 0.19 0.24 0.33 – – –

Table 6
Comparative presentation of the socio-demographic composition of the MOP and TUD data sets. The calculated rmse of the aggregated state probabilities are calculated on the
basis of the five aggregated states (home, outside, mobile (car driver), mobile (co driver), mobile (rest)). For the calculation of the rmse between the synthetic profiles and the
MOP and TUD data, synthetic data with the same socio-demographic characteristics as in the comparison data sets were generated.

Age <18 <26 <36 <51 <61 <71 �71

Samples MOP 1971 (7.4%) 1430 (5.4%) 2288 (8.6%) 6107 (22.9%) 5132 (19.3%) 5809 (21.8%) 3873 (14.6%)
Samples TUD 2169 (18.2%) 1106 (9.3%) 1140 (9.6%) 4080 (34.2%) 1654 (13.9%) 1167 (9.8%) 494 (4.1%)
rmse sp MOP/TUD 4.0% 3.8% 2.3% 1.9% 2.2% 2.7% 2.8%
rmse sp syn./MOP 1.7% 1.6% 1.3% 0.9% 1.1% 0.7% 0.9%
rmse sp syn./TUD 3.9% 4.2% 2.1% 1.7% 1.9% 2.6% 2.7%

Job – Full time Part time Students Training No job Pensioner

Samples MOP 212 (0.8%) 8853 (33.3%) 3627 (13.6%) 2759 (10.4%) 489 (1.8%) 2052 (7.7%) 8618 (32.4%)
Samples TUD – 3938 (33.0%) 2599 (21.8%) 2214 (18.6%) 375 (3.1%) 1184 (9.9%) 1611 (13.5%)
rmse sp MOP/TUD – 2.2% 2.5% 2.9% 3.8% 2.4% 2.4%
rmse sp syn./MOP 2.8% 1.1% 1.1% 1.3% 4.0% 1.0% 0.7%
rmse sp syn./TUD – 2.1% 2.0% 3.6% 4.69% 2.1% 2.1%
rmse sp MOP/TUD (entire sample) 2.9%
rmse sp syn./TUD (entire sample) 1.8%
rmse sp syn./MOP (entire sample) 0.7%
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Two million European single-family homes
could abandon the grid by 2050

Max Kleinebrahm,1,5,* Jann Michael Weinand,2 Elias Naber,1 Russell McKenna,3,4 Armin Ardone,1

and Wolf Fichtner1
CONTEXT & SCALE

Economies of scale and temporal

smoothing effects lead to the

belief that widespread, highly

interconnected energy systems

come with the lowest cost.

However, economies of scale are

less pronounced with renewable

technologies. Organizational and

regulatory complexities increase

with increasing system size, and

heat is typically not transported

over long distances.

Having this in mind, we analyze

the technical and economic

potential of 41 million single-

family homes in Europe for off-
SUMMARY

Rising energy procurement costs and declining capital costs for
renewable technologies are provoking interest in self-sufficiency
for individual buildings. In this study, we evaluate the potential of
self-sufficient energy supply for 41 million freestanding single-fam-
ily buildings under current and future (2050) conditions. We identify
4,000 representative buildings, calculate weather-robust cost-mini-
mal energy systems, and transfer the optimization results to the
entire European building stock. Our analyses show that buildings
in regions with low seasonality and high electricity procurement
costs have a high potential for self-sufficiency. Under current
techno-economic conditions, 53% of the 41 million buildings are
technically able to supply themselves independently from external
infrastructures by only using local rooftop solar irradiation, and
this proportion could increase to 75% by 2050. By paying a premium
of up to 50% compared with grid-dependent systems with electri-
fied heat supplies, building owners could make over two million
buildings fully energy self-sufficient by 2050.
grid energy self-sufficiency under

current and future (2050)

conditions. We find a pronounced

potential for off-grid buildings in

regions with low seasonality (e.g.,

Spain) and high electricity prices

(e.g., Germany). If building

owners are willing to pay a

premium of up to 50%, two million

buildings could abandon the grid

by 2050.
INTRODUCTION

In Europe, self-sufficient off-grid energy supply is transitioning from a niche concept,

mostly reserved for special applications or remote areas, to a potentially mainstream

idea. Rising energy procurement costs and decreasing capital costs for renewable

energy technologies have fostered recent trends toward individual and independent

energy supply systems across the residential sector. In the design of these systems,

non-monetary criteria such as high shares of renewables, increased self-control

through independence from rising energy carrier prices, or rejection of the use of nu-

clear and carbon-intensive fossil energy, potentially from regions with questionable

governance and values, play an increasingly important role.1–3 These priorities could

even be reinforced by disruptive events such as the recent energy crisis, with high

energy carrier prices due to a lack of fossil fuel supplies, which show that existing en-

ergy system structures with a high dependence on imports must be reconsidered.4

In addition to the perceived financial benefits, the pursuit of self-sufficiency most

influences households’ intentions to purchase renewable energy technologies.2

The very strong decline in photovoltaic (PV) system prices has led to grid parity in

many European countries,5–9 which refers to the point at which the cost of producing

electricity from renewable sources is less than or equal to the cost of purchasing

electricity from the grid. Furthermore, battery costs are predicted to decrease

further in the future, leading to improved economic performance among stationary

battery systems.10–12 The increasing economic viability of local energy generation
Joule 7, 1–26, November 15, 2023 ª 2023 Elsevier Inc. 1
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will lead to a multitude of consumers meeting most or all of their energy demand on

their own and only using the grid as a back-up when local energy supply is not avail-

able. However, partially self-sufficient building energy systems put an even greater

strain on the electrical grid than traditional end-of-pipe customers.13,14 Fully self-suf-

ficient systems, on the other hand, reduce the demand for centralized generation

and transmission capacity but currently come with high cost and low stability due

to the lack of scaling effects.13,15–17 By using cost-effective renewable resources

through large centralized power plants (economies of scale) in highly interconnected

energy systems, temporal and spatial fluctuations between supply and demand can

be balanced without the need for massive dispatchable capacities (smoothing ef-

fects).16 The choice of the optimal degree or scale of self-sufficiency thus represents

a complex socio-techno-economic question.13 Although trade-offs between

geographic scale, cost, and infrastructure requirements for 100% renewable elec-

tricity systems in Europe have been discussed on continental, national, and regional

scales,16 this study presents the first large-scale analysis of the European potential

for self-sufficiency among all 41 million freestanding single-family buildings (SFBs).

Real-world examples and academic case studies indicate that from a technical point

of view, energy self-sufficient residential buildings are feasible even under subopti-

mal conditions for renewable energy sources.18–22 From an economic point of

view, the decreasing marginal utility with higher degrees of self-sufficiency pre-

cludes the economic operation of energy self-sufficient residential buildings in cen-

tral Europe under current energy-political framework conditions.19,20 However, the

use of certain technologies and measures such as hydrogen-storage (H2-storage)

options,19 efficiency measures,18 or demand-side adjustments21 can reduce the

exponentially increasing system costs at high degrees of self-sufficiency. Although

self-sufficient residential buildings can already be cost-competitive in Australia if

the occupants are willing to make small changes to their consumption patterns,

households in temperate climates can become cost-competitive in the future,

depending on energy storage and procurement prices.20,21

Multiple studies have analyzed the possibility of ‘‘leaving the grid’’ or ‘‘living off-

grid’’ using PV-battery systems.17,21,23–28 Research on European residential build-

ings mostly concludes that PV-battery systemsmust be drastically oversized to reach

degrees of self-sufficiency above 80%, and it is therefore advantageous to preserve

grid connections but minimize electricity purchasing and optimize feed-in.17,23,27

Similar work on residential buildings in Australia and the United States has shown

that grid defection could be economically viable under certain electricity tariff

schemes, especially if occupants are willing to adjust their consumption pat-

terns.21,24 However, existing studies tend to be limited to PV-battery systems to

cover electrical demand and thereby neglect the synergies of an integrated consid-

eration of electrical and thermal energy demands.17,21,23–27,29 On the other hand,

studies that follow an integrated approach are limited to typical residential buildings

and therefore not suitable for deriving representative statements.19,20,22,30,31 A

large-scale study is required in order to provide comprehensive insights and compa-

rability across the building stocks of different countries, climates, building types, and

household consumption characteristics. We therefore explore the techno-economic

potential of all 41 million freestanding owner-occupied SFBs in the EU-27, United

Kingdom (UK), and Norway (NO) for off-grid energy self-sufficiency under current

(2020) and future (2050) techno-economic framework conditions.

As a first step, based on a spatial microsimulation with economic, environmental,

and physical data, a synthetic building stock containing about 41 million
2 Joule 7, 1–26, November 15, 2023
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Figure 1. Visualization of the seasonal variation of energy demand and supply of a representative four-person single-family house in Germany

The ranges shown in all figures are based on simulations over 30 historical weather years (1991–2020) and represent the 10%/90% quantile and mean. In

(A), the useful energy demand for space heating and cooling is presented, whereby a distinction is made between two typical retrofit states. In (B), the

device category-specific electricity and domestic hot water demand is shown. In (C), the normalized PV and small wind turbine power profiles are

displayed together with the state of charge of the battery and pressurized hydrogen storage. Although the normalized power profiles are used as inputs

for the energy system optimization, the storage levels represent an optimization result.
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freestanding owner-occupied SFBs was created. Subsequently, a clustering

approach was applied to identify representative SFBs across Europe. Self-sufficient,

robust energy systems of up to 4,000 buildings were then designed in parallel in in-

dividual energy system optimizations on high-performance computing clusters for

multiple weather years. Finally, we combined the results of the previous steps to

train a surrogate model to approximate the function between the aggregate energy

system optimization input and key output parameters. This enables the results of the

energy system optimizations to be transferred to the entire synthetic building stock

with a high degree of accuracy and without the use of excessive computational

resources.
RESULTS

Toward 100% energy self-sufficient buildings

The energy systems of self-sufficient residential buildings must guarantee supply

security at any point in the year. The useful energy demand in residential buildings

consists of space heating and cooling, domestic hot water, and energy service

demands for lighting, cooking, and other services. Although the ambient tempera-

ture correlates positively with electrical demand for cold appliances and the demand

for space cooling, there is a negative correlation with space heating, lighting, and

domestic hot water demand (Figures 1A and 1B). At an exemplary German location,

the seasonal feed-in profiles of PV and small wind turbines complement each other

well (Figure 1C). However, a small wind turbine has significantly fewer full load hours

compared with a PV system and significantly higher costs per installed unit of capac-

ity. To compensate for the seasonal mismatch between electricity generation from

PV systems and energy demand, various investment options, such as retrofitting

measures to reduce space heating demand, seasonal hydrogen storage technolo-

gies, or complementary generation technologies, can be exploited. The optimal

selection and dimensioning of the investment options are performed by minimizing

the system’s total annual cost (TAC). In order to be able to compare costs between

different SFBs, the TAC is normalized with the living area.

At very low energy carrier prices, it is advantageous to import all of the energy

required to meet the building energy service demand. Very high energy carrier pri-

ces lead to a minimization of energy imports and useful energy demand through ef-

ficiency measures and maximization of self-generation. Figure 2 shows the transition
Joule 7, 1–26, November 15, 2023 3



Figure 2. Visualization of the relationship between energy system costs and the degree of self-sufficiency for a representative German building

Although in (A), only the demand for electrical appliances is considered, in (B), the demand side is extended by the heating demand for domestic hot

water and the space heating demand to maintain an indoor temperature between 20�C and 26�C. Multiple energy system optimizations are carried out

in which the electricity price used for the determination of the energy system design is successively increased (from p = 0.01 V/kWh to p = 20 V/kWh). In

(A), a reference system with 100% electricity grid supply is used at p/0 = 0.01 V/kWh for calculating the degree of self-sufficiency; in (B), an electrical

heating rod is installed together with an air conditioner. Each colored point represents the result of an energy system optimization given the electricity

purchasing price shown in the color bar. The associated technology choices and sizes of the highlighted optimized systems can be found in Tables S4

and S5. The red lines represent the total annual system costs, which are calculated based on a constant electricity purchasing price of pDE = 0.3 V/kWh

instead of the electricity price p used in the energy system optimization. Each time the energy system in 2020 is expanded by a technology, the

corresponding technology is displayed together with a reference number. Costs are normalized using the building living area or the total annual

electricity demand of the Gridref(-el) system.

(PV, photovoltaic; BS, battery storage; H2, hydrogen system; HR, heating rod; AC, air conditioning; ASHP/GSHP, air/ground source heat pump; th. dist,

new thermal distribution system).
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between these two extremes for the representative German SFB. The optimal de-

gree of self-sufficiency (DSS) is defined according to Equation 1, in which importp
represents the imported quantity of electricity at a given price p. Only electricity im-

ports are permitted in the energy systems shown in Figure 2, due to the strong elec-

trification trend,32 in order to not have to weigh between energy carriers and for the

sake of clarity.

DSSp = 1 �
importp

importp/0

(Equation 1)

The cost-optimal degrees of self-sufficiency of the examined building in Germany

(DE) were 29% in 2020 and 40% in 2050, as long as only the electrical demand for

household appliances is considered (Figure 2A). This means that 29% or 40% of

the annual electricity demand of the building is supplied by a PV plant, and excess

electricity is fed into the grid. Higher degrees of electrical self-sufficiency led to a

relatively strong increase in costs in 2020 compared with 2050, which levels off

significantly due to the expected increase in the efficiency of battery production.

Compared with the energy system without local electricity self-generation, the costs

of grid-independent systems were 5.3 times higher in 2020 and could be 3.1 times

higher in 2050.

If the thermal demand is also taken into account, the cost-optimal degrees of energy

self-sufficiency are 73% in 2020 and 78% in 2050 (see Figure 2B). This is an

interesting result, as in most other studies only the electrical demand is consid-

ered14,17,27 and therefore, in principle, much lower optimal degrees of self-suffi-

ciency are assumed for decentralized energy systems. This implies that the optimal

DSS depends strongly on the system under consideration and the definition of the
4 Joule 7, 1–26, November 15, 2023



Figure 3. Cost composition of residential energy supply systems

The left-hand panel (A) depicts the energy system cost composition for 4,000 representative single-family buildings in the EU-27, United Kingdom, and

Norway for the NoGridref scenario. The right-hand panel (B) presents the progression of the energy system cost composition of a representative SFB in

Germany over time until 2050 for all scenarios.

Relevant characteristics of the residential building, the composition of the total annual system costs, and energy system-related CO2 emissions are

presented. System costs in the NoGrid scenarios are calculated using 30 years of historical weather, with the black crosses indicating the system costs

(value of lost load excluded) if only 1 weather year is used for the system design. Relative cost differences with respect to the Gridref scenario are shown

as numbers above the bars. Under the techno-economic framework conditions in 2020, load is shed in the Gridref and Gridpv scenarios, thereby a

distinction is made between the average (avg.) and maximum (max.) value of lost load over the 30 weather years.
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DSS. In this study, the system with maximum dependence on the electricity grid is

the energy system that results when the electricity price approaches zero (see Equa-

tion 1 and, e.g., Figure 2B, system no. 1). This system has a DSS of 0%, consists of a

heating rod and an air conditioner, and is still in the initial state of construction (no

retrofit measures). Although this system is anything but cost-optimal, the TAC in

2020 is still lower than that with 100% self-sufficiency. Under rising electricity pur-

chase prices, an air source heat pump is first installed before investments in retrofit

measures and technologies such as PV systems and ground-source heat pumps, in

conjunction with a renewal of the heat distribution system, become economical.

Finally, battery and hydrogen storage systems are built to increase the DSS from

87% to 96% in 2020 and from 85% to 100% in 2050, which is associated with a sig-

nificant increase in TAC. The less pronounced cost increase in 2050 compared with

2020 can primarily be attributed to the future efficiency developments of hydrogen

and battery storage systems. Although battery storage is used primarily as a diurnal

storage medium throughout the year to reach a DSS of 91%, the hydrogen system is

used for seasonal storage in order to provide energy, mainly in winter for space heat-

ing, either directly by using heat from the fuel cell or indirectly by converting elec-

tricity into heat in a heat pump. Due to the still low degree of maturity of hydrogen

storage systems in 2020 and the associated high costs, a DSS increase from 91.3% to

96.4% (1.4 MWh) results in mean additional costs of 4.5 V/kWh. The described re-

sults relate to one representative German SFB (see Figure 3 for more information)

and differ from building to building with regard to the skewness of the U-shape

(the red line in Figure 2B). Older buildings, for example, tend to have an even

more pronounced right skewness of the U-shape to higher optimal degrees of en-

ergy self-sufficiency, as a large share of the space heating demand can be saved

through retrofit measures at a low cost.
Joule 7, 1–26, November 15, 2023 5



Table 1. Overview of energy system design scenarios and respective energy system technology options

No. Scenario
Electrical
grida

Freestanding PV
and ST

Small wind
turbines

Rooftop PV
and ST, battery, H2

Retrofit, P2H,
heat storage Diesel generator Demand

1 NoGridref – – – ✔ ✔ – el., th.

2b NoGridpv – ✔ – ✔ ✔ – el., th.

3b NoGridwind – – ✔ ✔ ✔ – el., th.

4 Gridopt ✔ – – ✔ ✔ – el., th.

5 Gridref ✔ – – – ✔ – el., th.

6 NoGridref-el – – – ✔ – – el.

7b NoGridpv-el – ✔ – ✔ – – el.

8b NoGridwind-el – – ✔ ✔ – – el.

9 NoGridgen-el – – – ✔ – ✔ el.

10 Gridopt-el ✔ – – ✔ – – el.

11 Gridref-el ✔ – – – – – el.

Scenarios 1–3 cover the energy demand completely independently of external energy infrastructures. In scenario 2, freestanding PV and ST can be installed next

to buildings, in addition to the restricted rooftop PV and ST potential. Scenario 3 considers the option to install a small wind turbine. In scenario 4, electricity can

be purchased and fed back into the grid and investments in local self-generation technologies are considered. Scenario 5 serves as the reference scenario in

which all of the electricity demand is covered by the electricity grid and electricity self-generation is excluded. Scenarios 6–11 exclude the thermal energy demand

for space heating and domestic hot water and only focus on covering the electricity demand for household appliances and can be found in the supplemental

information (ST, solar thermal; P2H, power-to-heat; el, electricity; th., thermal).
aElectricity can be obtained for the national household electricity price64 and fed into the grid for a feed-in premium of 3 V-cents/kWh (based on PV-weighted

mean of wholesale electricity prices107). A constant household electricity price is assumed between 2020 and 2050.
bScenarios 2, 3, 7, and 8 are presented to analyze the impact of a restricted rooftop potential—as the only energy source—on the economic potential of self-

sufficiency. The potential for freestanding PV and ST and small wind turbines is not restricted by the consideration of local land use conflicts or other site-specific

obstructions. Consequently, the results of these scenarios represent an upper potential limit, which would be lower if site-specific restrictions were taken into

account.

ll

Please cite this article in press as: Kleinebrahm et al., Two million European single-family homes could abandon the grid by 2050, Joule (2023),
https://doi.org/10.1016/j.joule.2023.09.012

Article
Even if a 100% self-sufficient system is not cost-optimal, the question arises as

to where such systems can be economically achieved, especially considering a

willingness to pay for self-sufficiency. Therefore, Figure 2 presents the (extended)

economic potential. The economic potential is defined by the Gridopt and Gridref

systems (see Table 1).

� Gridopt: Cost-optimal energy system taking into account all technology options

and electricity grid exchange (lower limit of economic potential).

� Gridref: Similar to Gridopt, but self-generation of electricity is excluded (upper

limit of economic potential).

� NoGridref: Similar to Gridopt, but without electricity grid exchange.

An SFB has a technical potential for self-sufficiency if the entire energy demand for

electrical appliances, domestic hot water, and space heating for maintaining an in-

door temperature between 20�C and 26�C can be covered at every hour of the

year by only using the local rooftop renewable potential as an energy source.
Cost-optimal energy system designs for self-sufficient buildings

We investigate energy systems for self-sufficient SFBs across three energy system

design scenarios (see scenarios 1–3 in Table 1) and changing techno-economic

framework conditions between 2020 and 2050. All of the following results refer to

full self-sufficiency considering electric and thermal demands. For some of the

SFBs, it is not possible or very expensive to cover the energy demand for every

hour of the year. In order to prevent the energy system model from being infeasible

or configuring oversized energy systems, shedding the load for an assumed value of

lost load of 10V/kWh33 is possible. Intermediate results of the energy system design

process, the demonstration of the robustness of the systems against multiple

weather years, sensitivity analysis regarding future price, weather, building stock,
6 Joule 7, 1–26, November 15, 2023
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and energy demand developments, and detailed results for scenarios 6–11 can be

found in the supplemental information.

System costs of self-sufficient residential buildings could approximately halve by

2050 compared with 2020 (Figure 3A). The TAC of a representative self-sufficient

German SFB (NoGrid scenarios) exceeds the costs of those systems with electricity

grid connections (Grid scenarios) at all times (Figure 3B). However, although the

system costs of the NoGrid scenarios decrease over time due to assumed future

technology efficiency developments, the costs of the Gridref scenario remain con-

stant due to an assumed constant electricity purchasing price for household cus-

tomers and no assumed price changes for construction materials. This leads to rela-

tive cost reductions from 5.5 times higher costs in 2020 to only 1.7 times higher costs

in 2050.

In all NoGrid scenarios for the representative German SFB, the demand for space

heating is maximally reduced by selecting advanced insulation measures. In order

to balance the seasonal mismatch between electricity generation from PV and the

remaining space heating demand, hydrogen storage systems are installed. Only in

the NoGridpv scenario in 2020, no hydrogen system is used, and over 37 kWp of free-

standing PV is installed next to the SFB. The area consumption of the freestanding

PV systemwould bemore than 10 times higher than the building floor area.34 Conse-

quently, the NoGridpv scenario represents a rather hypothetical scenario that

illustrates the relevance of space restrictions for PV systems. Compared with the

NoGridpv and NoGridwind scenarios, the capacity to generate electricity is limited

in the NoGridref scenario by the available rooftop potential. Therefore, it is not tech-

nically possible to cover the entire energy demand under the techno-economic

framework conditions in 2020, and the load is shed with a value of lost load of

10 V/kWh. On average, 3.8% of the total annual electricity demand is shed over

the 30 weather years considered (at most 8.3%). Due to assumed technological de-

velopments of PV, battery, and hydrogen storage systems, however, it could be

possible to cover the entire energy demand in the NoGridref scenario from 2030 on-

ward. The projected increase in the PV efficiency means that more electricity can be

provided on the same roof area. Furthermore, projected improvements in conver-

sion efficiencies of electrolyzers and fuel cells make long-term energy storage

more efficient. In the NoGridpv scenario, in 2020, it is cheaper to shed the load for

10 V/kWh than to dimension the freestanding PV or battery system larger and

thus supply an additional kWh of energy demand. These marginal costs of supplying

an additional kWh are significantly lower with a hydrogen-based system since the

fixed system costs of the hydrogen system are high compared with the variable ca-

pacity-dependent costs. If the building owner had the opportunity of setting up a

small wind turbine, all energy demands could already be covered in 2020. If the

building is instead still connected to the electricity grid (Gridopt), investments in a

PV system and heat pump in conjunction with insulation measures are economically

beneficial and can lead to 12%–19% lower costs in comparison to the Gridref sce-

nario, in which no local self-generation is considered.

Potentials for self-sufficient buildings across Europe

In 2020, 53% of the 41 million examined SFBs in Europe could technically achieve

energy self-sufficiency without shedding load, and this share could increase to about

75% by 2050 (NoGridref scenario; see Figure 4). Especially in the northern regions of

Europe such as Finland (FI), NO, and Sweden (SE), the technical potential is low due

to the increased seasonal mismatch of heat demand and solar irradiation. A higher

potential exists in regions with high solar irradiation (e.g., Malta [MT], Cyprus [CY],
Joule 7, 1–26, November 15, 2023 7



Figure 4. Technical potential for self-sufficient single-family buildings in Europe

Visualization of the share of technically feasible self-sufficient single-family buildings in NUTS3

regions in Europe for 2020 (A) and 2050 (C) for the NoGridref scenario. In the right-hand parts of the

figure (B) and (D), the building-weighted average composition of the total annual cost by energy

system components and value of lost load is shown together with the country-specific technical

potential.

Each technically feasible self-sufficient residential building of the synthetic building stock is

assigned the TAC composition of the corresponding cluster representative, and based on that, the

average composition per country is calculated. Countries are sorted in ascending order of their

share of technical potential in 2020.
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Italy [IT], Spain [ES]), and/or areas with large rooftop potential for solar rooftop sys-

tems (e.g., Denmark [DK], Slovenia [SI], the Netherlands [NL], France [FR],

Luxembourg [LU], or DE). The increasing share in 2050 can be attributed to the antic-

ipated increases in PV efficiency, which can lead to higher electricity yields. Improve-

ments in demand-side efficiency are not assumed, and developments in storage

technologies have no impact in this instance, although future increases in conversion

efficiency are assumed for the hydrogen system. However, these improvements

have no impact on the technical potential, as the battery system has a higher

round-trip efficiency and is therefore advantageous as long as no economic factors

are taken into account. If only the electrical demand for household devices is consid-

ered on the demand side (NoGridref-el), 94% of the examined SFBs could technically

achieve self-sufficiency in 2020, and this share could increase to about 98% in 2050.

The ratio of seasonal hydrogen storage capacity to short-term battery storage

capacity in the cost-optimal energy systems of self-sufficient buildings increases

with increasing latitude, with buildings in MT and CY requiring mostly short-term

battery storage solutions (see Figure 4). The lowest TAC of 14 V/m2 in 2020

(10V/m2 in 2050) was achieved for a building with four residents and 220 m2 of living
8 Joule 7, 1–26, November 15, 2023
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space in MT (see Figure 3A). With only 174 heating degree days on average between

1991 and 2020 and a yearly global horizontal irradiation (GHI) of 1,830 kWh/m2, a PV

system (7 kWp) in combination with a battery (17 kWh), a small heat pump, an air

conditioner, and a hot water storage tank are sufficient to provide the thermal and

electrical energy supplies of the SFB. The SFB with the highest TAC among the

representative buildings that supply themselves without shedding load was a very

small SFB (36 m2 living space) with two residents located in Romania. The TAC

was 205V/m2 in 2020 (89V/m2 in 2050). A hybrid battery and hydrogen storage sys-

tem (battery: 13 kWh, H2-storage: 1,800 kWhLHV) in combination with a PV system

(7 kWp), heat pump, and hot water storage tank in conjunction with advanced retrofit

measures ensure the provision of electricity and thermal comfort.

The expansion of the energy supply system via freestanding PV and a small wind

turbine can significantly reduce the TAC, especially in 2020. Additional space for

freestanding PV in the NoGridpv scenario was used by over 92% of SFBs in 2020

with an average of 18 kWp (75% in 2050 with 6 kWp) and could help reduce costs

by over 30% (20% in 2050) on average. Although the cost reductions are fairly

small in countries such as DE, FR, and IT, higher cost reductions could be achieved

in countries with a low technical potential for self-sufficient residential buildings

such as NO (see Figure 4). In the NoGridwind scenario, the possibility of generating

electricity via a small wind turbine is used by 30% of the SFBs in 2020 (12% in 2050)

to complement the electricity feed-in from PV. Thereby, costs could be reduced by

18% on average in 2020 (24% in 2050) when installing a small wind turbine

compared with the NoGridref scenario. In countries with good conditions for small

wind turbines, such as the UK, up to 77% of the energy systems in 2020 were

equipped with a small wind turbine. The average wind speed at the locations of

the SFBs with small wind turbines at 10 m above ground level was 3.6 m/s (in

the UK, 4.3 m/s).

Although many European SFBs can technically achieve energy self-sufficiency, the

economic feasibility in 2050 is only given for 5% of the buildings considered if the

owners are willing to pay a premium compared with the reference system (see Fig-

ure 5). SFBs with a lower TAC than in the Gridref scenario are considered to have

economic potential. Additionally, SFBs with a maximum 50% higher TAC than in

the Gridref scenario are regarded as having an extended economic potential, as

building owners could be willing to pay a premium to be self-sufficient from

external infrastructures and supply the building energy demand on the basis of

renewable energy.2 The geospatial distribution of the mean TAC of all SFBs per

NUTS3 area for the Gridref and NoGridref scenarios can be found in Figures 5A

and 5B.

On average, the TAC in Europe amounts to 27 V/m2 in the Gridref scenario in

2020 and 2050. Due to the low electricity price for household customers in MT

(13.5 V-cents/kWh) and the small number of heating degree days, the costs of the

reference system are the lowest of all countries considered, with a mean value of

11 V/m2. The highest TAC arises in the northern countries of NO, FI, and SE due

to the high number of heating degree days (>3,500) in combination with an

above-average demand for electricity, followed by the countries with the highest

household electricity prices of 28–31 V-cents/kWh of DK, Belgium (BE), and DE.

The mean TAC for the self-sufficient building energy systems in Europe amount

to 175 V/m2 (2020) and 97 V/m2 (2050), respectively, or 84 V/m2 (2020) and

48 V/m2 (2050) if only buildings are considered that cover 100% of their demand
Joule 7, 1–26, November 15, 2023 9



Figure 5. Economic potential and cost of self-sufficient single-family buildings in Europe

(A) and (B) show the geospatial distribution of the mean total annual system cost (TAC) for all

NUTS3 regions for the Gridref (A) and the NoGridref (B) scenario. The mean percentage share of

additional cost for self-sufficient energy supply per NUTS3 region compared with the Gridref

scenario can be found in (C). In (D), the distributions of the additional cost for self-sufficiency by

country for every single SFB are shown for the NoGridref scenario in 2020 and 2050. Countries are

sorted by mean additional cost. The share of buildings per country with additional cost < 50% is

considered extended economic potential and is represented by stars (only shares > 0% are shown).
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without shedding load. The cost reduction by 2050 is due to the assumed technolog-

ical efficiency increases and cost degression effects. The system costs are particu-

larly low in the southern regions of Europe that feature high solar irradiation and

high PV rooftop potential (e.g., MT, IT, or CY). Although MT has the lowest average

costs among all of the countries considered, it has no (extended) economic potential

due to the low electricity purchasing price. CY, on the other hand, with slightly higher

costs on average, in combination with an electricity price of 22V-cents/kWh, has the

highest country-specific extended economic potential (81% in 2050). Despite the

fact that DE has inferior solar irradiation conditions to its southern neighbors, it

has a high extended economic potential, which is primarily driven by the relatively

high electricity purchasing cost of the reference system and high PV rooftop poten-

tial of the detached SFBs analyzed.

The sensitivity analysis (see section sensitivity analysis in the supplemental informa-

tion) shows that the extended economic potential presented is heavily dependent

on technological developments, especially for small-scale hydrogen systems.

Although a 20% cost increase of the hydrogen system in 2050 would lead to a

reduction of the extended economic potential to 2%, a 20% cost reduction would

lead to an increase of the potential to over 15% of the investigated SFBs.
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DISCUSSION

Our results show that a successful, cost-optimal PV-based self-sufficient energy sup-

ply system for buildings in central Europe will consist of a combination of short-term

battery storage and a long-term seasonal hydrogen storage system. These results are

in accordance with previous studies on individual energy self-sufficient residential

buildings.19,20,22,30,31 Furthermore, the possibility of self-sufficiency under sub-

optimal conditions in Finland30 can be confirmed by the results of our study. How-

ever, we show that in general, the techno-economic potential of self-sufficient build-

ings in Finland is low, even under the future techno-economic conditions of 2050. The

main reason for the low potential lies in the strong seasonal mismatch between solar

irradiation and heat demand, as well as the exclusion of auxiliary heating with, e.g., a

wooden stove in our work. Others19 have shown that for a typical building in Ger-

many, the costs of an energy self-sufficient system with H2-storage and Li-ion battery

systems compared with a grid-connected system are about twice as high in 2030,

which also corresponds to our results. Although further costs could be saved by

considering liquid organic hydrogen carriers (technology readiness level [TRL]:

5–735) and reversible solid oxide cell-based (TRL: 4–536,37) systems,19 these technol-

ogies are not considered in our work, as the current TRL is regarded as being too low

for large-scale deployment. Similar to the results reported in another recent article,20

our study confirms that the available roof area potential for solar systems is one of the

most important parameters when identifying potentially self-sufficient buildings.

Although we can show for individual buildings that our results are in line with those

of the existing case studies, no other study covers a similar level of scale, both at

the spatial dimension andwith regard to the complexity of the individual building en-

ergy system (see detailed literature review in supplemental information). By

combining spatial microsimulation, advanced spatial and temporal complexity

reduction techniques, building energy system optimization, and neural network-

based regression models, we are able to quantify the techno-economic potential

for self-sufficiency of SFBs between different regions of Europe. This allows for the

first time to identify regions or climate and economic framework conditions that

are less or especially suitable for self-sufficiency at the building level. A pronounced

potential for self-sufficient buildings is evident in regions with low seasonality (e.g.,

Spain, Italy, Portugal, and Cyprus) and high electricity prices (e.g., Germany).

A widespread dissemination of fully self-sufficient systems would lower the demand

for energy transport infrastructure. On the other hand, widespread dissemination of

only partially self-sufficient systems could alter the shape of residual electricity

demand to a U-shaped demand curve, limiting the need for base-load power plants

and flexibility of the electricity grid.18 In that case, network expenses would need to

be distributed across less energy, and therefore, network charges would keep

increasing, which in turn could lead to a self-reinforcing ‘‘death spiral,’’ in which

higher degrees of energy self-sufficiency become even more attractive.17,38–41 En-

ergy utilities and policymakers could intervene by introducing adjusted network tar-

iffs, with higher fixed charges (back-up fees) or adjusted compensation schemes

(feed-in tariff vs. net metering).23,38,42 This in turn could be economically favorable

for fully self-sufficient off-grid systems against partly self-sufficient systems. Conse-

quently, it is important to gain a deeper understanding of the underlying socio-

techno-economic dynamics of residential off-grid systems, especially given the

heterogeneity of the building stock43,44 (e.g., building type, age, size, and location)

and the people living in it45–47 (e.g., in terms of age, income, occupation, and atti-

tude). When designing future electricity tariffs, system-supportive behavior should

be rewarded through spatially and temporally dynamic price structures combined
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with fixed system integration costs, which reflect operational and fixed system costs

based on their origin.

Given the high marginal costs to achieve the final degrees of self-sufficiency, it fol-

lows that an energy self-sufficient building is not an optimal economic option as

long as no fixed grid charges are introduced (which is in line with previous studies24

on PV-battery systems). However, our results also show that even if a self-sufficient

system is not the most cost-optimal option, it can be cost-competitive compared

with grid-dependent supply systems, especially in 2050, in countries with low sea-

sonality, high solar irradiation, and relatively high electricity procurement costs.

Therefore, considering the findings from studies on non-monetary incentives,2,3

self-sufficient buildings could spread more quickly in regions where cost-competi-

tive operation is achieved, e.g., in Cyprus, Spain, Portugal, Italy, and Germany,

without necessarily being cost-optimal. There is already a growing concern from

Australian utilities and governments regarding increasing numbers of households

leaving the grid, as a self-sufficient energy supply becomes technically feasible

and cost-effective.3 To better understand the possible future diffusion of such sys-

tems, analyses from multidisciplinary perspectives are needed on the strength of

non-monetary drivers.2,3,48 Given that currently not much is known about house-

holds living off-grid, Lovell andWatson3 conceptualize them as an instance of scarce

data that describe the opposite to the concept of big data and serve as a barrier to

effective governance. Previous research provides evidence for high grid connection

costs being the main financial motivation for people to live off-grid3 and that grid

limits can posemajor constraints to the future deployment of local energy systems.49

Therefore, local grid access restrictions in the form of high grid connection costs or

limited options for the grid integration of decentralized energy systems could in-

crease the motivation for grid defection and should be considered by policymakers

and in future research. Consequently, regionally differentiated electricity tariffs and

system integration costs should be designed in such a way that the flexibility poten-

tial of self-sufficient buildings is available to the higher-level energy system, espe-

cially in regions where investments in alternative flexibility options such as smart

grids or central storage systems can be replaced.

In larger SFBs with more residents, economies of scale and temporal smoothing pro-

mote economic efficiency. Under German economic framework conditions, e.g.,

scaling effects through the aggregation of over 560 households must be achieved

to operate an economically self-sufficient energy system.14 Other studies analyze

and discuss the effects of aggregation across different scales.13–16 Research from

the macroeconomic perspective on the European electricity system indicates that

continent-spanning supply systems result in minimal overall costs by utilizing the

best renewable resources and balancing local supply fluctuations with a large

grid.16,50,51 However, in contrast to large-scale electricity systems, decentralized

residential energy systems are more integrated, both vertically from supply to

demand and horizontally between energy vectors such as electricity and heat.13

As heat is typically not transported over large distances and most building rooftops

provide enough space for PV systems to cover 100% of building energy demand

(>53% of SFBs in 2020), self-sufficient residential energy systems could avoid trans-

mission network expansion and centralized generation capacity.13 Even if econo-

mies of scale make larger energy systems economically advantageous, the

complexity of energy system planning grows with increasing scale.52 Municipal

energy system concepts, for example, are difficult to transfer due to their high diver-

sity in terms of renewable potential, existing infrastructure, and energy demand

characteristics.53,54 Furthermore, resources are needed to integrate and align the
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various stakeholder interests of local authorities, citizens, utilities, and companies

during the planning and implementation process.55 Residential building energy sys-

tems, on the other hand, occur in large quantities and are less complex with regard

to involved stakeholders and system boundaries. At the same time, the economies

of scale of renewable-based supply side technologies are less pronounced. On this

basis, companies develop small-scale ‘‘one-size-fits-all’’ solutions and expect to

bring down system costs by scaling up production.56,57

In our study, we assumed an interest rate of 4%/a for all households, whereas other

studies have employed country-specific weighted average costs of capital of 3.5%–

12% for evaluating investments.5 However, the use of country-specific weighted

average costs of capital is more common for the evaluation of corporate-level invest-

ments. Due to the large difference in the timing of the cash flows of a self-sufficient

system (high up-front investment) and a grid-connected energy system (constant

payments), the discount rate has a major impact on the economic assessment.

Higher discount rates (up to 12%, e.g., in eastern Europe) would therefore reduce

the profitability of self-sufficient buildings. Other major sources of uncertainty are

future price developments of small-scale, low-carbon technologies8,58,59 and energy

carriers, as well as the impact of behavioral change on the dimensioning of self-suf-

ficient energy systems in residential buildings. Although diurnal shifts in electricity

demand only have a minor impact on the dimensioning of self-sufficient buildings,60

seasonal behavioral adjustments, such as using dishwashers as luxury items only in

the summer,3 could lead to significant cost reductions. By considering innovative

construction concepts in conjunction with integrated energy system design and

including feedback systems that sensitize users in critical energy system situations

with respect to energy demand, further cost-saving potentials could be tapped,

which would increase the potential for self-sufficient buildings. Although our study

uses 30 years of historical weather data to ensure a robust system design, future

studies could analyze the impact of climate change on optimal residential energy

systems, as milder winters and warmer summers and an increase in extreme weather

conditions will impact the dimensioning of weather-robust self-sufficient sys-

tems.61–63 Furthermore, we use archetypal buildings for rooftop potential estima-

tions in combination with basic assumptions with regard to azimuth, tilt, and utiliza-

tion factors for solar systems. Future studies could includemore detailed procedures

to account for physical obstructions at the individual building level (e.g., with

satellite image-based analyses5).

This study sheds light on the technical and economic potential of fully energy self-

sufficient residential buildings in 2020 and 2050. Of the 41 million European SFBs

considered here, 53% or 75% have the technical potential and 0% or 5% have an

extended economic potential for energy self-sufficiency between 2020 and 2050,

respectively. Through the findings provided in our study and in the face of surging

energy retail prices,64,65 energy supply insecurity,66 the trend of local energy sourc-

ing,8,39 and technological advancement,8,11,12,58,59 these self-sufficient building

configurations could become more popular in the future. Although we demonstrate

the technological and economic feasibility of this objective from the perspective of

SFB owners, future studies should examine system impacts and transformations

considering the increased dissemination of self-sufficient SFBs. The daily demand

shape of household electricity demand and electricity prices on the day-ahead mar-

ket are highly correlated (R � 0.7; see example for Germany in Figure S27). There-

fore, a less pronounced household demand profile through the large-scale dissem-

ination of self-sufficient SFBs would lead to a more efficient electricity market by

reducing the demand for peak load power plants. From the point of view of a grid
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Figure 6. Overview of the framework developed in this study to derive the potential of self-

sufficient residential buildings in the EU-27, United Kingdom, and Norway

In a first step, a database was created by collecting spatially resolved information of building stock

characteristics and energy system-relevant attributes. Further on, spatial microsimulation was used

to integrate the attributes into a synthetic building stock. In a third step, cluster-representative

buildings were derived using a k-means clustering approach. Subsequently, weather-robust energy

systems for the representative buildings were calculated with a high-performance cluster. Finally,

the results of the energy system optimization were transferred to the entire synthetic European

building stock using a surrogate model to estimate key performance indicators (KPIs).
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operator, partially self-sufficient SFBs with a low DSS interact much more strongly

with the electricity grid than 100% grid-dependent or self-sufficient SFBs under cur-

rent regulation schemes.14 Policymakers should therefore foster grid-friendly

behavior through, for example, dynamic electricity price tariffs and reward SFBs

for the provision of system services.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed toward and will

be fulfilled by the lead contact, Max Kleinebrahm (max.kleinebrahm@kit.edu).

Materials availability

No materials were used in this study.

Data and code availability

Data will be provided on request.

Methodology and data

First, we describe the spatially resolved building stock information as well as the use

of different data sources in a spatial microsimulation to create a synthetic European

SFB stock (see Figure 6). Based on this building stock, a cluster approach is em-

ployed to reduce the problem’s complexity and identify representative SFBs. A

multistep optimization model is developed to derive the techno-economically

optimal and weather-robust energy system design and dispatch. Finally, a regres-

sion model is used as a surrogate for the energy system optimization model to esti-

mate key parameters, e.g., the TAC or levelized cost of energy (LCOE) for all SFBs in

the European synthetic building stock.

Synthetic spatially resolved building stock

For the analysis of the energy systems of SFBs in Europe, spatially resolved data are

needed, including the geometry and thermal properties of the building envelope,
14 Joule 7, 1–26, November 15, 2023
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Table 2. Overview of the spatially resolved attributes required for the building energy system analysis in this study, their degree of spatial

resolution, and their data source

Attributes (set or cardinality) Data source Dimension Spatial resolution

Building type (SFB, MFB), building age (9),
household size (6), building area (9)

European Statistical System,67

Entranze,68 and Enerdata69
building, household NUTS3, NUTS0

Building ownership (2) European Statistical System67 building NUTS2

Degree of urbanization (3) Eurostat71 physical LAU

Building type (detached, semi-detached;
degree of urbanization)

European Statistical System,67,
Eurostat,70 and Eurostat71

building NUTS0

Building U-values (�building age, type) EPISCOPE44 and European Commision72 building NUTS0

Building geometry (building age/type) EPISCOPE44 building NUTS0

Electricity demand Enerdata69 household NUTS0

Domestic hot water demand Enerdata69 household NUTS0

Energy carrier prices, price level indices,
value added tax

Eurostat,64 Eurostat,65 European Comission,74

and European Comission75
economic NUTS0

CO2-intensity electricity mix European Comission76 environmental NUTS0

Temperature, irradiation, wind speed,
pressure (historical data from 1991 to 2020)

Copernicus Climate Change Service73 physical 31 3 31 km

The information in parentheses after the attributes indicates the number of categories or the type of further attributes for which the attribute is differentiated.
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domestic hot water and electrical appliance demand of households, and the phys-

ical, economic, and environmental framework conditions (see Table 2). The various

attributes are available in different qualities concerning their disaggregation form.

As the primary data sources are spatially resolved in NUTS3 units, data handling

and analyses are conducted on this level.

One-dimensional distributions for SFBs are provided for building age, building

living area, and household size.67 Information on living area distributions is some-

times incomplete for entire countries. By using the average living area for SFBs

from alternative sources at the NUTS0 level,68,69 similar countries are identified,

and incomplete values estimated. The Eurostat data67 differentiates the building

type into single- and multi-family buildings at the NUTS3 level. To further differen-

tiate SFBs into freestanding and semi-detached buildings, information on the

NUTS0 level regarding the shares of detached and semi-detached buildings for

areas with different degrees of urbanization70 are combined with spatial information

about the degree of urbanization at the local administrative unit (LAU) level.71 The

degree of urbanization is first aggregated from the LAU to the NUTS3 levels using

the respective LAU population as a weighting factor. Subsequently, NUTS3-specific

degrees of urbanization shares are derived, and the proportions of detached and

semi-detached buildings estimated.

Building age and type-specific information about the U-values of building compo-

nents and the buildings’ geometries were taken from the Tabula building database44

and the EU buildings database.72 Missing geometric information was estimated by

using information from the neighboring countries. Household-specific information

regarding the average yearly demand for domestic hot water and electricity and

the percentage share for lighting are available at the NUTS0 level.69 Historical

weather data with a spatial resolution of about 31 3 31 km73 were used to derive

local weather information which was assigned to the respective NUTS3 levels using

the area-weighted centroid.

In order to overcome the downside of spatially aggregated one-dimensional data,

spatial microsimulation was used to synthesize a representative European building

stock (see Figure 7). For this, household data from the socio-economic panel77
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Figure 7. Schematic procedure for deriving the synthetic population
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(SOEP) was used as individual-level microdata to generate synthetic buildings for

each of the aggregated one-dimensional NUTS3-level target data. This synthetic

building stock provides spatial microdata (i.e., empirically based combinations of

the one-dimensional data with respect to household size, living area, and construc-

tion year of the building) while preserving the spatially aggregated statistics for each

NUTS3 unit.

Due to the lack of access to Europe-wide SOEP data, findings from the German

SOEP were used to approximate the synthetic building stock. Although this work-

around was related to the strong assumption of similar households’ and buildings’

combinatorial relations across SFBs in the analyzed countries, it was the sole option

due to the data available for this study. The individual-level microdata used features

are the relations of household size, living area, building age, ownership status, and

building type. For the spatial microsimulation, iterative proportional fitting was per-

formed in R with the IPFP Package.78 The simulation generated synthetic building

stocks for each European NUTS3 region and comprised�78 million buildings, which

were further enriched via relational joins and other location-specific data.

The NUTS3-level microdata are further combined with the geographic information

described in Table 2. In order to determine heat gains from solar irradiation as

well as potentials for PV and solar thermal systems based on the geometric informa-

tion about the buildings in downstream steps, the orientation, tilt, and available

areas for rooftop systems are needed for each SFB. The geometry of the SFB is

derived by scaling the archetype buildings of the Tabula building typology with

the respective living areas of the buildings of the synthetic building stock. The esti-

mation of the tilt angle and orientation of the buildings is based on Mainzer et al.79

and Kotzur.80 The roof azimuth angles are assumed to be evenly distributed (0�–
360�). A tilted roof is divided into two opposing roof areas, and the tilt is estimated

using a normal distribution with a mean of 37� and a standard deviation of 5�. For flat
roofs, it is assumed that the rooftop solar installations are oriented toward the south

with a tilt of 30�. For tilted and flat roofs, utilization factors for rooftop systems are

assumed to be 75% and 28%, respectively.80,81 Household electricity and domestic

hot water demand (del
hh;d

dhw
hh ) is calculated based on country-specific average house-

hold consumption (d
elavg
ctr ;d

dhwavg

ctr ) and household size (Navg
ctr ) using a linear relationship

as a function of the household size (see Equations 2 and 3).82–85 For electricity de-

mand, a household size independent share is taken into account.
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Figure 8. Visualization of the procedure for determining representative single-family buildings

for energy system optimization

The European heat maps on the left exemplify the geospatial distribution (averaged at the NUTS3

level) of the building features (top layer: global horizontal irradiation), which are used as inputs for

the cluster approach. The map on the right shows the locations of seven (out of 4,000) cluster-

representative buildings and the locations and frequency (�circle size) of their associated cluster

members. The size of the circles represents the number of cluster members located in the

respective NUTS3 region.
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del
hh =

d
elavg
ctr�

Navg
ctr +1

�$ðNhh + 1Þ (Equation 2)
ddhw
hh =

d
dhwavg
ctr

Navg
ctr

$Nhh (Equation 3)

Archetype building derivation

Before deriving the representative buildings, the dataset of 77.6 million SFBs was

first reduced by excluding the attached SFBs (semi-detached and terraced) due to

inconsistencies in the definitions regarding type of buildings in the different data-

sets.44,67,77 Furthermore, SFBs that are occupied by tenants are excluded (similar

to Gorman et al.24), as the divergence of homeowner and occupant leads to

additional complexity in the design process for residential energy systems (e.g.,

via the challenges posed by the principal-agent dilemma86). Thus, 41.6 million de-

tached SFBs were considered in this study.

Due to computational restrictions and time constraints, it was not practicable to

calculate optimal energy systems for 41.6 million SFBs.87 Therefore, representative

archetype buildings were determined, taking into account the features relevant to

the layout of the energy systems (see Figure 8). For self-sufficient SFBs, these

features comprise building living area, building average U value (component area-

weighted), building orientation, rooftop tilt, rooftop potential for solar systems,

electricity demand, domestic hot water demand, temperature, heating and cooling

degree days, GHI, and wind speed. For the weather-dependent features, average

values were calculated based on the years 1991–2020.73 The computation of heating

and cooling degree days is based on Spinoni et al.62 As the features are all contin-

uous, the k-means clustering method was used to identify representative archetype

buildings due to the feasible time complexity O(NKI) (only linear increases in time

with population size N, number of cluster centers K, and number of iterations I),

and high computing efficiency.88 Another advantage of the k-means algorithm is

that the number of cluster centers must be specified in advance, which in the case

of this study was performed with respect to the available computing resources for

the energy system optimization model. Due to the higher sensitivity of the k-means

algorithm to outliers, these were removed at a 2% percentile before clustering, and

the features were normalized to between 0 and 1.53 Depending on the computing
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Figure 9. Structural overview of the integrated building simulation and energy system

optimization
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capacity available, a micro-synthetic building stock was used, as the space

complexity of the k-means algorithm increases linearly with the population size N

(space complexity: O(N(F + K)); F describes the number of features). The micro-

building stock was generated by means of random sampling from the original syn-

thetic building stock. After identifying the cluster centroids, for each centroid, the

closest SFB in the synthetic building stock was determined. For those SFBs, energy

system analyses were carried out (see the next section).
Residential energy system optimization

For the determination of the techno-economically optimal design of the energy sys-

tems for the representative SFBs, an integrated building simulation and energy sys-

tem optimization approach is developed (see Figure 9).

Electricity and thermal demand simulation

To ensure that energy demand and supply are balanced in every hour of the year,

time-resolved energy demand profiles of electrical devices and domestic hot water

are required as inputs for the energy system optimization. The yearly simulation of

electrical devices and domestic hot water demand is based on a stochastic model,

which uses first-order Markov chains for the simulation of household occupancy

behavior on the basis of which household appliance starts are simulated using

start-up probabilities.89–91 The Markov chains are parameterized on the basis of

German Time Use Survey data.92 In addition to household size, the local weather

conditions, country-specific household appliance equipment,93 the annual elec-

tricity and domestic hot water demand, on the basis of which the start-up probabil-

ities of the devices are calibrated, are used as inputs for the simulation.

The thermal building simulation was based on a 5R1C-model from EN ISO 13790,94

which is integrated into the mixed-integer linear energy system optimization model

(MILP), analogous to Kotzur et al.95 and Schütz et al.96 The building simulation uses

the internal heat gains from the household simulation (metabolic and device-specific

gains), local weather conditions, as well as the thermal properties of the building

envelope as inputs.44,72 By integrating the thermal building model into the energy

system optimization, discrete retrofit options can be considered while taking into

account investment options for supply-side technologies. Discrete retrofit options

for building components such as the walls, roofs, and floors were derived from the
18 Joule 7, 1–26, November 15, 2023



Figure 10. Energy system components considered in the optimization model

Demand side management options60 and electricity demand for electric vehicles are included in

the model but not analyzed in this study.

F/RT-PV, free-standing/rooftop photovoltaic; SWT, small wind turbine; F/RT-ST, free-standing/

rooftop solar thermal; mCHP, micro-combined heat and power; BS, battery storage; HP, heat

pump; AC, air conditioner; HR, heating rod; EC, electrolyzer; FC, fuel cell; H2-S, hydrogen storage;

HS, heat storage; EV, electric vehicle; DSM, demand-side management; Del, electrical demand;

Dth, thermal demand; th. dist, thermal distribution; LT, low temperature.
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Tabula building typology,44 which provides information about U-values for ‘‘usual

retrofit’’ and ‘‘advanced retrofit’’ states. The associated retrofit costs were calculated

according to Equation 4 based on the component-specific surface area Acomp,

U-values urscomp, component prices pcomp, and an assumed heat conductivity l of

0.035 W/(mK) according to Hinz.97 The energy-related component-specific prices

were taken from Hinz97 and were adjusted with regard to the country-specific con-

struction price index Ictr .98 The window retrofit options were taken from Kotzur,80

who defines two states with respect to the solar and thermal transmittance of the

different window types.

crmcomp =

  
1

ursðrmÞ
comp

� 1

ursðexistingÞ
comp

!
$l$pvar

comp + pfix
comp

!
$Acomp$

Ictr

IDE
(Equation 4)
comp ˛ fwall; roof; floorg;crm˛ fusual; advancedg

Supply and conversion technologies

For the simulation of the thermal and electrical energy supply profiles of solar ther-

mal and PV plants, solar irradiation simulations were first carried out with PV-Lib99 on

the basis of which the energy supply profiles for the different roof orientations were

calculated.100 Furthermore, a small wind turbine was considered in the energy sys-

tem optimization. The normalized electricity supply profile of the small wind turbine,

with a height of 12m, was calculated analogously to the procedure presented in Klei-

nebrahm et al.60 using local wind speed and an averaged power curve profile, which

was based on small wind turbines certified by the Small Wind Certification Council

within a rated power range of 1–6 kW. An overview of all modeled supply and de-

mand-side technologies considered in the energy system optimization model can

be seen in Figure 10.
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Although conversion technologies such as inverters and heating rods are repre-

sented with conversion efficiencies that are constant over time, the time step vari-

able coefficients of performance and energy efficiency ratios were determined for

the heat pump and air conditioner. The coefficient of performance of the heat

pump was calculated analogously to the procedure presented in Ruhnau et al.101

considering building age-specific heat sink temperatures, in accordance with Kot-

zur.80 By investing in a new thermal distribution system, lower heat sink tempera-

tures and therefore better coefficients of performance could be reached. Ambient

heat or geothermal heat at a depth of 2 m below the surface can be used as a

heat source for the heat pump. The energy efficiency ratio of the air conditioner

was calculated by using the empirically derived regression model (model no. 3) in

Meissner et al.,102 assuming a dry bulb set temperature of 26�C.

Energy can be stored in the form of warm water in a hot water storage system, in

chemical form in a Li-ion battery, or in a pressurized hydrogen storage tank. The

power and capacity components of the Li-ion battery can be independently scaled.

Hydrogen can be generated from electricity using a polymer electrolyte membrane

(PEM) electrolyzer and subsequently compressed to 160 bar assuming an H2,LHV/po-

wer ratio of 22.97.19 By using a PEM fuel cell, hydrogen can be converted back into

electricity with the waste heat released as a by-product. The technology parameters

and price developments from 2020 to 2050 of the technologies considered in this

work can be found in Table S6.

Optimization objective

The objective of the energy system optimization is to determine a cost-minimal sys-

tem for providing thermal living comfort as well as the demand for domestic hot

water and electrical energy for household appliances. For this purpose, the TAC

of the energy system is minimized (see Equations 5, 6, and 7), with the optimization

variables presented in bold):

minTAC =
X

i˛ Inv

c init
i $annðliÞ + co&m

i +
X

e˛ ec

X

t ˛T

cece;t (Equation 5)
c init
i = capexfix$xbi

i + capexvar$xsize
i ci˛ Inv (Equation 6)
cece;t = ximport
e;t $pimport

e � xexport
e;t $pexport

e ce˛ ec;ct ˛T (Equation 7)

The TAC comprises the annualized initial costs of the investments in the various tech-

nology and retrofit options ciniti , the annual costs for operation and maintenance

co&mi , as well as the costs and revenues of the energy carrier flows cece;t . The annuity

factor is calculated using the technology lifetime li and a real interest rate of 4%/a.

To take economies of scale into account, size-independent capexfix, and size-depen-

dent capexvar cost components were considered for the technology investment

options by using a binary xbii and a continuous xsizei decision variable. Prices for

energy carrier exports p
export
e and imports p

import
e are calculated for every time step

t in T of the year (x
export
e;t , x

import
e;t ). However, in the case of full self-sufficiency, energy

carrier imports and exports are excluded.

Complexity reduction and robust design

The number of representative SFBs and the computational complexity of the

described mixed-integer linear optimization problem leads to long model runtimes

due to multiple time-coupling constraints (battery, H2-storage, hot water storage,

thermal capacity of the SFBs) and binary decision variables. Therefore, time series

aggregation is used as a complexity reduction measure to determine the energy
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system design of the SFB with reasonable time and accuracy.96,103 The optimal

design of the energy system is subject to a sequential optimization procedure that

ensures that the final configuration meets the weather conditions of 30 weather

years (1991–2020). Based on the initially chosen most critical weather year (scenarios

1–3: maximum amount of heating degree days; scenarios 6–8: minimal solar irradi-

ation), the composition of energy system components was determined using an

aggregated time series structure, while still maintaining energy storage variables

over the entire year.103 Typical days were identified with K-medoids clustering

based on the hourly electricity demand, domestic hot water demand, GHI, and

the temperature time series, using the time series aggregation method presented

in Kotzur et al.103,104 In a second optimization step, the binary decision variable

xbii was predetermined and the energy system components scaled xsizei;n = 1 consid-

ering the full time series over the entire year.105 Subsequently, the energy system

was optimized for each of the remaining 29 weather years in descending order of

heating degree days (n = 2, ., 30). The technology scaling decision variable

xsizei;n� 1 from the previous optimization step was used as a lower bound in the subse-

quent optimization step n. The resulting energy system design xsizei;n = 30 ensures that

demand will be met in all 30 weather years. Further information on optimal trade-offs

between calculation time and error can be found in the supplemental information.

For the determination of the technical potential for self-sufficiency the optimization

model was set up with themost critical weather year and hourly resolution over 8,760

time steps for the NoGridref(-el) scenario without the possibility of shedding load.

Instead of solving the optimization problem, it was only checked for solvability, as

this is the necessary indication for the technical feasibility of self-sufficiency. For

the calculation of the optimized energy systems, the CPLEX solver was used with a

Linux-based high-performance cluster with up to 180 GB RAM and 40 cores at 2.1

GHz per node. Up to 50 nodes in parallel were used for the model runs.
Surrogate model

To estimate the potential for self-sufficient energy supply systems for all SFBs spec-

ified in the synthetic building stock, a regressionmodel was trained as a surrogate for

the energy system optimization model. The objective of the surrogate model was to

approximate the function between the aggregated energy system optimization

input and key output parameters. The derived model is used to transfer the results

of the energy system optimizations to the entire synthetic building stock while using

significantly less computational power compared with optimizing the energy system

of each individual building. The living area normalized TAC and LCOE were used as

the dependent variables. The LCOE was calculated according to Equation 8.

LCOE =
TAC

TAE
(Equation 8)
TAE =
1

N

XN

n = 1

XT

t = 1

Del
n;t +

Dth
n;t

COPn;t
+

Dc
n;t

EERn;t
(Equation 9)

The mean total annual electricity demand over the considered weather years TAE of

the SFB in the existing state (no retrofit measures) was used as a reference, assuming

the heating and cooling demands (Dth;Dc ) were covered by a heat pump and an air

conditioner (see Equation 9).

Up to 12 input features were used as input parameters for the regression model, de-

pending on the scenario considered. These features comprise building living area,

average building U value, building orientation, rooftop tilt, rooftop potential for so-

lar systems, household electricity price, yearly electricity demand, yearly domestic
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hot water demand, as well as 30-year average temperature, heating and cooling

degree days, GHI, and wind speed.

Classification of the technical potential

Over 4,000 cluster-representative SFBs were identified and analyzed for the analysis

presented in this article. For the calculation of the technical potential for energy self-

sufficiency, a feedforward neural network was used as a classificationmodel to differ-

entiate all SFBs of the synthetic building stock into technically suitable and non-suit-

able self-sufficient residential buildings. Other classification models like decision

trees, support vector machines, and ensemble classifiers were tried as well but

achieved worse results. The performance metrics of the used two-layer neural net-

works used are shown in Figure S15A for different dataset sizes. The trade-off

between computation time and model accuracy was derived on the basis of the

diminishing marginal utility with increasing sample size. For each year (2020,

2050), a separate classification model was trained. The neural networks used to

generate the presented results are trained on 4,000 SFB samples and achieved an

accuracy of 89% and 94% for the years 2020 and 2050 (precision: 91%/95%, recall:

91%/97%).

Regression of system costs

Based on the results of the TAC of the cluster-representative SFBs for the NoGridref

and Gridref scenarios, neural networks were trained to estimate the TAC for both sys-

tem configurations for the years 2020 and 2050 for all SFBs of the synthetic building

stock. The performance metrics of the training process can be found in

Figures S15B–S15D for multiple dataset sizes and neural network configurations.

The results show that the different neural networks benefit from increasing dataset

size while the marginal utility decreases. On the basis of the time aggregated fea-

tures, a large part of the variance of the TAC can be explained in both scenarios

(R2� 0.95). However, the achievedmean percentage error for the NoGridref scenario

(2020/2050: 12%/13%) compared with the reference system (2020/2050: 4%) is

significantly higher due to the more complex energy system design process of a

self-sufficient residential energy system, which is highly dependent on the local

weather conditions.
Methodological limitations and possible extensions

Inherent limitations of the underlying methodology include the assumption of per-

fect foresight and the sequential structure for the derivation of the robust energy

system design. Perfect foresight allows the energy system model to schedule the

operation of dispatchable technologies without considering uncertainties in, e.g.,

future energy demand or renewable supply. This could lead to unrealistic good

solutions. On the other hand, the sequential process to reach a weather-robust

energy system design leads to energy system costs probably exceeding those of

an integrated 30-year energy system optimization. Through further complexity

reduction measures, e.g., the integration of typical periods in addition to typical

days, a time series aggregation over a critical number of weather years could

make it possible to solve the optimization problem in closed form.106 Although

our study compares different target states for residential building energy systems,

future work could use a gray-field approach and consider the initial retrofit state

and existing technologies within a transformation process. Furthermore, the data-

base for the generation of the synthetic residential building stock should be contin-

uously adapted and expanded. Currently, e.g., only German time use survey data

are employed for the occupancy simulation, which forms the basis for the electrical

and thermal demand simulation. The results of this study could be transferred to
22 Joule 7, 1–26, November 15, 2023
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regions with similar techno-economic framework conditions using the trained surro-

gate model.
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5. Bódis, K., Kougias, I., Jäger-Waldau, A.,
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C., Stocks, M., Blakers, A., Kaizuka, I., et al.
(2021). Solar photovoltaics is ready to power a
sustainable future. Joule 5, 1041–1056.
https://doi.org/10.1016/j.joule.2021.03.005.

9. Xiao, M., Junne, T., Haas, J., and Klein, M.
(2021). Plummeting costs of renewables - are
energy scenarios lagging? Energy Strategy
Rev. 35, 100636. https://doi.org/10.1016/j.esr.
2021.100636.

10. Few, S., Schmidt, O., Offer, G.J., Brandon, N.,
Nelson, J., and Gambhir, A. (2018).
Prospective improvements in cost and cycle
life of off-grid lithium-ion battery packs: an
analysis informed by expert elicitations.
Energy Policy 114, 578–590. https://doi.org/
10.1016/j.enpol.2017.12.033.

11. Schmidt, O., Hawkes, A., Gambhir, A., and
Staffell, I. (2017). The future cost of electrical
energy storage based on experience rates.
Nat. Energy 2, 17110. https://doi.org/10.
1038/nenergy.2017.110.
Joule 7, 1–26, November 15, 2023 23

https://doi.org/10.1016/j.joule.2023.09.012
https://doi.org/10.1016/j.joule.2023.09.012
https://rmi.org/insight/the-economics-of-grid-defection-when-and-where-distributed-solar-generation-plus-storage-competes-with-traditional-utility-service/
https://rmi.org/insight/the-economics-of-grid-defection-when-and-where-distributed-solar-generation-plus-storage-competes-with-traditional-utility-service/
https://rmi.org/insight/the-economics-of-grid-defection-when-and-where-distributed-solar-generation-plus-storage-competes-with-traditional-utility-service/
https://rmi.org/insight/the-economics-of-grid-defection-when-and-where-distributed-solar-generation-plus-storage-competes-with-traditional-utility-service/
https://rmi.org/insight/the-economics-of-grid-defection-when-and-where-distributed-solar-generation-plus-storage-competes-with-traditional-utility-service/
https://doi.org/10.1016/j.enpol.2018.02.026
https://doi.org/10.1016/j.enpol.2019.02.014
https://doi.org/10.1016/j.enpol.2019.02.014
https://ec.europa.eu/commission/presscorner/detail/en/IP_22_3131
https://ec.europa.eu/commission/presscorner/detail/en/IP_22_3131
https://doi.org/10.1016/j.rser.2019.109309
https://doi.org/10.1016/j.rser.2019.109309
https://doi.org/10.1002/pip.1254
https://doi.org/10.1002/pip.1254
https://doi.org/10.1016/j.enpol.2017.04.005
https://doi.org/10.1016/j.enpol.2017.04.005
https://doi.org/10.1016/j.joule.2021.03.005
https://doi.org/10.1016/j.esr.2021.100636
https://doi.org/10.1016/j.esr.2021.100636
https://doi.org/10.1016/j.enpol.2017.12.033
https://doi.org/10.1016/j.enpol.2017.12.033
https://doi.org/10.1038/nenergy.2017.110
https://doi.org/10.1038/nenergy.2017.110


ll

Please cite this article in press as: Kleinebrahm et al., Two million European single-family homes could abandon the grid by 2050, Joule (2023),
https://doi.org/10.1016/j.joule.2023.09.012

Article
12. Schmidt, O., Melchior, S., Hawkes, A., and
Staffell, I. (2019). Projecting the future
levelized cost of electricity storage
technologies. Joule 3, 81–100. https://doi.
org/10.1016/j.joule.2018.12.008.

13. McKenna, R. (2018). The double-edged sword
of decentralized energy autonomy. Energy
Policy 113, 747–750. https://doi.org/10.1016/
j.enpol.2017.11.033.

14. McKenna, R., Merkel, E., and Fichtner, W.
(2017). Energy autonomy in residential
buildings: a techno-economic model-based
analysis of the scale effects. Appl. Energy 189,
800–815. https://doi.org/10.1016/j.apenergy.
2016.03.062.
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Korpås, M., Ånestad, A., and Sartori, I. (2016).
Methodology for optimal energy system
design of Zero Energy Buildings using mixed-
integer linear programming. Energy Build.
127, 194–205. https://doi.org/10.1016/j.
enbuild.2016.05.039.

101. Ruhnau, O., Hirth, L., and Praktiknjo, A. (2019).
Time series of heat demand and heat pump
efficiency for energy system modeling. Sci.
Data 6, 189. https://doi.org/10.1038/s41597-
019-0199-y.

102. Meissner, J.W., Abadie, M.O., Moura, L.M.,
Mendonça, K.C., and Mendes, N. (2014).
Performance curves of room air conditioners
for building energy simulation tools. Appl.
Energy 129, 243–252. https://doi.org/10.
1016/j.apenergy.2014.04.094.

103. Kotzur, L., Markewitz, P., Robinius, M., and
Stolten, D. (2018). Time series aggregation
for energy system design: modeling
seasonal storage. Appl. Energy 213,
123–135. https://doi.org/10.1016/j.apenergy.
2018.01.023.

104. Kotzur, L., Markewitz, P., Robinius, M., and
Stolten, D. (2018). Impact of different time
series aggregation methods on optimal
energy system design. Renew. Energy 117,
474–487. https://doi.org/10.1016/j.renene.
2017.10.017.
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Supplemental experimental procedures. 

S1. Supplemental literature review 

S1.1. Real world examples of self-sufficient buildings 

The following presents applications of energy self-sufficient residential 
buildings and building energy system concepts. An overview of the 
analyzed self-sufficient residential buildings, building concepts, and 
energy system concepts as well as technical parameters can be found in 
Table S1. One of the first prominent self-sufficient residential building 
examples is the single-family “Solar House Freiburg”, a demonstration 
and research project tested in Germany from 1992 to 1996 

1. Electricity 
was provided by a photovoltaic (PV) system and could be stored in a 
lead-acid battery to compensate diurnal demand fluctuations and in the 
form of hydrogen for seasonal storage. Besides reconverting hydrogen to 
electricity and heat in a fuel cell, the hydrogen was used directly for 
cooking. Another prominent example is the “first energy self-sufficient 
multi-family house” in Switzerland, which has been inhabited by nine 
households since 2016 and can be seen on the left-hand side in Figure 
S1 

2. The roof and facade are used to produce electricity through 
integrated PV which is stored by a lithium iron phosphate battery and a 
hydrogen system with polymer electrolyte membrane electrolyzer, fuel 
cell, and 30 bar pressurized hydrogen tank (without additional 
compression after the electrolysis). Heat supply is ensured by two 
underground heat storages and a heat pump, which uses geothermal 
probes, the thermal storages and the outside air as heat source. By using 
efficient demand-side technologies (LED lighting, heat exchanger 
shower, etc.) and a bonus-malus system in which households are 
informed about their demand behavior, electrical demand is halved 
compared to the national average.  

 
Figure S1. Two examples of applications of self-sufficient 
residential buildings. (1) The “first energy self-sufficient multi-family 
building of the world” in Brütten/Swiss 

3 (image source: Umwelt Arena 
Schweiz). (2) A self-sufficient single-family building in Freiberg/Germany 
(image source: Sonnenhaus-Institut

4, Timo Leukefeld). 

The companies Home Power Solutions in Germany and Nilsson Energy 
in Sweden sell hybrid long-term storage systems for residential buildings 

5, 

6. In Vårgårda, Sweden, a Nilsson Energy system supplies 30 apartments 
independently of the power grid

7. In 2021, Home Power Solutions began 
series production of the PICEA product, which stores PV electricity in 
hydrogen tanks and a lead-gel battery and uses the excess heat to cover 
the thermal building demand

5. The product requires 1.5 m² of space for 
fuel cell, charging controller, battery, and electrolyzer. The current price 
depends on the individual design and spans between 70,000 and 



 
100,000 euros 

5, 8. 80 PICEA products are already installed in 2022 and 
another 300 are ordered in Germany

8. 
 
The “Ökohaus Markert” in Carton Wallis, Switzerland, is an example for 
a self-sufficient residential building without a hydrogen system and has 
been inhabited since 2012. Freestanding and facade integrated PV is 
combined with a small wind turbine and battery to cover the electricity 
demand throughout the year. Heat is provided by solar thermal energy 
and a heat storage, whereby a wood fired oven is used to cover peak 
demand

9. The “VitalSonnenhausPro” and the two self-sufficient single-
family houses in Freiberg (see right-hand side Figure S1) optimize the 
use of the photovoltaic and solar thermal potential in combination with a 
large building-integrated heat storage system. In Freiberg, a large battery 
ensures the coverage of the electrical demand in winter. Heat can be 
generated via a wood stove in peak times. A smaller battery is installed 
in the “VitalSonnenhausPro” combined with an additional pellet-based 
Stirling engine for variable electricity and heat generation10, 11. 
 
Table S1. Overview of applications of self-sufficient residential buildings, building concepts and 
energy system concepts. 
PV: photovoltaic; SWT: small wind turbine; ST: solar thermal plant; BS: battery storage; FC: fuel cell; EL: 
electrolyzer; H2-S: hydrogen storage; HS: heat storage; HP: heat pump; BIO: biomass; DSM: demand side 
management; Dth: thermal demand; Del: electricity demand; Ctry.: country. 

Real-world  applications 

Technologies Yeara Ctry. 

PV SWT ST BS FC EL H2-S HS HP BIO DSM Dth Del   

[kWp] [kWp] [m²] [kWhel] [kWel] [kWel] [MWh] [m³] [kWth] [kWth/el] [-] [MWh/a ][MWh/a] 

Solar house

1 4   20 1 2 1.5     0.15 1.4 1992 DE 

Ökohaus Markert

9 4 1 17.5 52    2.5  ✓/0  2.7 4.7² 2012 CH 

Two SFH Freiberg10 8.4  46 58    9.1  25/0  6.7 2 2014 DE 

MFH Brütten

2 126   192 6.2 14.5 9.5b 250 28  ✓ ? 19.8 2016 CH 

VitalSonnenhausPro11 9.5  80 12    9  .6/17  22 2.2 2016 AT 

Nilsson Energy

6    ✓ ✓ ✓ ✓       2014 SW 

HPS PICEAc,


5    25 1.5 2.5 .55b (✓)      2017 DE 

aoperation start or product launch, bown calculations based on project-specific values and own assumptions, 
cbasic equipment12 
 

S1.2. Scientific case studies of self-sufficient buildings 

Over the last years, self-sufficient renewable energy-based household 
supply systems gained interest in the scientific community. An overview 
of relevant techno-economic articles can be found in Table S2. 
 
Especially in Australia there is a growing interest expressed in public and 
academic discussions about “living off-grid”, due to favourable conditions 
in the form of governmental financial support for small scale PV, high 
rooftop PV potential through low-rise detached buildings, high solar 
irradiation, high household electricity prices by international standards 
and high rates of owner-occupied buildings13. To find out whether the 
thought of leaving the grid is an ambition or a real choice, Khalilpour & 
Vassallo14 developed a decision support tool for the techno-economic 



 
assessment of the feasibility of leaving the grid with a PV-battery system. 
After extensive sensitivity analyzes of technology costs, system size, 
consumer load and feed-in-tariff they conclude that leaving the grid is in 
most scenarios not the best economic option. Further studies analyze the 
trade-off between system reliability and system economics by 
considering different user preferences15 and the impact of climate change 
at different locations in Australia13 and come to similar conclusions. 
Particularly in heating dominated regions, PV-battery systems are not 
economically feasible13. However, Goldsworthy & Sethuvenkatraman16 
argue that most studies describe self-sufficient residential buildings as 
uneconomical compared to grid-connected buildings only because 
electricity consumption profiles are assumed to stay the same when 
leaving the grid. They show that the consideration of small demand-side 
modifications, especially in constraint periods, lead to better economics 
which can make leaving the grid even economical1 for some Australian 
households. To better understand the motivations of off-grid households 
in Australia, Lovell & Watson17 conducted a small scale empirical study 
and identified the desire to make environmental and social decisions, the 
logistics of arranging new infrastructure, a technology interest in off-grid 
systems and the sense of self-control as drivers to go off-grid that go 
beyond economic considerations. They finally define self-sufficient 
residential buildings as an instance of scarce data, which is the opposite 
of big data and acts as a barrier to effective governance due to the 
invisibility of the topic. This favours existing institutions, technologies and 
cultures and leads to path dependencies as well as making radical 
innovation difficult to achieve18. 
 
The economics of off-grid PV-battery systems have also been examined 
in other countries19–21. Quoilin et al.21 conclude for multiple countries in 
the EU that degrees of self-sufficiency cannot exceed 80% without 
oversizing PV-battery systems. Sabadini & Madlener19 demonstrate 
similar results for Germany. Gorman et al.20 analyze the off-grid potential 
for all owner-occupied single-family buildings (SFBs) in the United States 
taking into account spatially resolved household electricity demand, solar 
irradiation and electricity retail cost data from different utilities. They show 
that grid-defection is not an economic option if no fixed charges in 
electricity tariffs are in place. However, while technology costs for PV and 
batteries decline, utilities shift to using fixed charges to bring variable 
rates closer to their own marginal cost. Therefore, Gorman et al.20 
conclude that the change in tariff design could incentivize grid defection 
but estimate that in most regions of the United States grid defection 
becomes negligible. These studies show that PV-battery systems under 
favourable conditions can already be operated economically, but this 
applies only to a small number of households. However, the above 
studies only focus on PV-battery systems to cover the electricity demand, 
which only sometimes includes the electrified energy demand for thermal 
comfort through, e.g., air conditioning and heat pumps. 
 
The following studies take a more holistic approach by considering the 
electricity and heat demand directly as input and thereby allow the system 
to use the flexibility potential of the heating system when dimensioning 

                                                      
1 Economic feasibility is defined against a reference system in which 
100% of the electricity is purchased from the grid. 
 



 
the local energy system. Lacko et al.22 evaluate the feasibility of a 
completely renewable energy based heat and electricity supply for an 
isolated SFB in Slovenia’s coastal region using measured demand data. 
In addition to the PV system, they incorporate a small wind turbine as a 
second electricity source and a H2-system consisting of an electrolyzer, 
fuel cell and hydrogen tank as a seasonal energy storage. The results 
show that 100% renewable energy supply is technically feasible and can 
be cost-competitive compared to a fossil fuel based energy supply 
system. Knosala et al.23 calculate cost-optimal energy supply systems for 
a self-sufficient SFB in Germany, focusing on different H2-storage 
options. By using a reversible solid oxide cell combined with a liquid 
organic hydrogen carrier system for long-term storage in combination 
with advanced heat integration, they show that total annual costs can be 
reduced by 80% compared to a PV-battery (lithium-ion) system under 
technological framework conditions in 2030. However, the total annual 
costs of a 100% grid-dependent system are still 33% lower. Gstöhl & 
Pfenninger24 show through a case study conducted for 16 residential 
buildings in Switzerland for the year 2050 that self-sufficient residential 
buildings could become cost-competitive in temperate climate depending 
on storage and fossil fuel prices. PV efficiency and available 
rooftop/façade area are identified as key factors. SFBs with low electricity 
demand and urban mobility patterns are regarded to achieve self-
sufficiency most easily. In contrast multi-family buildings with high 
electricity demand and rural mobility patterns have a less practical 
starting position for leaving the grid. Puranen et al.25 demonstrate that 
self-sufficient residential buildings are technically feasible even under 
less optimal meteorological conditions in Finland, by analysing a PV-
battery system in combination with hydrogen storage and a ground-
source heat pump for a zero-energy building. However, a wood fired 
stove is needed in times of high heat demand. Schmid & Behrendt26 
simulate power-flows over a time-frame of 10 years in combination with 
a technology sizing mechanism to design self-sufficient energy systems 
for four SFBs across Europe. They conclude that self-sufficient residential 
buildings at low-seasonality locations can be cost-competitive by 2030. 
 
While existing studies only focus on single individual buildings at specific 
locations or only take into account PV systems and battery storage 
systems as technologies, we present the first large scale analysis of all 
detached owner-owned SFBs in the EU-27, United Kingdom (UK) and 
Norway (NO) building stock, which tries to identify the technical and 
economic potential of self-sufficient residential buildings.  
  



 
Table S2. Overview of techno-economic analysis of 100% renewable energy based self-sufficient 
residential buildings (geographic focus of studies: Europe, US, Australia). 
SFB: single-family building; MILP: mixed-integer linear program; LP: linear program; PV: photovoltaic; SWT: 
small wind turbine; HS: heat storage; HR: heating rod; BS: battery storage; DSM: demand side management; 
HP: heat pump; rSOC: reversible solid oxide cell; LOHC: liquid organic hydrogen carrier; GSHP: ground source 
heat pump; BIO: biomass; ST: solar thermal; BR: building retrofit; el.: electrical demand; th.: thermal demand; 
appl.: household appliances; SH: space heating; SC: space cooling; DHW: domestic hot water; SI: Slovenia; 
AU: Australia; BE: Belgium; ES: Spain; DE: Germany; DK: Denmark; HU: Hungary; IT: Italy; RO: Romania; 
FR: France; UK: United Kingdom; CZ: Czech Republic; CH: Switzerland; US: USA; FI: Finland; NO: Norway. 

Study Application Approach Technologies/ 
Investments 

Energy service demand - 
(model representation) 

Location 

22 Techno-economic analysis of one SFB in 
Slovenia 

Heuristic PV, SWT, H2, 
HS, HR 

el. appl., th. (SH, DHW) - (fixed 
el. & th. profiles) 

SI 

14 Techno-economic analysis of three 
SFBs in Australia (w/wo feed in tariff) 

MILP  PV, BS el. appl. - (fixed el. profiles) AU 

21 894 SFBs across the EU Heuristic PV, BS el. appl. - (fixed el. profiles) BE, ES, DE, 
DK, HU, IT, 
RO, FR, UK 

27 Geospatial analysis with spatial high 
resolution weather data but highly 
aggregated demand data (standard load 
profile – SLP) 

LP PV, BS el. appl. - (fixed el. profiles) DE, CZ 

16 28 SFBs with demand side flexibility Heuristic PV, BS, DSM el. appl., th. (SH, SC, DHW) - (el. 
profiles + DSM) 

AU 

13 Two SFBs at seven locations and 
multiple weather years  

Heuristic PV, BS el. appl., th. (SH, DHW) – (fixed 
el. profiles) 

AU 

15 54 Australian SFBs, trade-off reliability 
vs. LCOE 

MILP + 
Heuristic 

PV, BS, DSM el. appl. - (fixed el. profiles) AU 

24 Analysis of 16 building types with 
electric mobility 

Heuristic PV, BS, H2, HP el. appl., th. (SH, SC, DHW), 
mobility - (fixed el. profiles) 

CH 

20 Potential of grid defection of US 
households  

LP PV, BS el. appl., th. (SH, SC, DHW) - 
(fixed el. profiles) 

US 

19 Five households in Germany (w/wo feed 
in tariff) 

Heuristic PV, BS el. appl. - (fixed el. profiles) DE 

23 One SFB in Germany with advanced 
heat integration of H2-system 

MILP PV, BS, H2, HP, 
HS, rSOC, 
LOHC 

el. appl., th. (SH, DHW) - (fixed 
el. & th. profiles) 

DE 

25 Technical feasibility evaluation of one 
SFB in Finland 

Heuristic PV, BS, H2, 
GSHP,  BIO 

el. appl., th. (SH, DHW) - (fixed 
el. profile) 

FI 

26 Ten year power flow simulation and 
optimal sizing for three building types at 
four locations 

Heuristic PV, BS, H2, HP, 
HS 

el. appl., th. (SH, DHW) - (fixed 
el. & th. profiles) 

DE, IT, FI, 
NO 

This 
study 

Self-sufficient residential building 
potential for all freestanding SFBs in 
EU27, UK, NO  

MILP+LP+ 
surrogate  

PV, ST, SWT, 
BS, H2, HP, HS, 
BR, DSM 

el. appl., th. (SH, SC, DHW) - 
(fixed el. & DHW profiles + 
MILP integrated th. model) 

EU27 + UK 
+ NO 

 



 
S1.3. Archetype buildings and building stock synthesis 

To compare the potential of SFBs for complete energy self-sufficiency in 
Europe, individual energy system optimization problems would have to 
be solved for these buildings. However, due to the total number of about 
78 million single-family homes in the EU-27, United Kingdom and 
Norway28, individual optimization of all building energy systems is 
impractical because of computing constraints and time limitations. 
Established approaches in the scientific literature to handle this problem 
use building archetypes. This allows investigating a smaller number of 
archetypes representative for many buildings instead of all buildings while 
obtaining representative results. 
 
In Mata et al.29, archetype buildings are identified for France, Germany, 
Spain and the United Kingdom. In three steps, the required number 
(segmentation step), the technical characteristics (characterization step) 
and the distribution (quantification step) of the building archetypes are 
determined. The final energy demands determined with the archetypes 
deviate only -6% to +2% from official statistics, underlining the suitability 
of using archetype buildings in energy system analyzes. Sokol et al.30 
address the problem of incomplete information in the aggregation to 
building archetypes in their article. Unknown or uncertain parameters are 
represented by probability functions, which are updated by Bayesian 
calibration in the case of available measurement data. For the case study 
of residential houses in Cambridge, Massachusetts, the methodology 
shows significantly better performance than traditional deterministic 
archetype definitions. Kotzur et al.31 show that 200 typical buildings are 
sufficient to represent the diversity of the residential building stock in 
Germany. To determine these archetype buildings, two iteratively solved 
optimization problems are used that optimize the representation of 
previously defined building attributes by archetypes. However, the 
authors recommend that conventional clustering algorithms for the 
aggregation should be used in case exact building samples are available. 
Such clustering methods for determining building archetypes are 
employed in Hachem-Vermette & Singh32, Fonseca & Schlueter33, and 
Borges et al.34. While the clustering method applied in Hachem-Vermette 
& Singh32 is not specified, the other studies use k-means clustering to 
determine the spatiotemporal variability of energy services in buildings or 
to fragment building stocks for urban energy models, respectively. 
 
In the present work, instead of directly deriving archetype buildings from 
spatially aggregated one-dimensional data as in Kotzur et al.31, we first 
use spatial micro-simulation to combine individual level microdata with 
aggregated one-dimensional target data, aggregated on NUTS-3 level. In 
this way, correlations between the individual features are adequately 
represented in the synthetic population (e.g. household size correlates 
with building area). In a second step, we apply k-means clustering, which 
is applicable to the huge amount of data analyzed in this study (all ~78 
million SFBs of the EU-27, United Kingdom and Norway building stock). 
 
S2. Supplemental scenarios 

Table 3 provides an overview of all scenarios considered in this study. In 
Section S2.1 scenarios 6-11 are presented, which, in contrast to 
scenarios 1-5 (discussed in the main document), only take into account 
the household appliances electrical demand and neglect the thermal 



 
demand side. The influence of complexity reduction strategies for 
determining the optimal trade-off between calculation time and error is 
discussed in Section S2.2 and a heuristic is introduced for the 
determination of scenario specific calculation strategies. Section S2.3 
discusses the influence of multiple weather years on the dimensioning of 
weather-robust self-sufficient energy systems. The impact of the 
uncertainties with regard to future price, weather, building stock, and 
energy demand developments on the presented results are discussed in 
a sensitivity analysis in Section S2.4. 

Table S3. Overview of energy system design scenarios and respective energy system technology 
options. 
Scenarios 1-5 are described in the main document. In comparison to the scenarios 1-5, scenarios 6-11 only 
consider the electricity demand of household devices and exclude the thermal demand for domestic hot water 
and space heating and cooling (P2H: power-to-heat; el.: electrical demand; th.: thermal demand for domestic 
hot water and space heating and cooling). Parameter settings used for the calculation strategies in scenarios 
1-5 are shown in the last column (see Section S2.2; Td: typical days; εip: error iterative process). Due to the 
lower complexity of the optimization problem, scenarios 6-11 can be optimized in reasonable time using the 
full time series (see Figure S14). 

No. Scenario Electrical 
grid2 

Free-
standing 
PV&ST 

Small 
wind 
turbines 

Rooftop 
PV&ST, 
battery, 
H2 

Retrofit, 
P2H, heat 
storage 

Generator Demand Td/εip/time 

1 NoGridref - - - ✓ ✓ - el., th. 2/34/3000 

2 NoGridpv - ✓ - ✓ ✓ - el., th. 8/26/4800 

3 NoGridwind - - ✓ ✓ ✓ - el., th. 4/26/3600 

4 Gridopt  ✓ - - ✓ ✓ - el., th. 2/8/1200 

5 Gridref ✓ - - - ✓ - el., th. 8/8/1200 

6 NoGridref-el - - - ✓ - - el. 365/-/- 

7 NoGridpv-el - ✓ - ✓ - - el. 365/-/- 

8 NoGridwind-el - - ✓ ✓ - - el. 365/-/- 

9 NoGridgen-el - - - ✓ - ✓ el. 365/-/- 

10 Gridopt-el ✓ - - ✓ - - el. 365/-/- 

11 Gridref-el ✓ - - - - - el. 365/-/- 

 

S2.1. Optimal energy system design for electricity grid 

independent buildings 

System costs for renewable energy based electricity grid independent 
SFBs could half by 2050 compared to 2020 (see NoGridref-el scenario in 
Figure S2a). In the exemplary German SFB shown in Figure S2b the 
costs can even be reduced by 60% in the NoGridref-el scenario. Even if the 
waste heat from the H2-system cannot be used when considering the 
electrical demand side in isolation in contrast to scenarios 1-5, 
investments are made in a hybrid H2-Battery storage system in the 
NoGridref-el and NoGridwind-el scenarios. On the other hand, in the NoGridpv-

el scenario, in which the PV potential is not limited to the rooftop area, 
investments are made in a larger PV system (11 kWp → 21 kWp) instead 
of a hybrid storage system. However, due to the lower robustness of the 
NoGridpv-el system against longer periods of low solar radiation, which 
arise during the robustness scaling with 30 historical weather years, the 

                                                      
2 Electricity can be obtained for the national household electricity price 
and fed into the grid for a feed-in premium of 3 cents/kWh. A constant 
household electricity price is assumed between 2020 and 2050. 



 
NoGridpv-el leads to higher costs from 2030 onwards. With a dispatchable 
diesel backup generator, system costs can be further reduced compared 
to the 100% renewable energy based scenarios. However, even when 
future technology improvements in 2050 are considered the costs of 
electricity grid independent energy supply is still 90% higher, for the 
exemplary SFB, than in the Gridref-el scenario.  

 
Figure S2. The left-hand section (a) visualizes the energy system cost composition for 4000 
representative single-family buildings in the EU-27, United Kingdom and Norway for the NoGridref-el 
scenario. System costs are halved by 2050 compared to 2020. The right-hand section (b) presents the 
progression of the energy system cost composition of an exemplary single-family building in Germany 
over time till 2050 for all scenarios.  
Relevant characteristics of the residential building, the composition of the levelized cost of electricity and 
energy system related CO2 emissions are presented. System costs are calculated using 30 years of historical 
weather, with the black crosses indicating the system cost if only one weather year is used for the system 
design. Relative cost differences with regard to the Gridref-el scenario are shown above the bars. 

While 94% of the SFBs considered in this study can already cover their 
electricity demand in the NoGridref-el scenario by using the locally available 
renewable potential under technological framework conditions in 2020, 
the proportion of buildings could increase to 98% in 2050 when future 
technological developments are taken into account (see Figure S3). 
While in more southern regions such as Malta (MT), Cyprus (CY), Italy 
(IT), and Spain (ES) almost exclusively PV-battery systems are installed 
to cover the electricity demand, optimal energy systems in more northern 
regions use a H2-storage system due to the more pronounced seasonality 
of solar radiation (see Figure S3b and d). In contrast to scenarios 1-5, the 
waste heat from the electrolyzer and fuel cell cannot be used in scenarios 
6-11, which makes investing in a H2 system less attractive. 



 

 
Figure S3. Visualization of the share of technical feasible self-
sufficient residential buildings in the NUTS3 regions in Europe for 
2020 (a) and 2050 (c) for the NoGridref-el scenario. On the right-hand 
side of the figure (b and d), the building-weighted average 
composition of the total annual costs (TAC) by energy system 
components and value of lost load (VoLL) is shown together with 
the country-specific technical potential.  
Each technical feasible self-sufficient residential building of the synthetic 
building stock is assigned the TAC composition of the corresponding 
cluster representative and based on that the average composition per 
country is calculated. Countries are sorted in ascending order of share of 
their technical potential in 2020. The LCOE composition for the years 
2020 and 2050 for 4000 cluster representative SFB are presented for all 
system configurations in Figure S14. 

In Figure S4, the system costs of the SFBs in the NoGridref-el scenario are 
compared with system costs of the Gridref-el scenario. The LCOE in the 
Gridref-el scenario correspond to the country-specific household electricity 
price (Figure S4a). It is not economically advantageous for any of the 
buildings considered in this study to be supplied with electricity 
independently of the electrical grid under techno-economic framework 
conditions in 2020. In 2050 however, it could be economically beneficial 
for a minority of SFBs in Cyprus (~1800) to leave the electricity grid and 
supply themselves independently instead of purchasing 100% of the 
electricity from the grid. There is an extended economic potential for 
around half a million SFBs from Cyprus, Spain, Italy, Portugal and 
Germany. For these buildings, maximum additional costs of 50% 
compared to the Gridref-el need to be paid to leave the electricity grid. 
Compared to the NoGridref scenario, in which more than two million SFBs 
have an extended economical potential, the potential decreases when 
considering the electrical demand side alone in the NoGridref-el scenario. 



 
This can be attributed primarily to the lack of heat integration options in 
of the H2-system and the lack of flexibility on the heat demand side. The 
SFB with the lowest LCOE in the NoGridref-el scenario in Cyprus uses a 7 
kWp photovoltaic system in combination with a 33 kWh battery to cover a 
yearly electricity demand of 6,543 kWh. In this way, LCOE of 0.20 €/kWh 
can be achieved, which is below the grid procurement costs of 0.22 
€/kWh. Further results for scenarios 7-11 can be found in Figure S22, 
Figure S23, Figure S24, Figure S25 and Figure S26. 
 

 
Figure S4. The geospatial distribution of the average levelized cost 
of electricity (LCOE) for all NUTS3 regions are presented for the 
Gridref-el (a) and NoGridref-el (b) scenarios. The geospatial distribution 
of additional costs for self-sufficiency can be found in c. In d, the 
distribution of the additional costs by country in 2020 and 2050 are 
shown. Countries are sorted by mean additional costs. 

 
S2.2. Optimal trade-offs: calculation time vs. error 

The individual building energy system optimizations in scenario 6-11 can 
be calculated in hourly resolution in reasonable time considering the full 
time series over one year. However, by considering the thermal demand 
side through a linearized capacity-resistance model (5R1C) in 
combination with discrete retrofit and investment decisions in energy 
supply and conversion technologies, the complexity of the optimization 
problem increases significantly. The energy system optimization model 
cannot be solved in reasonable time using the full time series over one 
year in hourly resolution for scenarios 1-5 (for one building and MIP Gaps 
<1% the model needs >24h). Therefore, and to use the computing 
capacity as efficiently as possible an iterative calculation process (ip) is 



 
presented (see Figure S5) which reduces the computation time and 
identifies optimal trade-offs between calculation time and optimization 
error (see Figure S6). The identification of an optimal trade-off between 
computing time and optimization error enables the generation of a large 
data set (low computing time) of high-quality individual samples (low 
optimization error) and thereby capturing the heterogeneity in the EU-27, 
United Kingdom and Norway building stock. 
 
The basis of the iterative process is the two-stage optimization approach 
presented in Kotzur35. In the first optimization step, an aggregated 
representation of the time series in the form of typical days is used to 
select the technologies of the energy system. In the second optimization 
step, the technology selection is fixed and the operation and the 
technology size are optimized using the full time series over one year in 
hourly resolution. Since the second optimization step is only a linear 
optimization problem (LP) in contrast to the first optimization step (MILP), 
the optimization problem can be solved quickly (see Figure S6b). The 
optimization error (εtd) decreases with an increasing amount of typical 
days (td) in the first optimization step, while the calculation time increases 
(see Figure S6d). The optimization error is calculated according to 
equation (1) in relation to the best solution achieved over all typical days 
calculated (see equation (2)). Figure S6b visualizes the absolute 
optimization error exemplarily for a SFB in the NoGridref scenario using 
two typical days in the first optimization step. 
 

𝜀𝑡𝑑 =
|TACtd,step=2 − TACmin,step=2|

TACmin,step=2

  (1) 

TACmin,step=2 = min{TACtd,step=2}           td 𝜖 [2,4,8,12,16,24]  (2) 

 

In addition to the observation that the mean optimization error across the 
347 SFBs3 examined decreases with an increasing amount of typical 
days, Figure S6 d. and e. reveals that the optimization error for a large 
part of the examined buildings is almost zero even when a small amount 
of typical days is used. This is particularly the case when the difference 
between the solutions of the first and second optimization step (∆td) is 
small (see Figure S6 e.). This difference is referred to below as 
optimization delta and defined according to equation (3(3) (see also 
visualization in Figure S6 a. and b.). 
 

Δ𝑡𝑑 =
|TACtd,step=2 − TACtd,step=1|

𝑇𝐴𝐶td,step=2

  (3) 

 

A low optimization delta is therefore a sign that the aggregated time series 
representation is a sufficiently good approximation of the full time series 
for the design of the scenario-specific energy system. Figure S6e shows 
for the NoGridref scenario that none of the 347 SFBs has an optimization 
error greater than 16% if the optimization delta is lower than 34%. The 
optimization delta is therefore used as an estimator for the optimization 
error in the iterative process (see Figure S5a). 

                                                      
3200 cluster representatives all over the EU27, United Kingdom and 
Norway, plus a minimum of 10 country representatives. 



 

 
Figure S5. In a, an overview of the iterative process (ip) for the 
calculation of the energy system design and dispatch of a SFB is 
given. In b, the procedure for the identification of optimal input 
parameters for the iterative process presented in a is visualized. In 
c, the procedure for calculating the energy systems of over 4000 
SFBs is presented. 
tdstart: initial amount of typical days; ∆ip & Tip: benchmark for optimization 
delta and time; ∆td: optimization delta (see equation (3)); Ttd: optimization 
time; ε: optimization error (see equation (1)) 

The input required for the iterative process is the initial amount of typical 
days (tdstart), a benchmark for the optimization delta (∆ip), and a 
benchmark for the optimization time of the first optimization step (Tip). 
Based on the initial amount of typical days, the two-stage-energy system 
optimization is carried out. If the optimization delta (∆td) exceeds the 
specified benchmark (∆ip) and the optimization time (Tid) is lower than the 
specified benchmark, the amount of typical days is increased and the 
two-step energy system calculation is carried out until one of the two 
termination criteria is met. Finally, the energy system with the lowest total 
annual cost is selected. 
 
The scenario specific input parameters for the iterative process used in 
this study are given in Table S3 and are based on the procedure 
presented in Figure 5b. The derivation of the Pareto optimal parameters 
(see Figure S6f) is based on 347 representative buildings, for which 
energy systems are calculated for various amounts of typical days (td = 
[2, 4, 8, 12, 16, 24]). Based on the results of these calculations (ε, T) 
multiple settings of input parameters (tdstart, ∆ip, Tip) for the iterative 
process are tested and optimal settings with regard to optimization error 



 
and optimization time are identified (uniform weighting and 
normalization). Finally, the identified settings are used to calculate the 
results for >4000 SFBs across EU27, United Kingdom and Europe, which 
form the basis for the results presented in this study. 
 
Future work could further examine the interdependencies between 
energy system optimization error, optimization time and the error of the 
surrogate model. A fixed time budget could be specified in which the goal 
would be to generate an optimal dataset for training a surrogate model. 
Depending on the structure of the surrogate model, there should be an 
optimal trade-off between optimization time (size/diversity of the dataset) 
and optimization error (accuracy of the dataset). 

 
Figure S6. Overview of the results for the identification of the 
optimal trade-off between optimization error and time. 
(a) and (b) present the composition of the total annual cost (TAC) and 
optimization time in optimization step one (a) and two (b) for a 
representative SFB. Furthermore, the absolute optimization delta ∆td and 
error εtd are visualized. Figure c and d present the development of 



 
optimization delta, error and time for 347 representative SFBs over an 
increasing amount of typical days. In e, the optimization delta is plotted 
against the optimization error whereby every point represents an energy 
system optimization result with a specific amount of typical days. Finally, 
(f) presents the trade-off between mean optimization error and 
optimization time for Pareto optimal configurations of the iterative process 
(black) and fixed amounts of typical days. Parameters are derived based 
on 347 SFBs and evaluations of the procedure are conducted based on 
65 SFBs. 

S2.3. Weather robust energy system design 

The majority of previous studies compare self-sufficient energy supply 
systems against grid connected supply systems on the basis of only one 
weather year. In our analysis, we take multiple historical weather years 
into account. This is especially important when comparing self-sufficient 
residential buildings with grid connected SFBs, as the system design of 
a self-sufficient residential building should ensure security of supply even 
under extreme weather periods, while security of supply in a grid-
connected SFB is normally ensured by the external infrastructure in 
combination with a local heat supply system. The capacity of the heat 
supply system is usually defined on the basis of a standard outside 
temperature which is calculated using 20 weather years36. Therefore, a 
representative/average weather year in combination with a standard 
outside temperature is suitable for techno-economic optimal energy 
system layout of a grid connected system. For self-sufficient residential 
buildings, on the other hand, it must not only be ensured that the power 
component of the energy system is sufficiently sized to cover demand 
peaks, but also that enough energy is available to ensure security of 
supply even over longer periods with high demand and low energy feed-
in from local renewable energy sources. 
 
Figure S7 presents the average composition and increase in total annual 
system costs that occur during the robust energy system design process 
described in the methodology and data section of the main document. 
The technology selection and the initial technology dimensioning is based 
on the weather year with the highest number of heating degree days 
(scenarios 1-3) or the lowest amount of solar irradiation (scenarios 6-8) 
between 1991 and 2020. The average shares of the total annual system 
costs from the initial technology dimensioning are calculated according to 
eq. (4) and can be found in the left part of Figure S7. 
 

as𝑖
TAC =

1

SFB
∑

𝑐𝑖,sfb,wy=1
init ∙ ann(𝑙𝑖) + 𝑐𝑖,sfb,wy=1

o&m

TACsfb,wy=1

SFB

sfb=1

           ∀ 𝑖 ∈ Inv (4) 

The average increase in total annual system costs (∆ TAC) when 
considering the additional 29 weather years are calculated year by year 
according to eq. (5) and can be seen in the right part of Figure S7. The 
additional weather years are sorted in ascending order by the number of 
heating degree days. 
 

as𝑖,𝑛
∆TAC =
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SFB
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∀ 𝑖 ∈ Inv, 𝑛 = [2,30] 

(5) 



 
The results for the NoGridref scenario show that the TAC increase on 
average by more than 5% compared to the initial system design based 
on the year with the highest number of heating degree days. The more 
robust system design is achieved by a larger dimensioning of the storage 
systems, with the hydrogen system being the main contributor to the TAC 
increase. Since the PV rooftop area potential is already fully exploited in 
the initial design step for the majority of the considered SFBs, significant 
further expansion is not possible. Compared to the NoGridref scenario, the 
energy systems of the SFBs in the NoGridpv and NoGridwind scenarios are 
less robust to additional weather years, which is particularly evident in the 
NoGridpv scenario, in which TAC increase on average by 10% if 30 
weather years are taken into account (see Figure S7). When considering 
the electrical demand side in isolation, the TACs increase by an average 
of between 9-13%, depending on the scenario und consideration (see 
Figure S8). 



 

 
Figure S7. Average composition of total annual system costs (TAC) 
for the NoGridref, NoGridpv and NoGridwind scenario under economic 
framework conditions from the year 2020 (left). Composition of the 
average additional total annual system costs (∆ TAC) depending on 
the number of weather years considered for the design of the robust 
energy system (right). Calculations are based on over cluster 
representative 4000 SFBs. 



 

 
Figure S8. Average composition of total annual system costs (TAC) 
for the NoGridref-el, NoGridpv-el and NoGridwind-el scenario under 
economic framework conditions from the year 2020 (left). 
Composition of the average additional total annual system costs (∆ 
TAC) depending on the number of weather years considered for the 
design of the robust energy system (right). Calculations are based 
on over cluster representative 4000 SFBs. 



 
S2.4. Sensitivity analysis 

The impact of the uncertainties with regard to future price, weather, 

building stock, and energy demand developments on the results of the 

NoGridref and NoGridref-el scenarios are discussed in the following. To 

calculate the sensitivity of the results depending on changes in 

technology costs, the technology specific cost components of the 4000 

cluster centers shown in Figure S13 were varied between -20% and 

+20%. Further on, a regression model was trained for each cost variation 

to transfer the impact of the cost changes to the entire synthetic building 

stock. Regression model configurations are shown in Figure S15. No new 

energy system optimizations were carried out taking into account the 

adjusted price structures, since an optimization run of 4000 

representative buildings per cost scenario would take several days on 50 

servers used in parallel. Consequently, the extended economic potential 

shown in Figure S9a represents a lower limit, which would be shifted 

upwards by an optimized energy system design, considering the adjusted 

cost structures. For the calculation of the impact of changes in the 

synthetic residential building stock shown in Figure S9b, c and d, each 

feature of all 41 million SFBs was varied between -20% and +20% in 

order to examine the effects of, for example, changes in electricity prices 

or assumptions about roof area potential. The impact of the variation of 

the three most cost-sensitive features on the spatial distribution of the 

extended economic potential is shown in Figure S10. 

 

Figure S9: Results of the sensitivity analysis regarding the impact 
of the uncertainties of future price, weather, building stock, and 



 
energy demand developments. Results are presented for the 
NoGridref scenario. 
In a, the influence of the uncertainties of future cost developments of 
photovoltaic, battery and hydrogen systems on the total annual cost and 
the extended economic potential is presented. The changes in the total 
annual cost of the 4000 cluster centers depending on the adjusted cost 
structures are shown by the colored areas (interquartile range of the 4000 
cluster centers). The colored lines represent the extended economic 
potential. In b, c and d the influence of changing parameters of the 
investigated synthetic building stock on the extended economic potential 
(b: 2050) and the technical potential (c: 2020, d: 2050) is shown. 

Variations in future cost developments of photovoltaic, battery and 
hydrogen systems (see Figure S9a) together with changes in household 
electricity prices and solar irradiation (see Figure S9b) have the greatest 
impact on the extended economic potential of self-sufficient SFBs in the 
NoGridref scenario in 2050. While a 20% cost increase of the hydrogen 
system leads to a reduction of the extended economic potential from 
5.9% to 2.4%, a 20% cost reduction would lead to an increase of the 
potential to over 15% of the investigated SFBs. Figure S10 shows, that 
especially in Germany the extended economic potential would increase 
significantly with falling hydrogen system prices, due to the high electricity 
purchase prices. Over 75% of the SFBs analyzed would be able to supply 
themselves self-sufficient by paying less than 50% more compared to the 
Gridref scenario.  
 



 

 
Figure S10: Change in the spatial distribution of the extended 
economic potential for self-sufficiency as a function of the hydrogen 
system cost, the global horizontal irradiation, and the electricity 
purchase price. Results are presented for the NoGridref scenario. 

The results of the sensitivity analysis of the NoGridref-el scenario can be 
found in Figure S11 and Figure S12. In contrast to the NoGridref scenario, 
in which the thermal demand side is taken into account, the results of the 
NoGridref-el do not show strong dependencies with regard to the cost 
developments of the hydrogen system. In addition to battery and 
photovoltaic price developments, changes in global horizontal irradiation 
and electricity demand have an impact on the extended economic 
potential. The roof area potential for solar systems, the electricity demand 
and the locally available solar irradiation have the strongest impact on the 
technical potential for self-sufficiency. 



 

 
Figure S11: Results of the sensitivity analysis regarding the impact 
of the uncertainties of future price, weather, building stock, and 
energy demand developments. Results are presented for the 
NoGridref-el scenario. 
In a, the influence of the uncertainties of future cost developments of 
photovoltaic, battery and hydrogen systems on the total annual cost and 
the extended economic potential is presented. The changes in the total 
annual cost of the 4000 cluster centers depending on the adjusted cost 
structures are shown by the colored areas (interquartile range of the 4000 
cluster centers). The colored lines represent the extended economic 
potential. In b, c and d the influence of changing parameters of the 
investigated synthetic building stock on the extended economic potential 
(b: 2050) and the technical potential (c: 2020, d: 2050) is shown. 

 



 

 
Figure S12: Change in the spatial distribution of the extended 
economic potential for self-sufficiency as a function of the global 
horizontal irradiation, the battery system cost, and the electricity 
purchase price. Results are presented for the NoGridref-el scenario. 

  



 
Supplemental items. 

Table S4 and Table S5 present details on the system configurations from 
Figure 2a and b in the main document for different degrees of self-
sufficiency. 
 
Table S4: Results of the technology dimensioning and the selection of the retrofit states depending on 
the degree of self-sufficiency (DSS) for the selected energy system configurations highlighted in 
Figure 2a in the main document. 
PV: photovoltaic; BS: battery storage; EC: electrolyzer; H2-S: hydrogen storage; FC: fuel cell; LCOE: levelized 
cost of electricity 

No. PV BS EC H2-S FC LCOE DSS Feed in Lost load 

- kWp kW kWh kW MWhLHV kW €/kWh % kWh kWh 

Gridref-el - - - - - - 0.305 0 - - 

1 1.1 - - - - - 0.278 20 170 - 

Gridopt-el 2.1 - - - - - 0.270 29.4 511 - 

2 7.5 0.9 5.7 - - - 0.505 75.7 2,529 - 

3 11.4 1.5 8.2 0.5 913 0.5 1.491 99.7 102 - 

p=20 €/kWh 11.4 3.3 8.8 0.5 898 0.5 1.617 100 - 0.08 

 

Table S5. Results of the technology dimensioning and the selection of the retrofit states depending on 
the DSS for the selected energy system configurations highlighted in Figure 2b in the main document.  
Three retrofit options are differentiated for each retrofit component: initial state (1), conventional retrofit (2), 
and advanced retrofit (3). (HR: heating rod; AC: air conditioner; th. dist.: thermal distribution system (old: 0, 
new: 1); HP: heat pump (~air source, *ground source); PV: photovoltaic; HS: heat storage; BS: battery storage; 
EC: electrolyzer; H2-S: hydrogen storage; FC: fuel cell) 

No. HR AC Retrofit HP PV HS BS EC H2-S FC 

- kWth kWth Wall Roof Floor Window th. dist. kWth kWp kWh kW kWh kW MWhLHV kW 

1 9.1 2 1 1 1 1 0 - - - - - - - - 

2 - 2 2 1 1 1 0 9.1~ - - - - - - - 

Gridref - 2 3 3 1 1 0 6.8~ - - - - - - - 

3 - 2 2 3 1 1 0 6.9~ 1.6 - - - - - - 

Gridopt - 2 3 3 1 1 0 6.2~ 5.3 15 - - - - - 

5 - 2 3 3 3 3 0 4.3~ 6.8 14 - - - - - 

6 - 2 2 3 3 3 1 4.8* 10.9 14 - - - - - 

7 - 2 3 3 3 3 1 4.4* 11.4 20 1.1 7.2 - - - 

8 - 2 3 3 3 3 1 4* 11.4 32 1.9 16 1.3 2.1 0.5 

p=20 
€/kWh 

- 2 3 3 3 3 1 4.3* 11.4 26 3.3 26 1.9 2.3 0.5 

  



 
Table S6. Technology parameter and price developments used in this study. Prices are real prices with 
reference to 2015.  

 2020 2030 2040 2050 Source 

Inverter       

Capex (€/kW) 250 250 250 250  

Lifetime (a) 15 15 15 15  

Efficiency (%) 95 95 95 95  

Photovoltaic      

Capex variable (€/kWp) 1,111 753 631 574 

37 

Opex (%/a) 1.1 1.3 1.4 1.5 

Lifetime (a) 35 40 40 40 

Area (m²/kWp) 5.1 4.6 4.3 4.0 

System loss (%) 14 5 4 3 

Lithium-ion Batterya     

38 

Capex (€/kWh) 264 116 101 87 

Capex (€/kW) 1,372 1,017 891 763 

Capex (€) 4,656 3,590 3,141 2,693 

Opex (%/a) 2.5 2.5 2.5 2.5 

Lifetime (a) 15 15 15 15 

Charge-/discharge-efficiency (%) 95 95 95 95 

Self-discharge (%/h) 0.003 0.003 0.003 0.003 39 

Small wind turbine      

Capex (€/kW) 3,800 3,600 3,500 3,400 
37 Opex (%/a) 2.6 2.5 2.5 2.4 

Lifetime (a) 20 20 20 20 

System losses (%) 10 10 10 10 40 

Boiler      

Capex (€) 2,800 2,800 2,800 2,800 
35 

Capex (€/kW) 100 100 100 100 

Opex (€/kW) 13 13 13 13 
37 Efficiency (%) 97 97 98 99 

Lifetime (a) 20 20 20 20 

Micro CHP plant      

Capex (€) 10,500 8,333 6,167 4,000 

35 

Capex (€/kWel) 3,000 2,500 2,000 1,500 

Opex (%/a) 1 1 1 1 

Lifetime (a) 20 20 20 20 

Efficiency el. (%) 35 35 35 35 

Efficiency th. (%) 60 60 60 60 

Diesel generator      

Capex (€/kW) 1,000 1,000 1,000 1,000  

Opex (%/a) 1.5 1.5 1.5 1.5  

Lifetime (a) 20 20 20 20  

Max. full load hours (h/a) 100 100 100 100  

Diesel price (€/kWh) 0.13 0.16 0.21 0.27 41 

Warm water storage      

Capex (€) 800 800 800 800 
35 Capex (€/kWh) 35 35 35 35 

Lifetime (a) 25 25 25 25 

Efficiency (%) 99 99 99 99 42 

Self-discharge (%/h) 0.6 0.6 0.6 0.6 43 

Heat pump      

Capex (€) 5,000 5,000 5,000 5,000 

35 
Capex (€/kWth) 600 600 600 600 

Opex (%/a) 2 2 2 2 

Lifetime (a) 20 20 20 20 

Heating rod      



 
Capex (€/kW) 850 850 850 850 

37 
Opex (€/kW/a) 8 8 8 8 

Lifetime (a) 30 30 30 30 

Efficiency (%) 98 98 98 98 

Electrolyzer      

Capex (€) 3,000 2,500 2,000 1,500 

24, 44, 23, 45–47 

Capex (€/kWel) 4,000 1,500 1,000 8,00 

Opex (%/a) 1 1 1 1 

Lifetime (a) 10 15 20 20 

Efficiency (%) 60 70 70 70 

Compressor      

Capex (€) 2,000 1,000 800 800 

23, 48, 45 
Capex (€/kWel) 2,500 1,800 1,300 1,000 

Opex (€/a) 1 1 1 1 

Lifetime(a) 20 20 20 20 

Hydrogen storage      

Capex (€/kWh) 18 15 10 9 
44, 23, 24, 37 

Lifetime (a) 25 30 30 30 

Fuel cell      

Capex (€) 3,000 2,500 2,000 1,500 

23, 24, 49, 47 

Capex (€/kWel) 4,000 1,500 1,000 800 

Opex (%/a) 1 1 1 1 

Lifetime (a) 10 15 20 20 

Efficiency el. (%) 47 50 50 50 

Efficiency th. (%) 47 46 48 48 

Solar thermal plant      

Capex (€) 4,000 4,000 4,000 4,000 

35 
Capex (€/m²) 350 350 350 350 

Lifetime (a) 20 20 20 20 

Opex (%/a) 1 1 1 1 

Efficiency (%) 60 60 60 60 Model: Aqua Plasma 15/27 

Air conditioner      

Capex (€/kWth) 245 245 245 245  

Opex (%/a) 2 2 2 2  

Retrofit measures4      

Capex var. wall (€/m³) 165 165 165 165 

50 

Capex fix wall (€/m²) 10.4 10.4 10.4 10.4 

Capex var. roof (€/m³) 237 237 237 237 

Capex fix roof (€/m²) 11.3 11.3 11.3 11.3 

Capex var. floor (€/m³) 125 125 125 125 

Capex fix floor (€/m²) 30.75 30.75 30.75 30.75 

Capex window option 1 (€/m²) 313 313 313 313 35 
Capex window option 2 (€/m²) 361.5 361.5 361.5 361.5 

aPrice assumptions for Lithium-ion battery systems are taken from the 
Annual Technology Baseline38 provided by the National Renewable 
Energy Laboratory (NREL). The assumptions are based on the 
“moderate” scenario for residential battery storage. Prices are converted 
to € for the year 2015 and do not include US sales tax. Since NREL data 
mostly represent US technology cost, the “moderate” scenario for the US 
represents a rather “conservative” battery system cost projection 
scenario for European market conditions, since soft costs are typically 
much larger in the US51. 
 

                                                      
4 Investment parameters for retrofit measures are shown for Germany 
and are adjusted with the country specific construction price index in 
other countries. 



 

 
Figure S13. Visualization of the composition of the total annual costs per m² living 
area for 4000 cluster representative single-family buildings for scenarios 1-5 from 
Table S3 (left: 2020, right 2050). The orange dashed lines describe the cumulative 
optimization time. Optimization runs were conducted on 50 servers in parallel.  

 



 

 
Figure S14. Visualization of the composition of the levelized cost of electricity 
(LCOE) for 4000 cluster representative single family buildings for scenarios 6-11 
from Table S3 (left: 2020, right 2050). The orange dashed lines describe the 
cumulative optimization time. Optimization runs were conducted on 50 servers in 
parallel. 

 



 

 
Figure S15. Representation of the performance of the neural 
networks depending on the training data set size (number of SFBs) 
and the configuration of the neural networks (number of neurons in 
the hidden layers, shown in square brackets). 
The performance of the neural networks for the classification of the SFBs 
into potentially technical suitable and unsuitable SFBs is shown in the top 
left figure (a) using the accuracy, precision (=true positive / (true positive 
+ false positive)) and recall (=true positive / (true positive + false 
negative)) as evaluation metrics. The bottom two figures and the top right 
figure show the results of the regression models for determining the TAC 
for the SFBs in the NoGridref scenario in 2020 (c) and 2050 (d) and for 
the Gridref scenario (b). The TAC in the Gridref scenario do not change 
between 2020 and 2050. The performance of the neural networks is 
presented using the mean percentage error (MPE) and the coefficient of 
determination (R2), which are calculated on the basis of the test data set 
(training, validation split → 80%/20%, test → 400 samples).  



 

 
Figure S16. Representation of the performance of the neural 
networks depending on the training data set size (number of SFBs) 
and the configuration of the neural networks (number of neurons in 
the hidden layers, shown in square brackets). 
The performance of the neural networks for the classification of the SFBs 
into potentially technical suitable and unsuitable SFBs is shown in the left 
figure (a) using the accuracy, precision (=true positive / (true positive + 
false positive)) and recall (=true positive / (true positive + false negative)) 
as evaluation metrics. The right figure shows the results of the regression 
model for determining the LCOE for the SFBs in the NoGridref-el scenario 
in 2020 (b). The performance of the neural networks is presented using 
the mean percentage error (MPE) and the coefficient of determination 
(R2), which are calculated on the basis of the test data set (training, 
validation split → 80%/20%, test → 400 samples). 

 
Figure S17. Visualization of the distribution of the total annual costs 
(TAC) for energy supply by country based on the Gridref scenario. 
The countries are sorted by mean TAC per country in ascending order. 
The TAC of the reference system do not vary between 2020 and 2050 
due to the above mentioned assumptions. The extreme values of the 
distributions are limited by the country-specific extreme values of the 
cluster representatives. 



 

 
Figure S18. Visualization of the distribution of the total annual costs 
(TAC) for SFB in the Gridopt scenario by country in 2020 and 2050.  
The countries are sorted by mean TAC per country in ascending order. 
The extreme values of the distributions are limited by the country-specific 
extreme values of the cluster representatives. 

 
Figure S19. Visualization of the distribution of the total annual costs 
(TAC) in the NoGridref scenario by NUTS3 region (a) and country (c) 
in 2020 and 2050. Furthermore, the ratio of the costs in the NoGridref 
to the costs in the Gridref is shown (b), on the basis of which the 
(extended) technical potential is derived (c). 



 

 
Figure S20. Visualization of the distribution of the total annual costs 
(TAC) in the NoGridpv scenario by NUTS3 region (a) and country (c) 
in 2020 and 2050. Furthermore, the ratio of the costs in the NoGridpv 
to the costs in the Gridref is shown (b), on the basis of which the 
(extended) technical potential is derived (c). 



 

 
Figure S21. Visualization of the distribution of the total annual costs 
(TAC) in the NoGridwind scenario by NUTS3 region (a) and country 
(c) in 2020 and 2050. Furthermore, the ratio of the costs in the 
NoGridwind to the costs in the Gridref is shown (b), on the basis of 
which the (extended) technical potential is derived (c). 

 
Figure S22. Visualization of the distribution of the levelized cost of 
electricity (LCOE) for the SFB in the Gridopt-el scenario by country in 
2020 and 2050. 
The countries are sorted by mean LCOE per country in ascending order. 
The extreme values of the distributions are limited by the country-specific 
extreme values of the cluster representatives. 



 

 
Figure S23. Visualization of the distribution of the levelized cost of 
electricity (LCOE) in the NoGridref-el scenario by NUTS3 region (a) 
and country (c) in 2020 and 2050. Furthermore, the ratio of the costs 
in the NoGridref-el to the costs in the Gridref-el is shown (b), on the 
basis of which the (extended) technical potential is derived (c). 



 

 
Figure S24. Visualization of the distribution of the levelized cost of 
electricity (LCOE) in the NoGridpv-el scenario by NUTS3 region (a) 
and country (c) in 2020 and 2050. Furthermore, the ratio of the costs 
in the NoGridpv-el to the costs in the Gridref-el is shown (b), on the 
basis of which the (extended) technical potential is derived (c). 



 

 
Figure S25. Visualization of the distribution of the levelized cost of 
electricity (LCOE) in the NoGridwind-el scenario by NUTS3 region (a) 
and country (c) in 2020 and 2050. Furthermore, the ratio of the costs 
in the NoGridwind-el to the costs in the Gridref-el is shown (b), on the 
basis of which the (extended) technical potential is derived (c). 



 

 
Figure S26. Visualization of the distribution of the levelized cost of 
electricity (LCOE) in the NoGridgen-el scenario by NUTS3 region (a) 
and country (c) in 2020 and 2050. Furthermore, the ratio of the costs 
in the NoGridgen-el to the costs in the Gridref-el is shown (b), on the 
basis of which the (extended) technical potential is derived (c). 

 

Figure S27. Daily shape of household electricity demand and 
historical German electricity day-ahead market prices from 2016 till 
202252.  
The daily shape of household electricity demand is based on 108 German 
household demand profiles (34 profiles from Schlemminger et al.53 + 74 
profiles from Tjaden et al.54). 
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photovoltaics compared to the national expansion rate can save costs and CO2 emissions. Building on the 
methodology presented, transferable infrastructure models for the electricity, gas and district heating network 
should be developed that can be used to assess the feasibility of the transformation paths determined by the 
methodology presented.   

1. Introduction 

At the United Nations Climate Change Conference of the Parties in 
Glasgow in 2021, the 197 participating countries reaffirmed the Paris 
Agreement temperature goal. They recognized that limiting global 
warming to 1.5 ◦C requires rapid, deep and sustained reductions in 

global greenhouse gas emissions [1]. To achieve these goals most cost- 
effectively, the participating countries are expected to develop long- 
term greenhouse gas emission reduction strategies, including an early 
and steady decarbonisation pathway [2]. Accordingly, countries such as 
Germany have committed to ambitious targets to reduce greenhouse gas 
emissions by 65 % by 2030 and become climate-neutral by 2045 [3]. 

Necessary means to achieve these targets include the large-scale 

Nomenclature 

Parameters and Variables 
Af Area potential for freestanding PV, ST 
ac Age class of building 
ann Annuity factor 
c Cost parameter 
cp,w Specific heat capacity of water 
ctoh Centralisation type of heating 
cy Year of construction 
dc Weekday category 
del Demand electricity 
ec Energy carrier of building 
EER Energy efficiency ratio 
exploc/nat

PV Local/national PV expansion rate 
ht Heating technology 
loc Location of building 
LCOSH Levelised cost of saved heat 
ρw Water density 
PCHP/fPV/HP/ORC Electrical power CHP/PV/HP/ORC 
PGas Gas consumption 
potloc/nat

PV Local/national PV potential 
QCHP/HP/GT Thermal power CHP/HP/GT 
rm Retrofit measure 
rr Retrofit rate 
rs Retrofit share 
rp/m Peak to mean ratio 
ry Year of retrofit 
sa Surface area 
SH Space heating demand 
temp Temperature 
ubefore/after U-value before/after retrofit 
V̇B Volumetric flow rate 
x Optimisation variable 
λ Heat conductivity 
η Efficiency 

Sets (running index) 
A (a) Representative Years 
BS (bldg) Building stock 
HH (h) Household transformation scenarios 
Int (i) Investment intervals 
RM (rm) Retrofit measures 
T (t) Timesteps 
(comp) Building envelope components 

Index 
ei Export and import 

em Emission 
fs Freestanding 
GT Geothermal 
htr Historical transition rate 
HP Heat Pump 
inv Investment 
op Operation 
ORC Organic Rankine Cycle 
PW Production well 
rt Rooftop 
scen Scenario 
th Thermal 
tor Time of retrofit 
tsr Technology specific requirement 

Acronyms 
AC Air conditioner 
ar Ambitious retrofit 
AS-HP Air source heat pump 
bio Biomass 
CC Carbon capture 
CHP Combined heat and power plant 
CN Climate neutral 
cr Conventional retrofit 
DAC Direct air capture 
DHW Domestic hot water 
DH District heating 
el Electricity 
GHG Greenhouse gas 
GS-HP Ground source heat pump 
HRU Heat recovery unit 
LCOE Levelised cost of electricity 
LCOSH Levelised cost of saved heat 
MAE Mean absolute error 
MFH Multi family house 
MILP Mixed-integer linear program 
nc New construction 
PV Photovoltaic 
o&m Operation & maintenance 
SFH Single family house 
SH Space heating 
SOFC Solid oxygen fuel cell 
ST Solar thermal plant 
TDSC Total discounted system cost 
UBEM Urban building energy model 
wc Woody comubstion 
wte Waste to energy  
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expansion of renewable energies, storage capacities and energy effi-
ciency measures. However, the deployment of renewable energies 
happens mostly in local communities due to the decentralized character 
of these sources, and energy efficiency measures like building insulation 
require the decisions of individuals. Some local movements exist, such as 
the Covenant of Mayors [4,5], in which local authorities voluntarily 
commit to a high level of renewable energy deployment, but these local 
plans are not necessarily in line with national strategies. A direct transfer 
of national strategies to the local level would be impossible due to the 
heterogeneity of German municipalities in size, renewable energy po-
tential and energy demand [6,7]. All of this considered, achieving na-
tional targets requires a high degree of coordination with local 
communities [8,9,10], and transferable approaches are needed to 
determine local energy system transformations in line with national 
targets. 

The majority of the municipal energy system studies in the literature 
(see Section 2) use an overnight system transformation approach 
[8,9,11,12,13], which may lack information to policy-makers and en-
ergy system planners in terms of how and when to transition to a 
greenhouse gas (GHG) neutral energy system [14]. Consequently, there 
is a need for studies that, starting from the existing energy system, show 
a transformation path consisting of explicit energy system expansion 
and efficiency measures. While existing municipal energy system 
transformation studies [10,15,16,17] take into account temporal 
changes in, e.g., energy carrier and technology prices, they lack the 
consideration of temporal dynamics with regard to expansion rates of 
renewable energy technologies and efficiency measures like building 
retrofits. This can lead to an unrealistically fast spread of measures, 
compared to the national system transformation, as soon as the mea-
sures become economically viable (e.g. [17]). In the transformation 
studies mentioned, such unrealistically rapid dissemination of, e.g., 
retrofit measures in the residential building sector is particularly favored 
by a strongly aggregated depiction of the building stock to reduce 
computational complexity. To overcome the mentioned issues, the 
municipal energy system optimisation model RE3ASON [10,15,17,18] is 
extended in this work to answer the following research questions.  

• What are the techno-economically optimal transformation paths of 
municipal energy systems in the context of national energy system 
transformations?  
○ How can temporally dynamic developments in the residential 

building stock be appropriately captured in a transferable and 
open-data-based municipal energy system transformation model?  

○ What are optimal local residential building stock transformations 
regarding key parameters such as retrofit rate, depth, and degree of 
electrification? 

○ What influence do local limitations on expansion rates of renew-
able energy technologies have on local energy system 
transformations?  

○ What influence does the exclusion/consideration of individual 
technology options such as biomass, deep geothermal energy, or 
wind power have on cost and emission developments? 

Accordingly, the energy system optimisation model is substantially 
extended to collectively optimise the transformation of final energy 
demand in the industry, tertiary, transport sectors, and of the building 
stock, as well as established and niche greenhouse gas reduction tech-
nologies. In order to consider temporal dynamic changes and the het-
erogeneity in the municipal residential building stock within the energy 
system optimisation, a stochastic, spatially resolved building stock 
simulation is introduced in this study and integrated into the energy 
system optimisation model RE3ASON. To avoid unrealistically high 
expansion rates of renewable technologies, local maximum yearly 
expansion rates are defined in accordance with national developments. 
Furthermore, the overall portfolio of energy system supply technologies 
is expanded to include all relevant technology options considered in the 

respective national energy system transformation scenarios. In order to 
take into account developments of the energy demand transformation in 
all sectors, NUTS3-level specific final energy demand developments in 
the industry, transport and tertiary sectors are temperature corrected 
and integrated into RE3ASON. 

The transferable model is demonstrated for the energy system 
transformation of the German city Karlsruhe. All methods rely on pub-
licly available data and can be easily used to support local authorities 
like small scale energy supply system operators, distribution system 
operators, and public utilities. 

In the following, a comparison of the developed approach with the 
existing literature is given in Section 2. Subsequently, the methodology 
for municipal energy system planning is presented in Section 3 and its 
applicability is demonstrated through a case study in Section 4. Section 
5 discusses the methodology and results before the article is concluded 
in Section 6. 

2. Literature review 

The relevance of the municipal energy system planning research field 
has increased significantly over the past decades resulting in a total of 
1,235 studies in 2019 [5]. Scheller et al. [19] provide an overview of 
energy system optimisation models with a high spatial, temporal and 
contextual resolution for the support of local decision makers at the 
municipal level and define challenges that should be addressed in the 
development of future models (e.g., integrated view, spatial planning, 
temporal resolution and uncertainty analysis). Kachirayil et al. [20] 
reviewed 116 case studies of local, integrated energy system models to 
identify best-practice approaches to model flexibility and address non- 
technical constraints. Yazdanie and Orehounig [21] examined gaps in 
the field of urban energy system planning and showcased the need for 
more integrated modelling approaches and more comprehensive energy 
modelling scenarios to represent social factors and system 
imperfections. 

Several studies exist that use overnight modelling approaches to 
determine energy system target states without analysing the trans-
formation process to reach that state [8,9,11,12,13,22,23,24,25,26]. In 
Østergaard et al. [11], a scenario for Aalborg (Denmark) entirely based 
on renewable energy in 2050 is studied. In simulations with the Ener-
gyPLAN model, the scenario is evaluated in terms of the total annual 
energy balance and the hourly balance between electricity generation 
and demand. A similar study utilizes the EnergyPLAN model, in this 
case, to determine a 100 % renewable energy system using low- 
temperature geothermal energy for district heating in Frederikshavn 
[12]. Sveinbjörnsson et al. [13] optimize the energy system of the mu-
nicipality Sønderberg, which aims to reach zero net CO2 emissions in 
2029. Several scenarios show that those with a high degree of electri-
fication perform better than those with a high degree of biomass uti-
lisation. Although these studies make assumptions about the cost 
development of technologies, the development of energy carrier prices, 
and emission factors, the municipalities are not explicitly considered in 
the context of a national energy system transformation scenario. Other 
municipal energy system analyses exist which analyse the interactions of 
local and national energy systems. However, these studies are mostly not 
dealing with the realisation of national scenarios or targets through 
action at the local level. For example, in Aunedi et al. [22], the inter-
action with the national level in the cost-efficient supply of local district 
heating systems is only captured by renewable penetration levels and 
electricity price volatility. Orehounig et al. [24] use the energy hub 
concept to manage the relations between energy flows at neighbourhood 
scale and further extend the concept by the integration of a building 
simulation tool to be able to evaluate and size urban energy systems 
according to their energy autonomy, economic and ecological perfor-
mance. They show that the suggested method can lower peaks in energy 
demand of neighbourhoods, but no detailed interactions with trans-
formation scenarios of the overarching system are considered. Two 
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exceptions, which are particularly relevant to the present study, are 
Thellufsen and Lund [9] and Thellufsen et al. [8]. In Thellufsen and 
Lund [9], a methodology is developed to show how well future local 
energy systems integrate with the surrounding national energy system 
by analysing system interactions in a sequential procedure. This meth-
odology is applied in the context of a national scenario for 2030 for the 
Danish cities of Copenhagen and Sønderberg. In Thellufsen et al. [8], 
this methodology is extended to investigate a local energy system sce-
nario of the municipality Aalborg in a 100 % renewable energy context 
of Denmark and Europe. In both articles, the EnergyPLAN model is 
applied, and thus, a simulation to analyse supply and demand for a 
specific target state is performed, in contrast to the methodology pre-
sented in this study, which analyses transformation paths. Murray et al. 
[25] present an approach for the comparison of storage systems in 
neighbourhood decentralized energy system applications from 2015 to 
2050. This study is of particular importance, since the authors take into 
account potential future developments of the overarching energy system 
based on the Intergovernmental Panel of Climate Change’s ‘Special 
Report on Emissions Scenarios‘. Based on these scenarios, they project 
energy demand and renewable potential for a rural and an urban 
neighbourhood in Switzerland till 2050 and calculate optimal energy 
system configurations for the years 2015, 2020, 2035 and 2050. In 

contrast to the approach presented in this study, Murray et al. [25] focus 
on neighbourhoods and conduct single optimisations for each respective 
year (myopic approach) and therefore do not consider the trans-
formation of the energy system in closed form. 

In addition to the overnight approaches presented, several studies 
have examined energy system transformations in municipalities from 
the point of view of a central municipal planner. McKenna et al. [10] 
developed a feasible energy concept for the German municipality of 
Ebhausen by 2030. The results of a mathematical energy system opti-
misation are evaluated in a multi-criteria decision approach with pref-
erences derived from workshops with municipal decision-makers. The 
best performing alternatives that emerged showed similarities in 
installed technologies and measures and thus could be used as robust 
recommendations for future energy system design. In Weinand et al. 
[16] and Weinand et al. [17], the costs of energy system transformations 
by 2030 and 2050, respectively, are optimized for all 11,131 German 
municipalities. The former study focuses on complete energy autonomy 
in the municipalities, i.e., complete self-supply of energy demand by 
local renewable energies. The study shows that energy autonomy is 
feasible in 56 % of German municipalities and that the Levelised Costs of 
Electricity (LCOEs) increase on average by 0.41 €/kWh compared to the 
optimized energy system without autonomy. Weinand et al. [17] 
investigated the impact of the opposition towards onshore wind due to 
the influence of landscape beauty on the LCOEs. LCOEs can increase by 
up to 0.07 €/kWh when the onshore wind is excluded. 

In the present article, a techno-economic optimisation of the 
municipal energy system transformation is presented with a particular 
focus on the residential building stock. In contrast to previous studies, 
which use an aggregated household sector energy demand [8,9,12] or a 
small number of representative archetype buildings to describe the 
household sector energy demand transformation [15,17], the present 
study introduces a spatially highly disaggregated stochastic building 
stock model and combines it with a municipal energy system optimi-
sation approach. In Weinand et al. [15], already a small number of 
representative buildings (~10 buildings per municipality) lead to long 
runtimes of the energy system optimisation model (up to multiple days, 
depending on technologies considered). However, due to the small 
number of archetype buildings, no restrictions regarding maximum 
achievable retrofit and technology modernisation rates were imposed in 
the model. In this way, optimal investment decisions at the building 
level could be taken into account, but without considering relevant re-
strictions regarding the temporal dynamics of the building stock. 
Therefore, the inertia of the building stock transformation process was 
not considered in previous studies. This study aims to solve this short-
coming by presenting a stochastic building stock transformation model, 
upstream to the energy system optimisation (no. 1 in Table 1). This way, 
the high heterogeneity of the residential building stock is captured by 
considering each residential building. Furthermore, the building stock 
model can represent the temporal dynamics of the building stock 
transformation by taking into account core trends regarding future 
retrofit rates, retrofit depth, technology modernisation, and expansion 
rates. Through integrating informative and possible building stock 
transformation scenarios in the sector-coupled municipal energy system 
optimisation model, optimal transformation pathways of the local en-
ergy system can be determined in line with the national energy system. 
Besides the transformation of the household sector, local final energy 
demand developments in the industry, tertiary and transport sectors are 
integrated into RE3ASON to holistically capture the energy demand 
transformation (no. 2). Additionally, the existing municipal energy 
system optimisation model is further expanded to include relevant 
established and novel innovative (niche) technologies for the reduction 
of greenhouse gas emissions (no. 3). Finally, the optimisation model 
RE3ASON is extended by a two-stage approach to solving the optimi-
sation problem, which enables the optimisation problem to be solved in 
hourly resolution (no. 4). All extensions are summarised and contrasted 
with the former model implementations in Table 1. 

Table 1 
Description of the model extensions of the energy system optimisation model 
RE3ASON.  

No. RE3ASON (before)  
[18,10,15,17,16] 

RE3ASON þ extensions 

1 Aggregated depiction of building 
stock by archetype buildings (no 
consideration of temporal inertia) 

Multiple stochastic building stock 
scenario simulations as a binary 
decision variable in energy system 
optimization (Section 3.1 and 
3.2.1) 

2 Constant tertiary, industry and 
transport sector energy demand 

Integration of transport, tertiary and 
industry sector energy demand 
transformation (Section 3.2.2) 

3 Existing technologies: (see [17,18]) Existing technologies + freestanding 
PV&ST, H2 infrastructure, CO2-flows 
and CO2 mitigation technologies +
consideration of technology 
expansion rates (Section 3.3) 

4 One-step optimisation solving 
approach based on four typical 
weeks per year 

Two-step optimisation solving 
approach taking into account hourly 
resolution (Section 3.3)  

Table 2 
Overview of publicly available sources used in this study to simulate the local 
residential building stock energy demand.  

Source Information Spatial 
resolution 

[29] Residential building typology (U-values, building 
geometry, domestic hot water generation) 

National level 

[93] Census (building age, size, type of heating, type, 
number of households, household size) 

1 km2 grid 

[28] Building location, footprint, height Individual 
building 

[94] Roof structures, roof orientation Individual 
building 

[30] Retrofit state, energy carrier, heating technology, 
ventilation systems, solar-thermal 

National level 

[95] Solar-thermal installations Federal state 
level 

[34] New constructions Municipal level 
[32] Buildings under preservation order National level 
[35] Heating technology age National level 
[37] Scenarios for residential air conditioning 

dissemination 
National level 

[86] Information about energy-related household activities National level 
[85] Electricity consumption of household devices National level 
[57] Weather data (temperature, irradiation, wind speed) 30 km2 grid  
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3. Methodology 

A large amount of data is required to model municipal energy sys-
tems (see Table 2). A large part of the data, such as renewable potentials 
or information on the building stock, is municipality-specific. The base 
energy system optimisation model RE3ASON [18,15] minimizes the 
effort involved in data collection to be easily transferable to different 
German municipalities without additional effort. The only input 
required is the name of the municipality. Based on the location of the 
municipality, local weather data, spatially resolved population and 
building stock information and land use potentials for renewable energy 
sources are obtained and further processed to derive local energy de-
mand and technology-specific renewable potentials. In a downstream 
optimisation model, total discounted system costs are calculated from a 
macroeconomic municipality planner perspective for the optimal energy 
system transformation. Thereby, the size and dispatch of the energy 
technologies and demand side measures are optimized. This modell is 
substantially extended in this study. 

In Section 3.1, the objective function of the RE3ASON model is 
shown, and extensions made are introduced. Subsequently, the new and 
extended approaches for modelling the energy demand side trans-
formation are presented in Section 3.2. Finally, Section 3.3 describes the 
energy supply side extensions and the new process for solving the 
municipal energy system optimisation model. 

3.1. Objective function 

Fig. 1 presents the objective function of the mixed-integer linear 
program (MILP) optimisation model for minimizing the total discounted 
system costs from the point of view of a public welfare-oriented mu-
nicipality planner. The orange and grey connections to the national 
energy system describe the different energy carriers and CO2 flows 
which are considered in the optimization by using long-term energy 
carrier cei

a,t,j and CO2 emission cem
a,j price developments from the super-

ordinate national scenario. To adequately capture the high variability of 
the exchange electricity prices and the supply of fluctuating renewable 
energies, an hourly model resolution is used in contrast to previous 
studies (see e.g. Weinand et al. [16]). The blue and green highlighted 
area describes the costs connected to the expansion cinv

i,j and operation 

and maintencance cop
a,j of the local energy system. Investments in 

technologies xinv
i,j take place in the intervals i ∈ Int in between the 

representative years of consideration a ∈ A. The algorithm used to solve 
the MILP optimization problem is presented in Section 3.3. 

The consideration of multiple household transformation scenarios is 
represented by the area highlighted in red. In this study, investment 
decisions regarding the household sector transformation are made at the 
level of individual residential buildings outside the optimisation model 
in an upstream simulation model with a high spatial resolution. This 
way, the high heterogeneity of the residential building stock is consid-
ered without making the model intractable. Furthermore, the dynamics 
of the building stock can be examined in more detail, taking into account 
different retrofit rates, retrofit depth, modernisation rates for heating 
technologies and additional technologies like heat recovery units (HRU) 
and air conditioners (AC). No optimal decisions are made at the indi-
vidual building level from the point of view of a central municipal 
planner. However, transformations at the individual building level are 
derived based on top-down predetermined national framework condi-
tions. To account for the interaction during the transformation of the 
local energy system and the local residential building sector in the 
optimisation model, multiple household scenarios are calculated in the 
upstream simulation model, between which the optimiser can choose in 
the form of a discrete decision variable xscen

h . In addition to the devel-
opment of the final energy demand, the costs associated with the resi-
dential building sector transformation cscen

h are calculated in the 
upstream model. 

3.2. Energy demand transformation 

A spatially highly resolved stochastic simulation model for the 
transformation of the local residential building stock is developed in 
Section 3.2.1, that while considering the framework conditions of the 
national building stock transformations, determines the change in the 
local building stock. Furthermore, a top-down approach for the devel-
opment of the final energy demand in the sectors of industry, tertiary 
and transport is described in Section 3.2.2. 

3.2.1. Bottom-up residential building and household sector transformation 
Based on the municipal building stock, Fig. 2 presents the generation 

of different residential building transformation scenarios using publicly 
available data and information from national energy system 

Fig. 1. Visualisation of the objective function to minimise total discounted system cost of the municipal energy system transformation.  
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transformation studies. Before the generation of the scenarios is pre-
sented, the derivation of the initial building stock is described. 

3.2.1.1. Initial building stock. To determine the local building stock in 
2020, building stock information about size, age, and type of buildings, 
as well as the number and size of households in 2011 is derived based on 
1 km2 spatially resolved census data [27], Open Street Map building 
information [28] and the German residential building typology [29] by 
using the procedure presented in Mainzer [18]. A comparison of our 
approach with current urban building energy modelling developments 
in literature can be found in the Appendix (see Urban building energy 
modelling). In order to determine the initial retrofit state of the resi-
dential buildings, empirically collected building age class-specific 
retrofit shares rsac of the German residential building stock are taken 
from Cischinsky and Diefenbach [30]. Based on these shares, the retrofit 
state for all buildings bldg of the local residential building stock BS in the 
year 2016 are sampled by using a Bernoulli distribution according to eq. 
(1). 

Xrs
bldg ∼ Bernoulli

(
P
(

acbldg

))

∀ bldg ∈ BS
(1) 

Buildings under preservation order are excluded when sampling the 
retrofit state. Analogously to [31], 20 % of the Multi-Family Houses 
(MFH) before 1950, 10 % of the Single-Family Houses (SFH) before 
1950 and 5 % of all buildings between 1950 and 1994 are excluded from 
retrofit measures [32]. The year of retrofit is estimated by assuming that 
retrofit cycles have been carried out uniformly since 1990 [33]. A 
piecewise linear dependency between the retrofit probability and the 
building age is assumed for the probability that a building is renovated 
in a given year. The relationship is shown in eq. (2), where cybldg de-
scribes the construction year of the building. 

Xry
bldg ∼ Bernoulli

(
P
(
cybldg, year

))

∀ bldg ∈ BS, ∀ year ∈ [1990, 2016]
(2) 

Depending on the time of the retrofit, different retrofit depths are 
assumed. Buildings that were refurbished before 2009 are refurbished to 
the respective new construction standard of the year of retrofit. From 
2009 onwards, the U-values of the refurbished buildings are based on 
the usual retrofit standard of the IWU building typology for Germany 
[29]. A retrofit rate of 1 %/a (full retrofit equivalents) between 2016 and 

2020 is used to derive the initial building stock state in 2020. Spatially 
resolved information at the municipality level is used to include new 
buildings and building demolitions [34]. For the geographic placement 
of future newly constructed buildings within the municipality, new 
construction shares of the districts after the year 2000 are used [27]. In 
this way, unrealistically high growth rates in inner-city areas are avoi-
ded. No new locations are set for the exact placement of the buildings, 
but duplicates of existing buildings are created. 

For the allocation of the heating technologies, the spatially resolved 
information from the census survey on the centralisation type of heat-
ing1 is combined with the Germany-wide information on energy carrier 
and heating technology distributions depending on the building type 
and building age [27,30]. In the first step, each building is assigned an 
energy carrier ecbldg using a multinomial distribution based on the 
building’s construction year cybldg, building type typebldg and central-
isation type of heating ctohbldg eq. (3). 

Xec
bldg ∼ M

(
P
(
cybldg, typebldg, ctohbldg

))

∀ bldg ∈ BS
(3) 

Based on the energy carrier, the specific heating technology htbldg is 
assigned to the respective building in a second step eq. (4). 

Xht
bldg ∼ M

(
P
(
cybldg, typebldg, ctohbldg, ecbldg

))

∀ bldg ∈ BS
(4) 

The age of the heating technology is estimated based on the building 
age and the nationally available information on the age distribution of 
the different heating technologies [35]. 

Based on the parameterized building stock, the demand for useful 
energy of household electricity devices, domestic hot water, and space 
heating is calculated in an hourly resolution based on a combined oc-
cupancy and thermal building model described in the Appendix (see 
Residential energy demand simulation). 

3.2.1.2. Residential building stock transformation. The transformation of 
the local building stock is visualized in Fig. 2. In the first step, the 
buildings to be retrofitted are identified for each simulation year, 

Fig. 2. Generation of different residential building transformation scenarios using transferrable data and information from national energy system trans-
formation studies. 

1 Type of heating: district heating, block heating, central heating, room 
heating, story heating. 
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starting from 2020 until the target year. An annual retrofit rate rr in the 
form of full retrofit equivalents as well as information on the percentage 
of deep retrofits rrdeep is required as input. For the selection of the 
buildings to be renovated, the space heating demand after a standard 
and deep retrofit, as well as the energy-related cost of the retrofit 
measures crm are calculated for all buildings of the building stock based 
on the component-specific surface areas sabldg

comp, U-values ubldg
comp, prices 

ccomp and an assumed heat conductivity λ of 0.035 W/(mK) according to 
Hinz [36] eq. (5). 

cbldg
rm =

∑

comp

((
1

ubldg,rm
compafter

−
1

ubldg
compbefore

)

⋅λ⋅ccompvar + ccompfix

)

⋅sabldg
comp

+

⎛

⎝

(
1 − ubldg,rm

windowafter

)

0.2
⋅cwindowvar + cwindowfix

⎞

⎠⋅sabldg
window

comp ∈ {wall, roof , f loor}, ∀ bldg ∈ BS, ∀ rm ∈ RM

(5)  

LCOSHbldg
rm =

cbldg
rm • ann
ΔSHbldg

rm

∀ bldg ∈ BS, ∀ rm ∈ RM
(6) 

Using the Levelised Cost Of Saved Heat (LCOSH), calculated ac-
cording to eq. (6), and the amount of saved heat per m2 ΔSH of the 
respective retrofit measures, retrofit weightings are calculated. In 
addition, the age of the building is considered in selecting the buildings 
to be renovated, analogous to determining the initial residential build-
ing stock. Based on these weightings, a multinomial distribution is used 
to identify the buildings that go through a retrofit cycle in the respective 
simulation year and to determine the retrofit depth of the measure un-
dertaken eq. (7). 

Xbldg
rm ∼ M

(
P1
(
LCOSHbldg

rm1 ,ΔSHbldg
rm1 , cybldg

rm1
)
,P2(..),P3(..)

)

∀ bldg ∈ BS
(7) 

Subsequently, based on the simulated distribution and age of the 
HRUs in 2020, the future distribution of HRUs is calculated using target 
shares from selected national scenarios for the future representative 
years of consideration. For the dissemination of the HRU systems, it is 
assumed that they are only installed in newly built or well-insulated 
buildings with a maximum wall U-value of 0.3 W/(m2⋅K). 

The iterative process for simulating the dissemination of heating 
technologies in the future local building stock is described in Fig. 3. 

Information about the local building stock, future heat generation 
technology shares from national scenarios, historical heating technology 
transition rates, and assumptions regarding local modernisation rates 
are required as input parameters. Historical heating technology transi-
tion rates are derived from BDEW [35]. The probabilities for a heating 
technology transition are calculated based on the heating technology 
type and age (wage) as well as historical transition rates (whtr). In addi-
tion, information on the time of retrofit from previous calculation steps 
(wtor) and technology-specific requirements (wtsr) (e.g. heat pumps can 
only be installed in buildings with a space heating demand < 120 kWh/ 
m2/a) are taken into account. Furthermore, in areas where many 
buildings already have a district heating connection, the probability of a 
connection to the district heating network increases in proportion to the 
number of already installed connections (wdh). Consequently, the 
probability of a heating technology change Pbldg

htold/new 
is calculated ac-

cording to eq. (8) for all buildings and all possible new heating tech-
nologies. Based on these transition probabilities and the assumed annual 
modernisation rate, the multinomial distribution described in eq. (9) is 
parameterized for each building of the local building stock. 

Pbldg
htold/new

=

wage

(
agebldg

ht,old , typebldg
ht,old

)
⋅whtr

(
typebldg

ht,old, typebldg
ht,new

)

⋅wtor
(
rybldg

)
⋅wtsr

(
typebldg

ht,new, SHbldg
)

⋅wdh

(
typebldg

ht,new, locbldg

)

∀ bldg ∈ BS, ∀ htnew ∈ HT

(8)  

Xbldg
htold/new

∼ M
(

Pbldg
htold/new1

,⋯,Pbldg
htold/new19

,Pbldg
htold/old

)

∀ bldg ∈ BS
(9) 

Starting from the initial heating technology transition distribution 
parameterized in eq. (9), the iterative process described in Fig. 3 occurs. 
The heating technologies in the existing building stock and the newly 
added heating technologies in the newly constructed buildings are 
calculated in annual steps up to the following reference year (e.g., 2030/ 
40/50 in Fig. 3). The dissemination of the heating technologies in newly 
constructed buildings follows the trends in the existing building stock. 
Further, it considers optional higher requirements, e.g., installation bans 
(e.g., no new heating systems based on fossil fuels). The calculated 
shares of heating technologies in the reference year are compared with 
the target distributions of heating technologies in the reference years 
derived from the national scenarios considering the local initial state. An 
error in the form of a mean absolute error (MAE) is calculated based on 
the deviations of the distributions. Based on the heating technology- 

Fig. 3. Visualisation of the iterative process to calculate the dissemination of heating technologies in the local building stock based on overarching changes at the 
national level. 
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specific deviations, the historical transition rates whtr are adjusted and 
the heating technology transition is calculated in an iterative way till the 
MAE reaches a pre-defined threshold. If, due to the local characteristics 
of the building stock, the MAE does not fall below the specified 
threshold, the algorithm stops after a certain number of iterations 
without improvement. 

The dissemination of cooling devices in the form of air conditioners 
in the local residential building stock is implemented in the model based 
on the scenarios defined by Kenkmann et al. [37]. Two scenarios for the 
penetration of air conditioning systems in the household sector are 
analysed (low: ~ 14 %, high: ~25 % of households use ACs). As in 
Kenkmann et al. [37], the severity of the scenarios depends negatively 
on the assumed retrofit rate (range of retrofit rate: 1 %/a – 2.5 %/a). 
Furthermore, it is assumed that ACs are mainly installed in well- 
renovated buildings and that, on average, 50 % of the living area is 
cooled [37]. 

3.2.1.3. Residential building technology design and operation. For the 
appropriate dimensioning of the heating technologies, the design heat 
load is calculated based on DIN EN 12831 [38], taking into account the 
thermal standards of the building envelope. The design heat load en-
sures the required heat demand can be provided even at the lowest 
winter temperatures without solar and internal gains. Combined heat 
and power plants (CHP) and solar thermal plants (ST) are not designed 
to cover 100 % of the heating demand. The size of the CHP is determined 
by using a target number of full load hours (5000 h/a) according to 
BKWK [39], assuming that the CHP is operated in a heat-driven way. 
The solar thermal systems are designed depending on the available roof 
area and type of use (combined plant or only for DHW). 

Technical parameters from the technical reports of the Danish En-
ergy Agency are used for the simulation of the technology operation 
[40]. The coefficient of performance of the heat pumps is calculated in 
hourly resolution depending on the heat source temperature (outside air 
or geothermal heat) and the heat sink temperature. The heat sink tem-
perature depends on the outside temperature and the feed temperature 
of the heat distribution system, with the feed temperature being esti-
mated depending on the age of the building [31,41]. The energy effi-
ciency ratio (EER) of the air conditioner is determined in hourly 

resolution depending on the outside temperature and is calculated ac-
cording to the procedure presented by Meissner et al. [42] and Cherem- 
Pereira and Mendes [43], with the future development of the EER being 
assumed analogous to Kenkmann et al. [37]. For the simulation of the 
thermal energy supply of the solar thermal systems, the irradiation is 
calculated for all roof areas of the local building stock. Therefore, based 
on satellite data, all useable roof areas are identified using the method 
presented in Mainzer et al. [98]. Representative area orientations are 
determined using the k-means method based on azimuth and inclina-
tion. Radiation simulations are then carried out for the representative 
areas with the PV-Lib [97]. The heat supply for all solar thermal systems 
is calculated based on the method presented by Lindberg et al. [44]. 

3.2.2. Industry, tertiary and transport sector transformation 
For the design of the municipal energy system, the transformation of 

the final energy demand in the sectors of industry, tertiary and transport 
needs to be considered. Due to the greater heterogeneity of demand in 
contrast to the household sector, publicly available data from the Sol-
idEU scenario of the ExtremOS project is used [45]. In contrast to the 
presented household model in Section 3.2.1 the ExtremOS data are 
provided by a top-down approach that disaggregates national energy 
demand to all European NUTS3 regions. The data are available in hourly 
resolution differentiated by the final energy source and the individual 
sectors. Furthermore, the demand transformation from the initial state 
in 2020 to 2050 is provided in five-year steps. The final energy demand 
is available for the weather year 2012. In order to analyze the energy 
system transition for different weather years, the final energy demand is 
adapted to different years based on the daily temperature tempd and day 
categories dc of the target year eq. (10, 11). The days are divided into the 
categories Monday to Thursday, Friday, Saturday, and Sunday/holiday. 

min
(

tempref
d1

− temptarget
dj

, ..., tempref
d365

− temptarget
dj

)

∀ i ∈ [1, 365]
(10)  

s.t. dcdj = dcdi (11)  

Fig. 4. Visualisation of the technology options and energy carrier flows considered in the municipal energy system optimisation and representation of the exchange 
flows with the national energy system. 

M. Kleinebrahm et al.                                                                                                                                                                                                                          



Applied Energy 332 (2023) 120515

9

3.3. Energy supply transformation 

The base model RE3ASON [18] is further extended to include all 
relevant technologies considered in the national energy system trans-
formation studies discussed in Section 7.1 in the Appendix (see National 
energy system transformation). Integrated technologies in the base model 
are wind turbines, rooftop photovoltaic (PV) systems, biomass tech-
nologies, natural gas CHPs, lithium-ion batteries, and deep geothermal 
power plants. The procedure for the transferrable determination of the 
local renewable potentials for wind turbines, rooftop PV, and biomass 
systems is based on local land use potentials based on Open Street Map 
and satellite data and is described in detail in Mainzer [18]. The trans-
ferrable methodology for determining the geothermal potential and 
implementing the simultaneous heat and power generation from 
geothermal plants is described in Weinand et al. [15,46]. 

The energy system model is expanded as part of this study to include 
all technology options and energy carrier flows shown in Fig. 4. Based on 
the potential for freestanding PV determined at the NUTS3 level in 
Ebner et al. [47] the available area potential Af in the respective NUTS3 
region is deduced. Thereby, the land use competition is considered for 
the expansion of freestanding PV and solar thermal plants according to 
eq. (12). Optimisation variables are presented in bold. PfPV

i,a describes the 
capacity of freestanding PV installed in year a, from investment interval i 
with a specific area consumption of AfPV

i . AfST
i,a describes the installed 

solar thermal area in year a from the investment interval i. 
∑

i
PfPV

i,a ⋅AfPV
i +

∑

i
AfST

i,a ≤ Af

∀ a ∈ A
(12) 

To cover the future demand for hydrogen in the industrial, transport 
and energy sectors, the model includes the possibility of importing or 
generating hydrogen in an electrolyser using locally generated elec-
tricity and storing it in pressure storage tanks. Furthermore, investing in 
a methanation plant to convert hydrogen and CO2 into synthetic natural 
gas is possible. The required CO2 can be captured by investing in carbon 
capture (CC) systems to upgrade CHPs or directly from the atmosphere 
by investing in direct air capture systems (DAC). In addition to elec-
tricity, heat at a temperature level of ~ 100 ◦C is required to operate a 
low-temperature DAC system [48]. Three sources can provide high- 
temperature heat (>100 ◦C). The engine exhaust of a CHP can be 
recovered, which has a higher specific heat content than the engine 
jacket water, intercooler and lubricating oil [49]. The extraction of heat 
at high and low-temperature levels (QCHPtemp,high

t,a ,QCHPtemp,low
t,a ) and the pro-

vision of electricity PCHPel
t,a taking into account the respective efficiencies 

η of the CHP is shown in eq. (13) for every timestep t in every year a. 

PCHPel
t,a + QCHPtemp,low

t,a + QCHPtemp,high
t,a =

PGas
t,a ⋅
(
ηCHPel + ηCHPtemp,low + ηCHPtemp,high

)

∀ t ∈ T, ∀ a ∈ A

(13) 

A heat pump can be used to upgrade heat from low-temperature heat 
sources. If available, the local district heating network can be used so 
that the inlet temperature tempin of the heat pump would be set equal to 
the temperature of the district heating network tempdh. If there is no 
district heating network, ambient heat can be used as a heat source 
(tempin = tempamb). According to eq. (14), together with the exergetic 
efficiency ηexergy of the heat pump, the ratio between the electrical power 
PHP

t,a and the thermal output QHP
t,a of the heat pump is defined. 

QHP
t,a =

tempout

tempout + tempin
⋅ηexergy⋅PHP

t,a

∀ t ∈ T, ∀ a ∈ A
(14) 

Furthermore, a geothermal power plant can be built in municipalities 
with geothermal potential. For achievable hydrothermal temperature 

levels above 100 ◦C, the implementation of the geothermal power plant 
presented in Weinand et al. [15] is expanded to include the possibility of 
extracting high-temperature heat according to eq. (15) and eq. (16). The 
geothermal heat can be used at different temperature intervals to 
generate high-temperature heat QGTtemp,high

t,a , electricity PGTORC
t,a and low- 

temperature heat QGTdh
t,a during operation. For this purpose, the model 

distinguishes between four different temperature levels (tempGTPW
t,a : pro-

duction well temperature, tempGTtemp,high
t,a : geothermal high-temperature 

heat, tempGTORC,out
t,a : organic rankine cycle outlet temperature, tempGTinject

t,a : 
geothermal injection temperature). The energy balance for heat 
extraction for the district heating network (eq. (17)) is identical to 
Weinand et al. [15]. 

QGTtemp,high
t,a

ηthtemp,high
= V̇B⋅ρw⋅cp,w⋅

(
tempGTPW

t,a − tempGTtemp,high
t,a

)

∀ t ∈ T, ∀ a ∈ A

(15)  

PGTORC
t,a

ηelORC
= V̇B⋅ρw⋅cp,w⋅

(
tempGTtemp,high

t,a − tempGTORC,out
t,a

)

∀ t ∈ T, ∀ a ∈ A

(16)  

QGTdh
t,a

ηthdh
= V̇B⋅ρw⋅cp,w⋅

(
tempGTORC,out

t,a − tempGTinject
t,a

)

∀ t ∈ T, ∀ a ∈ A

(17) 

The maximum volumetric flow rate V̇B of the geothermal plant, the 
specific heat capacity of the geothermal water cp,w as well as the water 
density ρw are assumed analogously to Weinand et al. [15]. 

Due to the large number of technology options in which the opti-
miser can invest in the representative years and the associated large 
number of (structural) binary decision variables that are required, for 
example, for the operation of the geothermal plant (see Weinand et al. 
[15]), the MILP optimisation model cannot be solved in a reasonable 
time in closed form over several years in hourly time resolution. To 
reduce the complexity of the optimisation problem, the time series ag-
gregation method presented in Kotzur et al. [50,51] is integrated into 
RE3ASON and used in this study, which was specially developed for 
energy system optimisation problems with time-coupling restrictions. 
The optimal choice of structure variables is determined in the first 
optimisation step based on the aggregated time series structure. In a 
second optimisation step, the operation for the structural design from 
the first optimisation step is then optimized based on the disaggregated 
time series structure (similar procedure to Bahl et al. [52] and Kotzur 
[31]). By integrating the time series aggregation into the workflow of 
the transferable methodology presented, the complexity of the optimi-
sation model can be adapted to the available computing resources with 
little effort, taking into account a slightly reduced computational accu-
racy (depending on the considered system components [50]). The MILP 
optimisation problems in this study are solved using the Gurobi solver 
and a relative MIP gap of 0.5 %. All underlying basic constraints of the 
RE3ASON optimisation model, such as hourly energy balances, capacity 
expansion constraints through, e.g., space restriction or state of charge 
equations of storage technologies can be found in Weinand et al. [17] 
and Mainzer [18]. 

4. Case study 

To illustrate the methodology presented, an exemplary case study for 
the Central European city of Karlsruhe in Germany is carried out. 
Karlsruhe is a city of approximately 308,000 inhabitants whose final 
energy demand can be divided nearly equally between the household 
(24 %), industry (26 %), tertiary (24 %) and transport (26 %) sectors 
[53,54]. A district heating network utilizes waste heat from industrial 
processes (61 %), CHP (18 %) and a gas-fired heating plant (21 %) to 
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supply 25 % of the dwellings in Karlsruhe with district heating in 2020 
[55,56]. The energy supply side is characterized by relatively high solar 
irradiation (1187 kWh/m2/a; German average 1122 kWh/m2/a) and a 
high potential for geothermal plants due to high achievable hydrother-
mal temperatures (130–160 ◦C) [15,57]. Karlsruhe is used as a conve-
nience sample, and further validation of the results of this case study is 
planned in follow-up work in cooperation with local energy utility 
companies and infrastructure analysts as part of the research project 
mentioned in the acknowledgment. 

The framework conditions for the case study are presented in Section 
4.1. Subsequently, the transformation of the local household sector, a 
significant model input for the municipal energy system optimisation, is 
discussed in Section 4.2. Finally, Section 4.3 analyzes the municipal 
energy system, considering the transformation of sector-specific demand 
and local renewable potential. 

4.1. Economic, environmental and technological framework conditions 

The exogenous parameters specified in this study concerning energy 
carrier import/export price and emission development, CO2 price 
development and assumptions regarding grid usage fees for transmission 
networks have a major impact on the decentralisation or centralisation 
of future local energy supply. Based on the studies described in the 
Appendix (see National energy system transformation), the framework 
conditions from Sensfuß et al. [58] are taken for the development of 
energy carrier prices and emissions as well as for CO2 emission certifi-
cate prices. The reason for choosing the framework parameters of 
Sensfuß et al. [58] is the high transparency and temporal resolution of, e. 
g., electricity prices compared to the studies with the target of achieving 
climate neutrality in 2045. In addition to importing CO2-emitting energy 
carriers before achieving climate neutrality in 2050, the local energy 

planner is provided with the possibility of importing emission-free car-
bon-based energy carriers in the form of synthetic methane and Fischer- 
Tropsch Fuel at import prices according to Hampp et al. [59]. Future 
developments of technology parameters and price developments are 
assumed according to the technical reports of the Danish Energy Agency 
[60]. Size-independent and size-dependent prices for investments in 
heating technologies are assumed analogous to Kotzur [31]. 

4.2. Household sector transformation 

To illustrate the interactions between the local building sector and 
the national energy system, 192 transformation scenarios for the local 
residential building sector of the municipality Karlsruhe in Germany are 
calculated according to Fig. 2. The scenarios differ in terms of the retrofit 
rate (8x), the level of the target U-values of retrofit measures (3x), the 
dissemination of heat recovery units (2x), and the dissemination of the 
heating system technologies (4x). The definition of the range of the 
parameters in Table 3 is inspired by the national scenarios “Climate- 
neutral (CN)-gas” and “CN-electricity” by Sensfuß et al. [58]. In com-
parison to the “CN-gas” scenario, the “CN-electricity” scenario has a 
more ambitious yearly retrofit rate and retrofit depth (lower U-values) 
as well as higher heat pump shares in the future building stock. The 
future achievable retrofit rate is one of the most frequently discussed 
parameters in building stock studies, as discussed in the Appendix (see 
National energy system transformation). Consequently, the influence of 
the retrofit rate is particularly examined by considering a wide range of 
possible future developments between the investigated representative 
years. Intermediate heating technology dissemination scenarios are 
determined by interpolation between the two extreme scenarios. When 
determining the future retrofit depths (U-values), a distinction is made 
between three scenarios in which achievable U-values for new 

Table 3 
Definition of the parameter ranges for the calculated household sector scenarios. (*: “CN-gas”, **: “CN-electricity”, nc: new construction, cr: conventional retrofit, ar: 
ambitious retrofit).  

Parameter Parameter range 

Retrofit rate 
[%bldg/a] 

20–30 1 1.33* 1.66** 2 1.33 1.5 2 2 
30–40 1 1.33* 1.66** 2 1.66 2 3 1.5 
40–50 1 1.33* 1.66** 2 1.66 2 3 1.5 

U-values 
(nc/cr/ar) 
[W/m2K] 

Roof 0.15/0.15/0.13** 0.17/0.17/0.13* IWU [29] 
(building type and age-specific) Wall 0.16/0.16/0.14** 0.20/0.20/0.18* 

Window 0.80/0.80/0.70** 1.00/1.00/0.80* 
Floor 0.22/0.22/0.20** 0.26/0.26/0.23* 

HRU 
[%bldg,2050] 

– 21* 37** 

Target share heat system 
[%bldg,2050] 

Gas boiler 2** 12.33 22.66 33* 
Heat pump 70** 57.66 45.33 33*  

Fig. 5. Visualisation of the calculation steps for simulating the local final energy demand development of the residential building sector for the municipality of 
Karlsruhe (KA). 
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constructions (nc) as well as conventional (cr) and ambitious retrofit (ar) 
measures are defined (cf. Table 3). 

Fig. 5 shows the results of the calculation of the final residential 
energy demand development for space heating (SH) and domestic hot 
water (DHW) in Karlsruhe for the “CN-electricity” scenario, one of the 
192 different scenarios. Based on the superordinate national trans-
formation of the heating system technology stock, the transformation of 
the heating technologies in the local building stock is derived. The case 
study presented here shows a future modernisation rate of 3 %/year 
between 2020 and 2030, based on empirically derived historical 
modernisation rates [30], and an increase of 4 %/year between 2030 
and 2050 is assumed in all scenarios. The “CN-electricity” scenario 
shown in Fig. 5 is based on a strong increase in the share of heat pumps 
in the national building stock, especially between 2030 and 2040, which 
cannot be fully achieved in the local building stock due to the local 
conditions and the assumed maximum achievable modernisation rate. 
Therefore, an increased local expansion of heat pumps is seen between 
2040 and 2050. In the described scenario, the final energy demand for 
space heating and hot water is reduced by 48 % between 2020 and 2050. 
While oil and gas provided around 69 % of the final energy in the initial 
state in 2020, in 2050 there is only a small share of gas boilers left in the 

local building stock and the majority of the buildings are supplied by 
heat pumps and district heating systems, which cover for 88 % of final 
energy demand (environmental heat for heat pumps included). 

In contrast to the “CN-electricity” scenario, Fig. A10 describes the 
developments of the local building stock for the “CN-gas” scenario. The 
share of heat pumps in 2050 is significantly lower in the “CN-gas” sce-
nario compared to the “CN-electricity” scenario. Due to the lower 
retrofit rate of 1.33 % per year, the lower requirements for the retrofit 
measures in the form of less ambitious U-values and an assumed weaker 
dissemination of heat recovery units in contrast to the “CN-electricity” 
scenario, a reduction in final energy demand of 36 % is reached in the 
period from 2020 to 2050. While the share of synthetically produced 
natural gas in the “CN-electricity” scenario falls to around 3 %, the gas 
share in the “CN-gas” scenario is significantly higher at 40 % in 2050. 

In the following, the scenarios “CN-gas” and “CN-electricity” are 
compared with the other 190 scenarios. Fig. 6 a.) shows the levelised 
cost of saved heat (LCOSH) through wall, roof, floor and window retrofit 
measures against the respective saved heat for space heating over the 
entire period of consideration (2020 till 2050). The LCOSH is calculated 
according to eq. (5) and (6) assuming an interest rate of 5 %/a and a 
retrofit measure lifetime of 40 years for all components. Only energy- 

Fig. 6. Comparison of the 192 residential building stock transformation scenarios for the municipality of Karlsruhe regarding a.) the Levelised cost of saved heat, b.) 
total discounted system cost and CO2 emission as well as their temporal occurrence c.), d.). 
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related additional costs are considered, according to Hinz [36]. Due to 
the low retrofit rate of 1.33 %/a in the “CN-gas” scenario and the less 
ambitious retrofit depth compared to the “CN-electricity” scenario, the 
total saved heat is 20 % lower in the “CN-gas” scenario. The energy- 
weighted average LCOSH in the “CN-gas” scenario (0.039 €/kWh) is 
0.014 €/kWh lower in comparison to the LCOSH in “CN-electricity” 
scenario (LCOSH 0.053 €/kWh). On the one hand, the lower LCOSH can 
be explained by the selection of the buildings that go through a retrofit 
cycle (selection according to eq. (7)). Buildings with low LCOSH and 
high specific heat savings are given preference for retrofit. Therefore, 
the 0.33 % of the additional buildings retrofitted in the “CN-electricity” 
scenario tend to have higher LCOSH than the first 1.33 %. On the other 
hand, the more ambitious U-values in the “CN-electricity” scenario mean 
that more heat is saved per retrofit. However, the marginal utility of a 
retrofit decreases with increasing retrofit depth. 

Fig. 6 b.) compares the total discounted system cost (TDSC) and the 
energy-related CO2 emissions of the local building sector transformation 
for the “CN-electricity” and “CN-gas” scenarios and the scenario with the 
lowest TDSC “CN-opt”. The TDSC consists of capital expenditures 
(CAPEX) in retrofit measures (wall, roof, …) as well as heating/cooling 
systems (heat pump, boiler, …), expenses for the maintenance of the 
technologies (O&M) and expenses for the procurement of energy car-
riers and the purchase of CO2 emission certificates. The prices for the 
procurement of energy carriers are composed of the market prices and 
the network charges for transmission and distribution (see Table A6). 
Further levies and taxes are not taken into account due to the perspec-
tive of a central municipal planner. In contrast to the network charges 

for gas and electricity grids shown in Table 4, which represent average 
grid charges across all sectors (industry, tertiary, household), household 
sector-specific network charges are used here according to BEE [61]. 
The household-specific charges are further differentiated and reduced 
network charges for power-to-heat applications are assumed for the heat 
pump electricity demand [61]. Under the defined framework conditions, 
the TDSC of the “CN-gas” scenario is 0.6 % lower than the TDSC of the 
“CN-electricity” scenario, whereas the cumulated CO2 emissions in the 
observation period in the “CN-electricity” are over 14 % lower. The 
composition of the TDSC shows that the capex in the “CN-electricity” 
scenario is 20 % higher than the capex of the “CN-Gas” scenario due to 
the higher retrofit activities, the increased expansion of heat pumps and 
HRU, whereby the costs for the procurement of energy carriers are 7 % 
higher in the “CN-gas” scenario. The “CN-opt” scenario shows a sub-
stantial heat pump expansion as in the “CN-electricity” scenario. In 
contrast to the “CN-electricity” scenario the retrofit rate is increased 
from 1.66 %/a to 2 %/a, and the retrofit depth is reduced to the level of 
the “CN-gas” scenario. 

Fig. 6 c.) shows the temporal development of the total annual system 
costs and the energy-related CO2 emissions caused by the residential 
building sector. The color of the background scenarios is chosen 
depending on the heating technology dissemination (four degrees of 
differentiation), whereby red is chosen for scenarios with a high pro-
portion of gas boilers (analogous to “CN-gas”) and blue for scenarios 
with a high proportion of heat pumps (analogous to “CN-electricity”). 
Fig. 6 d.) presents the development of the annual total costs of the res-
idential building sector, differentiated according to cost type. The three 

Table 4 
Quantification of the effects of individual energy system transformation measures on TDSC and CO2 emissions. The changes are made exclusively for the individual 
scenarios and therefore do not affect each other.  

Measure ΔTDSC [M€] ΔCO2 [kt] ΔTDSC / ΔCO2 Measure ΔTDSC [M€] ΔCO2 [kt] ΔTDSC / ΔCO2 

b1) 10 % faster PV expansion  − 12.7 − 36 349 b5) retrofit rate 2 → 1 %/a  6.7 200 34 
b2) no wind turbine  1.0 6 183 b6) household 

elec. → gas  
1.4 652 2 

b3) no biomass  17.9 409 44 b7) − 1Mt CO2  9.2 − 1000 − 9 
b4) no geothermal  7.5 61 124 b8) − 1Mt CO2 w/o DAC  48.1 − 1000 − 48  

Fig. 7. Visualisation of the development of energy carrier imports, local generation of electricity and district heating, and the development of CO2 emission for 
Karlsruhe. Historical CO2 emissions are shown until 2019 [55,56]. 
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exemplary scenarios are highlighted in the foreground, while the spread 
of the 192 scenarios is shown in the background. All scenarios show an 
increase in costs between 2020 and 2040. The main reasons for the in-
crease are: On the one hand, the increase in procurement prices for 
energy sources (including CO2 emission price) (see operation in Fig. 6 
d.)) and on the other hand, the increase in costs associated with in-
vestments in the building envelope and heating technology 

modernisation. While the increase in procurement prices is mainly re-
flected in the scenarios with a high proportion of gas boilers and a lower 
retrofit rate, the increase in the scenarios with a high proportion of heat 
pumps and higher retrofit rates is more driven by the capital expendi-
tures, especially between 2030 and 2040. The difference in the course of 
the total system costs between the “CN-opt” scenario and the “CN- 
electricity” scenario can be explained by the lower renovation depth and 
the less extensive expansion of HRUs and the energy carrier costs saved 
due to the higher retrofit rate. The delta in saved CO2 emissions is 
particularly evident in the year 2040 between the scenarios and can be 
explained by the faster reduction of the CO2 emission factor of the 
electricity mix (30 g/kWh CO2 emission) compared to the gas mix (150 
g/kWh CO2 emission) of the national energy system in 2040. 

4.3. Municipal energy system transformation 

The transformation of the local energy system is based on the sector- 
specific final energy carrier demand developments and the local po-
tential for the expansion of renewable energies. The energy demand 
development of the four demand sectors in Karlsruhe up to the year 
2050 can be found in Fig. A11. While the optimisation model for the 

Fig. 8. a.) Illustration of the differences in TDSC and CO2 emissions without local energy system expansion (a) and with local energy system expansion (b,c,d,e). b.) 
Visualisation of the differences in TDSC and CO2 emissions of the measures presented in Table 4. When balancing indirect CO2 emissions, the emissions from the 
upstream chain are taken into account, while direct emissions describe emissions caused by local combustion of carbon-based energy carriers. 

Table A5 
Comparison of studies from 2021 to achieve climate neutrality at the German 
and European level (GHG: greenhouse gas, CN: climate neutrality).  

Study Scenario name Objective Scope Openly available data 
resolution 

[45] solidEU GHG − 95 
% 

EU High (spatial/ 
temporal/sectoral) 

[58] TN-PtG/PtL, TN- 
Strom, TN-H2-G 

CN 2050 DE High (temporal/ 
sectoral) 

[74] KN2045 CN 2045 DE Aggregated (sectoral) 
[75] KN100 CN 2045 DE Aggregated (sectoral) 
[76] Zielpfad CN 2045 DE – 
[77] KSG 2045 CN 2045 DE Aggregated (sectoral)  

Fig. A9. Exemplary visualisation of the spatial and temporal resolution of the residential demand for electricity and district heating in the “CN-electricity” scenario 
in 2050. 
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transformation of the household sector is given a choice between one of 
the 192 transformation scenarios, the demand developments in the in-
dustrial, tertiary and transport sectors are fixed. 

To cover the final energy demand, energy carriers can be imported 

from the higher-level national energy system, or locally self-generated 
electricity, heat and renewable gases can be used. The local potentials 
for biomass plants and rooftop photovoltaic systems can be found in 
Fig. A12 and Fig. A13 in the Appendix. Besides the fully transferable 

Fig. A10. Visualization of the calculation steps for the simulation of the local final energy demand development of the residential building sector for the municipality 
of Karlsruhe. 

Fig. A11. Sector-specific final energy demand development for the municipality of Karlsruhe. The developments for the industrial, tertiary and transport sectors are 
based on [90–92] and were adapted to the weather conditions of the weather year (2017) on which this study is based, by using the procedure presented in Section 
3.2.2. As an example for the 192 transformation scenarios of the household sector, the development of the final energy demand of the “CN-electricity” scenario 
is presented. 
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methods, one manual specification is made to consider the local waste 
heat supply. Local sources of waste heat can be integrated into the model 
by specifying the heat output and the temporal availability of the waste 
heat sources. Karlsruhe’s primary sources of waste heat are a refinery 
with a waste heat potential of 90 MW and the waste heat from a coal- 
fired power plant with a waste heat potential of 220 MW [55,56]. In 
this study, it is assumed that both waste heat sources will be available 
until 2035. From 2022, the waste heat from a paper factory is also 
considered in the model with an assumed heat output of 30 MW and 
availability over the entire observation period of the study [55,56]. 

Furthermore, Karlsruhe is located in the Upper Rhine Graben and has 
a high geothermal potential. Hydrothermal temperatures between 130 
and 160 ◦C can be reached at a drilling depth below 5000 m [15]. 
Furthermore, a technical potential for the installation of one wind tur-
bine exists. 

Five different transformation scenarios a)-e) are discussed in detail in 
the following (Fig. 7). In scenarios b), c) and d) the yearly expansion 
capacity of photovoltaics is restricted to avoid unrealistic high expan-
sion rates compared to nationwide photovoltaic expansion. Therefore, 
local expansion rates for rooftop and freestanding photovoltaics are 
derived from the PV expansion rates calculated in the national scenarios 
expnat

PV,i from Section 7.1 in the Appendix (rooftop (rt) PV: 6 GW/a, 
freestanding (fs) PV: 10 GW/a). The locally required expansion rate 
exploc

PV,i is derived as a function of the share of the technical photovoltaic 
potential potloc

PV,i of the municipality to be examined in comparison to the 
national potential potnat

PV,iaccording to eq. (18). 

exploc
PV,i =

potloc
PV,i

potnat
PV,i

⋅expnat
PV,i

i ∈ {rt, fs}

(18) 

In scenario e) the upper boundary for the rooftop and freestanding 
photovoltaic expansion is removed. 

Starting from 2020, Fig. 7 presents five transformation scenarios (a- 
e). In scenario a) the local renewable expansion of the energy system is 
permitted. In scenarios b), c) and d) the local energy system is expanded 
in a cost-optimal way, but the household scenarios are predetermined 
(b) “CN-opt”, c) “CN-electricity”, d) “CN-gas” (regarding Section 4.2)). 
While in scenarios b), c) and d) the yearly expansion capacity of 
photovoltaic plants is restricted, this restriction is removed in scenario e) 
in comparison to scenario b). All transformation scenarios shown in 
Fig. 7 reach zero or negative CO2 emissions in 2050. Even in scenario a) 
without local energy system expansion, zero CO2 emissions are achieved 
since energy carrier imports are CO2 neutral in 2050 (see Table A6). The 
TDSC associated with scenario a) are higher than scenarios b) to e) with 
local energy system expansion. By expanding the local energy system, 
the TDSC and CO2 emissions can be reduced by 222 M€ and 1.14 kt over 
the observation period (see Δab in Fig. A10 a.). While the energy imports 
and CO2 emissions differ in scenarios b) to d) due to the different 

Fig. A12. Spatial representation of the biomass plant locations and the po-
tentials for electricity and heat generation, as well as the LCOE and LCOH 
associated with the generation for the municipality of Karlsruhe. The calcula-
tion of the LCOE and LCOH is based on an interest rate of 5 %/a and an assumed 
system lifetime of 20 years. The potentials are calculated based on the pro-
cedure presented in [18]. 

Fig. A13. Development of the potential for rooftop photovoltaic systems in the 
municipality of Karlsruhe, calculated based on the procedure described in 
Section 3.2.1. 

Fig. A14. Daily composition of district heating supply in the year 2050 in scenario b) of Fig. 7.  
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household transformation scenarios, local electricity and district heating 
generation expansion is comparable. In all three scenarios, the potential 
for wind power and photovoltaics is fully exploited considering the 
maximum yearly expansion rates explained above (PV (rt): 16.7 MWp/a, 
PV (fs): 1.8 MWp/a). 

Furthermore, investments in biomass plants for the energetic use of 
waste and wood residues are undertaken in the first investment period 
between 2020 and 2030 and are further equipped with carbon capture 
devices from 2040 on. On the other hand, biogas upgrade plants are only 
built in the last investment period between 2040 and 2050. While the 
generated biogas is used directly to cover the gas demand in scenario d), 
in scenarios b) and c) a Solid Oxygen Fuel Cell (SOFC) CHP plant is built 
to provide heat to the district heating network and electricity to the local 
grid. After discontinuing the two primary waste heat sources, from 2035 
scenarios b) to e) rely on geothermal energy, waste heat from biomass 
plants and local waste heat from the paper factory to cover the base load 
of the district heating network. A heat pump in combination with a gas 
boiler is used to cover the heat peaks (see Fig. A14). By removing the 
annual maximum expansion capacity in scenario e), the optimal local 
average expansion rate between 2020 and 2050 is 3.3 times faster than 
the photovoltaic expansion rate of the national system. To increase self- 
consumption, Lithium-ion batteries are installed from 2040 on. Through 
the extreme expansion of photovoltaics, TDSC and indirect CO2 emis-
sions can be further reduced by reducing external electricity purchases 
in 2030 and 2040 (see Fig. 8 a.)). 

In other scenarios, the effects of individual measures on the TDSC 
and CO2 emissions of the local energy system transformation are 
quantified in Table 4 and visualized in Fig. 8b.). Scenario b) is taken as 
the initial scenario (see Fig. 8) and additional measures are defined or 
excluded based on this scenario. The ratio between ΔTDSC and ΔCO2 
describes the economic and ecological efficiency of the individual 
measures. If the ratio is positive, the measure has a clear positive or 
negative impact on TDSC and CO2 emissions. If the ratio is negative, no 
clear statement can be made about both factors. The impacts of mea-
sures b1) to b6) are unambiguous. Increasing the local expansion rate of 
photovoltaics by 10 % compared to the national expansion rate lowers 
costs and CO2 emissions. The photovoltaic expansion has high economic 
efficiency when comparing the efficiency ratio of measure b1) with the 
other measures. On the other hand, measure b6) which describes the 
change from a heat supply in the household sector with high proportions 
of heat pumps (see Fig. 5) to a scenario with higher proportions of gas 
boilers (see Fig. A10) is particularly ecologically efficient, but does not 
make a big difference when considering the TDSC. When biomass plants 
are excluded, these are partly replaced by heat pumps and gas-fired 
CHPs, while large-scale heat pumps exclusively replace the 
geothermal plant. If, in comparison to scenario b), additional 1 Mt CO2 
emissions have to be reduced, this is done as in measure b7) by a low- 

temperature direct air capture (DAC) plant. The DAC plant is installed 
in 2050 and captures CO2 out of the atmosphere by using high- 
temperature heat (100 ◦C) from the geothermal plant and electricity 
as input. Subsequently, the captured CO2 is liquefied, transported and 
stored long-term. The basis for the economic evaluation is a CO2 price of 
150 €/t and costs of 40 €/t for the transport and final storage of CO2 in 
2050 [62]. If DAC is excluded as an investment option (measure b8)), 
synthetic carbon–neutral gas imports achieve the reduction in CO2 
emissions in 2040 and increased carbon capture of exhaust gases from 
the SOFC plant in 2050. 

5. Discussion and outlook 

To adequately account for temporal dynamic developments in 
municipal energy system transformation scenarios, the present study 
extends an existing municipal energy system optimization approach by a 
stochastic bottom-up residential building stock model. In contrast to the 
adopted approach from [18,15,16,17], in which investment decisions in 
retrofit and other efficiency measures for individual representative 
buildings are determined within the energy system optimisation model, 
the investment decisions in the present study are determined outside of 
the municipal optimisation in a stochastic simulation for every resi-
dential building of the municipality. While the approach presented in 
[18,15,16,17] allows to make optimised investment decisions for indi-
vidual representative buildings, it is not possible to adequately consider 
the dynamic changes in the residential building stock, as already a small 
number of representative buildings leads to long model runtimes. Due to 
the simplified representation of only a few representative buildings, the 
model does not consider upper limits for maximum practicable retrofit 
and technology modernization rates, which means that the entire 
building stock can be modernized from one year to the next. In our 
approach, dynamic processes are considered in an upstream simulation 
model in the form of annually feasible retrofit and technology 
modernization rates. Furthermore, future heating technology trans-
formations are implemented, taking into account the characteristics of 
the local residential building stock and future target states from national 
scenarios. By shifting the optimization decision away from representa-
tive buildings to choosing between different residential building stock 
transformation scenarios, temporal dynamic transformation processes 
are now considered in the optimization model. As a result of the simu-
lation, the building retrofit status and the technological equipment are 
available for each building and each simulation year so that infra-
structure simulations for electricity, gas or district heating networks can 
be carried out based on the results of this study. 

The simulation decision as to whether a building undergoes a retrofit 
cycle in a specific year is based on technical parameters such as building 
age and potentially saved heat and economic parameters such as the 

Table A6 
Overview of the framework conditions for energy carrier procurement prices, grid charges and emission factors based on [58,61,59,96]. A cost increase of 2 %/a is 
assumed for the grid charges of the gas network.  

Procurement [€/MWh] Electricity Gas H2 Coal Oil Biomass Synthetic gas Fischer Tropsch Fuel CO2 

[€/ton] 

2020 34 37 111 3.6 32 50 140 260 25 
2030 65 36 101 6.4 35 70 120 230 75 
2040 68 36 91 6.25 40 100 110 180 125 
2050 56 31 81 – – 130 94 162 – 
Grid charges [€/MWh]          
2020 37 10 10 – – – 10 – – 
2030 36 12 12 – – – 12 – – 
2040 36 15 15 – – – 15 – – 
2050 31 18 18 – – – 18 – – 
CO2 emission factor [g/kWh]          
2020 430 190 0 374 260 0 0 0 – 
2030 110 170 0 374 230 0 0 0 – 
2040 30 150 0 374 190 0 0 0 – 
2050 0 0 0 – – 0 0 0 –  
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LCOSH of the retrofit measure. Thereby, the aim is to assist local 
decision-makers in identifying buildings in need of retrofit from a 
techno-economic point of view to develop support measures depending 
on the building owner structures. Another approach would be to 
consider the ownership structure when selecting the buildings that go 
through a retrofit cycle [63]. Similar factors could also be considered in 
future work when deciding to modernize heating technologies. How-
ever, this would require further spatially high-resolution information on 
ownership structures and empirical information about owner dependent 
investment preferences. 

The residential building stock scenarios presented in this study are 
derived based on four core trends regarding the retrofit rate, depth, 
technology dissemination and HRU uptake. Other potentially relevant 
trends, such as changes in behavior, e.g., in the form of increased work 
from home, such as in the COVID-19 pandemic, or the impact of climate 
change on future heating and cooling demand are not considered in this 
work. While short-term changes in behaviour during the COVID-19 
pandemic led to shifts in energy demand [64,65], long-term behav-
ioural changes are uncertain. Therefore, the simulation of the occupant 
behavior of the individual households, which is the basis for the simu-
lation of the household appliances and the thermal building demand, is 
based on historical time-use survey data (see Residential energy demand 
simulation in the Appendix). In future analyses, the potential influence of 
behavioral changes on the structure of the energy demand profile could 
be examined by adjusting the underlying time-use survey data based on 
projected socio-demographic scenarios. In contrast to long-term 
behavioral changes, the influence of climate change on energy de-
mand, energy generation and energy infrastructure is undisputed 
[66,67,68]. However, in this study we decided to analyze the effects of 
the four core trends mentioned above independently of climate change 
based on an average historical weather year (2017). In follow-up 
studies, the impact of climate change could be integrated by using 
high resolution climate projection datasets from, e.g., the EURO- 
CORDEX project [69]. Especially, high-probability, low-impact condi-
tions should be considered in future energy system design studies since 
they can significantly impact renewable energy integration levels and 
system cost [67]. 

The results of the household sector transformation of the case study 
for the municipality of Karlsruhe show that under the assumed economic 
framework conditions, a substantial electrification of the heat supply 
with a high proportion of heat pumps and an annual retrofit rate of 2 
%/a together with less ambitious U-value requirements lead to the 
lowest TDSC and CO2 emissions. Scenarios with high U-value re-
quirements and high proportions of HRU lead to higher TDSC. This 
means that the marginal cost of saving the last few kWhs is higher than 
the cost per kWh of heat supplied. It must be considered here that only 
energy-related additional costs are used for the economic evaluation of 
the efficiency measures (full cost considerations would increase the ef-
fects described) and only the costs for generation, transport and CO2 
certificates are included for the purchase of energy carriers. Microeco-
nomic assessments of the efficiency measures from a building owner 
perspective can come to different conclusions if household procurement 
costs for energy carriers are considered. A real interest rate of 5 %/a is 
used for all investment decisions in this study. Investments in retrofit 
measures with high initial costs and long lifetimes would be valued even 
more favourably if interest rates were assumed to be lower. Further-
more, when interpreting the results, it must be considered that they are 
subject to many uncertainties with regard to assumptions about the 
development of energy carrier prices, technology efficiency and price 
developments. 

The results of the municipal energy system optimisation show that, 
from the point of view of a central social planner, the expansion of local 
renewable energies is advantageous for reducing overall system costs 
and minimizing local emissions: a significantly faster expansion of local 
photovoltaic potentials compared to national expansion scenarios leads 
to reductions in TDSC. This could be partly explained due to the 

optimistic assumptions regarding the development of the technological 
efficiency of photovoltaics (see Fig. A13), which is based on the [60]. 
Furthermore, it should be considered that this study does not examine 
any effects of the local energy system transformation on the national 
energy system and that, therefore, the local feed-in has no influence on 
market pricing. If many municipalities would increase variable renew-
able expansion, the market value of renewable feed-in could be reduced, 
which could have a feedback on investment decisions. Since network 
restrictions in the energy distribution networks are not considered in 
this study, further analysis should be conducted to determine whether 
the energy system expansion determined in this work can be imple-
mented, taking local infrastructures into account. 

While most of the analysed technologies are already established on 
the market, technologies such as direct air capture are still in the 
development stage and should therefore be viewed critically when 
planning future energy systems. The model presented in this work op-
timizes the local energy system transformation under perfect foresight. 
Thus, anticipated certain future developments by the optimizer, which 
are based on assumptions with a high degree of uncertainty, can lead to 
misleading decisions. Technologies that are still under development, 
such as direct air capture technologies, should not be used as an excuse 
to emit more emissions today to offset these emissions in the future. 

In Karlsruhe, after the waste heat from the local refinery and the 
coal-fired power plant is taken out of the system in 2035, a geothermal 
power plant is built, which, together with the waste heat from the paper 
factory and the biomass plants, covers the base load of the district 
heating demand. While the local waste heat sources still have to be 
provided manually, methods for the automated identification of waste 
heat potentials should be integrated in the future. While waste heat 
potentials are currently only considered in the form of available power, 
in the future, different temperature levels should also be included in the 
model for more efficient heat integration. A useful database for this is 
the district heating atlas [70], which tries to collect scarce public in-
formation on district heating systems to provide it on a central platform. 
While scenario independent district heating transmission costs are 
assumed in the current study, the existing model could also be expanded 
to include various district heating expansion scenarios with different 
grid fees. For this, however, approaches for the industrial and tertiary 
sectors would first have to be developed that assign the process- 
dependent useful heat demand of the sectors to the respective loca-
tions of the non-residential buildings, as is the case in the residential 
building sector. Furthermore, future studies could analyse the impact of 
low temperature district heating networks in combination with booster 
heat pumps in order to use heat sources more efficiently and to minimize 
heat transfer losses in the district heating network [71,72]. 

In addition, for the industrial, tertiary and transport sectors, only 
developments with a high degree of electrification based on the solidEU 
scenario from Guminski et al. [45] are taken into account in this study. 
Scenarios with higher shares of hydrogen or synthetic hydrocarbons in 
the future final energy demand of the respective sectors could lead to 
different expansion strategies of the local energy system and should be 
analysed in the future. 

While a holistic validation of energy system optimizations for future 
developments is challenging, we have performed plausibility checks and 
validations of interim results. For example, the amount of residential 
buildings in the single districts from OpenStreetMap deviates by about 
10 % from empirical data. Furthermore, the final energy demand of this 
study’s household sector simulation of 2.1 TWh/a in 2020 is comparable 
to results from other studies, with 2.0 TWh/a [54] and 2.5 TWh/a [45]. 
The difference to the higher value of Guminski et al. [45] can be 
explained by the different balancing approach, which also incorporates 
environmental heat. In addition, as presented in Fig. 7, the initial 
calculated CO2 emissions in 2020 are in line with historical data [55,56]. 
The future development of the total final energy demand across all 
sectors deviates from the local climate protection concept by only about 
5 % in the reference years considered [54]. In order to further improve 
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the accuracy of the initial state of the spatial heating system distribu-
tions in future studies, updated data from the 2021 census should be 
used as soon as it is published. The restriction to purely publicly avail-
able input data can lead to buildings being assigned to grid-dependent 
energy carriers without having a connection to the respective grid 
infrastructure since detailed information about the energy supply net-
works is not publicly accessible. Additional location specific information 
about the energy carriers used for heating in the upcoming census [73] 
will help reduce incorrect assignments. When further using the results of 
this study in downstream analysis, the accuracy of the publicly available 
data basis should be considered with regard to the question to be 
examined. If necessary, the underlying data should be enriched with 
expert data, e.g., in the case of detailed power flow calculations. 

6. Conclusion 

Given the constantly changing political framework conditions for 
achieving increasingly ambitious climate protection goals, decision 
support tools are needed that can easily identify local conditions and 
support local decision-makers in the formulation of energy system 
transformation strategies. 

This study extends the highly transferable energy system optimisa-
tion model RE3ASON to consider temporally dynamic transformation 
processes of the local energy system supply and demand side in line with 
national greenhouse gas mitigation strategies. To capture dynamic 
temporal developments and the high heterogeneity of the local resi-
dential building stock, an existing energy system model is extended by 
an upstream dynamic building stock transformation model. By consid-
ering higher-level framework parameters from national scenarios and 
local initial building stock conditions, multiple household trans-
formation scenarios can be calculated and further used as input in an 
energy system optimisation. To comprehensively consider the trans-
formation of local energy demand and supply transformation, RE3ASON 
is further extended to include the final energy demand transformation of 
the industry, tertiary, and transport sectors and a variety of additional 
greenhouse gas reduction technologies in combination with maximum 
yearly expansion rates. By the integration of a two-step optimisation 
approach we demonstrated that the formulated optimisation problem 
can be solved in hourly resolution. 

192 building stock transformation scenarios are calculated for an 
exemplary case study of the German city of Karlsruhe. The results show 
that for the cost-minimal transformation of the local building sector, the 
retrofit rate should be increased to 2 %/a and that, in addition to 
significantly lower CO2 emissions, scenarios with high shares of heat 
pumps can be economically advantageous compared to scenarios with 

high shares of gas boilers, despite higher capital expenditures. The 
municipal energy system transformation results show that an acceler-
ated expansion of photovoltaics compared to the national reference 
system can be economically advantageous and leads to lower CO2 
emissions. By considering anticipated transformations, e.g., the 
discontinuation of local waste heat sources, it is shown that local 
biomass and geothermal potentials are used to cover the base load of 
district heating demand, while large-scale heat pumps and gas boilers 
are used during peak times. 

In future work, the integration of the process-specific useful energy 
demand in the industry, tertiary and transport sectors is planned to 
better take into account local flexibility and waste heat potentials. 
Furthermore, transferable infrastructure models for the electricity, gas 
and district heating networks are developed to verify the feasibility of 
the calculated scenarios. 

CRediT authorship contribution statement 

Max Kleinebrahm: Conceptualization, Methodology, Formal anal-
ysis, Visualization, Project administration, Data curation, Software, 
Validation, Writing - original draft, Writing - review & editing. Jann 
Weinand: Conceptualization, Methodology, Formal analysis, Funding 
acquisition, Writing - original draft, Writing - review & editing. Elias 
Naber: Formal analysis, Writing - review & editing. Russell McKenna: 
Writing – review & editing, Formal analysis. Armin Ardone: Funding 
acquisition, Writing – review & editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgement 

This work was supported by the German Federal Ministry for Eco-
nomic Affairs and Climate (BMWK) through the TrafoKommune project 
(funding reference: 03EN3008F). We gratefully acknowledge the con-
tributions of Sebastian Soldner, who further developed the presented 
energy system optimisation model as part of his Master’s Thesis at KIT.  

Appendix 

National energy system transformation 

In 2021 alone, a large number of studies on the transformation of the German energy system in order to reach climate-neutrality were published 
(Table A5). The first two studies were published before the amendment of the German Climate Protection Act in 2021 and are therefore not aiming for 
the goal of climate neutrality in 2045. The solidEU (solidarity in the EU) scenario is a holistic European energy system scenario to reduce greenhouse 
gas emissions in Europe by 95 % compared to 1990 levels [45]. Sectoral, national, or interim targets in 2030 are not taken into account in this scenario. 
In contrast to all other studies, the results of the European scenarios are presented in a scenario explorer and relevant interim results, such as final 
energy demand or CO2 emissions of the individual sectors with high temporal and spatial resolution are provided. The study by Sensfuß et al. [58] 
compares three alternative scenarios intending to reach climate neutrality in the year 2050. The three scenarios differ in terms of their pronounced use 
of the main energy sources, electricity, hydrogen, and synthetic hydrocarbons. A large number of detailed results for the three scenarios, such as 
electricity price time series, and year-specific costs and emission factors of energy carriers are provided via an extensive scenario explorer. 

The bottom four scenarios in Table A5 all aim to achieve GHG neutrality in Germany by 2045 [74,75,76,77]. They agree regarding the massively 
accelerated expansion of renewable energies on– and offshore and a rapid increase in energy efficiency, especially in the building sector. However, 
there is disagreement about what level of insulation needs to be reached to become climate neutral. Furthermore, technologies for capturing and 
geological storage of CO2 are used in all scenarios to achieve negative GHG emissions. In contrast to the first two studies, the results of the latter studies 
are not openly available with high temporal and geographical resolution. 
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Urban building energy modelling 

Urban building energy models (UBEM) can be categorized into top-down and bottom-up approaches, while bottom-up models can be further 
classified into physics-based, data-driven, and reduced-order methods [78,79]. Bottom-up models, are needed to assess the impact of certain retrofit 
measures among groups of (archetype) buildings [78]. Reduced-order models contain a physical representation of the building while being 
computationally efficient and easy to parameterise based on archetype information [80]. Therefore, this study uses a reduced-order bottom-up 
approach, since it fits best the requirements of a highly transferable approach, which is operating in a low data environment. The use of more advanced 
physics-based models, which require more advanced input data and more computational power, would only lead to a higher pseudo-accuracy due to 
the initial data situation. In comparison to physics- and reduced-order based approaches, data-driven bottom-up approaches do not contain a physical 
representation of the building to estimate the energy consumption, but learn a function for the prediction of energy consumption based on information 
such as available building stock data, billing data or socio-economic indicators [80]. Data-driven methods therefore require a training data set, on the 
basis of which they can learn the connection between building properties, local weather conditions and energy demand. Since such a dataset is not 
available, data-driven methods are not suitable for the approach presented in this study. 

Residential energy demand simulation 

Based on the parameterized building stock, the demand for useful energy for household electricity devices, domestic hot water and space heating is 
calculated in an hourly resolution based on a similar approach to Kotzur et al. [81]. Therefore, the CREST model developed for the UK for simulating 
residential electricity demand based on occupant behavior is parameterized with data on the behavior of German residents and German household 
device information [82,83,84,85,86]. Considering the local weather conditions based on ERA5 reanalysis data [57], occupancy profiles, domestic hot 
water and electrical appliance demand profiles are generated for 1000 households of different household sizes in the municipality under consider-
ation. The marginal utility of each additional profile decreases as the average profile of the individual households comes very close to the H0 standard 
load profile (representative electricity demand profile for German households) between 100 and 1,000 households [87,31,88]. The 1,000 households 
are then assigned to the households in the municipality by stochastic sampling, taking into account the household size. 

The thermal demand for space heating is calculated based on a 5R1C model from DIN EN ISO 13790 [89], using the internal gains from the 
household simulation and the thermal building parameters of the TABULA residential building typology [29]. Since municipalities can be composed of 
a large number of residential buildings and the simulation of each individual building can take a lot of time and computational resources, it is possible 
to identify representative buildings based on the k-means cluster method before performing the thermal simulation of each individual building. For 
this purpose, the residential buildings are divided into clusters based on the features of building type, building age, living space, number of apart-
ments, number of occupants and state of retrofit. Thermal simulations are only carried out for the buildings closest to the respective cluster centers. 

Spatiotemporal household energy demand development 

The bottom-up structure of the simulation of the energy demand development in the residential building sector enables spatiotemporal analysis 
within the municipality. To calculate the results shown in Fig. A9, the final energy demand of the geo-allocated residential buildings is aggregated at 
the district level. Fig. A9 a.) shows the peak to mean ratio (rp/m) of the daily electricity demand del for the individual districts, which is calculated 
according to eq. (19). 

rp/m =
max

(
del,1,⋯, del,T

)

( ∑T
t=1del,t

)/
T

T = 365 (19) 

It can be seen that the electrical demand increases in winter due to the increased dissemination of heat pumps, especially in parts of the mu-
nicipality where a small proportion of the buildings can be supplied with district heating (see Fig. 7 b.)). On average, across all districts, the rp/m 

increases from 1.4 in 2020 to 2.3 in 2050 in the “CN-electrcity” scenario. In the “CN-gas” scenario, an rp/m of 1.9 is reached in 2050. 

Additional tables and graphs 

See Figs. A10-13. 
See Table A6. 

References 

[1] UNFCCC: Glasgow Climate Pact. Glasgow Climate Change Conference - October/ 
November 2021; 2021. Available online at https://unfccc.int/documents/311127. 

[2] Victoria M, Zhu K, Brown T, Andresen GB, Greiner M. Early decarbonisation of the 
European energy system pays off. Nature Commun 2020;11(1):6223. https://doi. 
org/10.1038/s41467-020-20015-4. 

[3] Bundesregierung (Ed.). Klimaschutzgesetz 2021. Generationenvertrag für das 
Klima; 2021. Available online at https://www.bundesregierung.de/breg-de/th 
emen/klimaschutz/klimaschutzgesetz-2021-1913672. 

[4] Marinakis V, Doukas H, Xidonas P, Zopounidis C. Multicriteria decision support in 
local energy planning: An evaluation of alternative scenarios for the Sustainable 
Energy Action Plan. Omega 2017;69:1–16. https://doi.org/10.1016/j. 
omega.2016.07.005. 

[5] Weinand JM. Reviewing Municipal Energy System Planning in a Bibliometric 
Analysis: Evolution of the Research Field between 1991 and 2019. Energies 2020; 
13(6):1367. https://doi.org/10.3390/en13061367. 

[6] Weinand JM, McKenna R, Mainzer K. Spatial high-resolution socio-energetic data 
for municipal energy system analyses. Sci Data 2019;6(1):243. https://doi.org/ 
10.1038/s41597-019-0233-0. 

[7] Weinand JM, McKenna R, Fichtner W. Developing a municipality typology for 
modelling decentralised energy systems. Utilities Policy 2019;57:75–96. https:// 
doi.org/10.1016/j.jup.2019.02.003. 

[8] Thellufsen JZ, Lund H, Sorknæs P, Østergaard PA, Chang M, Drysdale D, et al. 
Smart energy cities in a 100% renewable energy context. Renew Sustain Energy 
Rev 2020;129:109922. https://doi.org/10.1016/j.rser.2020.109922. 

[9] Thellufsen, Jakob Zinck; Lund, Henrik. Roles of local and national energy systems 
in the integration of renewable energy. Appl Energy ; 2016;183:pp.419–429. 
https://doi.org/10.1016/j.apenergy.2016.09.005. 

[10] McKenna R, Bertsch V, Mainzer K, Fichtner W. Combining local preferences with 
multi-criteria decision analysis and linear optimization to develop feasible energy 
concepts in small communities. Eur J Oper Res 2018;268(3):1092–110. https:// 
doi.org/10.1016/j.ejor.2018.01.036. 

[11] Østergaard, Poul; Mathiesen, Brian Vad; Möller, Bernd; Lund, Henrik. A renewable 
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Projekte TABULA - “Typology approach for building stock energy assessment”, 
EPISCOPE - “Energy performance indicator tracking schemes for the continous 
optimisation of refurbishment processes in European housing stocks”. 2., erw. Aufl. 
Darmstadt: IWU; 2015. Available online at http://www.building-typology. 
eu/downloads/public/docs/brochure/DE_TABULA_TypologyBrochure_IWU.pdf. 

[30] Cischinsky H, Diefenbach N. Datenerhebung Wohngebäudebestand 2016. 
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