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Abstract
We propose a novel image-analysis based machine-learning approach to the fully-automated identification of the optical
quality, of functional properties, and of manufacturing parameters in the field of 2D inkjet-printed test structures of conductive
traces. To this end, a customizable modular concept to simultaneously identify or predict dissimilar properties of printed
functional structures based on images is described and examined. An application domain of the concept in the printing
production process is outlined. To examine performance, we develop a dataset of over 5000 test structures containing images
and physical characteristics, which are manufactured using commercially available materials. Functional test structures are
fabricated via a single-nozzle vector-based inkjet-printing systemand thermally sintered. Physical characterization of electrical
conductance, image capturing, and evaluation of the optical quality of the test structures is done by an automatic in-house
built measurement station. Conceptionally, the design of a convolutional neural network is described to identify the optical
quality and physical characteristics based only on acquired images. A mathematical apparatus that allows assessment of the
identification accuracy is developed and described. The impact of printing resolution, of emerging defects in the geometry
of printed structures, and of image quality and color space on the identification accuracy is analyzed. Quality groups related
to the printing resolution that affect identification accuracy are determined. Supplementarily, we introduce not yet reported
classification of processes related to the fabrication of printed functional structures, adopted from the process analytical
technology.
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Introduction

Functional inkjet printing

Over the recent decades, the inkjet-printing technology has
not only been widely utilized in the labelling and graphical
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printing industry, but also found its usage in the state-of-
the-art field of functional printing (Beedasy & Smith, 2020;
Derby, 2010; Sirringhaus & Shimoda, 2003; Sowade et al.,
2016; Yan et al., 2020). As a digitally-driven additive and
non-contact fabrication technology, it enables deposition of
a broad spectrum of functional materials directly on diverse
substrates with minimum waste and contamination proba-
bility. In particular, the layer thickness in the nanometer
to micrometer range is optimal for manufacturing of sin-
gle electronic components, such as conductors, capacitors,
resistors, diodes, and transistors; or of multilayer low volt-
age circuitries (Beedasy & Smith, 2020; Singh et al., 2013,
pp. 207–235; Yan et al., 2020). Concurrently, a growing trend
towards incorporating artificial intelligence (AI) into control,
optimization, andmaintenance of the drop-on-demand inkjet
printing processes has been becoming visible during the last
years (Brishty et al., 2022; Carou-Senra et al., 2023; Huang
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Fig. 1 a Schematic representation of the drop-on-demand inkjet-
printing process and its main terms. b Conceptualized printed-
electronics process flow, arrangement of its major stages and sites, and
transferred outcomes, adapted from Hutchings et al. (2013, pp. 1–20),
Kipphan (2001, pp.14–39), Teschner (2010, pp. 131–133). c Conceptu-
alized process classification applied in this work, based on the mutual
equipment disposition, and on the process simultaneity (unified and
reinterpreted from Kim et al., 2021; Minnich et al., 2016; Patterson
et al., 2023; Wenzel & Nirschl, 2015)

et al., 2020; Kim et al., 2022, 2023a, 2023b;Maîtrejean et al.,
2022;Ogunsanya et al., 2021; Siemenn et al., 2022; Stoyanov
& Bailey, 2017; Zhao et al., 2023).

A schematic representation of the drop-on-demand inkjet-
printing process is depicted in Fig. 1a. One or multiple
nozzles entailing a chamber and an electrically controlled
actuator are an integral part of each inkjet printhead. By
virtue of an electrical jetting control signal (“waveform”),
displacement of a piezoelectric actuator occurs within the
nozzle chamber, a fine ink droplet becomes ejected as a result.
An adapted waveform is crucial for a smooth and stable ink
droplet formation, and, further, for the entire printing pro-
cess.

The printed-electronics process flow typically includes
four stages—(a) fabrication (viz. preparation, printing, and
subsequent functionalization during post-treatment), (b)

characterization, (c) evaluation, and (d) optimization—car-
ried out on three sites, as conceptualized in Fig. 1b. On the
printing site, fabrication processes take place, impacted by
various process parameters (e.g., ink and substrate properties,
control signal, pre-treatment, equipment settings, ambient
conditions, etc.). As a result, a printed functional struc-
ture (PFS) with the targeted functionality emerges. To attain
the desired functional properties in the deposited ink, the
post-treatment process is required (Hussain et al., 2023;
Perelaer et al., 2010). On the measuring site, appearance
and functional properties of the fabricated PFS are exam-
ined. On the evaluation site, the ultimate printout quality is
assessed based on the measurement data, and on the PFS
appearance. If necessary, process parameters are improved
during the optimization stage, which is the back coupling
between the evaluation and the printing sites—that implies
re-manufacture of the PFS.

Process-relevant classification

In the process analytical technology, the followingnomencla-
ture of process-relevant methods is common: inline, online,
atline, and offline. The main distinction of the methods is in
the place of the physical connection between analyzers and
the process (Kim et al., 2021; Minnich et al., 2016; Patterson
et al., 2023;Wenzel&Nirschl, 2015).Consideringprinting as
a compound process with the droplet ejection as itsmain con-
stituent, the supplementary processes can be classified in the
same manner, based on the mutual disposition of equipment
and on the process simultaneity, as shown in Fig. 1c. Thus, (a)
the inline process occurs directly in the printing area during
the printing process (e.g., substrate heating), (b) the online in
the vicinity during the printing process (e.g., measurement of
ambient parameters); (c) the atline next to the printing area,
with aminor delay in processing (e.g., waveform adjustment,
droplet control, nozzle cleaning); (d) the offline in a separate
space, with a noticeable delay in processing (e.g., virtually
all pre- and post-treatment operations). The delay is usually
caused by material, data, or the interim product transfer, or
by other requisite technological steps.

Related work

Stoyanov and Bailey (2017) formulated a machine-learning
(ML) based predictive approach targeted at additive manu-
facturing of conductive traces. The proposed algorithm was
aimed at maintaining the optimal printed product quality,
utilizing dynamically controlledmanufacturing process data.
Yan et al. (2019) appliedMLalgorithms to predict sheet resis-
tance of inkjet-printed silver electrodes based on their digital
images. Flaig and Zambal (2021) proposed deep-learning
based algorithms for masking, defect detection, and opti-
cal quality evaluation of inkjet-printed lines. Siemenn et al.
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(2022) integrated an AI-driven computer vision technique to
develop a universal optimizing tool for droplet-generating
devices, such as an inkjet printhead. Maîtrejean et al. (2022)
employed neural networks for identification of the fluid-
jet rheological properties with high accuracy. Huang et al.
(2020) utilized a deep recurrent neural network to predict
the ink droplet dynamics while inkjet printing, based on the
drop-flow video data. Kim et al. (2022) developed and vali-
dated an AI-based algorithm to determine the optimal set of
the waveform parameters for an unknown model ink. Kim
et al., (2023a, 2023b) reported development of a jetting pre-
diction model for viscoelastic inks using ML techniques.
Ogunsanya et al. (2021) integrated a convolutional neural
net (CNN) model and an image processing technique into
an in-situ droplet monitoring to classify ejected ink droplets.
Phung et al. (2023) integrated ML models to monitor jet-
ting status of multi-nozzle printheads. Brishty et al. (2022)
compared different ML models considering their predic-
tion abilities in the field of printed electronics, with the
focus on the droplet classification and the corresponding
ink printability. Zhao et al. (2023) examined applicability
of a bidirectional deep-learning model with a hybrid dataset
(i.e., experimental and syntheticmodel data) for prediction of
the additive manufacturing process parameters. Carou-Senra
et al. (2023) studied aMLapproach to predict printability and
the ejected drug dose in the pharmaceutical inkjet printing.
Kim et al., (2023a, 2023b) employed a residual neural net
for an automatic visual monitoring of ejected ink droplets,
using commercial functional ink. The proposed algorithm
substantially enhanced classification speed and prediction
accuracy compared to the uncompressed model. Kwon et al.
(2023) developed a physics-added neural network algorithm,
and improved identification of material physical character-
istics in an inkjet-printing process. Shirsavar et al. (2022)
evaluated electrical conductivity parameters of printed struc-
tures with respect to various printing process parameters.
Hui et al. (2023) designed a neural net to predict quality and
resistance of inkjet-printed silver lines in relation to various
printing process parameters. Ivy et al. (2023) developed a
ML-model to optically predict resistance of inkjet-printed
resistors based on their geometry and texture features, using
a high-resolution color scanner. Gafurov et al. (2022) utilized
deep-learning algorithms for the optical quality assessment
and parameter identification of screen-printed lines. Lall et al.
(2023) developed a closed-loop control process for process
parameter adjustments considering geometrical and electri-
cal characteristics of printed traces, using particle-free inks.
Tsai et al. (2023) reported an automatic ML-based optical
inspection of functional properties of printed spiral anten-
nas. Moon et al. (2023) employed ML and infrared images
for quality inspection of aerosol-jet-printed functional struc-
tures.

Identified research gap

Although a lot of studies combining inkjet-printing with
AI have been done, the large part of researchers remains
focused on identification of separate PFS properties. Some
researchers embedded AI into the droplet classification and
into the automatic waveform optimization to mitigate disad-
vantages of the manual approach, such as incalculable time
and labor cost, or an excess loss of expensive functionalmate-
rials (Brishty et al., 2022; Huang et al., 2020; Kim et al.,
2022, 2023a, 2023b; Ogunsanya et al., 2021; Phung et al.,
2023; Zhao et al., 2023). In other surveys, one or several sim-
ilar properties have been considered (Flaig & Zambal, 2021;
Gafurov et al., 2022; Ivy et al., 2023; Moon et al., 2023;
Tsai et al., 2023; Yan et al., 2019). Several research teams
conducted a ML-based process parameter adjustment, based
preliminarily on the printed-line geometry (Hui et al., 2023;
Lall et al., 2023). Some property prediction schemes were
proposed (Carou-Senra et al., 2023; Zhao et al., 2023), albeit
not integrating any image information of the printed product.

Thus, the current state of research has not been yet sys-
tematically considering combination of the optical quality
and of the functional properties of PFSs. Impact of printing
resolution and of various factors outside of the system print-
head–nozzle orifice–ejected ink droplet remains mostly out
of sight of researchers. Among such factors, environmental
parameters at themanufacturing and themeasuring sites have
to be pointed out. To our knowledge, no experimental study
on the AI-based identification of multiple dissimilar process
parameters from the image of inkjet-printed PFSs has been
reported yet. Either, no extensive analysis of factors affecting
such identification has been stated. Determination and anal-
ysis of such factors are essential for a successful integration
of a high-speed, unbiased, damage-free, and automated AI-
based quality control into printing processes. A simultaneous
identification ofmultiple parameters with high accuracy con-
tributes to reduction of fabrication waste, time, and costs.
Conceptualization of the approach outlines a fundamental
framework and designates avenues for further research. To
bridge the identified gap, we proposed a universal concept,
and aimed to prove its applicability and efficiency based on
the use case of 2D inkjet-printed conductive traces.

Proposed concept

At present, the measuring and the evaluation sites are usually
located atline or offline the printing site, the PFSs are eval-
uated mainly manually. This is time-consuming, onerous,
prone to human error, and requires a high level of exper-
tise (Carou-Senra et al., 2023). Sensitive printed samples
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Fig. 2 Schematic representation of the proposed alterations in the contemporary approach to monitor PFS properties. After fabrication, PFS image
has been collected, processed, and evaluated automatically using ML. Manual operations and human bias have been completely omitted

can be easily contaminated or damaged during transportation
and processing, data related to single manufacturing steps
can be lost by accident. In such events, retrieval of missed
parameters (e.g., jetting frequency, post-treatment temper-
ature, etc.) remains virtually impossible. We assumed that
these issues could be resolved by means of an AI utiliza-
tion instead of human labor. An added benefit would be the
process shift and acceleration: inline or online the produc-
tion site by AI-based operations instead of atline or offline
by manual ones. The concept referred to the joint measuring
and evaluation stages of the production chain with the fol-
lowing alterations: (a) automatic inline data collection (first
and foremost, acquisition of PFS images under well-defined
conditions), (b) contact-free measurements of PFSs to avoid
their mechanical damage, (c) elimination of manual oper-
ations and human biases during evaluation of the acquired
data, (d) systematic integration of ML-based operations. The
proposed alterations are pointed out in Fig. 2.

At a broader level, the concept envisages a comprehensive
embedding of ML-based techniques into functional printing,
and, further, into smart manufacturing. Thus, various data
domains serve interchangeably as input or output data in
order to predict, identify, or rate the PFSs, applied mate-
rials, process parameters, etc., as illustrated in Fig. 3. For
instance, based on the knownmanufacturing process parame-
ters (i.e., data referring to the ink and substrate pre-treatment,
the printing setup, and the product post-treatment), ink and
substrate properties, and the printout shape, the printout qual-
ity control can be performed automatically (Fig. 3a). For
specific process parameters, required functional properties,
and desired PFS appearance, the ink and substrate properties
can be defined or controlled (Fig. 3b). During set-up of the
printing equipment, the PFS appearance can be forecast via
availablemanufacturing process data andmaterial properties,
and required functional properties (Fig. 3c). Appropriate pro-
cess parameters can be determined for printing of a PFS with

a specific shape and functional properties, using ink and sub-
strate combination with preset properties (Fig. 3d), which is
particularly important for printed electronics (e.g., for elec-
trode grids in photovoltaics, for printed antennas, and for
interdigitated electrodes in printed field-effect transistors).
Moreover, the concept has been expected to be applicable
for a wide range of materials and techniques in the field
of functional printing, far beyond sole inkjet printing of
nanoparticle-based inks. In real applicationswhere a plethora
of influencing factors has to be reflected (Carou-Senra et al.,
2023; Kwon et al., 2023; Shirsavar et al., 2022), the corre-
sponding datasets can be easily tailored. In order to prove
applicability and predictive power of the outlined concept,
we focused on the idea highlighted in Fig. 3a.

Manuscript structure

This article encompasses six sections. The background infor-
mation, findings of the literature survey, and description
of the proposed concept are presented in the Introduc-
tion section. Research questions, objectives, and limitations
of this work; methodology, applied data, and algorithm
workflow; specification of printed structures; manufactur-
ing, characterization, and data collection processes; and
mathematical apparatus required for the assessment of the
elaborated algorithm are outlined in the Method section.
Results of the benchmarking of fabricated PFSs, results of
the ML-based identification, and their brief evaluation are
indicated in the Results section. Research outcomes, key fac-
tors, ways to increase identification accuracy and algorithm
robustness, and further areas of application are scrutinized in
the Discussion section. The key outcomes, and future work
are summarized in the Conclusion section. Detailed techni-
cal and supporting data, not directly related to the considered
proof of concept, are outlined in the Supplementary Informa-
tion section (SI).
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Fig. 3 Visualization of implied data links for potential application as
a part of the proposed concept. Four major data domains (“modules”)
were defined, each three of which form the input data pool whereas the
remaining fourth represents the target output data. With a pre-trained
ML model, the target output data has to be subsequently evaluated
or predicted, depending on the objectives. The module combination
depicted in a was opted for be examined in this research

Method

Research questions, objectives, and limitations

To tackle the aforementioned problem of a high level
of human-biased, contact-based manual operations in the
printed-electronics fabrication, we formulated the follow-
ing research questions. Addressing these questions facilitates
bridging the research gap, and assisted our understanding of
pros and cons of the evaluated concept.

Q1. Whether a simultaneous visual identification of dissim-
ilar properties of inkjet-printed structures is applicable?

Q2. In what manner the contemporary approach to monitor
properties of inkjet-printed structuresmust bemodified
for implementation of ML-based operations?

Q3. Whether a simple CNN-based algorithm is able to reli-
ably identify the desired properties of inkjet-printed
structures?

Q4. Whether and how printing resolution affects the iden-
tification accuracy?

Q5. Except for printing resolution, what further factors
impact the identification accuracy?

To answer question Q1, we designed a plain CNN-based
algorithm to identify four dissimilar properties of 2D inkjet-
printedPFSs based on the image analysis. To answer question
Q2,we examined the printed-electronics process flow to date,
conducted a literature survey, and proposed an alteration con-
cept. To answer question Q3, we customized and assessed
the elaborated algorithm. Concordance between the actual
and the AI-identified values of the PFS properties (“output
accuracy”) was opted as the main evaluation metrics. Addi-
tionally, for classification of Boolean variables, confusion
matrix, accuracy, and F-score were utilized. An appropriate
application of those metrics required preparation of a bal-
anced dataset, which was achieved by preparation of a great
number of PFSs. To answer question Q4, we examined PFSs
with 60 different printing resolutions. To answer question
Q5,we collected and discussed various factors, such as image
quality, process parameters, and CNN parameters.

The key objectives set in this work were as follows:

• conceptualization of the contact-free ML-based approach
to monitor product properties in the field of printed elec-
tronics,

• proof of the proposed concept in relation to 2D inkjet-
printed conductive structures, based on a CNN-based
algorithm,

• identification of crucial affecting factors that have to be
thoroughly elaborated in future research.

This research had the following technological and
methodological boundaries:

• printed-electronics domain represented by the flatbed 2D
inkjet printing of a silver nanoparticle-based ink,

• single-nozzle, single-layer, vector-based printing in longi-
tudinal direction,

• no consideration of complex PFS fabrication and eval-
uation methods as excessive and requiring standalone
research (e.g., impact of printing at an angle, of multi-
layer printing, of utilization of numerous materials, of
utilization of high-energy post-treatment methods, and of
cross-section or profile measurement),

• comparison and selection of the best-performance ML-
method required standalone research and was outside the
scope of this article.
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Methodology

All selected data were divided into two major groups: input
and output. The input data consisted of the printout image,
and internal and external printing-process parameters. Four
internal parameters collected atline (viz. printheadmovement
velocity along the printing direction: “printing speed”; diam-
eter, volume, and velocity of an ink droplet immediately after
its ejection) characterized the system printhead–nozzle ori-
fice–ejected ink droplet. Five external parameters collected
online (viz. substrate temperature while printing; ambient
air temperature and relative humidity, both while printing
and sample measuring) described interfering environmen-
tal characteristics on the printing and on the measuring
sites. The output data represented two print-independent
manufacturing parameters (viz. distance between centers of
adjacent deposited ink droplets: “drop space” {[ds]}; and
post-treatment method {[M]}; both were stipulated by the
experiment design), and two print-dependent PFS proper-
ties (viz. line resistance {[R]}; and presence of irregularities
in the printout geometry: “line quality” {[Q]}). Thus, [ds]
labelled the printing resolution, [R] the functional properties,
[Q] the optical quality, and [M] the manufacturing process,
all of which are essential quantifiers or qualifiers of a PFS.
All output data had to be identified optically. To assess iden-
tification accuracy, corresponding output data were collected
offline for each PFS. The process data along with their sys-
tematic, notation, units, and data type are summarized in
Table 1. As indicated there, the output data consisted of
both Boolean and non-Boolean types. Ergo, the task at hand
required a sophisticated joint classification and regression
analysis, specified in the following subsection Performance
Estimation.

The workflow was divided into training and test phases.
In the training phase, an evaluation model had to be gener-
ated based on the training dataset, which was formed from
the interrelated input and output data (see Table 1). The eval-
uation model was the core of the algorithm that computed
output data from the input data. During training, an iterative
optimization of the model occurred: differential in the identi-
fied and the actual output data served for the fine-tune of the
model features tominimize the error. For print-dependent [R]
and [Q], an ancillary data benchmark was required to address
variations in their actual values. In the test phase, an input data
bench unknown to the optimized model had to be assessed.
After processing of the bench, corresponding output data
had to be returned without any further model improvement.
Then, the ultimate accuracy of the derived output data had
to be evaluated. [R] and [Q] had to be controlled addition-
ally, considering their previously benchmarked actual values.
The proposedworkflow and all related data are schematically
shown in Fig. 4. The PFSs indicated there are specified in the
following subsection Printed Functional Structures.

Thus, the following stages had to be implemented within
the scope of this work: (a) layout generation and manufac-
turing of printed structures; (b) collecting and processing of
the input data; (c) elaboration and training of the CNN; (d)
evaluation and accuracy assessment of the output data.

Inkjet-printing system andmanufacturing process

A flatbed Autodrop Gantry printing system equipped with a
50μmsingle-nozzle piezoelectric dispenser headMD-K-140
(bothmanufactured bymicrodrop Technologies) was utilized
for inkjet printing. One silver-nanoparticle (AgNP) based
ink and one PET substrate, both commercially available
and well-known, were applied for the sample fabrication.
An extended description of the manufacturing processes, the
post-treatment methods, and the appliedmaterials is outlined
in the SI.

Sample characterization and data collection

An in-house built automatic measurement system was
employed offline for the optical and electrical PFS character-
ization. The system included a digital multimeter DMM7510
(Keithley) for line resistance measurement, and a grayscale
area-scan camera acA2040-35gm (Basler) with a 12 ×
optical system (Navitar) and a brightfield back/coaxial-
forward illumination for an automatic image acquisition.
Simultaneously, each obtained image was compared to the
corresponding digital layout to evaluate optical quality of the
PFS, as proposed by Gengenbach et al. (2020). Quality crite-
ria are outlined in the following subsection Printout Quality
Assessment. The ambient air temperature and humidity on
the measurement site were logged online. Each sample was
analyzed twice: before ([M] � {0}) and after ([M] � {1})
sintering in a hot-air oven (see SI for details). All collected
data were stored in a machine-readable text format.

All non-image data had to be parsed and normalized to
avoid random data errors. For the good-quality lines ([Q]
� {1}), the maximum line resistance of 444 � was identi-
fied (sDS � 170 μm, non-sintered). In contrast, bad-quality
lines ([Q] � {0}) demonstrated linear resistances over a
wide range up to several M� that drastically increased data
scattering. In turn, it unnecessarily increased values of the
loss function, and decreased convergence during the CNN
training. As a countermeasure, improper [R] values were
deliberately equated to 103 � as the nearest higher power
of 10. Erroneously collected non-positive [R] values were
set to 103 � and esteemed as non-conductive.

Printed functional structures

A straight line of constant width (1D line) is the simplest
design for determination of electrical resistance (Sowade
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Table 1 Process data description

Process data Data type

Group Variable Notation Unit

Input Line printout Grayscale image Each px: [0, 1] Normalized pixel array

External Substrate temperature (printing site) tos [°C] All: positive float

Air temperature (printing site) top [°C]

Relative air humidity (printing site) RHp [%]

Air temperature (measuring site) tom [°C]

Relative air humidity (measuring site) RHm [%]

Internal Printing speed (∝ jetting frequency) υp [mm/s] Positive float

Ink droplet diameter (prior to printing) dd [μm] Positive integer

Ink droplet volume (prior to printing) Vd [pL] Positive integer

Ink droplet velocity (prior to printing) υd [mm/s] Positive float

Output Drop space (print-independent) [ds] [μm] Positive integer

Line resistance (print-dependent) [R] [�] Positive float

Line quality (print-dependent) [Q] {0, 1} Boolean

Post-treatment method (print-independent) [M] {0, 1} Boolean

Fig. 4 Schematic representation of the proposed ML-based workflow.
Set of training data encompassing PFS images and related process
data have been utilized to generate an evaluation model. Then, output

data have been identified from unknown PFS images using the model.
Dashed lines represent ancillary stages for [R] and [Q]

et al., 2016; Ungerer, 2020). Due to its elementary shape, it is
well-suited for detection of discrepancies between the digital
layout and the printed outcome. The rapid and uncomplicated
line manufacturing was beneficial for a prompt proof of the
elaborated concept. In practice, printed 1D lines have been
widely utilized as interconnects, interdigitated electrodes,
and resistances (Sowade et al., 2016). An A5-sized layout
generated as XML data is depicted in Fig. 5a. Each layout
consisted of 60 individual PFSs (“bones”) along with eight
registrationmarks. Each bonewas formedby a single-layered
horizontal line with the digital width of 1 px, and by two con-
tact pads on its ends (Ungerer, 2020). The drop space altered

from line to line from 5 μm to 300 μm, with the 5 μm step
size. In total, 60 different drop spaces were available in each
layout. The digital layout is described in detail in the SI. In
aggregate, 5,280 printed lines were fabricated and evaluated.

In contrast to the digital layout, the actual line width con-
sistently varied depending on the drop space individually
applied to each line (“set drop space” [sDS]). This effect
can be observed in Fig. 5b, along with an area of satellite
droplets occasionally emerged during printing.A photograph
of a printed sample is depicted in Fig. S2 in the SI.
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Fig. 5 a Part of the digital layout containing 30 individual lines and four
registration marks above and below each column. The drop spaces vary
from 5 μm (top line) to 150 μm (bottom line). Insets: schematic repre-
sentation of the pixel allocation in a digital line (not true to scale and
pixel number). b Complete inkjet-printed sample with 60 individual
lines of various drop spaces and with eight registration marks. Inset:

magnified lines with the drop spaces 5–35 μm. Lines with the drop
spaces 5–20 μm are remarkably wider than the others due to the ink
surplus. The line width decreases with the growing drop space value.
An area polluted with occasional satellite droplets is visible in the top
right corner

Printout quality assessment

Setup of the unidimensional sDS enabled us to fine-tune the
optical quality and functionality (viz. line resistance) of the
lines, since it changed the number of deposited ink droplets
over the constant line length, as pointed out in Fig. 6a. Hence,
it also changed a quantity of the deposited functionalmaterial
and, therefore, line resistance. In this respect, the ratio of sDS
to the diameter of a deposited ink droplet ddd (“relative drop
space” [rDS], rDS � sDS/ddd, ddd is represented in Fig. S1d
in the SI) had the key impact on the printout quality. For rDS<
1, deposited ink droplets coalesce and formbound conductive
lines. For rDS > 1, adjacent ink droplets are deposited too
far apart and not able to coalesce in any proper way, the line
remains completely or partly unbound. The corresponding
change in the actual line width and shape while altering sDS
and rDS is depicted in Fig. 6b–c.

Line geometry by rDS > 1 can be considered as systemati-
cally irregular. Alongwith that, sporadic printout defects can
occur during themanufacturing process. Such defects usually
arise through printhead and substrate impurities, local vari-
ations in the ink-substrate interaction, or incidental faults.

Thus sporadic defects cause non-systematic geometry irreg-
ularities, the most common of which are demonstrated in
Fig. 5d. In this work, only completely bound printed lines
without any geometry irregularities were considered as good
quality (i.e., with [Q] � {1}).

Machine learning

A supervised ML algorithm was elaborated: a plain neu-
ral net composed of four convolutional (CNN), and four
fully-connected layers (multilayer perceptron). The AdaM
optimizer (Schmidt et al., 2021; Sivaprasad et al., 2020)
improved by the Stochastic Gradient Descent with Warm
Restarts (SGDR) learning rate restart technique (Jha &
Pant, 2021; Loshchilov & Hutter, 2017), the SmoothL1 loss
function (Wang et al., 2022), and the Leaky ReLU activa-
tion function (Abdel-Nabi et al., 2023; Dubey et al., 2022;
Godfrey, 2019; Mercioni & Holban, 2020; Ogunsanya &
Desai, 2022) were utilized. During an automatic image pre-
processing, all auxiliary printout elements (i.e., contact pads
and registration marks) were omitted. To mitigate computa-
tional overload, (a) a grayscale panoramic image of each line
(see SI for details) was stepwise (b) cropped, (c) compressed
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Fig. 6 a Simplified schematic representation of the deposited droplet
position with regard to set drop space (not true to scale and droplet
number), adapted from Sowade (2017, p. 45). b–d Enlarged view of
individual printed lines:b bound lines printedwith different drop spaces
andwithout any visible irregularities in the line geometry; unbound lines

with c systematic and d non-systematic irregularities in line geometry.
Printed lines represented in b are considered as good quality ([Q] �
{1}), and in c–d as bad quality ([Q] � {0}). The scale bar is integral
for all images in b–d

Fig. 7 Image data preparation. a Original panoramic printout image
(14,202× 1530 px), the red frame outlines the cropping area.bCropped
image prepared for the subsequent compression (12,190 × 490 px).
c Compressed image ready as input data (2,400 × 60 px). d Normal-
ized 2D pixel value array (2400× 60 values; “0” correspond to 0%pixel

brightness, “1” to 100%), exemplary values are indicated. All images
are grayscale. The overlap zones (~ 26%) of individual frames of the
panoramic image are clearly visible as wide darkened vertical stripes

to 2,400 × 60 px, and (d) transformed to a 2D array of nor-
malized pixel values as demonstrated in Fig. 7. Expanded
descriptions of the CNN and its architecture, of the pre-
assessment of activation functions, and of the stepwise image
pre-processing are provided in the SI.

Prior to model training, the complete input dataset was
divided into a training, a validation, and a test set (60, 20,
and 20 percent, respectively) using theRandom Split method.
24 epochs were set for the CNN training, with an additional
validation after each epoch to monitor the training process
considering potential overtraining. The programming was
carried out in Python 3.11.5 and PyTorch 2.0.1.

Performance estimation

During training, validation, and test of the evaluation model,
each output variable X according to Table 1 was attributed

with two values: the actual one (“labeled value” [XL]), and
the one computed by the model (“predicted value” [XP]).
The output accuracy represented the concordance between
XL and XP, and was anticipated to equal 1 for the complete
match of XL and XP, and 0 for the complete mismatch (see
accuracy diagram in Fig. S4 in the SI):

acc(X) � 1 −
∣
∣X L − X P

∣
∣

max
(

X L , X P
) ∈ [0, 1], 0 < X L , X P ≤ 103.

(1)

The mean accuracy for all lines printed with a particular
sDS was determined as

accs DS(X) � 1

ns DS
·

ns DS∑

i�1

acc(Xi s DS), (2)
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where nsDS is the total number of the lines printed with a
particular sDS, and XsDS is the relevant output variable X
solely for lines printed with a particular sDS.

For each output variable X, its mean actual value for all
lines printed with a particular sDS was

X̄ L
s DS � 1

ns DS
·

ns DS∑

i�1

X L
i s DS . (3)

Since the accuracy functionwas supposed to evince varied
elasticity for different sDS, the actual dispersion of the output
values was assessed additionally. In particular, for [ds], the
mean drop space error (Err[ds]) was defined. It represented
the effective error of the drop space identification, and was
specified as a product of the mean [ds] accuracy for all lines
printed with a particular sDS, and the latter itself:

Err[ds] � accs DS([ds]) · s DS, (4)

Analogously, the mean resistance error (Err[R]) was spec-
ified for [R]. The effective error of the line resistance
identification is a product of the mean [R] accuracy for all
lines printed with a particular sDS, and the corresponding

mean actual line resistance
−
[R]

L

s DS :

Err[R] � accs DS([R]) · [R]L
s DS , (5)

In the case of Boolean [Q] and [M], the accuracy function
was expected to be non-elastic. For those variables, the effec-
tive error would be equal to their mean output accuracy. As a
solution, classification via confusion matrix was performed
(standard classification accuracy and F-score were applied
as evaluation metrics).

An ancillary data benchmark of [R] and [Q] (see Fig. 4:
Data benchmark) was conducted as a measure of the input
data inequality, based on the assessment of expected standard
deviations. A lower expected SD indicated a smaller variabil-
ity in a dataset and, thus, a higher data repeatability. In turn,
the latter was anticipated to positively correlate with the out-
put accuracy. The mathematical expectation represents the
weighted average of a dataset:

E(X) �
n

∑

i�1

xi · pi , (6a)

where x1, x2,… are possible outcomes and p1, p2,… are cor-
respondingprobabilities for the variableX (Billingslay, 2012,
pp. 81–84). In terms of the discontinuous sDS range set by
the experiment design, the dataset consisted of finitely many
discrete values. Since solely standard deviations of Boolean
outcomes were of interest for us (i.e., [Q] � {0, 1}, {[R] �

103 �, [R] �� 103 �}), corresponding mathematical expec-
tations for each sDS (vis. EsDS[X]) were computed as

(6b)

Es DS (X ) � nBool

ns DS
·
√
√
√
√

1

ns DS
·

ns DS∑

i�1

(

X L
i s DS − X̄ L

s DS

)2
,

0 ≤ nBool ≤ ns DS

where nBool is the amount of lines printed with a particular
sDS and with the preset Boolean value.

Results

Input data benchmark

As stipulated by the experiment design, [ds] and [M] were
equally distributed over all printed lines,with p[ds] �1/60 and
p[M] � 0.50, correspondingly. In contrast, print-dependent
[Q] and [R] had a non-equal distribution over the sDS range.
Benchmark results of two latter parameters are depicted in
Fig. 8. Both variables demonstrated a strong negative cor-
relation, and an equal value step transition at rDS≈0.9–1
(Fig. 8a). For bound lines, amount of the deposited functional
material decreases with the sDS growth, as it was mentioned
in the section Printout Quality Assessment. Accordingly,

both
−
[Q]

L

sDS and
−
[R]

L

sDS tended to slightly accrue.
From the arrangement of mathematical expectation,

pointed out in Fig. 8b, five quality groups were identified.
(a) Firstly, for rDS ≤ 0.8 (sDS ≤ 125 μm), each deposited
droplet firmly overlapped the adjacent one: a bound conduc-
tive line emerged (see Fig. 6b). Due to the minor number
of bad-quality samples, caused mostly by occasional print-
out defects (e.g., by extraneous inclusions: see Fig. 6d), the
EsDS(X) remained small for such lines. (b) Within that area,
PFSs with the rDS in the range 0.4–0.8 (sDS≈65–125 μm)
featured the minimum spread of mathematical expectation
values. The key reason of the decrease was the absence of
a surplus of deposited ink, and, hence, the absence of thus
induced geometry irregularities, such as ink bulbs and edge
waviness. Therefore, such lines were expected to possess
the best possible operational properties for printed electron-
ics (“operational zone” [OZ]). (c) Respectively, the range
rDS < 0.4 (sDS < 65 μm) could be conventionally denoted
as a “pre-operational zone” (POZ). In the POZ, ink bulbs,
edge waviness, and line thinnings (see Fig. 6d) were the
typically occuring defects. (d) Secondly, for rDS ≥ 1.15
(sDS ≥ 180 μm), the deposited droplets had a substantial
distance to the adjacent ones (see Fig. 6c). Since droplets
stayed separate, formation of the bound condutive lines was
not possible. Thus, the [Q] and [R] values remained con-
stant, with SD and EsDS(X) equal zero. (e) Lastly, for rDS
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Fig. 8 aVariation of themean actual [Q] and [R] values over the printed
lines, with regard to sDS and rDS. For sDS ≥ 180 μm, SD � 0 for both
variables. b Variation of mathematical expectation for the [Q] and [R]
standard deviations, with regard to sDS and rDS. Lines printed with
the drop spaces 30, 300, and 165 μm are shown as typical examples

of bound, unbound, and transitional lines, respectively. In b Dashed
lines link discrete values for greater clarity, without representing any
continuous graph. Variability of EsDS([Q]) at sDS < 65 is induced by
the surplus deposited ink and related geometry irregularities in printed
lines

Table 2 Description of the drop space quality groups

Quality group sDS [μm] rDS [1] Characteristic printout features (see Fig. 6c–d)

1 Bound lines 0–125 0–0.8 Conductive bound lines with potential non-systematic
geometry irregularities (incorporates both POZ and OZ)

1a Pre-operational zone (POZ) 0–65 0–0.4 Conductive bound lines with a substantial line width and
non-systematic geometry irregularities induced by the
surplus of deposited ink

1b Operational zone (OZ) 65–125 0.4–0.8 Conductive bound lines with the optimal line width and a
small amount of both systematic and non-systematic
geometry irregularities

2 Transitional zone (TZ) 125–180 0.8–1.15 Partly bound lines with a gradually increasing amount of
systematic geometry irregularities

3 Unbound lines ≥ 180 ≥ 1.15 Fully unbound, non-conductive lines composed of
individual dots spaced apart

� 0.8–1.15 (sDS≈125–180 μm), formation of the firmly
bound lines was unstable. Apparently, the major affecting
factors were fluctuations in the ink droplet size, velocity, and
placing accuracy; inhomogeneities in the substrate surface
and in the ink-and-substrate interaction; and the ink-droplet
coalescence behavior. The peak in Fig. 8b reveals a consid-
erable amount of printouts demonstrating marginal [Q] and
[R] values in the transition between bound and unboundPFSs
(“transitional zone” [TZ]). The maximum EsDS(X) value in
that zone corresponded to the sDS�155μm(rDS�0.99) for
both variables. We assumed, lines printed with rDS≈1—and

more widely, within the entire TZ—would be the most chal-
lenging for the ML-based analysis. All identified quality
groups are summarized in Table 2.

During the drying post-treatment ([M] � {0}), the sol-
vent was evaporated from the deposited ink, and disperse
AgNPs obtained an initial contact, partly agglomerating. The
sintering post-treatment ([M] � {1}) was required to pro-
mote accretion ofAgNPs, to remove organic additives, and to
reduce structural discontinuities in the printed lines. Hence,
electrical conductivity arose in sintered printed structures
(Hussain et al., 2023; Perelaer et al., 2010). In our dataset,
[R] values for the merely dried samples were considered as
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100%. In turn, for the dried and subsequently sintered sam-
ples, [R] attained 85.7 ± 24.1% (all bound lines), and 76.5
± 4.8% (all lines within the OZ).

Output data evaluation

Output accuracy for the variables [ds], [R], [Q], and [M] was
evaluated with regard to sDS and rDS, and to the identified
quality groups, to understand efficiency and boundaries of the
elaboratedML algorithm. For [Q] and [M], the test data were
classified by virtue of a confusion matrix. For [ds] and [R],
the effective error values were computed from the relative
output accuracy, based on the actual [ds] and [R] values. The
evaluation results are aggregated in Fig. 9.

Themean output accuracy over the entire drop space range
was not smooth, and differed among four output variables and
five quality groups, as it can be noticed from Fig. 9a. Still,
despite heterogeneity, certain trends could be clearly identi-
fied. The [ds], [R], and [Q] identification revealed a similar
pattern of development with the sDS increase, with the best
results for rDS > 1. The [M] identification was substantially
less accurate, proceeded differently, and deteriorated with
the sDS increase. In the POZ, all output variables accrued
with a slight logarithmic trend (almost unnoticeable for [ds]),
which was justified by a high elasticity of the accuracy func-
tion in that zone. In the OZ, all variables remained at large
constant, despite some volatility. As it had been expected,
a substantial descent was identified in the TZ for all out-
put data. For rDS > 1, the [ds], [R], and [Q] values tended
to reach a plateau with accsDS([ds], [R], [Q])≈1.0. Simi-
larly, with accsDS([M])=0.56± 0.10, the mean identification
accuracy of [M] remained virtually constant there, despite a
vast accuracy variance, and could be considered as a genuine
guessing. Regardless of the aforementioned direct depen-
dency of [R] on [ds] (see Fig. 8a: Bound lines), the algorithm
did not explicitly use one of those variables to determine the
second one, as it can be seen in the inset of Fig. 9a.

Identification correctness of the Boolean [Q] and [M] is
pointed out in Fig. 9b. For [Q], 1018 tested lines (96.40%
of the test dataset) were classified correctly, with the F-
score of 0.962. All six false-negative results were induced by
impurities at the measuring site. The algorithm misclassified
contaminations, such as dust and fibers under the transparent
substrate (with the coaxial brightfield illumination) for local
printed line defects, such as ink bulbs. That type of impurities
is equally easy to mistake during a manual control (an exam-
ple is represented in Fig. S3 in the SI). Furthermore, with
the sDS range of 140–175 μm, those lines pertained to the
TZ, which complicated the correct classification, as stated
above. The 32 false-positive results did not consider exist-
ing non-systematic irregularities in the corresponding lines:
preliminarily, single line breaks and ink bulbs (23 lines), and
local edge waviness (7 lines). We supposed, that was implied

by two key factors: (a) fuzzy transition between acceptable
and extreme geometry irregularities, also inaccessible to the
unambiguous identification by a person, and (b) information
loss at image compression. For [M], 711 lines (67.33%)were
identified correctly, with the F-score of 0.759. Any system-
atization of the false-negative results remained not attainable
for [M], since no explicit rationale can have been identified.
Among 285 false-positive results, 218 (76.50%) possessed
rDS > 1, which were predominantly non-functional due to
systematic geometry irregularities. The remaining part was
evenly distributed between POZ, OZ, and TZ (approx. 8%
each). We assumed that all false [M] identifications were
impacted by loss of the sensitive image color information
while image capturing and processing (a comparison of the
sample appearance is presented in Table S2 in the SI). For
unbound lines, due to the minimum printed area, the avail-
able color information was insufficient for the confident [M]
detection, which seemed to be a reason of the guess-like
result.

Yet, the reduced output accuracy at small sDS values, both
Err[ds] andErr[R] wereminor in the POZ (2.37± 1.36μmand
8.48 ± 4.62 �, respectively), and slightly increasing in the
OZ (2.96± 0.84μmand 16.40± 6.14�), as demonstrated in
Fig. 9c. Both were rising rapidly within the TZ with the peak
at sDS� 150μm (rDS≈0.96) (7.07μm and 140.91�), with
a subsequent decline to initial values for the unbound lines.
The median error attained 2.00μm for linewidth, and 5.65�

for resistance identification, collectively for all lines. Except
for the TZ, the mean errors were satisfactory for practical
use.

The point rDS � 1 undoubtedly separated the identifi-
cation results into two accuracy groups (see Fig. 9a). For
practically sensible conductive PFSs (rDS<1),we gained the
aggregate output accuracy of about 87.5%. Systematically
unbound printed structures demonstrated output accuracies
of over 99.3% for [ds], [R], and [Q]. However, the aggre-
gate output accuracy remained around 88.7% in this area
due to the insufficient [M] identification. The detailed accu-
racy apportionment over quality groups is highlighted in
Fig. 9d–e.

CNN enlargement with further layers, both convolutional
and linear, as well as increase in the channel number (see
CNN design in Fig. S5 in the SI) did not reveal any visible
result improvement. Vice versa, by reduction of the channel
number eight times, and with two linear layers instead of
four (illustrated in Fig. S8 in the SI), the aggregate output
accuracy dropped by only a few percentage points. Output
results of the contractedCNNare depicted in Fig. S9 in theSI.
Similarly, a higher number of epochs while training induced
overtraining, with corresponding accuracy deterioration (see
output results for 24 training epochs in Fig. S10 in the SI).
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Fig. 9 a Mean output accuracy for the studied variables, with regard
to sDS and rDS. Inset: mean [R] accuracy in relation to the mean [ds]
accuracy, demonstrating the absence of any strong correlation between
them. b Confusion matrix of the [Q] and [M] identification. Number of
matching printed lines and corresponding percentage of the test dataset

(ntest � 1056) are indicated for both output variables in each category.
c Mean effective error of the [ds] and [R] identification, with regard to
sDS and rDS. d–eMean output accuracy for the studied variables, with
regard d to rDS and e to quality groups

Discussion

Significance of selected output parameters

The output variables employed in this research (viz. drop
space, line resistance, line quality, and post-treatment
method) represent, correspondingly, printing resolution,
functional properties, optical quality, and manufacturing
method of a functional inkjet-printed product. They were
selected as representing PFS properties of a different nature:
appearance, functionality, quality, and fabrication, respec-
tively. Reliable identification of the drop space (viz. sDS)
enables an automatic inline control and adjustment of the
printing resolution to obtain the optimal printout quality
while printing. This leads to waste reduction and time sav-
ing during a fabrication process. Gengenbach et al. (2020)
demonstrated a manual image-based identification of the

actual drop space that lasted tens of minutes per sample. An
added benefit is a quick subsequent identification of sDS for
an arbitrary sample with lost fabrication data, or verification
of such data. Optical identification of the line resistance is
crucial for the damage-free evaluation of sensitive conductive
layers. Identification of geometry irregularities is particularly
important for the printed electronics with its decreased fab-
rication yield. Such quality identification allows to promptly
sort out low-quality PFSs, and to tune the process parameters.
Identification of the correct manufacturing method is signifi-
cant for complexmulti-step production processes. In the case
of utilization of diverse post-treatment methods for diverse
products, its correct identification is notably important at the
collection point to sort out inappropriate samples. It is also
crucial for an overview on the post-treatment quality. AML-
based inline monitoring of the drop space, of the type of
emerging defects (i.e., systematic and non-systematic), and
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the post-treatment method enables a dynamic control of their
actual values, and an automatic tuning of the relevant process
parameters to optimize the final product quality. An accurate
simultaneous identification of all four selected parameters
makes waste reduction, increase in the fabrication yield, and
acceleration of the entire manufacturing process possible.

Impact of quality groups and printing resolution

For practically sensible bound lines (rDS < 1), identification
accuracy is lower due to the more diverse PFS quality, to
the presence of non-systemic geometry irregularities, and to
the issues in the image quality. Still, identification of [ds]
(95.3 ± 2.4%), and [Q] (93.4 ± 6.9%) approaching the
2-σ threshold can be considered as quite accurate. In the
case of line resistance [R], the attained accuracy of 85.0 ±
7.0% seems to be sufficient for a practical application, due
to the moderate effective error of 12.6 ± 6.8 �. The post-
treatment method identification demonstrated an accuracy of
77.8 ± 11.4%. This value is anticipated to grow in the case
of better-quality source images. In all cases, the best results
are achieved in the quality group Operational zone possess-
ing the minimal number of geometry defects (for [M]: in
the Pre-operational zone, which proves, again, importance
of the available graphic information about the PFS surface
for this variable). For such samples, contamination through
dust, fibers, dirt acts adversely on the identification, causing
false-negative results.

ForPFSsnext to the tippingpoint rDS�1, parameter iden-
tification remains less stable due to the highest variance of the
sample quality. As a result, depending on the actual droplet
diameter, a particular printed line can be bound or unbound.
Both enhanced PFS image quality and size of the training
dataset are absolutely vital to mitigate non-integrity of the
training data, and, thus, to increase stability of the parame-
ter identification. Stabilization of the fabrication process is
substantial to avoid an increased instability of the sample
quality at this point. However, the overall output accuracy in
this complicated area can be considered as reliable enough
(89.9% for sDS � 155 μm against 89.0 ± 5.6% for bound
lines, for all output variables collectively).

For systematically bad-quality samples (rDS> 1), identifi-
cation of the drop space, of resistance, and of the line quality
tends to 100%, while identification of the post-treatment
method declines sharply to around 56%. We assume, this is
related to the available image quality: with clear and contrast
printed-area edges for [ds] and [R], andwith lacking informa-
tion about color and texture of the printed area surface for [Q].
By contrast, Ivy et al. (2023) employed high-resolution color
images of PFSs and derived sufficient information about the
surface of inkjet-printed silver resistors. Hence, color, reso-
lution, and an adequate contrast of PFS images are key for
the PFS parameter identification. In addition, the dataset in

this range is imbalanced due to the minimum quantity of
good-quality samples. We believe, this is the major reason of
the highest [Q] and [R] identification accuracy for unbound
lines.

The attained results demonstrate a general efficiency of
the proposed approach, and, thus, positively answer research
questions Q1 and Q3. However, clear inequalities among
identified quality groups validate significance of the relative
drop space as a key parameter for the result interpretation.
At large, bound lines possessing a natural quality variation
show a slightly lower identification accuracy than unbound
lines. PFSs within both Pre-operational and Transitional
zones tend to have vastly more geometry defects caused by
the amount of the applied material than within the Oper-
ational zone. Accordingly, parameter identification for the
latter zone is comparatively more accurate, than for the for-
mer ones. In turn, printing resolution determines number of
printed dots—hence, the material amount to be deposited on
the substrate. In general, high printing resolution leads to
deposition of the ink surplus, to ink spreading, and to emer-
gence of sporadic PFS defects. Too low printing resolution
is insufficient for an appropriate coalescence of ink droplets:
a systematic edge waviness, or completely unbound lines
occur. This is an answer to the research question Q4.

Limiting factors

We found out that quality of PFSs themselves, and quality of
the PFS images are the principal limiting factors for the cor-
rect ML-based assessment of PFSs. For large and complex
printed structures, to mitigate drastic increase in computing
time, residual neural nets can be an appropriate solution, as
shown by Kim et al., (2023a, 2023b). In contrast to sporadic
small-size defects, systematic irregularities in printed struc-
tures do not require high-resolution images to be detected.
Though, owing to the disappearance of small-size defects,
reduction of the size and resolution of images captured for
large-sized PFSs affects the identification robustness nega-
tively and must be avoided.

Besides, we do not consider structures printed at an angle
to the printing direction, typical formulti-nozzle raster-based
inkjet-printing systems and for other large-area printing tech-
niques (e.g., for screen printing). The effective printing
resolution along angled edges is lower than the its set value.
It affects the edge quality and, apparently, the line resistance,
as Sowade et al. (2016) indicated. This does not apply to the
single-nozzle system utilized for this work. However, impact
of such structural features on the algorithm accuracy must
be examined additionally in future work, owing to its utter
importance for the field of printed electronics.We expect that
owing to the edge quality deterioration, reported by Sowade
et al. for angled PFSs, ML-based processing of such samples
will tend to be less accurate. We assume, this negative effect
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can be mitigated by incorporating of the angle value, and the
relevant edge function proposed by Sowade et al. into the
internal process parameters dataset (see Fig. 4).

Furthermore, the printed-layer thickness and cross-section
profile are not addressed. Such structural information is
apparently able to additionally improve identification of
the fabrication method and of the functional properties, as
reported by Hui et al. (2023) and Lall et al. (2023). If
available, such structural information must be added to the
internal process parametersdataset (seeFig. 4) to consider its
impact on the parameter identification. However, collection
of such informationmight require offline contact-basedmea-
surements, which apparently reduce feasibility and potential
benefits of the proposed concept. In addition, surface color
and texture were not fully incorporated into the datasets due
to technical issues outlined in details in Table S2 in the SI.
At availability, several interrelated images (e.g., acquired via
ordinary scattered, inclined, or polarized light; 3D-scanned
images, etc.) can be combined in an enhanced image dataset,
providing supplementary information for a more accurate
parameter detection.

CNN evaluation

We found out that a more sophisticated CNN does not essen-
tially improve output accuracy. Apparently, the major reason
is that a simple input image does not require sophisticated
computations. Fast convergence (validation accuracy 0.883
after 4th epoch, 0.882 after 12th, 0.880 after 24th) indicates
no need in the lasting CNN training (see Fig. S7 in the SI).
An expanded dataset related to process parameters can be
advantageous, however, we do not expect any significant
improvement of the high accuracy attained. Other ML meth-
ods, such as K-Nearest Neighbors, Random Forest, eXtreme
Gradient Boosting, Residual Neural Networks, or Recurrent
Neural Networks can be in the best interest of the proposed
algorithm, especially for solution of the classification prob-
lem, but require additional research. Similarly, a fine tuning
of the CNN hyper-parameters can be beneficial. Still, iden-
tification of the best-performance ML method is outside the
scope of this study.

The training time is 2.25 h per epoch (i.e., approx. 2.6 s per
sample and epoch; PC specification is indicated in the SI).
This time strongly depends not only on the CNN efficiency,
but also on the image size, and cannot be directly compared
with other studies. However, the training duration per epoch
can be decreased by means of different ML architectures, as
S. J. Kim et al., (2023a, 2023b) proposed. We noticed that
image reduction leads to the significant acceleration of the
training process, at cost of the reduced identification accu-
racy. Besides, 24 epochs are unambiguously redundant for
training due to the fast convergence. For the pre-trainedCNN,

parameter identification on the test dataset of 1,056 ran-
domly selected PFS images lasted around 23 s (i.e., approx.
22 ms per sample). By contrast, manual operations, such
as contact-based resistance measurement and evaluation of
the optical quality, require several to hundreds of seconds
per sample. For non-experts, printing resolution and man-
ufacturing method remain basically undetectable in manual
operations. An automatic optical quality inspection reported
by Gengenbach et al. (2020) and based on the Bead Module
of the Matrox Imaging Library required tens of seconds for
sample positioning, and up to hundreds of milliseconds per
sample for the inspection, other parameterswere not regarded
in their study.

Further impacting factors

Along with the printing resolution, the following image and
process-based factors have an impact on the algorithm accu-
racy:

• amount, quality, and integrity of the training data (i.e., a
sufficient and balanced quantity of diverse, both good and
bad quality samples),

• amount, quality, and integrity of available process-relevant
parameters, both external and internal (i.e., material
properties, environmental parameters, fabrication process
parameters),

• presence and recognizability of visible geometry defects
(e.g., edge waviness, satellite droplets, line breaks, etc.),
systematization of such defects,

• presence of visual interference (e.g., dust particles, speck-
led background, etc.) in the image captured,

• availability of physical properties of the printed prod-
uct (i.e., surface color, texture, and transparency; surface
roughness and profile, cross-section area, roughness of
edges printed at an angle, appearance of the coffee-ring
effect, surface properties of the substrate, etc.),

• substrate planarity and form stability, illumination of the
substrate while image capturing,

• image quality of the printed product (i.e., contrast, resolu-
tion, color space, image compression, etc.)

To a large extent, these factors affect availability and
quality of visual information, essential for any image-based
approach. In turn, they affect robustness of the proposed
algorithm. The listed factors can be addressed by means of
a thorough data preparation. Technical facilities, such as a
high-resolution full-color camerawith an advanced illumina-
tion system, inline and online sensors, robotics, are beneficial
for an appropriate data collection. On the contrary, as previ-
ously mentioned, bigger images cause higher computational
load and, hence, may be disadvantageous. In terms of the

123



Journal of Intelligent Manufacturing

speed performance, image data and its convolution consti-
tute the major part of the data processing: in this study,
144,000-pixel data reshaped to a dataset of up to 27.7 ×
106 values in the convolutional layers against nine process
parameters and up to 256 channels in the multilayer percep-
tron. Utilization of more developed ML algorithms has to
be considered to handle with this issue. Image augmentation
increases amount of the training data and generalization of
the model, and contributes to the higher output accuracy of
the elaborated model. Although unchangeable internal pro-
cess parameters and constant external factors do not affect
quality of the CNN training, they slightly increase amount
of the data and the computational load. Hence, such factors
have to be omitted from the dataset as insignificant.

Yet, some factors are able to influence other ones indi-
rectly. For instance, decrease in the substrate temperature can
lead to a longer pinning time of the deposited ink droplet on
the substrate. The same is true for the environmental impact
on the ink rheology. In particular, in the case of the reduced
surface tension, a bigger ejected droplet emerges and causes
an increased diameter of a deposited ink droplet. In turn,
morewidely spread ink induces reduction of the relative drop
space—up to transition to an adjacent quality group—despite
the constant printing resolution. Stability and repeatability of
the manufacturing process (e.g., ink droplet formation, ink
and substrate interaction, etc.) have to be addressed to miti-
gate such data scattering.

Thus, this subsection provided an answer to the research
question Q5.

Further fields of application

The developed algorithm enables an accurate simultaneous
identification of various dissimilar properties of a printed
functional product. It is beneficial for the future AI-assisted
quality control in the PFS fabrication. The image-based
approach can be easily tailored to an application with vari-
ous printing techniques (e.g., screen, flexo, gravure printing,
additive manufacturing, etc.), materials, and process param-
eters. It enables parameter identification from the printed
product images acquired inline, atline, and offline, inde-
pendent on the particular printing technique. Corresponding
fabrication parameters (e.g., for screen printing: screen res-
olution and material, doctor-blade pressure and movement
speed, printing paste viscosity, etc.) have to be considered in
the internal process parameters dataset.Wedonot expect any
critical application challenges as long as the aforementioned
impacting factors are properly regarded.

Moreover, the proposed concept is suitable for a wide
range of manufacturing processes beyond printing, such as
in biomedical or chemical engineering. Its adjustable modu-
lar structure enables variability of the field of use depending
on the required results. An image of the fabricated product

remains the most crucial input data, along with its quality
and integrity. The process and the output parameter datasets
have to be tailored respectively. For instance, in the case of
bioprinting of living cells, tissue viability has to be opted
as a functional property; other output parameters remain
intact. In the material, food, or chemical sectors, properties
of compound crystals, granules, and powders (e.g., pellets,
granulated food, fertilizers, etc.) can be assessed, as well.
Thus, corresponding compound ratio has to be opted as a
functional property, the grain size supersedes printing res-
olution, optical quality and manufacturing method remain
intact. Still, a precise selection of the affecting parameters,
and, first of all, recognizability of characteristic product fea-
tures from its image is a considerable potential challenge for
theML algorithm. To handle with this problem, a scrupulous
site-specific tuning of the image-capturing process and of the
algorithm parameters might be needed.

In conjunction with the concept description provided in
the Introduction section, this subsection is the answer to the
research question Q2.

Conclusion

In this work, we conceptualize a ML-based approach to a
multidirectional quality control in printed electronics. To
validate the concept, we elaborate and study a CNN-based
algorithm considering its ability to identify four parameters
of a generic inkjet-printed functional structure collectively:
drop space, line resistance, line quality, and post-treatment
method. Broadly, these parameters correspondingly repre-
sent appearance, functionality, quality, and fabrication, all of
which are substantial for a wide range of industrial products.
We found that visual identification of dissimilar properties
is feasible, but predictive power of the simple CNN-based
algorithm is not equal for differently printed samples. Its
efficiency noticeably depends (a) on setup parameters, such
as printing resolution, (b) on stability and repeatability of the
fabrication process, (c) on amount, quality, and integrity of
the training data, (d) on type and systematization of geom-
etry defects in the fabricated product, (e) on quality of the
acquired images, and (f) on presence of visual interferences
on the images. As we demonstrated, ratio of the distance
between deposited droplets to their diameter (i.e., relative
drop space) is an essential parameter for the result esti-
mation, not yet considered by other research teams. Other
impacting and limiting factors are discussed, potential
avenues for transfer of the approach into further fields
of application are proposed. In practical terms, the pro-
posed concept enables advancement of quality control in
high-throughput manufacturing processes, related to a wide
range of industrial processes. Despite some revealed issues
caused by the limiting factors, the proposed approach is able
to reliably identify desired product properties.
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In future work, optimization of the proposed approach,
its transfer to a different domain within or outside of the
printed-electronics area must be conducted. A performance
comparison with other ML methods and fine-tune of hyper-
parameters must be addressed. The influence of the revealed
affecting factors, both image and process-based, must be per-
ceived and evaluated. Further combinations of data domains
must be elaborated to prove flexibility of the proposed con-
cept. Integration of the proposed algorithm as an inline
quality control process will be a major step for the field of
high-throughput manufacturing.
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