
41

M
ax

im
ili

an
 W

al
te

r

Context-based Access Control
and Attack Modelling and Analysis

Maximilian Walter

The Karlsruhe Series on
Software Design

and Quality

41

C
o

n
te

xt
-b

as
ed

 A
cc

es
s

C
o

n
tr

o
l

an
d

 A
tt

ac
k

M
o

d
el

lin
g

 a
n

d
 A

n
al

ys
is

Maximilian Walter

Context-based Access Control
and Attack Modelling and Analysis

The Karlsruhe Series on Software Design and Quality
Volume 41

Dependability of Software-intensive Systems group
Faculty of Computer Science
Karlsruhe Institute of Technology

and

Software Engineering Division
Research Center for Information Technology (FZI), Karlsruhe

Editor: Prof. Dr. Ralf Reussner

Context-based Access Control
and Attack Modelling and Analysis

by
Maximilian Walter

Print on Demand 2024 – Gedruckt auf FSC-zertifiziertem Papier

ISSN 1867-0067
ISBN 978-3-7315-1362-9
DOI: 10.5445/KSP/1000170265

This document – excluding parts marked otherwise, the cover, pictures and graphs –
is licensed under a Creative Commons Attribution-Share Alike 4.0 International License
(CC BY-SA 4.0): https://creativecommons.org/licenses/by-sa/4.0/deed.en

The cover page is licensed under a Creative Commons
Attribution-No Derivatives 4.0 International License (CC BY-ND 4.0):
https://creativecommons.org/licenses/by-nd/4.0/deed.en

Impressum

Karlsruher Institut für Technologie (KIT)
KIT Scientific Publishing
Straße am Forum 2
D-76131 Karlsruhe

KIT Scientific Publishing is a registered trademark
of Karlsruhe Institute of Technology.
Reprint using the book cover is not allowed.

www.ksp.kit.edu

Karlsruher Institut für Technologie
KASTEL – Institut für Informationssicherheit und Verlässlichkeit

Context-based Access Control and Attack Modelling and Analysis

Zur Erlangung des akademischen Grades eines Doktors der
Ingenieurwissenschaften von der KIT-Fakultät für Informatik des
Karlsruher Instituts für Technologie (KIT) genehmigte Dissertation

von Maximilian Walter

Tag der mündlichen Prüfung: 6. Dezember 2023
1. Referent: PD. Dr. Robert Heinrich
2. Referent: Prof. Dr. Jan Jürjens

Danksagung

Zuerst möchte ich mich bei meinem Betreuer und Gutachter PD. Dr. Robert
Heinrich bedanken. Durch die etlichen Diskussionen mit ihm ist erst diese
Arbeit entstanden. Er hat dabei immer Zeit für mich und meine Forschung
gehabt. Dieses Feedback war in verschiedenen Projekten, wissenschaftlichen
Publikationen und auch meiner Dissertation sehr hilfreich. Daneben möchte
ich mich bei Prof. Dr. Ralf Reussner bedanken, in dessen Gruppe ich sein
durfte. Ralf war neben Robert immer ein guter Ansprechpartner und lieferte
wichtiges Feedback für diese Arbeit. Insbesondere hatte Ralf auch immer
ein offenes Ohr für organisatorische und andere Anliegen für die Arbeit am
Lehrstuhl. Dadurch war es möglich, dass wir am Lehrstuhl ein sehr gutes
Arbeitsklima hatten und die tägliche Arbeit neben der Promotion auch immer
Spaß gemacht hat.

Dazu gehören aber natürlich auch die anderen Kolleginnen und Kollegen an
beiden Lehrstühlen. Ichmöchtemich dementsprechend bei allen für die immer
gute Zusammenarbeit und den Zusammenhalt bedanken. Insbesondere die
Diskussionen in Doktrandenrunden, Forschungstreffen oder anderweitigen
Treffen haben mir immer sehr geholfen. Ich möchte mich insbesondere bei
den Kollegen Dr. Stephan Seifermann und Sebastian Hahner bedanken, mit
denen ich in verschiedenen Forschungsprojekten arbeiten durfte. Insbesonde-
re Stephan hat mich auch immer zu technischen Fragen wie Buildprozessen
sehr gut beraten und ein offenes Ohr gehabt. Ich möchte mich auch bei allen
meinen Bürokollegen, Nicolas Boltz, Sebastian Hahner, Kai Marquardt, Dr.
Stephan Seifermann, Dominik Werle und Jan Wittler bedanken. Insbesondere
bei Nicolas der zuerst als mein Student und anschließend als Kollege mich
am Lehrstuhl begleitet hat.

Ein besonderer Dank geht auch anmeinen Kolleginnen und Kollegen Dominik
Fuchß, Angelika Kaplan und Yves Kirschner mit denen ich in der Übungslei-
tung in Programmieren zusammenarbeiten durfte. Dank ihnen hatte ich erst
die Zeit meine Dissertation zu beenden.

i

Danksagung

Vielen Dank auch an alle anderen, die mich auf diesem Weg begleitet haben
und mir immer zur Seite gestanden sind.

Zum Schluss möchte ich mich gerne noch bei meiner Familie bedanken.
Insbesondere meinen Eltern und meinem Bruder, durch deren Unterstützung
und permanente Ermutigung war es mir erst möglich zu studieren und auch
meine Dissertation zu schreiben.

ii

Abstract

In this thesis, we developed architectural security analyses to identify access
violations and attack paths.

Through the ongoing digitalization and increasing networking between vari-
ous aspects of our daily life, the significance of security is on the rise. System
security encompasses multiple properties, including confidentiality and in-
tegrity. In our research, we specifically concentrate on confidentiality. The
main aspect of a confidential system is that it only shares the required data
with authorized entities. Unauthorized or malicious entities are prevented
from gaining access to the data.

However, designing a confidential system is challenging due to numerous
factors influencing whether a system can be deemed confidential. One signif-
icant influencing factor is the access control. The access control is specified
by access control policies. These policies define the conditions under which
access can be granted to each entity within a system. Due to the ongoing
digitalization, these access control policies must increasingly consider context
factors when accessing data. For instance, the context may include a user’s
time or location. As considering contexts becomes more prominent, the com-
plexity of specifying access control policies also rises. Consequently, there
is a greater likelihood of access control policy misspecifications. Therefore,
context information plays a crucial role in determining the impact of access
control policies. However, due to the complexity of these policies, assessing
their impact is equally challenging. This challenging impact estimation makes
analyses that consider the context to determine the impact necessary.

In addition to access control policies, vulnerabilities can significantly affect
the confidentiality of a system. Attackers exploit these vulnerabilities to
gain unauthorised access to protected entities within the system, thereby
bypassing access control policies. Vulnerabilities not only grant direct access
to entities but can also lead to the unauthorised disclosure of authorisation
or credential information. Attackers can leverage this leaked information to

iii

Abstract

gain access to other entities. However, vulnerabilities are also dependent on
access control systems, as certain vulnerabilities may require authorisation
for exploitation. For example, some vulnerabilities can only be exploited by
authorised users. Consequently, when estimating the impact of a vulnerability,
an analysis must consider the access control properties. Furthermore, the
context of the attacker is crucial, as some vulnerabilities can only be exploited
if the attacker has previously compromised other entities within the system.
This results in a chain of compromised entities, often referred to as attack
paths. These paths consist of lateral movement and vulnerability chaining
representing the multiple exploitations of vulnerabilities and access control
policies through attackers. The automatic derivation of these potential attack
paths can aid in estimating the impact on confidentiality by providing experts
with feedback regarding potential compromised elements.

Existing approaches for estimating the security or impact of access control
policies or vulnerabilities often concentrate solely on one aspect, either the
access control policies or the vulnerabilities. Approaches considering both
properties tend to be highly specialized, focusing on a single application
domain, like Microsoft Active Directory, or employing a limited access control
model. Moreover, many existing approaches primarily operate on a network
topology, which aids in modelling but fails to account for additional important
factors such as deployment and components within the system.

Software architecture models can provide this information. In addition, the
usage of models enables us to analyse a system already during the devel-
opment or in a downtime. Hence, it helps in achieving Security by Design.
Our specific contributions are as follows: I) Development of an access con-
trol metamodel to specify context-based access control policies within the
software architecture. II) Creation of a vulnerability metamodel to specify
vulnerabilities within software architectures. III) Development of a scenari-
o-based access control analysis to analyse access control policies and identify
access violations. IV) Development of two attack analyses that generate
attack paths using vulnerabilities and access control policies based on the
software architecture. One analysis focuses on the propagation of attacks
from a specific starting point in the software architecture, while the other
identifies attack paths leading to specific architectural elements.

We evaluated our security analyses on different evaluation scenarios. These
scenarios are derived from evaluation cases found in related work, as well as

iv

Abstract

real-world security incidents. For the first analysis, we investigated the accu-
racy of identifying access violations. Our findings indicate a high accuracy in
this regard.

Regarding the two attack analyses, we investigated the accuracy in identi-
fying compromised elements, the potential effort reduction through using
our analyses and the scalability. Our findings indicate a high accuracy and
an effort reduction. However, the scalability for both approaches could be
improved. Nevertheless, for smaller software architectures, it is sufficient.

Our developed approach can help software architects to design secure sys-
tems. By providing access violations and attack paths, our approach helps
in estimating the impact of access control policies and vulnerabilities within
the software architecture. Moreover, through utilising software architecture
models, our approach can provide feedback already during the design of the
software. This can help to develop Secure Software by Design.

v

Zusammenfassung

In dieser Arbeit haben wir architekturelle Sicherheitsanalysen entwickelt,
um Zugriffsverletzungen und Angriffspfade zu ermitteln.

Durch die fortschreitende Digitalisierung und die zunehmende Vernetzung
steigt die Bedeutung der IT-Sicherheit. Die Sicherheit eines Systems besteht
aus mehreren verschiedenen Eigenschaften wie Vertraulichkeit oder Inte-
grität. In unserer Arbeit konzentrieren wir uns auf die Vertraulichkeit. Ein
vertrauliches System teilt nur die benötigten Datenmit autorisierten Entitäten.
Unbefugte oder böswillige Personen erhalten keinen Zugang zu vertraulichen
Daten.

Die Entwicklung eines vertraulichen Systems ist jedoch schwierig, da vie-
le verschiedene Eigenschaften Einfluss auf die Vertraulichkeit haben. Ein
wichtiger Einflussfaktor ist die Zugangskontrolle. Zugriffskontrollrichtlinien
definieren für jedes Element innerhalb eines Systems, unter welchen Bedin-
gungen der Zugriff gewährt werden kann. Diese Zugriffskontrollrichtlinien
berücksichtigen oft den Kontext für den Zugriff. Der Kontext kann z.B. die
Zeit oder der Standort von Personen sein. Durch die Berücksichtigung steigt
die Komplexität der Spezifikation der Zugriffskontrolle. Dies kann zu einer
Fehlspezifikation führen. Daher ist es wichtig, die Auswirkungen einer Zu-
griffskontrollrichtlinie zu ermitteln. Aufgrund der Komplexität ist es jedoch
schwierig, die Auswirkungen zu bestimmen, da die Analyse auch den Kontext
berücksichtigen muss.

Neben Zugriffskontrollrichtlinien können auch Schwachstellen die Vertrau-
lichkeit des Systems beeinflussen. Schwachstellen können von Angreifer:in-
nen ausgenutzt werden, um Zugang zu geschützten Entitäten im System zu
erhalten. Sie ermöglichen es den Angreifer:innen also, die Zugangskontroll-
richtlinien zu umgehen. Schwachstellen ermöglichen nicht nur den direkten
Zugang zu Entitäten, sondern ermöglichen Angreifer:innen auch die Berech-
tigung anderer Personen zuerlangen. Diese Berechtigung kann dann von
Angreifer:innen verwendet werden, um sich bei anderen Elementen Zugang

vii

Zusammenfassung

zu verschaffen. Schwachstellen hängen jedoch auch von Zugangskontrollsys-
temen ab, da für einige Schwachstellen eine Berechtigung erforderlich ist. So
können beispielsweise einige Schwachstellen nur von berechtigten Personen
ausgenutzt werden. Um die Auswirkungen einer Schwachstelle abschätzen
zu können, muss eine Analyse daher auch die Eigenschaften der Zugangskon-
trolle berücksichtigen. Darüber hinaus ist der Kontext der Angreifer:innen
wichtig, da einige Schwachstellen nur dann ausgenutzt werden können, wenn
der Angreifer:innen zuvor andere Entitäten im System kompromittiert haben.
Daher wird bei Angriffen eine verkettete Liste kompromittierter Entitäten er-
stellt. Diese Liste wird auch als Angriffspfad bezeichnet. Sie besteht aus einer
Kette von Schwachstellen, die die mehrfache Ausnutzung von Schwachstellen
und Zugangskontrollrichtlinien durch Angreifer:innen darstellen. Die auto-
matische Ableitung dieser möglichen Angriffspfade kann verwendet werden,
um die Auswirkungen auf die Vertraulichkeit abzuschätzen, da sie den Ex-
pert:innen eine Rückmeldung darüber gibt, welche Elemente kompromittiert
werden können.

Bestehende Ansätze zur Abschätzung der Sicherheit oder der Auswirkun-
gen von Zugangskontrollrichtlinien oder Schwachstellen konzentrieren sich
oft nur auf eine der beiden Eigenschaften. Ansätze, die beide Eigenschaften
berücksichtigen, sind in der Anwendungsdomäne oft sehr begrenzt, z.B. lö-
sen sie es nur für eine Anwendungsdomäne wie Microsoft Active Directory
oder sie berücksichtigen nur ein begrenztes Zugangskontrollmodell. Dar-
über hinaus arbeiten die meisten Ansätze mit einer Netzwerktopologie. Dies
kann zwar bei der Modellierung hilfreich sein, doch berücksichtigt eine Netz-
werktopologie in der Regel keine weiteren Eigenschaften wie Bereitstellung
von Diensten auf Servern oder die Nutzung von Komponenten.

Software-Architekturmodelle können diese Informationen jedoch liefern. Dar-
über hinaus ermöglicht die Verwendung von Modellen, ein System bereits
während der Entwicklung oder während eines Ausfalls zu analysieren. Daher
hilft es bei der Verwirklichung von „Security by Design“. Im Einzelnen sind
unsere Beiträge: I) Wir haben ein Metamodell für die Zugriffskontrolle entwi-
ckelt, um kontextbasierte Zugriffskontrollrichtlinien in der Software-Architek-
tur zu spezifizieren. II) Zusätzlich haben wir ein Schwachstellen-Metamodell
entwickelt, um Schwachstellen in Software-Architekturen zu spezifizieren.
III) Die Zugriffskontrollrichtlinien können in einer szenariobasierten Zugriffs-
kontrollanalyse analysiert werden, um Zugriffsverletzungen zu identifizieren.
IV) Wir haben zwei Angriffsanalysen entwickelt. Beide können Angriffspfade
auf einem Architekturmodell generieren und Schwachstellen und Zugangs-

viii

Zusammenfassung

kontrollrichtlinien verwenden. Die eine Analyse betrachtet die Angriffsaus-
breitung von einem bestimmten Startpunkt in der Software-Architektur. Die
andere findet Angriffspfade, die zu einem bestimmten Architekturelement
führen.

Wir haben unsere Sicherheitsanalysen anhand verschiedener Evaluierungs-
szenarien evaluiert. Diese Szenarien wurden auf der Grundlage von Evaluie-
rungsfällen aus verwandten Arbeiten oder realen Sicherheitsvorfällen erstellt.
Für die erste Analyse haben wir die Genauigkeit bei der Identifizierung von
Zugriffsverletzungen untersucht. Unsere Ergebnisse deuten auf eine hohe
Genauigkeit hin.

Für die beiden Angriffsanalysen untersuchten wir die Genauigkeit hinsicht-
lich der gefundenen kompromittierten Elemente, die Aufwandsreduzierung
bei der Verwendung unserer Analysen und die Skalierbarkeit. Unsere Ergeb-
nisse deuten auf eine hohe Genauigkeit und eine Aufwandsreduzierung hin.
Allerdings ist die Skalierbarkeit für beide Ansätze nicht ideal. Für kleinere
Software-Architekturen ist sie jedoch akzeptabel.

Der von uns entwickelte Ansatz kann Software-Architekt:innen dabei helfen,
sicherere Systeme zu entwerfen. Der Ansatz kann die Auswirkungen von Zu-
griffskontrollrichtlinien anhand von Zugriffsverletzungen und für Schwach-
stellen zusammen mit Zugriffskontrollrichtlinien anhand von Angriffspfaden
aufzeigen. Durch die Verwendung von Software-Architekturmodellen kann
unser Ansatz dieses Feedback bereits während des Entwurfs der Software
liefern. Dies kann helfen, nach „Security by Design“ zu entwickeln.

ix

Contents

Danksagung . i

Abstract . iii

Zusammenfassung . vii

List of Figures . xvii

List of Tables . xxi

List of Acronyms . xxiii

I. Prologue 1

1. Introduction . 3
1.1. Motivation . 3
1.2. Problem Statement . 9
1.3. Research Questions . 11
1.4. Contributions . 13
1.5. Outline . 16

2. Foundations . 17
2.1. Software Architecture Description and Analysis 17

2.1.1. Model-Driven Software Development 17
2.1.2. Software Architecture and Palladio Component Model 20
2.1.3. Karlsruhe Architectural Maintainability Prediction

Approach . 21
2.2. Security Related Concepts and Terms 22

2.2.1. Access Control Specification 22
2.2.2. Security Incidents and Vulnerabilities 24
2.2.3. Vulnerability Classification 25

xi

Contents

2.2.4. Misuse Case . 26
2.3. Categorising Threats to Validity 26

3. Running Example . 29

II. Contributions 35

4. Modelling Influencing Factors for Context-Based Security 37
4.1. Identification of Services and Components 38
4.2. Considering Access Control Properties in Software Architec-

ture Models . 41
4.2.1. Requirements for Modelling Access Control Properties 42
4.2.2. Modelling Attributes . 45
4.2.3. Modelling Access Control Policies 48
4.2.4. Modelling Attribute Providers and Scenarios 54
4.2.5. Transformation to XACML & Access Requests 56

4.3. Considering Vulnerabilities in Software Architecture Models . 67
4.3.1. Requirements for Modelling Vulnerabilities 68
4.3.2. Modelling Identifiers for Vulnerabilities 71
4.3.3. Modelling Vulnerabilities 71
4.3.4. Integration in Palladio 79
4.3.5. Automatic Derivation of Vulnerabilities 81

4.4. Considering Attacks in Software Architecture Models 82
4.4.1. Requirements for Modelling Attacks 83
4.4.2. Modelling Attacks . 84

4.5. Considering Attackers in Software Architecture Models 85
4.5.1. Modelling Attackers for Attack Propagation 86
4.5.2. Modelling Attackers for Filtered Attack Paths 87

5. Analysing Software Architectures for Potential Security Incidents . 93
5.1. Scenario-Based Access Usage Analysis 94

5.1.1. Process for Analysing Scenario-based Access Control
Policies . 95

5.1.2. Analysing Scenarios for Access Violations 99
5.1.3. Analysing Misusage Scenarios for Access Violations . 103
5.1.4. Result Model for the Access Usage Analysis 104

xii

Contents

5.2. Attack Propagation Analysis . 106
5.2.1. Process for Analysing Attack Propagations with the

Software Architecture 108
5.2.2. Attack Propagation Process 110
5.2.3. Data Extraction . 111
5.2.4. Analysing Attack Propagations 112
5.2.5. Result Model for Attack Propagation 126

5.3. Targeted Attack Graph Analysis 129
5.3.1. Process for Analysing Attack Graphs based on the

Software Architecture 130
5.3.2. Attack Graph Analysis Process 131
5.3.3. Creating an Attack Graph 131
5.3.4. Identifying Attack Paths 136
5.3.5. Result Model for the Targeted Attack Graph Analysis 142

III. Validation 145

6. Evaluation Scenarios . 147
6.1. TravelPlanner . 148
6.2. Power Grid . 152
6.3. Target . 156
6.4. Cloud Infrastructure . 160
6.5. ABAC-Banking . 162
6.6. Education . 163
6.7. Maintenance Scenario . 165

7. Evaluation . 169
7.1. Usage Analysis . 170

7.1.1. Goal, Question, Metric 170
7.1.2. Evaluation Design . 173
7.1.3. Results & Discussion . 175
7.1.4. Threats to Validity . 177

7.2. Attack Propagation . 181
7.2.1. Goal, Question, Metrics 181
7.2.2. Evaluation Design . 188
7.2.3. Results & Discussion of Accuracy 193
7.2.4. Results & Discussion of Effort Reduction 195
7.2.5. Results & Discussion of Scalability 203

xiii

Contents

7.2.6. Threats to Validity . 205
7.3. Targeted Attack Graph Analysis 211

7.3.1. Goal, Question, Metrics 211
7.3.2. Evaluation Design . 216
7.3.3. Results & Discussion of Accuracy 220
7.3.4. Results & Discussion of Effort Reduction 221
7.3.5. Results & Discussion of Scalability 223
7.3.6. Threats to Validity . 224

7.4. Assumption and Limitations . 230
7.5. Overall Evaluation Results & Discussion 238

IV. Epilogue 243

8. Related Work . 245
8.1. Approaches focused on Confidentiality 245

8.1.1. Access Control Models 246
8.1.2. Access Control Policy Analyses 248
8.1.3. Confidentiality Analyses 250
8.1.4. Usage Control Approaches 252
8.1.5. Industrial Tools & Approaches 253

8.2. Approaches focused on Attacks & Attackers 253
8.2.1. Vulnerability & Attack Classifications 253
8.2.2. Attack Path & Threat Modelling 255
8.2.3. Attack Path Estimation & Automatic Analysis 256
8.2.4. Industrial Tools & Approaches 261

8.3. Related Work Summary . 262

9. Conclusion . 265
9.1. Summary . 265
9.2. Benefits . 270
9.3. Future Work . 272
Acknowledgement . 277

V. Appendix 279

Bibliography . 281

xiv

Contents

A. Evaluation Results Effort Reduction Targeted Attack Graph Analysis 307

xv

List of Figures

2.1. Metamodel layers illustration based on Stahl et al. [188] and MOF
[2] . 19

2.2. Overview of the syntax for our metamodels 19
2.3. Attribute Based Access Control (ABAC) access decision based on

Hu et al. [73] with the naming schema from eXtensible Access
Control Markup Language (XACML) 23

2.4. A simplified ABAC architecture based on Hu et al. [73] 24

3.1. Software architecture overview of the maintenance scenario
based on [211] . 29

4.1. Metamodel elements to identify services for annotation 40
4.2. Attribute metamodel with gray elements based on XACML 46
4.3. Simplified access control policy metamodel with grey elements

for elements based on XACML and white elements as new ele-
ments[211] . 50

4.4. Attribute provider and scenario metamodel for context-based
policies . 54

4.5. Process for creating a XACML model and creating an access request 58
4.6. Excerpt PolicySet Transformation 58
4.7. AllOf transformation . 59
4.8. EntityMatch, MethodMatch and GenericMatch transformation . . 61
4.9. SimpleAttributeSelection transformation 63
4.10. Result model for PDP decisions . 67
4.11. Category metamodel elements based on [211] 72
4.12. Vulnerability metamodel elements based on [211] 73
4.13. Vulnerability Palladio Component Model (PCM) integration . . . 80
4.14. Approach for automatic extraction of vulnerabilities based on [94] 83
4.15. Attack metamodel elements based on [211] 84
4.16. Attacker propagation metamodel elements based on [211] 86
4.17. Attacker propagation instance for the running example 87

xvii

List of Figures

4.18. Attacker with filtered attack paths metamodel elements 88
4.19. Attacker instance with filters for the running example 91

5.1. Process for using the access usage in a new system. Icon Source:
Font Awesome by Dave Gandy — http://fontawesome.io 96

5.2. UsageScenario for the running example with the technician ac-
cessing the log data of the machine during a failure state 97

5.3. MisusageScenario for the running example with the technician
accessing the log data of the machine 98

5.4. Result metamodel for the access usage analysis 104
5.5. Analysis result model for the running example 106
5.6. Process for using the attack propagation in a new system. Icon

Source: Font Awesome by Dave Gandy — http://fontawesome.io 108
5.7. Attack propagation analysis steps 110
5.8. Resulting attack propagation graph for the running example with

the starting point Terminal . 125
5.9. Result and seed metamodel elements for the attack propagation

analysis . 126
5.10. Attack propagation result example for the running example in

Eclipse . 128
5.11. Process for analysing attack graphs 130
5.12. Targeted Attack Graph analysis process steps 131
5.13. Resulting attack graph for the running example without filters . . 135
5.14. Resulting attack graph for the running example with the vulner-

ability complexity filter for Low . 137
5.15. Attack graph of the running example with identified paths from

Terminal to the target element ProductStorage 138
5.16. Metamodel elements for the result of the targeted attack graph

analysis . 142
5.17. Attack path result example for the running example in Eclipse . . 143

6.1. Architectural overview TravelPlanner scenario 150
6.2. Architectural overview Power Grid scenario 153
6.3. Architectural overview Target scenario 157
6.4. Hardware resources and networks in the cloud infrastructure

scenario . 160
6.5. Simplified overview ABAC banking scenario 162

7.1. Overview of the GQM plan for contribution C3 171

xviii

http://fontawesome.io
http://fontawesome.io

List of Figures

7.2. Overview of GQM plan for contribution C4.1 182
7.3. Chained ResourceContainers schematics for the scalability eval-

uation . 193
7.4. Scalability results (G4) for increasing number of resource containers 205
7.5. Overview of GQM plan for contribution C4.2 212
7.6. Scalability results (G7) for increasing number of resource containers 225

8.1. Exemplary simplified attack tree based on Schneier [162] 255

9.1. Overview of the approach related to the security terms defined
by ISO 27000 [77] . 266

xix

List of Tables

3.1. Access control policies and vulnerabilities for the running example 34

6.1. Characteristics of the evaluation scenarios 167

7.1. Evaluation results regarding the JC for Q1.1 and Q1.2 176
7.2. Evaluation results for the attack propagation analysis regarding

accuracy and effort reduction . 196
7.3. Activities performed during the usage of the attack propagation

analysis . 198
7.4. Evaluation results for the targeted attack graph analysis regarding

accuracy and effort reduction . 222

A.1. Evaluation results for Q6 . 307
A.1. Continued evaluation results for Q6 308
A.1. Continued evaluation results for Q6 309

xxi

List of Acronyms

PCM Palladio Component Model

ADL Architecture Description Language

APT Advanced Persistent Threats

SEFF Service Effect Specification

EMF Eclipse Modelling Framework

XACML eXtensible Access Control Markup Language

CWE Common Weakness Enumeration

CVE Common Vulnerabilities and Exposure

CVSS Common Vulnerability Scoring System

CWSS Common Weakness Scoring System

NVD National Vulnerability Database

ABAC Attribute Based Access Control

RBAC Role-Based Access Control

IoT Internet of Things

PDP Policy Decision Point

OASIS Organization for the Advancement of Structured Information Stan-
dards

XML Extensible Markup Language

UML Unified Modeling Language

VM Virtual Machine

KAMP Karlsruhe Architectural Maintainability Prediction

xxiii

List of Acronyms

ICS Industrial Control Systems

OWASP Open Web Application Security Project

DSL Domain Specific Language

POS Point of Sale

GQM Goal Question Metric

CWSS Common Weakness Scoring System

CAPEC Common Attack Pattern Enumerations and Classifications

CPS Cyber-Physical System

xxiv

Part I.

Prologue

1. Introduction

This thesis presents our approach for analysing the security of a given soft-
ware architecture. In our security analyses, we consider vulnerabilities and
access control policies. We explain why these are essential for security anal-
yses in Section 1.1. In addition, we motivate why it is essential for security
experts and software architects to consider the outcomes of our analyses. Sec-
tion 1.2 outlines the problems we address in this thesis. These problems lead
to our research questions, which we present in Section 1.3. Our contributions,
which answer the research questions, are presented in Section 1.4, and this
chapter concludes with an outline for the thesis in Section 1.5.

1.1. Motivation

Software systems have become ubiquitous in our daily lives, based on the
emergence of innovative technologies, such as Internet of Things (IoT) and
cloud computing. These advancements are being leveraged across various
domains, including the manufacturing industry, where Industry 4.0 [161] and
Industrial Internet of Things (IIoT) are gaining traction, the energy sector,
with the rise of smart grids or the healthcare sector, through the implementa-
tion of smart health services. Among these types of system the utilization
of technologies like IoT or Cyber-Physical System (CPS) for connecting nu-
merous devices with software services is common. This results in a complex
network of heterogeneous devices and services. These systems often handle
sensitive data. Examples of such sensitive data can be personal health data in
the case of smart health services or detailed production data in the case of
Industry 4.0. Because of the sensitive nature of the data, the data should not
be accessible to everyone. Therefore, these connected systems must handle
the data confidential without providing access to external third parties.

Confidentiality is defined by ISO 27000 as part of information security [77,
section 3.28]. Confidentiality ensures “that information is not made available

3

1. Introduction

or disclosed to unauthorised individuals, entities, or processes” [77, section
3.10]. Access control, among other mechanisms, is a common means for
achieving confidentiality. Access control means “to ensure that access to
assets is authorised and restricted based on business and security require-
ment[s]” [77, section 3.1]. The access control system is specified by access
control policies. These policies specify under which condition access to assets
is granted. An asset is the entity, which needs protection. For instance, a
service can be an asset. We call the access requesting entity in our work
requestor. Typically, access is determined based on attributes of the requestor,
such as their role. However, the specification of access control policies is
very cumbersome, and the manual specification can be complex [204]. Be-
cause access control policies increasingly consider the context for the access
decision, the policies themselves are getting more complex in contrast to
non-context-based policies. The consideration of context attributes in the ac-
cess control policies results in the access decision about accessing an element
being context-dependent. In addition, the consideration of the context leads
to more fine-grained access control policies than previous classical access
control models, such as Role-Based Access Control (RBAC) [55]. Examples
of such contexts can be the state of a machine in a production setting or the
location of a user. Due to the complexity of context-based policies, the impact
is often unknown. This increases the possibility of misconfiguration or mis-
specification. Misspecifications of policies are faulty access control policies.
These policies grant access under the wrong conditions, such as too wide
(permissive) or too restrictive policies. An example of too-wide access control
policies is granting users access to services that should require root privileges.
Misspecification of access control policies is problematic because they might
block legitimate access requests [23] or enables misuse through malicious
users. Both cases can be very costly. For instance, blocking legitimate access
may prohibit users from performing their tasks. Therefore, it leads to delays
in certain tasks or unusable systems. For instance, this might be blocking
business processes within a business system. In a production process, this
could mean a downtime of the assembly line, which is very costly12. On the

1 S. Ravande. Council Post: Unplanned Downtime Costs More Than You Think. Forbes. Section:
Innovation. Feb. 22, 2022. url: https://www.forbes.com/sites/forbestechcouncil/2022/
02/22/unplanned-downtime-costs-more-than-you-think/ (visited on 06/06/2023).

2 Downtime Costs Auto Industry $22k/Minute - Survey. Mar. 29, 2006. url: https://web.archive.
org/web/20230420005357/https://news.thomasnet.com/companystory/downtime-costs-

auto-industry-22k-minute-survey-481017/ (visited on 06/06/2023).

4

https://www.forbes.com/sites/forbestechcouncil/2022/02/22/unplanned-downtime-costs-more-than-you-think/
https://www.forbes.com/sites/forbestechcouncil/2022/02/22/unplanned-downtime-costs-more-than-you-think/
https://web.archive.org/web/20230420005357/https://news.thomasnet.com/companystory/downtime-costs-auto-industry-22k-minute-survey-481017/
https://web.archive.org/web/20230420005357/https://news.thomasnet.com/companystory/downtime-costs-auto-industry-22k-minute-survey-481017/
https://web.archive.org/web/20230420005357/https://news.thomasnet.com/companystory/downtime-costs-auto-industry-22k-minute-survey-481017/

1.1. Motivation

other hand, misuse by malicious users can lead to fines for confidentiality
violations leading to privacy violations. For instance, H&M was fined 35.3
million euros for privacy violations3, Amazon paid 5.8 million US Dollars
for privacy violations4, or British Airways was fined 20 million pounds5. It
is also important to see that the mentioned fines did not take place in only
one country but were imposed by authorities in different countries such as
Germany or the USA. This shows the global importance of this issue. Besides
the privacy implication also other implication can happen such as reputation
loss [54] or leakage of confidential data. Therefore, it is necessary to analyse
different scenarios with the context to estimate the impact of access control
to avoid confidentiality violations. In addition, because systems evolve over
time, not only the initial specification is important but also the changed
system and specification need to be considered. It is also necessary to analyse
the access control policies in an evolution step to estimate the impact of a
policy change.

Besides the complex access control policies resulting in unknown confiden-
tiality impacts, there are vulnerabilities in the used devices or products. A
vulnerability is a “weakness of an asset [. . .] that can be exploited [. . .]” [77,
section 3.77]. In our case, we concentrate on software vulnerabilities, such as
the Log4Shell vulnerability [130], which enabled attackers to execute arbitrary
code. Through the exploitation of vulnerabilities, attackers can gain access to
previously restricted elements and data. This exploitation and gaining access
can be a potential confidentiality violation. They need to be considered for
a confidentiality analysis. Otherwise, the impact of vulnerabilities on confi-
dentiality is unknown. The vulnerabilities are also directly linked to access
control mechanisms because certain vulnerabilities require special privileges
for exploitation, such as CVE-2009-07834 [125]. Other vulnerabilities may
leak the credentials or authorisation, which enables attackers to circumvent

3 The Hamburg Commissioner for Data Protection and Freedom of Information. 35.3 Million
Euro Fine for Data Protection Violations in H&M’s Service Center. Oct. 2020. url: https:

//datenschutz- hamburg.de/assets/pdf/2020- 10- 01- press- release- h+m- fine.pdf

(visited on 04/04/2023).
4 D. Bartz. Amazon’s Ring used to spy on customers, FTC says in privacy settlement. June 1,
2023. url: https://www.reuters.com/legal/us-ftc-sues-amazoncoms-ring-2023-05-31/
(visited on 06/05/2023).

5 H. Beverley-Smith et al. British Airways Faces Significantly Reduced £20M Fine for GDPR Breach.
The National Law Review. Oct. 23, 2020. url: https://www.natlawreview.com/article/
british- airways- faces- significantly- reduced- 20m- fine- gdpr- breach (visited on
06/07/2023).

5

https://datenschutz-hamburg.de/assets/pdf/2020-10-01-press-release-h+m-fine.pdf
https://datenschutz-hamburg.de/assets/pdf/2020-10-01-press-release-h+m-fine.pdf
https://www.reuters.com/legal/us-ftc-sues-amazoncoms-ring-2023-05-31/
https://www.natlawreview.com/article/british-airways-faces-significantly-reduced-20m-fine-gdpr-breach
https://www.natlawreview.com/article/british-airways-faces-significantly-reduced-20m-fine-gdpr-breach

1. Introduction

access control mechanisms, such as in CVE-2021-28374 [129]. Various studies
show that vulnerabilities exist in systems, and it cannot be assumed that
they will always be addressed once they are known. For instance, an HP
study states that 70% of IoT devices are vulnerable6. A study by Unit 42,
a threat intelligence team, shows high usage of vulnerable components in
cloud providers7. Similar results can be found in a UK government study,
stating that 32% of large businesses have outdated Windows installations
[84]. A newer version states that in the production field, it is around 26%
[47]. Outdated software often contains vulnerabilities. The importance of
this issue is stressed even more by the fact that vulnerable and outdated
components constitute their own category in the Open Web Application
Security Project (OWASP) 10 [137]. The OWASP 10 [137] is a list compiled
by OWASP which contains, in their opinion, the ten most critical security
risks for web applications. Based on the fact that most modern applications
have some kind of web interaction or use similar technologies, their findings
are also transferable to other domains. Furthermore, the number of available
vulnerabilities is increasing every year, while the average time for finding
an exploit is decreasing [56, 153]. Addressing all these vulnerabilities is not
always possible or feasible due to factors, such as costs or practicality [151].
For instance, in the production domain, an outdated machine controller may
require a costly replacement of the complete machine. Furthermore, a report
by IBM states that only 8% of known exploits are new8.

Attackers often exploit an initial attack point to get access to a system and
then propagate further in the system [84]. This propagation is often called
lateral movement. This movement involves discovering new access privileges
to further compromise the system [152, p. 65]. Others refer to this movement
and exploitation of multiple vulnerabilities as vulnerability chaining, as it

6 HP Study Reveals 70 Percent of Internet of Things Devices Vulnerable to Attack. July 2014.
url: https://web.archive.org/web/20190420151125/https://www8.hp.com/us/en/hp-
news/press-release.html?id=1744676#.XLs2pBXP3ao (visited on 04/03/2023).

7 J. Greig. 96% of third-party container applications deployed in cloud infrastructure contain known
vulnerabilities: Unit 42. en. Oct. 2021. url: https://www.zdnet.com/article/96-of-third-
party- container- applications- deployed- in- cloud- infrastructure- contain- known-

vulnerabilities-unit-42/ (visited on 04/03/2023).
8 Website: IBM Security X-Force Threat Intelligence Index 2023. en-us. Mar. 2023. url: https:

/ / web . archive . org / web / 20230318123413 / https : / / www . ibm . com / reports / threat -

intelligence (visited on 04/04/2023).

6

https://web.archive.org/web/20190420151125/https://www8.hp.com/us/en/hp-news/press-release.html?id=1744676#.XLs2pBXP3ao
https://web.archive.org/web/20190420151125/https://www8.hp.com/us/en/hp-news/press-release.html?id=1744676#.XLs2pBXP3ao
https://www.zdnet.com/article/96-of-third-party-container-applications-deployed-in-cloud-infrastructure-contain-known-vulnerabilities-unit-42/
https://www.zdnet.com/article/96-of-third-party-container-applications-deployed-in-cloud-infrastructure-contain-known-vulnerabilities-unit-42/
https://www.zdnet.com/article/96-of-third-party-container-applications-deployed-in-cloud-infrastructure-contain-known-vulnerabilities-unit-42/
https://web.archive.org/web/20230318123413/https://www.ibm.com/reports/threat-intelligence
https://web.archive.org/web/20230318123413/https://www.ibm.com/reports/threat-intelligence
https://web.archive.org/web/20230318123413/https://www.ibm.com/reports/threat-intelligence

1.1. Motivation

involves the sequential exploitation of multiple vulnerabilities9. Therefore, to
obtain a comprehensive understanding of possible attack paths in the system,
we need to consider both access control properties and multiple vulnerabil-
ities. Understanding these attack paths is important for devising effective
mitigation strategies. For example, a firewall can block access to a vulnerable
component, thereby reducing the risk of exploiting the component’s vulnera-
bility. Consequently, considering only a single vulnerability or access control
policy without the context cannot fully determine the impact on security.

Examining a software system for security properties is possible on different
abstraction layers. For instance, various security analyses exist based on
the network layers, such as Aksu et al. [8] or Yuan et al. [223]. However,
they often fail to consider fine-grained access control properties or fail to
distinguish between application and network layers. Commercial options,
such as Bloodhound10 or Codeshield11, consider more fine-grained access
control properties. However, they are limited to specific application domains,
such as Microsoft’s Active Directory or Amazon Web Services (AWS). Mean-
while, the security can also be analysed based on the existing source code.
Different source code analyses have been developed [183]. These approaches
commonly overlook security properties pertaining to the infrastructure or
are restricted to a single programming language. Furthermore, the high level
of detail in the source code often makes identifying overall design issues
challenging.

In contrast to the mentioned approaches, a software architecture model
can provide valuable information about the deployment and consider the
infrastructure and application layers. Additionally, it can offer insights into
the design of the software due to its higher level of abstraction. Considering
the design is particularly important as security vulnerabilities often stem
from design flaws. This notion is supported by OWASP’s introduction of
the element Insecure Design in 2021, which describes that the security flaw
is already contained in the original design [1]. This also aligns with the
observations made by McGraw [110]. In both cases, the basic idea is that the
security can depend on the design. For instance, the parsing of a raw string
without cleaning can be a security vulnerability. In this case, the design fault

9 First. Common Vulnerability Scoring System version 3.1: User Guide. url: https://www.first.
org/cvss/user-guide#3-4-Vulnerability-Chaining (visited on 04/28/2023).

10 BloodHound Enterprise. url: https://bloodhoundenterprise.io/ (visited on 03/20/2023).
11 CodeShield GmbH. Codeshield. url: https://codeshield.io/ (visited on 03/20/2023).

7

https://www.first.org/cvss/user-guide#3-4-Vulnerability-Chaining
https://www.first.org/cvss/user-guide#3-4-Vulnerability-Chaining
https://bloodhoundenterprise.io/
https://codeshield.io/

1. Introduction

is not filtering the string before parsing the string. These design decisions
can also be found in a software architecture. For example, vulnerabilities or
known security issues may be found in off-the-shelf components (bought
components), and software architects could be aware of them. Consequently,
by choosing a component, the software architect also chooses parts of the
vulnerabilities for a system. Hence, the architectural design decision and,
thereby, the software architecture affect the security properties.

Furthermore, analysing the system during the design phase is beneficial as
rectifying flaws in later stages typically incurs higher costs [174]. Thus, con-
sidering the software architecture is beneficial because it allows to analyse
the system during the design phase without requiring the system to be op-
erational. A modelled software architecture remains useful even in latter
phases because the software architecture enables analysis during downtime
(e.g., maintenance tasks or attacks). In addition, a modelled system enables
manually creating different what-if cases and analysing these to find the opti-
mal solution. Therefore, analysing security properties based on the software
architecture is beneficial.

This thesis aims to develop an approach that facilitates the analysis of ac-
cess control policies and vulnerabilities using a software architecture model,
thereby enabling the more secure design of software. In our scenario, the
software architecture models are specified by Software Architects, similar like
in PCM [154]. The access control properties and vulnerabilities are specified
by Security Experts because of the required knowledge which goes beyond the
usual knowledge of software architects. In the latter sections, we will specify
the activities in more detail. The approach has the capability to identify
potential access violations by both regular users and malicious actors. This
approach gives a first impact on how access control policies affect the access
decision of a system. Besides focusing on access control policies, the thesis
investigates potential attack propagations by considering the exploitation
of access control policies and vulnerabilities. The analyses provide security
experts or software architects with possible attack paths. This gives an initial
impact on vulnerabilities and whether they can be problematic or not. In
addition, the attack paths give a first starting point for finding mitigation
locations.

8

1.2. Problem Statement

1.2. Problem Statement

Our motivation provides initial insights into the problems that we aim to
address in this thesis. In general, our goal is to provide architectural security
analyses for access control policies and vulnerabilities that aid in the design
of secure systems. In other words, our objective is to assist security experts
and software architects in constructing more secure software systems. In this
regard, we identified two specific problems which we intend to tackle within
this thesis.

P1: Unknown Security Impact of Access Control Policies The first problem
we identified is the unknown impact of access control policies. Due to the
complexity of context-considering access control policies, the impact is not
always known. Especially in more complex systems like in Industry 4.0 with
multiple different access control policies. This unknown impact manifests in
two ways. The first is in the initial design or specification of the policy, and
the second is during an evolution change. For a single access control policy,
this might not be problematic. For instance, an exemplary access control
policy in an Industry 4.0 setting might be that access is granted only during
a maintenance task. This single access control policy is very simple, and the
effect is relatively easily understood. However, if this policy is integrated with
a system, the protected system entity interacts with other entities, which are
also protected by other policies. Hence, the successful interaction depends
on multiple different access control policies. For instance, it could be that for
a maintenance task, also other services are needed, which are protected by
different access control policies. Therefore, additional access control policies
need to be considered to evaluate whether the actual maintenance task can
be fulfilled. In addition, more and more access control policies consider the
current context for an access control decision. This further complicates the
access decision because the access decision depends on the context. Therefore,
the impact can only be estimated by considering the context.

Additionally, access control policies can change over time, in order to accom-
modate new processes or tasks. In this scenario, a similar issue may arise. The
problem lies not only in the uncertainty surrounding whether a particular
task or process can be executed but also in the potential widening of access
definitions resulting from policy changes. As a consequence, these changes
may inadvertently grant access to malicious users.

9

1. Introduction

Ultimately, this problem is a trade-off decision between achieving the system’s
goal and ensuring security. In addition, it can be viewed as a cost issue,
as accidentally blocking legitimate access requests may block or hinder a
business process. Therefore, the users need to invest additional time to
complete their tasks. Also, too permissive (too-wide) access control policies
can be considered a cost problem because they can result in loss of knowledge
resulting in losing a competitive edge. Furthermore, in some cases, it also
results in fines. To avoid this problem, it is necessary to analyse access control
policies regarding the used scenario and in combination with the system.

P2: Unknown Security Impact of Vulnerabilities The second problem we
identified is the unknown impact of vulnerabilities. As mentioned earlier in
the motivation, the number of vulnerabilities continues to increase. This leads
to the challenge for security experts to identify which vulnerabilities should
be addressed first. Even more, in some cases, it is not feasible to address them
at all due to limited resources or the absence of available patches. Therefore,
it is necessary to manage the vulnerabilities and identify the critical vulnera-
bilities [151]. To accomplish this, understanding the impact of a vulnerability
is important. However, similar to P1, the impact of a vulnerability cannot be
completely determined independent of the used system. For instance, a vul-
nerable component can enable an attacker to reach other components, such as
a gateway component. However, in other cases, there might be no connected
components. In other scenarios, an attacker cannot exploit a vulnerability
because it is only locally exploitable, and the attacker has only access over a
network. Furthermore, certain vulnerabilities require specific permissions
for exploitation, or they grant certain permissions that can be used later for
further propagation. Therefore, it is unclear what a vulnerability’s actual
impact is and whether it enables further attack propagation.

This problem can also be viewed as a cost problem. For instance, in the case
of vulnerabilities affecting confidentiality, the same cost problem regarding
leaked data as for P1 arises. Another problem is the vulnerability manage-
ment. For instance, one solution for addressing the unknown impact is for
security experts to secure all vulnerabilities automatically. However, the
cost could be very high because of the vast number of vulnerabilities. In
addition, in scenarios involving production controllers, the replacement of
an entire machine may be required, further increasing the costs. For solving
this problem, we need attack analyses, which can assess the vulnerability.

10

1.3. Research Questions

One possible solution for assessing a vulnerability is detecting whether the
vulnerability is used in an attack path. Based on the assessment results, the
software architects can discuss with the security expert whether the identified
attack path needs mitigation. If mitigation is deemed necessary, the security
expert can propose different mitigation techniques to the software architects
to break the attack path towards the critical components.

1.3. Research Questions

Based on the problem description, we derived our research questions. These
research questions help in narrowing down our research and guided us in the
development of our approach. We defined the following research question:

RQ1 How can violations of access control policies in context-dependent
scenarios be identified in relation to the software architecture?

RQ1.1 How can access control policies for context-dependent scenarios
be modelled in relation to the software architecture?

RQ1.2 How can access control policies for context-dependent scenarios
be analysed in relation to the software architecture?

RQ2 How can we identify attack propagations based on the software archi-
tecture?

RQ2.1 What are relevant architectural properties for an attack propa-
gation?

RQ2.2 How can we analyse a software architecture for attack propaga-
tions?

The first research question, as outlined in RQ1, investigates how violations of
access control policies can be identified. This is especially relevant to context-
based scenarios as commonly found in IoT-enabled environments, such as
those encountered in Industry 4.0. Moreover, the identification should be
possible based on the software architecture and thereby enabling the analysis
during the design time. This is similar to our definition of dynamic changes,
which states that dynamic events need to be foreseeable at design time [215].
Dynamic events are usually also context-dependent, such as the position of a
worker. We transfer this definition to our access control policies, meaning that

11

1. Introduction

we only investigate access control policies, which can be expressed during
design time. This definition excludes some policies, such as self-adapting
policies, but it simplifies the approach itself. The first sub-research question
RQ1.1 narrows our research to software architecture and modelling access
control policies. This is necessary because before we develop an access control
analysis, we need to specify the input for the analyses. In our case, the input is
the software architecture and the access control policies. Therefore, we must
first investigate how access control policies can be modelled. The second
part is the integration of access control policies into software architecture
models. This is necessary because access control policies usually protect
assets. In our case, we described these assets as elements within a software
architecture. Therefore, we need an integration for access control policies
within the software architecture. However, the access control policies should
depend on the software architecture, but not the other way round. In other
words, a change in the access control policies should not require a change
in the software architecture. This means the access control policy model
should be separate from the software architecture model and only reference
the software architecture model. The second sub-research question RQ1.2
then investigates the actual analysis of access control policies. The analysis
is dependent on the software architecture model, meaning that the analysis
uses the software architecture to analyse the access control policies.

The second research questionRQ2 is derived from problem P2. The questions
consist of two essential parts. First, our focus is on attack propagation.
Secondly, we base our analysis on the software architecture. Similar to
our first research question, the sub-research question RQ2.1 investigates
the relevant properties for an attack propagation. Identifying the relevant
properties is necessary because the properties are the foundation for our
modelling language to specify the input of the attack analysis. Our goal here
is not to provide a complete list of properties but to identify the most critical
aspects. Once again, we utilize the software architecture to describe the assets.
In this problem, the assets are vulnerable architectural elements. The second
sub-research question RQ2.2 then targets the analysis part. It specifies the
desired outcome of an attack analysis. In addition, it investigates how the
results can be used.

The research questions are answered by our contributions, which we present
in the next section.

12

1.4. Contributions

1.4. Contributions

Based on our research questions, we derived our four main contributions.
These consist of different modelling languages and analyses. We will first
outline each contribution and then provide a more detailed description.

Contribution C1: Access Control Modelling Language for Software Architec-
tures The first contribution C1 addresses the research question RQ1.1. It is
a modelling language which enables software architects or security experts
to define access control policies for different architectural elements, such as
components, services or hardware devices. In addition, it provides support
for modelling context-dependent scenarios. As the access control of a system
is crucial for understanding attack propagations, this contribution also aids
in answering research question RQ2.1. Our access control modelling lan-
guage is built upon the existing standard for ABAC policies. Leveraging this
foundation allows us to define context-aware access control policies, which
are essential in IoT scenarios. In addition, using an existing standard can
ease our approach’s application because experts can already be familiar with
the concepts. The modelling language provides the explicit representation of
access control policies for various software architectural elements, thereby
enhancing the documentation of security properties. Moreover, the modelled
policies can serve as a foundation for effective communication among diverse
stakeholders and experts. The explicit modelling of access control policies
also enables the design and analysis of such policies. The later analysis can
lead to the design of more secure policies because the analysis can identify
misspecified policies. Consequently, this contribution can help to design
more secure systems.

Contribution C2: Vulnerability Modelling Language for Software Architectures
The second contribution C2 is our vulnerability modelling language featur-
ing vulnerabilities, attacks and attackers. Together with C1, it answers the
research question RQ2.1. The modelling language is built upon existing in-
dustrial vulnerability classifications. It can assign vulnerabilities to different
architectural elements, such as components or hardware devices. Further-
more, it models additional information concerning the exploitability of a
vulnerability. For instance, it defines the attack vector, which describes from
which location the vulnerability can be exploited. Additionally, the modelling

13

1. Introduction

language encompasses elements for modelling attackers and attacks, which is
essential for distinguishing between different attack types. Different attacker
types are necessary as vulnerabilities exhibit varying different properties
for exploitations. For instance, the level of complexity may vary for attacks.
Therefore, some attacks may require more sophisticated attacker capabilities
than others. Our vulnerability modelling language provides means for secu-
rity experts to model relevant properties of vulnerabilities and annotate them
onto a software architecture. This modelling serves to document vulnerabili-
ties and forms the foundation for subsequent architectural security analysis.
Ultimately, by making vulnerabilities explicit and analysable, this modelling
language can help to improve system security.

Contribution C3: Scenario-based Access Usage Analysis The third contri-
bution C3 is a scenario-based access usage analysis. By utilising our con-
tributions C1, this contribution enables analysing access control policies
through usage scenarios. It answers our research question RQ1.2. Software
architects can specify different usage scenarios and enhance the scenarios
with context information. Each scenario contains the initial system calls
by the users and is then analysed to determine whether the system calls
are feasible based on the current context and access control policies. This
analysis is especially beneficial for software architects and security experts
looking to investigate and understand how access control policies function
within specific contexts and scenarios. In the event of a violation, software
architects can adapt the scenarios, or security experts can modify the access
control policies to mitigate the violation. Furthermore, the analysis supports
the analysis of malicious scenarios. These are scenarios which should not be
possible given the provided access control policies and contexts. This concept
is useful for analysing whether forbidden behaviour is achievable or not. This
contribution enables the security expert to identify excessively permissive or
overly restrictive access control policies based on the intended usage. Hence,
they can design more secure access control policies by determining the appro-
priate level of permissiveness required. Furthermore, software architects can
ascertain whether the intended usage can be achieved through the specified
access control policies.

Contribution C4: Architecture-based Attack Analyses Our last contribution
C4 is the attack analyses. This contribution consists of two sub-contributions.

14

1.4. Contributions

Both contributions use the modelling languages from the contributions C1
and C2 and answer the research question RQ2.2.

Contribution C4.1: Architecture-based Attack Propagation Analysis The first
attack analysis C4.1 examines a software architecture for potential attack
propagation. A similar scenario can be observed in real systems with insider
attacks, where an insider exploits the system to get more privileges. The
analysis requires a starting point and a dedicated attacker model. The analysis
subsequently provides a list of affected elements. These affected elements
are the elements an attacker can reach from the start point and is able to
compromise. Hence, this analysis is important, for instance, to identify how
far an attack can spread within a system. Our propagation uses credentials
together with vulnerabilities and calculates the affected elements based on
the software architecture.

Contribution C4.2: Architecture-based Targeted Attack Graph Analysis The
second analysis C4.2 is a targeted attack analysis. In contrast to C4.1, it
does not require a starting point but requires a specified target. The analysis
calculates attack paths leading to the target. This analysis is beneficial when
software architects or security experts want to identify whether there exist
an attack path to the targeted element. This is important, for instance, if the
targeted element is a critical component, such as a banking component. In
such cases, identifying an attack path to the component signifies a risk, as it
indicates that attackers can potentially compromise this critical component.
It is, therefore, important to be aware of this risk and consider potential
mitigation strategies.

The results of both attack analyses (C4.1, C4.2) can be used by security experts
in collaboration with software architects to evaluate the security of a system.
Both analyses provide a list of affected elements, which indicate potential
compromised elements by an attacker. Based on these affected elements,
security experts can then identify appropriate mitigation actions, such as
implementing a firewall or modifying the security configurations, like the
access control policies and discuss the integration of the mitigation with
the software architects. Implementing the identified mitigations can disrupt
attack paths, thereby enhancing the system’s overall security.

15

1. Introduction

1.5. Outline

The remainder of the thesis is structured as follows. In Chapter 2, we introduce
the foundations of our approach. The foundation covers the introduction
of PCM as our chosen Architecture Description Language (ADL) and the
introduction of security approaches and terms. We introduce in Chapter 3
our running examples, which we use to explain the core concepts in our
approach. Afterwards, we describe in detail our contributions in Part II. We
start by describing our developed modelling languages in Chapter 4. This
description contains the modelling languages for access control properties,
vulnerabilities, attacks, and attackers. These modelling languages are the
foundation for our analyses introduced in Chapter 5. After describing our
contributions, we describe our validation in Part III. We start by describing
our evaluation scenarios in Chapter 6. These consist of different scenarios
based on real-world scenarios and research scenarios. We use them in our
evaluation described in Chapter 7. There, we describe our evaluation goals
and give the results for each developed analysis. Our thesis concludes with
the Part IV. It covers the related work in Chapter 8 and in Chapter 9 the
conclusion with a summary of the thesis and an outlook for potential future
work.

16

2. Foundations

In this section, we explain the foundations upon which our thesis is built. Our
approach relies on the modelling and analysis of software architectures. In
Section 2.1, we explain the key concepts relevant to our software architecture
modelling. It explains modelling concepts in general and describes a concrete
ADL. The second part of our foundations is the definition and introduction
of security-related terms in Section 2.2. There, we define and introduce the
most important security concepts for our approach. The last section (2.3)
introduces a categorization of threats to validity, which is important for the
evaluation.

2.1. Software Architecture Description and Analysis

In this section, we will first explain in Section 2.1.1 the concept of Model-
Driven Software Development. We give a definition of a model and explain the
relationship between metamodels and models. Afterwards, we introduce in
Section 2.1.2, the ADL which we use in our approach to model the software
architecture. We describe in the section the most important architectural mod-
elling elements for our approach. Afterwards, we introduce in Section 2.1.3
the Karlsruhe Architectural Maintainability Prediction (KAMP) approach,
which is a foundation for our attack propagation.

2.1.1. Model-Driven Software Development

Model-Driven Software Development (MDSD) is a concept for developing
software based on abstract models [188]. Developers specify models that are
automatically transformed into source code. One of the aims of this process
is to increase the efficiency of software development [188, section 1.1]. Our
approach also takes advantage of key concepts from MDSD.

17

2. Foundations

Essential to the application of MDSD concepts is a common understanding
and definition of a model. Stachowiak [187, p. 131ff] defines a model with the
three properties representation, abstraction and pragmatics. The first property
requires a model to be a representation of a specific entity. For example, a
model of a vulnerability is a representation of the real vulnerability. The
second property is that the model is an abstraction of the actual entity. In
other words, the model is reduced. For example, a real software vulnerability
may containmany aspects, such as the source code leading to the vulnerability.
However, not all of this information is relevant. This is especially true in
combination with the last property, the pragmatics. The pragmatics describe
the purpose for which a model is created. For example, in our case, the model
is created to analyse the propagation of an attack.

In our approach, we use models to describe a software architecture and its
security properties. Based on the models, we provide automatic analyses
that can determine different security qualities, such as access violations or
accessible elements by an attacker. In order to be able to analyse the system
automatically, we need to define a formal syntax of how these models should
look like. Stahl et al. [188, p. 58ff] call models based on a structure formal
models. This structure is called “a metamodel [which] describes the possible
structure of models – in an abstract way, it defines the constructs of a mod-
elling language and their relationships, as well as constraints and modelling
rules [. . .]” [188, p. 85]. An example of such a metamodel is the Unified Model-
ing Language (UML) [3]. Furthermore, the UML metamodel is also described
as a metamodel, which is then called a meta-metamodel. In our example case,
this is the Meta Object Facility (MOF) specified by the Object Management
Group (OMG) group [2]. This concept of layering between different structures
can be repeated with an arbitrary number of layers. However, usually, four
or fewer layers are sufficient [2]. In our approach, the meta-metamodel is the
Ecore model from the Eclipse Modelling Framework (EMF) [191]. A similar
layering to MOF and Stahl et al. [188] is shown in Figure 2.1. On the left side,
the figure shows the different meta-layers and their relationship. On the right
side, we give an example of our use case. As the meta-metamodel, we use
Ecore. This provides us with concepts, such as classes. The metamodel defines
our structure Vulnerability. The model defines the concrete vulnerability.
In our case, this is the identification string CVE-2021-28374. M0 is then the
concrete instance of the described vulnerability.

In our thesis, we used the concepts of metamodels to express the modelling
languages of our contributions C1 and C2.

18

2.1. Software Architecture Description and Analysis

M3: Meta-Metamodel Ecore

M2: Metamodel Vulnerability

M1: Model CVE-2021-
28374

M0: Instance Instantiated

describe instanceOf

describe instanceOf

describe instanceOf

Figure 2.1.: Metamodel layers illustration based on Stahl et al. [188] and MOF [2]

Inheritance ContainmentReference

Class

Model
Element

Abstract
Element

Class

Figure 2.2.: Overview of the syntax for our metamodels

Figure 2.2 illustrates the graphical syntax we use in our illustrations to de-
scribe our metamodels. The syntax is based on the concept of UML class
diagrams. Thus, rectangles with a name are a model element. In some cases,
where the attributes are important, the rectangle is divided into the name
section and an attribute section. Names in italic indicate an abstract element
similar to an abstract class. Inheritance or generalisation is indicated by white
closed arrows. Open arrows without a composition are references. Contain-
ment relationships are indicated by a composition (black-filled rhombus) and
an open arrow. In cases where it is important, the multiplicity is given.

19

2. Foundations

2.1.2. Software Architecture and Palladio Component Model

Our approach uses the software architecture as a foundation to describe a
system. As a metamodel for the software architecture, we choose to use the
Palladio Component Model (PCM) [154]. PCM is a well-established ADL. It
supports the component-based development process and provides various
quality analyses, such as performance or reliability [154]. Furthermore, there
exist also different security analyses for PCM, such as Seifermann [166]
or Pilipchuk [143]. Therefore, using PCM is beneficial because of its wide
variety. This enables architects to reuse parts of the model and distribute the
modellings costs across multiple quality analyses.

In this description, wewill focus only on the elements of PCM that are relevant
to this thesis. We begin by describing the Repository. The repository contains
the components and interfaces. These are linked by required and provided
roles. The interfaces contain the service declarations and are implemented in
the components providing the interface. The service declaration is described
by a Signature.

In the context of the PCM, the implementation of a service is referred to as
Service Effect Specification (SEFF). SEFFs can invoke other services, which
is denoted ExternalCall within PCM. In our case, a single component is
represented by the model element BasicComponent. A CompositeComponent

is a composition of several BasicComponents. The modelled components are
instantiated in the System or Assembly. An instantiated component is referred
to as an AssemblyContext. Different AssemblyContexts are connected by
an AssemblyConnector. This connection is the actual wiring between the
different provided and required roles of a component. In addition, the model
contains the selection of the public interface for a system.

The deployment of the components is modelled in the Allocation containing
the deployment relationship between the instantiated components and the
hardware devices. The hardware devices are modelled in the ResourceEnvi-
ronment. It includes the hardware devices for processing nodes. These are
called ResourceContainers. In addition, it contains network devices, which
connect different ResourceContainers. The network devices are called Link-

ingResources.

The user behaviour is modelled in the Usagemodel. It groups the user be-
haviour into different UsageScenarios. These scenarios can be seen as usage

20

2.1. Software Architecture Description and Analysis

profiles [154, p. 103]. Within a UsageScenario, the different system calls to
the public services specified in the assembly are modelled. This service call is
referred to in PCM as EntryLevelSystemCall.

The previous description and the following only cover Palladio 5.11. We do
not include or consider incubation projects or other projects which are not
part of the official PCM release.

2.1.3. Karlsruhe Architectural Maintainability Prediction
Approach

The Karlsruhe Architectural Maintainability Prediction (KAMP) [189, 190,
156, 71, 155, 36] approach is a change impact analysis for maintenance tasks.
Based on a given software architecture, it calculates potentially affected archi-
tectural elements for a given change request. The approach propagates the
original change through the structural elements of a software architecture.
It was successfully used in the context of software architectures [189, 156],
business systems [155] and automation systems [71]. The basic idea is to
define a propagation rule for each type of change in a software architecture.
For instance, a propagation rule could be that a changed service name affects
the implementing service. Here, the change type would be the name change
and the propagation rule would be the relationship to the implemented ser-
vice. This propagation can then continue because the implemented service is
now affected. This could then propagate, for instance, to the services requir-
ing the implementation. This propagation continues as the affected service
then impacts other dependent services, and so on, until no new elements are
affected. In the end, the analysis then provides a list of affected elements.
This behavior bears similarity to attack propagation, where attackers also
propagate through structural architectural elements. As with maintenance,
this propagation follows certain propagation rules, such as in the case of
attackers that they exploit vulnerabilities or knowledge of the system. At-
tackers also usually continue until they either achieve their goal or cannot
further propagate to other elements. In the case of maintenance tasks, the
analysis also propagates till the change does not affect any other architectural
elements. In addition, the expected output is similar because, in both cases,

1 PCM 5.1 - SDQ Wiki. url: https://sdq.kastel.kit.edu/wiki/PCM_5.1 (visited on
06/06/2023).

21

https://sdq.kastel.kit.edu/wiki/PCM_5.1

2. Foundations

we expect the affected elements and a reason for it. Therefore, we decided to
use this propagation structure as our foundation for our attack propagation
and investigated whether it is useful.

2.2. Security Related Concepts and Terms

In this section we discuss important security terms and techniques. First, we
explain our used access control concept in Section 2.2.1. Then we describe
security incidents in Section 2.2.2 and our used vulnerability concept in
Section 2.2.3. In the last section 2.2.4 we describe the concept of misuse cases
to model malicious activities.

2.2.1. Access Control Specification

As described in the introduction, confidentiality is a property of information
security and can be defined as ”that information is not made available or
disclosed to unauthorized individuals, entities, or processes” [77, section
3.10]. Other security properties for information security can be availability
or integrity [77, section 3.28]. However, in our work, we focus on confiden-
tiality. Access control is one technique that can be employed to ensure the
non-availability or disclosure of information to unauthorized parties. Other
approaches can be, for instance, information flow control [50] or encryption
[22]. In our approach, we focus on access control to preserve confidentiality.
During access control requests, users typically request resources and authen-
ticate themselves to the system. This process includes the security property
authenticity, which is “[. . .] that an entity is what it claims to be” [77, section
3.6]. In our work, we abstract from the authentication process itself. We
consider entities to be authenticated if they have the appropriate attributes
for accessing a resource. However, our approach does not consider how the
attributes are assigned to entities.

During the introduction, we highlighted the importance of context-con-
sidering access control policies to provide access control policies for context-
dependent scenarios. To address this, we choose Attribute Based Access
Control (ABAC) [73] as our access control system. ABAC is considered a
dynamic access control approach and can take context into account during an
access control decision. The main concept of ABAC is that multiple attributes

22

2.2. Security Related Concepts and Terms

Performs
Action

ABAC-
System

Subject
Attributes Resource

Attributes

Environment
Attributes

Grant
Access

Subject Resource

Action
Attributes

Figure 2.3.: ABAC access decision based on Hu et al. [73] with the naming schema from XACML

are evaluated during an access control decision. Figure 2.3 illustrates this
behaviour. A subject (here user) wants to perform an action on a resource. An
action represents an operation such as read. A resource can be any element
upon which an action is performed, such as a file or a service. The ABAC
system divides attributes into four distinct categories: subject attributes (e.g.,
user name or role), action attributes (e.g., name of the performed action), the
resource attributes (e.g., name of the requested resource), and the environ-
ment attributes (e.g., time). All of these attributes are considered during the
access control decision process. Afterwards, the access is either granted or
denied.

A simplified architecture of an ABAC architecture is given in Figure 2.4. The
figure is based on the description of the ABAC functional points in Hu et al.
[73]. However, we excluded certain parts which are not relevant to this thesis.
The Requestor is the requesting subject. It sends its request for access to a
resource to the Policy Enforcement Point (PEP). The PEP “[e]nforces policy
decisions in response to a request [. . .]” [73, p. 25]. The PEP then delegates
the request to the Policy Decision Point (PDP). The PDP performs the
actual access control decision and returns the decision to the PEP. The PEP
can then grant access to the requested resource handled by the Resource

Handler. This separation between PEP and PDP is important for our analysis
because it enables us to delegate the actual access decision process in our
analysis to another component.

23

2. Foundations

Policy Enforcement Point
(PEP)

Policy Decision Point
(PDP)

Requestor Resource Handler

Figure 2.4.: A simplified ABAC architecture based on Hu et al. [73]

An implementation for ABAC is eXtensible Access Control Markup Language
(XACML) [73, 132]. XACML is an open industry standard developed by
the Organization for the Advancement of Structured Information Standards
(OASIS). It provides a metamodel for access control and also provides XML
schema files for the metamodel [134]. XACML defines a structure for access
control and a mapping for the concrete selection of access control policies to
resources and actions.

2.2.2. Security Incidents and Vulnerabilities

Our analyses provide feedback regarding access violations and potential at-
tack paths, which can be regarded as potential security incidents. Security
incidents consist of multiple unwanted security events which can affect a busi-
ness process or system [77, section 3.31]. A security event is an “occurrence
[. . .] indicating a possible breach [. . .]” [77, section 3.30] of elements or access
control policies. In our analyses, these events are the successful attacks or
the access violations. The attacks or the credentials of attackers represent
potential threats to a system. A threat is defined by ISO as a “potential cause of
an unwanted incident, which can result in harm to a system or organization”
[77, section 3.74]. A threat also has a relationship to vulnerabilities because
a vulnerability is a “weakness of an asset [. . .] that can be exploited by one
or more threats” [77, section 3.77]. Based on this definition, for instance, a
misconfigured access control policy is a vulnerability and an attacker exploit-
ing this policy is a threat. Another example is the Log4Shell vulnerability
[130]. The vulnerability is the implemented weakness in the software and
the threat is the attacker exploiting it. In our thesis, this is an attack or an
access violation. In the conclusion (c.f. Chapter 9), we will describe how our
artefacts relate to the defined terms in more detail.

24

2.2. Security Related Concepts and Terms

2.2.3. Vulnerability Classification

In this thesis, we define a vulnerability based on different existing vulnerabil-
ity classifications. These classifications serve as a foundation for our attack
propagation analysis. We can benefit from existing knowledge by leveraging
the reuse of these established classifications. This reuse is beneficial because
we can save time and use established techniques.

The first classification we describe is the Common Weakness Enumeration
(CWE) by Mitre [111]. It classifies different weakness types, such as the usage
of hardcoded credentials [116] or cleartext storage of sensitive information
[114]. In addition, it groups the categories into parents and subgroups and
thereby creating a hierarchy between different weakness types. However,
these weaknesses are not specific vulnerabilities but describe general types
of vulnerabilities.

Concrete software vulnerabilities are commonly identified and listed using a
unique identifier known as Common Vulnerabilities and Exposure (CVE). For
instance, CVE-2021-44228 [130] is one of the Log4Shell CVE vulnerabilities.
These CVE IDs can often be found at vulnerability databases, such as the
National Vulnerability Database (NVD) [131] or security advisor sites, such
as for Microsoft2 or for Ubuntu3. Usually, the databases also link a concrete
vulnerability to its corresponding CWEs to provide more insights regarding
the vulnerability.

In addition, these vulnerability databases typically provide a detailed tex-
tual description and assign a scoring based on the Common Vulnerability
Scoring System (CVSS) [45]. CVSS is an approach to quantify the severity
of vulnerabilities. It uses different metrics and metric groups to calculate
the severity. While our specific use case does not require the severity score
itself, the metrics used in CVSS are still relevant. Here, it is especially the
Base Metric Group. This group describes the exploitation, such as the attack
vector from which an attacker can exploit the vulnerability, or the impact,
for instance, on confidentiality. Especially relevant is the paragraph that
the CVSS specification “requires as a condition of use that any individual or
entity which publishes scores conforms to the guidelines described in this

2 Security Update Guide. url: https://msrc.microsoft.com/update-guide/vulnerability
(visited on 01/17/2023).

3 CVE reports. url: https://ubuntu.com/security/cves (visited on 01/17/2023).

25

https://msrc.microsoft.com/update-guide/vulnerability
https://ubuntu.com/security/cves

2. Foundations

document and provides both the score and the scoring vector so others can
understand how the score was derived” [44]. In our case, this requirement
is very beneficial because it requires that the individual metrics need to be
published. Therefore, it allows us to reuse them later in our modelling.

2.2.4. Misuse Case

The concept of misuse cases was introduced by Sindre et al. [177]. Their basic
idea is to model not only regular use cases, which represent the “good” be-
haviour of a user but also use cases that describe the behaviour of a malicious
user, representing the “bad” behaviour. These use cases, describing malicious
behaviour, are called misuse cases. Moreover, they establish a relationship
between misuse cases and regular use cases usingmitigation and threaten rela-
tionships. To implement this concept, they extended UML use cases to include
misuse cases. Building on this idea, Sindre [176] proposed the mal-activity
diagrams. The core idea is similar to that of misuse cases, but it is based
on activity diagrams. The modelling elements in mal-activity diagrams use
similar syntax and semantics to regular activity diagrams, with the difference
that they describe malicious behaviour. To bring both approaches together,
El-Attar [17] proposed an approach that combines the strengths of both mis-
use cases and mal-activity diagrams. Additionally, both approaches primarily
target the requirement phase of the software development process.

2.3. Categorising Threats to Validity

During our evaluation, we categorise the threats to validity based on the
validity categories in “Guidelines for conducting and reporting case study
research in software engineering” by Runeson et al. [157]. In the following, we
describe the different validity categories in general and then explain in the
evaluation section (c.f. Chapter 7) the application to our evaluation.

• Internal Validity: This category considers the relationship between
the observed effects and the reasons for the effects. During a study,
researchers identify factors influencing the study results. However,
the identified factor can also be influenced by a third factor. If this
third factor is neglected or unknown, “[. . .] there is a threat to the
internal validity” [157, p. 154].

26

2.3. Categorising Threats to Validity

• External Validity: This category investigates the generalisability and
usefulness for other researchers. When investigating a case or scenario,
the findings might be very specific to the studied case. The results
might not be transferable. Hence, it is important to identify “[. . .]
to what extent the findings are of relevance for other cases” [157, p.
154]. The idea is to find and use case studies (here: scenarios) that
have “common characteristics” [157, p. 154] and allow researchers to
generalise their findings.

• Construction Validity: This category describes, whether the “opera-
tional measures” [157, p. 154] align with the researcher’s intention. In
other words, whether the used techniques help to answer the research
questions or, in our case, the evaluation questions. For example, it
discusses the appropriateness of the evaluation metrics to the defined
evaluation goals and questions. Hence, it can be described as whether
the defined construction allows deriving the suggested conclusions.

• Reliability: This category describes how relevant the specific research
is for creating the findings. In other words, “ [. . .] if another researcher
later on conducted the same study [or scenario], the results should be
the same” [157]. There are different means to achieve this. Oneway can
be a reproduction package, which allows other researchers to verify
more easily. The importance of these packages is also emphasised by
the introduction of ACM badges for Artefact Reviews [4]. Konersmann
et al. [97] state also the need for replication packages (in the sense of
reproduction) in software architecture research.

27

3. Running Example

Our running example is based on a scenario from Al-Ali et al. [12]. It is set
in an Industry 4.0 environment and was developed within Trust 4.01, which
was a joint research project with industrial partners. We extended the basic
scenario in Walter et al. [211] by adding a software architecture with access
control policies and vulnerabilities. In the following, we will describe the
scenario and the software architecture in more detail.

The scenario consists of two companies: Producer P and Service Company S. P
produces various goods by using a machine. During production, the machine
generates log data. The log data is classified as confidential due to its poten-
tial inclusion of sensitive information, such as employee details or detailed

1 Trust 4.0 Dataflow-based privacy for industry 4.0. Jan. 19, 2019. url: https://web.archive.
org/web/20210422205559/http://trust40.ipd.kit.edu/home/ (visited on 06/06/2023).

<<Device>>
TerminalServer

<<Device>>
StorageServer

<<Device>>
MachineController

<<Network>>
LocalNetwork

ProductStorage

ProductionDataStorage Machine

Terminal

Figure 3.1.: Software architecture overview of the maintenance scenario based on [211]

29

https://web.archive.org/web/20210422205559/http://trust40.ipd.kit.edu/home/
https://web.archive.org/web/20210422205559/http://trust40.ipd.kit.edu/home/

3. Running Example

information about the production process. Because of this confidentiality
classification, S, which provides a service technician to maintain or repair the
machine of P, is not granted access to the log data during normal production.
However, in the event of an incident, such as a breakdown of the machine, a
service technician from S can access the data from the machine. This allows
them to resolve the incident so that the production can continue. There are
two interesting aspects to this scenario. First, it includes access restrictions
based on the changing state of the machine. This means that access is only
granted during the incident. Therefore, it requires access control policies that
support dynamically changing context attributes. Second, an external entity
(here, the service technician) is accessing confidential data. Even though this
access is only granted during a special situation, it allows attackers to exploit
this situation to attack the system.

The software architecture is illustrated in the Figure 3.1. For illustration
purposes, we decided against the separate UML notion of deployment and
structural view. In our case, we combine the deployment and structural view.
In the following, wewill explain the syntax and semantics of the figure inmore
detail. We will use the same notion for the other examples. Figure 3.1 shows
the components represented by the rectangles with the component symbols
and their connection to other components. The logical connections between
the components are illustrated by the provided and required connectors. The
components are deployed on hardware resources. The hardware resources are
marked with the stereotype «Device» and the deployment of the components
is represented through the containment within the hardware resource box.
Network elements are illustrated by the stereotype «Network». The dashed
lines with arrow heads at both end between devices and network devices
represent a network connection. This means that two devices which are
connected to the same network device can communicate with each other.

The service technician uses the Terminal to access the log data. The compo-
nent is deployed on the TerminalServer. The Terminal is connected to the
Machine which is deployed on the MachineController. The log data is stored
on the ProductionDataStorage, which is deployed on the StorageServer.
The StorageServer is a dedicated server for storing data of P. Hence, the
server runs also other storage components, such as the ProductStorage. The
ProductStorage is a storage component, which is not considered in the initial
scenario. Therefore, it has no direct connection to the other components.
In our case, it symbolises a component that contains very sensitive data,
such as the blueprints of P’s products. Losing this sensitive data would be

30

3. Running Example

considered a worst-case scenario in our example as P’s competitors could
then use the blueprints for their products. Each hardware device is connected
by the LocalNetwork.

The attributes required for the access control are listed in Table 3.1. It shows
for each architectural element the attributes required to access it. The attribute
conditions are a conjunction and a requestor needs each attribute so that
access can be granted. The requestor is the entity requesting access to the
architectural element. Additionally, the table lists the vulnerabilities in this
scenario. The access control policies in this scenario specify only a minimal
set and not all elements have a policy. In the absence of a policy, access
should be denied by default. The vulnerability in our running example is
CVE-2021-28374 [129]. This vulnerability can leak in certain situations the
credentials. In our case, we assume that it will leak the Admin attribute.

Remark: In this work, we assume that CVE-2021-28374 still belongs to the
category CWE-312 [114]. During the writing of this thesis, the vulnerability
was remapped from CWE-312 to CWE-732 [115]. This change is documented
in the change log of the corresponding NVD website [129]. However, this
assumption does not affect the underlying approach.

Based on the description of our running example, the following interesting
tasks regarding the confidentiality can be derived. First, software architects
want to determine whether the system is capable of executing the described
scenario with the specified access control policies without any access viola-
tions. It is important that no access violations occur because otherwise, the
violations can prevent users from performing their intended tasks. This can
result in high costs. For example, if a service technician is denied access to
a broken machine, the machine cannot be repaired, resulting in production
stoppages. As previously described, these unplanned production stops are
very expensive23. It is therefore important that the modelled software archi-
tecture and access control policies can be analysed for violations to prevent
false access violations.

2 S. Ravande. Council Post: Unplanned Downtime Costs More Than You Think. Forbes. Section:
Innovation. Feb. 22, 2022. url: https://www.forbes.com/sites/forbestechcouncil/2022/
02/22/unplanned-downtime-costs-more-than-you-think/ (visited on 06/06/2023).

3 Downtime Costs Auto Industry $22k/Minute - Survey. Mar. 29, 2006. url: https://web.archive.
org/web/20230420005357/https://news.thomasnet.com/companystory/downtime-costs-

auto-industry-22k-minute-survey-481017/ (visited on 06/06/2023).

31

https://www.forbes.com/sites/forbestechcouncil/2022/02/22/unplanned-downtime-costs-more-than-you-think/
https://www.forbes.com/sites/forbestechcouncil/2022/02/22/unplanned-downtime-costs-more-than-you-think/
https://web.archive.org/web/20230420005357/https://news.thomasnet.com/companystory/downtime-costs-auto-industry-22k-minute-survey-481017/
https://web.archive.org/web/20230420005357/https://news.thomasnet.com/companystory/downtime-costs-auto-industry-22k-minute-survey-481017/
https://web.archive.org/web/20230420005357/https://news.thomasnet.com/companystory/downtime-costs-auto-industry-22k-minute-survey-481017/

3. Running Example

Second, software architects are interested in whether the access control
policies can prevent malicious usages. For instance, a malicious usage, in our
case, is the access of the external technician without the machine being in a
failure state. In this case, the external service technician has no legitimate
reason to access the machine and therefore, the access control policies should
prevent the access. Hence, it is important that these malicious usages can be
analysed to determine whether the access control policies prevent them.

Third, the software architect wants to determine how secure the architecture
is. One possibility to estimate the security is to identify how far an attack
attacker can propagate within the system. This propagation is essential to
determine the potential threat to the system from an attacker. For instance,
in our running example, the external service technician could be a malicious
user and attack the system. In this case, it is important to identify which
architectural elements can be reached starting from the Terminal, which
is accessible by the technician. Based on the list of affected elements, the
security experts can work together with the software architect to integrate
appropriate mitigation strategies, such as changing access control policies or
replacing components with more secure ones. It is, therefore, important to
identify the possible attack propagation within a software architecture from
a given starting point.

The last aspect is the identification of attack paths to selected architectural ele-
ments. For instance, in our running example, the ProductStorage component
stores highly confidential data. Losing the data managed by this component
is the worst-case scenario in our example because it means that others have
access to the blueprints of P’s products. Therefore, software architects want
to identify whether there exist attack paths leading to the ProductStorage. In
addition, they are particularly interested in attack paths leading from the ex-
ternally accessible Terminal to the ProductStorage because the Terminal is
accessible by an external person. This external access makes it easier to com-
promise a component. Identifying these potential attack paths is important
to mitigate them effectively.

We will now summarise the aspects of our running example and how they
relate to our contributions. Firstly, we analyse usage and malicious usage
with respect to access control policies, which is our contribution C3. Secondly,
we address the propagation of attacks through the contribution C4.1. Lastly,
the identification of attack paths is addressed by our contribution C4.2. In

32

3. Running Example

the following sections, we will use these aspects to describe and present our
contributions in detail.

33

3. Running Example

A
rchitecturalElem

ent
A
ttributes

V
ulnerabilities

A
ccessTerm

inalServices
Technician,Failure,S

—

Storage
Server

A
dm

in
—

Term
inalServer

A
dm

in
CVE-2021-28374

M
achine

Controller
A
dm

in
—

A
ccessProductionD

ataStorage
Services

M
achine

—

A
ccessProductStorage

Services
ProductD

eveloper
—

Table
3.1.:A

ccesscontrolpoliciesand
vulnerabilitiesforthe

running
exam

ple

34

Part II.

Contributions

4. Modelling Influencing Factors for
Context-Based Security

During our work, we investigated various factors that influence context-
based security on the software architecture. Our investigation focused on
confidentiality and its relationship to software architecture. The factors may
not be complete, as we did not perform a systematic analysis, but they are
essential to our analyses and influence our results. We derived the influencing
factors based on our involvement in different research projects. These projects
covered the Industry 4.0 domain with the projects Trust 4.01 and FluidTrust2,
the smart grid domain with the Smart Grid Resilience Frameworks3, and the
mobility domain with the KASTEL Mobility Lab. During these projects, we
identified different scenarios and use cases [12, 11, 169] and identified related
work. Based on these cases and related work, we identified the influencing
factors. The concrete justification for the relevance of each influence factor
can be found in the respective modelling sections. Our influencing factors
are the following:

• Access control for protecting architectural elements (c.f. Section 4.2)

• Vulnerabilities affecting architectural elements (c.f. Section 4.3)

• Attacks exploiting vulnerabilities (c.f. Section 4.4)

• Attackers with the capability to use attacks and access control proper-
ties (c.f. Section 4.5)

1 Trust 4.0 Dataflow-based privacy for industry 4.0. Jan. 19, 2019. url: https://web.archive.
org/web/20210422205559/http://trust40.ipd.kit.edu/home/ (visited on 06/06/2023).

2 FluidTrust - Enabling trust by fluid access control to data and physical resources in Industry
4.0 systems. Aug. 8, 2020. url: https://web.archive.org/web/20220525001447/https:
//fluidtrust.ipd.kit.edu/home/ (visited on 06/06/2023).

3 Smart-Grid-ICT-Resilience-Framework. url: https://github.com/kit-sdq/Smart-Grid-ICT-
Resilience-Framework (visited on 06/06/2023).

37

https://web.archive.org/web/20210422205559/http://trust40.ipd.kit.edu/home/
https://web.archive.org/web/20210422205559/http://trust40.ipd.kit.edu/home/
https://web.archive.org/web/20220525001447/https://fluidtrust.ipd.kit.edu/home/
https://web.archive.org/web/20220525001447/https://fluidtrust.ipd.kit.edu/home/
https://github.com/kit-sdq/Smart-Grid-ICT-Resilience-Framework
https://github.com/kit-sdq/Smart-Grid-ICT-Resilience-Framework

4. Modelling Influencing Factors for Context-Based Security

Architects should be able to express and consider these factors during the
architectural design. However, it is challenging to track these factors and
assess their impact in larger systems. Automatic architecture-based security
analyses considering these factors could help architects to determine the
impact of these factors on the architecture. For archiving these analyses, a
well-defined model is necessary. Architects can already use ADLs such as
the PCM to define an architecture with a well-defined syntax and semantics.
For our influencing factors, we also wanted to provide this possibility and,
therefore, extended PCM to support our influencing factors. As discussed
in Section 2.1, PCM provides the possibility to model software architectures
with components and interfaces as well as the hardware environment with
processing resources and network resources. Therefore, it is a suitable candi-
date. Additionally, PCM already supports other architecture analyses, and we
have more experience using it compared to other ADLs. The integration in
PCM enables architects to annotate existing software architecture elements
with our factors. Nevertheless, insights gained from our modelling and mod-
elling principles can be transferred to other ADLs like UML. In addition, this
annotation will provide some documentation for security properties. This
chapter builds up on the metamodels initially proposed in our publications
[211, 214, 94, 209, 212].

The remainder of the chapter is structured as follows. We explain in Section 4.1
an extension to identify service and component instances within PCM. This
is necessary because otherwise, we cannot later annotate these elements
with access control properties and vulnerabilities. We describe the access
control properties in Section 4.2. This includes the metamodel for access
control policies and its integration into PCM. The vulnerability metamodel
is described in Section 4.3. The attacks exploiting these vulnerabilities are
described in Section 4.4. The attacks an attacker can perform represent the
capabilities of attackers. We describe the attackers in Section 4.5.

4.1. Identification of Services and Components

This section is a prerequisite for our contributions C1 and C2. It introduces
new model elements for PCM to identify services and components for anno-
tating access control policies and vulnerabilities. Access control policies can
regulate the access to services, such as in our running example, the service

38

4.1. Identification of Services and Components

of the ProductionDataStorage component to store the log of the Machine.
Another example is the SSH service of a server. Usually, each service instan-
tiation has a custom access control policy specific to its system. For instance,
the ProductionDataStorage component could be used in another system that
stores log data, but it would be a different machine. The access control policy
should not be the same in both systems. It needs to differ from the specified
policy in our running example. Moreover, using the same access control
policy is even a security risk, similar to CWE-798 [116], where hard-coded
credentials are used. Therefore, it should be possible to specify access control
policies system-specific. This leads to the fact that we need architectural
elements for identifying access control policies for system-specific services.

This need is further increased with the consideration of vulnerabilities. Ser-
vices can contain vulnerabilities. However, as is the case with access control
policies, not every instantiated service type might be vulnerable to the same
vulnerabilities, nor does every vulnerability have the same impact on the
service type. For instance, considering the vulnerability of the running exam-
ple, the NVD’s description states that it “may include a cleartext password
in some configurations” [129]. Therefore, there is a need to identify system-
specific the vulnerability since the impact may vary depending on the specific
configuration for a service. Moreover, in certain cases, a vulnerability may
not even be relevant to the service type at all. Therefore, it is important to
identify the specific vulnerable service in order to determine the impact of a
vulnerability.

Both parts, the access control policies and the vulnerabilities, are essential to
our approach and both require the service identification to be system-specific.
This need for system-specificity can also be applied to the specification of
components. In our modelling approach, we use components to abstract
from certain details. For instance, we might not model maintenance services
but only assign an access control policy to a component and use the policy
to represent a maintenance service. Therefore, we also need to identify
components in a system-specific way.

The PCM supports modelling of services and components in the system
independent repository [154, p. 44f]. Software architects can instantiate the
components as an AssemblyContext in the system-specific assembly [154, p.
44f]. By instantiating an AssemblyContext, the services associated with the
component are also implicitly instantiated. While we can annotate the As-

semblyContext with our access control and vulnerability extension, the PCM

39

4. Modelling Influencing Factors for Context-Based Security

system.pcm.structure

MethodSpecification

signature:Signature

hierarchy:AssemblyContext [0..*]

ConnectionSpecification

connector: Connector

ServiceSpecification

assemblyContext: AssemblyContext

service:ResourceDemandingSEFF

Figure 4.1.: Metamodel elements to identify services for annotation

lacks a metamodel element to explicitly identify the instantiated services. As
a result, our modelling extensions are unable to annotate services with access
control policies or vulnerabilities leading to potentially incorrect results.

To enable the annotation of instantiated services, we extended PCMwith new
elements specifically designed to identify the instantiated services. Based
on the PCM definition from Reussner et al. [154, p. 44f], we consider the
new elements to be structural and system-specific. Figure 4.1 illustrates our
identification elements in the package system.pcm.structure. We distin-
guish between two main elements, the ConnectionSpecification and the
ServiceSpecification, which both share the same common abstract par-
ent class MethodSpecification. The MethodSpecification encapsulates the
Signature of the service and its hierarchy is decoded as an AssemblyContext

list. The hierarchy serves as a special workaround for CompositeComponents
in PCM, which are components that consist of multiple subcomponents.
These CompositeComponents and the assembly (system model) are modelled
similarly in PCM. This simplifies the modelling and development effort in
the repository. However, it has the disadvantage that subcomponents of com-
ponents can only be identified through their hierarchy. For a subcomponent,
the hierarchy would contain the parent instantiated component. For multiple
nested subcomponents, this would result in a list of parent components. This
modelling technique is common in PCM analyses and similar metamodel
extension with hierarchies of AssemblyContexts lists can be found in other
PCM projects, such as the data flow analysis [165].

40

4.2. Considering Access Control Properties in Software Architecture Models

With the currently described attributes, we cannot yet fully identify an in-
stantiated service. The signature only shows the name of the service, but not
the actual instantiation and the hierarchy only identifies a potential parent
component. The actual identification is done by the two subclasses. The
ServiceSpecifiation adds the concrete instantiated component with the As-
semblyContext and adds the references to the ResourceDemandingSEFF. This
enables us to identify the concrete service as we now have the name, the
potential parent component, the actual instantiated component and the imple-
mentation. This is sufficient information to identify a service in our scenarios.
However, in some cases, we are interested not only in which service is called
but from which component this happens. For instance, if the component
which calls a service is trustworthy, there might be a less restrictive policy in
place. This feature is realised by the ConnectionSpecification. It contains
only a Connector. In PCM, this connector contains enough information to
infer the other necessary properties to identify the concrete instantiated
service.

In summary, we can use these new model elements to identify instantiated
services in order to annotate them with access control policies or vulnerabili-
ties.

4.2. Considering Access Control Properties in
Software Architecture Models

This section answers our research question RQ1.1 by providing an access
control metamodel. It is our contribution C1 and enables security experts to
model access control policies within a software architecture. Besides enabling
the modelling of access control policies, the metamodel provides support
to model further access control properties, such as the used attributes. In
addition, it provides the foundation to answer RQ1.2 and RQ2.

Access control policies are important for ensuring confidentiality because
they provide the means to regulate the access to architectural elements.
Therefore, they provide protection against unauthorised or malicious users.
While access control is not the only mechanism for protecting information, it
is a widely used and effective approach. Other mechanisms, such as usage
control [138] or encryption [146], can also preserve the confidentiality of

41

4. Modelling Influencing Factors for Context-Based Security

data and can be used in combination with access control policies. Many
systems today use some form of access control, such as Windows with their
user management or large cloud systems, such as Google login services for
accessing Gmail. Therefore, considering access control in the architecture is
beneficial. However, access control policies and their associated properties
need to be expressible so that architects can define policies and analyses can
evaluate them. Therefore, we developed a metamodel for expressing access
control policies and their properties.

In this section, we first describe our requirements in Section 4.2.1, which
guided the development of the metamodel and then discuss our attribute
metamodel in Section 4.2.2. Afterwards, the attributes are used in the access
control policies which are described in Section 4.2.3. In Section 4.2.4, we
describe the integration of attributes to describe the context in PCM. This
integration is necessary to describe the system environment and enable
context switches within a software architecture. After describing the access
control policy and the context description, we explain in Section 4.2.5 the
transformation from our access control model to a valid XACML model and
how access requests are handled. The transformation and request generation
are the foundation for the later analyses.

4.2.1. Requirements for Modelling Access Control Properties

During our work, we identified several requirements for an access control
metamodel. These requirements guided the metamodel development. We
derived them iteratively based on our experience in different research projects
and case studies. Our initial starting point was the use cases and scenarios
that we gathered in collaboration with our industrial partners in [11, 169, 12].
Over time, we continuously refined and extended the initial requirements.
We will first list the requirements and afterwards explain our rationale for
each one. We derived the following requirements for our access control
metamodel.

AR1 Security experts should be able to specify access control policies for
the logical and infrastructure layer.

AR2 Security experts should be able to define access control policies which
can consider the context during policy evaluation.

42

4.2. Considering Access Control Properties in Software Architecture Models

AR3 Security experts should be able to specify arbitrary attributes for access
control policies and not restricted to predefined classes.

AR4 Security experts should specify access control policies based on familiar
concepts.

AR5 Security experts should be able to reuse access control policies during
runtime.

AR1 describes the differentiation between the logical and infrastructure
layers. While existing approaches, such as Seifermann et al. [168], already
consider access control at the logical layer, they do not consider the infrastruc-
ture layer, such as the hardware resources. We define the logical layer in PCM
as the invoked services of an instantiated component or the used data. For
instance, in the running example, this is the technician’s access to the log data
by accessing the services provided by the Terminal. However, the software
architecture consists of more than just service calls and data. In PCM, there
are also the AssemblyContexts, ResourceContainers and LinkingResources.
Each of these elements can have separate access control policies for main-
tenance. For instance, the LocalNetwork in our running example represents
a network component like a router or switch. These elements often have
a separate access control policy for maintenance. An example where both
layers are necessary is our running example. The running example is based
on a described scenario in Al-Ali et al. [12]. It contains access control poli-
cies for services, such as the Access service at the Terminal. In addition, it
contains maintenance access to the components themselves, such as for the
MachineController. Therefore, it is necessary to consider both layers. An-
other reason to consider the infrastructure layer in the access control model
is the attack analyses. Attackers use the infrastructure to propagate within a
system like in Advanced Persistent Threats (APT) [40]. There, attackers often
use other infrastructure services like phones or printers to perform lateral
movements within an attacked system.

In Al-Ali et al. [11], we listed, together with our partners, different use cases
and requirements for Industry 4.0 systems. One key aspect that emerged
from this work is that the access is not granted based solely on statically
assigned roles but depends on the dynamic attributes, such as the time or
the state of a machine. Hence, we derived the requirement AR2. It states
that security experts can formulate access control policies which consider the
system context during the policy evaluation. The context of a system can be
described as attributes, such as the location of workers. These attributes can

43

4. Modelling Influencing Factors for Context-Based Security

dynamically change, such as in the case of the location. Hence, the context
consists of dynamically changing attributes. Similar attributes are found in
our running example. For instance, the access to the log data depends on
the machine’s state. The machine’s state can be seen as an attribute of the
machine and can vary during the runtime. Also, Bertino et al. [29] describe
the need for “richer access control models” [29]. These additional attributes
can be described as context. Also, other approaches, such as OrBac [43] or
Zhang et al. [225], consider the context for the access control policy. In our
case, we restrict the model and analysis to policies with dynamically changing
attributes. Like in the mentioned approaches, the consideration of the context
does not require the policy itself to be dynamic. The policy itself can be
static. This is similar to our definition in [215], where we defined dynamic
changes for confidentiality. This definition can be transferred to access control
policies, which results in access control policies specified during the design
time considering dynamic attributes and, thereby, the context of the system.

In Boltz et al. [33], we developed a metamodel which fulfils our previous
requirements, but not AR3. In the publication, we extended an existing confi-
dential analysis [167] with a context-based model. We had predefined context
classes, such as for locations or roles. These context classes described the
context and were considered in our initial analysis. However, the predefined
classes also limit the approach to the initial context attributes. While mod-
elling different use cases, we wanted to extend the approach to other context
attributes. The consideration of additional context classes, such as the time
required a metamodel change. Security experts would need to change for
every new context type the metamodel. However, this is very inflexible, espe-
cially in a dynamic environment like in Industry 4.0. Other related models,
such as ABAC [74], have a more flexible model to define different context
types. Here, the context attributes can be directly described within the model,
and no metamodel changes are required. Therefore, our final model should
provide similar behaviour.

AR4 requires that the developed metamodel uses familiar concepts for se-
curity experts. We consider a concept familiar if the abstract syntax and
semantics are similar to other metamodels. Specifying access control policies
is complex [204] since they consider multiple different dynamic attributes
and values. Therefore, it is beneficial if our new metamodel follows familiar
concepts, so security experts can more easily use them because they are
already familiar with the abstract syntax and semantics of elements. For

44

4.2. Considering Access Control Properties in Software Architecture Models

instance, if security experts already know the meaning of an element, they
do not need to look up the meaning.

The last requirement AR5 describes that the modelled policies should be
reusable during runtime. With the help of our analysis, architects can analyse
the impact of access control policies and find satisfying policies for their use
cases. After finding satisfying policies, the policies need to be integrated into
the actual runtime system. However, many unintentional errors can happen
in a manual transformation from the design time access control model to
the runtime access control model. This can lead to policy misspecifications.
For instance, a possible scenario for a misspecification is simple typos, such
as admn instead of admin or the usage of synonyms, such as root instead of
admin. In addition, the manual transformation is very cumbersome. Hence, it
is beneficial to avoid mistakes and reduce effort, to reuse the analysed policies
during runtime without manually transforming the access control policies to
the runtime policies.

4.2.2. Modelling Attributes

The access control decision is usually based on some kind of attributes a
requestor has. In classical approaches like in RBAC, the types are limited to
a restricted set, such as the role in RBAC. Also, our initial prototype [33]
used something similar. However, as in AR2 described, our access control
model should provide a more flexible definition of attributes. This allows us
to better adapt the access control policies to the actual context required for
accessing an element without changing the metamodel itself.

The idea of using attributes to describe the context is not new. Other ap-
proaches, such as Zhang et al. [225] or especially ABAC [74], use similar
concepts. In our case, we choose to transfer and extend the attributemodelling
concept of the ABAC implementation XACML to the software architecture.
XACML uses a generic way to model attributes and supports a wide variety
of datatypes. In addition, it is well documented and a widespread standard.
Therefore, it also fulfils our AR4 since architects might already be familiar
with the concept.

Figure 4.2 illustrates our attribute model. The grey elements are the orig-
inal elements from XACML. The attributes in our metamodel are mainly
encapsulated in the package systemcontext. Software architects can specify

45

4. Modelling Influencing Factors for Context-Based Security

system

Usage
Specification

systemcontext

Attribute

AttributeValue

XMLAttribute

SytemEntityAttribute

EnvironmentSubject

SimpleAttribute

ExternalSystemAttribute

Figure 4.2.: Attribute metamodel with gray elements based on XACML

similar to the type in programming language an Attribute. For instance, in
our running example, the role is a type. The concrete instantiated attribute is
then the AttributeValue. Besides the value, it also contains some additional
metadata, such as the actual datatype used to represent the values, such as
String or Integer. An example value from our running example can be the
value Maintenance for the role of an employee. The UsageSpecification

can act as a trace element between the modelled attribute type and the at-
tribute value. These elements are used later in the other metamodel parts to
reference to attributes with concrete values. A UsageSpecification always
has one Attribute and an optional AttributeValue. However, usually, both
exist for a UsageSpecification. The optionality is considered as a special
case for the XMLAttribute. The Attribute is an abstract element for better
integration into the software architecture. We differ between XMLAttribute,
SystemEntityAttribute, SimpleAttribute, ExternalSystemAttribute.

The XMLAttribute enables architects to write XACML-based statements in
XML. These statements are then parsed during the transformation (c.f. Sec-
tion 4.2.5) and integrated into the generated XACML policy file. This enables
architects to use custom XACML attribute definitions. One benefit is that
architects can use custom-defined datatypes and are not restricted to our im-
plemented datatypes. This also helps to solve AR3. In addition, if architects
are already familiar with XACML, they can directly insert XACML statements.
However, the drawback is that they have to consider all the aspects necessary
for the PCM integration themselves. For the other Attribute’s children, the
transformation and analyses automatically consider these.

46

4.2. Considering Access Control Properties in Software Architecture Models

In certain cases, knowing which system entity issues an attribute is important.
For instance, the error state of the machine in the running example can be
provided by an entity. However, a malicious user can exploit this behaviour by
providing its own state and thereby avoiding the protection mechanism. For
avoiding this security issue, XACML defines the issuer attribute for attributes.
The issuer defines from which element the attribute must be issued.

We modelled this behaviour with the SystemEntityAttribute. It links an at-
tribute to an Entity. Entity is in PCM the superclass for various architecture
elements. This enables us to link attributes, for instance, to AssemblyContexts,
ResourceContainers or LinkingResources. Therefore, we are not restricted
in the assignment to one layer, such as the logical and can assign attributes
also to others as we described in AR1. In our running example, we model
the machine state as a SystemEntityAttribute and select as modelEntity the
Machine representing the issuer.

Attributes which do not have an issuer represented in the architecture are
modelled by the abstract EnvironmentSubject. Of course, in a fully modelled
software architecture, each attribute needs to be created by some element
in the software architecture. However, having a fully modelled software
architecture can have drawbacks, such as a high modelling effort and not
a good overview. In some cases, this additional insight from high details
is not useful. Therefore, abstraction is used to only model the important
aspects. For instance, in our running example, we have no dedicated compo-
nents for providing access control mechanisms. Yet, we can still analyse the
system regarding certain access violations. In these cases, where software
architects just want to represent such attributes, the EnvironmentSubject

can be used. An EnvironmentSubject also has a boolean flag to indicate
whether the attribute is assigned to the subject or environment (c.f. Sec-
tion 2.2.1). The SimpleAttribute models attributes with no specific further
relationships. For instance, in our running example, we model the Role with a
SimpleAttribute since it has no dedicated issuer from the system or external
relations. In case an attribute should have a relationship to a dedicated issuer,
but this issuer is not modelled within the architecture as a dedicated element,
the ExternalSystemAttribute can be used. The issuer is then set by the
externalName.

Each AttributeValue is assigned a datatype for the stored values. Regardless
of the datatype, each value is serialized as a String. The transformation and
editor for the metamodel must handle the deserialization and serialization.

47

4. Modelling Influencing Factors for Context-Based Security

Our metamodel only supports a subset of the datatypes from XACML. We
currently support String, Boolean, Integer, Double and Date. However, the
other types can be used in the XMLAttribute. Therefore, we still have no
limitation to predefined classes. In addition, these additional datatypes can be
added to the metamodel. In this regard, a developer, extending the metamodel,
would need to adjust the datatype enum by adding the new datatype and
then add custom handlers for the editors and the XACML transformation.

In our thesis, we also reuse the attributes as representations of credentials. For
instance, we assign the roles of a user also as an attribute. Usually, in a system,
the user would enter their credentials, and then the system would assign the
role. The entering of the credentials is the authorisation of the user against
the system. After the authorisation, the system knows the user and can assign
them attributes. Therefore, there is a connection between the authorisation
process and the assignment of attributes. We abstract from the authorisation
process during our thesis and assume that the authorisation process is given
by the role assignment. Hence, we use attributes as a synonym for credentials
in the case of user roles. The meaning is that a user with an assigned attribute,
like the role, has the ability or knowledge to get the authorisation for the role.
For instance, based on our running example, we assign the role technician to
a user. This would also mean that the user has the ability to get this role. The
concrete authorisation mechanisms, such as credentials with username and
password, are not modelled.

4.2.3. Modelling Access Control Policies

Access control policies are essential for managing access to assets that require
protection. They regulate in which cases entities are granted access, or access
should be denied. In approaches, such as ABAC, access is granted based
on the current attributes that a requestor possesses. These attributes can
vary depending on the circumstances, such as with the machine state in our
running example, and describe the context. Therefore, using an approach like
ABAC would fulfil our AR2. In addition, ABAC does not limit the attributes
to certain predefined classes. Therefore, arbitrary types of attributes can
be used. This would also match our AR3. Also, ABAC is not limited to a
particular layer and can be used for infrastructure or logical aspects. So
AR1 is also fulfilled. However, the ABAC concept in itself is only theoretical.
Therefore, we would need to develop an entirely new metamodel, which

48

4.2. Considering Access Control Properties in Software Architecture Models

would not be very familiar to experts. This would violate AR4. However,
there are industrial implementations, such as XACML. In our case, we base
our access control model on XACML.

Figure 4.3 illustrates the policy part of our access control metamodel. The
grey model elements are semantically similar to their counterparts in XACML.
The white elements are new elements that are relevant for the integration
into PCM. For the white and grey element (AllOf), we slightly changed
the syntax and semantics compared to XACML. The syntax of all figures is
based on UML class diagrams. The aggregate symbols indicate a containment
relationship in the metamodel.

The metamodel for the policy specification is mainly contained in the policy
package. The package itself is decoupled from the PCM and could therefore
be reused for other ADLs. All access control policies are contained within
a PolicySet, as in XACML. It helps to group different policies together.
For example, it allows all policies related to a component or use case to be
modelled within one set. This can improve readability by allowing related
policies to be grouped together. A Policy is contained by a PolicySet and
contains different Rules. The Rule encapsulates the actual access control
rule with its Expression. The target to which a PolicySet, Policy or Rule
applies is selected by the AllOff. Unlike XACML, we have omitted the actual
target element in our metamodel, as it is not necessary in our cases. An
element may have multiple AllOf elements if they are applicable to multiple
targets. The AllOf acts as a logical disjunction in this case. For example, in
our running example, the access control policy for regulating access to the
StorageServer and TerminalServer is realised with a Rule containing two
AllOf elements.

The actual target is modelled by a list of Match elements, which form a logical
conjunction. This means that for an AllOf, all matches must be fulfilled. Oth-
erwise, it is not applicable. Match is abstract to decouple the policy metamodel
from PCM. Therefore, the four concrete matches are logically separated in the
structure package, which encapsulates the PCM integration. The concrete
matches provide a better integration for the PCM elements in our access con-
trol metamodel. The first element is the EntityMatch. It is used to select an
entity. For instance, in our running example, this could be the StorageServer.
However, it can also be used for components, enabling us to select targets
for different layers as required in AR1. It is also open for extension to new
architectural elements as long as they also use the common superclass. The

49

4. Modelling Influencing Factors for Context-Based Security

policy

system
context

U
sage

S
pecification

[1..1]

system
.pcm

.structure

E
ntityM

atch

M
ethodM

atch

G
enericM

atch

X
M

LM
atch

P
olicyS

et
P

olicy

E
xpression

A
llO

f

M
atch

R
ule

S
im

pleA
ttribute

S
elector

X
M

LS
tring

A
pply

A
ttribute

S
election

A
ttribute

D
esignator

A
ttributeValue
R

eference
Function

R
eference

Variable
R

eference

Variable
D

efinitions

[0..*]
[1..*]

[1..*]

[0..*]

[1..*]

[1..1]

[0..*]

[1..1]

[1..1]

[0..*]

Figure
4.3.:Sim

plified
accesscontrolpolicy

m
etam

odelw
ith

grey
elem

entsforelem
entsbased

on
X
A
CM

L
and

w
hiteelem

entsasnew
elem

ents[211]

50

4.2. Considering Access Control Properties in Software Architecture Models

second match type is the MethodMatch. It models the selection of a service
by containing a Methodspecification (c.f. Section 4.1). The access service
provided by the Terminal in the running example can be, for instance, se-
lected by using a MethodMatch and adding a ServiceSpecification. The
GenericMatch can be used for selections based on attributes. It is useful when
the previous two matches are too restrictive, but not the complete flexibility
of a custom XACML match is necessary. It resembles the XACML’s match-
ing definition but uses our metamodel elements. Software architects need
to select a matching operation from the boolean operations from XACML
and in which category the attribute is found. In addition, they must select
an attribute value. In case a software architect needs the full flexibility of
XACML with custom-defined operations or attributes, the XMLMatch can be
used. Similar to the XMLAttribute, the XMLMatch is used to specify directly
XACML statements. These are saved as a String formatted as XACML.

Depending on the target selection, the result may not be a single element
but multiple elements. Therefore, a policy can have multiple Results and
a PolicySet can have multiple Policy elements. However, each can have a
different decision regarding the access control. Therefore, combining algo-
rithms are used as in XACML. These can be assigned to the PolicySet and
Policy. They reduce multiple access decisions to one decision. We support in
our metamodel all of the combining algorithms from XACML. For example,
one combining algorithm is DENY_UNLESS_PERMIT. It states that the request
will always be denied unless an applicable policy explicitly returns permit.
The opposite combining algorithm would be PERMIT_UNLESS_DENY, which
always returns permit unless a policy denies the access.

The actual access control decision is encoded in the Rule by the attribute
decision. In our metamodel, we simplified it to Permit and Deny. However, in
XACML, more values like not applicable exist. The other types are mapped
to Deny during the analyses. These additional elements were unnecessary
for our cases, but the metamodel could be easily extended by adding them
to the PermitType enumeration and considering them during the transfor-
mation. The access condition is encoded in the Expression. XACML defines
here multiple different subtypes. We support eight different elements, which
are mostly based on their XACML counterparts. Like for the attributes and
the match elements, the XMLString models a custom XACML element, ex-
pressed as a String. It is used for custom extensions. The Apply performs
an operation. The parameters of the operation are again Expressions. For
instance, in our running example, the check for the two attributes of the

51

4. Modelling Influencing Factors for Context-Based Security

service technician can be modelled by an and operation and, as parameters,
two selection operations for the expected attributes. The FunctionReference
contains a reference to a function, and similarly, the VariableReference

contains a reference to a VariableDefinitions. The VariableDefinitions

contain an Expression and are contained by a Policy. They can be used to
define reusable Expression parts. The AttributeValueReference is used to
reference to an AttributeValue. The abstract element AttributeSelection
is used as a parent class for all elements, which select attributes from the
request. There, the software architect first defines the category of the at-
tributes in the request. The AttributeDesignator is then used to select
the concrete attribute. In XACML, then a bag with the attribute values is
returned. However, for selecting then a concrete attribute value, like in
our running example, the Admin, software architects would need to model
functions accessing the bag and then comparing the value of it to the de-
sired attribute value (Admin). Since the use case is in our cases very com-
mon and the modelling effort is very high for a simple attribute compar-
ison, we added the SimpleAttributeSelector. This element simply com-
pares a request attribute against a predefined Usagespecifications. This
simplifies the use case for an attribute comparison since a software ar-
chitect only needs to use this element. However, if software architects
do not want to use the SimpleAttributeSelector, they can also use the
way with the AttributeDesignator. During the analyses, we transform the
SimpleAttributeSelector back to XACML statements.

Listing 4.1 illustrates an access control policy for our running example as a
textual representation. The textual representation is a simplified presentation
similar to JSON [78] for the actual model. For instance, it does not contain the
unique IDs for elements like the PolicySet. For simplicity reasons, it contains
only the policy where the service technician tries to access the log-data of
the machine.

The policy first contains the definition of the PolicySet with the selection
of combining algorithm. As the combining algorithm DENY_UNLESS_PERMIT is
used. As previously explained, this states that access is always denied unless
it contains at least one Decision with Permit. Then a Policy is also defined
with a similar combining algorithm. Starting from line 5, the Rule is defined.
It contains a name for the Rule and the decision. Here, it is permit. This
selects that if the condition is true, the Rule returns permit. If we change it to
deny, the Rulewill return deny. The access condition is encoded starting from
line 8 with the Apply. In our example, the condition should check for two

52

4.2. Considering Access Control Properties in Software Architecture Models

Listing 4.1: Simplified textual policy representation of the access control policy for the technician
in the running example based on Walter et al. [211]

1 PolicySet {
2 combining : DENY_UNLESS_PERMIT,
3 Policy {
4 combining : DENY_UNLESS_PERMIT,
5 Rule {
6 name : "Technician with Machine failure",
7 decision : permit,
8 Apply {
9 function : and,

10 SimpleAttributeSelector {
11 UsageSpecification {
12 attribute : role,
13 value : technician,
14 }
15 },
16 SimpleAttributeSelector {
17 UsageSpecification {
18 attribute : machineState,
19 value : failure,
20 }
21 }
22 }
23 }
24 AllOf{
25 MethodMatch{
26 ServiceSpecification{
27 assemblyContext : Machine,
28 Signature : Access,
29 SEFF : RDSEFF_Access,
30 }
31 }
32 }
33 }
34 }
35 }

attributes, that the accessor is the technician and that the machine is in the
error state. We realise it by selecting and as the Apply function. It represents
that the values of the parameters form a logical conjunction, meaning that
both parameters must return true for the condition to be true. The parameters
are, in our case, functions to check for the two attributes. Since, in our case,
the attributes are quite simple, we do not have to use complex conditions.

53

4. Modelling Influencing Factors for Context-Based Security

...structure
Connection

Specification

PCMAttribute
Provider

system

[1..1]

system.pcm.usage

Usage
Scenario

[0..1]EntryLevel
SystemCall

Assembly
Context

Resource
Container

Linking
Resource

[0..1]

[0..1]

[0..1]

[0..1]

UsageModel
Integration

EntryLevel
Integration

PCMUsage
Specification

Scenario
Integration

Misusage
Scenario

Usage
Specification

Attribute
Provider

Figure 4.4.: Attribute provider and scenario metamodel for context-based policies

We can use the SimpleAttributeSelector as parameters (l. 10 and 16). In
each SimpleAttributeSelector we define a UsageSpecification with an
attribute and a value. For instance, for the first parameter (l. 10ff), it is
the role attribute and the technician as value. The last part of the example
policies contains the target selection with the AllOf starting from line 24. In
the example, the policy should address the service call on the machine from
the technician. Therefore, we use a MethodMatch for selecting a service. Our
example uses the ServiceSpecification for selecting the concrete service.
The service is identified by the signature (Access) representing the name,
the AssemblyContext (Machine) representing the instantiated component and
then the SEFF representing the concrete implementation.

4.2.4. Modelling Attribute Providers and Scenarios

So far, the metamodel covers the modelling of access control policies and the
modelling of attributes. We also need to describe the requestors and their
attributes for analysing the specified policies. The requestor can be a user or
other automatic system calls, such as a cron job [141] or delegated system
calls. Sometimes the attributes can also be extracted from themodelled system
entities, such as in our running example, the machine provides its state as an
attribute or the cron jobs run with a certain role. We will first describe the
assignment of attributes to users and then the concept of system elements
providing attributes.

54

4.2. Considering Access Control Properties in Software Architecture Models

Figure 4.4 illustrates our integration of attribute modelling in scenarios and
for architectural elements providing these. The grey elements are the existing
PCM elements, the black elements are concepts we described previously and
the white elements are new concepts. The metamodel is split over three
packages (system.pcm.usage, system, system.pcm.structure) to differenti-
ate between the general concepts (system) and their integration in PCM. For
the assignment of attributes to users, we decided to reuse the concepts in
PCM for usage modelling. PCM has the UsageScenario to model the in-
tended usage of a system as a scenario. It consists, among other elements, of
EntryLevelSystemCalls representing the system call of a user. This assign-
ment concept is initially published in Walter et al. [214].

The idea is that we add the attributes to a scenario and a system call. The at-
tributes are describing then the context of the system and the user. The system
context can be, for instance, the state of the machine in our running example
and the user context can be, for instance, the role. We provide an abstract inte-
gration element for each element: the EntrylevelIntegration and Scenario-
Integration. They each reference the corresponding PCM element. The ab-
stract UsageModelIntegration inherits from both (EntrylevelIntegration,
ScenarioIntegration). The actual model which sets the attributes is the
PCMUsageSpecification it inherits from the UsageModelIntegration and the
previously described UsageSpecification (c.f. Section 4.2.2). From the Usage-
ModelIntegration, the integration into EntrylevelSystemCalls or Usage-

Scenarios are inherited. The attributes are inherited by the UsageSpeci-

fication. The modelling approach allows specifying the context for a sce-
nario and for the system call, which can result in ambiguous context specifi-
cation since a UsageScenario can have different attributes than its containing
EntryLevelSystemCall. In our case, we decided that the attributes of a Entry-
LevelSystemCall completely remove the context in which the UsageScenario
is contained. This enables an architect to model context changes within one
UsageScenario. This is useful, if two users work together during one usage
scenario.

Besides analysing the intended usage, the consideration of the usage from
malicious users is important. Similar to the concepts of misuse cases [177]
and mal-activity diagrams [176], we define a misusage scenario. These are
scenarios which should not be possible. Therefore, access control policies
should somehow prohibit them. We model these scenarios with the Misusage-
Scenario element. This enables an architect to just select an UsageScenario

and thereby declare it as a misusage scenario.

55

4. Modelling Influencing Factors for Context-Based Security

So far, the metamodel allows the assignment of attributes to a user or the
overall system context during a usage scenario. In some cases, it is beneficial
to have the capability to assign them to other architectural elements. For in-
stance, in our running example, the machine provides its state. Representing
this aspect also in our architectural model enables our analyses to consider
this aspect, for instance, if a component is compromised. Another aspect is
that during a service call, the context switches. For instance, in our running
example, the machine uses its role to store the log data on the storage server
and does not delegate the role of the user. In our modelling, we call this
concept attribute provider since the annotation of architectural elements indi-
cates that the annotated elements provide certain attributes. This concept was
initially published in Walter et al. [211]. In our metamodel, this is represented
by the abstract AttributeProvider. It contains an UsageSpecification rep-
resenting the provided concrete attribute value. The PCMAttributeProvider
is the child of the AttributeProvider and provides the concrete PCM in-
tegration. This inheritance between the concrete PCM-specific element
and the abstract elements should help for a better extendability for other
ADLs. Currently, we can assign attributes to four PCM elements. The first
three elements are PCM elements. These are AssemblyContext, Resource-
Container, and LinkingResource. Each element is referenced. In addition,
the PCMAttributeProvider can contain a ConnectionSpecification. Other
examples for the usage of attribute providers besides the state in the machine
could be saved credentials in a device or the domain controller in a network
providing user roles. These cases are particularly useful for structural, archi-
tectural elements, such as the AssemblyContext or ResourceContainer. The
combination of a PCMAttributeProvider with a ConnectionSpecificiation
is especially useful to model context changes within a system call. For in-
stance, a system call connects to a database, and the database has different
credentials. Then a software architect can assign the connection between
these two architectural models new attributes. In our running example, we
use this to assign the role machine to the connection between the Machine

and the ProductionDataStorage

4.2.5. Transformation to XACML & Access Requests

Besides the specification of access control policies, we must also evaluate
the policies regarding an access request. However, there are two kinds of
policy evaluation necessary. The first is during our analyses and the second

56

4.2. Considering Access Control Properties in Software Architecture Models

is during the runtime as described in AR5. We could implement our own
PDP interpreting our access policy model for the first part. The same could
be done for the second part and provided as a library for runtime systems.
However, especially for the second part, it would require projects to use our
PDP and therefore limit the practicability since many existing projects already
have implemented PDPs. In addition, the implementation of a custom PDP
is complicated and could be error-prone since it requires excessive testing
and the consideration of many edge cases. Therefore, we choose to reuse
an existing XACML-based PDP. In our case, we use the XACML reference
implementation from AT&T4 since it is open source and, therefore, easily
integrable in our analyses. Despite the fact that our access control policy
metamodel is similar to XACML, we cannot use the PDP directly because of
our custom metamodel elements, such as the SimpleAttributeSelector or
the EntityMatch. Therefore, we need to transform our access control policy
model to a valid XACML model. This transformation is also beneficial since
it allows us to reuse the policies during runtime (see AR5) and to replace
the used PDP with any other XACML-based PDP. We checked the validity of
the transformed files by comparing the generated XACML policies against
the XACML schema file [134] provided by OASIS. We use the XACML 3.0
standard [132]. We compared the use cases from our usage analysis evaluation
(c.f. Section 7.1) using the schema file with xmllint5.

Figure 4.5 illustrates the transformations into XACML. We differentiate
between the policy transformation and the access request transformation. The
first one transforms the access control policy model from Section 4.2.3 into a
valid XACML file. This file can then be loaded by a PDP during our analyses
or used in a runtime system. The second part transforms requests from our
analyses to a valid XACML request. This request is then sent to a PDP and
evaluated. The result is then transformed back into a model for our analyses.
We first explain the policy transformation and later explain the access request
transformation.

The policy transformation works similarly to Top-Down Parsing [6]. It starts
from the most outer PolicySet and then transforms each child element in
the abstract syntax tree. After the transformation to XACML, we serialize the
model as an Extensible Markup Language (XML) file by using the Java-built

4 AT&T Open Source. url: https://github.com/att/xacml-3.0 (visited on 10/25/2021).
5 libxml2. url: https://gitlab.gnome.org/GNOME/libxml2 (visited on 01/09/2023).

57

https://github.com/att/xacml-3.0
https://gitlab.gnome.org/GNOME/libxml2

4. Modelling Influencing Factors for Context-Based Security

PolicyModel Software
Architecture

Transform
Policy Model

XACML-Model

Load XACML
File

Create Access
Request

Transform Request
to XACML

Evaluate
Request

Create Result
Model

PDPResult

Access Request Transformation

Policy Transformation

Figure 4.5.: Process for creating a XACML model and creating an access request

policy::PolicySet

ID:String

Name:String

combiningAlgorithm:PolicyCombiningAlgorithm

...

xacml::PolicySet

PolicySetId:String

Description:String

PolicyCombiningAlgId:PolicyCombinerParameters

...

transform

transform

transform

Figure 4.6.: Excerpt PolicySet Transformation

in XML mapping with the Marshaller6. Listing 4.2 illustrates the serialized
XACML model for the Listing 4.1 based on our running example. The trans-
formation is mostly straightforward for all the XACML-based metamodel
elements. We take the policy model element and create the corresponding
XACML element. Figure 4.6 shows an excerpt of the PolicySet transforma-
tion. On the left side, the PolicySet from our approach is listed, and on the
right side, an excerpt of the PolicySet from XACML is listed. This is also
indicated by the namespace prefix with policy for our element and xacml for
the XACML element. The ID is transformed to thePolicySetId. The Name is
the Description and the combiningAlgorithm to the PolicyCombiningAlgId.
The three dots indicate the other attributes from the PolicySet. They can be
transformed accordingly. In Listing 4.2, the serialized output for the policy
set is illustrated. In the following, we will explain the transformation in more
detail.

6 Interface Marshaller. url: https://jakarta.ee/specifications/platform/9/apidocs/
jakarta/xml/bind/marshaller (visited on 01/09/2023).

58

https://jakarta.ee/specifications/platform/9/apidocs/jakarta/xml/bind/marshaller
https://jakarta.ee/specifications/platform/9/apidocs/jakarta/xml/bind/marshaller

4.2. Considering Access Control Properties in Software Architecture Models

policy::AllOf

xacml::AllOf

xacml::Target

policy::Match

[1..*]

Transform

xacml::AnyOf

xacml::Match

[0..*]

[1..*]

[1..*]

Figure 4.7.: AllOf transformation

𝑥𝑎𝑐𝑚𝑙 ∶∶𝑇𝑎𝑟𝑔𝑒𝑡 → 𝜖 ∣ 𝑥𝑎𝑐𝑚𝑙 ∶∶𝐴𝑛𝑦𝑂𝑓 +

𝑥𝑎𝑐𝑚𝑙 ∶∶𝐴𝑛𝑦𝑂𝑓 → 𝑝𝑜𝑙𝑖𝑐𝑦∶∶𝐴𝑙𝑙𝑂 𝑓
𝑝𝑜𝑙𝑖𝑐𝑦∶∶𝐴𝑙𝑙𝑂 𝑓 → 𝑥𝑎𝑐𝑚𝑙 ∶∶𝐴𝑙𝑙𝑂 𝑓 𝑝𝑜𝑙𝑖𝑐𝑦∶∶𝑀𝑎𝑡𝑐ℎ+

𝑝𝑜𝑙𝑖𝑐𝑦∶∶𝑀𝑎𝑡𝑐ℎ → 𝑥𝑎𝑐𝑚𝑙 ∶∶𝑀𝑎𝑡𝑐ℎ+

Equation 4.1.: AllOf transformation rules

The first element with a slightly changed syntax and semantics is the AllOf.
Figure 4.7 illustrates the difference structures. On the left side is an excerpt of
our policy metamodel, and on the right side, the XACML metamodel. How-
ever, since the overall semantics for the policy::AllOf stayed the same, as
in representing a conjunction for the target definition, the transformation
is easily possible. The differences to our metamodel are only some left-out
elements. Equation 4.1 illustrates the transformation rules. XACML expects
a target definition for every PolicySet, Policy and Rule. Our model encap-
sulates this in the policy::AllOf. If there was no policy::AllOf element,
an empty xacml::Target is created, such as at line 3 or 6 in Listing 4.2. If
there exists at least one policy::AllOf like in line 24 from Listing 4.1, for
each policy::Allof a xacml::AnyOf is created. The xacml::AnyOf then has
one xacml::AllOf, which contains the Match elements from our model. Ev-
ery policy::Match is transformed to xacml::Match elements. These can be
multiple elements since not every policy::Match can be reduced to one
xacml::Match (see MatchTransformation). For our target definition in line 24
from Listing 4.1, the transformation results look like the target starting from
line 9 from Listing 4.2.

The next custom elements are the match elements. We provide four matches
EntityMatch, MethodMatch, GenericMatch, XMLMatch. The transformation for
the first three elements is illustrated in Figure 4.8. For each match, the
transformation is separated by a horizontal line. The common ground for

59

4. Modelling Influencing Factors for Context-Based Security

the three matches is that they are contained by an AllOf element. In ad-
dition, the transformation always creates xacml::Match elements with cor-
responding xacml::AttributeValue elements for the reference values and
xacml::AttributeDesignator for the selection of the attributes. As an al-
ternative, XACML would also allow using a AttributeSelector in a match.
However, the AttributeSelector is optional and, thereforemight not be avail-
able in all implementations. In addition, the usage might be more complicated
since it uses XPath expressions [207] to identify the attributes. Therefore,
we choose the variant with the AttributeDesignator. We repeated this de-
sign decision also in other transformations, where there is a choice between
AttributeDesignator and AttributeSelector. We will now explain each
transformation in more detail.

The policy::EntityMatch is used to identify an architectural element, such
as a ResourceContainer or AssemblyContext. The simplified identification
of these elements happens by using the id and the name of the architectural
element. Each element is an Entity in PCM and therefore needs to have
these attributes. The id and name are from the type string. Hence, the
datatypes in the XACML elements are strings. The xacml::AtributeValue

sets the reference value, and the xacml::AttributeDesignator selects the
values from the request. The attribute is selected based on the category from
the policy::EntityMatch. The Category in xacml::AtributeDesignator is
directly taken from the policy::Entitymatch. The AttributeID is the name
for the category extended with “id”. For instance, for the category resource,
the id would look like “resource:resource-id”. Because the reference value with
the xacml::AttributeValue and the attribute selection from the request with
the xacml::AtributeDesignator both have the datatype string, we use the
string-equal as the compare functions. It compares two strings for equality
and is set by the MatchID in xacml::Match.

The policy::MethodMatch transformation is separated in two cases depend-
ing on the concrete subclass of the contained policy::MethodSpecification.
For both cases, the transformation results into two xacml::Match elements.
The first is to identify the instance of the service, and the second is to iden-
tify the service. Splitting the selection into two matches is not problematic
since the conjunction of the matches guarantees that both matches always
need to be fulfilled for the target selection. The transformation with the
policy::ServiceSpecification consists of two parts. The first part is to
identify the instantiated component where the service is running, and the
second part is for the identification of the service. The first xaml::Match is

60

4.2. Considering Access Control Properties in Software Architecture Models

policy::EntityMatch

category:Category

entity:Entity

xacml::Match

MatchID = string-equal

policy::AllOf

xacml::AllOf

xacml::AttributeValue

DataType = string

value = EntityMatch.entity.id +
EntityMatch.entity.name

xacml::AttributeDesignator

Category = EntityMatch.category

AttributeId =
 EntityMatch.category.name + "id"

DataType = string

Transform

policy::MethodMatch
xacml::Match

MatchID = string-equal

policy::AllOf xacml::AllOf

xacml::AttributeValue

DataType = string

value =
ServiceSpecification.assemblyContext.id
ServiceSpecification.assemblyContext.name

xacml::AttributeDesignator

Category =
"attribute-category:resource"

AttributeId = "resource:resource-id"

DataType = string

Transform

policy::ServiceSpecification

signature:Signature

assemblyContext:AssemblyContext

service:RDSEFF

xacml::Match

MatchID = string-equal

xacml::AttributeValue

DataType = string

value = Signature.id

xacml::AttributeDesignator

Category =
"attribute-category:action"

AttributeId = "action:action-id"

DataType = string

policy::MethodMatch
xacml::Match

MatchID = string-equal

policy::AllOf xacml::AllOf

xacml::AttributeDesignator

Category =
 "attribute-category:resource"

AttributeId = "resource:resource-id"

DataType = string

Transform

policy::ConnectionSpecification

signature:Signature

connector:Connector

xacml::Match

MatchID = string-equal

xacml::AttributeValue

DataType = string

value = Signature.id

xacml::AttributeDesignator

Category =
"attribute-category:action"

AttributeId = "action:action-id"

DataType = string

policy::GenericMatch

operation:Operation

category:Category

mustBePresent:Boolean

value:AttributeValue

xacml::Match

MatchID = GenericMatch.operation

policy::AllOf xacml::AllOf

xacml::AttributeValue

DataType = GenericMatch.value
.datatype

value = GenericMatch.value

xacml::AttributeDesignator

Category = GenericMatch.category

AttributeId = GenericMatch.value
.Attribute.ID
DataType = GenericMatch.value
.datatype

Transform

xacml::AttributeValue

DataType = string

value =
Connectionspecification.connector.id
Connectionspecification.connector.name

Component Selection

Connector Selection

Service Selection

Service Selection

Figure 4.8.: EntityMatch, MethodMatch and GenericMatch transformation

61

4. Modelling Influencing Factors for Context-Based Security

for the component selection and is similar to the transformation with the
poliy::EntityMatch with the exception that the entity is replaced by its
child element AssemblyContext representing only an instantiated component
and the direct setting of the resource category. The second xacml::Match is
used for the identification of the service. For the service, we choose the string
datatype again. Therefore, the MatchID is again string-equal. In our case,
we choose to identify a service by its id. Therefore, we use the Signature.id
as the value for the reference value. XACML provides a special category for
actions performed on the system. In our case, we see a service also as an
action. In our transformation, the service is also stored in the action category.
Hence, the Category in the xacml::AtrributeDesignator is selecting the ac-
tion category by using “attribute-category:action”. The AttributeId is then
the suggested attribute used by XACML to identify an action. An example of
this transformation can be found in Listing 4.2 starting from line 12. The first
match elements describe the service selection, and the second match (starting
from line 16) the component selection.

In the case with a policy::ConnectionSpecification, the xacml::Match for
the service selection is the same as in the case with the policy::Service-

Specification. However, in the xacml::AttributeValue contained by the
other xacml::Match, the value is replaced by the id and name of the connector
from the policy::ConnectionSpecification. The other elements stay the
same.

For the policy::GenericMatch transformation, the MatchID is determined by
the selected operation from policy::GenericMatch. The xacml::Attribute-
Designator.category is also directly taken from the original element. The
datatypes, the actual reference value, and the AttributeId are derived from
the policy::GenericMatch.value

The last match transformation is the XMLMatch. Here, software architects
already specify a match in XACML. Therefore, we do not need to transform
it to an XACML statement. Yet, we still need to add it at the right position
in the XACML model. One possible solution could be that we just add the
textual description in the output XACML file. However, in this case, we
would need to somehow store the information where to add the XACML strings
and also consider the correct syntax for adding an element. In addition, the
internal XACML model would be incomplete, and only the serialized XML
file would be a complete model. This is especially for referenced values not
good. Therefore, we choose to first parse the XACML statement with the Java

62

4.2. Considering Access Control Properties in Software Architecture Models

policy::SimpleAttributeSelection

only:Boolean

category::Category

name:String

attribute:UsageSpecification

xacml::Apply

FunctionID = {Any-of | All-Of}

Description = String

Transform

xacml::Function

FunctionID = string-equal

xacml::AttributeValue

Datatype

value

xacml::AttributeDesignator

Category

AttributeId

DataType

Issuer

Figure 4.9.: SimpleAttributeSelection transformation

Marshaller, which results in a XACML model of the statement. This model is
then added to the internal XACML model during the transformation.

The transformations for Policy, Rule, VariableDefinitions, VariableRef-
erences, FunctionReferences, AttributeDesignator, and Apply are straight-
forward. It is copying the values from our policy metamodel to the matching
value in XACML.

The custom element XMLString is transformed in the same way as XMLMatch
by using the Java Marshaller.

The policy::SimpleAttributeSelection basically encapsulates the condi-
tion to check for an attribute. The transformation creates the XACML ele-
ments along the description of the bag comparison in XACML [132, A.3.12].
The basic idea is to use an xacml::Apply, and its parameters are a xacml::Fu-
nction, a xacml::AttributeValue and a xacml::AtributeDesignator to se-
lect the bag from the request attributes.

The attributes from xacml::Apply are derived from the following. For the
FunctionID, depending on the only value, either Any-Of or All-Of is cho-
sen. The difference is that for Any-Of, there could be different values in the
bag derived from the xacml::AttributeDesignator. In the case of All-Of,
all values need to be the reference value. An example of this behaviour
is that a requestor has multiple roles. Depending on the only value, it is
allowed to have multiple roles for a requestor, or it is forbidden. The De-

scription is derived from the name. The compare function is set within
the xacml::Function with the value FunctionID to string-equal. This com-
pares the bag values to the reference value (xacml::AttributeValue). The
xacml::AttributeValue.Datatype and xacml::AttributeValue.value is de-
rived from the policy::SimpleAttributeSelection.attribute. The third

63

4. Modelling Influencing Factors for Context-Based Security

parameter is the bag selection by the xacml::AttributeDesignator. The Cat-
egory can be directly derived from the category from the original element.
The AttributeId and Datatype can be derived as with the xacml::Attribute-
Value from the attribute. The Issuer is an optional attribute. It indicates
the origin of an attribute. In our case, we set it if the attribute contains
an EntityAttribute. Then it is set to the id of the architectural element
issuing/producing the attribute.

An example of this transformation can be found in Listing 4.2 with the apply
element starting from line 26. Starting from line 32, it shows an example
where an issuer is used. The issuer is the id of the entity which generates the
attribute. In our case, it is the AssemblyContext for the MachineComponent.
We can see that the same id is used during the match in line 17.

Besides the policy transformation, the second transformation type is the
access request transformation. The transformation is exemplarily illustrated
in the lower parts at Figure 4.5. At the start, the PDP loads our transformed
XACML model. The analysis then creates based on the software architecture
and the policy model a request. The request is already structured according
to a XACML request. Hence, it assigns attributes to the different categories.
However, the attributes still use our policy metamodel. In the next step, the
request is transformed to a valid XACML request. An example is shown in
Listing 4.3. Then the PDP can evaluate the request, and based on the result,
the analysis builds the PDRResult model. The metamodel for this is illustrated
in Figure 4.10. This structure is useful since it decouples the request from
the request evaluation. It enables us to replace the used PDP with any other
XACML compatible PDP. We will now explain the necessary steps in more
detail.

During the request creation, we assign the requestor’s context and the re-
quested architectural element to the categories subject (for the requestor),
environment, resource (for the requested element) and action. Some of these
attributes are already preassigned during the attribute creation, and others
are dynamically derived, such as the resource. Afterwards, we have a list of
UsageSpecifications for each category.

The next step is to transform the list to an XACML request similar to the
request in Listing 4.3. For this, we transfer each attribute, similar to the policy
transformation for an XACML element. Listing 4.3 illustrates the request
for the technician to access the machine. The subject attributes are listed
starting from line 2. In our case, this is the role with Technician. The resource

64

4.2. Considering Access Control Properties in Software Architecture Models

Listing 4.2: Simplified XACML file for the technician scenario from the running example
1 <PolicySet xmlns="core:schema:wd-17" PolicySetId="_d7xFEZSjEeyvBd3n0aDE-g" Version="0.0.1"

Ç PolicyCombiningAlgId="policy-combining-algorithm:deny-unless-permit">

2 <Description>Policies for MaintenanceSystem</Description>

3 <Target/>

4 <Policy PolicyId="__-SiIbQGEeyBBMZUdAqcvg" Version="0.0.1"

Ç RuleCombiningAlgId="rule-combining-algorithm:deny-unless-permit">

5 <Description>Machine</Description>

6 <Target/>

7 <Rule RuleId="_BcIZILQHEeyBBMZUdAqcvg" Effect="Permit">

8 <Description>Technican Access</Description>

9 <Target>

10 <AnyOf>

11 <AllOf>

12 <Match MatchId="function:string-equal">

13 <AttributeValue DataType="string">_HZ11cJSREeyOldzBRFqWVw

Ç </AttributeValue>

14 <AttributeDesignator Category="attribute-category:action"

Ç AttributeId="action:action-id" DataType="string"/>

15 </Match>

16 <Match MatchId="function:string-equal">

17 <AttributeValue DataType="string">_4lwccJSYEeyjlrv9ryW3Zw

Ç Assembly_MachineComponent</AttributeValue>

18 <AttributeDesignator Category="attribute-category:resource"

Ç AttributeId="resource:resource-id" DataType="string"/>

19 </Match>

20 </AllOf>

21 </AnyOf>

22 </Target>

23 <Condition>

24 <Apply FunctionId="function:and">

25 <Description>aName</Description>

26 <Apply FunctionId="function:any-of">

27 <Description>aName</Description>

28 <Function FunctionId="function:string-equal"/>

29 <AttributeValue DataType="string">Technican</AttributeValue>

30 <AttributeDesignator Category="subject"

Ç AttributeId="_f4Ph0rGMEeyLRdjos_zQbg" DataType="string"/>

31 </Apply>

32 <Apply FunctionId="function:any-of">

33 <Description>aName</Description>

34 <Function FunctionId="function:string-equal"/>

35 <AttributeValue DataType="string">Failure</AttributeValue>

36 <AttributeDesignator Category="attribute-category:resource"

Ç AttributeId="_S5hooLGMEeyLRdjos_zQbg" DataType="string"

Ç Issuer="_4lwccJSYEeyjlrv9ryW3Zw"/>

37 </Apply>

38 </Apply>

39 </Condition>

40 </Rule>

41 </Policy>

42 </PolicySet>

65

4. Modelling Influencing Factors for Context-Based Security

Listing 4.3: Generated XACML request for the technician scenario
1 <Request ReturnPolicyIdList="true" CombinedDecision="false" xmlns="core:schema:wd-17">

2 <Attributes Category="subject">

3 <Attribute AttributeId="_f4Ph0rGMEeyLRdjos_zQbg" IncludeInResult="false">

4 <AttributeValue DataType="string">Technican</AttributeValue>

5 </Attribute>

6 </Attributes>

7 <Attributes Category="attribute-category:environment"/>

8 <Attributes Category="attribute-category:resource">

9 <Attribute AttributeId="_S5hooLGMEeyLRdjos_zQbg" Issuer="_4lwccJSYEeyjlrv9ryW3Zw"

Ç IncludeInResult="false">

10 <AttributeValue DataType="string">Failure</AttributeValue>

11 </Attribute>

12 <Attribute AttributeId="resource:resource-id" IncludeInResult="false">

13 <AttributeValue DataType="string">_4lwccJSYEeyjlrv9ryW3Zw

Ç Assembly_MachineComponent</AttributeValue>

14 </Attribute>

15 </Attributes>

16 <Attributes Category="attribute-category:action">

17 <Attribute AttributeId="action:action-id" IncludeInResult="false">

18 <AttributeValue DataType="string">_HZ11cJSREeyOldzBRFqWVw</AttributeValue>

19 </Attribute>

20 </Attributes>

21 </Request>

attributes are listed starting from line 8. The first attribute is the machine
states with Failure, which resonates from the Machine. Hence, it contains
the Issuer with the Machine’s ID. The second attribute is the Machine. The
third attribute category is the action, starting from line 16. It contains the ID
of the called service. The PDP then uses the described policy in Listing 4.2,
matches the request on it, and then evaluates it. In our case, since the Machine
and Service matches the target for the Rule (“_BcIZILQHEeyBBMZUdAqcvg”),
the condition is evaluated. The conditions evaluate to Permit since the role
and machine state match the expected values.

This decision of the PDP must be then transferred to the analyses. To
transfer the result, we develop a simple data exchange metamodel, illus-
trated in Figure 4.10. The PDPResult encapsulates the access decision with
the decision. A decision can be analogues to XACML either PERMIT, DENY,
INDETERMINATE, NOT_APPLICABLE. PERMIT and DENY directly follow from the
rule effect. INDETERMINATE is, when the PDP cannot decide a concrete rule.
This can be, for instance, if an error happens or there are multiple contra-
dicting effects. NOT_APPLICABLE indicates that no rule could be applied for
the request from the PDP. In addition to the decision, the PDPResult stores
also with the policyIdentifiers a String list with the identifiers involved in

66

4.3. Considering Vulnerabilities in Software Architecture Models

org.palladiosimulator.pcm.confidentiality.context.xacml.pdp.result

<<enum>> DecisionType

PERMIT

DENY

INDETERMINATE

NOT_APPLICABLE

PDPResult

decision:DecisionType

policyIdentifiers:String [0..*]

Figure 4.10.: Result model for PDP decisions

the policy decision. For instance, with our example request (Listing 4.3) and
policy (Listing 4.2) this is “__-SiIbQGEeyBBMZUdAqcvg”. These identifiers are
not useful for the analysis itself. However, they help to interpret the results
of an analysis since they enable the tracing of a decision back to the involved
policies. In addition, they are helpful during the debugging of the analyses.

4.3. Considering Vulnerabilities in Software
Architecture Models

This section describes our modelling concept for vulnerabilities in software
architecture. Together with the metamodels for attacks (c.f. Section 4.4), and
attackers (c.f. Section 4.5), it forms our contribution C2. The contribution C2
answers together with contribution C1 our research question RQ2.1 and both
build the foundation to answer the research question RQ2.2. We introduced
the vulnerability metamodel in Walter et al. [211]. Afterwards, we extended
the metamodel in Walter et al. [212] for further security properties and in
Kirschner et al. [94] we extended the metamodel to support the automatic
extraction of security properties.

Besides the access control policies, other properties influence the security
of a system. For instance, the vulnerabilities of a system can be used to
compromise a system and affect its overall security. Vulnerabilities can be
found in different architectural elements, such as the components or deployed
network resources. Usually, a system can contain known vulnerabilities, such
as Log4Shell [130]. Log4Shell can enable attackers to exploit arbitrary code

67

4. Modelling Influencing Factors for Context-Based Security

and thereby enable them to compromise an architectural element. In addition
to the known vulnerabilities, a system contains unknown vulnerabilities.
In the case of unknown vulnerabilities, security experts often determine
potential security threats, for instance, with threat models. However, a
vulnerability alone is not enough to determine the security influence since
the exploitation often depends on the context and properties of a vulnerability.
For instance, the access control approach can prohibit the exploitation or
enable an exploit. Therefore, it is necessary to model vulnerabilities together
with their properties. These models can then be used during the analyses
to decide whether they can be exploited. For specifying models with a well-
defined syntax, we developed a metamodel and integrated the metamodel in
PCM.

In this section, we will first describe in Section 4.3.1 the requirements, which
guided the development of the metamodel. Afterwards, we describe our
vulnerability identifiers in Section 4.3.2. In Section 4.3.3, we describe our
vulnerability metamodel and the integration into PCM in Section 4.3.4. Sec-
tion 4.3.5 describes an approach to automatically derive vulnerabilities.

4.3.1. Requirements for Modelling Vulnerabilities

During our work, we identified different additional requirements besides
the purpose to express vulnerabilities, the exploitation of vulnerabilities and
attackers. These additional requirements guided the metamodel development
and helped us to identify important properties. We derived the requirements
iteratively based on our work in different research projects, related work and
vulnerabilities databases. As a starting point, we used our initial case studies
[11, 169, 12] and existing vulnerability description from databases, such as
the NVD [131] or CAPEC [38]. We iteratively developed the metamodel and
redefined the requirements based on found use cases and scenarios. In the
following, we will first list our identified requirements and afterwards discuss
the concrete reasoning. Our final set of requirements are:

VR1 Security experts should be able to define vulnerabilities for software
architecture layers.

VR2 Security experts should be able to define concrete and non-concrete
vulnerabilities.

68

4.3. Considering Vulnerabilities in Software Architecture Models

VR3 Security experts should be able to reuse knowledge about existing
concepts for the definition of vulnerabilities.

The first requirement VR1 describes similar to AR1 that we need to annotate
vulnerabilities on different layers in the software architecture. This is neces-
sary since vulnerabilities can be found on different levels of abstraction. We
started the metamodel to describe vulnerabilities only for the components of
a system. This is very common and are also performed by other approaches,
such as CVE. For instance, the Log4Shell [130] vulnerability is a software
vulnerability. It can be annotated in ADLs to existing components and then
represents a vulnerable component. Yet, ADLs like PCM differ between in-
stantiated components (AssemblyContext in PCM) and component types (e.g.
BasicComponent in PCM). Also, for a vulnerability, a differentiation is useful
since some vulnerabilities only apply to certain configurations. Here, the
instantiated components can be used to differentiate between different config-
urations, which might be vulnerable or not. Therefore, it is important to differ
between the type and the instance level and the modelling approach should
consider these differences. However, during our work, we also identified the
need to consider other architectural layers, such as the network resources
and the hardware resources. For instance, vulnerabilities, such as Meltdown
[105] or Spectre [95] are hardware vulnerabilities. Therefore, it is necessary
to consider vulnerabilities also in other architectural elements besides the
software components. In addition, there can be different abstraction layers for
a software architecture. For instance, the operating system can be modelled
like in our running example as a ResourceContainer and not as a separate
component.

VR2 describes that the vulnerability model contains concrete vulnerabilities
like the Log4Shell vulnerability. Concrete vulnerabilities are known and
described in existing databases, such as the NVD. Different studies, such
as a study by Unit 427 or a report by the UK government [84] show that
software contains known vulnerabilities or outdated software, which again
usually contains known vulnerabilities. These studies show the need to
consider known vulnerabilities because they are a real problem and exist.
Therefore, we added the first part regarding the known vulnerabilities to

7 J. Greig. 96% of third-party container applications deployed in cloud infrastructure contain known
vulnerabilities: Unit 42. en. Oct. 2021. url: https://www.zdnet.com/article/96-of-third-
party- container- applications- deployed- in- cloud- infrastructure- contain- known-

vulnerabilities-unit-42/ (visited on 04/03/2023).

69

https://www.zdnet.com/article/96-of-third-party-container-applications-deployed-in-cloud-infrastructure-contain-known-vulnerabilities-unit-42/
https://www.zdnet.com/article/96-of-third-party-container-applications-deployed-in-cloud-infrastructure-contain-known-vulnerabilities-unit-42/
https://www.zdnet.com/article/96-of-third-party-container-applications-deployed-in-cloud-infrastructure-contain-known-vulnerabilities-unit-42/

4. Modelling Influencing Factors for Context-Based Security

our requirement VR2. We derived the second part of the requirement based
on the fact, that not all attacks are known. Either because we are still in an
early development phase, where concrete aspects are unknown, for instance,
if no implementation exists or the concrete hardware is not yet chosen. In
other cases, it can be that so far no vulnerabilities have been identified in
the system. In these cases, security experts often perform a threat analysis
for the system and identify possible threats in the system. These threats are
often not concrete in the sense that they describe concrete exploits. They
describe an abstract concept of how to compromise an architectural element.
For instance, the CWE concept enumerates multiple possible weaknesses,
such as no input validation [113] or the usage of hard-coded credentials [116].
However, considering these threats as vulnerabilities is beneficial because it
enables security experts to analyse the system and give an early estimation
of potential security incidents. For us, these threats represent non-concrete
vulnerabilities. Therefore, we added them as part of the requirement VR2.

The last requirement VR3 describes the reuse of knowledge and concepts by
security experts. There exist databases which document security vulnerabili-
ties, such as the NVD or various private company sites like, e.g., for Ubuntu8
or the Microsoft Security Response Center9. These services provide similar
classifications for vulnerabilities and experts usually are familiar with the
classifications. Using similar concepts can help an expert since it saves effort
to learn a completely new concept. In our case, we see concepts as similar if
they contain the same attributes and these attributes are derived similarly.
For instance, a commonly used concept of vulnerability databases is CVSS.
This concept contains the attribute attack vector with the meaning that it
classifies the location from which a vulnerability can be exploited. Based on
our requirement, we expect that if the metamodel also has an attribute attack
vector, the semantics would be the same or similar. Another advantage of
having a similar concept is that the knowledge about classified vulnerabilities
can be reused. The classification of a new vulnerability is hard and many
different aspects like the complexity or the impact need to be considered.
One example for the complexity of the classification is the vulnerability in
our running example (c.f. Chapter 3). During our work on this thesis, the
used vulnerability CVE-2021-28374 was reclassified [129]. This shows that

8 CVE reports. url: https://ubuntu.com/security/cves (visited on 01/17/2023).
9 Security Update Guide. url: https://msrc.microsoft.com/update-guide/vulnerability
(visited on 01/17/2023).

70

https://ubuntu.com/security/cves
https://msrc.microsoft.com/update-guide/vulnerability

4.3. Considering Vulnerabilities in Software Architecture Models

for some vulnerabilities, the classification is not easy. Hence, reusing the
knowledge of the databases can reduce the effort to classify complicated
vulnerabilities. However, for reusing these values, our metamodel needs to
use similar values. Therefore, we choose VR3 as a requirement.

4.3.2. Modelling Identifiers for Vulnerabilities

During the modelling and the analysis, we need to identify a vulnerability.
One possibility to identify a vulnerability is to reuse existing identifiers or
classifications. In our case, we choose to reuse the concepts CWE and CVE.
These are commonly used concepts to identify weaknesses and vulnerabil-
ities. We use CVEs to identify concrete vulnerabilities. For many known
vulnerabilities CVEs exist. For the non-concrete vulnerabilities, we use CWEs.
These are used to categorize common security weaknesses in hardware and
software.

We integrated these concepts into our metamodel. Figure 4.11 illustrates the
elements involved in the identification. The common parent element is the
abstract AttackCategory. A CWE is encapsulated by the CWEID. The actual
category is stored in the cweID as a String. An example value can be “CWE-
312” which represents the “Cleartext Storage of Sensitive Information” [114].
CWE also is hierarchical with multiple parents and children. For instance,
CWE-312 has, among others, CWE 922 with “Insecure Storage of Sensitive
Information” [117] as a parent. It also has multiple children, such as CWE-313
or CWE-314. This relationship to other CWEs can be set by the parents and
children attributes.

The CVEID encapsulates a CVE identifier. The value is stored in the cveID as
a string, similar to the CWE. For example, the vulnerability in our running
example would be stored as “CVE-2021-28374” [129]. A CVE also has often
relating CWEs. In our case, we choose to model this not in the identifiers,
but it is encoded in later introduced elements.

4.3.3. Modelling Vulnerabilities

For modelling different vulnerabilities in the architectural model, we devel-
oped a vulnerability metamodel. The key idea of the metamodel is to reuse
existing knowledge about vulnerabilities and their classifications. Therefore,

71

4. Modelling Influencing Factors for Context-Based Security

attacker.attackSpecification

CWEID

cweID:String

CVEID

cveID:String

AttackCategory

[0..*] parents [0..*] children

Figure 4.11.: Category metamodel elements based on [211]

we analysed different existing classifications and descriptions, such as CWE,
CVE and CVSS.

Figure 4.12 illustrates an excerpt of the vulnerability metamodel. The grey
elements are existing elements from PCM. The metamodel contains two
types of vulnerabilities: CVEVulnerability and the CWEVulnerability. The
first is built on the concept of CVEs and the second is based on CWEs. They
share the same parent classes. One parent class is the abstract CWEBased-
Vulnerability. It encapsulates the reference to the CWEswith its id attribute.
Both vulnerabilities share this since a CVE matches to CWE-categories. For
instance, the vulnerability “CVE-2021-28374” in our running example has the
CWE “CWE-312”. In some cases, there can be more than one CWE for a CVE.
Hence, the id can have multiple CVEIDs.

Remark: During thewriting of the thesis, the CWE class from the vulnerability
in the running example was remapped to CWE-712 [129]. In our thesis, we
continue to use the old classification.

The impact and further properties of a vulnerability are described in the
abstract Vulnerability. It is also a parent element for the CVEVulnerability
and the CWEVulnerability. We differ in the attributes similar to CVSS be-
tween attributes describing the exploitability and attributes describing the
impact [44]. Both attributes are either based on the description of relevant
attributes from vulnerability databases and security incidents or are based
on the Base Metric Group from the CVSS calculation [44]. However, we do

72

4.3. Considering Vulnerabilities in Software Architecture Models

sy
st
em

.p
cm

.s
tr
uc

tu
re

pc
m

at
ta
ck
er
.a
tta

ck
Sp

ec
ifi
ca
tio

n

Vu
ln
er
ab
ili
ty

at
ta

ck
Ve

ct
or

:A
tta

ck
Ve

ct
or

pr
iv

ile
ge

s:
P

riv
ile

ge
s

at
ta

ck
C

om
pl

ex
ity

:A
tta

ck
C

om
pl

ex
ity

us
er

In
te

ra
ct

io
n:

U
se

rIn
te

ra
ct

io
n

co
nf

id
en

tia
lit

yI
m

pa
ct

:C
on

fid
en

tia
lit

yI
m

pa
ct

in
te

gr
ity

Im
pa

ct
:In

te
gr

ity
Im

pa
ct

av
ai

la
bi

lit
yI

m
pa

ct
:A

va
ila

bi
lit

yI
m

pa
ct

ta
ke

O
ve

r:B
oo

le
an

ga
in

ed
A

ttr
ib

ut
es

:U
sa

ge
S

pe
ci

fic
at

io
n

[0
..*

]

«E
nu

m
»

A
tta

ck
Ve

ct
or

N
et

w
or

k

A
dj

ac
en

tN
et

w
or

k

Lo
ca

l

«E
nu

m
»

C
on

fid
en

tia
lit
yI
m
pa

ct

N
on

e

M
ed

iu
m

H
ig

h
<<

En
um

>>
In
te
gr
ity

Im
pa

ct

N
on

e

M
ed

iu
m

H
ig

h

<<
En

um
>>

A
tta

ck
C
om

pl
ex
ity

Lo
w

H
ig

h

<<
En

um
>>

U
se
rIn

te
ra
ct
io
n

N
on

e

R
eq

ui
re

d

C
W
EB

as
ed
Vu

ln
er
ab
ili
ty

cw
eI

D
:C

W
E

ID
 [1

..*
]

C
W
EV

ul
ne

ra
bi
lit
y

<<
En

um
>>

Av
ai
la
bi
lit
yI
m
pa

ct

N
on

e

M
ed

iu
m

H
ig

h

«E
nu

m
»

Pr
iv
ile
ge

s

N
on

e

Lo
w

S
pe

ci
al

M
et
ho

dS
pe

ci
fic

at
io
n

A
ss
em

bl
yC

on
te
xt

Li
nk

in
gR

es
ou

rc
e

R
es
ou

rc
eC

on
ta
in
er

B
as
ic
C
om

po
ne

nt

C
om

po
si
te
C
om

po
ne

nt
vu

ln
er

ab
le

R
ol
ero

le
 [0

..*
]

C
VE

Vu
ln
er
ab

ili
ty

cv
eI

D
:C

V
E

ID
 [1

..1
]

Fi
gu

re
4.

12
.:
Vu

ln
er
ab
ili
ty

m
et
am

od
el
el
em

en
ts
ba
se
d
on

[2
11
]

73

4. Modelling Influencing Factors for Context-Based Security

not use from CVSS the scoring. We only use the metrics used for the scoring
calculation. It is also not necessary to use CVSS to gather the necessary
values. Other similar approaches, such as Common Weakness Scoring Sys-
tem (CWSS) [112], can be used as long they share similar properties. Reusing
these values is beneficial since determining the metrics and classifying a
vulnerability is complicated and with the reuse, we can reduce the effort of
manually determining the attributes. In addition, using a possible familiar
description fulfils VR3. To get a better understanding, which elements are
derived from CVSS, we mark them with an asterisk (*) at their initial descrip-
tion. We will start first the description with the exploitability attributes and
afterwards describe the impact:

• attackVector*: The attribute uses the enumeration AttackVector to
describe from which locations a vulnerability can be exploited. The lo-
cation is structured similar as in CVSS with Network, AdjacentNetwork
and Local. Network indicates that the vulnerability can be exploited
from any architectural element in the network, which can reach the
vulnerable element. The attacker does not need to be in the same
subnetwork. The AdjacentNetwork indicates that the vulnerability can
only be exploited from the same network. In CVSS, this can be a logical
or physical network [44]. In our case, this is problematic since PCM
does not differ explicitly between different network zones logically
and also, the physical network is very abstract. We solved this by
assuming that, for us, an adjacent network is a network between a
LinkingResource and its connected ResourceContainers. Local rep-
resents that the vulnerability cannot be exploited over the network but
only locally. In our case, this is the deployment relationship between
an AssemblyContext and a ResourceContainer. A locally vulnerable
ResourceContainer can be compromised from an AssemblyContext

deployed on it.

• privileges*: This describes whether, for the exploitation of the vul-
nerability, certain privileges are necessary. The privileges are described
like in CVSS in the enumeration Privileges. It differs between None,
Low, and Special. None states that the vulnerability does not need any
authorisation or privileges to be exploited. Therefore, anyone can ex-
ploit it. Low states the vulnerability can be exploited only by authorised
users and Special states that special authorisation is necessary, such
as certain administrative privileges. We choose to support these three
categories in the metamodel so that it is more similar to the original

74

4.3. Considering Vulnerabilities in Software Architecture Models

CVSS metric. However, during the analyses, we only differ between
authorised and non-authorised. Hence, Low and Special are consid-
ered as one element since PCM currently does not support different
authorisation levels.

• attackComplexity*: The complexity of exploiting a vulnerability can
vary. Some vulnerabilities like the Log4Shell are rather easy to exploit
[130]. Others are more complex. Understanding the complexity of
the used vulnerability can give an expert the first indication of how
critical the vulnerability is. We also use it in Walter et al. [209] to give
an estimation of the criticality of attack paths. In our metamodel, we
differ in the enumeration AttackComplexity similar to CVSS between
Low and High. Low indicates an low attack complexity and High a high.

• userInteraction*: The attribute userInteraction describes as in
CVSS, that for the exploitation another user is necessary. This can be
a second malicious user or a regular user, who unintentionally helps a
malicious user to exploit a vulnerability. We differ here between None

and Required. These elements are similar to CVSS. In our analyses,
we do not consider additional user interaction for the vulnerabilities.
However, we support the attribute with filter operation.

• role: We derived this element from vulnerability descriptions in
databases. Some applications are only vulnerable if another appli-
cation with a certain role is attacking them. For instance, clients like
the Nextcloud client can be vulnerable to a malicious server [128]. In
our case, we model this scenario by adding the role Server. This then
requires that the vulnerability can only be exploited from an entity
with the role Server. As a remark, the role is here independent and
not to be confused with user roles or access control roles from the
Section 4.2.

Besides the attributes describing the vulnerability’s exploitability, the meta-
model also contains the impact of a vulnerability. The impact of confidentiality
can differ. For instance, the vulnerability in our running example can lead to
the loss of credentials. Other vulnerabilities might not have the same result.
Our impact attributes are:

• confidentialityImpact*: Based on the CVSSmetric, the enumeration
ConfidentialityImpact describes how the vulnerability affects the
confidentiality of the architectural element. The metamodel differs as

75

4. Modelling Influencing Factors for Context-Based Security

in CVSS between None, Medium, and High. In our case, we use these
values to indicate whether data from an architectural element can be
stolen by exploiting the vulnerability. This assumes that all data is
considered to some extent confidential. As for the extraction, we do
not differ between Medium or High. Both elements lead to an extraction.
This is based on the fact that the PCM currently does not differ between
confidentiality levels. However, in the future, it might be possible.
Therefore, we keep the differentiation and in addition, our modelling
sticks closer to the existing standard metric from CVSS.

• integrityImpact*: Similar to the CVSS metric, the enumeration In-

tegrityImpact describes whether exploiting a vulnerability can affect
the integrity of the architectural element and its managed data. An
attacker might not see the data as with the confidentialityImpact,
but the data could be changed or modified. We differ here based on
the CVSS metric between None, Medium, and High. None indicates no
impact, Medium indicates an impact on some parts and High indicates
that nearly everything is affected. In our analyses, we do not support
this attribute besides in filtering paths. However, we included the
attribute so that experts could see this in the result and for future
extensions of the analyses.

• availabilityImpact*: Similar to the previous impact attribute the
AvailablityImpact describes what affect the vulnerability has on the
availability. The values are extracted from CVSS and we differ again
between None, Medium, and High. None stands for no impact, Medium
if only smaller parts are affected, and High if nearly all parts or the
critical parts are affected. In this work, we focus on confidentiality.
Therefore, our analyses only support the availability impact by using
it as a filter attribute.

• takeOver: This attribute describes with a boolean whether, by exploit-
ing the vulnerability, an attacker could gain full control of the element.
This attribute stems not from CVSS, but it usually can be extracted
from vulnerability descriptions, such as in databases like the NVD. We
need this attribute because the previous impact description can mean
that the attacker has full control. However, it is not necessarily clear.
For instance, a vulnerable database component with a High confiden-
tiality impact could just leak the data and not give the attacker full
access. On the other hand, even a fully controlled hardware resource

76

4.3. Considering Vulnerabilities in Software Architecture Models

does not automatically result in a confidentiality impact since data
could be encrypted like with end-to-end encryption [121].

• gainedAttributes: This attribute describes that, by exploiting a vul-
nerability, the attacker could gain the listed attributes. This attribute
is derived from public descriptions of security incidents and databases.
For instance, the vulnerability in our running example states in the de-
scription that it can leak credentials [129]. Based on this description, an
expert can then assign with our metamodel which credentials they are.
In our case, we model credentials as a list of UsageSpecifications.
In this way, it is consistent with the access control metamodel (c.f.
Section 4.2).

Many of these attributes are also system independent. This means that ex-
perts only need to create the model once and the model can be transferred
to other software architectures. In general, all the CVSS based attributes are
system independent. In addition, the role and takeOver is system indepen-
dent. Nevertheless, there could be certain instances where it is not possible.
This is similar to the CVSS specifications, which allows for customisation
since sometimes a vulnerability is dependent on the concrete configuration.
However, in these cases, the experts can adapt the model to their liking. In
contrast, the gainedAttributes is system dependent since it contains the
concrete credentials for a system. Usually, the access control model is specific
to the concrete system. Nevertheless, in some cases, it is possible to transfer
the access control model or at least the role/attribute model. In these cases,
the attribute is considered system independent.

A Vulnerability is connected to different architectural elements. The vul-
nerability metamodel supports the annotation of a BasicComponent, Compos-
iteComponent, ResourceContainer, LinkingResource, AssemblyContext, and
MethodSpecification. In Figure 4.12, we marked the annotation with dashed
lines with open arrows and the name vulnerable. We use this special syntax
to indicate that the annotation is more complex and will be explained later
on. However, for simplicity reasons, we want to show here the architectural
elements. The different elements cover different layers with ResourceCon-

tainers as hardware layers or AssemblyContext for logical ones. Hence, it
covers also VR1. So far, not every analysis supports every architectural
element. Especially, the CompositeComponent is not supported by any attack
analyses. However, for completeness, we add it to the vulnerability model.
Future versions of the attack analyses may support it.

77

4. Modelling Influencing Factors for Context-Based Security

Listing 4.4:Simplified textual representation of the vulnerability model instance from the running
example

1 CVEVulnerability {
2 cveID CVEID{
3 cveID: "CVE−2021−28374"
4 },
5 cweID CWEID{
6 cweID: "312"
7 },
8 attackVector: Network,
9 privileges: None,

10 attackComplexity: Low,
11 userInteraction: None,
12 confidentialityImpact: High,
13 integrityImpact: None,
14 availablityImpact: None,
15 takeOver: true,
16 gainedAttributes: {admin},
17 }

An example model instance is illustrated in Listing 4.4. It is a textual repre-
sentation of the vulnerability “CVE-2021-2874” from our running example.
We first have the CVE and corresponding CWE category. These values can
be directly read from the NVD homepage. Then the attack vector, privi-
leges, user interaction, attack complexity, confidentiality impact, integrity
impact and availability impact are specified. These values can be directly
extracted from the CVSS vector. The vector for our vulnerability looks like
“CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N” [129]. The vector consist
of pairs with types and values. Each pair is separated by a slash (“/”). The first
pair defines the used CVSS version. Afterwards, the different base metrics
are described. For instance, AV:N stands for Attack Vector: Network and states
that the attack vector is network. Based on the vector, these properties can
be filled. The last two elements in our model instance are filled based on the
description of the vulnerability and on the individual modelled system. In
our case, this is that the component can be compromised by the vulnerability
and that the vulnerability can leak the admin attribute.

78

4.3. Considering Vulnerabilities in Software Architecture Models

4.3.4. Integration in Palladio

Up to now, we cannot annotate existing PCM elements with our vulnerabil-
ities. In Figure 4.12, the annotation is only hinted by the dashed line, but
the concrete realisation is not given. However, the annotation is necessary
because, without it, it is unclear which vulnerability belongs to which archi-
tectural element. Therefore, it is necessary to integrate the vulnerabilities
into the PCM.

The main concept for the PCM integration is that we want to extend existing
architectural elements with the Vulnerability property. Strittmatter [192]
describes this behaviour as a Metamodel Extension. He proposed in his work
different mechanisms to realize a model extension. In our case, we chose the
method “Referencing with External Container” [192, p. 109]. This decision
is mainly based on technical reasons. The inheritance approach would be
technically feasible as well. However, the editor creation would be much more
cumbersome because of the internal PCM configuration. The other extension
mechanism over profiles was technical not reliable. The referencing approach
works on a technical level reliable and adds the benefit that the vulnerability
package itself is independent of the used ADL.

Figure 4.13 illustrates the integration into PCM. The integration is contained
within a separate metamodel package to separate the PCM-specific elements
and the non-PCM-specific elements. The main concept is that we form a link
between our new metamodel elements and the architectural elements. The
abstract class SystemIntegration stores the link to our new metamodel ele-
ments. It contains one PCMElement. PCMElement reflects the PCM integration.
It inherits from RepositoryElement, ResourceEnvironmentElement, System-
Component (indirectly), and SystemElement the association to architectural
elements. Therefore, the metamodel supports the extension of the following
architectural elements: CompositeComponent, BasicComponent, ResourceCon-
tainer, LinkingResource, AssemblyContext, and MethodSpecification.

The extension or annotation for the architectural elements is specified by the
subclasses from the SystemIntegration. This element links the architectural
element with the annotation. There are three concrete subclasses:

• VulnerabilitySystemIntegration references a Vulnerability and
links the selected archiectural element to the selected Vulnerabil-

ity.

79

4. Modelling Influencing Factors for Context-Based Security

system
.pcm

.structure

pcm

[0..1]

[0..*]

attacker.attackSpecification

attacker.pcm
Integration

B
asicC

om
ponent

A
ssem

blyC
ontext

LinkingR
esource

R
esourceC

ontainer

System
Integration

PC
M

Elem
ent

M
ethodSpecification

System
C

om
ponent

System
Elem

ent

R
epositoryElem

ent

R
esourceEnvironm

ent
Elem

ent

C
om

positeC
om

ponent

R
oleSystem

Integration
R

ole

Vulnerability
VulnerabilitySystem

Integration

N
onG

lobal
C

om
m

unication

[0..1]

[0..1]

[0..1]

[0..1]

[1..1]

[1..1]

[1..1]

Figure
4.13.:Vulnerability

PCM
integration

80

4.3. Considering Vulnerabilities in Software Architecture Models

• RoleSystemIntegration references a Role. Hence, it assigns the Role,
such as Server, to an architectural element.

• NonGlobalCommunication indicates a special element which cannot
communicate globally. In PCM, there are two layers for commu-
nication. It is the logical communication with AssemblyConnectors
between components and the hardware layer between a LinkingRe-

source and ResourceContainers. There can be different ways how to
interpret the logical connection in regard to a malicious user. It might
be that the components can only communicate over logical connections
and this is enforced by settings or other network mechanisms, such
as a firewall. However, it could also be that every other component
in the network could access it. Since this behaviour is not completely
clear, we introduce a boolean flag for components indicating whether
it is the first behaviour or the second.

4.3.5. Automatic Derivation of Vulnerabilities

Remark: In the previous sections and in the sections afterwards, I was the
lead contributor. In this subsection, we discuss a shared contribution. For
the extension of the attack propagation analysis and the corresponding meta-
model extension to support the automatic derivation, I was the lead con-
tributor. The shared contribution is the identification of the vulnerabilities
and the automatic vulnerability model creation based on our vulnerability
metamodel. Figure 4.14 illustrates this by using the grey background for
artefacts where I am the lead contributor and black for artefacts where I was
the co-contributor.

Since the vulnerability metamodel elements are based on commonly used
approaches and some of these attributes are publicly available in databases,
it is possible to automate the derivation of some vulnerabilities.

In a publication [94], which I co-authored, we investigated the automatic
derivation of vulnerabilities for existing source code. This is combined by an
architecture recovery approach [93] from the co-authors of the paper.

The developed approach is illustrated in Figure 4.14. The basic concept is that
a static code analysis extracts from the build configuration the dependencies.

81

4. Modelling Influencing Factors for Context-Based Security

In our case, we use Snyk10 as a static analysis. The analysis then compares
the dependencies to their list of vulnerable components and returns for each
build artefact a list of security vulnerabilities. Our new approach (black box in
Figure 4.14) then uses these security vulnerabilities and extracts the CVE from
it. Based on the extracted CVE, it queries the NVD via its Rest-API for the
CVSS metric. It then creates a vulnerability model by using our vulnerability
metamodel.

For mapping the created vulnerability to PCM elements, we used the archi-
tecture recovery approach from Kirschner [93] with his trace link model.
The trace link creates a link between the build artefact and the recovered
components. So far, this approach is limited to BasicComponents. Other
artefacts, such as the ResourceContainers or LinkingResources, cannot be
recovered.

After creating the vulnerability model and linking it to the recovered com-
ponents, the security experts have to enrich the model to use our attack
propagation analysis. They need to create the missing architectural model,
such as Assembly, Deployment and ResourceEnvironment. In addition, they
need to enrich the model with access control information and, if necessary,
adapt the vulnerability model. The adaption can be necessary since the
NVD uses a more general version of a CVSS, and it might vary for different
configurations.

Using this approach can help to reduce the effort for identifying existing
vulnerabilities and modelling these. However, it does not help with unknown
vulnerabilities. However, in the future, the approach might be extended to
support these. In Kirschner et al. [94], we discuss the accuracy of the approach
regarding different case studies.

4.4. Considering Attacks in Software Architecture
Models

This section covers themodelling concept for attacks in software architectures.
It is part of our contribution C2 together with the vulnerability metamodel

10 url: https://snyk.io/ (visited on 11/02/2021).

82

https://snyk.io/

4.4. Considering Attacks in Software Architecture Models

US National
Vulnerability

Database

Snyk CLI

Derivation of
Vulnerability Models

Source Code Architectural Reverse
Engineering

Build Configuration

Architectural Model
with Trace Links

Vulnerability Model

Attack Propagation
Analysis

Legend

Artifact Component Co-Contributor
Data Flow
Connector

Lead
Contributor

Figure 4.14.: Approach for automatic extraction of vulnerabilities based on [94]

(c.f. Section 4.3) and attacker metamodel (c.f. Section 4.5). The contribution
C2 and C1 answer our research question RQ2.1. In addition, the contribution
C2 is part of the foundation to answer research questionRQ2.2. We published
this metamodel part in Walter et al. [211].

The previous sections described the vulnerability metamodel and how it
enables an architect to assign vulnerabilities to architectural elements. The
vulnerabilities already have information about how to exploit them and what
the impact of the exploitation is. However, the actual exploitation is not
described or modelled. The exploitation is usually performed through an
attack. In our modelling, these attacks represent also the activities a malicious
user can perform to exploit a vulnerability. Therefore, we call these also the
capabilities of an attacker.

In this section, we will first describe the requirements for our attack meta-
model in Section 4.4.1. Afterwards, we describe in Section 4.4.2 our attack
metamodel.

4.4.1. Requirements for Modelling Attacks

Like in the previous modelling sections, we identified different requirements,
which guided the development of our metamodel. As previously done, we
will first list the identified requirements and afterwards discuss the reasoning.
Our identified requirements are the following.

83

4. Modelling Influencing Factors for Context-Based Security

attacker.attackSpecification

CWEAttack

id:CWEID

CVEAttack

id:CVEID

CategoryAttack

Attack

canExploit(vulnerability:Vulnerability,
 authenticated:Boolean,
 attackVector:AttackVector):Boolean

Figure 4.15.: Attack metamodel elements based on [211]

ATR1 Security experts should be able model attack which conform to the
vulnerability metamodel.

ATR2 Security experts should be able to model concrete and non-concrete
attacks.

The first requirement can be derived from our intended purpose of our attack
modelling. The purpose of the attack part of our metamodel is to express
attacks exploiting the modelled vulnerabilities. Therefore, it is necessary
to be compatible to our vulnerability metamodel because security experts
need to use the modelled vulnerabilities. Hence, ATR1 states that the at-
tack needs to be compatible with the described vulnerability metamodel
elements. Otherwise, there is no connection between the modelled attacks
and vulnerabilities.

The second requirementATR2 can be derived based onATR1 and the similar
requirement VR2 from the vulnerability metamodel. Because the vulner-
ability metamodel contains concrete and non-concrete vulnerabilities, the
attacks need to handle concrete and non-concrete attacks. Another benefit of
supporting non-concrete attacks is to express groups of attacks and therefore
ease the modelling since not every single attack needs to be modelled.

4.4.2. Modelling Attacks

The capabilities of attackers aremodelled as different attacks they can perform.
The attacks are also represented in our developed metamodel. Figure 4.15
shows the involved metamodel elements.

84

4.5. Considering Attackers in Software Architecture Models

The basic idea is to reuse the concepts from CVE and CWE again. These
concepts are already used in the vulnerability part and widely adopted in
the security domain for vulnerabilities. For simplicity reasons, we explicitly
decided against using attack modelling concepts like the Common Attack Pat-
tern Enumerations and Classifications (CAPEC) [38]. While these dedicated
attacker description can be useful, they were not necessary for our analyses
and would, in our eyes, only complicate the model creation. Therefore, we
chose to use a more simplistic approach and reuse the CVE and CWE parts.
This results in our two concrete attack elements which are the CVEAttack and
the CWEAttack. Each element has an id attribute representing a reference to
their respective id element. The id can be used later to match whether the
attack could exploit a vulnerability. The CVEAttack can only exploit vulnera-
bilities with the same CVEID. This represents the possibility to model concrete
attacks. The CWEAttack models the capability to exploit groups of attacks.
A CWEAttack can exploit a vulnerability with the same CWEID. In addition, it
can exploit all vulnerabilities with a child CWEIDs from its CWEID and all vul-
nerabilities with their CVEID belonging either to its CWEID or any child CWEID.
For instance, an attack with the CWEID “CWE-312” can exploit among others
CWEVulnerabilties with “CWE-312”, “CWE-313”, “CWE-314”. In addition,
it also can exploit among others the CVEVulnerability “CVE-2021-28374”.
By using the attacks in this way, we also use fulfil ATR2 and ATR1 since
the concrete CVEVulnerabilities and the non-concrete CWEVulnerabilities
can be exploited by our attack metamodel elements.

Each attack inherits from CategoryAttack and Attack. The CategoryAttack
encapsulates all attacks, which are based on a categorisation. Currently, these
are the only attacks, the metamodel supports. The Attack is the abstract
element for all attacks. It defines a boolean operation which can check
whether a Vulnerability can be exploited by an Attack.

4.5. Considering Attackers in Software Architecture
Models

This section explains our metamodel for attackers in software architectures.
It is part of our contribution C2 together with the vulnerability metamodel
(c.f. Section 4.3) and attack metamodel (c.f. Section 4.4). The contribution C2

85

4. Modelling Influencing Factors for Context-Based Security

attacker

Attack

Attacker

credentials:UsageSpecification [0..*]

attacker.pcmIntegration

ResourceEnvironment
Element

SystemComponent

[0..*]

[0..*]

[0..*]

Figure 4.16.: Attacker propagation metamodel elements based on [211]

and C1 answer our research question RQ2.1. In addition, the contribution
C2 is part of the foundation to answer research question RQ2.2.

So far our metamodel can express the vulnerabilities and the attacker ca-
pabilities required for exploitation. In combination with the access control
metamodel from Section 4.2, a software architect can also model the access
control policies. However, the metamodel does not cover so far dedicated
malicious users. In our metamodel, we call these malicious users attackers.
In our case, attackers have capabilities and knowledge. Capabilities are for
us the attacks they can perform and knowledge is useful information they
have about the system, such as credentials.

In this section, we will first describe a dedicated attacker for attack propaga-
tions in Section 4.5.1. Afterwards, we describe in Section 4.5.2 an attacker for
filtering different attack paths.

4.5.1. Modelling Attackers for Attack Propagation

The first attacker type is for an attack propagation. The main concept is
that an attacker has an initial starting point in the architecture. Based on
this starting point the attacker can propagate to other elements by using
their knowledge and capabilities. This behaviour is similar to insider attacks
or system breaches, where the attacker propagates from one breach point
through the system. We initially published this attacker in Walter et al.
[211].

Figure 4.16 illustrates the metamodel elements for this attacker type. The
central element is the Attacker. The capabilities of the attacker are explic-

86

4.5. Considering Attackers in Software Architecture Models

CWE-312:CWEAttack

example:Attacker

credentials:= ∅

start:SystemComponent

Terminal:AssemblyContext

Figure 4.17.: Attacker propagation instance for the running example

itly and implicitly modelled. The explicit capabilities are the Attacks. An
Attacker can have multiple or none Attacks. The implicit capabilities are
the capability to use the knowledge of credentials and automatically compro-
mise components on compromised hardware. For the first, the knowledge is
modelled as a list of UsageSpecifications representing credentials.

The start point is represented by contained SystemComponents and Resource-

EnvironmentElements. These are reference elements into the PCM (c.f. Sec-
tion 4.3.4). The start point can cover multiple elements, for instance, in case
of multiple breach points.

A possible attacker for our running example can look as in Figure 4.17. This
model describes a scenario, where an attacker somehow got access to the
Terminal and uses it as a starting point for an attack on the system. In
this case, the Attacker has no initial knowledge about credentials, but can
perform a CWEAttack for “CWE-312”. This attack describes, that an attacker
can use credentials stored in cleartext. Hence, we assume it is a reasonable
capability an attacker might have. The start point for the attacker is set by
the SystemComponent which references the Terminal component.

4.5.2. Modelling Attackers for Filtered Attack Paths

The first attacker type is useful if the security expert has already decided on
a starting point and the skill set of the attacker, for instance, with insider
attacks or system breaches. However, if the security experts are interested
in whether, for a certain architecture, an attack path exists and the concrete
capabilities of the attacker are unknown, then our second attacker type can
be used. This attacker type is initially published in Walter et al. [212].

87

4. Modelling Influencing Factors for Context-Based Security

attacker

SurfaceAttacker

FilterCriterion

VulnerabilityFilter

MaximumPath

ExploitFilter

CredentialFilter

ImpactFilter

StartFilter

[0..*]

attacker.pcmIntegration

PCMElement
[1..1]

Figure 4.18.: Attacker with filtered attack paths metamodel elements

The second type is cornered around attack paths and filtering of these. Fig-
ure 4.18 illustrates the metamodel elements. In contrast to the previous
attacker model, the knowledge and the capabilities are not explicitly mod-
elled. The metamodel only defines restrictions for the space of capabili-
ties and knowledge. These restrictions are called FilterCriterion. The
abstract FilterCriterion is contained by the SurfaceAttacker, represent-
ing our second attacker type. A SurfaceAttacker can have multiple or none
FilterCriterions. In addition, the SurfaceAttacker defines a target for the
attack paths by referencing a PCMElement. While the model allows any of the
referenced architectural elements, the analysis only supports AssemblyCon-
texts. The start points for the attack paths are determined by the analysis
unless a filter explicitly selects one.

The FilterCriterions can be used to select attack paths. This selection
is necessary since multiple different attack paths can lead to the targeted
element. We have five concrete elements for the criterion. They are separated
between criteria regarding the used vulnerabilities in the attack path with
the abstract VulnerabilityFilter and criteria regarding the path in general.
We will first explain the general filters and then the ones related to the
vulnerabilities.

• MaximumPath: This filter sets a maximum length for an attack path.
Usually, attack paths in a large system can contain multiple elements
and get very huge. Therefore, also the calculation for every attack path
increases. However, in some cases, experts want faster results and
therefore restrict the solution space to attack paths with a maximum

88

4.5. Considering Attackers in Software Architecture Models

path length. In other cases, experts are interested only in short paths
since they are only interested in a subsystem around the targeted
element. Also, related approaches, such as Polatidis et al. [148, 147],
use a similar filter criterion and define it as one of their requirements.

• CredentialFilter: This filter allows experts to limit the initial creden-
tials used in an attack path. Attackers can use credentials or vulnera-
bilities to propagate through a system. Therefore, an attack path could
consist of vulnerabilities or user credentials. However, the credentials
are knowledge an attacker needs. Attackers need to get this knowledge
somehow. It can be either that they already have the knowledge at the
start or that they gain it during the attack. An example of the first case
is initial knowledge through other non-modelled channels, such as
insider knowledge. For the second case, an example is through exploit-
ing vulnerabilities which can leak certain credentials. For instance,
the vulnerability in our running example leaks the admin attribute.
Our analysis assumes that an attacker can have any credential at the
beginning. Hence, with the filter, we can restrict the initial knowledge.
An alternative design decision is that we explicitly model the initial
knowledge. However, in this attacker type, we decided to use always
restrictions.

• StartFilter: The StartFilter restricts the start point for an attack
path. During the second analysis, for each architectural element, an
attack path to the targeted element is calculated. This calculation
might be very time-consuming. Hence, experts might want to restrict
the calculation similar to the MaximumPath to get faster results. This
can be done with the StartFilter, where experts can select the start
components. This can be useful, for instance, if an expert is only inter-
ested in attacks from certain parts of the system. Based on our running
example, an example scenario is, that an expert is only interested
in attacks from the Terminal to the targeted ProductStorage since
the Terminal is externally accessible. Therefore, it is more exposed
than the other elements. Also, other approaches use the concept of a
dedicated starting point together with a dedicated endpoint [148].

The second type of filters is modelled around the properties of the used
vulnerabilities. The common upper element is the VulnerabilityFilter.
These filters are:

89

4. Modelling Influencing Factors for Context-Based Security

• ImpactFilter: This filter is build on the impact metrics from CVSS.
We use these metrics also in our Vulnerability element. The idea is,
that security experts can filter for attack paths using only, for instance,
vulnerabilities with a high impact on confidentiality. Hence, in the
element experts can select the minimum value for the confidentiality
impact. Similar to the confidentiality impact, the filter also supports
filtering based on the availability and integrity impact. For both, the
expert can select the minimum impact. For instance, setting the avail-
ability impact as a minimum on Highwould return attack paths, which
only contain vulnerabilities with a high availability impact. The or-
dering for each attribute is illustrated below. We start with the lowest
value to the highest value:

– Confidentiality impact: None < Low < High

– Integrity impact: None < Low < High

– Availability impact: None < Low < High

• ExploitFilter: This filters based on the exploitability metric from
CVSS. The Vulnerability element also uses similar metrics.Here,
the idea is that the security expert can set a maximum value, for
instance, for the attack complexity and then the attack path would
only contain vulnerabilities with this set value as a maximum. This
concept is again used to reduce the solution space for attack paths.
Therefore, it can fasten up the calculation and filter for only relevant
attack paths. The metamodel supports the filtering for the attack
vector, attack complexity, required privileges, and user interaction. An
example based on our running example is, that security experts during
a security assessment are only interested in attack paths with a Low

attack complexity since they assume that attackers will not invest a
lot of effort for the selected targeted element. The ordering for each
attribute is illustrated below. We start with the lowest value to the
highest value:

– Attack vector: Network < AdjacentNetwork < Local

– Attack complexity: Low < High

– Privileges: None < Low < Special

– User interaction: None < Required

90

4.5. Considering Attackers in Software Architecture Models

root:CredentialFilter target:PCMElement

ProductStorage:AssemblyContext

example:AttackerSurface

start:StartFilterstartC:PCMElementTerminal:AssemblyContext

Figure 4.19.: Attacker instance with filters for the running example

In general, all these filters can help to reduce the solution space for identified
attack paths and therefore reduce the calculation time. In addition, they can
help to identify relevant attack paths. The number of architectural elements
as a starting point in larger systems can be big. Therefore, the number of
attack paths can be big. Security experts might not be able to identify the
relevant ones. However, the filter option can help to identify the relevant
ones.

An example scenario for our running example is illustrated in Figure 4.19.
It describes a scenario where security experts are interested in attack paths
from the Terminal to the ProductStoragewithout the initial knowledge about
the root credentials. For this, we use a AttackerSurface with two filters.
The first is the CredentialFilter for the root credential. The second is the
StartFilter, which selects by using a PCMElement the Terminal. The target
is set by a contained PCMElement to the ProductStorage.

91

5. Analysing Software
Architectures for Potential
Security Incidents

The introduced metamodel provides security experts with the means to model
access control properties, vulnerabilities, attacks and attacker and annotate
them to software architectural elements. The pure modelling of these proper-
ties does not help to identify potential security incidents. However, the mod-
elling can be used as a documentation and act as a foundation for analysing
the software architecture regarding potential security incidents. This analysis
can happen manually by experts, which study the modelled properties and
can decide based on their knowledge and experience what incidents can arise.
Hence, the results of the manual analysis depend on the knowledge of the
experts. Even more in larger and more complex system architectures, it gets
harder for experts to get a complete understanding of the system. In these
cases an automatic analysis can help to get more complete results.

In this work, we developed three different automated security analyses based
on our introduced metamodels. The first analysis is described in Section 5.1.
It uses our contribution C1. The analysis forms our contribution C3 and
answers our research question RQ1.2. The contributions is a scenario-based
usage analysis for access control policies. Based on a usage scenario, we
analyse whether service calls are possible with the current policy model or
whether violations are identified.

The second analysis is an attack propagation analysis. It builds up on our
contributions C1 and C2. The attack propagation analysis is our contribution
C4.1. The contribution answers the research question RQ2.2 regarding the
attack propagation. The analysis investigates the propagation from an at-
tacker starting from an initial architectural element and using vulnerabilities
and access control policies to compromise new architectural elements. It uses

93

5. Analysing Software Architectures for Potential Security Incidents

a dedicated attacker model (c.f. Section 4.5.1) with knowledge and concrete
capabilities. This analysis is described in Section 5.2.

In Section 5.3, we describe the third analysis. It calculates potential attack
paths to a targeted architectural element. It uses our contributions C1 and C2.
The third analysis is our contribution C4.2 and answers our research question
RQ2.2 regarding the attack paths. The used attacker model (c.f. Section 4.5.2)
provides different filter criteria to restrict the design space of the attacker.

5.1. Scenario-Based Access Usage Analysis

This section introduces our scenarios-based access usage analysis, which
is built up on our contribution C1. The analysis is our contribution C3
and answers our research question RQ1.2. This analysis is built up on our
publication Walter et al. [214].

Understanding the impact of access control policies is complicated. The
access in context-based access control policies like in our ABAC-based access
control metamodel can depend on various different attributes, which change
dynamically. For instance, in our running example the access to the scenarios
depends on the dynamically changing state of the machine. Understanding
the access decision and potential impact is getting in larger systems even
more complicated, where service calls are often delegated between different
components and involve different services or users. One approach to estimate
the impact is by analysing the intended usage in different scenarios and
identifying potential access violations. Similar approaches are performed
by Seifermann et al. [168] for data flow analysis and Boltz et al. [32] for
handling uncertainty in an access control data flow analysis. Verma et al.
[204] call similar approaches experimental validation. In our work, we use
a similar approach using different scenarios with system calls and access
control policies. These scenarios represent the intended usage or misusage of
the system by users. We developed a scenario-based access usage analysis,
which investigates whether the intended usage or misusage represented by
the scenarios is possible with the current access control policies. For realising
this, we extended the scenarios with context information (c.f. Section 4.2.4)
and our developed analysis investigates for eachmodelled service in a scenario
whether it is possible or not with the current context of the scenario. The
analysis determines the result based on the specified access control policies.

94

5.1. Scenario-Based Access Usage Analysis

The result is a list of potential access violations and can help to identify
potential security incidents.

5.1.1. Process for Analysing Scenario-based Access Control
Policies

Our RQ1.2 investigates how we can identify whether certain scenarios are
possible with the given software architecture and access control policies or
not. Because of the focus on scenarios and access control policies, we decided
to develop a scenario-based access analysis.

The main concept of the scenario-based access analysis is to analyse whether
different usage scenarios are possible with the modelled access control poli-
cies. In PCM, the usage is modelled in the usage model with different
UsageScenarios. PCM defines, that the UsageScenarios are modelled by
the Domain Expert [154, p. 24]. The Domain Expert has knowledge about
the intended use cases and how users use or intend to use a system. In our
extension, we will keep this role. The other roles defined by PCM, such as the
Component Developer or Software Architect, are summarized in our process
as the role Software Architect. As previously described, we assume that the
Software Architects cover the modelling of the software architecture. The dif-
ferent roles are important for the general design of the software architecture.
However, for the explanation of our process, they are not that important. As
introduced in the motivation, we also define the new role Security Expert
to the predefined PCM roles. The Security Expert has knowledge about the
specification of access control policies and about requirements for confiden-
tiality. Similar approaches, such as the data flow analysis by Seifermann [166]
or the process for alignment of access control roles by Pilipchuk [143], also
define the role of security experts, who models security-related properties in
PCM. Similar to the related approaches, our role is responsible for the access
control properties and the definition of attributes. In contrast to the other
approaches, the role also helps in the definition of misusage scenarios.

Figure 5.1 illustrates our intended process for a new software project (green-
field development). The process syntax is based on an extended UML ac-
tivity diagram syntax. We have the three described roles Security Expert,
Software Architect, and Domain Expert, each indicated by its respective
icon. For each activity (boxes with round corners), we assign the involved

95

5. Analysing Software Architectures for Potential Security Incidents

Attribute
Model

Architecture
Model

Scenarios

Legend
Security Expert Software Architect Domain Expert

Define Access
Control Policies

Define Software
Architecture

Define Attributes Define Usage
Scenarios

Define Misusage
Scenarios

Adapt System

Misusage
Scenarios

Access Control
Policy Model

Figure 5.1.: Process for using the access usage in a new system.
Icon Source: Font Awesome by Dave Gandy — http://fontawesome.io

roles by putting their icon on it. The involved artefacts are the generated
models (boxes with sharp corners).

The process starts by defining the initial software architecture through the
Software Architects. They define the components, system, deployment and
hardware resources. They can model these manually or if artefacts already
exist, use existing reengineering approaches, such as SoMoX [25], Monschein
et al. [119], or Kirschner [93].

Afterwards, all roles are involved in the creation of the attribute model. This
is performed by all three roles since it requires knowledge from each role. The
attributemodel covers the different user roles. These depend on the rolemodel
from the Security Expert, but they need the knowledge from the Domain

Expert, who knows which users will use the system and what properties
they have. In addition, the attribute model will involve properties emitted
from different components, such as the machine state in our running example.
This system knowledge stems from the Software Architects. Hence, they
are involved. The attribute model and the software architecture are then used
by the Security Expert to create the access control policies.

The Domain Experts define based on the software architecture and the at-
tributes the different usage scenarios. They use the software architecture to
identify the service calls used by a user and the attribute model to describe the
context during a scenario. The context can be a user’s role or a machine state.

96

http://fontawesome.io

5.1. Scenario-Based Access Usage Analysis

<<EntryLevelSystemCall>>
access

<<UsageScenario>>
Maintenance

role := technican
machine := failure

<<Context>>

Figure 5.2.: UsageScenario for the running example with the technician accessing the log data of
the machine during a failure state

Figure 5.2 illustrates a modelled usage scenario based on our running example.
PCM follows here the syntax of UML activity diagrams. A UsageScenario

contains a start and end point. Between them, different activities are per-
formed. In our case, it is a call to the access service of the system. In PCM,
these system calls are specified by the EntryLevelSystemCall. A usage sce-
nario is not limited to one EntryLevelSystemCall like in our example but
can contain multiple ones to different services of the system. The context
for the scenario is set by the attributes for the whole scenario as illustrated
by the comment (box connected with the dashed line) in Figure 5.2. In the
figure, we use the comment box only as a simplified representation. In the
approach, the context is a dedicated model element (c.f. Section 4.2.4). The
modelled scenario in Figure 5.2 illustrates a context where the requestor has
the role technician and the machine is in a failure state.

Besides the scenarios, which model the intended usage of a system, our access
analysis also supports misusage scenarios. Similar to the concept of misuse
cases [177] and mal-activity diagrams [176], they model usage scenarios,
which should be prohibited. The idea is that the modelled policies are not
only evaluated against the intended usage but also evaluated whether they
can prohibit misusage. For instance, a misusage scenario in our running ex-
ample can be that the service technician tries to access the machine without

97

5. Analysing Software Architectures for Potential Security Incidents

<<EntryLevelSystemCall>>
access

<<UsageScenario>>
Maintenance

role := technican

<<Context>>

<<Misusage>>

Figure 5.3.: MisusageScenario for the running example with the technician accessing the log
data of the machine

a failure state. Figure 5.3 illustrates this scenario. In contrast to the previous
scenario, the machine state is missing and the annotation Misusage is added.
The annotation is represented by a UML comment (dashed lines) and marked
with a stereotype declaration of «Misusage» in Figure 5.3. The usage of the
comment box is only used as a simplified representation in the figure. The
approach uses a dedicated model element (c.f. Section 4.2.4). The annotation
marks the usage scenario as a misusage scenario. The usage and misusage sce-
narios are created by the Domain Expert together with the Security Expert.
Both roles should be involved since the Domain Expert can provide insights
about the usage and the Security Expert about identifying misusage.

The last step is the potential adaption of the system after the analysis is
performed. The input for the last activity are all created models. However, we
left this out for a better readability of the figure. All three roles investigate,
whether the results of the analysis are sufficient. If the results are sufficient,
the process ends. If not, they can adapt the models to get the desired results.

This process should not be considered a strict procedure. It should act more
as a showcase and guideline on how our analysis is integrated into the
component-based development process defined by PCM. For instance, some
activities can also be done in parallel or each role can be further defined,
like a security expert for policy design and misusage detection. It is also

98

5.1. Scenario-Based Access Usage Analysis

possible to adapt the process in evolution processes or iterative development
processes. A simple adaption could be that the definition is only an adaption
or the remodelling of an existing approach.

5.1.2. Analysing Scenarios for Access Violations

After the specification of the software architecture, the access control policies,
the attributes and the scenarios, the access usage analysis can analyse each
scenario for access violations. The analysis can detect for each scenario and
each contained system call access violations.

The conceptual idea for our analysis is to analyse the service calls regarding
access violations. We determine the service calls based on the usage scenarios
which describe the initial service calls a user performs. Afterwards, our
analysis follows the initial service calls and identifies all following service
calls. For each of the following service calls, the analysis determines the
current context and checks whether the context is sufficient to access the
called service. In the end, the analysis has a list of services and the access
decision. Based on this list, the analysis can determine whether a usage
scenario is possible or not. In the following, we describe the analysis in
more detail and give insights about the implementation. We slightly simplify
the explanation of the implemented access usage analysis to make it easier
to follow. However, we will give insights about the simplification and the
complete implementation is available in our dataset [208].

The analysis is described using the metamodel elements from Chapter 4.
Using the metamodel elements for the implementation allows us to reuse the
same algorithm for different system instances. Instances of these metamodel
elements can be mapped to sets. These sets are then representing the elements.
For example, all service instances can be grouped into a set. In this section, we
only define a simplified set containing only the relevant sets for the scenario-
based access usage analysis. In the later section, we extend these sets for the
other analysis. We define the following sets:

• 𝑈𝑆 = {𝑢𝑠1, . . . ,𝑢𝑠𝑛} set of all usage scenarios
• 𝑆 = {𝑠𝑠 , . . . , 𝑠𝑛} set of all Services
• 𝐴 = {𝑎1, . . . , 𝑎𝑛} set of all attributes
• 𝑃 = {𝑝1, . . . , 𝑝𝑛} set of all policies

99

5. Analysing Software Architectures for Potential Security Incidents

Based on these sets, we can define different boolean functions. Each function
checks certain metamodel properties. In case the conditions are met, each
function returns true otherwise false. The different parameters can be over-
loaded. Each function is defined first by the name, then by the parameters.
Afterwards, a logical expression is following, describing the check conditions.
In the following, we will first introduce the function and its definition and
then will provide an optional description.

• 𝑖𝑠𝐶𝑜𝑛𝑡𝑒𝑥𝑡(𝑎,𝑢) ∶= 𝑎 ∈ 𝐴 ∧𝑢 ∈𝑈𝑆 ∧ 𝑎 context of 𝑢
Checks if a is a context attribute of the usage scenario u.

• 𝑖𝑠𝐶𝑜𝑛𝑡𝑒𝑥𝑡(𝑎, 𝑠𝑜𝑟𝑖𝑔𝑖𝑛, 𝑠𝑡𝑎𝑟𝑔𝑒𝑡) ∶= 𝑎 ∈ 𝐴 ∧ 𝑠𝑜𝑟𝑖𝑔𝑖𝑛 ∈ 𝑆 ∧ 𝑠𝑡𝑎𝑟𝑔𝑒𝑡 ∈ 𝑆 ∧ 𝑎 is
context between 𝑠𝑜𝑟𝑖𝑔𝑖𝑛 and 𝑠𝑡𝑎𝑟𝑔𝑒𝑡
Checks if a is a context attribute between the services 𝑠𝑜𝑟𝑖𝑔𝑖𝑛 and 𝑠𝑡𝑎𝑟𝑔𝑒𝑡

• 𝑓 𝑢𝑙𝑙 𝑓 𝑖𝑙𝑙(𝑥,𝑦) ∶= 𝑥 ⊆ 𝐴 ∧𝑦 ∈ 𝑆 ∧ 𝑥 grant access for 𝑦
Checks whether the set of attributes grants access to the service 𝑦. In
our analysis, this check is performed by querying the PDP with the
loaded policies. The query process is described in Section 4.2.5.

Besides the different boolean checks for the different conditions, we also need
a function, which provides a set of the connected services.

𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠(𝑠) ∶ 𝑠 ∈ 𝑆 → 𝑛𝑒𝑥𝑡 ⊆ 𝑆 ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑛𝑒𝑥𝑡 ⊆ 𝑆, service s calls next
other services

∅, no other service is
called by s

The idea of the function is that it provides a set of services which are called
by the passed service parameter. The analysis requires this because services
can delegate calls to other services.

Based on the defined sets and functions, we illustrate the analysis for one
usage scenario in Algorithm 1. In case multiple usage scenarios should be
analysed, the algorithm can be repeatable called. The algorithm expects the
attributes with the set A, a usage scenario with the parameter scenario, and
the services with the set S. In the case of our analysis, the usage scenario
needs to be annotated as discussed in Section 4.2.4. In the end, the algorithm
returns the result for the scenario, and it contained service calls, which is a
tuple of the access decision and the service.

100

5.1. Scenario-Based Access Usage Analysis

Algorithm 1 Simplified Scenario-Based Access Usage Analysis
1: procedure accessUsageAnalysis(𝐴,𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 ∈𝑈𝑆, 𝑆)
2: 𝑟𝑒𝑠𝑢𝑙𝑡 ∶= ∅
3: for all 𝑠𝑖𝑛𝑖𝑡 ∈ 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 do
4: 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 ∶= {𝑎 ∈ 𝐴 ∣ 𝑖𝑠𝐶𝑜𝑛𝑡𝑒𝑥𝑡(𝑎, 𝑠𝑖𝑛𝑖𝑡)}
5: if 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 = ∅ then
6: 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 ∶= {𝑎 ∈ 𝐴 ∣ 𝑖𝑠𝐶𝑜𝑛𝑡𝑒𝑥𝑡(𝑎, 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜)}
7: end if
8: 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑟𝑒𝑠𝑢𝑙𝑡 ∪ (𝑓 𝑢𝑙𝑙 𝑓 𝑖𝑙𝑙(𝑐𝑜𝑛𝑡𝑒𝑥𝑡, 𝑠), 𝑠)
9: 𝑛𝑒𝑥𝑡𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠 = 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠(𝑠𝑖𝑛𝑖𝑡)
10: for all 𝑠𝑛𝑒𝑥𝑡 ∈ 𝑛𝑒𝑥𝑡𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠 do
11: 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑟𝑒𝑠𝑢𝑙𝑡 ∪ 𝑎𝑛𝑎𝑙𝑦𝑠𝑒𝑆𝑒𝑟𝑣𝑖𝑐𝑒(𝑠𝑛𝑒𝑥𝑡 , 𝑠𝑖𝑛𝑖𝑡 , 𝑐𝑜𝑛𝑡𝑒𝑥𝑡,𝐴)
12: end for
13: end for
14: return 𝑟𝑒𝑠𝑢𝑙𝑡
15: end procedure

The first step in Algorithm 1 (l. 2f) is to initialise the result set. The algorithm
initialises it as an empty set. Later on, the algorithm will fill it iteratively
with tuples of service instances and access decisions. The next step (l. 3) is
to iterate over all the services in the scenario. As described in Section 5.1.1,
a scenario can contain multiple calls to services. In the case of PCM these
service calls from a usage scenario are called EntryLevelSystemCalls. The
next step is to identify the context for the service call. The context is the
attributes assigned to the scenario or the service call in the usage scenario
(c.f. Section 4.2.4). In the algorithm, we first derive in l. 4 the context set
for the called service. If this set is empty, we select the context of the usage
scenario. This checking for an alternative context enables us to override the
general context of a usage scenario. However, the design decision of directly
replacing the context if one is modelled comes with the drawback that an
empty context for a service cannot override the context of a usage scenario.
An alternative design decision, which use, for instance, a dedicated flag for
overriding would solve this problem. We choose to use the simpler approach
because it does not require additional modelling elements.

After the algorithm determined the context, it checks whether the current
context has access to the selected service (l. 8). Very simplified, the function
checks whether the current context is enough to access the service. Math-

101

5. Analysing Software Architectures for Potential Security Incidents

ematical formulized, it checks whether (𝑐𝑜𝑛𝑡𝑒𝑥𝑡 ∩ 𝑝𝑜𝑙𝑖𝑐𝑖𝑦) = 𝑝𝑜𝑙𝑖𝑐𝑦 where
𝑐𝑜𝑛𝑡𝑒𝑥𝑡 ⊆ 𝐴 describing the context of the call and 𝑝𝑜𝑙𝑖𝑐𝑖𝑦 ⊆ 𝐴 describing the
policy protecting the service. In the actual implementation, this decision is
made by the PDP. There, we need to create a XACML request as described
in Section 4.2.5 and then query the PDP. Because of the usage of XACML
the access decision is in the implementation also much more complicated.
In our description, we described only a basic feature. In reality, the PDP
cannot perform a simple set comparison in all cases because XACML can
have arbitrary comparison functions for the requested set. We refer for a
more detailed explanation to our limitations (c.f. Section 7.4 — Access Control
Model) and the XACML documentation [132]. After determining the access,
we save the result together with the service in the result set.

Often a service calls other services. These services then again call other
services. Hence, a service call in a usage scenario has something like a call
stack of following service calls. This is similar to regular programming, where
functions can call other functions, thereby, creating a call stack. Each of these
service calls can have access control protection. Therefore, the analysis needs
also to analyse the subsequent service calls for violations. We realise this
analysis of the subsequent service calls by first identifying the directly called
services. Afterwards, we iterate over the called services and call for each one
the analyseService. Then, we add the return to the result set and return it
in the end.

Algorithm 2 Simplified Analysis of Service Calls
1: procedure analyseService(𝑠 ∈ 𝑆, 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 ∈ 𝑆, 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 ⊆ 𝐴,𝐴)
2: 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑛𝑒𝑤 ∶= {𝑎 ∈ 𝐴 ∣ 𝑖𝑠𝐶𝑜𝑛𝑡𝑒𝑥𝑡(𝑎, 𝑠, 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟)}
3: if 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑛𝑒𝑤 ≠ ∅ then
4: 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 ∶= 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑛𝑒𝑤
5: end if
6: 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑟𝑒𝑠𝑢𝑙𝑡 ∪ (𝑓 𝑢𝑙𝑙 𝑓 𝑖𝑙𝑙(𝑐𝑜𝑛𝑡𝑒𝑥𝑡, 𝑠), 𝑠)
7: 𝑛𝑒𝑥𝑡𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠 = 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠(𝑠)
8: for all 𝑠𝑛𝑒𝑥𝑡 ∈ 𝑛𝑒𝑥𝑡𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠 do
9: 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑟𝑒𝑠𝑢𝑙𝑡 ∪ 𝑎𝑛𝑎𝑙𝑦𝑠𝑒𝑆𝑒𝑟𝑣𝑖𝑐𝑒(𝑠𝑛𝑒𝑥𝑡 , 𝑠, 𝑐𝑜𝑛𝑡𝑒𝑥𝑡,𝐴)
10: end for
11: return 𝑟𝑒𝑠𝑢𝑙𝑡
12: end procedure

102

5.1. Scenario-Based Access Usage Analysis

The analyseService is described in Algorithm 2. The parameters are the
current service to analyse represented by s, the calling service represented by
the parameter predecessor, the current context, which consists of attributes
represented by the parameter context, and the set of all attributes represented
by A. The first step in the function is to determine the context for the service
call. The context can be either the same context as the predecessor or it
is overridden by AttributeProviders (c.f. Section 4.2.4). For determining
the context, we need to consider the current service and the predecessor
service because, based on our modelling, the context is defined on the relation
between the two services. In the case a new context is available for the service,
we set the new context (𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑛𝑒𝑤) as the context. The rest of the function
is similar to the Algorithm 1 for the service calls from a usage scenario. We
check whether the context grants access to the selected service and save the
outcome in the result set. Then, we identify possible called services and
recursively analyse these services.

In the end, Algorithm 1 and Algorithm 2 have recursively analysed all the
service calls within a usage analysis and return the result set. The set contains
the access decision for each service calls.

After obtaining the result for a usage scenario, we iterate over the result
and check whether all contained service calls’ results are possible. If this is
the case, we mark the scenario as passed and continue with the next scenario.
This process is repeated until no more scenarios exist. In the end, the analysis
determined for each scenario, whether it is passed or not.

Remark: For simplicity reasons, we assumed during the explanation that
the access decision true is the case when access is possible and false is the
case when access is denied. The actual implementation by the PDP uses a
more fine-grained result (c.f. Section 4.2.5). In the implementation, Permit
represents the boolean true value from our description and all the other
possible results are false.

5.1.3. Analysing Misusage Scenarios for Access Violations

The misusage scenarios are the scenarios containing the unwanted usage of
the system. Due to our modelling decision to reuse the existing scenarios
for the misusage, we can reuse most of the aspects from the scenario-based
access usage analysis. The main modelling difference is that we annotate

103

5. Analysing Software Architectures for Potential Security Incidents

system.pcm.structure

PCM

context.analysis.outputmodel

ScenarioOutput

misusage:Boolean

passed:Boolean

[0..*]
AnalysisResult

UsageScenario

OperationOutput

policyIDs:String

decision:DecisionType

AssemblyContext ConnectorOperationSignature

ServiceSpecification

ExternalCallAction

[0..*]

[0..*][0..1] [0..1] [0..1][0..1]

[0..1]

Figure 5.4.: Result metamodel for the access usage analysis

a usage scenario with Missusage (c.f. Section 4.2.4). The meaning is that
the scenario should not be possible. We define a scenario as impossible if it
contains at least one service call which is denied.

This comeswith the drawback that we cannot explicitly checkwhether certain
service calls are impossible. The analysis always determines the pass decision
for the full scenario. However, this problem can be circumvented by using
smaller scenarios where the number of called services is smaller. Despite this
drawback, the benefit is that from the technical side, we can reuse the previ-
ously described scenario-based access analysis (c.f. Section 5.1.2). For each
marked misusage scenario, the analysis performs Algorithm 1. Afterwards,
the analysis also iterates over the result. In contrast to the non-misusage
scenario, we mark the scenario only as passed if at least one access result
is false (meaning Deny in the implementation). Otherwise, the scenario is
marked as not passed. This way, it stores the same result as for the other
scenarios, and we can reuse most parts of the analysis.

5.1.4. Result Model for the Access Usage Analysis

In this section, we describe the result model for the access usage analysis.
The result model is the output of the analysis. It can be used in the adaption
step of our process to decide whether the system is satisfying or not. We
choose to define the result models also by a metamodel.

Figure 5.4 illustrates themetamodel for the analysis results. The root container
element is the AnalysisResult. It contains for each usage and misusage

104

5.1. Scenario-Based Access Usage Analysis

scenario a ScenarioOutput. As attributes, it has a reference to the Usage-

Scenario in PCM it represents, a boolean flag indicating whether it is a
misusage scenario or not, and a boolean flag indicating whether the scenario
is passed or not. It is a misusage scenario if the misusage attribute is true.
Otherwise, it is a usage scenario. The scenario is passed, when the passed

attribute is true.

Each ScenarioOutput contains a list of OperationOutputs. These are the
different access decision results for the called services in a scenario. It is
based on the result from Algorithm 1. Each OperationOutput has a string
list with policy IDs and the decision of the PDP is stored in decision. The
datatype is the same as the result model for the PDP decision (c.f. Sec-
tion 4.2.5 and Figure 4.10). Besides these elements, it contains an optional
ServiceSpecification to represent the called system services. The access
decision for the EntryLevelSystemCall is encapsulated by the references to
various PCM elements. These are an OperationSignature, a list of Assem-
blyContext, a Connector and an ExternalCallAction. These are necessary
to identify the actual called service on the instance level and not on the type
level as in the EntryLevelSystemCall.

Figure 5.5 illustrates the result model for our running example. It shows an
excerpt of our tooling with the available editors. The upper half shows an
EMF tree editor for a result model. We see the different ScenarioOutputs and
whether they are passed (indicated by true). The first ScenarioOutput is the
scenario where the service technician accesses the machine during a failure
state. This further information can be found in the lower half of Figure 5.5 in
the Property View (indicated with the text Properties). Each ScenarioOutput

contains then the OperationOutput with the access decision. In the first case,
it is Permit. The software architect, security expert or domain expert can
then use this result model. They can click on the different elements and see
more detailed information from the metamodel. This can help them to decide
whether the architecture, together with the access control policies, is suitable
for the intended usage or not. If they decide it is not useful, the information
provided by the result model could be a first starting point for changes.

105

5. Analysing Software Architectures for Potential Security Incidents

Figure 5.5.: Analysis result model for the running example

5.2. Attack Propagation Analysis

In this section, we introduce our attack propagation analysis. It builds up on
our contributions C1 and C2. The analysis is our contribution C4.1 and covers
the first part of the research question RQ2.2. The other part is answered by
C4.2. We originally published the analysis in Walter et al. [211] and extended
or used it in other publications [209, 213, 94].

106

5.2. Attack Propagation Analysis

Our second type of analysis is settled around an attack propagation based on
the software architecture. The access analysis (C3) works well for scenarios
where only access control properties are relevant. It can consider malicious
users with the misusage scenarios, but the analysis is limited to the intended
control flow of services. More complex scenarios, which do not work along
the control flow of the system, cannot be modelled and analysed. For instance,
in our running example, an attacker tries to propagate from the Terminal

directly to the StorageServer. In doing so, the attacker would not follow
the different service calls in the system. In this dependence on the intended
control flow, the attacker behaviour in C3 is similar to an honest-but-curious
or semi-honest attacker behaviour [139] in protocol design, meaning that
attackers cannot deviate from the original protocol. Here, the intended control
flow can be seen as a protocol. To support this deviation from the control
flow, we need another type of analysis, which can propagate along other
structural properties.

Another aspect not considered in the access analysis is the impact of vulnera-
bilities and their interplay with access control policies. A software system
can contain multiple vulnerabilities which attackers may exploit. However,
often it is unclear whether attackers can actually exploit them. For instance,
a vulnerability might not be reachable for an attack or the attacker needs
certain privileges to exploit them. In addition, it is often unclear what the
impact on the overall system is. It might be that an attacker can only compro-
mise non-essential parts of the system or very confidential data is affected.
For instance, in our running example, the ProductStorage is considered very
critical compared to the other components. In other words, compromising the
ProductStorage is worse than the compromisation of the other components.
Therefore, compromising it has a more significant impact than compromising
another component. Another aspect of the impact is whether a vulnerability
enables the easier propagation of an attacker, either by exploiting another
vulnerability or by providing credentials for architectural elements.

We will first explain in Section 5.2.1 the process for using our attack propaga-
tion analysis. Afterwards, we explain the analysis process in Section 5.2.2.
The difference between the two sections is that the first describes the analysis
from a user view, and the second describes the internal steps the analysis
needs to perform to analyse a system. We describe how we identify the af-
fected data in Section 5.2.3. This concept of the extraction is then used in our
attack propagation. The concept and the algorithm of the attack propagation
is introduced in Section 5.2.4. The analysis creates a dedicated result model,

107

5. Analysing Software Architectures for Potential Security Incidents

Attribute ModelArchitecture
Model

Vulnerability
Model

Legend
Security Expert Software Architect

Define Access
Control Policies

Define Software
Architecture

Define Attributes Define Vulnerability
Model

Define Attacker &
Attack Model

Adapt System

Attacker &
Attack Model

Access Control
Policy Model

Figure 5.6.: Process for using the attack propagation in a new system.
Icon Source: Font Awesome by Dave Gandy — http://fontawesome.io

which is based on a result metamodel we developed. We introduce this result
metamodel in Section 5.2.5.

5.2.1. Process for Analysing Attack Propagations with the
Software Architecture

Similar to the access usage analysis, we describe an exemplary process for
using the attack propagation analysis. The process is illustrated in Figure 5.6.
The attack propagation does not use the usage models, which are created by
the Domain Expert. Hence, in this process Domain Experts are not necessary.
Nevertheless, for other PCM analyses, they are required. We kept the role of
Software Architect the same but modified the Security Expert’s respon-
sibilities. In this analysis, the role is also responsible for vulnerabilities, in
addition to the definition of access control properties. This further differ-
entiates the role Security Expert from similar roles in related PCM-based
security analyses.

The first three steps in the process are identical to the process from the
access usage analysis. This is beneficial since the different models can be
reused between the different analyses. This can reduce the modelling effort

108

http://fontawesome.io

5.2. Attack Propagation Analysis

since only one Architectural Model, Attribute Model and Access Control

Policy Model for both analyses needs to be modelled.

The fourth step is to create the vulnerability model based on the proposed
metamodel (c.f. Section 4.3.3) by the Security Expert. This process can
be manual or semi-automated. For the manual part, Security Experts can
use existing databases or use their experience to model them. For the semi-
automated part, they can use our developed approach in Kirschner et al. [94]
(c.f. Section 4.3.5).

The next step is the creation of the attacker model by the Security Expert.
Here, the security expert can define the attack and the propagation attacker
based on our metamodels elements for attacks (c.f. Section 4.4.2) and the
propagation attacker (c.f. Section 4.5).

The last step is the system adaptation based on the analysis results. The
analysis evaluates the architecture and identifies affected architectural el-
ements from an attack propagation. Based on these results, the Security

Expert and Software Architect can change the created models to mitigate
certain attacks. By mitigating attacks, they can reduce the potential set of
affected architectural elements. Mitigation tactics are, for instance, stricter
access control policies, exchanging vulnerable architectural elements with
non-vulnerable ones or introducing mitigation approaches for certain vulner-
abilities, such as using a Firewall to limit the access to the elements. They can
also decide that the results are sufficient for the system. For instance, such
cases are if either no attack propagation is possible or the system can only be
compromised by very rare and costly attack types.

The resulting attack paths are specific to the given architecture. However,
the approach and some models can be reused for other component-based
architectures. We elaborate on the potential reuse in the evaluation (c.f.
Section 7.2.4). Similar to the process of the access usage, this process should
act as a guideline and does not need to be followed strictly. For instance, some
steps could be done in parallel or performed by multiple persons with the
same role. Examples of this additional separation could be using dedicated
security experts for access control policies and vulnerabilities.

109

5. Analysing Software Architectures for Potential Security Incidents

Load Models Roll-Out
Vulnerabilities

Attack Propagation Save Result Model
and Graph

Transform Policies Load Policies in PDP

Figure 5.7.: Attack propagation analysis steps

5.2.2. Attack Propagation Process

The actual analysis process is then straightforward. We illustrate it in Fig-
ure 5.7. The process is split into different steps, which process the data. This
happens similarly to the workflow definition of other PCM analyses. The
first step is to load the different models. Here, we can reuse already existing
PCM workflow actions.

Afterwards, we roll out the vulnerabilities to the instance level. Our meta-
model allows the annotation of BasicCompoents and AssemblyContexts. The
first is an annotation on the type level. However, the analysis requires the
vulnerabilities on the instance level. We needed the type-level integration for
the automatic derivation of vulnerabilities (c.f. Section 4.3.5). The handling
of the type levels can be realized by extending the vulnerability look-up in
the analysis itself. This would require an additional vulnerability check that
additionally checks the BasicComponent for vulnerabilities. In our case, we
decided against it, because it requires code changes within the analysis and
negatively affects the runtime for the analysis itself. Therefore, we provided
a new roll-out phase in our analysis workflow. This step annotates all the
AssemblyContexts with a vulnerable BasicComponentwith the vulnerabilities
of the BasicComponent. This provides the analysis with the vulnerable Basic-
Components without modifying the internal analysis behaviour. A drawback
is that during the analysis, it is unclear whether vulnerability originates from
a BasicComponent or the AssemblyContext. However, this information can be
manually deduced by checking whether the corresponding BasicComponent

of an AssemblyContext is vulnerable with the same vulnerability.

After the roll-out of the vulnerabilities from the BasicComponents to the As-
semblyContexts, we transform the access control model into XACML policies
(c.f. Section 4.2.5) and load these into our PDP. Afterwards, we execute the
attack propagation analysis. The last step is to save the result model. Here,
the user can choose between an EMF-based output and an additional graph
representation.

110

5.2. Attack Propagation Analysis

5.2.3. Data Extraction

Besides the identification of affected architectural elements, also the identifica-
tion of potentially stolen information is relevant for estimating the impact of
attacks. This is especially relevant for considering the confidentiality because
if attackers get access to data, it can be a confidentiality issue. For instance,
if the stolen data contains sensitive information such as credit card data or
other personal data, the confidentiality can be violated. Examples of attacks
with stolen credit card data are, for instance, the attack on HomeDepot1 or
Target2. However, also other data can be considered confidential, such as
in our running example, the data managed by the ProductStorage. In our
case, information consists of different aspects, such as information about the
software architecture or the managed data in an architecture. In this section,
we focus on the last aspect, the managed data.

The managed data is usually described in PCM as parameters and return
values of services. Other approaches, such as Werle et al. [217] or Seifer-
mann [166], extended the data capabilities of PCM with more data-specific
operations. However, as their foundation, they still use the parameters and
return values of operations. Hence, we choose in this work also to use this
datamodel. The benefit is that we use an established modelling technique
in PCM. In addition, it eases the reuse of existing architectural models. The
drawback is that we are limited to services for the data extraction. Hence,
data is only indirectly modelled for components or hardware devices since
components provide services and components are deployed on hardware
resources. Even more, network resources have no data at all. In contrast, in
reality, network elements like switches or routers can have someminimal data
and even more they could see exchanged data over the network. However,
this might not be too critical since it can be assumed that most of the critical
data is stored or processed in services. In addition, some of the additional
data, which can have an influence on the confidentiality or be beneficial for
the attackers, are separately modelled. For instance, credentials are modelled

1 J. Finkle et al. Home Depot breach bigger than Target at 56 million cards. Sept. 18, 2014. url:
https://www.reuters.com/article/us-home-depot-dataprotection-idUSKBN0HD2J420140

918 (visited on 06/06/2023).
2 B. Krebs. Inside Target Corp., Days After 2013 Breach. Sept. 21, 2015. url: https://kreb

sonsecurity.com/2015/09/inside-target-corp-days-after-2013-breach/ (visited on
09/01/2021).

111

https://www.reuters.com/article/us-home-depot-dataprotection-idUSKBN0HD2J420140918
https://www.reuters.com/article/us-home-depot-dataprotection-idUSKBN0HD2J420140918
https://krebsonsecurity.com/2015/09/inside-target-corp-days-after-2013-breach/
https://krebsonsecurity.com/2015/09/inside-target-corp-days-after-2013-breach/

5. Analysing Software Architectures for Potential Security Incidents

by the AttributeProviders. These can also be assigned to network elements,
hardware resources or components.

Our analysis assumes that an attacker has complete control of the data if
they either compromise an architectural element or exploit a vulnerability
with a Medium or High confidentiality impact. If this is the case for a service,
we extract the data by using the parameters with which it is called and the
return values of external calls for service calls. For an affected component, we
calculate it for every service provided by the component and for an affected
resource container, we calculate it for each component deployed on it.

The extracted data can be used to estimate the criticality of an attack propa-
gation. For instance in Walter et al. [209], we combined the extracted data
with a data flow analysis to estimate the criticality of the affected data. There,
our attack propagation provided the affected data, and the data flow analysis
provided an estimation of criticality for each data object.

5.2.4. Analysing Attack Propagations

The core of the attack propagation analysis is the propagation algorithm. It
illustrates how attackers could propagate through a system by performing
attacks on vulnerabilities and exploiting access control properties. The prop-
agation concept is built up on the KAMP approach [36]. KAMP has been
already successfully used together with the PCM [155, 156]. As previously
described, the core idea in KAMP is to propagate change requests by defined
propagation rules over the structural elements of a software architecture (c.f.
Section 2.1.3). The approach focuses on change propagations during main-
tenance tasks and not like our work on attack propagation. Nevertheless,
we assume that the basic propagation concept is similar to our approach
because the propagation in KAMP follows along the structural connection
of the software architecture. It creates iteratively the transitive closure of
the affected elements. This iterative process is repeated till no new elements
are affected by the propagation. The same behaviour can be observed by at-
tacks, which follow along the connected architectural elements. Instances for
such connections are the deployment relationship between hardware devices
and components or the network connections between hardware devices. As
previously described, the attacker also propagates the attacks until no new
element is affected, meaning no new element is compromised. However, our

112

5.2. Attack Propagation Analysis

attack propagations approach differs in the following aspect from the existing
KAMP approach:

I) Different propagation types in the propagation rules.

II) Usage of dynamic propagation conditions for propagation rules.

The first difference is based on the maintenance focus in KAMP. The exist-
ing propagation rules do not consider the possible propagation on compo-
nent instances. They are written for the type level of components, such as
BasicComponents. In contrast, in our work, we need to consider the propaga-
tion on the instance level because, in our case, an attacker compromises the
instances of the components. Therefore, we also annotate our vulnerabilities
mainly on the AssemblyContexts which represent instances of components.
Therefore, we needed to define new propagation types and propagation rules.
Nevertheless, there can be cases where the propagation of attackers on types
is useful, such as in supply chain attacks where attackers compromise the
type itself. However, these attacks and propagations are out of the scope for
our thesis.

The second difference is the usage of dynamic conditions in the propaga-
tion rules. In our propagation, we have dynamic properties, such as the
knowledge of the attackers or the roles of compromised elements which
change during a propagation. However, these dynamic changing properties
can affect the result and need to be considered in the propagation rules. For
instance, attackers can gain new knowledge about an attribute. This can
enable the attackers to compromise a previously uncompromisable element.
Therefore, our propagation rules need to consider these dynamic attributes
in the propagation.

Because of these two differences, we cannot reuse the existing propagation
rules and need to adapt the propagation framework. Our adaptation con-
sists of the newly added propagation types for attacks and new propagation
rules. In addition, we slightly adjusted the workflow to include our metamod-
els. Overall, we defined 19 new propagation rules considering the different
propagation mechanisms of attackers. We explain these rules later in more
detail during the explanation of the attack propagation (c.f. Algorithm 3 and
Algorithm 4).

In the following, we describe a slightly simplified version of the implemented
attack propagation, which is easier to follow. The main difference to the actual
implementation is the gained attributes. We will describe the difference in the

113

5. Analysing Software Architectures for Potential Security Incidents

part about gained aspects in more detail. Similar like the previous scenario-
based access usage analysis, the attack propagation is described using the
metamodel elements from Chapter 4. As previously mentioned using the
metamodel elements for the algorithm allows us to reuse the same attack
propagation algorithm for different system instances. As in Section 5.1.2,
we map instances of these metamodel elements to sets. These sets are then
representing the elements. For instance, all AssemblyContexts elements are a
set. In this section, we extend the previously in Section 5.1.2 defined sets. We
add only the set necessary for our attack propagation. We add the following
sets:

• 𝐴𝐶 = {𝑎𝑐1, . . . , 𝑎𝑐𝑛} set of all AssemblyContexts
• 𝑅𝐶 = {𝑟𝑐1, . . . , 𝑟𝑐𝑛} set of all ResourceContainers
• 𝐿𝑅 = {𝑙𝑟1, . . . , 𝑙𝑟𝑛} set of all LinkingResources
• 𝐴𝐸 = 𝐴𝐶 ∪ 𝑅𝐶 ∪ 𝐿𝑅 Architectural elements for the analysis

• 𝑃𝐴𝐹 = 𝐴𝐶 ∪ 𝑅𝐶 ∪ 𝐿𝑅 ∪ 𝑆 Potential affected elements

• 𝑉 = {𝑣1, . . . , 𝑣𝑛} set of all vulnerabilities
• 𝐴𝑇 = {𝑎𝑡1,, 𝑎𝑡𝑛} set of all attacks
• 𝐴𝑇𝑉 = {𝑁𝑒𝑡𝑤𝑜𝑟𝑘,𝐴𝑑 𝑗𝑎𝑐𝑒𝑛𝑡, 𝐿𝑜𝑐𝑎𝑙} set of attack vectors

• 𝐴𝑈𝑇𝐻 = {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒} set of authorization
• 𝑅𝑂𝐿𝐸 = {𝑟1, . . . , 𝑟𝑛} set of roles
• 𝑁𝑂𝑁_𝐺𝐿𝑂𝐵𝐴𝐿 = {𝑥 ∈ 𝐴𝐶 ∣ 𝑁𝑜𝑛𝐺𝑙𝑜𝑏𝑎𝑙𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛} set of all
components marked with NonGlobalCommunication

Like in Section 5.1.2, we define different boolean functions based on these
sets. We also reuse the introduced functions from Section 5.1.2. Each function
checks certain metamodel properties. In case the conditions are met, each
function returns true otherwise false. The different parameters can be over-
loaded. Each function is defined first by the name, then by the parameters.
Afterwards, a logical expression is following, describing the check conditions.
In the following, we will first introduce the function and its definition and
then will provide an optional description.

114

5.2. Attack Propagation Analysis

• 𝑖𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑎𝑏𝑙𝑒(𝑥,𝑦) ∶= 𝑥 ∈ 𝐴𝑇 ∧𝑦 ∈ 𝑉 ∧ 𝑥 exploits 𝑦
Checks whether x can be used to exploit y. It can be exploited when
the CWE or CVE from the attack match the CWE or CVE from the
vulnerability. The exact description for matching can be found in
Section 4.4.2.

• 𝑖𝑠𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒(𝑥,𝑦) ∶= 𝑥 ∈ 𝑃𝐴𝐹 ∧𝑦 ∈ 𝑉 ∧ 𝑥 is vulnerable to 𝑦
Checks if the architectural element x is vulnerable to the vulnerability
y. This is the case, if the element is annotated with the vulnerability
and the takeOver is set to true.

• 𝑓 𝑢𝑙𝑙 𝑓 𝑖𝑙𝑙(𝑥,𝑦) ∶= 𝑥 ⊆ 𝐴 ∧𝑦 ∈ 𝑃𝐴𝐹 ∧ 𝑥 grant access for 𝑦
Checks whether the set of attributes grants access to the architectural
element 𝑦. Here, we widen the definition to architectural elements in
contrast to the definition given in Section 5.1.2. In our analysis, this
check is performed by querying the PDP with the loaded policies. The
query process is described in Section 4.2.5.

• 𝑔𝑟𝑎𝑛𝑡𝑠(𝑥,𝑦) ∶= 𝑥 ∈ 𝐴𝐸 ∧𝑦 ∈ 𝐴 ∧ 𝑥 gives 𝑦
Checks whether the architectural element stores the attribute𝑦 and can
provide these to an attacker. This is using our concept of Attribute-
Providers (c.f. Section 4.2.4).

• 𝑑𝑒𝑝𝑙𝑜𝑦𝑒𝑑𝑂𝑛(𝑥,𝑦) ∶= 𝑥 ∈ 𝐴𝐶 ∧𝑦 ∈ 𝑅𝐶 ∧ 𝑥 deployed on 𝑦
Checks whether the component 𝑥 is deployed on the ResourceCon-

tainer 𝑦. This uses the allocation model from PCM.

• 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦2𝐺𝑙𝑜𝑏𝑎𝑙(𝑥,𝑦) ∶= 𝑥 ∈ 𝐴𝐶 ∧ 𝑦 ∈ 𝐴𝐶 ∣ ∃𝑟 ∈ 𝑅𝐶 ∣𝑑𝑒𝑝𝑙𝑜𝑦𝑒𝑑-
𝑂𝑛(𝑥, 𝑟) ∧ ∃𝑟𝑐 ∈ 𝑅𝐶 ∣(∃𝑙 ∈ 𝐿𝑅 ∣ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝐿𝑖𝑛𝑘𝑖𝑛𝑔(𝑟, 𝑙) ∧ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒-
𝐿𝑖𝑛𝑘𝑖𝑛𝑔(𝑟𝑐, 𝑙)∧𝑟𝑐 ≠ 𝑟 ∧𝑑𝑒𝑝𝑙𝑜𝑦𝑒𝑑𝑂𝑛(𝑦, 𝑟𝑐)∧𝑥 ∉ 𝑁𝑂𝑁_𝐺𝐿𝑂𝐵𝐴𝐿∧𝑦 ∉
𝑁𝑂𝑁_𝐺𝐿𝑂𝐵𝐴𝐿
Checks whether the component 𝑥 is connected to the component 𝑦
by checking whether both components are in the same network. This
can be done by using the LinkingResources and checking whether
both components are not marked with NonGlobalCommunication (c.f.
Section 4.3.4).

• 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦2𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑦(𝑥,𝑦) ∶= 𝑥,𝑦 ∈ 𝐴𝐶 ∧ (𝑥 connected by Assembly-

Connector with 𝑦 ∨ 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦2𝐺𝑙𝑜𝑏𝑎𝑙(𝑥,𝑦))
Checks whether two components are connected. Components are
connected, if there is a AssemblyConnector between them or they are
globally connected over a LinkingResource.

115

5. Analysing Software Architectures for Potential Security Incidents

• 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦2𝐿𝑖𝑛𝑘𝑖𝑛𝑔(𝑥,𝑦) ∶= 𝑥 ∈ 𝐴𝐶 ∧
𝑦 ∈ 𝐿𝑅 ∧ ∃𝑟 ∈ 𝑅𝐶 ∣ 𝑑𝑒𝑝𝑙𝑜𝑦𝑒𝑑𝑂𝑛(𝑥, 𝑟) ∧ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝐿𝑖𝑛𝑘𝑖𝑛𝑔(𝑟,𝑦)
Checks whether the component 𝑥 is connected to the network element
𝑦. This is performed by identifying the hardware resource, which
deploys the component and then checking whether the hardware
resource is connected with the network element.

• 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦2𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑥,𝑦) ∶= 𝑥 ∈ 𝐴𝐶∧𝑦 ∈ 𝑅𝐶∧¬𝑑𝑒𝑝𝑙𝑜𝑦𝑒𝑑𝑂𝑛(𝑥,𝑦)∧∃𝑐 ∈
𝐴𝐶 ∣ 𝑐 ≠ 𝑥 ∧ 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦2𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑦(𝑥, 𝑐) ∧ 𝑑𝑒𝑝𝑙𝑜𝑦𝑒𝑑𝑂𝑛(𝑐,𝑦)
Checks whether the component 𝑥 is connected with the hardware
resource 𝑦. This is done by identifying connected components and
then using the deployment relation in the allocation model to get their
hardware resources. This explicitly does not consider the hardware
resource on which 𝑥 is deployed.

• 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝐿𝑖𝑛𝑘𝑖𝑛𝑔(𝑥,𝑦) ∶= 𝑥 ∈ 𝑅𝐶 ∧𝑦 ∈ 𝐿𝑅 ∧ 𝑥 connected by link with 𝑦
Checks whether the hardware resource 𝑥 is in the same network as
the network node 𝑦.

• 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑠(𝑥,𝑦) ∶= 𝑥 ∈ 𝑆 ∧𝑦 ∈ 𝐴𝐶 ∧𝑦 provides 𝑥
Checks whether the component 𝑦 provides the service 𝑥 .

• 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑆𝑒𝑟𝑣𝑖𝑐𝑒(𝑥,𝑦) ∶= 𝑥 ∈ 𝐴𝐶 ∧ 𝑦 ∈ 𝑆 ∧ ¬𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑠(𝑦, 𝑥) ∧ ∃𝑐 ∈
𝐴𝐶 ∣ 𝑐 ≠ 𝑥 ∧ 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑠(𝑦,𝑐) ∧ 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦2𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑦(𝑥, 𝑐)
Checks whether the service 𝑦 is connected to the component 𝑥 . This
can be done by identifying, the connected components.

• 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑥,𝑦) ∶= 𝑥,𝑦 ∈ 𝑅𝐶 ∧ 𝑥 ≠ 𝑦 ∧
∃𝑙 ∈ 𝐿𝑅 ∣ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝐿𝑖𝑛𝑘𝑖𝑛𝑔(𝑥, 𝑙) ∧ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝐿𝑖𝑛𝑘𝑖𝑛𝑔(𝑦, 𝑙)
Checks whether two hardware resources are connected. Two hardware
resources are connected if both are connected to the same LinkingRe-
source.

• 𝑖𝑠𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒(𝑥,𝑦) ∶= 𝑥 ∈ 𝐴𝑇𝑉 ∧𝑦 ∈ 𝑉 ∧ 𝑥 can exploit 𝑦
Checks if the AttackVector x can be used to exploit the Vulnerability
y. The description, when this is fulfilled can be found in Section 4.3.3
regarding the vulnerability’s attributes.

• 𝑖𝑠𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒(𝑥,𝑦) ∶= 𝑥 ∈ 𝐴𝑈𝑇𝐻 ∧𝑦 ∈ 𝑉 ∧ 𝑥 can exploit 𝑦
Checks if the vulnerability y needs an authenticated attacker to exploit
it or not. Authenticated is indicated by the value True.

116

5.2. Attack Propagation Analysis

• 𝑖𝑠𝑅𝑜𝑙𝑒(𝑥,𝑦) ∶= 𝑥 ∈ 𝑅 ∧𝑦 ∈ 𝐴𝐸 ∧𝑦 provides role 𝑥
Checks whether the architectural element y provides the Role x in the
software architecture (see also Section 4.3.4).

• 𝑖𝑠𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒(𝑥,𝑦) ∶= 𝑥 ⊆ 𝑅 ∧𝑦 ∈ 𝑉 ∧ 𝑥 compromises 𝑦
Checks whether the Vulnerability y needs a compromised Role x, so
that the vulnerability can be exploited (c.f. Section 4.3.3).

Besides the different boolean checks for the different conditions, we also need
a function to map two architectural elements to an AttackVector. We define
it as the function 𝑎𝑡𝑣 . It takes two architectural elements (𝐴𝐸) and returns
the AttackVector (𝐴𝑇𝑉). The AttackVector is Local if the two elements are
in a deployment relationship, e.g., 𝑥 is deployed on 𝑦 or vice versa. If both
elements are in the same network, meaning they are connected with the
same LinkingResource (c.f. 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 and Section 4.3.3), it
returns AdjacentNetwork. Otherwise, the value is Network.

𝑎𝑡𝑣(𝑥,𝑦) ∶ 𝐴𝐸 ×𝐴𝐸 → 𝐴𝑇𝑉 ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝐿𝑜𝑐𝑎𝑙, deployment.
𝐴𝑑 𝑗𝑎𝑐𝑒𝑛𝑡𝑁𝑒𝑡𝑤𝑜𝑟𝑘, in the same network.
𝑁𝑒𝑡𝑤𝑜𝑟𝑘, otherwise.

The attack propagation algorithm is then described in Algorithm 3 and Algo-
rithm 4. For space reasons, we needed to split the algorithm into two parts.
The main concept for the attack propagation is that it iteratively calculates the
transitive closure of the directly attacked and indirectly attacked architectural
elements. In addition, an attacker can gain new knowledge regarding the
credentials (here attributes) in each iteration. The algorithm’s termination
condition is that no changes occur in the current iteration. This behaviour is
based on KAMP. Hence, the structure was partly given by the foundational
approach.

Besides the software architecture annotated with vulnerabilities and access
control policies the input for Algorithm 3 is:

• 𝑆𝑇𝐴𝑅𝑇 : A set of initial starting points in the software architecture.
These can be any element from 𝐴𝐸. It can be multiple elements. In a
real attack, this would symbolize the initial break point.

• 𝐾𝐿: A set of Attributes representing the initial knowledge of the
attacker. In our approach, we use these to represent credentials or other
attributes used as authorisation. Attackers can gain this knowledge

117

5. Analysing Software Architectures for Potential Security Incidents

through Social Engineering attacks like Phishing or other attacks, which
we do not consider in the analysis itself. However, the results of
these attacks can be considered as knowledge. In addition, the initial
knowledge can be empty. During the analysis, attackers can gain
additional knowledge.

• 𝐶𝐴𝑃 : A set of Attacks describing the capabilities of an attacker.

The output of the algorithm is a set of affected architectural elements (𝑃𝐴𝐹).

The first step in the algorithm is to assign the 𝑆𝑇𝐴𝑅𝑇 set to 𝑁 , which is the
return value. Afterwards, it determines the roles of the initial compromised
elements. Then the algorithm calculates iteratively the transitive closure of
the compromised elements. It terminates if no new elements are affected in an
iteration step, i.e., the attacker did not compromise a new element or gained
no new knowledge. We determined the termination criteria by investigating
which affected/compromised element can lead to potentially new propaga-
tions. In other words, compromised elements can open new attack paths for
an attacker. The first criterion is affected architectural elements. An attacker
can use these to reach new architectural elements which were previously
not reachable. For instance, in our running example, the ProductStorage

is not directly reachable from every component. However, an attacker can
reach it by first compromising the StorageServer. The second criterion is the
knowledge of an attacker. Adding new knowledge can also open new attack
possibilities for an attacker. For instance, a non-vulnerable component can
only be compromised by credentials, despite that it is reachable. However, by
getting the knowledge about the credentials, an attacker could compromise
it. Hence, we added this as a termination criterion. In theory, the role also
would need to be termination criteria since if it changes, there could be new
vulnerabilities an attacker could exploit. However, in our case, the role as-
signment is coupled to an architectural element, and an attacker can gain a
role only by compromising an architectural element. Hence, when there is a
new compromised role, there is also always a new compromised architectural
element. Therefore, both compromisations happen in the same iteration step,
and we can consider only the architectural element compromisation since
the role compromisation is also covered.

After checking the termination criteria, the algorithm calculates the propaga-
tion steps, starting from line 5 in Algorithm 3. We calculate the propagation
from each architectural element type to the other types and for each propaga-
tion type (vulnerability or credential). The separation between architectural

118

5.2. Attack Propagation Analysis

Algorithm 3 Simplified attack propagation algorithm 1/3 (continued in Al-
gorithm 4)

Input: 𝑆𝑇𝐴𝑅𝑇 ⊆ 𝐴𝐸,𝐾𝐿 ⊆ 𝐴,𝐶𝐴𝑃 ⊆ 𝐴𝑇
Output 𝑁 ⊆ 𝑃𝐴𝐹

1: procedure attackPropagation
2: 𝑁 = 𝑆𝑇𝐴𝑅𝑇
3: 𝑅𝑂𝐿𝐸 = {𝑟 ∈ 𝑅 ∣ ∃𝑛 ∈ 𝑁 ∣ 𝑖𝑠𝑅𝑜𝑙𝑒(𝑟,𝑛)}
4: while 𝑆𝑇𝐴𝑅𝑇 ≠ ∅ ∨𝐾𝐿𝑛𝑒𝑤 ≠ ∅ do
5: 𝐴𝐶𝐴𝐶𝑉 = {𝑎𝑐 ∈ 𝐴𝐶 ∣ ∃𝑛 ∈ 𝑁 ∣ 𝑛 ∈

𝐴𝐶 ∧ 𝑎𝑐 ∉ 𝑁 ∧ 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦2𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑦(𝑛,𝑎𝑐) ∧
∃𝑣 ∈ 𝑉 ∣ 𝑖𝑠𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒(𝑎𝑡𝑣(𝑛,𝑎𝑐), 𝑣) ∧
𝑖𝑠𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒(𝑓 𝑢𝑙𝑙 𝑓 𝑖𝑙𝑙(𝐾𝐿,𝑎𝑐), 𝑣) ∧ 𝑖𝑠𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒(𝑎𝑐, 𝑣) ∧
𝑖𝑠𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒(𝑅𝑂𝐿𝐸, 𝑣) ∧ ∃𝑎 ∈ 𝐶𝐴𝑃 ∣ 𝑖𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑎𝑏𝑙𝑒(𝑎, 𝑣)}

6: 𝐴𝐶𝐴𝐶𝐶 = {𝑎𝑐 ∈ 𝐴𝐶 ∣ ∃𝑛 ∈ 𝑁 ∣ 𝑛 ∈ 𝐴𝐶 ∧ 𝑎𝑐 ∉ 𝑁 ∧
𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦2𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑦(𝑛,𝑎𝑐) ∧ 𝑓 𝑢𝑙𝑙 𝑓 𝑖𝑙𝑙(𝐾𝐿,𝑎𝑐)}

7: 𝐴𝐶𝐿𝑅𝐶𝑉 = {𝑟𝑐 ∈ 𝑅𝐶 ∣ ∃𝑛 ∈ 𝑁 ∣ 𝑛 ∈ 𝐴𝐶 ∧ 𝑟𝑐 ∉ 𝑁 ∧ 𝑑𝑒𝑝𝑙𝑜𝑦𝑒𝑑-
𝑂𝑛(𝑛, 𝑟𝑐) ∧ ∃𝑣 ∈ 𝑉 ∣ 𝑖𝑠𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒(𝑎𝑡𝑣(𝑛, 𝑟𝑐), 𝑣) ∧
𝑖𝑠𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒(𝑓 𝑢𝑙𝑙 𝑓 𝑖𝑙𝑙(𝐾𝐿, 𝑟𝑐), 𝑣) ∧ 𝑖𝑠𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒(𝑟𝑐, 𝑣) ∧
𝑖𝑠𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒(𝑅𝑂𝐿𝐸, 𝑣) ∧ ∃𝑎 ∈ 𝐶𝐴𝑃 ∣ 𝑖𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑎𝑏𝑙𝑒(𝑎, 𝑣)}

8: 𝐴𝐶𝐿𝑅𝐶𝐶 = {𝑟𝑐 ∈ 𝑅𝐶 ∣ ∃𝑛 ∈ 𝑁 ∣ 𝑛 ∈ 𝐴𝐶 ∧ 𝑟𝑐 ∉ 𝑁 ∧ 𝑑𝑒𝑝𝑙𝑜𝑦𝑒𝑑-
𝑂𝑛(𝑛, 𝑟𝑐) ∧ 𝑓 𝑢𝑙𝑙 𝑓 𝑖𝑙𝑙(𝐾𝐿, 𝑟𝑐)}

9: 𝐴𝐶𝑅𝐶𝑉 = {𝑟𝑐 ∈ 𝑅𝐶 ∣ ∃𝑛 ∈ 𝑁 ∣ 𝑛 ∈
𝐴𝐶 ∧ 𝑟𝑐 ∉ 𝑁 ∧ 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦2𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑛, 𝑟𝑐) ∧
∃𝑣 ∈ 𝑉 ∣ 𝑖𝑠𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒(𝑎𝑡𝑣(𝑛, 𝑟𝑐), 𝑣) ∧
𝑖𝑠𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒(𝑓 𝑢𝑙𝑙 𝑓 𝑖𝑙𝑙(𝐾𝐿, 𝑟𝑐), 𝑣) ∧ 𝑖𝑠𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒(𝑟𝑐, 𝑣) ∧
𝑖𝑠𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒(𝑅𝑂𝐿𝐸, 𝑣) ∧ ∃𝑎 ∈ 𝐶𝐴𝑃 ∣ 𝑖𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑎𝑏𝑙𝑒(𝑎, 𝑣)}

10: 𝐴𝐶𝑅𝐶𝐶 = {𝑟𝑐 ∈ 𝑅𝐶 ∣ ∃𝑛 ∈ 𝑁 ∣ 𝑛 ∈ 𝐴𝐶 ∧ 𝑟𝑐 ∉ 𝑁 ∧
𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦2𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑛, 𝑟𝑐) ∧ 𝑓 𝑢𝑙𝑙 𝑓 𝑖𝑙𝑙(𝐾𝐿, 𝑟𝑐)}

11: 𝐴𝐶𝐿𝑅𝑉 = {𝑙𝑟 ∈ 𝐿𝑅 ∣ ∃𝑛 ∈ 𝑁 ∣ 𝑛 ∈
𝐴𝐶 ∧ 𝑙𝑟 ∉ 𝑁 ∧ 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦2𝐿𝑖𝑛𝑘𝑖𝑛𝑔(𝑛, 𝑙𝑟) ∧
∃𝑣 ∈ 𝑉 ∣ 𝑖𝑠𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒(𝑎𝑡𝑣(𝑛, 𝑙𝑟), 𝑣) ∧
𝑖𝑠𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒(𝑓 𝑢𝑙𝑙 𝑓 𝑖𝑙𝑙(𝐾𝐿, 𝑙𝑟), 𝑣) ∧ 𝑖𝑠𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒(𝑙𝑟, 𝑣) ∧
𝑖𝑠𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒(𝑅𝑂𝐿𝐸, 𝑣) ∧ ∃𝑎 ∈ 𝐶𝐴𝑃 ∣ 𝑖𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑎𝑏𝑙𝑒(𝑎, 𝑣)}

12: 𝐴𝐶𝐿𝑅𝐶 = {𝑙𝑟 ∈ 𝐿𝑅 ∣ ∃𝑛 ∈ 𝑁 ∣ 𝑛 ∈ 𝐴𝐶 ∧ 𝑙𝑟 ∉ 𝑁 ∧
𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦2𝐿𝑖𝑛𝑘𝑖𝑛𝑔(𝑛, 𝑙𝑟) ∧ 𝑓 𝑢𝑙𝑙 𝑓 𝑖𝑙𝑙(𝐾𝐿, 𝑙𝑟)}

13: 𝐴𝐶𝑆𝑉 = {𝑠 ∈ 𝑆 ∣ ∃𝑛 ∈ 𝑁 ∣ 𝑛 ∈ 𝐴𝐶 ∧ 𝑠 ∉ 𝑁 ∧
𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑆𝑒𝑟𝑣𝑖𝑐𝑒(𝑛, 𝑠) ∧ ∃𝑣 ∈ 𝑉 ∣ 𝑖𝑠𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒(𝑎𝑡𝑣(𝑛, 𝑠), 𝑣) ∧
𝑖𝑠𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒(𝑓 𝑢𝑙𝑙 𝑓 𝑖𝑙𝑙(𝐾𝐿, 𝑠), 𝑣) ∧ 𝑖𝑠𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒(𝑠, 𝑣) ∧
𝑖𝑠𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒(𝑅𝑂𝐿𝐸, 𝑣) ∧ ∃𝑎 ∈ 𝐶𝐴𝑃 ∣ 𝑖𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑎𝑏𝑙𝑒(𝑎, 𝑣)}

119

5. Analysing Software Architectures for Potential Security Incidents

Algorithm 4 Simplified attack propagation algorithm 2/3 (continued from
Algorithm 3)
14: 𝐴𝐶𝑆𝐶 = {𝑠 ∈ 𝑆 ∣ ∃𝑛 ∈ 𝑁 ∣ 𝑛 ∈ 𝐴𝐶 ∧ 𝑠 ∉ 𝑁 ∧

𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑆𝑒𝑟𝑣𝑖𝑐𝑒(𝑛, 𝑠) ∧ 𝑓 𝑢𝑙𝑙 𝑓 𝑖𝑙𝑙(𝐾𝐿, 𝑠)}
15: 𝐿𝑅𝐴𝐶𝑉 = {𝑎𝑐 ∈ 𝐴𝐶 ∣ ∃𝑛 ∈ 𝑁 ∣ 𝑛 ∈ 𝐿𝑅 ∧

𝑎𝑐 ∉ 𝑁 ∧ 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦2𝐿𝑖𝑛𝑘𝑖𝑛𝑔(𝑎𝑐,𝑛) ∧ ∃𝑣 ∈
𝑉 ∣ 𝑖𝑠𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒(𝑎𝑡𝑣(𝑛,𝑎𝑐), 𝑣) ∧ 𝑖𝑠𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒(𝑓 𝑢𝑙𝑙-
𝑓 𝑖𝑙𝑙(𝐾𝐿,𝑎𝑐), 𝑣) ∧ 𝑖𝑠𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒(𝑎𝑐, 𝑣) ∧
𝑖𝑠𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒(𝑅𝑂𝐿𝐸, 𝑣) ∧ ∃𝑎 ∈ 𝐶𝐴𝑃 ∣ 𝑖𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑎𝑏𝑙𝑒(𝑎, 𝑣)}

16: 𝐿𝑅𝐴𝐶𝐶 = {𝑎𝑐 ∈ 𝐴𝐶 ∣ ∃𝑛 ∈ 𝑁 ∣ 𝑛 ∈ 𝐿𝑅 ∧ 𝑎𝑐 ∉ 𝑁 ∧
𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦2𝐿𝑖𝑛𝑘𝑖𝑛𝑔(𝑎𝑐,𝑛) ∧ 𝑓 𝑢𝑙𝑙 𝑓 𝑖𝑙𝑙(𝐾𝐿,𝑎𝑐)}

17: 𝐿𝑅𝑅𝐶𝑉 = {𝑟𝑐 ∈ 𝑅𝐶 ∣ ∃𝑛 ∈ 𝑁 ∣ 𝑛 ∈ 𝐿𝑅 ∧ 𝑟𝑐 ∉ 𝑁 ∧
𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝐿𝑖𝑛𝑘𝑖𝑛𝑔(𝑟𝑐,𝑛)∧∃𝑣 ∈ 𝑉 ∣ 𝑖𝑠𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒(𝑎𝑡𝑣(𝑛, 𝑟𝑐), 𝑣)∧
𝑖𝑠𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒(𝑓 𝑢𝑙𝑙 𝑓 𝑖𝑙𝑙(𝐾𝐿, 𝑟𝑐), 𝑣)∧𝑖𝑠𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒(𝑟𝑐, 𝑣)∧∃𝑎 ∈
𝐶𝐴𝑃 ∣ 𝑖𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑎𝑏𝑙𝑒(𝑎, 𝑣)}

18: 𝐿𝑅𝑅𝐶𝐶 = {𝑟𝑐 ∈ 𝑅𝐶 ∣ ∃𝑛 ∈ 𝑁 ∣ 𝑛 ∈ 𝐿𝑅 ∧ 𝑟𝑐 ∉ 𝑁 ∧ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒-
𝐿𝑖𝑛𝑘𝑖𝑛𝑔(𝑟𝑐,𝑛) ∧ 𝑓 𝑢𝑙𝑙 𝑓 𝑖𝑙𝑙(𝐾𝐿, 𝑟𝑐)}

19: 𝑅𝐶𝐴𝐶𝐿 = {𝑎𝑐 ∈ 𝐴𝐶 ∣ ∃𝑛 ∈ 𝑁 ∣ 𝑛 ∈ 𝑅𝐶 ∧𝑎𝑐 ∉ 𝑁 ∧𝑑𝑒𝑝𝑙𝑜𝑦𝑒𝑑(𝑎𝑐,𝑛)}
20: 𝑅𝐶𝐴𝐶𝑉 = {𝑎𝑐 ∈ 𝐴𝐶 ∣ ∃𝑛 ∈ 𝑁 ∣ 𝑛 ∈ 𝑅𝐶 ∧

𝑎𝑐 ∉ 𝑁 ∧ 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦2𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑎𝑐,𝑛) ∧ ∃𝑣 ∈
𝑉 ∣ 𝑖𝑠𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒(𝑎𝑡𝑣(𝑛,𝑎𝑐), 𝑣) ∧ 𝑖𝑠𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒(𝑓 𝑢𝑙𝑙-
𝑓 𝑖𝑙𝑙(𝐾𝐿,𝑎𝑐), 𝑣) ∧ 𝑖𝑠𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒(𝑎𝑐, 𝑣) ∧ ∃𝑎 ∈
𝐶𝐴𝑃 ∣ 𝑖𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑎𝑏𝑙𝑒(𝑎, 𝑣)}

21: 𝑅𝐶𝐴𝐶𝐶 = {𝑎𝑐 ∈ 𝐴𝐶 ∣ ∃𝑛 ∈ 𝑁 ∣ 𝑛 ∈ 𝑅𝐶 ∧ 𝑎𝑐 ∉ 𝑁 ∧
𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦2𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑎𝑐,𝑛) ∧ 𝑓 𝑢𝑙𝑙 𝑓 𝑖𝑙𝑙(𝐾𝐿,𝑎𝑐)}

22: 𝑅𝐶𝐿𝑅𝑉 = {𝑙𝑟 ∈ 𝐿𝑅 ∣ ∃𝑛 ∈ 𝑁 ∣ 𝑛 ∈ 𝑅𝐶 ∧ 𝑎𝑐 ∉ 𝑁 ∧
𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝐿𝑖𝑛𝑘𝑖𝑛𝑔(𝑛, 𝑙𝑟)∧∃𝑣 ∈ 𝑉 ∣ 𝑖𝑠𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒(𝑎𝑡𝑣(𝑛, 𝑙𝑟), 𝑣)∧
𝑖𝑠𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒(𝑓 𝑢𝑙𝑙 𝑓 𝑖𝑙𝑙(𝐾𝐿, 𝑙𝑟), 𝑣)∧ 𝑖𝑠𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒(𝑙𝑟, 𝑣)∧∃𝑎 ∈
𝐶𝐴𝑃 ∣ 𝑖𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑎𝑏𝑙𝑒(𝑎, 𝑣)}

23: 𝑅𝐶𝐿𝑅𝐶 = {𝑙𝑟 ∈ 𝐿𝑅 ∣ ∃𝑛 ∈ 𝑁 ∣ 𝑛 ∈ 𝑅𝐶 ∧ 𝑎𝑐 ∉ 𝑁 ∧ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒-
𝐿𝑖𝑛𝑘𝑖𝑛𝑔(𝑛, 𝑙𝑟) ∧ 𝑓 𝑢𝑙𝑙 𝑓 𝑖𝑙𝑙(𝐾𝐿, 𝑙𝑟)}

24: 𝐴𝑆𝑆𝐸𝑀𝐵𝐿𝑌 = 𝐴𝐶𝐴𝐶𝑉 ∪𝐴𝐶𝐴𝐶𝐶∪𝐿𝑅𝐴𝐶𝑉 ∪𝐿𝑅𝐴𝐶𝐶∪𝑅𝐶𝐴𝐶𝐿∪
𝑅𝐶𝐴𝐶𝑉 ∪ 𝑅𝐶𝐴𝐶𝐶

25: 𝑆𝐸𝑅 = {𝑠 ∈ 𝑆 ∣ ∃𝑛 ∈ 𝐴𝑆𝑆𝐸𝑀𝐵𝐿𝑌 ∣ 𝑠 ∉ 𝑁 ∧ 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑠(𝑠,𝑛)}
26: 𝑆𝑇𝐴𝑅𝑇 = (𝐴𝑆𝑆𝐸𝑀𝐵𝐿𝑌 ∪ 𝐴𝐶𝐿𝑅𝐶𝑉 ∪ 𝐴𝐶𝐿𝑅𝐶𝐶 ∪ 𝐴𝐶𝑅𝐶𝑉 ∪

𝐴𝐶𝑅𝐶𝐶∪𝐴𝐶𝐿𝑅𝑉 ∪𝐴𝐶𝐿𝑅𝐶∪𝐴𝐶𝑆𝑉 ∪𝐴𝐶𝑆𝐶∪𝐿𝑅𝑅𝐶𝑉 ∪𝐿𝑅𝑅𝐶𝐶∪
𝑅𝐶𝐿𝑅𝑉 ∪ 𝑅𝐶𝐿𝑅𝐶)/𝑁

120

5.2. Attack Propagation Analysis

Algorithm 5 Simplified attack propagation algorithm 3/3 (continued from
Algorithm 4)
27: 𝑁 = 𝑁 ∪ 𝑆𝑇𝐴𝑅𝑇 ∪ 𝑆𝐸𝑅
28: 𝐾𝐿𝑛𝑒𝑤 = {𝑥 ∈ 𝐴 ∣ ∃𝑛 ∈ 𝑆𝑇𝐴𝑅𝑇 ∣ 𝑔𝑟𝑎𝑛𝑡𝑠(𝑥,𝑛)}/𝐾𝐿
29: 𝐾𝐿 = 𝐾𝐿 ∪𝐾𝐿𝑛𝑒𝑤
30: 𝑅𝑂𝐿𝐸 = {𝑟 ∈ 𝑅 ∣ ∃𝑛 ∈ 𝑆𝑇𝐴𝑅𝑇 ∣ 𝑖𝑠𝑅𝑜𝑙𝑒(𝑟,𝑛)} ∪ 𝑅𝑂𝐿𝐸
31: end while
32: end procedure

element types and propagation rules is beneficial because it enables a separa-
tion of the different propagation concerns. Another possibility could be the
combination of propagation rules. However, then a propagation rule would
not be responsible for only one propagation step, which can violate the coding
principle of Single Responsibility [107, p. 95ff]. The propagation calculation is
very similar for each. In all cases, we first identify the connected elements.
Afterwards, we determine whether the attack can compromise the connected
elements and, therefore, propagate to the connected elements. Here, we need
to differentiate between two types. We decided to separate the propagation
types because the handling of the different propagation types is different for
each type. Hence, the separated rules are easier to define and should also be
easier to maintain. The first type is the propagation by vulnerabilities. In
this propagation, the algorithm checks whether the architectural element
is vulnerable, the attack vector matches to the required attack vector from
the vulnerability, the required roles are already compromised, the attacker
has the correct authorisation level, and the attacker has a matching attack
capability. If these are all fulfilled, then the attacker can propagate to the
connected element. Hence, it is compromised. The second propagation type
is the propagation by using credentials, i.e., exploiting the access control
policies with gained attributes. Here, the algorithm verifies whether the
attacker has the suitable attributes for accessing the connected element. The
different propagation sets also indicate by their name the type and the in-
volved elements. The last character indicates whether it is a vulnerability
propagation by using V or by using C if it uses credentials. The involved
types are shown by using the abbreviations symbols for the involved set.
The first abbreviation illustrates the source type from which the propagation
happens, and the second is the target type. For instance, for the first set

121

5. Analysing Software Architectures for Potential Security Incidents

𝐴𝐶𝐴𝐶𝑉 (l. 5 in Algorithm 3) it is AssemblyContext (AC) to AssemblyContext

(AC) by using a Vulnerability (V).

In the following, the different propagation sets for each architectural element
type and propagation type are calculated. Based on the description, we
give them an order. Nevertheless, the order is changeable. By changing the
order, obviously, the propagation within a loop iteration might be different.
For instance, if the propagation of AssemblyContexts is handled after the
LinkingResources. However, the results should stay the same because the
changed compromised elements are only considered in the next step. Even
if the changed compromised elements are directly considered, this is no
problem because the missed propagation steps are redone during the next
loop iteration.

The first propagation set 𝐴𝐶𝐴𝐶𝑉 (l. 5) represents the propagation between
AssemblyContexts by exploiting a vulnerability. It first identifies all con-
nected components and then whether they are vulnerable to the current
properties of the attacker. The second set 𝐴𝐶𝐴𝐶𝐶 (l. 6) calculates the same,
but uses the credentials. The third (𝐴𝐶𝐿𝑅𝐶𝑉 , l. 7) and fourth (𝐴𝐶𝐿𝑅𝐶𝐶 , l.
8) are the propagation from an AssemblyContext to the ResourceContainer,
which deploys the AssemblyContext by using first vulnerabilities and sec-
ondly credentials. 𝐴𝐶𝑅𝐶𝑉 (l. 9) and 𝐴𝐶𝑅𝐶𝐶 (l. 10) are the propagation from
AssemblyContexts to connected ResourceContainers using vulnerabilities
and credentials. These sets do not cover the deployment relationship. We
separated them since they are slightly different cases for the implementation.
𝐴𝐶𝐿𝑅𝑉 (l. 11) and𝐴𝐶𝐿𝑅𝐶 (l. 12) are the propagation from AssemblyContexts
to LinkingResources. The next two sets are 𝐴𝐶𝑆𝑉 (l. 13) and 𝐴𝐶𝑆𝐶 (l. 14)
representing the propagation to connected services.

The algorithm is then continued in Algorithm 4 with the sets for the propa-
gation from LinkingResources. The first two are 𝐿𝑅𝐴𝐶𝑉 (l. 15) and 𝐿𝑅𝐴𝐶𝐶
(l. 16) propagating to AssemblyContexts. The next two sets are 𝐿𝑅𝑅𝐶𝑉 (l.
17) and 𝐿𝑅𝑅𝐶𝐶 (l. 18) representing the propagation from LinkingResources
to connected ResourceContainers. The next group of sets cover the propa-
gation from hardware resources (ResourceContainer). The first set 𝑅𝐶𝐴𝐶𝐿
(l. 19) is the propagation from a ResourceContainer to a local AssemblyCon-
text. Local means in our case, that the AssemblyContext is deployed on the
ResourceContainer. In this case, we assume that the deployed AssemblyCon-

texts are always compromised. The next propagation is the propagation
to remote AssemblyContexts. These are AssemblyContexts not deployed on

122

5.2. Attack Propagation Analysis

the ResourceContainers. This propagation is done by 𝑅𝐶𝐴𝐶𝑉 (l. 20) and
𝑅𝐶𝐴𝐶𝐶 (l. 21). 𝑅𝐶𝐿𝑅𝑉 (l. 22) and 𝑅𝐶𝐿𝑅𝐶 (l. 23) are the propagations from
ResourceContainers to LinkingResources. The set 𝐴𝑆𝑆𝐸𝑀𝐵𝐿𝑌 (l. 24) is the
union of all propagation sets, which result in AssemblyContexts. The algo-
rithm uses this set to calculate the propagation set for the services. These are
the services from all affected AssemblyContexts.

Afterwards, the overall propagation sets for this iteration step are calculated.
The next step is to determine the new 𝑆𝑇𝐴𝑅𝑇 set (l. 26). This set should
contain, in the end, only newly affected elements so that we can use it as one of
the termination conditions. If it also contains old elements, the algorithm does
not terminate. Thenwe build the union of the new compromised elements and
the old elements and assign it to the return value. In the next step, we update
the attacker’s knowledge and store the new knowledge in 𝐾𝐿𝑛𝑒𝑤 (l. 28). This
set also contains only newly compromised attributes, which we archive by
removing already-known attributes from the set. The algorithm updates the
knowledge by identifying for the compromised architectural elements, which
grant attributes. For simplicity reasons, we left out the second part of the
knowledge update. In our implementation, we also store the traces for each
compromisation, i.e., the source, the used attack and the used vulnerability or
attributes. Based on this trace, we can also exploit in the implementation the
gainedAttribute attribute from a Vulnerability. Hence, the result is more
detailed. The last step is updating the compromised roles in the system. Here,
the algorithm determines for each newly compromised element whether it
acts as a role or not. Determining these sets is repeated till the termination
criteria are fulfilled. In that case, the set 𝑁 is returned, which contains the
affected/compromised elements.

Based on the returned affected elements, we then can extract the affected
data as described in Section 5.2.3.

We are now applying this concept to our running example. As a starting point,
we select the Terminal and give the attacker the capability to perform attacks
based on CWE-312 [114]. As knowledge, we select no initial knowledge
about credentials. In Figure 5.8, we exemplary illustrate the propagation
process as a graph. The nodes with only a label represent the compromised
architectural elements. Nodes starting with Role: indicate attributes. The
nodes with a component name and a method name indicate a server. For
instance, Terminal: access is the access service from the Terminal. The
other nodes containing a datatype are the extracted dataobjects, i.e., the

123

5. Analysing Software Architectures for Potential Security Incidents

parameter and return values from the services. The edges contain the reason
for the compromisation. This is either the used vulnerability, attribute or
using one of our assumptions (indicated by implicit). If we now perform our
attack propagation, the first affected element is the Terminal as the start point.
Afterwards, the analysis checks each connected element for vulnerabilities
or if we can use credentials. In the example, the only vulnerable connected
element is the TerminalServer, and the attacker has so far no credentials they
can use. The vulnerability of the TerminalServer is as previously described
CVE-2021-28374 [129] and can leak the admin credentials. Also, our attacker
has the capability CWE-312 [114], which is the correct capability to exploit
the vulnerability. In addition, the analysis checks whether the attack vector
is compatible. In this case, it is since the required one is Network (based
on the CVSS) and the attacker has also Network. The next step is to check
whether authorization is necessary or not. Based on the CVSS description, no
authorization is necessary. Hence our attacker can fulfil this requirement. The
last step is to verify whether a specific system role is necessary to exploit the
vulnerability. In our case, we modelled it without that requirement since also
the description does not mention it. In summary, the attacker fulfils all the
necessary properties and can exploit the vulnerability. Since the vulnerability
also leaks the Admin attribute, the attacker gains the knowledge of the Admin
attribute.

In the next step, the analysis then checks all connected elements to the
TerminalServer and Terminal. In this case, there are no new vulnerable
elements available. However, with the knowledge gained from the previous
step, the attack can get access to the StorageServer and MachineController.
Other elements are not affected, and also no new knowledge is gained in this
step.

In the next step, then the attack can propagate to the AssemblyContexts de-
ployed on the StorageServer and MachineController resulting in the com-
promisation of the ProductStorage, ProductionDataStorage, Machine. Ad-
ditionally, all the services provided by these components are compromised.
Otherwise, no new elements are compromised or knowledge is gained.

In the next and last step, the analysis checks whether it can compromise
any new elements or gain new knowledge. However, there are no new
compromisations or knowledge, so the propagation terminates. Afterwards,
the analysis also extracts the compromised data.

124

5.2. Attack Propagation Analysis

St
or

ag
eS

er
ve

r

Pr
od

uc
tio

nS
to

ra
ge

im
pl

ic
it

Pr
od

uc
tS

to
ra

ge

im
pl

ic
it

Pr
od

uc
tio

nS
to

ra
ge

: g
et

im
pl

ic
it

Pr
od

uc
tio

nS
to

ra
ge

: s
to

re

im
pl

ic
it

da
ta

:S
T

R
IN

G

im
pl

ic
it

ST
R

IN
G

 f
ro

m
 g

et
:S

to
ra

ge

im
pl

ic
it

im
pl

ic
it

im
pl

ic
it

Pr
od

uc
tS

to
ra

ge
: s

to
re

im
pl

ic
it

Pr
od

uc
tS

to
ra

ge
: g

et

im
pl

ic
it

M
ac

hi
ne

C
on

tr
ol

le
r

M
ac

hi
ne

im
pl

ic
it

im
pl

ic
it

im
pl

ic
it

M
ac

hi
ne

: a
cc

es
s

im
pl

ic
it

lo
gD

at
a:

ST
R

IN
G

im
pl

ic
it

M
ac

hi
ne

: s
av

eL
og

s

im
pl

ic
itST

R
IN

G
 f

ro
m

 a
cc

es
s:

M
ac

hi
ne

im
pl

ic
it

Te
rm

in
al

im
pl

ic
it

ST
R

IN
G

 f
ro

m
 a

cc
es

s:
M

ai
nt

en
an

ce
Te

rm
in

al

im
pl

ic
it

Te
rm

in
al

Se
rv

er

C
re

de
nt

ia
ls

-R
un

ni
ng

-E
xa

m
pl

e

Te
rm

in
al

: a
cc

es
s

im
pl

ic
it

R
ol

e:
 A

dm
in

R
ol

e:
 A

dm
in

R
ol

e:
 A

dm
in

C
re

de
nt

ia
ls

-R
un

ni
ng

-E
xa

m
pl

e

Fi
gu

re
5.

8.
:R

es
ul
tin

g
at
ta
ck

pr
op

ag
at
io
n
gr
ap
h
fo
rt
he

ru
nn

in
g
ex
am

pl
e
w
ith

th
e
st
ar
tin

g
po

in
tT

e
r
m
i
n
a
l

125

5. Analysing Software Architectures for Potential Security Incidents

DatamodelAttacker

referenceName:String

dataType:DataType

source:EObject

method:OperationSignature

context:AssemblyContext [0..*]

CredentialChanged
changed:Boolean

ModifyEntity
toolDerived:Boolean

affectedElement:Entity

causingElement:EObject [0..*]

ContextChange Compromised
Assembly

Compromised
Resource

Compromised
Service

Compromised
LinkingResource

Compromised
Data

[0..*] [0..*] [0..*]

[0..*] [0..*][0..*]

KAMP4Attack
ModifactionRepository

KAMP4AttackSeed
Modifications

AttackerSelection

[0..*]

Figure 5.9.: Result and seed metamodel elements for the attack propagation analysis

5.2.5. Result Model for Attack Propagation

Based on the attack propagation analysis, software architects can have two
result models. The first and mandatory result is a EMF-based model, which
contains similar to a list of all affected elements. The second optional result
is a graph like Figure 5.8.

The result metamodel is based on the Modification Mark metamodel from
KAMP [36]. An excerpt of our metamodel is illustrated in Figure 5.9. The
root element is the KAMP4AttackModificationRepository. It contains the
start configuration (called seed in KAMP) and the result of a propagation.
The seed is modelled with the KAMP4AttackSeedModifications. It contains a
AttackerSelection, which references a Attacker. By selecting this as a seed,
we configure the input for the attack propagation analysis since the Attacker
contains the start point, the capabilities and the knowledge of an attacker (c.f.
Section 4.5.1).

The result of the analysis is modelled with a CredentialChanged. It contains
the child classes of the abstract element ModifyEntity, which represents a
changed element in the original KAMP approach and a compromised element

126

5.2. Attack Propagation Analysis

in our approach. It has a boolean flag toolDerived indicating whether the
element is derived from the analysis or not. For instance, the starting points
are, in our case, not toolDerived. The affectedElement is the element which
is compromised. In the figure, we choose to represent it as Entity. In the
actual metamodel, this is bound to the concrete subclasses by EMF Generics.
The last attribute is the causingElement. This is a list of EObject and contains
the reason for the compromisation. This allows an architect to trace the
compromisation back to a concrete reason. It contains the original component
and the reason for the compromisation, i.e. the vulnerability or the used
credentials.

The subclasses contain the reference to the architectural model elements.
Each represents some elements an attacker compromised or the attacker
itself. There are the six subclasses for compromised elements:

• ContextChange references a UsageSpecification

• CompromisedResource references a ResourceContainer

• CompromisedAssembly references a AssemblyContext

• CompromisedService references a ServiceSpecification

• CompromisedData references a DatamodelAttacker

• CompromisedLinkingResource references a LinkingResource

The DatamodelAttacker encapsulates the extracted data for the result meta-
model. It contains the referenceName, which is the parameter name, and the
dataType, which uses the defined PCM datatypes. These types are BOOL, BYTE,
CHAR, DOUBLE, INT, LONG, STRING, CollectionDataType for collections/arrays,
and CompositeDataType for custom data elements consisting of the other ele-
ments. The source element shows from where the element was compromised
and method describes the service to which the parameter or return value
belongs. The context attribute describes the involved components.

Figure 5.10 shows an instance of the result model in our developed tool-
ing. The result model is for our running example. The tree editor (upper
half of the figure) contains under the CredentialChange the list of com-
promised elements. The excerpt contains CompromisedResource elements,
CompromisedAssembly elements and a ContextChange. The selected element
is the CompromisedResource for the StorageServer. A software architect or
security expert can see the details in the Properties views (lower half of the

127

5. Analysing Software Architectures for Potential Security Incidents

Figure 5.10.: Attack propagation result example for the running example in Eclipse

figure). First, it shows the affected element, in this case, the StorageServer. It
shows the reason (causing elements). In this case, the attack originates from
the TerminalServer and uses the Admin credential. In addition, a software
architect or security expert can see the ID of the element and that the analysis
created the element (Toolderived).

The second optionally result model is the graph presentation as shown in
Figure 5.8. While the first model can show detailed information regarding the
compromised elements, it is quite hard to understand the connection between
compromised elements. The second model makes this easier with its graph
representation. However, the graph is only a graphical representation without
connections to the models. We create it by transforming each compromised
element into two nodes connected with an edge. The first node is the source,
the second node is the affected element, and the edge is named after the
reason for the compromisation. Afterwards, we export these as a dot file,
and Graphviz3 connects the different edges and prints it. The graphical
representation then helps to understand the connections between the attacks
and compromised elements.

3 Graphviz. url: https://graphviz.org/ (visited on 02/07/2023).

128

https://graphviz.org/

5.3. Targeted Attack Graph Analysis

Software architects or security experts can then use the results to secure the
system. For instance, in our running example, they can mitigate the attack
by updating the Terminal to a non-vulnerable version. However, sometimes
they cannot update the system, for instance, because of incompatibilities in
the new version or if the Terminal is a legacy system which is already out
of support. In these cases, a solution could be to change the access control
policies for the other devices, so they require different attributes than the
Terminal provides. Another possibility could be if they want to protect only
the ProductStorage to deploy it to another more secured network and server.
Overall, these are only some of the possible solutions. While our approach
does not provide these solutions, it can help software architects or security
experts to come to these solutions by showing the potential propagation of
attackers through the system.

5.3. Targeted Attack Graph Analysis

In this section, we describe the attack graph analysis and attack path identifi-
cation. The analysis uses our contributions C1 and C2. It is our contribution
C4.2 and answers together with C4.1 our research question RQ2.2. We origi-
nally published the analysis in Walter et al. [212].

Our third type of analysis is an attack graph analysis. It creates an attack
graph and can identify potential attack paths. In the previous attack analysis,
we focussed on the propagation of attackers with concrete capabilities and
knowledge. The result of the previous analysis is a concrete attack propaga-
tion graph. However, in some cases the concrete capabilities of attackers are
unknown, or it is not relevant which elements an attacker can compromise,
but rather whether there is an attack path to a concrete element. For instance,
in our running example, a security expert might not be interested that the
Machine is attacked, but more interested in whether the highly confidential
ProductStorage can be attacked. In these cases, security experts or software
architects can use our third analysis.

We will first explain in Section 5.3.1 the process of using this analysis and then
in Section 5.3.2 the technical process. Afterwards, we explain in Section 5.3.3
the attack graph creation. This graph is then used to identify attack paths,
as described in Section 5.3.4. In the end, we describe the result model of the
analysis.

129

5. Analysing Software Architectures for Potential Security Incidents

Attribute ModelArchitecture
Model

Vulnerability
Model

Legend
Security Expert Software Architect

Define Access
Control Policies

Define Software
Architecture

Define Attributes Define Vulnerability
Model

Define Attacker &
Filter Model

Adapt System

Attacker &
Filter Model

Access Control
Policy Model

Figure 5.11.: Process for analysing attack graphs

5.3.1. Process for Analysing Attack Graphs based on the
Software Architecture

Similar to the access usage analysis and attack propagation analysis, we
describe an exemplary process for using the attack graph analysis. The
process is illustrated in Figure 5.11. The process has the same roles as the
attack propagation process (c.f. Section 5.2.1) and nearly the same steps.

The process also starts with the definition of the software architecture by
software architects. Afterwards, the security experts define, based on the
input from the software architects, the used attributes. The software architect
is necessary because they know which attributes are available in the system
due to the used components. These attributes are then used by the security
experts in the specification of access control policies. The security experts
also define the vulnerability model. So far, the steps are identical to the attack
propagation process. Here, even the models can be reused. However, the next
step differs from the attack propagation. In the previous process, the security
experts need to define the concrete attacks and assign them to an attacker.
In this case, the security experts do not define the concrete capabilities but
define filters and assign them to attackers.

In the last step, the involved roles can again adapt the system to prevent
potential security incidents. Security Expert and Software Architect can

130

5.3. Targeted Attack Graph Analysis

Load Models Identify
 Attack Paths

Save Attack PathsCreate
 Attack Graph

Roll-Out
Vulnerabilities

Figure 5.12.: Targeted Attack Graph analysis process steps

change the created models to mitigate certain attacks and break attack paths.
Like in the attack propagation, mitigation tactics could be stricter access
control policies, exchanging vulnerable architectural elements with non-
vulnerable ones or introducing mitigation approaches for certain vulnerabili-
ties. Besides introducing mitigation steps, they can also decide that the results
are sufficient since, for instance, the involved attacks are very complicated or
rare.

5.3.2. Attack Graph Analysis Process

The analysis process for the targeted attack graph is very similar to the process
described for the attack propagation (c.f. Section 5.2.2). The first two steps
(loading models, roll-out vulnerabilities) are identical and we reuse the same
implementation. The next two parts are new. The Create Attack Graph step
creates, based on the modelled software architecture, access control policies,
vulnerabilities and filter criteria, an attack graph. The attack graph contains
information on how attackers can compromise architectural elements. In the
next step, the analysis uses the attack graph to identify attack paths leading
to the targeted element. After the identification of the attack paths, the last
step is to save the attack paths as the results of the analysis. For this part, we
reuse existing concepts from PCM.

5.3.3. Creating an Attack Graph

The first part of our analysis is to create an attack graph based on the software
architecture. The attack graph describes how attackers can compromise
architectural elements. It is the foundation to determine the potential attack
paths of attackers.

The graph creation is illustrated with Algorithm 6. In this part, we reuse the
sets and functions defined in Section 5.2. The algorithm takes the software
architecture, the vulnerabilities, the access control properties and the filter
criteria and creates a multidimensional network, which is sometimes also

131

5. Analysing Software Architectures for Potential Security Incidents

described as a labelled multigraph [41, p. 69]. This can be described as
𝐺 = (𝐴𝐸, 𝐸,𝐷) where 𝐴𝐸 are the vertices, 𝐸 the edges and 𝐷 is the dimension
[41, p. 69]. In our case, we define:

• 𝐷 = 𝑉 ∪ 𝑃 ∪ {𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡}
• 𝐸 ⊆ 𝑉 ×𝑉 ×𝐷 with (𝑣𝑖 , 𝑣 𝑗 , 𝑑𝑘) ∈ 𝐸 ∧ 𝑖 ≠ 𝑗 ∧ 𝑣𝑖 , 𝑣 𝑗 ∈ 𝐴𝐸 ∧ 𝑑𝑘 ∈ 𝐷

In other words, this means that our graph consists of architectural elements as
vertices. The edges are a triplet. The first two values are the vertices between
the edge. The last one describes the type of edge. The graph does not allow
a self-loop. In our case, attackers can only take over the next architectural
element in three cases:

1. in case of a vulnerability

2. in case of a policy granting access

3. in case of a deployment relationship (described as implicit)

In order for us to describe our attack graph creation, we need to define
additionally the set 𝐹 = {𝑓1, . . . , 𝑓𝑛}, which is the set to describe the filter
criteria. Besides the filter criteria set, we need these additional functions:

• 𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑𝐵𝑦(𝑥,𝑦) ∶= 𝑥 ∈ 𝑃 ∧𝑦 ∈ 𝐴𝐸 ∧𝑦 protected by 𝑥
Checks whether the architectural element is protected by a policy. In
our, case these are sets of attributes.

• 𝑛𝑜𝑡𝐹𝑖𝑙𝑡𝑒𝑟(𝑥, 𝑣) ∶= 𝑥 ⊆ 𝐹 ∧ 𝑣 ∈ 𝑉 ∧ ∄𝑓 ∈ 𝑥 ∣ 𝑓 filters 𝑣
Checks, that the Vulnerability v is not filtered by the set of filters.

After defining the required sets and functions, we describe the Algorithm 6
in more detail. The input sets of the algorithm are 𝐴𝐸,𝑉 , 𝑃, 𝐹, and 𝐷 . The
output is the graph 𝐺 = (𝑁, 𝐸,𝐷) where 𝑁 = 𝐴𝐸. In other words, it takes
the architectural elements, vulnerabilities, access control policies, filters, and
dimensions and calculates an attack graph.

The first step of the algorithm is to initialise 𝑁 and 𝐸. 𝐸 is at the beginning
empty, and 𝑁 is a set of all architectural elements. The next goal is to
iteratively create the edges and fill 𝐸 with them. For this, we iterate over
every architectural element and then identify for each element its neighbours
(l. 5). The neighbours are all architectural elements, which are connected
somehow to architectural elements. We consider them connected if one of
the functions checking for a connection return true.

132

5.3. Targeted Attack Graph Analysis

Algorithm 6 Simplified Attack Graph Creation
Input: 𝐴𝐸,𝑉 , 𝑃, 𝐹, 𝐷
Output 𝐺 = (𝑁, 𝐸,𝐷)

1: procedure attackGraphCreation
2: 𝑁 = 𝐴𝐸
3: 𝐸 = ∅
4: for all 𝑒 ∈ 𝑁 do
5: 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 = {𝑛 ∈ 𝑁 ∣ 𝑛 ≠ 𝑒 ∧ (𝑑𝑒𝑝𝑙𝑜𝑦𝑒𝑑(𝑛, 𝑒) ∨

𝑑𝑒𝑝𝑙𝑜𝑦𝑒𝑑(𝑒,𝑛) ∨ 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦2𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑦(𝑛, 𝑒) ∨
𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦2𝐺𝑙𝑜𝑏𝑎𝑙(𝑛, 𝑒) ∨ 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦2𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑒,𝑛) ∨
𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦2𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑛, 𝑒) ∨ 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦2𝐿𝑖𝑛𝑘𝑖𝑛𝑔(𝑒,𝑛) ∨
𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦2𝐿𝑖𝑛𝑘𝑖𝑛𝑔(𝑛, 𝑒) ∨ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝐿𝑖𝑛𝑘𝑖𝑛𝑔(𝑛, 𝑒) ∨ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒-
𝐿𝑖𝑛𝑘𝑖𝑛𝑔(𝑒,𝑛) ∨ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑛, 𝑒)}

6: for all 𝑘 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 do
7: if 𝑑𝑒𝑝𝑙𝑜𝑦𝑒𝑑(𝑒,𝑘) then
8: 𝐸 = 𝐸 ∪ {(𝑒,𝑘, 𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡)}
9: continue
10: end if
11: 𝑎 = {𝑎 ∈ 𝑃 ∣ 𝑓 𝑢𝑙𝑙 𝑓 𝑖𝑙𝑙(𝑎,𝑘)}
12: if 𝑎 ≠ ∅ then
13: for all 𝑎𝑡𝑡 ∈ 𝑎 do
14: 𝐸 = 𝐸 ∪ (𝑒,𝑘, 𝑎𝑡𝑡)
15: end for
16: end if
17: 𝑉 ′ = {𝑣 ∈ 𝑉 ∣ 𝑖𝑠𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒(𝑘, 𝑣) ∧

𝑖𝑠𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒(𝑎𝑡𝑣(𝑒,𝑘), 𝑣) ∧ 𝑛𝑜𝑡𝐹𝑖𝑙𝑡𝑒𝑟(𝐹, 𝑣)}
18: if 𝑣 ≠ ∅ then
19: for all 𝑣 ∈ 𝑉 ′ do
20: 𝐸 = 𝐸 ∪ {(𝑒,𝑘, 𝑣)}
21: end for
22: end if
23: end for
24: end for
25: end procedure

133

5. Analysing Software Architectures for Potential Security Incidents

Afterwards, the algorithm checks whether an attacker can exploit this con-
nection. The first check is for the deployment relationship. If the neighbour
k is deployed on the current architectural element, the algorithm adds an
implicit edge. For instance, in our running example, there is an edge with
implicit between the MachineController and Machine. If it is a deployment
relationship, the algorithm continues with the next neighbour. Otherwise,
the algorithm checks whether an access control policy protects the neigh-
bour. If the neighbour is protected, the algorithm creates an edge for each
policy. The same is repeated for the vulnerabilities. There, the algorithm first
determines whether the vulnerability is applicable. It also considers whether
the attack vector of the vulnerability is suitable for the exploitation. Besides
checking the exploitability, the algorithm also checks whether the vulner-
ability is filtered. This takes advantage of the VulnerabilityFilter from
Section 4.5.2. For example, an ExploitFilterwith a selected high complexity
would produce an attack graph that includes only vulnerabilities with low
attack complexity. This is useful in scenarios where the software architects
only want to consider attacks with a low level of complexity, for instance, to
avoid unskilled attackers. A side benefit of the filtering in the graph creation is
that the created graph gets smaller. A smaller graph means a smaller problem
size for the latter path finding algorithms. Hence, it speeds up the process
of finding attack paths. However, a possible drawback is that the created
attack graph is not general but specific to the used VulnerabilityFilters.
This could reduce the usability of the attack graph and might increase the
overall performance in certain scenarios. For instance, if the filter criteria
vary much and the filter criteria only remove a small number of nodes. Here,
a solution could be the introduction of a parameter to give system architects
the option to choose when a filter should be applied. This inclusion of the
filter criteria can be integrated before the filter application, and then the filter
must be added to the path finding. After checking the filter and exploitability,
the algorithm creates for each vulnerability an edge. This is repeated for each
neighbour and for each architectural element. In the end it then returns the
attack graph as 𝐺 = (𝐴𝐸, 𝐸, 𝐹).
An example of an attack graph is given in Figure 5.13. It shows the correspond-
ing attack graph for our running example. The nodes are the architectural
elements. The edges illustrate how an attacker can compromise the con-
nected element. Edges based on the policy are indicated by the attribute
name necessary for the policy. For instance, the edge between Terminal and
MachineController is labelled with Admin and means that the Admin attribute

134

5.3. Targeted Attack Graph Analysis

Pr
od
uc
tio
nD
at
aS
to
ra
ge

St
or
ag
eS
er
ve
r

A
dm
in

Te
rm
in
al
Se
rv
er

V
ul
ne
ra
bi
lit
y

A
dm
in

M
ac
hi
ne
C
on
tr
ol
le
r

A
dm
in

Im
pl
ic
it

Pr
od
uc
tS
to
ra
ge

Im
pl
ic
it

V
ul
ne
ra
bi
lit
y

A
dm
in

A
dm
in

A
dm
in

V
ul
ne
ra
bi
lit
y
A
dm
in

A
dm
in

A
dm
in

Te
rm
in
al

A
dm
in

V
ul
ne
ra
bi
lit
y

A
dm
in

A
dm
in

A
dm
in

A
dm
in

Im
pl
ic
it

A
dm
in

M
ac
hi
ne

A
dm
in

V
ul
ne
ra
bi
lit
y

A
dm
in

A
dm
in

L
oc
al
N
et
w
or
k

A
dm
in

V
ul
ne
ra
bi
lit
y

A
dm
in

A
dm
in

A
dm
in

V
ul
ne
ra
bi
lit
y

A
dm
in

Im
pl
ic
it

Fi
gu

re
5.

13
.:
Re

su
lti
ng

at
ta
ck

gr
ap
h
fo
rt
he

ru
nn

in
g
ex
am

pl
e
w
ith

ou
tfi

lte
rs

135

5. Analysing Software Architectures for Potential Security Incidents

is required. The edges which exploit the CVE-2021-28374 [129] are labelled
for simplicity reasons only with Vulnerability since other vulnerabilities
do not exist. An exemplary edge is the edge between LocalNetwork and
the TerminalServer labelled with Vulnerability. The last type of edges is
labelled with implicit, indicating the exploitation of a deployment relation-
ship. Here, an example can be the edge between the StorageServer and
ProductionDataStorage.

Now to see the effects of our filtering option, we assume that the vulnerability
has a High complexity, and we would filter for only Low attack complexity.
This would result in the attack graph as illustrated in Figure 5.14. While in
this case, it does not change the number of nodes, the number of edges is
reduced. The seven edges containing the vulnerability are removed. Hence,
the graph contains slightly fewer elements, which a path finding algorithm
can take. This size reduction can reduce the runtime for finding an attack
path.

5.3.4. Identifying Attack Paths

The previous section described the attack graph, which is the foundation for
our attack path identification. For instance, Figure 5.15 highlights (grey bold,
blacked dashed) two attack paths based on the unfiltered attack graph from
our running example. In both cases, our target element is the ProductStorage,
and the start point is the Terminal. We then gain an attack path by following
the edges and searching for a path leading to the targeted element. By storing
the attack path, we also get additional information about it. We get the list of
involved architectural elements, vulnerabilities and access policies. These can
be easily identified by using the labelled edges. For instance, with the black
(dashed) path, we see that the Admin credential is used. Software architects or
security experts can use this knowledge to break an attack path, for instance,
by introducing mitigation mechanisms.

Based on the example and the description of the attack graph 𝐺 = (𝑁, 𝐸,𝐷),
we can describe an attack path 𝑝 from a node i to a node j as a sequence of
𝑝𝑖, 𝑗 = ⟨𝑣𝑖 , 𝑒1, 𝑣𝑖+1, . . . , 𝑒𝑙 , 𝑣 𝑗 ⟩ with 𝑣𝑘 ∈ 𝑁 for any 𝑘 ∈ {𝑖, 𝑖 + 1, . . . , 𝑗} and 𝑒𝑙 ∈ 𝐸
for any 𝑙 ∈ {1, . . . , 𝑙} and 𝑣𝑖 = 𝑖 and 𝑣 𝑗 = 𝑗 . The set P𝑖, 𝑗 is the set of all paths
from node i to j. Hence, 𝑝𝑖, 𝑗 ∈ P𝑖, 𝑗 . A path 𝑝𝑖,𝑥 is a subpath from 𝑝𝑖, 𝑗 if 𝑝𝑖, 𝑗 is
identical to 𝑝𝑖,𝑥 till the element 𝑥

136

5.3. Targeted Attack Graph Analysis

Pr
od
uc
tio
nD
at
aS
to
ra
ge

St
or
ag
eS
er
ve
r

A
dm
in

Te
rm
in
al
Se
rv
er

A
dm
in

M
ac
hi
ne
C
on
tr
ol
le
r

A
dm
in

Im
pl
ic
it

Pr
od
uc
tS
to
ra
ge

Im
pl
ic
it

A
dm
in

A
dm
in

A
dm
in

A
dm
in

A
dm
in

A
dm
in Te
rm
in
al

A
dm
in

A
dm
in

A
dm
in

A
dm
in

A
dm
in

Im
pl
ic
itA
dm
in

M
ac
hi
ne

A
dm
in

A
dm
in

A
dm
in

L
oc
al
N
et
w
or
k

A
dm
in

A
dm
in

A
dm
in

A
dm
in

A
dm
in

Im
pl
ic
it

Fi
gu

re
5.

14
.:
Re

su
lti
ng

at
ta
ck

gr
ap
h
fo
rt
he

ru
nn

in
g
ex
am

pl
e
w
ith

th
e
vu

ln
er
ab
ili
ty

co
m
pl
ex
ity

fil
te
rf
or

L
o
w

137

5. Analysing Software Architectures for Potential Security Incidents

ProductionD
ataStorage

StorageServer

A
dm
in

Term
inalServer

V
ulnerability

A
dm
in

M
achineC

ontroller

A
dm
in

Im
plicit

ProductStorage

Im
plicit

Im
plicit

V
ulnerability

A
dm
in

A
dm
in

A
dm
inV
ulnerability

A
dm
in

A
dm
in

A
dm
in

Term
inal

A
dm
in

V
ulnerability

A
dm
in

A
dm
in

A
dm
in

A
dm
in

Im
plicit

A
dm
in

M
achine A

dm
in

V
ulnerability

A
dm
in A
dm
in

L
ocalN

etw
ork

A
dm
in

V
ulnerability

A
dm
in

A
dm
in

A
dm
in

V
ulnerability

A
dm
in

Im
plicit

Figure
5.15.:A

ttack
graph

ofthe
running

exam
ple

w
ith

identified
pathsfrom

T
e
r
m
i
n
a
l
to

the
targetelem

ent
P
r
o
d
u
c
t
S
t
o
r
a
g
e

138

5.3. Targeted Attack Graph Analysis

For the attack path finding algorithm, we define the following helper func-
tions:

• 𝑓 𝑖𝑙𝑡𝑒𝑟(𝑥,𝑦) ∶= 𝑥 ∈ 𝐴𝐸 ∧𝑦 ⊆ 𝐹 ∧ ∃𝑓 ∈ 𝑦 ∣ 𝑓 filters 𝑥
Checks whether the architectural element 𝑥 is filtered as a starting
point with the filters 𝑦. This uses the StartFilter from Section 4.5.2.

• 𝑙𝑒𝑛𝑔𝑡ℎ(𝑥) ∶ ⋃
𝑖, 𝑗∈𝐴𝐸

P𝑖, 𝑗 → N ∶= number of nodes in path 𝑥

This function calculates the length of a given attack path. The length
is the number of nodes in an attack path. The number is returned as a
natural number.

• 𝑓 𝑖𝑙𝑡𝑒𝑟(𝑥,𝑦) ∶= 𝑥 ∈ N ∧𝑦 ⊆ 𝐹 ∧ ∃𝑓 ∈ 𝑦 ∣ 𝑓 filters 𝑥
Checks whether any of the filters in 𝑦 filter out the number 𝑥 . This
uses the MaximumPath filter from Section 4.5.2. In case of multiple
MaximumPath filters, it uses the filter with the minimal length.

• 𝑓 𝑖𝑙𝑡𝑒𝑟(𝑥,𝑦) ∶= 𝑥 ⊆ 𝐴 ∧𝑦 ⊆ 𝐹 ∧ ∃𝑓 ∈ 𝑦 ∣ ∃𝑎 ∈ 𝐴 ∣ 𝑓 filters 𝑦
Checks whether any of the attributes 𝑥 are filtered by any filter 𝑦

• 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠(𝑥) ∶ ⋃
𝑖, 𝑗∈𝐴𝐸

P𝑖, 𝑗 → 𝐴𝑇𝑇 ⊆ 𝐴 ∶= 𝑥 initially required attributes

Returns a set of initially required attributes for an attack path x. Ini-
tially required credentials are these credentials, which are necessary
during an attack path and cannot be provided by elements in the attack
path. For instance, the black (dashed) attack in Figure 5.15 requires
the Admin attribute. It is initially required since it is used in an edge
of the attack path and no element, such as AttributeProviders or
vulnerabilities in the attack paths provide it. It can be easily calcu-
lated by iterating of the attack path and comparing whether the gained
attributes from the subpath till the current element already contain
the credential necessary for the current edge. If not, then it is an initial
required attribute.

Based on the helper functions and the previously introduced set and functions,
we define our attack path finding algorithm as in Algorithm 7. The input
for the algorithm is a previously described attack graph 𝐺 together with the
selected filter criteria 𝐹 ′ and the selected target. The algorithm returns a set
of attack paths leading to the target.

The first step in Algorithm 7 is to check whether the target is included in the
graph𝐺 . If not, it returns an empty set. Afterwards, the algorithm initialises

139

5. Analysing Software Architectures for Potential Security Incidents

Algorithm 7 Simplified Attack Graph Creation
Input: 𝐺 = (𝑁, 𝐸,𝐷), 𝐹 ′ ⊆ 𝐹, 𝑡𝑎𝑟𝑔𝑒𝑡 ∈ 𝐴𝐸
Output 𝑃𝐴𝑇𝐻𝑆 ⊆ ⋃

𝑖∈𝑁
P𝑖,𝑡𝑎𝑟𝑔𝑒𝑡

1: procedure attackPathFinding
2: if 𝑡𝑎𝑟𝑔𝑒𝑡 ∉ 𝑁 then
3: return ∅
4: end if
5: 𝑃𝐴𝑇𝐻𝑆 = ∅
6: 𝑆𝑇𝐴𝑅𝑇 = {𝑛 ∈ 𝑁 ∣ ¬𝑓 𝑖𝑙𝑡𝑒𝑟(𝑛, 𝐹 ′) ∧ 𝑛 ≠ 𝑡𝑎𝑟𝑔𝑒𝑡}
7: for all 𝑛 ∈ 𝑆𝑇𝐴𝑅𝑇 do
8: 𝑃𝐴𝑇𝐻𝑆 = 𝑃𝐴𝑇𝐻𝑆 ∪ 𝑝 ∈ {𝑝𝑛,𝑡𝑎𝑟𝑔𝑒𝑡 ∈

P𝑛,𝑡𝑎𝑟𝑔𝑒𝑡 ∣ 𝑓 𝑖𝑙𝑡𝑒𝑟(𝑙𝑒𝑛𝑔𝑡ℎ(𝑝𝑛,𝑡𝑎𝑟𝑔𝑒𝑡), 𝐹 ′) ∧
𝑓 𝑖𝑙𝑡𝑒𝑟(𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠(𝑝𝑛,𝑡𝑎𝑟𝑔𝑒𝑡), 𝐹 ′)}

9: end for
10: end procedure

the set 𝑃𝐴𝑇𝐻𝑆 for storing the found path and determines the start nodes.
Generally, every node in the attack graph that is not the target node can be
a start node. In this case, the security experts or software architects get an
overview of attack paths from potentially all elements leading to the target. It
is only potentially for all elements since there might be elements from which
no path can be found. Nevertheless, in larger systems, this result set can be
very large. In the worst case, the set can contain ∣𝑁 ∣ − 1 attack paths. Hence,
it can be useful to limit the start elements in certain cases as done with our
StartFilter. This reduces the found attack paths to the selected elements.
For instance, the algorithm returns a path from any node for the attack graph
in Figure 5.15. If we use a StartFilter with Terminal, it will return only one
attack path from the Terminal, such as the black (dashed) one. This is useful as
previously described (c.f. Section 4.5.2), for instance, in cases where security
experts are only interested in attack paths from certain elements, such as
external reachable architectural elements. The reason for this behaviour can
be that the not externally reachable architectural elements are trusted more
than the externally reachable ones and therefore are excluded as a potential
start point.

After the identification of the start elements, the algorithm iterates over every
start node and tries to find an attack path connecting the selected start node

140

5.3. Targeted Attack Graph Analysis

𝑛 with the target node. We first determine all the potential attack paths
between the selected element 𝑛 and the 𝑡𝑎𝑟𝑔𝑒𝑡 . From this set, we select the
path matching the filter criteria. Here, it is the MaximumPath and the Creden-
tialFilter. With the MaximumPath filter, we only select paths under a certain
length and with the CredentialFilter, only paths not requiring the in the
filter specified attributes. However, both can also be empty if not required.
Afterwards, we take one attack path and add it to the result set 𝑃𝐴𝑇𝐻𝑆 . We
choose here to only add one attack path and not all attack paths to reduce the
results set. Adding all attack paths might result again in many results, which
can overwhelm the analysis user. In this regard, the analysis only gives an
example path similar to a counterexample that the system is not secure.

This behaviour also stresses the importance of using suitable filter criteria.
An example of this importance is illustrated in the Figure 5.15 with the black
(dashed) and grey (bold) attack paths. Both are valid attack paths from the
Terminal to the ProductStorage. However, the grey (bold) one requires the
Admin credential as the initial credential and the black (dashed) one does
not. In general, security experts might assume that the black (dashed) one
is irrelevant since the Admin credentials are usually better protected and
not everyone might have them. Hence, the security experts could not be
interested in this path and might not consider the Terminal as a valid starting
point. However, the grey (bold) path does not initially require the Admin

credential. It still requires the Admin credential for the compromisation step
from the TerminalServer to the StorageServer. In contrast to the black
(dashed) attack path, the grey (bold) one gets this attribute by exploiting the
vulnerability from the TerminalServer. This exploitation step is prior to the
step where the credential is needed. Hence, the attacker can use it in the later
step, and it is not initially required for this path. The selection of the grey
(bold) attack path can be forced by using the CredentialFilter and selecting
the Admin as forbidden initial credentials.

Remark:The actual implementation of the attack path finding algorithm varies
in the behaviour a bit to the described algorithm. In our implementation, we
choose to limit the path finding to the identification of simple paths. A simple
path is a path where the path 𝑝𝑖, 𝑗 only contains unique elements. In other
words, it contains no loops of any kind, and no element exists more than
once. In addition, we use an implementation based on Yen’s ranking loopless
path algorithm [108] for the path finding. This has two reasons. First, by not
limiting the paths to simple paths, the execution time for identifying a path
increases drastically in the underlying graph framework. Hence, even for

141

5. Analysing Software Architectures for Potential Security Incidents

CredentialChanged
changed:Boolean

ModifyEntity
toolDerived:Boolean

affectedElement:Entity

causingElement:EObject [0..*]

[0..*]

[0..*]
AttackPath

credentials:UsageSpecification [0..*]

targetedElement:Entity

vulnerabilities:Vulnerability [0..*]

AttackPathElement

Figure 5.16.: Metamodel elements for the result of the targeted attack graph analysis

small systems, the execution time is unsuitable. The reason is that the graph
framework can only identify all the paths and based on our graph definition,
the graph is not acyclic. Therefore, theoretically, there can be infinite paths.
Here, we would need some heuristic approaches, which decide when to cut
the search or loops. For example„ the graph framework allows setting the
maximum path length and then cutting the search. Yet, this still comes with
a high computational effort. In contrast, our chosen algorithm can calculate
the path in 𝑂(𝑘𝑛(𝑚 + 𝑛𝑙𝑜𝑔𝑛)) with n as the number of vertices and m as the
number of edges and k as the number of paths required. The second reason is
that the selected path algorithm is the only one in the used graph framework,
which allows us to add a custom filter for the path finding. Therefore, only
this algorithm in the used framework allowed the implementation of the
CredentialFilter. Unfortunately, this implementation choice comes with
additional drawbacks, especially regarding the accuracy. We will discuss
them in our evaluation in Section 7.3.

5.3.5. Result Model for the Targeted Attack Graph Analysis

The result of the analysis is a list of attack paths. Similar to the attack
propagation analysis, the result is stored in an EMF result model. The basic
structure is that a list of affected elements exists for each path.

The result metamodel is illustrated in Figure 5.16. It contains two elements al-
ready introduced in Section 5.2.5: The abstract ModifyEntity and Credential-
Change. The CredentialChange is the container for the AttackPath elements.
An AttackPath encapsulates an attack path and its description. As attributes,
it has credentials, which are the UsageSpecifications used in an attack

142

5.3. Targeted Attack Graph Analysis

Figure 5.17.: Attack path result example for the running example in Eclipse

path. In addition, it has the targetedElement and a list of vulnerabilities
with the used Vulnerability elements. Each AttackPath also contains a list
of AttackPathElements. These represent the actual compromised architec-
tural elements.

Figure 5.17 show an exemplary output in our tooling. For this result, we
use the running example with a CredentialFilter with the Admin and a
StartFilter selecting the Terminal. The upper half of the figure shows an
excerpt of the tree editor with a model instance of the result metamodel.
It shows how the AttackPath is contained by the CredentialChange. The
AttackPath then contains the affected architectural elements in this attack
path. The lower half shows more detailed information about the selected
AttackPathElement. The detailed information is similar to the attack propa-
gation. It shows the affected element, in this case, the TerminalServer, the
reason for the compromisation, here the exploited vulnerability, the id, and
whether it was derived from the analysis or not. A slight difference in the
output is that it does not show the origin of the attack. However, this is
unnecessary since the origin is always the previous element in the list. This
is based on the fact that the list is ordered from the start element to the target
element and the analysis can only detect simple paths. A simple path has no
loops so that the previous element is always the origin of the attack.

143

5. Analysing Software Architectures for Potential Security Incidents

Based on this result model, the software architects can then evaluate the
software architecture. They have to decide together with a security expert
whether the architecture with the existing attack paths is suitable or whether
they have to mitigate some attack paths. The mitigation of the attack paths
is similar to the previous attack propagation. They can, for instance, add
mitigation concepts or change the used credentials.

144

Part III.

Validation

6. Evaluation Scenarios

In the previous sections, we answered our research questions by introducing
our contributions. We answered RQ1 by introducing our access control
metamodel together with our scenario analysis and RQ2 by introducing the
access control, vulnerability, attack and attacker metamodel and combining it
with the attack analyses. In this section, we present the different evaluation
scenarios which we use to evaluate our contributions.

For the evaluation of our approach, we use different evaluation scenarios.
These scenarios are based on various different sources, such as evaluation case
studies from related approaches or public descriptions of security incidents.
For us, an evaluation scenario describes a system and security situations for
the system. Examples of security situations are, for instance, the access of the
external technician to the machine in our running example or the described
attack propagation in our running examples. Besides the system description
and security situations, our evaluation scenarios are exploratory in the sense
that we want to investigate how our approach behaves in certain situations.
Additionally, each scenario has a defined objective, which is to answer our
evaluation questions. This brings the benefit that a scenario-based evaluation
can provide insights into the application of our analyses and indicates the
applicability of our approach. It can also increase the comparability to other
approaches using the same scenario and give insights into how our approaches
might behave in different scenarios with similar properties. These described
properties are also properties of a case study as defined by Runeson et al. [157].
However, the main distinction is that we do not study “the phenomena [. . .]
in their normal context” [157, p. 29]. The normal context is the application of
our approach by software architects and security experts during the regular
work to design a system. In our evaluation, we only simulate this behaviour
by performing similar steps as software architects and security experts. As a
result, we refer to them as evaluation scenarios rather than case studies.

Table 6.1 shows important characteristics for each scenario. The first column
contains the scenario name. Afterwards, it lists the number of components,

147

6. Evaluation Scenarios

hardware resources and network resources for each scenario. The next group
illustrates for which contribution the evaluation scenario is used. A cell
marked with 𝑥 indicates the application and a dash (—) indicates no ap-
plication. The first column in this group is the contribution C3 with the
Scenario-Based Access Usage Analysis (c.f. Section 5.1), the second column in
this group is the contribution C4.1 with the Attack Propagation Analysis (c.f.
Section 5.2), and the third column in this group is the contribution C4.2 with
the Targeted Attack Graph Analysis (c.f. Section 5.3). The last group shows
some more insights into the expected results or specific properties of the
analysis. If there is no additional information, the cell contains a dash (—).
The first column in this group is the number of misusage and usage scenarios.
The second column contains the number of affected elements in an attack
propagation, and the last column the number of attack paths.

Each scenario description is structured the following. We will first explain
the source of the scenario. Afterwards, we describe the general setting of the
scenario. Then we will provide an architectural overview and description of
the scenario. This also includes an overview of the software architecture. For
the overview, we follow the syntax and semantics which we introduced for
the running example in Chapter 3. After the architecture, we will describe
the access control properties and vulnerability properties. Then we describe
the expected output and possible variations used in the different analyses for
each scenario.

6.1. TravelPlanner

Source The TravelPlanner scenario originates from a case study in the iFlow
project [91]. Katkalov [90] use it as an evaluation case for evaluating his
information flow analysis. Kramer et al. [99] developed based on the available
description a PCM model and used it in the evaluation of their attacker
analysis. The scenario is also used in the evaluation and as a showcase
scenario in the data-flow-based PCM confidentiality analysis [67, 166, 167,
168]. There are also some extensions regarding the confidentiality analysis
under uncertainty with the approaches Walter et al. [210] and Hahner et al.
[65].

For our approach, we used the model from Kramer et al. [99] and extended it
with our security properties. We also used this scenario in our publications

148

6.1. TravelPlanner

regarding the attack propagation [211], the access analysis [214], the attack
path analysis [212], and in another publication where we coupled our attack
propagation (C4.1) with a data flow analysis to estimate the criticality of data
[209].

Description The scenario describes a simple flight booking system. It con-
sists of three different entities: The User, Travel Agency, and Airline. The user
can, via a mobile app, search for flights at the travel agency. The travel agency
gets the flight from the airline. After selecting a flight, the user can book a
flight at the airline. The flight is paid for by a credit card. The credit card
data is only released to the airline if the user explicitly declassifies it. After
the booking, the airline pays the travel agency a commission. The important
aspect is the declassification of the credit card data. Without an explicit
declassification, the credit card should not be released. As a further addition,
we added the constraint that the declassification (explicit release) should only
be possible at the home location of a user. This constraint illustrates the
context-based access decision of our approach.

Architectural Overview As already described, we reused the architectural
model from Kramer et al. [99]. For the evaluation, we removed their security
annotation for physical attack propagation since we do not require them and
there were technical issues with the annotation process. Otherwise, we reused
their architecture. An architecture overview is given in Figure 6.1. Each entity
has a hardware device, the user a MobilePhone, the airline the AirlineServer
and the agency the AgencyServer. These hardware resources are connected
by multiple network resources. In the original model, they indicated different
physical attacks on the network device. In our case, they represent different
network layers. The behaviour of the airline and agency are encapsulated in
a component for each entity. These provide different services. For instance,
the Agency provides a service for paying the commission, which is required
by the Airline. The user behaviour is separated into two components. The
first is the TravelPlanner. This covers the flight selection and booking of the
user. The payment process is modelled within the CreditCardCenter. This
component provides services to declassify the credit card details as required
by the initial description and afterwards services to release the credit card
data.

149

6. Evaluation Scenarios

<<Device>>
AirlineServer

<<Device>>
MobilePhone

<<Device>>
AgencyServer

<<Network>>
4G + Internet

<<Network>>
Internet

<<Network>>
OpenWifi + Internet

CreditCardCenter

TravelPlanner Agency

Airline

Figure 6.1.: Architectural overview TravelPlanner scenario

We manually derived the access control policies for the services based on the
description of the scenario and the modelled security properties by Seifer-
mann et al. [167] and Kramer et al. [99]. They can be roughly described as
each entity can access the services needed for their behaviour. This basically
breaks down in a policy model similar to RBAC. Each entity is assigned a
role and this role is granted access. However, for some services, this access
control modelling is insufficient and handling of dynamic attributes is re-
quired. These are the services for the CreditCardCenter. The first service is
the declassification. The policy requires that the user needs to be at home
for the declassification. We modelled this by introducing an attribute rep-
resenting the user’s location and added the home location to the required
attribute values. The second service is the release of the credit card data. This
should be only possible if the data is previously declassified. In our case, we
modelled this by adding an attribute for the declassification and considering it
in the access control policies. Unfortunately, there was no access information
regarding the hardware devices available. However, these are important for
our approach. Therefore, we decided to extend the model with our own
access control policies, which we describe in the following. We defined for
the airline and agency, each an admin role. Each admin role has access to the
respective server it manages, meaning the airline admin has access to the
AirlineServer and the agency admin has access to the AgencyServer. We
assume that this is a reasonable extension since, in companies, one admin is

150

6.1. TravelPlanner

usually responsible for the servers. For the MobilePhone, we assigned that
the user has access to it since, for a private entity, usually, the user has admin
control on their devices.

The scenario is based on an evaluation case in the confidentiality and in-
formation flow domain. Hence, the description and the modelled variants
contain information regarding the access to data or services. The existing
information does not contain any information regarding the vulnerability of
the components or hardware resources. However, for evaluating our attack
analyses, it would be beneficial to have also this information. Without access
information, our evaluation would only be able to cover the compromise of
the system based on access control policies, not on vulnerabilities. There-
fore, we decided to extend the scenario with vulnerabilities manually. Since
we wanted the added vulnerabilities to be representative for these kinds
of systems, we choose to research common security problems. We limited
our search to CWE vulnerabilities since we had no concrete implementation
from which we could extract the concrete CVEs. In our case, we extracted
the vulnerabilities from the OWASP 10 [137], which lists the most common
security threats in web applications. In our case, the scenario is not a web
application but the used technologies and concepts to realize the scenario are
similar. Therefore, we can assume that they can contain the same security vul-
nerability. Each OWASP security threat also contains a detailed description.
These descriptions also contain reference CWEs representing the vulnerabil-
ity. In our case, we choose instances of these for our vulnerability modelling.
Therefore, we assume that the vulnerabilities are representative.

Usage and Misuage Scenarios Our scenario contains two UsageScenarios
and one MisusageScenario. The first UsageScenario represents a regular
user interaction with the system. This scenario covers the search for a flight,
the booking, the declassification of the credit card and the payment of the
commission. The scenario is based on the related approaches, which consider
the same scenario. The analysis should consider this as passed. The second
UsageScenario describes the setting of the credit card. This scenario is also
based on related approaches [166]. This scenario should pass. The Misusage-
Scenario models the same scenario. However, the attributes are wrong and
do not match the required attributes. Therefore, the access control decision
should be denied, which leads to a pass since it is a misusage scenario. These
tree usage descriptions already contain some of the important aspects of our

151

6. Evaluation Scenarios

access analysis. It has denied and permitted access decisions. In addition, it
uses UsageScenarios and MisusageScenarios.

Attack Propagation For the attack propagation, we created 15 subscenarios
for the TravelPlanner. Each represents important propagation conditions for
our analysis. We used here the subscenarios since some edge cases for the
propagation were not considered in the other scenarios, such as that no prop-
agation is possible. Each subscenario uses the same architectural model, but
the attacker, vulnerability, or access control model can vary slightly. There-
fore, also the number of affected elements varies between the subscenarios.
Depending on the subscenario, between 0 and 12 elements are affected. Our
dataset [208] contains a complete overview of the subscenarios.

Attack Graph & Paths In this scenario, we are interested in attack paths lead-
ing to the CreditCardCenter without using the User attribute. We choose
this attack path because, in this scenario, the critical confidential data is
the credit card data. The credit card data is managed in our case by the
CreditCardCenter. In addition, the CreditCardCenter is not directly con-
nected to other external components. Hence, it is an interesting case to
investigate how it can be compromised. The usage of the filters excludes
the obvious solution of using the credential of the User to compromise the
CreditCardCenter directly. We exclude this path because, similar to the root
credentials, we assume that an attacker does not have the user privileges.
In our case, this should lead to one attack path from the MobilePhone. This
is the only attack path since otherwise there is no possibility to gain the
User attribute and the CreditCardCenter has no vulnerability to exploit. This
scenario already covers attack path finding with implicit take-overs and the
usage of filter attributes.

6.2. Power Grid

Source For the Power Grid scenario existed no architectural model for PCM.
However, two reports describe the incident [68] [170]. Both contain infor-
mation about the used vulnerability and attack walkthroughs. The first also
contains a basic overview of the involved network elements.

152

6.2. Power Grid

We also used this scenario in our publications regarding the attack propa-
gation [211], the attack path analysis [212] and additionally in Walter et al.
[209].

Description The scenario is the cyberattack on the Ukrainian power grid at
the end of 2015. During the incident, malicious users entered the business
backend of a power supplier by using compromised credentials. Afterwards,
the attacker propagated through the network and gained control of various
services, such as the domain controller or the call centres. The business
backend was connected by VPN to the Industrial Control Systems (ICS) net-
work. During their propagation, the attacker also got access to credentials
for the VPN to the ICS network. The ICS network contained DMS servers
and clients for managing the breakers of the power grid. Breakers are devices
to disconnect a power grid. The attacker gained access to them and opened
the breakers, which led to a power outage. In addition, they disabled the
call centres and the network to increase the damage and lengthen the repair
time [68]. In our scenario, we only investigate the propagation part, i.e., after
the initial compromisation and till the propagation ends with accessing the
breakers.

<<Device>>
VPNBridgeExternal

<<Device>>
DataCenter

<<Network>>
ICSNetwork

<<Network>>
CorporateNetwork

<<Device>>
VPNBridge

<<Device>>
DMSServer

<<Device>>
DMSClientApplication

<<Device>>
CallCenter

<<Device>>
Workstation01

<<Device>>
Workstation02

Domain
Controller

DMS
Server

Storage

CallCenter

Assembly
Without

Assembly
Rights

VPNBridge VPNBridge

DMSClient

Figure 6.2.: Architectural overview Power Grid scenario

153

6. Evaluation Scenarios

Architectural Overview Since there was no PCM architecture available, we
created the architecture based on the existing reports describing the system
structure [68] [170]. Most of the elements involved are inspired by the attack
walk through and the shown network schematics in [68, p. 12]. However,
the report does not contain a complete software architecture but more like a
structuring of the involved network topology and how they were affected.
Hence, we needed to extend the given network topologywith components and
services. Our scenario system consists of nine components, eight hardware re-
sources and two network elements. The main part in this scenario is the usage
of network layers separating the business backend from the ICS. In our sce-
nario, this is modelled by the CorporateNetwork for the business backend and
the ICSNetwork for the ICS. These networks are connected by the hardware
resource VPNBridge representing the VPN in the original description. The
CorporateNetwork contains different WorkstatationX on which components
are deployed. These represent the different office computers from employees.
These components are connected with a central Storage component, de-
ployed on the DataCenter. On the DataCenter also the DomainController is
deployed. In addition, the network contains a CallCenter device with a com-
ponent and a device representing an external VPN node. In the ICSNetwork,
there are the devices DMSServer and DMSClient with their respecting compo-
nents. These represent the devices and services for controlling the breakers.
The architectural model simplifies the software architecture since not all pro-
vided and required connectors are explicitly modelled and the office devices
contain only one component and not multiple ones. However, already this
basic model represents all the required elements identified in the literature.
In addition, it contains interesting aspects for an attack propagation, such as
the propagation between network layers or the gaining of attributes.

This gaining of attributes is illustrated with the access control model. The
original attacker had no knowledge about the necessary credential to access
the VPN to the ICS but gained it during the propagation. We model this
gaining by assigning AttributeProviders to the AssemblyContext Assembly-
Rights, indicating that there the attributes for accessing the VPN are stored. In
addition, we assign an AttributeProvider for the DomainController, which
provides the attribute BackOfficeAdmin. This attribute grants access to all
the devices in the CorporateNetwork, excluding only the VPNBridge to the
ICSNetwork. For accessing the VPNBridge, the attributes for the VPN and user
rights for the ICS network are necessary. The other elements in the ICS only
require the user rights.

154

6.2. Power Grid

Regarding the vulnerabilities, we annotated CVE-2014-1761 [126] to the
AssemblyRight. It is a vulnerability for Microsoft Word and was also used
by the worm (BlackEnergy), which was used by the attackers. Therefore, it
should be representative.

Usage and Misuage Scenarios We do not use this scenario in the access
analysis since the description does not contain enough information about the
behaviour of services.

Attack Propagation The expected attack propagation is based on the at-
tack walk through from Hamilton [68]. We choose to use the attack walk
through as a foundation for the attack propagation because it provides an
external reference for the propagation. Also, it represents an actual attack
on a system. In our case, we choose the Workstation01 as a starting point
for the propagation. This differs from the originally described attack because
there the starting point is an initial phishing mail attempt to get credentials
to a workstation. For our analysis, we excluded the consideration of social
engineering attacks to which phishing attacks belong. However, we still can
use the described attack because we can derive an initial starting point from
the attack. For deriving the starting point, we select the propagation after
the initial access by the phishing attack is gained. This means we can reuse
the described scenario. In our case, the start element is the Workstation01.
Besides the starting point of the attacker, the attacker also needs capabilities.
The capabilities are derived from the modelled vulnerabilities, which are
based on the description of the used vulnerabilities. The affected elements
of the propagation are also based on the report. The report mentions that
multiple elements, such as various workstations, servers and ultimately the
services to manage the breakers are affected. In our modelled case, this means
that the propagation needs to propagate from the CorporateNetwork to the
ICSNetwork. There, it can reach the services provided by the DMServer and
DMSClient. In our scenario, these represent the breakers, which were the goal
of the originally described attack.

Attack Graph & Paths Similar to the previous attack propagation, we exclude
for the attack paths the initial social engineering attack. The targeted element
is the DMSClient since these are responsible for the breakers in our scenario.
These breakers would give attackers the capability to switch the power grid

155

6. Evaluation Scenarios

off. In the original attack, this was the main goal of the attacker. Therefore,
we also choose this as a target. Other potentially interesting targets exist,
such as the CallCenter or Domain Controller. However, in our case, we
focused on the architectural element, which potentially can generate the
most damage. These are the breakers because of their capability to turn off
the power. Besides the target definition, we also used a CredentialFilter.
The filter contains all the used attributes in the system. This represents an
attacker with no initial knowledge about credentials. This forces the analysis
to choose more complicated attack paths because otherwise, the attacker
could use credentials and does not need to identify vulnerabilities to get more
privileges. This is consistent with the attack report [68], which state that the
attackers gained further access to the systems during the propagation. For our
evaluation scenario, the start element can be any element in the architecture.
We did not further restrict the analysis here because all elements within can
be reasonable start points. Considering all architectural elements as a starting
point would lead to 19 attack paths. However, because of our filter criteria and
the modelled software architecture, three of them cannot reach the targeted
element (ICSNetwork, DMSServer (device), DMServer (component)). This leads
to 16 expected attack paths.

6.3. Target

Source There exists no publicly available complete software architecture.
However, different reports [173] [145] and expert web entries1 state the
involved components and discuss attack scenarios.

We also used this scenario in our publications regarding the attack propa-
gation [211], the attack path analysis [212] and additionally in Walter et al.
[209].

Description This scenario is based on the Target breach in 2013. Target is
an American retail chain. Its business backend was allegedly compromised
by a compromised external supplier [173], who had access to the business

1 B. Krebs. Inside Target Corp., Days After 2013 Breach. Sept. 21, 2015. url: https://kreb
sonsecurity.com/2015/09/inside-target-corp-days-after-2013-breach/ (visited on
09/01/2021).

156

https://krebsonsecurity.com/2015/09/inside-target-corp-days-after-2013-breach/
https://krebsonsecurity.com/2015/09/inside-target-corp-days-after-2013-breach/

6.3. Target

<<Device>>
Storage

<<Network>>
Internet

<<Network>>
Intranet

<<Device>>
SupplierMachine

<<Device>>
POS3

<<Device>>
POS2

Supplier

<<Device>>
POS1

<<Device>>
BusinessServer

Business
Service

DataBase

POS2C POS2C

POS1C FTP

Figure 6.3.: Architectural overview Target scenario

backend with the billing services. The attacker exploited there some privilege
escalation vulnerabilities to get more privileges [173]. This resulted in the
compromisation of various different services and entities, such as the billing
service, FTP-storage servers, databases and the Point of Sale (POS) devices.
The last ones are the devices where customers can pay by using their credit
card. Hence, also the customer credit card data was affected since they were
unencrypted. Krebs2 states that often weak passwords or default passwords
were used. Also, the used software was outdated and they gained access to a
domain admin account [145].

2 B. Krebs. Inside Target Corp., Days After 2013 Breach. Sept. 21, 2015. url: https://kreb
sonsecurity.com/2015/09/inside-target-corp-days-after-2013-breach/ (visited on
09/01/2021).

157

https://krebsonsecurity.com/2015/09/inside-target-corp-days-after-2013-breach/
https://krebsonsecurity.com/2015/09/inside-target-corp-days-after-2013-breach/

6. Evaluation Scenarios

Architectural Overview We extracted the architecture based on the reports
mentioned in the source description. A simplified overview is given in Fig-
ure 6.3. Overall the architecture contains 7 components, 6 devices and two
network nodes. The scenario uses again the concept of network segregation
to differentiate between the external network and the internal network be-
cause also the real Target network probably used network segregation. In our
model, this is realized by the network elements Intranet and Internet. The
first is the Target internal network. The external compromised supplier is
modelled as the device SupplierMachine on which the component Supplier
is deployed. This component is connected to the billing service provided
by the BusinessService which is deployed on the BusinessServer. This is
also the gateway to the Intranet. On the BusinessServer a Database is de-
ployed. It is connected to the BusinessService and the POS components.
The BusinessService is connected to an FTP component deployed on the
Storage device for storing large objects. In our scenario, we modelled three
POS devices. Of course, in reality, there might be much more, but already the
three ones are enough to evaluate the basic functionality. Each POS has its
own device, where its own component is deployed. They contain services
which handle the credit card data.

Our scenario contains two roles. The first is the domain admin with access to
all Target devices, including the Intranet device. The second is the supplier
with access to the billing service. While this access model looks simple, it
contains the important aspects of the described scenario. First, the supplier
who has only access to the billing service. Second, the domain admin, who
was somehow compromised. We also added AttributeProviders for gaining
the supplier role and the domain admin.

For the annotated vulnerabilities, we use the mentioned weakness and anno-
tated architectural elements with CWEVulnerability elements. The annotated
elements are the billing service and BusinessService with a vulnerability
for privilege escalation, the POS devices with weak passwords, and FTP with
default passwords.

Usage and Misuage Scenarios We do not use this scenario in the access
analysis since the description does not contain enough information about the
behaviour of services.

158

6.3. Target

Attack Propagation The attack propagation is based on the described inci-
dent reports because by using the incident reports, our attack propagation is
based on a real security incident. These reports name that the attack orig-
inated from the supplier system. Therefore, we select for the attacker as a
starting point the Supplier. In addition, Shu et al. [173] state that the attacker
needed capabilities to exploit a vulnerability in the business backend of Tar-
get. Therefore, we give the attacker the capability to exploit the mentioned
privilege escalation vulnerability in the BusinessService. In addition, we
gave the capabilities to exploit the other vulnerabilities because Plachkinova
et al. [145] mentions a security report containing these vulnerabilities. In the
original attack, the attackers compromised the credit card data of customers
by compromising the POS devices. Hence, the attack propagated from the
Supplier over the Business Backend to the POS device. Thereby, they com-
promised different elements. In our case, we represent this behaviour by
expecting that all the architectural elements within the Intranet plus the
start point are compromised. Therefore, we assume that our expected output
is representative for the Target breach.

Attack Graph & Paths Here, our targeted element is the POS1C. The scenario
is, that the security experts are interested in whether attackers could somehow
get to a POS component and see the confidential credit card data. The scenario
resembles the real-world breach, where the attackers stole the credential card
data. Hence, security experts can prevent similar attacks by trying to mitigate
these found attack paths. As a filter, we selected the credential filter with the
domain admin attribute since attackers usually do not have initially some
kind of admin credentials. Also, in the originally described scenario, the
attacker presumably had no access to the domain admin at the beginning.
Therefore, we assume that the usage of this filter is justified. In contrast to
the originally described breach, we select any architectural element as start
points for the attack. We decided to investigate all the possible attack paths
here because we are interested in finding many attack paths to investigate
how our analysis performs for different path types. In our case, without the
targeted element, these are 14 elements. For all these elements, it is possible
to create an attack path to the targeted element. Hence, we expect 14 attack
paths. These different attack paths include already different kinds of attack
propagations, such as overcoming network segregation or gaining credentials
to compromise other components.

159

6. Evaluation Scenarios

6.4. Cloud Infrastructure

Source This scenario is based on the description of a cloud scenario in
Alhebaishi et al. [10]. It describes not an existing breach or system, but
according to the authors, it is based on concepts and ideas from real-world
products in the cloud domain. We used the cloud data center infrastructure 1
in our scenario.

We also used this scenario in our publication regarding the attack path analysis
[212].

Description The scenario describes a simplified cloud infrastructure. Con-
taining different network layers and components found in reference scenar-
ios.

<<Device>>
IDS

<<Network>>
Internet

<<Network>>
L1

<<Network>>
L2

<<Network>>
L3

<<Device>>
UserTerminal

<<Device>>
CloudTenantTerminal

<<Device>>
CRS

<<Device>>
DNS

<<Device>>
AuthenticationServer

<<Device>>
Bridge1-2

<<Device>>
ApplicationServer

<<Device>>
FileTransferServer

<<Device>>
httpServer

<<Device>>
MailServer

<<Device>>
DBServer

<<Device>>
Bridge2-3

<<Device>>
StorageServer 2

<<Device>>
StorageServer 3

<<Device>>
StorageServer 1

Figure 6.4.: Hardware resources and networks in the cloud infrastructure scenario

Architectural Overview We extracted the architecture based on the descrip-
tion in Alhebaishi et al. [10]. However, the description is more like a network
topology. Hence, our architecture lacks the more fine-grained architectural

160

6.4. Cloud Infrastructure

description with the required and provided components. Nevertheless, this
scenario is interesting since it shows how our analyses behave with this
kind of abstraction. Figure 6.4 illustrates the scenario. For a better overview,
we leave out the components in the figure since they do not bring many
insights into this scenario. The figure only contains the networks and hard-
ware resources. The hardware resources are connected to the network by
dashed lines indicating that all the hardware resources within a network can
communicate with each other. Overall the scenario has 11 components, 16
hardware resources and four networks. The four networks are: The Internet,
L1, L2, and L3. They represent different network zones. They are connected
by different devices acting as routers or bridges. For the naming, we followed
the original description. Hence the bridging component between Internet

and L1 is called CRS, which stands for a router from Cisco. In addition, the
Internet contains the devices UserTerminal and CloudTenantTerminal. The
L1 contains beside the bridges an IDS, a DNS, and an AuthenticationServer.
The L2 contains in addition to the bridges a FileTransferServer, a DBServer,
a MailServer, and a httpServer. The third layer then has three devices for
storage.

The access control and vulnerabilities are extracted from the scenario descrip-
tion. The access control policies assign the access to different roles and the
vulnerabilities are assigned to different devices.

Usage and Misuage Scenarios We do not use this scenario in the access
analysis since the description does not contain enough information about the
behaviour of services.

Attack Propagation We do not use the attack propagation in this scenario
since the description is more about attack paths.

Attack Graph & Paths The targeted element is, in this scenario, a component
deployed on the DBServer. This target definition is derived from the original
scenario description [10]. It represents a hypervisor component. In this
scenario, we do not use any filters because no restrictions are named in the
original description. We expect, in this scenario, 14 attack paths.

161

6. Evaluation Scenarios

6.5. ABAC-Banking

Source The system is based on an evaluation case in Seifermann et al. [168]
and Seifermann [166].

We also used this scenario in our publication regarding the access analysis
[214].

Description The scenario describes a data-flow-based ABAC banking sys-
tem. Different branches with different customer types (celebrity and regular)
exist in it. Based on the customer type, either a manager needs to handle the
requests or a regular clerk. In addition, the access is restricted to the locations.
For instance, a clerk in Asia cannot access the American banking operations.
Besides the handling of accounts, regular customer can also transfer their
accounts between different branches.

Architectural Overview The architecture is based on the PCM models pro-
vided by Seifermann [166]. It consists of 11 components, from which two
are CompositeComponents. In addition, it has two hardware resources and
one network node. Figure 6.5 illustrates the components’ architecture. We
leave out the deployment since, in this scenario, it is not relevant. The differ-
ent branches are realized by two CompositeComponents, the BranchOffice-

USA and BranchOfficeAsia. Each component contains a CustomerStore and
CustomerHandlingRegular for handling and storing regular customers. The
same structures exist for celebrities. Between the different branch components
is the CustomerMovement to transfer customers between branches.

BranchOffice
USA

CustomerStore

CustomerHandling
Celebrity

CustomerStore
Celebrity

CustomerHandling
Regular

BranchOffice
Asia

CustomerStore

CustomerHandling
Celebrity

CustomerStore
Celebrity

CustomerHandling
Regular

CustomerMovement

Figure 6.5.: Simplified overview ABAC banking scenario

162

6.6. Education

The access control properties are derived from the original ABAC model.
However, we needed to adapt them from a data-flow-based definition to our
service-based definition.

Usage and Misuage Scenarios We investigate in this scenario two usage
scenarios and one MisusageScenario. The usage scenarios are extracted from
the original description of the scenario [166]. They represent two typical
cases in the system. One usage scenario covers the handling of a regular
customer by a clerk and the other covers the handling of a celebrity by a
manager. Here, all the access decisions should be permit and the scenarios
should be passed. The misusage scenario is about the handling of a celebrity
by a clerk. We derived it from the description, where potential error cases
are described. These error cases can be considered as misusage. Hence, we
derived a misusage scenario from them. In our modelled misusage scenario,
the access decision should be deny, and the scenario should be passed.

Attack Propagation and Attack Graph & Paths We do not use this scenario
with our attack analyses since the used PCM model uses CompositeCom-

ponents and they are not compatible with our attack analyses. Despite that
limitation, we choose this PCM model since it is used in related work.

6.6. Education

Source This scenario is based on a described example system in Fisler et al.
[57]. The authors state that the described system is based loosely on the real
policies of the authors’ university. Based on the description, we extracted a
software architecture and access control policies.

We also used this scenario in our publication regarding the access analysis
[214].

Description The scenario describes a grade management system at a uni-
versity. It needs to consider two aspects, first, the operations of assigning,
reviewing, and receiving grades. Furthermore, there exists the concept of
external and internal grades. The operations are performed by different roles,
such as teaching assistants or faculty, on the grade types. The scenario also

163

6. Evaluation Scenarios

describes violations, such as that a teaching assistant cannot assign external
grades.

Architectural Overview The architecture consists of two instances of a grade
management component. The grade management component provides three
services providing the assign, receive, and view functionality of the system.
We instantiate it once for the internal grade and once for the external grade.
These components represent the concept of internal and external grades.
Both instances are deployed on the same hardware resource and connected
to the same network. However, the deployment is done only for a complete
PCM model since the original scenario does not describe it or consider it. It
also does not influence our analysis results in this scenario.

The access control policies are extracted from the dataset of [57]. The dataset
contains XACML files with different access control rules. However, we cannot
use them directly since they arewritten for a previous XACML version. Hence,
we needed to update them. In addition, we needed to add the references to
the PCM architecture.

Usage and Misuage Scenarios We investigate two usage scenarios and two
misusage scenarios. The usage scenarios are modelled along the described
usage found in Fisler et al. [57]. One usage scenario is about the assignment
and viewing of internal grades by a teaching assistant. The other one is about
the assignment and viewing of internal and external grades by the faculty. For
both scenarios, the expected access decisions are permit. Hence, the expected
output for the scenario is passed. The misusage scenarios are derived based
on the violations and problems. The first misusage scenario is the assignment
of external grades by a student. The expected decision is deny and then the
misusage scenario should be passed. The second misusage scenario describes
that a teaching assistant assigns an external grade. As already stated in the
description, this should not be possible. Hence, the expected output for the
decision is deny to pass the misusage scenario. An expected failed misusage
scenario is the assignment of an external grade by the faculty since this is
allowed. The failed usage scenario is the assignment of an external grade by
a user without a role.

164

6.7. Maintenance Scenario

Attack Propagation and Attack Graph & Paths We do not use the attack
analyses with this scenario since the described scenario primarily focuses on
access control decisions and does not consider vulnerabilities or attackers.

6.7. Maintenance Scenario

Source/Description/Architectural Overview This scenario is based on our
running example (c.f. Chapter 3).

We also used this scenario in our publications regarding the attack propaga-
tion [211], the access analysis [214], the attack path analysis [212], and in
Walter et al. [209].

Usage and Misuage Scenarios We derived four usage and two misusage
scenarios from the scenario and architecture description. The first usage
scenario is the regular behaviour of a technician accessing the Terminal

during a failure state. The second usage scenario is the Machine saving
its log data. The third usage scenario is the access of a Product Developer
to the ProductStorage. All these use cases should be passed. The fourth
usage scenario should fail because it tries to store data without authorisation.
The misusage scenario is identical to the first usage scenario, with the only
difference being that the machine failure attribute is missing. Hence, the
access control decision should be denied for the misusage scenario to pass.
The last misusage scenario is identical to the first usage scenario except that
it is a misusage scenario in contrast to a usage scenario. Therefore, it should
fail.

Attack Propagation The investigated attack propagation, is similar to the
described example in Section 5.2. The attacker starts at the external Terminal
and has the capabilities to exploit CWE-312. In the end, we expect a propaga-
tion to the StorageServer and its components over the TerminalServer.

Attack Graph & Paths The investigated attack path is similar to the last path
in Section 5.2. The attacker has a CredentialFilter for the admin attribute.
The targeted element is the ProductStorage. Based on this configuration, we
expect seven attack paths.

165

6. Evaluation Scenarios

Remark: In contrast, to the described running example in the previous section,
we do not use a StartFilter selecting the Terminal. During the evaluation,
we saw that restricting the starting point could influence the results. By using
the filter, we achieved better results regarding the accuracy. Therefore, we
choose not to use the StartFilter here.

166

6.7. Maintenance Scenario

Ta
bl

e
6.

1.
:C

ha
ra
ct
er
is
tic

so
ft
he

ev
al
ua
tio

n
sc
en
ar
io
s

Ev
al
ua

ti
on

Sc
en

ar
io

C
om

po
ne

nt
H
ar
dw

ar
e

N
et
w
or
k

C
3

C
4.
1

C
4.
2

M
is
-/
U
sa
ge

A
ff
ec
t.

Pa
th
s

Ta
rg
et

7
6

2
—

x
x

—
22

14

Po
w
er

G
rid

9
8

2
—

x
x

—
27

16

Cl
ou

d
In
fr
as
tr
uc
tu
re

11
16

4
—

—
x

—
—

14

Tr
av
el
Pl
an
ne
r

4
3

3
x

x
x

3
0-
12

1

A
BA

C-
Ba

nk
in
g

11
2

1
x

—
—

3
—

—

Ed
uc
at
io
n

2
1

1
x

—
—

6
—

—

M
ai
nt
en
an
ce

4
3

1
x

x
x

6
14

7

167

7. Evaluation

In the previous section (c.f. Chapter 6), we presented different evaluation
scenarios. These evaluation scenarios are different cases, either inspired
by real-world system breaches or confidentiality evaluation cases, and we
described the source of the scenarios and important properties. In this section,
we use these scenarios to evaluate how well we answer the research questions
with our contributions.

The Sections 7.1, 7.2, and 7.3 describe the evaluation for each analysis. We
choose to only directly evaluate our analysis contributions (C3, C4) and
not the metamodels contributions (C1, C2). However, the metamodels are
indirectly evaluated based on the introduced model definition by Stachowiak
[187] in Chapter 2. As previously described, each model needs to serve a
pragmatism. In our cases, this pragmatism is the individual analysis. Hence, if
the metamodels fail their pragmatism, the analyses should be affected. Based
on this relationship, the contributions C1, and C2 are indirectly evaluated
based on the evaluation of the contributions C3, C4.1, and C4.2.

Each analysis evaluation follows the Goal Question Metric (GQM) [19, 20]
approach. This approach breaks down the evaluation task into multiple eval-
uation goals. These evaluation goals are then further specified by evaluation
questions, which are answered by metrics. This helps to align the used met-
rics to the evaluation goals and makes clear why the metric is used in the
evaluation. In addition, a well-defined GQM plan can help to increase the
reproducibility since other researchers have a structure to follow. Hence,
we start each analysis evaluation with the GQM plan. An overview of the
GQM plans is given in Figure 7.1, 7.2, and 7.5. The figures use a shortened
version of the GQM approach for a better overview. The detailed explanation
can be found in the corresponding subsections. The figures contain for each
evaluation goal a tree. The root node is the evaluation goal. Then the evalua-
tion questions are shown. Because of space reasons, they are not formulated
as a question. Below the evaluation question, the metrics answering the

169

7. Evaluation

questions are shown. After the introduction of the GQM plan, we describe
the Evaluation Design and discuss the Evaluation Results for each evaluation
goal. Each analysis evaluation concludes with a discussion about the Threats
to Validity. We categorize each threat to validity section according to the
categorization by Runeson et al. [157]. We described the four categories
previously in Section 2.2.1.

After the individual analysis evaluation sections, we discuss in Section 7.4 the
Assumptions and Limitations of our approach and summarize the evaluation
results in Section 7.5.

7.1. Usage Analysis

This section describes the evaluation of the access usage analysis introduced in
Section 5.1. It evaluates how well the research question RQ1.2 is answered by
the contribution C3. In addition, it indirectly evaluates the contribution C1 by
using the metamodel in the analysis and therefore exploiting the pragmatics
of the metamodel. The evaluation is based on our original application of the
approach [214].

7.1.1. Goal, Question, Metric

The evaluation is based on the evaluation in our publication for the scenario-
based access usage analysis [214], and we follow the GQM approach. This
section will describe the goal, questions, and metric used in the evaluation.
Figure 7.1 illustrate our GQM plan graphically. Our evaluation goal is: G1 Val-
idate the accuracy of the access usage analysis results from a security expert,
software architect and domain expert view This evaluation goal describes
how close our analysis results are to the real results. These real results are
also often described as ground truth. Ideally, the ground truth is independent
of the analysis and describes the ideal system reactions. The ground truth
is, in our case, the expected results from the scenarios. In other approaches,
similar properties are also called the “quality” of the results [36]. This name
illustrates the importance of this goal. A high accuracy is desirable for the
analysis since a low accuracy results either in overseeing confidentiality vio-
lations or blocking legitimate requests. In the first case, the access policies
are too open. However, the analysis might not identify a problem. Hence,

170

7.1. Usage Analysis

G1 Validate the accuracy of the access usage analysis results from a security expert, software
architect and domain expert view

Q1.1 Can the analysis determine the correct access decision for service calls?

𝐽𝐶(𝐴,𝐵) =
∣𝐴∩𝐵∣

∣𝐴∪𝐵∣

Q1.2 Can the analysis determine the correct decision from usage scenarios or misusage
scenarios?

𝐽𝐶(𝐴,𝐵) =
∣𝐴∩𝐵∣

∣𝐴∪𝐵∣

Figure 7.1.: Overview of the GQM plan for contribution C3

malicious users could get access to confidential data. This could lead to fines
by data protection agencies or, for instance, in the production sector to the
loss of trade secrets, which gave a competitive edge against competitors. The
second case can lead to a similarly bad result. In the worst case, a user could
be hindered entirely by blocking legitimate access right. For instance, in
our running example, falsely denying the service technicians access to the
Terminal can hinder them from fixing the broken machine. In this case, the
production would continue to be stopped, which can be very costly. Even
more, the company might decide to widen their access policies so that no
legitimate access is blocked. However, this might lead to the first type of
problem. In addition, a low accuracy can affect other quality attributes, such
as applicability or usability since users might decide that the results are not
reliable enough to be considered. Hence, it is important to investigate the
accuracy of the analysis. In addition, related approaches, such as Seifermann
[166], Busch [36], and Pilipchuk [143] also often consider this property.

Based on our evaluation goal G1, we derived the following evaluation ques-
tions:

Q1.1 Can the analysis determine the correct access decision for service calls?

Q1.2 Can the analysis determine the correct decision from usage scenarios or
misusage scenarios?

171

7. Evaluation

The evaluation questions are helping us to narrow down what we under-
stand under accuracy. The first question Q1.1 concentrates on the concrete
access decision for service calls. The analysis determines whether the call
is permitted or denied for every service call within a scenario based on
the modelled access control policy. These service calls cover not only the
EntryLevelSystemCalls from a scenario, but they also cover delegated sys-
tem calls, which are performed during an EntryLevelSystemCall. These
system calls, in conjunction with the attributes derived from usage or mis-
usage scenarios “simulate” the usage during runtime. In other words, they
are the potentially called services by users and malicious users. Hence, these
access decisions should be correct to have an overall high accuracy. A po-
tential low accuracy in this question can indicate problems with the context
derivation and access determination. Even more, it could indicate shortcom-
ings in the modelling if, for instance, certain attributes necessary for a correct
decision cannot be considered. In addition to the identification of analysis
and modelling problems, a low accuracy in Q1.1 propagates to the overall
results since they build up on it.

The second evaluation question Q1.2 builds up on the previous question
and its results. In Q1.2, we investigate whether our analysis determines
correctly that a usage or misusage scenario is marked as passed. As described
in Section 5.1.2, a usage scenario is marked as passed if all contained service
calls are permitted. In contrast, as described in Section 5.1.3, a misusage
scenario is marked as passed if at least one contained service call is denied.
It is important to consider this aspect, in addition to Q1.1, since the usage
or misusage scenarios group together user behaviour. If this grouping is
done along the use cases of a system, each usage or misusage scenario could
describe a use case or misusecase of the system. This can help architects
or experts to see quickly in which cases there is a problem. The service
results alone cannot provide this since the service calls are not grouped. In
addition, the service call itself does not store whether it is supposed to be
denied, such as with a misusage scenario or whether it should be permitted.
Hence, with the result alone, software architects or experts cannot determine
whether a denied service call is a problem or not. A low accuracy can also
be problematic since our result model is structured based on this grouping.
Therefore, a wrong result might unintentionally hide potential confidentiality
incidents from security experts or architects.

For answering our evaluation questions Q1.1 and Q1.2, we compare our
results to the ground truth. This comparison is performed by comparing the

172

7.1. Usage Analysis

sets of our ground truth to the result sets. For quantifying this comparison,
we need a metric which can compare two sets. In this goal, we choose the
Jaccard Coefficient (JC) [102] defined as:

𝐽𝐶(𝐴,𝐵) = ∣𝐴 ∩ 𝐵∣∣𝐴 ∪ 𝐵∣

It compares the two sets 𝐴 and 𝐵 for equality by dividing the power of the
cut of both sets divided by the power of the union of both sets. If both sets
are equal, the result is 1.00. If there is no intersection, the result is 0.00. As
a drawback, the JC does not consider the order of both sets. So if the order
within the sets is essential, the metric cannot be used. In our case, this is not
important. Our reason will be described in more detail in Section 7.1.2. Other
evaluations of PCM-based analyses, such as Heinrich [70] or Monschein et al.
[119], use the metrics in a similar manner.

7.1.2. Evaluation Design

We design our evaluation based on the described GQM plan for the access
usage analysis. For the evaluation goal G1 with its two evaluation questions,
we need to determine the reference set or ground truth. Similar to case studies,
which can provide better insights, show the applicability, and increase the
comparability [49], we use scenarios to determine the comparison set. In our
case, we use four of our evaluation scenarios. These evaluation scenarios
are the TravelPlanner (Section 6.1), ABAC-Banking (Section 6.5), Education
(Section 6.6), and Maintenance (Section 6.7). We used these scenarios because
they are used in related approaches, such as Seifermann et al. [168] or Fisler
et al. [57]. The other scenarios from our evaluation scenarios (c.f. Chapter 6)
are not applicable because they were missing detailed behaviour descriptions
necessary for the modelling and evaluation.

For each evaluation scenario, we manually created the reference output as a
ground truth. We derived the manual reference output based on the source
description and the modelled software architecture, together with the access
control policies and the usage and misusage scenarios.

For answeringQ1.1, we first identified all the services which are called within
the usage and misusage scenarios. For each instance of the service calls, we
manually determine the current context attributes which are used for the

173

7. Evaluation

request. Afterwards, we determine whether the call, based on the access
control policy, should be permitted or not. We then store the result together
with the scenario, the connector, the intended service, the origin service and
the involved instantiated component. This builds a set of reference tuples for
all called services. A similar set with the same tuple types can be constructed
based on the analysis results. For this, we can look at the result model. It
contains with the OperationOutput already an element which contains most
of the required information. Missing are the origin service and the scenario.
However, both can be reconstructed. The scenario can be reconstructed by
the containment from the ScenarioOutput, which stores a reference to the
scenario. The called service can be either reconstructed by the used connector
or by using the instantiated component and reversely identifying the callee.
This way, we have two sets with similar tuples. Because of our usage of
additional attributes, such as components for the identification of service call
instances, the order of the service call and access decision is, in our scenarios,
not relevant. Therefore, we have two order-independent sets, which allows
us to use the JC to compare them.

We can reuse the calculated reference set for Q1.2 to answer the evaluation
question Q1.1. We can group this set by the scenario. This allows us to
manually decide whether a scenario is passed or not. Afterwards, we store,
for each scenario, a tuple with the scenario and whether the scenario is passed
or not. This builds then our reference set. The same can be done by the results
of our analysis. ScenarioOutput contains both attributes necessary to create
a similar tuple. This leads us to have two sets, a reference set and the set of
our analysis. The order of the tuples within a set is irrelevant for the results
since the elements are identified by the scenario and the according decision,
which is contained in the tuple. Hence, we can use the JC for comparison
since the sets are order independently.

For the scenario analysis, we made sure that we had at least one usage
scenario and one misusage scenario based on the description of the case
study. This guarantees that we have both types of results (permit and deny)
in the evaluation. This is beneficial since this avoids that the analysis could
return always permit, and the evaluation scenario would classify this as
correct behaviour. For the same reason, we have at least one failed misusage
and usage scenario in the evaluation. This guarantees that we have both
types of results (passed and not passed) in the evaluation, and the analysis
cannot pass the evaluation by only returning the same value.

174

7.1. Usage Analysis

7.1.3. Results & Discussion

The results for G1 are shown in Table 7.1. It shows for each scenario and
each evaluation question the resulting JC. Overall, we had for all results a JC
from 1.00. It means that our analysis can successfully identify the expected
results in all scenarios.

We will now discuss the results in more depth. The results forQ1.1 are perfect
results. We can achieve these results since the scenarios are relatively small
and they do not contain many ambiguous definitions. In addition, we only
consider the access result with deny or permit. This boils down to a binary
decision. Therefore, the results are simplified since we do not have multiple
different result types. These perfect results might indicate a high speciali-
sation of the analysis to the investigated scenarios, similar to overfitting in
machine learning. We tried to mitigate this by using different evaluation
scenarios and will discuss it further in our threat to validity section (c.f. Sec-
tion 7.1.4). These results mean that every access request in our evaluation
scenarios is correctly decided. In other words, the request generation with
deriving the context and identifying the request attributes work in these sce-
narios correctly. In addition, the result determination, together with the result
interpretation, works correctly in these scenarios. This enables architects to
analyse different service calls regarding deny and permit decisions.

The results are also perfect for Q1.2. We can achieve this by having again
a binary decision with only passed and non-passed together with a small
scenario size. Especially the small scenario size might be responsible for
this. Similar to the previous results, this might raise questions regarding
the generalisability. We will discuss these in our threats to validity section
(c.f. Section 7.1.4). The results for Q1.2 mean that our analysis can correctly
derive, based on the access decision of service calls within a usage or misusage
scenario, the overall decision for the usage and misusage scenarios. This
helps the software architects or experts to decide whether the intended usage
is possible or whether malicious users can perform certain activities within
the system.

Considering the results of both evaluation questions Q1.1 and Q1.2 together,
our analysis enables architects to analyse different usage and misusage sce-
narios regarding access control violations. This enables them to investigate
alternatives like different access control policies, usage, or misusage scenar-
ios. This is useful for investigating what-if cases. In addition, it can help to

175

7. Evaluation

Table
7.1.:Evaluation

resultsregarding
the

JC
forQ

1.1
and

Q
1.2

Scenarios

Evaluation
Q
uestion

T
ravelPlanner

Education
A
B
A
C
-B

anking
M
aintenance

Q
1.1

1.0
1.0

1.0
1.0

Q
1.2

1.0
1.0

1.0
1.0

176

7.1. Usage Analysis

harden the system by systematically defining more restrictive policies and
validating whether usage scenarios are still possible. Hence, it helps to apply
the Least Privilege [159] principle. Even more, applying this principle can
be done already during the design time since no fully implemented system
is necessary. The analysis only requires service specifications, the intended
usage and misusage, the access control policies for the services and a specifi-
cation of the instantiated components. This is also helpful during the system
evaluation, where new usage scenarios or policy changes can be evaluated.
In addition, the existing misusage and usage scenario can help to not forget
other aspects of policy changes like the unintentional enabling of malicious
usage behaviour. In other words, the approach can help to prohibit exploiting
policy changes for malicious usage.

7.1.4. Threats to Validity

As described in the introduction of Chapter 7, we discuss our threats to
validity based on the guidelines for case study validity from Runeson et al.
[157] because the evaluation scenario share properties with case studies (c. f.
Chapter 6). Hence, we use the same guidelines as for case studies to discuss
the threats to validity. The discussion is split into four categories.

Internal Validity As described, this category discusses that only the expected
factors influence the results. Based on the evaluation questionQ1.1, the result
is influenced by the manual creation of the result set, which depends on the
access control decision. The access control decision is influenced by the
request attributes and the PDP. For the first, a wrong or missing attribute
can result in a wrong access decision. In the second case, the PDP could be
wrongly implemented and produce wrong access control decisions. However,
this would result in a set with the wrong elements in both cases. If this is the
case, our JC cannot be 1.0 since the set contains different elements than the
expected set. Hence, we assume the risk to be low. In addition, for the latter
case, we lowered the risk by using an external PDP, which is open source
and used in different projects, such as ONAP1. This should reduce potential
implementation problems since the PDP is well established.

1 url: https://www.onap.org (visited on 04/28/2023).

177

https://www.onap.org

7. Evaluation

Regarding Q1.2, the results of Q1.1 influence Q1.2 since the usage and
misusage scenario results build upon the access control decisions. Hence, a
wrong access control decision can falsify the results for Q1.2. However, we
assume the risk to be low since we got a JC of 1.0 for Q1.1. Similar to the
first evaluation question, another influence can be the wrong calculation of
the set based on the results, i.e., the decision when a scenario is considered
passed or not. We assume the risk to be low since a false result might result
in a different element in our results set. Hence, the result set and the expected
would differ. In this case, we could not get a JC of 1.0 for Q1.2. In our case,
we got a JC 1.0. Therefore, we assume the risk to be low.

A threat for both evaluation questions could be the wrongly created reference
set or ground truth. Even more, most of the reference sets are manually
created by ourselves. A wrongly derived result element could falsify the
result and result in a higher JC, despite that the results are wrong. We tried
to lower the risk by using mostly external evaluation scenarios and scenario
descriptions to derive the expected set. In addition, we clearly described the
used scenarios and the expected results in the scenario description. This
should reduce errors during the creation of the expected sets because it
reduces possible ambiguities.

Another threat in the same direction is the used models. In our evaluation, we
only evaluate the results of the analysis. However, the results depend highly
on the used models and, therefore, on the metamodel. If the metamodel does
not cover an aspect, the analysis cannot consider this. We tried to lower the
risk of overseen metamodel elements by using specialised metamodels for
different aspects and modelling different external scenarios. For the first case,
we use the PCM for the architectural models. The PCM is already a well-
established ADL and used in different analyses, such as Reussner et al. [154],
Busch [36], or Seifermann [166]. Hence, we assume the risk to be low that
important aspects of component-based architectures are overseen. The access
control metamodel is built up on the well-established industrial standard
XACML. Therefore, we also assume the risk for overseeing attributes to be
low. In addition, we reduce the risk of overseeing aspects by using evaluation
scenarios from related work.

Despite the usage of external scenarios, our evaluation scenarios are still
comparably small. Smaller scenarios might lead to the issue that we cannot
observe all functionality or side effects. Larger scenarios might contain side
effects which can not be observed in small scenarios. Hence, the evaluation

178

7.1. Usage Analysis

with small scenarios might not show the complete picture. However, in our
case, we wanted to explicitly reuse existing evaluation scenarios from related
approaches. The evaluation scenarios specify the size of our investigated
scenario. In addition, the chosen scenarios cover the important functionality
of the approach, such as the context derivation, transformation of the access
control model, access control decisions, and misusage and scenario evaluation.
Therefore, investigating larger scenarios with more architectural elements
might increase the result set but would not necessarily gain more insights.
Hence, we assume the risk to be low. Nevertheless, there is still a slight risk
that new unknown side effects occur in larger systems.

External Validity As mentioned before, this category covers the generalis-
ability of the results. Similar to the usage of case studies, we might increase
the insights into a problem by using a scenario. Yet, a scenario is only a
single instance of the global problem and only shares a subset of the charac-
teristics. Therefore, other important aspects might not be considered within
a scenario, which results in a non-representative scenario. In these cases,
the results might not be transferable to other scenarios. To mitigate this
risk, we choose mostly external scenarios. Most of the scenarios are based
on related approaches, such as Kramer et al. [99] or Katkalov [90] for the
TravelPlanner. Other scenarios are built on evaluation cases in related work,
such as ABAC-Banking on Seifermann [166], or the Education scenario on
Fisler et al. [57]. The remainingMaintenance scenario is built up on a scenario
from industrial partners in a former industrial research project [12]. Using
multiple external scenarios lowers the risk of having only a very specialised
set of characteristics. In addition, the different types of scenarios (research
and industrial project) reduce the risk. Nonetheless, the chosen scenarios
so far only indicate the functional correctness of the analysis and not the
correctness of the approach in general. In the future, it might be beneficial to
investigate further different scenarios or perform an industrial case study to
support further conclusions.

Regarding the transferability of the results to other analysis types, we cannot
draw a general conclusion. The findings or results could be transferred to
similar analyses, especially the finding of Q1.1. In fact, we reused parts in our
contribution C4.1 since it also covers the aspect of access control for services.
However, other transferability requires further investigation.

179

7. Evaluation

Construct Validity As described, this category discusses whether the eval-
uation construction allows the drawn conclusions. In our case, we answer
our evaluation questions Q1.1 and Q1.2 by using the JC. In other words, this
section discusses the appropriateness of the used metric to the evaluation goal
to answer the evaluation questions. Using GQM plan can reduce the threat
because by highlighting the relationship between the evaluation goals and
metrics, meaningful metrics can be found. In the following, we will discuss
the appropriateness of the metrics in more detail.

For the evaluation, our goal is to show the accuracy of the results. We defined
accuracy as how close the results are to the reference set for a given evaluation
scenario. In other words, we compare two sets, the results set to the reference
set or ground truth. In summary, we need a metric which describes the
relationship between two sets. Hence, we choose the JC because it exactly
quantifies the difference between two sets. One threat to the appropriateness
is the disregard of the order during the comparison. However, our sets are
order-independent as described in Section 7.1.2. Therefore, this threat does
not apply in our case. Other relatedmodel-based approaches, such as Heinrich
[70] or Monschein et al. [119], use the JC similarly. In addition, we used it in
Walter et al. [209] to compare reference sets with results sets. Furthermore,
we use the same metrics in the original publication [214] of our contribution
C3. In summary, we think the metric is appropriate for the intended goal and
the risk for the construction to be low.

Reliability As described, this category describes whether other researchers
can reproduce the results. We increase the reproducibility twofold by first
using statistical metrics and secondly by having a complete dataset [208].

The usage of statistical metrics can avoid subjective interpretations since
other researchers can observe the metrics and draw their conclusions based
on them. It also helps to compare the results to other results. The dataset
[208] covers multiple aspects for reproducibility. Our dataset contains all
the used models, the source code and binary code, as well as the expected
results. Hence, other researchers can verify the models and directly use them
to verify our results. In addition, the dataset provides automatic test cases for
verifying the results.

180

7.2. Attack Propagation

7.2. Attack Propagation

This section describes the evaluation of the attack propagation analysis in-
troduced in Section 5.2. It evaluates how well our research question RQ2.2
regarding the attack propagation is answered by our contribution C4.1. In
addition, it evaluates the contribution C1 together with C2 by using the
metamodel in the analysis and therefore exploiting the pragmatics of the
metamodel. The evaluation is based on the evaluation of our original publica-
tion in Walter et al. [211].

7.2.1. Goal, Question, Metrics

Similar to the previous section, we structure our attack propagation evalua-
tion based on the GQM approach [19]. This section will describe the goals,
questions, and metrics used in the evaluation. A schematic overview of the
evaluation goals is shown in Figure 7.2. Our evaluation goals are:

G2 Validate the accuracy of the attack propagation analysis from a security
expert and software architect view.

G3 Validate the effort reduction for the attack propagation analysis against
a manual analysis from a security expert and software architect view.

G4 Validate the scalability of the attack propagation analysis from a secu-
rity expert and software architect view.

The intention for G2 is to identify how close our estimated attack propa-
gation is to the actual attack propagation. Similar to the accuracy (G1) in
the evaluation of the scenario-based access analysis (cf. Section 7.1), we
need to determine for the accuracy a ground-truth. In our case, this is the
expected attack propagation from our evaluation scenarios. A low accuracy
has two disadvantages. First, the attack propagation does not identify all
affected architectural elements and secondly, the attack propagation marks
not-affected elements as affected. In the first case, experts using the anal-
ysis could oversee potentially affected elements. This can either let them
exposed to security vulnerabilities, which attackers could exploit in a real
attack. Even more, experts would not be aware that there could be a problem
and might not regularly check the elements for manipulation or disregard
reports indicating security incidents. On the other hand, if the analysis is

181

7. Evaluation

G2: Validate the accuracy of the attack propagation analysis from a security expert and soft-
ware architect view

Q2: How well can the attack propagation detect the expected propagation?

𝑝 =
𝑡𝑝

𝑡𝑝+𝑓𝑝

𝑟 =
𝑡𝑝

𝑡𝑝+𝑓𝑛

𝐹1 = 2 𝑝∗𝑟

𝑝+𝑟

G3: Validate the effort reduction for the attack propagation analysis against a manual analy-
sis from a security expert and software architect view

Q3.1: What is the effort reduction of using the automatic attack propagation compared
to manually checking all the architectural elements?

𝑀2.1 = 𝑒𝑎
𝑒𝑎+𝑒𝑐

𝑀2.2 = 𝑒𝑎
𝑒𝑛

Q3.2: What is the initial effort for using the analysis?

Q3.3: What is the effort for updating an existing model?

Q3.4: How could the effort for the model creation and update be reduced?

G4: Validate the scalability of the attack propagation analysis from a security expert and
software architect view

Q4: How does the runtime of the attack propagation behave with an increasing number
of elements?

Runtime/Resources

Figure 7.2.: Overview of GQM plan for contribution C4.1

182

7.2. Attack Propagation

used in the aftermath of an attack, overseen architectural elements could
enable attackers to survive cleaning operations in the network. The second
disadvantage of a low accuracy is marking non-affected elements as affected.
While the security implications are not as bad as in the first case, this still
has negative aspects, especially regarding the applicability and usability for
security experts and architects. Many of these, also called false positives, can
generate additional work for security experts since they have to manually
check them for security threats in case of a breach, or they invest additional
effort to secure a non-relevant element. In the worst case, software architects
or security experts might dismiss legitimate results since they assume that
they are false positives. Hence, a high accuracy for the attack propagation
analysis is desirable. Furthermore, this property was investigated by other
related approaches, such as Seifermann [166], Busch [36], and Pilipchuk [143].
However, they investigate accuracy for the prediction of other quality prop-
erties. In our case, we investigate this for the attack propagation. We also
investigated the accuracy in our publication about the attack propagation
analysis [211].

The evaluation question for G2 is:

Q2 How well can the attack propagation detect the expected propagation?

The question narrows down our accuracy goal. The questionQ2 concentrates
on the detection of affected architectural elements by an attack propagation.
The analysis returns a list of affected elements for a given attacker model
and initial start point. These affected elements are the components, hardware
resources, network resources and services. They represent the potential
compromised elements in a software architecture. Hence, as previously
described, it is useful to have a high accuracy.

We answer Q2 by comparing the results of the analysis with the expected
reference result. In other words, we use the ground truth defined by our sce-
narios and compare it against the analysis results. During the comparison of
the expected results with the analysis, we classify each architectural element
from the result. Each affected result element, which is also in the expected
result, is classified as a true positive 𝑡𝑝 . Each element which is marked as
affected in the result, but it is not marked in the expected set as affected, is
considered a false positive 𝑓𝑝 . Elements, which are affected in the expected
result, but are missing in the result set are classified as a false negative 𝑓𝑛 .

183

7. Evaluation

Based on this classification, we then calculate, precision (p), recall (r) [203]
and the harmonic middle F1 of both:

𝑝 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
𝑟 =

𝑡𝑝

𝑡𝑝 + 𝑓𝑛
𝐹1 = 2𝑝 ∗ 𝑟

𝑝 + 𝑟

The precision quantifies howmany of our affected elements are really affected.
Higher values are better here since they show that many of the found elements
are really affected. Hence, it can also increase the applicability since a higher
value increases the confidence of the expert that there is a security issue.
The recall quantifies how many of the real affected elements can be found.
Here, it is important to have high values because a low value indicates that
our analysis is missing elements which an attacker can compromise. As
described previously, missing these elements can have severe consequences
for the security. Hence, it is important to consider the recall of our analysis.
The third metric, F1, combines both values for a better comparison. Using
these metrics gives a more detailed insight into how our analysis behaves
in contrast to the JC from G1. It gives especially more insights regarding
the false positives and false negatives, which are important factors in C4.1.
Also, other approaches, such as Seifermann [166], use explicit metrics to give
insights about the false positives and false negatives. The metrics precision
and recall are also used in the foundational approach for the maintenance
propagation [36, 155, 71] and other related approaches, such as Boltz et al. [32]
andWalter et al. [210]. In addition, we used it in our initial attack propagation
publication [211].

G3 covers the effort reduction in comparison to a manual analysis. Consider-
ing the effort for an approach is essential since a high effort for an architect
might reduce the applicability and increase the costs, for instance, due to the
invested time by experts. Usually, automating a previously manual process
reduces the time effort. However, in some cases, the benefit comes with a
higher effort in other dimensions, such as, in our case, the initial effort to
model the software architecture. In this goal, we want to investigate how the
effort changes by using our analysis. A similar goal is also investigated in
Busch [36], where the goal is called coverage. However, they investigate the
effort reduction for maintenance tasks and not attack propagations. We have
also investigated a similar goal in the original attack propagation publication
[211].

Based on the evaluation goal G3, we derived the following evaluation ques-
tions:

184

7.2. Attack Propagation

Q3.1 What is the effort reduction of using the automatic attack propagation
compared to manually checking all the architectural elements?

Q3.2 What is the initial effort for modelling a system?

Q3.3 What is the effort for updating an existing model?

Q3.4 How could the effort for the model creation and update be reduced?

The evaluation question Q3.1 investigates the effort in comparison to a man-
ual analysis. In our case, the effort is the number of architectural elements
a security expert has to consider for estimating an attack propagation. We
assume that the security experts already have a software architecture and use
the given architecture to estimate the propagation. They need to consider
every element, whether it is affected by the propagation or not. Every element
they do not need to manually check saves effort. Another case is the usage in
the aftermath of a successful breach. There, security experts need to manually
verify each architectural element for malicious changes, such as changed
credentials or malware. The effort depends on the number of elements to
check. Hence, if the analysis can mark elements as unaffected, these elements
do not need to be checked. This saves effort and lets experts focus on the
critical affected elements. We measured the effort by counting the architec-
tural elements (AssemblyContexs, LinkingResources, ResourceContainers).
Using counted elements enables a direct comparison without considering the
experience of security experts. For the effort reduction, we use two metrics,
𝑀2.1 and𝑀2.2, with 𝑒𝑎 as the number of affected elements, 𝑒𝑐 for the number
of connected elements to the affected elements, and 𝑒𝑛 as the number of all
elements.

𝑀2.1 = 𝑒𝑎

𝑒𝑎 + 𝑒𝑐
𝑀2.2 = 𝑒𝑎

𝑒𝑛

The first metric describes the ratio of elements, which need to be investigated
during the next propagation step. In other words, this is the effort reduction
if an expert does know that no further propagation is possible for a given ar-
chitecture. For𝑀2.1, higher numbers are better. The second metric calculates
the overall ratio between the affected elements and all architectural elements.
This shows how many elements are affected. This is useful, for instance, in
case of a breach, since it shows how many elements a security expert needs to
investigate compared to a naive approach that investigates all elements. This
metric depends on the fact that after an attack, the system needs to be cleaned
of the attacker’s influence. Each compromised architectural element can be a

185

7. Evaluation

potential starting point for another attack propagation. Therefore, security
experts need to clean the architectural element. This cleaning is often done
by completely resetting the device, for instance, through reinstalling and
configuring the software. Hence, this is a manual effort, and it is beneficial to
only clean the real affected elements. Sometimes, this cleaning also includes
investigating the concrete activities of the attacker on the architectural ele-
ment. This process is also often very complicated, and it is beneficial to only
perform it on the affected elements. This process is even more complicated
because malware can hide itself with anti-forensic tools such as the BlackPos
malware2, which attacks POS devices. For this metric, lower numbers are
better.

The other evaluation questions for G3 are slightly different from the previous
ones. They are more a discussion about the involved properties and not
answered by a metric. In the previous evaluation question, we neglected to
consider the initial effort to create the model. In Q3.2, we will discuss the
initial modelling effort for the usage of our analysis. Discussing the initial
effort is important because creating models can be very cumbersome and
time-consuming. If the initial effort is very high, it might prevent the usage
of the analysis despite its benefit. Hence, we will discuss what, in our opinion,
is the initial effort.

However, the initial creation effort is not the only effort for the analysis and
models. Also, the effort to keep the models consistent with the real system
needs to be considered. As stated in Lehman [100], software systems need
to change to stay useful. Therefore, they evolve to support new function-
ality or use cases. Even if the system does not change, the context of the
system changes. For instance, new vulnerabilities are discovered. These
changes need to be reflected within the modelled software architecture. Q3.3
investigates/discusses the effort to consider these changes.

The last evaluation question Q3.4 discusses further potential aspects for
effort reduction. Due to some changes in the metamodel or some automatic
approaches, it is possible to reduce some effort for the model creation and
keep it up to date.

2 These Guys Battled BlackPOS at a Retailer. Feb. 4, 2014. url: https://krebsonsecurity.com/
2014/02/these-guys-battled-blackpos-at-a-retailer/ (visited on 06/06/2023).

186

https://krebsonsecurity.com/2014/02/these-guys-battled-blackpos-at-a-retailer/
https://krebsonsecurity.com/2014/02/these-guys-battled-blackpos-at-a-retailer/

7.2. Attack Propagation

The last goal G4 covers the scalability of our approach. The ongoing digi-
talization and trends like Industry 4.0 or the IoT increase more and more the
system sizes. This increase also affects the software architectures. Modern
software architectures using cloud infrastructure and architectures styles like
microservice can have hundreds of different services. For instance, a retailer
mentioned in Newman [122, p. 6] has around 450 microservices. Depending
on how abstract the software architecture is, these services would be at least
450 components. For our previous analysis, the runtime or scalability is not a
very important property because it is a design time approach. Ideally, after
the initial design, it only runs for evolutionary changes, such as a new usage
scenario or a policy change. While these changes happen regularly, they are
usually less frequent. On the other hand, for the attack propagation analysis,
the scalability is more important. For instance, on average, there have been
around 50 new vulnerabilities per day in 2021 [151]. To address this challenge
of new vulnerabilities, it is important to run nightly or weekly security anal-
yses, as recommended by the US American Cybersecurity and Infrastructure
Security Agency (CISA) [164]. This would then provide regularly information
about potential attack propagation. Of course, such a system would also
require additionally the automatic updating of the models. Nevertheless, as
a pre-step, it requires that our analysis can provide sufficiently fast results.
In addition, a faster reaction time may increase the usability since architects
or experts can quickly model alternative scenarios and investigate the out-
put. Also, a faster analysis can help to prevent further attack propagation
in case of a breach. In addition, related approaches, such as Polatidis et al.
[148, 147], Ibrahim et al. [76], and Sheyner et al. [171], investigate similar
properties. Hence, it is important to consider the scalability of larger software
architectures. The evaluation question for G4 is:

Q4 How does the runtime of the attack propagation behave with an in-
creasing number of elements?

Here, we investigate the runtime of the analysis and observe how it changes
with different software architecture sizes. Architecture size means the number
of architectural elements, such as hardware devices or network devices. This
will give us insights into how the analysis scales for large architectures. As a
metric, we use the runtime in relation to the input size.

187

7. Evaluation

7.2.2. Evaluation Design

The evaluation design is based on the GQM plan for the attack propagation
described in the previous section (Section 7.2.1). Our evaluation goals G2
and G3 are investigated by using the following scenarios: TravelPlanner
(Section 6.1), Target Breach (Section 6.3), Power Grid (Section 6.2), andMainte-
nance (Section 6.7). We choose those evaluation scenarios from our described
evaluation scenarios because they contain information regarding an attack
propagation. In addition, the Target Breach and the Power Grid scenario are
built up on real-world breaches.

For answering the evaluation question Q2, we need the expected set of the
affected architectural elements for a given software architecture and attacker.
We derived this information based on our chosen scenarios. The first step
for the creation is the derivation of a software architecture. In some cases,
we could reuse existing models, such as with the TravelPlanner. In the other
cases, we manually derive the software architecture by analysing the existing
artefacts. For instance, for the Power Grid scenario, the report from Hamilton
[68] is used. Afterwards, we had for all scenarios a software architecture.
We enriched these software architectures with security information, such as
vulnerabilities and access control properties. The access control properties
are derived from the textual description or from other source artefacts, such
as existing access control policy files. The vulnerabilities are created based
on the reports3 [68, 145, 173, 170] describing the incidents or existing reports
about common vulnerabilities, such as the OWASP 10 [137]. In addition, we
selected for each scenario manually an attacker model. This attacker model
is derived from the same source as the vulnerability model. This results in a
matching attacker and vulnerability model. Based on these models, we then
manually classified each architectural element. We considered during the
propagation the affected components, hardware resources, network resources,
services and the gained attributes for the access control. The propagation
is calculated based on the attacker model and the software architecture. In
some cases, like in the Power Grid scenario, a report [68] also states the attack
propagation. In these cases, we verified the expected propagation with the
described propagation. In the other cases, we could only manually verify

3 B. Krebs. Inside Target Corp., Days After 2013 Breach. Sept. 21, 2015. url: https://kreb
sonsecurity.com/2015/09/inside-target-corp-days-after-2013-breach/ (visited on
09/01/2021).

188

https://krebsonsecurity.com/2015/09/inside-target-corp-days-after-2013-breach/
https://krebsonsecurity.com/2015/09/inside-target-corp-days-after-2013-breach/

7.2. Attack Propagation

the expected results. The details and characteristics for each scenario are
described in Chapter 6. After the creation of the expected result, we run our
analysis for the given scenario with an attacker with the same capabilities and
knowledge. We then compare the analysis results with the expected result
and classify the result elements. The classification of the elements is based
on the previously described classification with false positives, false negatives,
and true positives. We perform this classification for each evaluation scenario.
We also considered different evaluation scenarios for the TravelPlanner. We
used the additional scenario to analyse certain edge cases of the analysis,
which are not included in the other scenarios. We handled these additional
TravelPlanner subscenarios like separate scenarios. Hence, each subscenario
has its own classification. Afterwards, we calculate the precision, recall and
F1 measure based on the classification.

From the GQM (c.f. Section 7.2.1), we derive the evaluation question Q3.1.
For answering the evaluation question, we utilised the results from Q2. First,
we determined 𝑒𝑎 by filtering the attack propagation for components, hard-
ware resources and network resources. The size of the filtered set was then
𝑒𝑎 . Secondly, we determined 𝑒𝑐 . For this, we calculated the potential next
propagation step. This is done by identifying the connected unaffected ele-
ments and then adding these to a connected set. Of course, in reality, this
connection step would not be possible since the propagation already stopped
and the attacker has not the capabilities to exploit them. However, to re-
alise these lacking capabilities, a security expert has first to manually check
the capabilities for the propagation. Hence, this would be the last step in
a manual propagation, and our automatic analysis would save a security
expert from doing this. Therefore, we add these elements to our connected
set. Afterwards, we calculate the size of the set, which is 𝑒𝑐 . This is done for
every evaluation scenario and also for every subscenario. 𝑒𝑛 is the size of the
set of components, hardware resources and linking resources for each input
scenario. After determining these values for each scenario and in the case of
the TravelPlanner for each subscenario, we calculate the effort reduction by
using our two metrics, M2.1 and M2.2, for each scenario or subscenario.

For Q3.2, we explain and discuss which model elements are initially involved
in order to execute our analysis. The initial effort of using our analysis de-
pends mostly on the creation of the input, as in our case, the input models.
The other steps for the initial usage are setting up the tooling itself and creat-
ing an execution configuration. Both can be considered much smaller. The
setup can be nearly automated because the analysis itself is fully integrated

189

7. Evaluation

within an Eclipse product. Hence, the setup only requires a compatible Java
version and a platform where running Eclipse is possible. This is usually
rather easily possible because Eclipse is a common tool used in software devel-
opment. The other setup part, besides modelling, is the launch configuration
creation. This consists of only creating the configuration by clicking on a
button and selecting the models. Hence, we assume that the significant effort
is the model creation.

For the evaluation question Q3.3, we discuss which elements of our meta-
model are system-specific or independent. As described in the previous
paragraph, we assume that the effort for generating the models is the most sig-
nificant effort. Based on this assumption, the discussion about system-specific
or independent model elements is beneficial because system independent
elements can be used in other systems. Hence, we have the effort to create
the element only once. We will describe the effort on different evaluation
scenarios and discuss what effort they may create.

The evaluation question Q3.4 is answered by discussing potential approaches
to reduce the initial effort and the effort in evolution scenarios. Here, we
again focus on the effort of creating the model. We especially focus on the
modelling effort for the users of our approach.

We perform a scalability analysis for answering Q4. During the scalability
analysis, we measure the runtime of the attack propagation analysis with
different input sizes. We scale the input sizes based on a very simplified
architectural model. It is based on the TravelPlanner model. However, the
concrete model is not relevant for this goal because, for the measurement,
we slightly modify it to support the different input sizes. This modification is
the essential characteristic of this evaluation question. The modification can
also easily be done to other models so that they share the same characteristic.
Hence, we assume that the TravelPlanner is, in this case, a good representative
scenario.

The first step for the scalability analysis is to determine the elements for
scaling. Here, it is important to identify the relevant factors of the runtime
and scale them appropriately. Based on our Algorithm 3 and 4, we can identify
I) the loop (l. 4 in), II) selection of elements, III) and the compromisation of
elements as an influencing factor. The other factors are, in our opinion, not
relevant, because they are only executed once.

190

7.2. Attack Propagation

The first factor, the loop, influences the result because it is repeatable executed.
Meaning all the operations within the loop are repeatable executed. These
operations are the factors II and III. Therefore, our goal is to increase the
number of loop iterations because this can increase the runtime of the anal-
ysis. The number of loop iterations depends on the number of propagation
steps for an analysis execution. Hence, if we increase the propagation steps,
we increase the number of loop iterations. The runtime of a loop iteration is
dependent on the runtime of the propagation steps. The propagation steps
are similar as discussed in Section 5.2.4. Each propagation step is structured
similarly. It consists of two parts. First, the selection of the element (factor
II) and second, the compromisation of the selected element (factor III). The
selection (factor II) is the identification of the neighbouring elements based
on the already affected element. This selection should be runtime-wise very
similar for all propagation steps because it only follows the different connec-
tion relationships. In addition, a propagation step is always a propagation
between two architectural element types. Therefore, if we want to increase
our factor II, we need to increase the number of architectural elements which
can be considered during the selection. However, because we assume the
behaviour for the selection is similar, we can increase the number of any
architectural element. Therefore to increase the problem size, we can scale
along any architectural element.

The second part (factor III) is the decision on whether the selected archi-
tectural elements are compromisable. This includes for our analysis, also
marking them as affected if they are compromisable. In our analysis, we have
two compromisation types: the compromisation by vulnerabilities and the
compromisation by credentials. Both types can influence the runtime. The
runtime of the compromisation through vulnerabilities depends on how often
the check for compromisation is performed and how many vulnerabilities
one selected architectural element has. We increase the number of checks by
increasing the number of architectural elements which need to be checked.
We can achieve this behaviour similarly to the factor II by scaling the number
of architectural elements. In our case, the type is irrelevant for checking
the vulnerability because the structure for the checks is the same for each
architectural element type. The other aspect affecting the runtime of the
vulnerability compromisation is the number of vulnerabilities for one element.
The reason is that the analysis implementations get a list of vulnerabilities
for each selected architectural element. The analysis then iteratively checks
whether any of the vulnerabilities can compromise the selected architectural

191

7. Evaluation

element. Therefore, if no vulnerability can be compromised, it needs to iterate
over the complete list of vulnerabilities. However, the vulnerabilities for one
architectural element are usually not significant. Hence, we assume that this
should not be a problem and do not consider it in our factors.

The same also holds for the credentials. Usually, the access decision depends
on the number of attributes relevant to the decision. Nevertheless, here the
number is usually also a lower number because of the complexity of the
specification. In addition, the runtime for access decision is based on the
implementation of the used PDP. Hence, increasing the number of attributes
would result more in a scalability analysis for the PDP than our developed
approach. Therefore, we did not consider this.

Based on our findings, we found out that each of our factors I – III depends on
the number of architectural elements. In addition, based on our assumption
that the finding of elements should behave similarly, we identified that the
concrete type of the architectural elements is not relevant. Therefore, we
can choose to scale along any architectural element type. In our case, we
choose to scale ResourceContainers because they can easily be scaled. For
achieving the propagation, the ResourceContainers need to be vulnerable, so
the propagation steps in the loop can be executed multiple times. The results
for access control should be similar and only differ based on factors for each
propagation step. We add the new ResourceContainers by adding for each
new one a unique LinkingResource. We have then, for each new Resource-

Container, a unique network. The LinkingResources are not vulnerable in
our case. Afterwards, we connect each new LinkingResource with a Re-

sourceContainer from another network. This builds up to a chained network
of ResourceContainers similar to Figure 7.3. The Figure 7.3 illustrates the
created chain. The LinkingResources are indicated by the stereotype Network
and the ResourceContainers by the stereotype Device. The connections are
the dashed lines. Each of the ResourceContainers is vulnerable to the same
vulnerability. Hence, it creates for the attack propagation analysis something
like a worst-case analysis, if the first ResourceContainer is vulnerable to
an attack from the attacker. It forces the analysis to perform at least n
propagation steps with n as the number of ResourceContainers in the chain.
In Figure 7.3, this is illustrated by the red arcs below the devices. In the
propagation step 𝑝𝑚−1 where m is the current propagation, the analysis
would propagate to 𝑟 𝑗 where j is the index to identify the resource. In the next
step, it would identify the connected elements. In our case, this would be 𝑛𝑖
and 𝑟 𝑗+1. The other elements like 𝑛𝑛+1 or 𝑟 𝑗+2 are not reachable since they are

192

7.2. Attack Propagation

<<Network>>
ni

<<Device>>
rj

<<Device>>
rj+1

...

...
<<Network>>

ni+1

<<Device>>
rj+2

...

...

<<Device>>
rl

pm pm+1pm-1 pm+2 pn

Figure 7.3.: Chained ResourceContainers schematics for the scalability evaluation

only transitive connected by the connected elements, and the propagation
step only uses directly connected elements. From the directly connected
elements, only 𝑟 𝑗+1 is vulnerable. Therefore, the analysis compromises in
the propagation step 𝑝𝑚 only 𝑟 𝑗+1. The process is repeated, and in 𝑝𝑚+1, the
now directly connected 𝑟 𝑗+2 is compromised. This is repeated until the last
element in the chain 𝑟𝑙 is reached. We scaled the ResourceContainers along
the power of 10 from 101 elements till 105 elements because we assume this
is a reasonable upper limit for manually modelled software architectures. We
measured the time from after the loading and creation of the model till the
execution of the attack propagation was finished. This measurement does not
include the writing of the output on the disk. Therefore, the measurement
contains only the analysis runtime with no input and output handling. The
attacker model contained the capability to exploit the vulnerability of the
ResourceContainers. In addition, we manually verified in a test run that
the attack propagation marks the chained ResourceContainers as affected.
To ensure accuracy and eliminate outliers, we repeated each measurement
five times and calculated the average. In our sample data, the averaging of
five proved to be enough to avoid outliers. Additionally, we performed one
warm-up analysis before executing the scalability analysis. The analysis was
executed on a VM with 20 AMD Opteron Processor 8435 with 62.5 GB RAM,
and the operating system was Debian 11 with the OpenJDK 17.

7.2.3. Results & Discussion of Accuracy

We investigated 18 scenarios for the attack propagation analysis (one scenario
for each real-world breach, 15 TravelPlanner subscenarios, and the Mainte-

193

7. Evaluation

nance scenario as the running example). The results for G2 are shown in
Table 7.2. It shows for each evaluation scenario and evaluation subscenario
the answer to each corresponding evaluation question. The first column EQ
lists the evaluation questions. The second column contains the metrics (M)
to answer it. Afterwards, the columns for the scenario and subscenarios are
listed. The column T is the Target scenario, the P is the Power Grid scenario,
all the columns starting with TP are the TravelPlanner subscenarios, and MT
is the Maintenance scenario. Overall the results for G2 are very good.

In detail, for Q2, we have a precision (p), recall (r) and F1 from 1.00 for all
scenarios. These are perfect results for our scenarios. We can achieve these
perfect results since in the real-world based scenarios (Target, Power Grid),
the system was highly compromised. In addition, the subscenarios in the
TravelPlanner scenario are very small due to their focus on edge cases. Both
aspects reduce the complexity of the expected outcome and enable us to
achieve these. In other scenarios, the result can differ. However, these simpli-
fied scenarios enable us to get a better understanding of functional properties,
such as wrong propagation rules. In our threat to validity section (c.f. Sec-
tion 7.2.6), we discuss the implication of the small evaluation scenarios in
more detail. The evaluation results indicate that the analysis implementation
and propagation rules are, at least for the investigated scenarios, the required
ones. They also indicate that we can use the analysis in similar scenarios
and expect good results. Nevertheless, the very good results raise questions
regarding too high specialisation of the analysis for the investigated scenarios
and how generalisable the results are. We discuss this in our threats to validity
section (c.f. Section 7.2.6).

Overall, based on our results, we can say that our attack propagation analysis
can help identify potentially affected architectural elements by attackers. The
results of Q2 indicate that the affected architectural elements are accurate
for similar scenarios like in our evaluation. Based on our scenario choices,
we cover different domains, such as enterprise backend applications or IoT
environments. Hence, we assume that the results are transferable to other
scenarios. In addition, the security experts also get first insight into the
potentially affected data.

Based on these results, security experts or software architects can harden
the software architecture by introducing appropriate mitigation concepts to
prevent the attack propagation. By hardening different parts of the software

194

7.2. Attack Propagation

architecture and preventing the propagation of attackers, the overall security
of the system can be increased.

7.2.4. Results & Discussion of Effort Reduction

The second evaluation goal for the attack propagation analysis is the effort
reduction (G3). It is investigated by our evaluation questions Q3.1,Q3.2,
Q3.3, and Q3.4.

We start by discussing the results for Q3.1. Table 7.2 shows the results for
Q3.1 for each investigated scenario, where T is the Target scenario, P is
the Power Grid, the TPs are the subscenarios from the TravelPlanner, and
MT is the Maintenance scenario. For 𝑀2.1, the results in the Target and
Power Grid scenarios are lower than in the TravelPlanner subscenarios. This
observation also reflects the expected outcome because of the number of
affected elements. In the first two scenarios, nearly all the architectural
elements are affected. There the number of unaffected elements is reduced,
which leads to more elements for the security expert to check manually.
Therefore, the effort reduction is reduced in comparison to a fully manual
analysis. This manual analysis is necessary to further clean a system after
a compromisation (c.f. Section 7.2.1 – Q3.1). The reduction can be seen
even more if we investigate the resulting attack propagation in detail. In
both scenarios, the unaffected elements are mostly external elements, such as
outside network elements. Hence, the effort reduction might be slightly less
than described in real systems. This effort reduction depends on the fact that
the security expert needs to clean the compromised elements from malicious
users manually. Therefore, if the attack propagation is smaller, fewer elements
are affected, and fewer elements need to be manually cleaned. This illustrates
the TravelPlanner subscenarios where the effort reduction is higher. This
is based on the fact that in these scenarios, the attack propagation does
only affect a part of the system. Hence, the automatic analysis reduces more
elements for a manual inspection and can therefore save moremanual effort in
these scenarios. Because in TP1 no propagation happens, we cannot calculate
a value for it. Nevertheless, the result indicates, based on the TravelPlanner
subscenarios, that for smaller breaches which do not affect the complete
system, our analysis can save between 44% and 88%. For 𝑀2.2, the results
look similar. The scenarios with a smaller propagation indicate better results.
These are shown by the low number in most cases. It indicates that in certain

195

7. Evaluation

Table
7.2.:Evaluation

resultsforthe
attack

propagation
analysisregarding

accuracy
and

effortreduction

Scenarios

EQ
M

T
P

T
P1

T
P2

T
P3

T
P4

T
P5

T
P6

T
P7

T
P8

T
P9

T
P10

T
P11

T
P12

T
P13

T
P14

T
P15

M
T

Q
2

p
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00
r

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

F1
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00

Q
3.1

𝑀
2
.1

0.13
0.28

—
0.86

0.63
0.78

0.78
0.78

0.67
0.70

0.71
0.67

0.44
0.60

0.80
0.83

0.88
0.88

𝑀
2
.2

0.87
0.68

0.00
0.10

0.30
0.20

0.20
0.20

0.30
0.30

0.20
0.30

0.50
0.40

0.20
0.10

0.10
0.13

196

7.2. Attack Propagation

scenarios, the security experts can save significantly their effort by using
the attack propagation. In some subscenarios like, for instance, TP2 or TP14,
the value is 0.10 very good. This results in an effort reduction from about
90% to a fully manual analysis since only 10% of the elements need to be
manually analysed. As previously described, the manual analysis covers the
clean-up operation of compromised architectural elements (c.f. Section 7.2.2).
Overall the results indicate a potential effort reduction in comparison to a
fully manual analysis. However, this is not always the case for systems with a
higher percentage of affected elements. Nevertheless, even in these scenarios,
the attack propagation analysis can help the security experts by getting first
insights about the propagation or verifying their manual attack propagation.
Hence, in cases of breaches, our analysis can help to secure the system or,
during the design time, show the experts some insights regarding possible
attack propagation without manually estimating the attack propagation.

Here, we discuss the initial effort necessary to model a system for using our
analysis and thereby try to answer the evaluation question Q3.2. The initial
effort can also be described as activities necessary to perform for executing
our analysis. To answer this evaluation question, we focus on the creation of
a fully specified model. In the evaluation question Q3.4, we will also discuss
how different abstraction levels can help to reduce the effort. Table 7.3 shows
the activities based on the involved model elements. The first column shows
the PCM viewpoint if the involved models are PCM elements. In the case of
our models, it shows the involved metamodels. The second column has the
model elements, and the next column marks whether the model element is
affected. For this evaluation question, the column Initial is the last relevant
one. A line marked with x states states that the model element needs to be
created.

Overall all elements are marked as required. The involved activities are, first,
the creation of the Service types. In PCM, this is the definition of interfaces
and services. Then the creation of model element Component types, which is
the creation of components in the repository, such as BasicComponent and the
selection of provided and required interfaces. The model element Components
describe the creation of instantiated components in the system and their
connection to other components. The actual services implementation is the
model element Services. This covers the SEFF specification in PCM. Our
analysis also uses the information from the Deployment. Hence, the model
elements for theDevices,Network (the connection between network nodes and
devices), and the Allocation need to be created. So far, these are “only” PCM

197

7. Evaluation

Table 7.3.: Activities performed during the usage of the attack propagation analysis

Category Model Element Initial S E1 E2 E3

Structural
Service types x x
Component types x x
Components x x x

Behavioural Services x x

Deployment
Devices x
Network x
Allocations x x x

Propagation

CWE/CVE IDs x (x) x
Vulnerabilities x (x) (x) x
Roles x x (x)
Communication x x (x)
Attacks x (x)
Attackers x (x) (x) (x) (x)

Access Control
Attributes x (x) x
Attribute Providers x (x) (x)
Access Control Policies x x x x

model elements. The next model elements are the new elements introduced
by our analysis. The first is the creation of model element CWE/CVE IDs.
These are the IDs later used in the Vulnerabilities. Here, the vulnerabilities
must be modelled. For this, the security experts need to analyse the existing
architectural elements, identify the vulnerability, and assign them to the
architectural element. The next two activities add additional metadata to
the architecture by identifying potential roles between components, such
as clients and servers. In addition, they need to specify which components
can communicate globally. The model element Attacks is the identification
and creation of existing attacks. The last activity in the propagation section
is the modelling of the model element Attackers. Here, security experts
need to model the attackers. The next group is the Access Control activities.
Consisting of the creation of the model elements Attributes, assigning the
model element Attribute Providers and the definition of the model element

198

7.2. Attack Propagation

Access Control Policies. Overall to answer our evaluation question Q3.2, the
analysis needs, in the worst case, 16 different model elements. Hence, the
effort for creating the system is higher than for only software architecture
models with PCM, which requires only 7 elements. However, in the other
evaluation questions, we describe how the initial effort can be reused or even
lowered.

While the initial effort can be very cumbersome with the creation of the
different model elements, many of the model elements can be reused, for
instance, in evolution scenarios. With the evaluation question Q3.3, we
discuss what effort is needed in evaluation scenarios and what elements can
be reused. We split the discussion into two parts. First, we discuss system-
specific and independent model elements. Afterwards, we discuss different
evolution scenarios and what model changes they would require.

The fourth column illustrates system-specific model elements (S). We mark
system-specific elements with x. Some elements have aspects which are
system-specific and some elements are system independent. These elements
are marked with (x). The elements without a marking are system independent.
System independent elements are model elements which can be reused in
other systems. For instance, the component types are system independent,
meaning, that a modelled component can be reused in a different system
requiring the same functionality. For the elements of the original PCM cate-
gories Structural, Behavioural, and Deployment, we reused the existing classi-
fication described in Reussner et al. [154, p.44]. For the others, we manually
derived them. The CWE/CVE IDs are in general system independent because
CWEs are describing by nature system independently weaknesses and CVEs
describe a concrete vulnerability of an element. While the element can be
system-dependent, the ID for the vulnerability itself is not. The Vulnerabil-
ities are system-specific and system independent. Similar to the CVE, the
vulnerability itself is system independent. However, the attributes regarding
the gained credentials are system-specific. In addition, in some cases, other
attributes of the vulnerability can be system-specific. For instance, the attack
vector can vary in some cases on the concrete configuration of a software
product. However, these are very rare edge cases where the general vulnera-
bility classification differs from the concrete one. The Role assignment is again
system-specific, as well as the Communication. The attacks are like the CWE
system independent because the attack contains only exploitable IDs. The
Attackers itself have both parts again. The system-specific part is the starting
point of the attacker and the knowledge about attributes. The other parts of

199

7. Evaluation

the capabilities are, in general, transferable. The Attributes are, in general,
system independent. For instance, the role model of a system can be trans-
ferred between different systems. Also, other aspects, like the state attribute,
can be used in a different system. However, there are exceptions. For instance,
the issuer flag can have system-specific attributes. The same is true for the
Attribute Providers. In case they use system independent elements, they can
be system independent. Otherwise, they are system-specific. The Access
Control Policies are generally system-specific. They protect system-specific
architectural elements or the rules are specific to the use case. Nevertheless,
there might be sometime cases, such as a very identical system with the same
organisation hierarchy, where parts can be reused. In summary, our approach
has many system independent elements, which can be reused in other models.
Therefore, for many elements, the effort is only an initial effort, and the effort
can be reused in evolution steps.

To further discuss the evolution effort, we introduce three evolution scenarios
based on typical scenarios during the evolution. We consider these scenarios
because they represent regular activities which should be performed for active
systems. However, we do not intend to claim completeness on the scenarios.
There can exist other scenarios.

E1 Updating the software architecture, by adding a new component and
services to the system.

E2 Adding a new vulnerability to the software architecture

E3 Adding a new user role to the access control policies

The involved model elements in the evolution scenarios are shown in the
three last columns from Table 7.3. The involved model elements are marked
with x. In some cases, the involvement is dependent on the concrete situation.
In these cases, we mark them with (x).

The first evolution scenario E1 represents the typical scenario that new
functionality should be added to the system. For instance, a web server
could be added to our running example. This would require adding the new
component and the provided server, resulting in effort to update these models.
In addition, the new component must be deployed somewhere. In our case,
we could deploy it on existing hardware. Therefore, the Allocations need to
be updated. Depending on whether the new components have vulnerabilities,
also the CWE/CVE IDs and Vulnerabilities need to be updated. The same
holds for Roles and the Communication. Both need to be updated if the new

200

7.2. Attack Propagation

component adds either a new role or cannot communicate with everyone.
Depending onwhether the new component can also provide certain attributes,
the Attribute Providers needs to be updated. In addition, the Access Control
Policies need to be updated to grant access to the new component.

The second evolution scenario E2 represents the case that a new vulnerability
is found for an existing architectural element. This is a common use case,
especially for longer-running systems, where new vulnerabilities are found
over time for the architectural elements. In this scenario, in the best case,
we only need to update the Vulnerabilities and CVE IDs. In some cases, we
might also add a new attack and add this to the attackers. However, this
is optional. For instance, if the new vulnerability belongs to a CWE class
for which an attack already exists, it is unnecessary to define a new attack.
Nevertheless, there also might be a scenario where security experts explicitly
want to create a new attack for this vulnerability, for instance, for high-profile
vulnerabilities.

The last evolution scenario E3 represents a scenario where a new user role
should be added to an existing access control model. In this scenario, we
assume that the role is not stored on a component, and our architecture
abstraction does not include identity providers. In this case, we need to
update the Attributes by adding the new role. In addition, the Access Control
Policies need to be updated so that they use the new role. Optionally, the
Attackers can be updated. This is necessary if the new role changes the threat
model. For instance, the new role is a newly contracted company and not
very much trusted yet. Here, the security expert can create a new attack with
the knowledge of the company and analysis the impact.

Overall for Q3.3, we have seen that not all elements need to be updated in the
different evaluation scenarios. Many elements can be reused or stay the same.
Even during larger changes, which affect multiple model elements like in E1,
many of these elements are optional and depend on the concrete scenario.
It can probably be assumed that in these cases, often not all optional model
elements need to be updated.

Our last effort evaluation question Q3.4 covers the discussion about potential
effort reductions to our approach. We identified three aspects that can help
reduce the effort during our work. As for the previous effort discussion, we
do not claim completeness, but the aspects are rather three example cases of
how the effort can be additionally reduced.

201

7. Evaluation

1) Different abstraction levels

2) Automatic software architecture recovery and update

3) Automatic vulnerability updates

The first part is about the different abstraction levels. In Q3.2, we discussed
which steps are necessary for creating an initial model. During the discussion,
we explicitly stated that these steps are necessary for fully modelled software
architectures. However, in some cases, we do not need a fully modelled soft-
ware architecture or even cannot provide one, for instance, during the early
design time. Also, the abstraction can be helpful. One obvious answer to how
abstraction can save the effort is that a higher abstraction layer combines
multiple smaller components into one component and, therefore, reduces the
number of components needed to be modelled. However, the same can also
be true for a partial model where we abstract from certain aspects. For in-
stance, our attack propagation does not necessarily need the specified services.
Therefore, software architects can leave them out and still use our analysis.
The same is true for hardware resources and deployments. Theoretically, the
propagation also works only on components or only on connected resource
containers (similar to our scalability evaluation). This is especially useful in
different design phases, where certain information is not yet available. For
instance, if the hardware is unknown, it is already possible to propagate on
the component architecture. This way, software architects can potentially
save some modelling effort for the software architecture and security experts
need to identify fewer vulnerabilities. It also stretches the modelling effort
over a longer time. However, like always with a higher abstraction, there
might be the case that through the abstraction, some security violations are
not identified.

The second part to reduce the effort is automatic architecture recovery tools.
The model creation is a big effort, especially for old and larger legacy systems.
Often these systems also do not have accurate models, or there exists nomodel
or documentation at all. There exist approaches which can help in these cases.
These approaches recover the software architecture by using the source code,
investigating log files, or other build artefacts. Typical approaches for PCM
are SoMoX [25], Monschein et al. [119] or Kirschner [93]. In general, they
provide not the exact software architecture but a representative software
architecture. Also, they currently provide only the software parts. They
cannot provide information about the hardware resources. Also, some of
these approaches cannot yet partially update the model, which is useful

202

7.2. Attack Propagation

in evolution scenarios. Nevertheless, Monschein et al. [119] and Heinrich
[70] can provide these features. By integrating their approaches, it might
be possible to reduce the effort further because then the architecture model
would be automatically updated.

The third part of the potential effort reduction is the automatic derivation
of vulnerabilities. In Section 4.3.5 and in Kirschner et al. [94], we already
presented an initial approach for automatically creating the vulnerability
model. While it cannot derive some system-specific information for the
vulnerabilities, such as the gained attributes, it can already automatically
derive most attributes of our vulnerability model. Therefore, it can help to
significantly reduce the effort for the initial creation of the vulnerability model.
Currently, it does not support updating the vulnerability model. However, it
might be possible to implement this feature in combination with approaches,
such as iObserve [70]. Therefore, this might reduce the effort in evolution
scenarios.

7.2.5. Results & Discussion of Scalability

In this section, we present and discuss our findings about the evaluation
goal G4 regarding the scalability. We discuss it by answering our evaluation
question Q4 with a scalability experiment based on the scaling of Resource-
Containers and measuring the runtime.

The measured runtime for the scalability is illustrated in Figure 7.4. The
vertical axis contains the runtime in ms. It shows a logarithmic scale from
102 till 109 ms. The horizontal axis contains the number of ResourceCon-

tainers. It is a logarithmic scale from 101 to 105. The line with the circles
shows the average runtime of the attack propagation analysis. Each circle
represent a scaling step. For instance, we measured the average runtime at
101 and 102. The line between two datapoints (circles) is interpolated from
the datapoints. For 10 elements, the analysis needs around 555 ms. The
runtime then slowly increases to 2,918 ms for 100 elements and 52,905 ms
for 1000 elements, which is roughly a bit less than one minute (52 seconds).
Afterwards, the runtime drastically increases for 10,000 elements to around
3,864,488 ms, which is a bit more like one hour. It then further increases for
100,000 elements to around 442,632,110 ms, which is around five days. As
expected, the number of vulnerable ResourceContainers affects the runtime
of the attack propagation analysis. We also assume that the propagation

203

7. Evaluation

for other architectural elements will produce similar results because the
propagation rules for the ResourceContainers are structurally similar to the
propagation rules of other architectural elements.

The analysis runtime is a significant challenge, particularly for architectures
with a large number of elements. The execution time required by our analysis
does not support prompt responses to newly discovered vulnerabilities, nor
does it currently allow for daily analysis runs in large systems. Instead, it
suggests that a weekly analysis run may be more practical. However, daily
analyses are feasible for smaller systems containing 10,000 elements or fewer.
For example, the shop system with 450 microservices mentioned in Newman
[122, p. 6] can be analysed within a reasonable timeframe. The runtime
should be within minutes if the model is not highly detailed such as only
one component for each microservice. One possible solution to improve
scalability is to create a more abstract architectural model that reduces the
number of architectural elements. This approach is also applicable in domains,
such as IoT, where similar sensors can be grouped together as a single sensor.
Although the model size is reduced, the analysis results remain similar since
the sensors share the same characteristics. Moreover, the results of [56]
suggest that the average time frame for exploiting a vulnerability is six days.
Thus, our analysis could potentially identify a potential attack propagation
before an attacker can exploit them. However, the trend towards faster
exploitation of vulnerabilities highlights the need to improve scalability in
the future.

As for potential improvements in runtime, several options are available. First,
the used CPU architecture (AMDOpteron Processor 8435) is quite old because
it was released in 2009. A newer CPU architecture might produce slightly
better results. In fact, initial testing on newer CPUs demonstrated some im-
provement of around two-thirds, particularly for smaller systems with 10,000
elements or fewer. Second, parallelizing the execution of the propagation
rules could reduce the runtime by making better use of available hardware
resources. Currently, the application is mostly single-threaded, which limits
the processing capacity. Third, the data structure for extending the software
architecture and modelling it is not ideally suited to this type of analysis. The
analysis requires frequent searches across different modelling domains, which
can lead to slower performance due to the increased runtime by searching in
lists. Using more caches or more efficient data structures for searching could
address this issue. Finally, improving the handling of propagation triggers
could be another area for potential improvement. Currently, after a change is

204

7.2. Attack Propagation

101 102 103 104 105

103

104

105

106

107

108

109

Number of Resource Containers

Ru
nt
im

e
in

m
s

attack propagation

Figure 7.4.: Scalability results (G4) for increasing number of resource containers

made to an element, all the propagation rules are retriggered, which can be
inefficient. A more effective solution would involve the fine-grained selection
of relevant propagation rules and only retriggering those, thus minimizing
unnecessary computations.

In summary, the runtime is for larger systems could be better. However, the
runtime still enables a weekly analysis. In addition, there is potential for
performance improvements for larger systems by refactoring the analysis
for more efficient algorithms and data structures or using higher abstraction.
In addition, for smaller architecture, the runtime is already acceptable and
might improve further on current hardware.

7.2.6. Threats to Validity

Similar to the previous analysis, we structure the threats to validity after the
guidelines for case study validity from Runeson et al. [157]. We transferred the
guidelines to our mostly scenario-based evaluation because of the similarity to
case study-based research. The four used categories are the Internal Validity,
External Validity, Construct Validity, and Reliability.

205

7. Evaluation

Internal Validity This validity category is about the influencing factors for
the results. For the evaluation question Q2, the results are influenced by the
classification of the architectural elements as affected or not. The classification
is based on the attack propagation rules, which mark an architectural element
as affected or not. A possible threat could be that the propagation rules mark
the wrong element as affected or not affected. In this case, the wrong element
could be affected. This would result in a wrongly classified element. However,
depending on the other propagation rules, this might not be uncovered only
by the classification of affected and not. In some cases, other propagation
rules affect the element, thereby fixing the previous propagation mistake.
Therefore, the element is affected by the wrong element. However, these
results can be identified by manually identifying the propagation source
and vulnerability, which we did after the evaluation. During this additional
manual analysis, we identified no such cases. In the other case, in which no
other propagation rule “fixes” the other rule, the result would be marked as
wrongly classified. In this case, our metrics for the scenario could not be 1.0.
Hence, we assume this risk to be low.

The expected classification in affected elements and not affected elements
could be false because we manually created them. To lower the risk, we
used mostly external scenarios and created the expected results based on
existing literature [170], reports [68, 173, 145], and security advisors, such as
OWASP 10 [137] or the NVD [131]. In addition, based on the fact that our
metamodel uses similar properties to existing vulnerability classifications,
such as CVE, the assignment of the correct properties and the impact is also
easier because they can mostly be directly extracted. However, this can also
be a drawback if the used source wrongly classified the results. An example
of this wrongful classification is the vulnerability in our running example
[129]. Nevertheless, in general, we assume that the classification by experts
for vulnerability classification is correct. Hence, we consider this threat to be
low.

Another point affecting the internal validity based on the results and sce-
narios is the size of the used models. The scenarios themselves are quite
small. Therefore, it might be that not all aspects of the analysis are evaluated.
We mitigated the risk by introducing the specific subscenario for the Trav-
elPlanner case. These cover missing aspects from the other scenarios. Overall,
our used scenarios include the important aspects of the attack propagation
analysis, such as gaining new credentials, exploiting vulnerabilities based
on CWEs/CVEs (authenticated and not authenticated), propagation from

206

7.2. Attack Propagation

different compromised architectural elements, such as AssemblyContext or
ResourceContainers. Therefore, adding more architectural values might not
result in more insights regarding the basic functionality. Nevertheless, in
larger case studies, there might be unknown side effects. However, based on
our very good results for the smaller systems, we think that even if these
unknown effects may lower the accuracy, it still should be good results.

Another risk is the used metamodels and propagation rules. The evaluation is
based purely on the analysis results and does not separately evaluate the used
metamodels and propagation rules. If the metamodel neglects a relevant prop-
erty for the propagation, the propagation rules cannot use them. In addition,
we might not have considered every possible propagation as a propagation
rule. We reduced the risk by the metamodel twofold. First, we used the PCM
as our architectural metamodel, which is a well-established ADL used for
many different quality properties, including security properties like confi-
dentiality [166, 143]. For the second part, our access control, vulnerability,
attack, and attacker metamodel is built on different well-established external
standards and classifications. This might reduce the risk of overseeing some
aspects. Nevertheless, this comes with the drawbacks of these classifications,
and this must be considered. However, similar properties to our used ones
can be found in other external classifications. Therefore, we assume the risk
to be low. In addition, during our evaluation, we identified no missing aspects
for the scenarios.

For the effort reduction goal G3, our threats are aligned with the discussion
about effort and its measurement. In Q3.1, we decided to measure the effort
solely based on counting model elements. Other aspects, like the creation of
the models, are not considered. We discussed this aspect in Q3.2. We discuss
similarly the questions Q3.3 and Q3.4. However, in all three cases, this is a
more a qualitative discussion.

For the evaluation question Q4, an internal threat is that the increased mea-
sured runtime does not depend on the increased ResourceContainers but is
affected by other attributes. The scaling factor is limited to two architectural
elements to reduce the threat. We only introduce additional ResourceCon-
tainers and LinkingResources. In addition, we manually verified that the
newly added ResourceContainers are vulnerable and affected during the at-
tack propagation and the LinkingResources are unaffected. The additionally
added LinkingResource can slightly affect the propagation runtime since

207

7. Evaluation

they are also checked for vulnerabilities, but their checking is similarly imple-
mented to the ResourceContainers. In addition, a scaled real system might
also have additional LinkingRessources. Also, the external insights we got
through profiling the application support the aspect that an increased number
of ResourceContainers affect the runtime. Besides internal factors like the
discussed model input, other external factors, such as the system usage or
other executed processes, can affect the scalability results. We tried to reduce
these external factors by using a dedicated separated Virtual Machine (VM)
only for the scalability analysis. This VM was assigned dedicated processing
and memory resources to reduce the effect of other VMs running on the
device. In addition, each scaling step was repeated five times, and the average
was calculated from the measured data. Therefore, we assume the risk of
interference to be low.

External Validity As described, this validity discusses how generalisable the
results are. As mentioned in the access usage scenario evaluation, we might
increase the insight into a problem by using scenarios for the evaluation. As
a drawback, the scenario might be very specific and does not share all the
required properties which a problem in general has. Therefore, the chosen
scenarios might not be representative for the overall problem. We tried to
mitigate the risk by investigating different external scenarios. Two scenarios
are based on real-world breaches, one scenario is based on a common research
system, and the last scenario is based on a scenario described by industrial
partners in a research project. The different scenarios also cover slightly
different application domains, such as Industry 4.0 or Enterprise Business
Systems. Therefore, we assume the risk of too specific scenarios to be low.

Nevertheless, the investigated scenarios show more the functional accuracy
than the general accuracy in real-world systems. Especially aspects like
the potential overestimation due to the inference of compromised data or
the handling of AssemblyContexts deployed on compromised ResourceCon-

tainers is not thoroughly investigated. Here, the main problem is to find
real-world scenarios containing detailed enough information to observe this
effect. In addition, in the investigated scenario, nearly all elements are affected.
Therefore, the effect could not be observed. The same also holds for the effort
reduction goal, which is specific to the investigated scenarios.

For the scalability goal G4, a threat is the generalisation from the Resource-
Containers to the general scalability behaviour of the attack propagation

208

7.2. Attack Propagation

analysis. Internally, the ResourceContainer propagation is structured simi-
larly to the other propagations rules. Therefore, the results should be transfer-
able to the other propagation rules. Their runtime might be slightly different
because they differ in small details. However, the overall timeframe should
be comparable.

Construct Validity This validity discusses whether the investigated property
is appropriate for the intended goal. In our case, the investigated properties
are the used metrics. We used a GQM plan to reduce this threat. The GQM
plan highlights the relationship between the evaluation goals and metrics.
This clear structure can help to find meaningful metrics for the evaluation
goals. In the following, we will discuss the appropriateness of the metrics for
each evaluation goal and question.

Our first evaluation G2 is investigated by the research question Q2. To
answer the evaluation question Q2, we used the metrics precision, recall
and F1. These metrics help to identify the impact of false positives, true
positives and false negatives. Therefore, they give more insights regarding
how accurate the results are. In addition, the metrics are used to evaluate the
foundational maintenance propagation [156, 155, 71, 36]. In addition, other
approaches in the field of model-driven security analysis, such as Seifermann
et al. [168] or Boltz et al. [32], use identical or similar metrics. Therefore, we
assume the risk to be low.

The evaluation question Q3.1 belongs to our evaluation goal G3. To answer
the evaluation question Q3.1, we use two counting metrics,𝑀2.1 and𝑀2.2.
Both metrics are a ratio between counted model elements. The first metric
calculates the effort reduction in case a security expert knows where the
propagation ends. Hence, it calculates the ratio of the additional elements
which need to be investigated. In contrast, the last metric illustrates the overall
effort reduction if not all elements need to be checked. It is based on the
evaluation of the foundational propagation approach [155], where a similar
evaluation question is answered. There, they investigated an additional
ratio which contained the false positives. However, in our case, this is not
necessary since we had in our evaluation no false positives, which would
result in the same values as we have calculated. Therefore, we assume the
metric is appropriate because it describes the effort reduction overall and is
already used in foundational approaches. In addition, we used both metrics
in Walter et al. [211].

209

7. Evaluation

Regarding the scalability, we answer the evaluation question Q4 by using
the runtime in relation to the scaled ResourceContainers. In other words,
we put the runtime in relationship to a scaled input size. Similar metrics are
used in other model-driven approaches, such as Heinrich [70], for observing
the scalability. Also, in related approaches, such as Polatidis et al. [148], the
runtime is measured for different input scales. Therefore, we assume that the
chosen metric is appropriate for the evaluation goal.

We answer Q3.2, Q3.3, and Q3.4 by a discussion about the modelling effort.
This is not ideal, and we cannot provide quantitive results. However, we
choose the discussion to provide more insights about the modelling effort
than not considering it.

Reliability This category discusses whether other researchers can verify and
reproduce the results. Most of our evaluation questions are answered by using
metrics. This usage can increase the reproducibility by avoiding subjective
interpretation. It is also useful in the comparison with other approaches
or extended approaches. Another aspect for lowering the threat is to use
a structured evaluation plan as we did with the GQM. This helps other
researchers understand the relationship between the goals and metrics more
easily.

For answering Q3.2, Q3.3, and Q3.4, we choose a discussion about the effort
necessary to create the model. We broke down the model creation into
simple update or creation tasks which are associated with the involved model
elements. By using these simpler tasks, we tried to lower the risk of our
subjective interpretation and tried to increase the reliability.

In addition, we prepared a dataset [208] containing all the used models,
source code and binary code to execute the analysis. With the dataset, other
researchers can verify the model and the results. In addition, the expected
results for the evaluation question Q2 are encoded in Java rules, so others can
more easily verify the results. In addition, we provide an automated process
for answering the evaluation question Q4. This enables other researchers
more easily to reproduce the results. The reproduction is also possible on
different hardware as the used hardware in our case. This does not affect the
evaluation goals G2 and G3. For the scalability evaluation, this should only
affect the overall values but not change the drawn conclusion. While the
used evaluation system had more hardware resources than regular systems,

210

7.3. Targeted Attack Graph Analysis

the approach does not exploit them. Therefore, any regular computer system
should be sufficient.

7.3. Targeted Attack Graph Analysis

In this section, we discuss the evaluation of the Targeted Attack Graph Analysis
(c.f. Section 5.3). During the evaluation, we discuss how well our research
questionRQ2.2 is answered. In the evaluation, we cover the contribution C4.2
and the metamodel contributions C1 and C2. As in the previous evaluation,
we do not directly evaluate the used metamodels but only evaluate them
based on their pragmatics through evaluating the analysis. The evaluation is
based on the evaluation of our original publication in Walter et al. [212].

7.3.1. Goal, Question, Metrics

Like in the previous sections, we use the GQM approach for the evaluation
of the targeted attack graph analysis. In this section, we present the used
goals, questions, and metrics. The GQM plan is also graphically represented
in Figure 7.5. We start by explaining our evaluation goals:

G5 Validate the accuracy of the targeted attack path analysis from a secu-
rity expert and software architect view.

G6 Validate the effort reduction of the targeted attack path analysis re-
garding manual analysis from a security expert and software architect
view.

G7 Validate the scalability of the targeted attack path analysis from a
security expert and software architect view.

The evaluation goal G5 investigates the accuracy of predicting attack paths
to a targeted element. A similar property is investigated in both previous
evaluations (c.f. Section 7.1 and Section 7.2). Like for the G1 and G2, we
need to determine a ground truth for the evaluation. In our case, this is
possible attack paths between different architectural elements. An analysis
with a low accuracy comes with the same drawbacks as described for G2.
As described, a low accuracy can lead to that security experts are not aware
of existing attack paths. Therefore, allowing a malicious attacker to exploit

211

7. Evaluation

G5: Validate the accuracy of the targeted attack path analysis from a security expert and
software architect view

Q5: How accurately does the analysis identify attack paths?

𝑝 =
𝑡𝑝

𝑡𝑝+𝑓𝑝

𝑟 =
𝑡𝑝

𝑡𝑝+𝑓𝑛

𝐹1 = 2 𝑝∗𝑟

𝑝+𝑟

G6: Validate the effort reduction of the targeted attack path analysis regarding manual analy-
sis from a security expert and software architect view

Q6: What is the effort reduction per attack path compared to a manual analysis based
on the software architecture?

𝑀2.2 = 𝑒𝑎
𝑛

G7: Validate the scalability of the targeted attack path analysis from a security expert and
software architect view

Q7.1: How does the runtime of the graph creation behave with an increasing number of
elements?

Runtime/Resources

Q7.2: How does the runtime of the pathfinding behave with an increasing number of
elements?

Runtime/Resources

Figure 7.5.: Overview of GQM plan for contribution C4.2

212

7.3. Targeted Attack Graph Analysis

them. In addition, it might be that security experts waste important resources
for protecting non-affected architectural elements, which leads to additional
costs or that protection resources might not be available for relevant affected
architectural elements. Also, a high rate of false positives might negatively
affect the security experts using the analysis. They might consider the results
irrelevant and categorise them as false even when they are correct. Therefore,
a high accuracy is desirable for the targeted attack path analysis. Other
related approaches, such as Seifermann [166], Busch [36], and Pilipchuk
[143], also investigate accuracy. However, they investigate it for other quality
predictions and do not investigate the accuracy of attack path estimations.

The evaluation question investigates the accuracy of the analysis results. The
evaluation question is: Q5 How accurately does the analysis identify attack
paths? The question focuses on the detection of attack paths to estimate the
accuracy. We decided to use this question since our analysis returns a list of
possible attack paths to the targeted element. The attack path contains the
involved architectural elements. Here, the architectural elements are Assem-
blyContext, ResourceContainer, and LinkingResource. Therefore, these are
the directly used results software architects, together with security experts,
can use to increase the security of the system.

For answering the evaluation question Q5, we classify the analysis results,
which are the list of the found attack path. A valid attack path is a true
positive (𝑡𝑝), which means the analysis correctly detected an attack path
between a possible start point and the targeted element. In addition, the
attack path is valid, meaning it contains a list of connected elements from
the start point to the targeted element, which can be compromised under the
filter criteria. False positives (𝑓𝑝) are attack paths found by the analysis, but
there exists no real attack path. False negatives (𝑓𝑛) are not found or not valid
attack paths by the analysis. Based on this classification of the found attack
paths, we calculate our metrics, which are precision (p), recall (r) [203] and
the harmonic middle F1:

𝑝 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
𝑟 =

𝑡𝑝

𝑡𝑝 + 𝑓𝑛
𝐹1 = 2𝑝 ∗ 𝑟

𝑝 + 𝑟

The first metric, the precision, quantifies how many of the found attack paths
are considered by the manual analysis as valid attack paths. Here, a higher
value is better because it indicates a higher percentage of correctly found

213

7. Evaluation

attack paths. A high precision can increase the trust of security experts in
the results of the analysis. Therefore, it might also increase the applicability.
The second metric, recall, shows the ratio of found attack paths to non-found
attack paths or invalid attack paths together with the found attack paths.
Here, a higher value indicates fewer missing attack paths or invalid ones.
Missing attack paths can lead to security incidents because security experts
are not aware of security threats and cannot mitigate them. Therefore, a
higher recall is better. The last metric, F1, combines both values to compare
them. Here, also higher values are better. Overall, the chosen metrics give
insights into the accuracy by considering also the false positives and false
negatives. Also, other related confidentiality approaches, such as Seifermann
[166], use metrics to gain insight into false positives and false negatives.
Our used metrics are also very commonly considered in the evaluation of
model-based quality analyses, such as Busch [36], Heinrich et al. [71], and
Boltz et al. [32]. Also, we used the metrics in various confidentiality-related
publications, such as Walter et al. [211, 210].

Our second goal G6 investigates the effort reduction by using our automated
analysis in contrast to a fully manual analysis. Investigating the effort is
important because a high effort may prohibit the application by software
architects or security experts. Therefore, ideally, the analysis should reduce
more effort than it generates. Also, the related approach Busch [36] investi-
gates a similar goal with their coverage. Also, our related attack propagation
analysis (c.f. Section 5.2 and Walter et al. [211]) investigate a similar goal.

Our evaluation question for narrowing down the goalG6 to a specific effort is:
Q6 What is the effort reduction per attack path compared to a manual analysis
based on the software architecture? With the evaluation question, we want
to investigate potential effort reduction by using our analysis compared to a
complete manual analysis. Similar to the evaluation question Q3.1 from the
attack propagation analysis, we assume that software architects or security
experts use in themanual analysis aswell as in the automatic analysis software
architecture models and security models like in our analysis. Therefore, we
do not consider the initial effort to create the model or the evolution effort
to update the model. However, we discuss these properties for the attack
propagation in the evaluation questions Q3.2, Q3.3, Q3.4. We determine
the effort by counting different model elements and calculating the ratio.
We reuse the metric𝑀2.2 from the attack propagation. 𝑒𝑎 is the number of

214

7.3. Targeted Attack Graph Analysis

affected architectural elements within an attack path, and 𝑒𝑛 is the number
of all architectural elements.

𝑀2.2 = 𝑒𝑎
𝑒𝑛

The metric calculates the fraction of affected architectural elements within a
path in contrast to the overall architectural elements. In a manual analysis,
a security expert would need in the worst case analyse all the involved
architectural elements. In contrast with our analysis, they only need to
consider the elements marked by the path. Here, a lower value is better.

For the effort goal, we also need to consider similar evaluation questions
regarding the modelling effort as in Q3.2, Q3.3, and Q3.4. In our case, we do
not investigate these questions in this section because this analysis uses for
the vulnerability the identical metamodel to our attack propagation analysis.
The discussion about the effort reduction would be nearly identical because
nearly the same steps are involved. The main difference is that we do not need
to model the attacks in this analysis. In addition, the attacker model is slightly
different because we do not model concrete capabilities. Nevertheless, the
discussion is transferable to this analysis. Therefore, we refer to Section 7.2.4
for an in-depth discussion about the modelling effort.

The last evaluation goal G5 covers the scalability of our approach. It should
investigate the runtime behaviour of our approach for larger systems. Due to
trends like IoT or Industry 4.0, the systems contain more and more entities.
These entities are also reflected as devices and components in the software
architecture. The reaction time of the analysis does not need to be within a
range of seconds. However, a fast reaction time is beneficial to continually
search for new attack paths and react to newly found zero-day exploits. For
instance, a typical use case might be the daily analysis for newly found
attack paths similar to nightly builds running integration tests in the software
development process. For instance, the US American Cybersecurity and
Infrastructure Security Agency (CISA) recommends running nightly security
analysis [164]. In addition, related approaches, such as Polatidis et al. [148,
147], Ibrahim et al. [76], and Sheyner et al. [171], investigate similar properties.
Therefore, it is important to consider the runtime of the analysis.

We use two evaluation questions to narrow down the evaluation goal. Our
evaluation questions are:

215

7. Evaluation

Q7.1 How does the runtime of the graph creation behave with an increasing
number of elements?

Q7.2 How does the runtime of the pathfinding behave with an increasing
number of elements?

We separate the evaluation questions into two questions along the two parts
of our analysis, the attack graph creation withQ7.1 and the attack pathfinding
with Q7.2. By separately investigating the different parts, we get a better
insight into problematic parts. As the metric, we choose for both questions
the runtime in relation to the input size. Therefore, the metric is the same as
in Q4, which investigates the scalability of the attack propagation analysis.
The metric is also similar to other related approaches, such as Heinrich [70]
or Polatidis et al. [148].

7.3.2. Evaluation Design

We created the evaluation design based on the GQM plan for the targeted
attack path analysis, introduced in the previous section Section 7.3.2. We
use the evaluation scenarios TravelPlanner (Section 6.1), Cloud Infrastructure
(Section 6.4), Target (Section 6.3), Power Grid (Section 6.2), and Maintenance
(Section 6.7) for investigating our evaluation goals G5 and G6. We chose
those evaluation scenarios from our described evaluation scenarios because
they contain information regarding attack paths. The evaluation goal G7 is
investigated on a simplified architecture model.

To answer the evaluation question Q5, we need to know whether an attack
path exists between two architectural elements and what valid attack paths
are. In our evaluation, we start by deriving the attack paths. We used the
same models for the evaluation scenarios as in the attack propagation evalua-
tion (c.f. Section 7.2). In addition, we investigated the Cloud Infrastructure
scenario, which stems from a related approach. For each scenario, we first
manually identified potential start elements. These start elements are the
architectural elements from the type AssemblyContext, ResourceContain-
er, and LinkingResource. The start points are further restricted based on
the chosen potential StartFilters. After finding all starting points from
the architectural elements, we manually determined for each start element
whether there exists at least one attack path between the start element and
the targeted element. The attack paths can use vulnerability or potentially

216

7.3. Targeted Attack Graph Analysis

found credentials as long they are not filtered as described in the scenario
description. Each scenario had at least a CredentialFilter excluding all cre-
dentials. This results in attack paths, which either need to use vulnerabilities
to compromise other architectural elements or search for credentials on other
vulnerable elements and then use these found credentials. This decision leads
to more complicated attack paths. Otherwise, the analysis could just assume
it gains the highest credentials, such as root or admin or use them to directly
compromise elements. Afterwards, we know for which architectural element
an attack path exists to the targeted element. We use this information to
derive the true positives, false positives and false negatives for each scenario.
If we manually find an attack path, we mark the resulting attack path from
the analysis as a true positive. If our analysis does not find a path, but we
manually find an attack path, we count this as a false negative. If our analysis
finds an attack path, but there is no manually found attack path, we count it
as a false positive.

However, we cannot yet calculate our metrics based on these values since the
positive set might still contain false negatives. We need to identify whether
the found attack path is valid or not. This cannot be done by comparing
the manually found attack path with the automatically found attack path
because they can be different paths. There can be different attack paths
between the start element and the targeted element. In our manual analysis,
we do not necessarily need to find the same path as the automatic analysis.
For instance, we have already seen two possible paths in Figure 5.15. These
paths can be restricted by filters, but this is not true for all paths. Therefore,
we need either to determine during the manual analysis all possible attack
paths and then compare whether one of these matches the analysis results
or manually verify whether there exists an attack path and then check the
validity of the found analysis attack path. The first solution requires a very
high effort or might be even impossible because it requires all possible paths,
and with loops, the number can be endless. Hence, we choose the second
option. This gives us the knowledge that at least the manually found attack
path exists. The analysis can then return the same or any other attack path.
In the case it is another path, we manually verify the attack path by following
it from the start element to the targeted element. For each element (excluding
the start element), we checked whether it could be compromised from its
predecessor. This check also included the consideration of potential filters. If
all the elements could be compromised, we consider it a valid attack path. If
the attack path is not valid, we remove it from the true positives and count it

217

7. Evaluation

as the false positives. Otherwise, we leave it in the true positive set. After
doing this for all attack paths within a scenario, we have the number of
false negatives, false positives, and true positives. We can then calculate our
metrics precision, recall, and F1 based on these values.

We utilize the existing results from Q5 to investigate the evaluation question
Q6. We use the found valid attack paths and determined for each path 𝑒𝑎 . 𝑒𝑎
is the number of affected architectural elements within an attack path. We
can determine 𝑒𝑛 by determining the number of all architectural elements
within a scenario. Based on these values, we can calculate the𝑀2.2 for each
attack path within a scenario.

We investigate the evaluation goal G7 and its evaluation questions Q7.1, and
Q7.2 by performing a scalability analysis. During the scalability analysis, we
measure the runtime of different analysis parts for different input sizes. The
input model is a very simplified architectural model.

As a first step, we have to identify the influencing factors for answering Q7.1
and Q7.2. For Q7.1, we analyse what are the key factors that influence the
runtime of the graph creation Algorithm 6. We identified the four loops (l. 4, 6,
13, 19) as the main factors in our case. The other factors influence the runtime
only as a constant factor. Two loops (l. 4, l. 6) are propagating over the archi-
tectural elements and the two other over the number of access control policies
for one element (l. 13) and the number of vulnerabilities for one element (l.
19). Based on these loops, the first two loops are basically the number of
connected architectural elements. Therefore, if we increase the number of
connected architectural elements, we increase the loop iterations. This allows
us to reuse the same method for scaling as forQ4 and scale along one architec-
tural element type. Scaling along the architectural types is also useful because
these are the main structural elements within a software architecture. Hence,
if the software architecture grows, the number of architectural elements also
increases. Because our algorithm handles all the architectural element types
similarly, which type we scale is irrelevant. The runtime for different archi-
tectural elements should be similar and may only differ in a constant factor.
Therefore, we choose to scale along chained vulnerable ResourceContainers,
which are connected by non-vulnerable LinkingResources. This is the same
behaviour as in the previously described Figure 7.3. In this case, the start
element is the first ResourceContainer, and the targeted element is the last
ResourceContainer. Hence, the analysis needs to iterate over the complete
chain to determine the attack path. Also, the created attack graph needs to

218

7.3. Targeted Attack Graph Analysis

contain the complete chain. Therefore, this creates some sort of worst-case
analysis because the complete chain needs to be considered in both cases.
The two other loops can be neglected because we assume that the number of
loop iterations is usually low. The number of loop iterations is not affected by
larger software architectures. These loops depend not on the overall number
of policies or vulnerabilities. While the overall number of vulnerabilities and
access control policies might increase in larger software architectures, these
loop iterations depend on the vulnerabilities and access control policies for
one element. Typically, a larger software architecture does not necessarily
mean that the involved architectural elements have more vulnerabilities or
access control policies. Hence, we assume that for these loops, the number of
iterations is still small, and we assume that they have no significant effect on
larger architectures.

During the investigation of Q7.1, we measure the runtime from starting the
graph creation till the attack graph is returned. The measurement does not
include the loading of the architectural models. We scaled the number of
ResourceContainers by the power of 10 from 101 ResourceContainers till
105 ResourceContainers.

For investigating Q7.2, we measure the runtime after the attack graph is
created till an attack path is returned. Here, we also investigated which factors
influence the scalability. Our Algorithm 7 only operates on a graph, with
edges and architectural elements as nodes. Here, the important aspects are
the number of start points, the number of distinct nodes which are connected
by edges and the path length. In our case, we choose to neglect the start filter
and only investigate scaling the other properties. We explain our reasoning
regarding the start filter after discussing the importance of the other attributes.
The other properties increase the runtime for finding a path because they
increase the problem size. The different architectural element types are not
relevant anymore, and they are abstracted as nodes. We can choose any
architectural type. Therefore, if we want to identify the worst-case scenario,
we need to have an attack graph, which forces the path finding to iterate
over all elements. We enforce this behaviour by defining a StartFilter for
the first ResourceContainer in the chain and selecting the last ResourceCon-
tainer in the chain as the targeted element. This forces the path finding to
iterate over the complete ResourceContainer chain and creates a worst-case
runtime. In addition, it gives us control over the attack path length, and
we can investigate different attack path lengths. Otherwise, the length of
the attack paths may vary on the selected start element. The start filter is

219

7. Evaluation

also closer to the intended usage for larger architectures. We assume that
software architects are more interested in attack paths from certain elements
in the software architecture to a target. Similarly, like for instance, in our
running example, where we had the scenario where we were only interested
in an attack path from the externally accessible component to the critical
component. Even more, our investigation gives insights into an upper bound
for one attack path. Finding additional attack paths should take equal or less
runtime per each additional path finding.

For both evaluation questions, we repeated each measurement five times and
calculated the average to reduce outliers. Additionally, we performed one
warm-up run beforehand. We performed the analysis on a dedicated VM. The
VM was assigned 21 AMD Opteron 8435 cores together with 62.5 GB RAM.
The operating system of the VM was Debian 11, and we used the OpenJDK
17 as the runtime environment. For the analysis execution, we increased the
Java stack size to 1 GB and the heap size to 30 GB.

7.3.3. Results & Discussion of Accuracy

We investigated five different scenarios containing overall 52 possible attack
paths. The results for the accuracy G5 are shown in Table 7.4. The first
column shows the scenario, the second column the precision (p), the third
one the recall (r) and the fourth one the F1. Overall, we got good results,
although unlike for the attack propagation analysis, they are not perfect
results.

In detail, we have a precision of 1.00 for every scenario, which is a perfect
result. Achieving these results is possible because our evaluation scenario and
attack paths are small. We will further discuss the implication of the small
scenarios in the threats to validity section (c.f. Section 7.3.6). In addition, we
focused on a restricted model with no dependencies to unknown behaviour,
which simplifies the results. These results mean that every attack path found
by the analysis was a real attack. In other words, every attack path resulting
from our analysis in these scenarios is valid. Regarding the recall, we get
for the Target, Cloud Infrastructure and TravelPlanner scenarios a recall from
1.00, resulting in an F1 score of 1.00 for these scenarios. This means that
our analysis discovered all the required attack paths in these scenarios. In
other words, the analysis found an attack path to the targeted element for

220

7.3. Targeted Attack Graph Analysis

each potential start point, like the manual analysis. These are, again, perfect
results.

However, our analysis cannot find attack paths for all required ones in the
two remaining scenarios. In the Power Grid scenario, the analysis misses
two possible attack paths, and in the Maintenance scenario, it misses one
path. This leads to a recall of 0.88 and an F1 score of 0.93 for the Power Grid
scenario. For the Maintenance scenario, the recall is 0.86, and the F1 score
is 0.92. We also investigated the reason for the missed attack paths. In both
cases, the missing attack paths can be traced back to the implementation
of the path finding. For performance reasons, we need to restrict the path
finding implementation to simple paths. This is based on the used graph
framework and its path finding algorithms. Using a simple path forbids loops
in the attack path. Therefore, attack paths which require a loop, for instance,
to gain certain credentials are excluded. For our missing cases, this is exactly
the case. For instance, in the case of the maintenance scenario, an attack
path from the TerminalServer to the targeted ProductStorage requires one
self-loop to get the necessary credentials. Otherwise, the attacker lacks the
necessary credentials to compromise the other architectural elements. Losing
this requirement in our current framework would result in a strong increase
in the runtime, which renders the approach for even small scenarios nearly
useless.

Based on the results for the different scenarios, we can say, that our analysis
can identify attack paths in certain scenarios. The precision indicates, that the
found attack paths are very likely to be real possible attacks. In our scenario,
every found path was a real attack path. Even more, the recall suggests
that we can identify most of the real attack paths. The analysis can miss
some paths depending on the scenario, but most attack paths are identified.
Overall, the results indicate that the analysis can help software architects or
security experts in hardening the system by providing possible attack paths.
They harden the system by mitigating possible attack paths and therefore,
increasing the overall security of the system.

7.3.4. Results & Discussion of Effort Reduction

The results for the evaluation questionQ6 is shown in Table 7.4. For simplicity
reasons, we only illustrate the minimum and maximum value of our metric
for each scenario. Each scenario has values according to the number of attack

221

7. Evaluation

Table 7.4.: Evaluation results for the targeted attack graph analysis regarding accuracy and effort
reduction

Scenario 𝒑 𝒓 𝑭1 𝑴2.2𝒎𝒊𝒏 𝑴2.2𝒎𝒂𝒙

Target 1.00 1.00 1.00 0.13 0.27

Power Grid 1.00 0.88 0.93 0.11 0.26

Cloud Infrastructure 1.00 1.00 1.00 0.06 0.10

TravelPlanner 1.00 1.00 1.00 0.20 0.20

Maintenance 1.00 0.86 0.92 0.25 0.50

paths. The full table can be found in our dataset [208] or in the appendix (c.f.
Table A.1). Theminimumvalue is in the second last column, and themaximum
value is in the last column in Table 7.4. The values vary overall between 0.06
for the Cloud Infrastructure and 0.50 for theMaintenance scenario. Depending
on the scenario, they vary around two times between the minimum and
maximum value, with the exemption of the TravelPlanner. The exemption
for the TravelPlanner can be traced back to, that it contains only one attack
path. Hence, there can be no different values. The variation in the other
scenarios depends on the length of the different attack paths. Architectural
elements which are more remote to the targeted elements, in the sense that
more architectural elements are necessary to reach the target, produce a
higher value. Despite the different attack path sizes, the values are still close
together. This closeness is based on the used attack path finding algorithm.
Our algorithm is a modified shortest-path algorithm. Therefore, the algorithm
tries to produce short paths and usually only includes the minimal necessary
attack step. Therefore, it does not include many unnecessary architectural
elements. The result is that even the maximum paths are short and directly
to the targeted element. Hence, the values are still close since no “detours”
are performed.

Overall the results indicate an effort reduction since in most of our scenar-
ios only around a third or fewer elements need to be manually verified in
comparison to a complete manual analysis.

222

7.3. Targeted Attack Graph Analysis

7.3.5. Results & Discussion of Scalability

In this section, we present and discuss the findings about our evaluation goal
G7 by answering the evaluation questions Q7.1 and Q7.2. We performed
a scalability analysis by increasing ResourceContainers and measuring the
runtime.

The runtime measurement, together with the increased ResourceContainers,
is illustrated in Figure 7.6. The vertical axis shows the runtime in a logarithmic
scale from 101 ms to 107 ms. The horizontal axis contains the number of Re-
sourceContainers in a logarithmic scale from 10 to 105 ResourceContainers.
The average runtime for the graph creation is shown by the line with the dots.
The line with the squares shows the average runtime for the path finding.
Each dot or square is an average measurement point. In other words, these
are the model sizes where we measured the runtime. The lines between the
measurement points are interpolated based on the measurement points. For
both evaluation questions, the runtime is very close together. The evaluation
question Q7.1 is answered by the graph creation. For 10 elements, the
graph creation needs around 26 ms. It then slowly increases to 106 ms for 100
elements and to 597 ms for 1, 000 elements. Afterwards, the runtime growth
increases more. For 10, 000 elements, it needs already 24, 681 ms. The last
measurement was for 100, 000 elements, which took around 5, 764, 543 ms.
This is around 1.5 hours for the creation of the attack graph with 100, 000
ResourceContainers.

The evaluation question Q7.2 shows similar behaviour. The answer is shown
by the path finding curve. The runtime starts a bit higher with around 42 ms
for 10 elements. It then slowly increases for 100 elements with 75 ms to 1, 000
elements with 693 ms runtime. It then rapidly increases the runtime. For
10, 000 elements, it takes 48, 512 ms and for 100, 000 elements, 5, 653, 641 ms.
So, the finding of an attack path in a systemwith 100, 000 ResourceContainers
also takes around 1.5 hours, like the graph creation.

Overall, this summarizes to a runtime of about 3 hours for finding attack paths.
Our findings are based on the scaling of ResourceContainers. As expected,
the scaling shows that the ResourceContainers influence the runtime. Our
assumption is that the other architectural elements behave similarly. The
observed runtime behaviour does not enable an immediate reaction to newly
found vulnerabilities in larger systems with 100,000 or more affected elements.
Nevertheless, it still indicates that, for instance, the analysis can be executed

223

7. Evaluation

as a daily nighttime job, where the newly found and disclosed vulnerabilities
are evaluated. This is then similar to nightly build jobs, which usually execute
integration tests. In our case, this is then a security analysis. In addition, it
might be possible to reduce the model sizes. For instance, in IoT environments,
not every sensor or actor instance needs to be modelled in the software
architecture. As long as they share the same vulnerabilities and tasks, it
might be sufficient to group elements of the same functionality into one
element. A simple example could be in our running example, the replication
of the machine. There could be multiple instances of the same machine, but
the security results would be in the single instance and multiple instances
similar. For smaller systems with 10, 000 or fewer elements, the runtime is
good enough to provide nearly immediate feedback with a combined runtime
of 1.3 minutes or less. For instance, depending on the abstraction level, the
shop systemmentioned by Newman [122, p. 6] with around 450 microservices
can be seen as ideal size for fast analysis results.

If we analyse the runtime in more detail, we also see potential improvements
like for the previous analysis with Q4. The first one might be the age of
the used CPUs. Despite that during the graph creation 21 cores are used,
the cores themselves are old. The CPU architecture was initially released in
2009. Therefore, newer CPUs might provide better results. In addition, there
might be some improvements with caches or more efficient algorithms and
data structures as also described for Q4. Another aspect is the single-thread
process for the path finding. Currently, we parallelised along the number of
attack paths. In other words, each path finding algorithm is executed as a
separate thread. Therefore, the finding of multiple paths should scale along
the number of CPU cores. Here, an alternative solution can be that the path
finding itself uses a multi-thread approach to faster identify an attack path.
However, there might be a problem with the credential filter because this
induces a required execution order.

7.3.6. Threats to Validity

Similar to the evaluation of the other analyses, we present the threats to
validity in accordance with the case study validity guidelines established by
Runeson et al. [157]. Given the similarities between our mostly scenario-
based evaluation and case study research, we have adopted these guidelines.

224

7.3. Targeted Attack Graph Analysis

101 102 103 104 105
101

102

103

104

105

106

107

Number of Resource Containers

Ru
nt
im

e
in

m
s

graph creation
path finding

Figure 7.6.: Scalability results (G7) for increasing number of resource containers

Our threats to validity discussion consider four categories, namely: Internal
Validity, External Validity, Construct Validity, and Reliability.

Internal Validity As described, this validity discusses the influencing factors
for the result. Similar to the previous analysis, the result is directly affected
by the classification necessary for answering Q5. Here, among others, two
threats can arise. First, the manual identification of possible attack paths and
second, the determination of a valid attack path. In the first threat, we could
have made some errors in the determination of attack paths. This leads to
either missing attack paths or wrong attack paths. Missing attack paths are
especially relevant in scenarios where the number of attack paths is smaller
than the possible start locations, for instance, for the TravelPlanner. In these
scenarios, we might have overseen attack paths. We consider this threat
low since our automatic analysis did not find additional attack paths to our
manual analysis. Furthermore, the automatic analysis misses some attack
paths. This can be a first indicator that our manual analysis provided more
in-depth results. Secondly, we repeated the manual determination for the
missing attack paths. In this case, we tried to mitigate possible overseen paths
in the first manual run. The second threat is based on the validity of the attack

225

7. Evaluation

paths. We could have wrongly classified the attack paths. This could be either
that we classify an invalid path as valid or classify a valid path as invalid.
We consider both cases to be low. For the first case, we compared the result
beside the manual step-by-step verification to the sources and descriptions
of the scenarios to determine whether the attack paths are plausible. Also,
the manual analysis is very straightforward since it only requires manually
verifying that the next element is reachable and whether the attack is possible
with the chosen filters. Here, a benefit is the small size of the scenarios since it
makes the manual analysis easier, therefore, helping not to oversee elements.
We consider the second case, where we classify a valid path as invalid, also
as low since we have a precision of 1.0. Therefore, all found attack paths are
marked as valid, and we did not falsely mark a scenario as false.

Another threat is the model size and attack path length. While the small size
helps, in the classification above, it might prevent the observation of side
effects, like in the case with simple paths for finding attack paths. Therefore,
there might not all aspects of the analysis be investigated. While we consider
this a threat, we lowered it by choosing evaluation scenarios that already
contain most of the important aspects of the analysis, such as the exploiting
of vulnerabilities, using access control properties and gaining of credentials.
Therefore, adding more architectural elements might not bring more insights.
However, in other scenarios, the results might differ. Nevertheless, we assume
that based on the high accuracy we achieved in our investigated scenarios,
the accuracy in other but similar scenario types is comparable. Similar to the
discussion in our other attack analyses, also the inputs could be wrong, such
as in the case of the vulnerability of our running example. However, here we
also assume that, in general, the input classification is correct.

In addition, a threat is the sole focus on the analysis during the evaluation.
Similar to the other evaluation, we do not evaluate the used metamodel
directly. As described, that might lead to the fact that we neglect relevant
properties for finding attack paths. However, by reusing the ADL PCM, we
lowered the risk for the software architecture. For the other metamodels, we
lowered the risk by reusing most of the parts in the other analyses, which
consider similar properties. Therefore, we assume the risk to be low because
missing very relevant properties might also have an effect on the evaluation
of the other analyses.

One effect on the goal G5 for the accuracy is the chosen evaluation question
Q5. The evaluation question focuses on the attack paths. However, the attack

226

7.3. Targeted Attack Graph Analysis

paths are affected by the previously determined attack graph. Therefore,
the accuracy for the attack paths depends also on the accuracy of the attack
graph. By not directly investigating the attack graph, we might oversee
aspects influencing the accuracy. Nevertheless, we choose only to investigate
the paths because with the paths, we indirectly also evaluate the created
graph. Despite our focus on the paths, we analysed the generated attack
graph during the evaluation to find the source of missed attack paths. We
looked at the generated attack graph and whether this would allow the missed
attack paths. In these cases, we found no issues with the generated graph.
Therefore, we assume the risk to be low.

For answering our effort evaluation question Q6, we did not consider the
initial effort to create the models. Therefore, the results are not complete.
However, automatic approaches, such as our automatic extraction approach
[94], could help to reduce the effort. We further discuss some additional
properties in the effort evaluation of the attack propagation analysis (c.f.
Section 7.2.4).

A possible threat to the evaluation goalG7 regarding the scalability is that the
observed runtime increase is not based on the scaled ResourceContainers.
We reduce the threat by limiting the scaling to vulnerable ResourceContain-
ers and the connecting non-vulnerable LinkingResources. This way, only
those two elements change regarding the input model between the different
measurements. To further narrow down the effect, we observed the found
attack paths and verified that they contained the newly added ResourceCon-

tainers. Nevertheless, the runtime is slightly affected by the additionally
added LinkingResources. This effect cannot be completely removed because
the analysis needs connecting elements. Also, considering other architectural
elements would always result in adding an additional connecting element.
However, we assume the influence factor to be low since the LinkingRe-

sources do not contain vulnerabilities. Besides the internal factors of the
input models for the analysis, also external factors can affect the scalability
analysis. In our case, this can be the system usage, other executed process or
the number of available CPU cores. In our case, we reduce factors by using a
dedicated VM for the scalability analysis. During the scalability analysis, we
assigned dedicated process and memory resources. This should reduce the
effects of other VMs on the scalability server. Furthermore, we repeated each
scaling step 5 times and calculated the average to avoid further outliers or
scheduling problems. Therefore, we assume the risk of external interference
to be low.

227

7. Evaluation

External Validity Here, we discuss the generalisability of our results. As
discussed in the previous threat to validity section, using scenarios comes
with the drawback of specialized results. These could not be transferable to
other scenarios. Similar to the other cases, we consider the risk to be low
because of our usage of external scenarios. Most of the scenarios are also used
for the attack propagation analysis. Therefore, at least some generalisability
between the analyses is given. In addition, two scenarios are based on real-
world breaches. Therefore, showing to some extent real-world properties.
The TravelPlanner scenario is based on a common research scenario, and
the properties are derived from OWASP. The Maintenance scenario is based
on a scenario described by industrial partners and extended with security
properties from OWASP and NVD. The last scenario is based on a research
example from a related approach [10]. Based on their origin, they represent
different areas, such as real-world properties and interesting research areas.
In addition, these scenarios are also targeting different application domains,
such as Industry 4.0, enterprise business systems or cloud systems. Therefore,
we assume this risk to be low. Nevertheless, our investigated scenarios focus
more on the functional accuracy of the analysis than the general accuracy. The
main problem is the missing detailed information about real-world breaches,
similar like for G5. However, based on our good results, we assume that the
general results might still be good. The same hold for our effort reduction
goal, which also depends on the investigated scenarios.

We investigate the scalability goal G7 by generalising the runtime behaviour
for different input sizes of ResourceContainers. However, this generalisation
might be problematic because the other architectural elements might have
a different runtime behaviour. Overall, the results for other architectural
elements might slightly differ, but the tendencies should stay the same. Re-
garding the evaluation question Q7.1, the other architectural elements also
generate the same node type. Only the generated edges might be different.
The overall process for creating the edges is very similar. Therefore, we
assume that the runtime is similar. Regarding the evaluation question Q7.2,
the answer is similar. In this state, the graph does not differ anymore be-
tween different architectural element types but only has nodes and edges.
Therefore, mostly the number of nodes may affect the runtime. However, all
the architectural elements produce similar nodes if vulnerable. Hence, we
assume the risk to be low.

228

7.3. Targeted Attack Graph Analysis

Construct Validity This section discusses whether the investigated property
is appropriate for the investigated goal. Our investigated properties are the
used metrics. In other words, this section is about the appropriateness of the
metrics for the evaluation goals. We used a GQM plan to reduce this threat,
which illustrates the relationship between the evaluation goals and metrics.
This clear structure can help to find meaningful metrics for the evaluation
goals. In the following, we will discuss the appropriateness of the metrics for
each evaluation goal.

The first goalG5 is investigated by the evaluation questionQ5. For answering
the evaluation question Q5, we use the metrics precision, recall and F1. They
give us insights into the relation between true positives, false positives, and
false negatives. Therefore, they give experts insights into the accuracy of the
results and what accuracy they could expect. Similar insights can be found
in approaches like Seifermann [166] or Pilipchuk [143]. Also, our existing
work, such as the attack propagation analysis [211] or Walter et al. [210], use
identical metrics to answer the accuracy.

The evaluation question Q6 regarding the effort reduction goal G6 is an-
swered similarly to Q3.1 by a counting metric. It is a simple ratio between
architectural elements and is used in other approaches, such as Busch [36]
or in our attack propagation analysis [211]. In the previous analysis, the
metric𝑀2.1 is also investigated for the effort reduction. In this evaluation,
we did not consider it. The metric calculates the effort for the next potential
propagation step. This is useful because, during a manual analysis of the
attack propagation, the security expert does not know the end of the propaga-
tion. Hence, they need to manually look at the next connecting elements and
determine whether the propagation is possible or not. In our targeted attack
graph analysis, this is not the case since the end is already predetermined by
the targeted element. Therefore, we did not consider the metric here.

In terms of the scalability goal G7, we address evaluation questions Q7.1 and
Q7.2 by analysing the runtime in relation to the scaled ResourceContainers.
This means we analyse the runtime behaviour with different input sizes. This
behaviour is very common for analysing the scalability and is also performed
in similar model-driven approaches, such as Heinrich [70] or related attack
propagation approaches, such as Polatidis et al. [148]. Hence, we assume that
the chosen metric is appropriate for the evaluation goal.

229

7. Evaluation

Reliability This section is about whether other researchers can reproduce
our results. All our evaluation questions are answered by metrics. The
usage of metrics can avoid subjective interpretation by others and, therefore,
increase reproducibility. In addition, by using the GQM approach for our
evaluation, we provide a clear structured layout between the investigated goal
and the metrics. This can also increase the comprehensibility of the evaluation
and increase the reproducibility since it makes for other researchers clearer
what metrics contribute to what goal. Furthermore, we provide a dataset
[208] containing all the input models, source code, and binaries to execute
our analysis. This enables other researchers to easily verify our results or
even build up on the approach itself.

The reproduction is also possible on different hardware as the used hardware
for our evaluation. The results of the evaluation goals G5 and G6 are inde-
pendent of the used hardware. They only require a compatible processor
technology (ARM, x86) and an operating system supporting Java 17 with
Eclipse. The results for the scalability G7might change depending on the con-
crete used hardware, but the drawn conclusion should be similar. However,
changing the core numbers for Q7.1 might drastically affect the results since
the application is multi-threaded. However, for the Q7.2, this should have no
effect because the finding of one attack path is only a single thread.

7.4. Assumption and Limitations

In this section, we discuss the assumptions and limitations of our approach.
We choose a combined description because some assumptions result in limi-
tations, and some limitations induce the usage of an assumption. In our case,
we will always first give the name of the assumption or limitation and then
describe them in more detail. In addition, we provide some ideas on how to
relax or circumvent them.

Third Party Interaction Certain types of attacks require the involvement of
a third party who is not the actual attacker. This third party is typically a
regular user or a malicious internal collaborator. Currently, we are unable to
distinguish between these types of attacks. While we integrated the CVSS
description into our metamodel, enabling us to differentiate vulnerabilities
based on whether they require actions from third parties, such as clicking a

230

7.4. Assumption and Limitations

button, we do not support the differentiation in our attack analyses. For our
attack analyses, we assume that the third party interaction is automatically
given. Here, a potential solution can be the consideration of the usage sce-
narios in PCM. In these, the third party behaviour can be specified within a
usage scenario and then considered during the attack propagation. However,
realizing this functionality also requires probably some metamodel changes
since a matching between vulnerabilities and usage scenarios is required.

Consistency between Model and System Our approach assumes the exis-
tence of current architecture models for the systems, but this is not always the
case. While it is beneficial to design the software architecture and integrate
our design time analysis during the design phase, legacy systems may not
have architecture models. However, existing reengineering approaches like
SoMoX [25] can help generate these models and reduce the effort, but some
manual effort is still required. Moreover, the architectural model must be
consistent with the actual system. Otherwise, our analysis might produce
incorrect results. To address this, we can integrate approaches, such as Mon-
schein et al. [119] or iObserve [70], which propose consistency algorithms
between design time models and runtime artefacts.

In addition to generating and updating the architectural model, the vulner-
ability model must also be updated. New vulnerabilities can arise for the
system’s components during its lifetime, and not all vulnerabilities are au-
tomatically fixed and updated. Therefore, it is beneficial for our analysis to
consider the latest vulnerabilities in the system. The first steps in integrating
these vulnerabilities are already done with the development of the automatic
extracting approach in Kirschner et al. [94].

Software Vulnerabilities Our vulnerability metamodel is closely related to
the concepts of Common Vulnerabilities and Exposure (CVE), CommonWeak-
ness Enumeration (CWE), and Common Vulnerability Scoring System (CVSS).
While this brings some benefits regarding the reusability of existing vulner-
ability knowledge, it also comes with drawbacks and limitations. The vul-
nerability metamodel is limited to software vulnerabilities and only supports
to some extent physical vulnerabilities. The latter one covered only very
closely linked to the software. For instance, the Spectre [95] vulnerability
is assigned, among others, the CVE-2017-5715 and the CWE class CWE-203
[127]. Therefore, to some extent, physical vulnerabilities can be expressed.

231

7. Evaluation

However, other attacks like Social Engineering [140], where attackers try
to exploit humans to get access or Invasive Attacks [198], which directly
modifies the hardware, are not considered. Here, a possible solution could be
the composition with other attack analyses which specialise in other attack
types. For instance, Kramer et al. [99] provides an approach for analysing
physical attacks on software architectures, which could be coupled by using
coupling approaches similar to the described source code and architecture
analysis coupling in Schulz et al. [163].

Besides the neglect of certain attack types, also the concrete classification
of matching attack types is limiting. For instance, the CVSS scoring is often
considered to be difficult to interpret, and it does not describe the impact
well [185]. In our case, the scoring is not problematic since we only use the
base metrics. However, there the classification can also be very subjective,
depending on the classifier, for instance, for the assignment of the attack
complexity. This also covers the classification of CVEs to CWEs. For instance,
the vulnerability CVE-2021-28374 [129], used in our running example, was
reclassified after one year to a different CWE. Another point is that by using
CVEs, we only limit the approach to known attacks, which we will discuss
later.

Known Attacks Our attack analyses require that the vulnerability or attack
is known. While it does not have to be a concrete vulnerability like a CVE,
the approach requires the attack type (here CWE) to be known. Our approach
cannot be used to detect unknown vulnerabilities in a system. Nonetheless,
our approach can still be valuable in identifying unknown vulnerability chains
[46]. These are the exploitation of multiple vulnerabilities by an attacker. Our
analyses can be used to create “what-if” scenarios to address the short-coming
a bit. In these scenarios, experienced software architects or security experts
can assign common weaknesses by using CWEs to architectural elements and
investigate the potential impact. Such common weaknesses can be extracted
from online sources, such as the OWASP 10 [137], which also contain the
corresponding CWE classes. These scenarios can then be used to prepare in
case there is an actual vulnerability discovered. Nevertheless, the usage of
“what-if” scenarios still does not remove the limitation of not finding new
vulnerabilities. This problem can be traced back to the uncertainty about
vulnerabilities in the system.

232

7.4. Assumption and Limitations

Uncertainty about Attackers Another assumption of our approach is the
knowledge about the attackers. We assume that security experts can model
the capabilities and knowledge of attackers. However, in reality, this is often
uncertain. Especially for our attack propagation analysis (C4.1), this knowl-
edge is important because we require the concrete capabilities, knowledge
and starting points. In the targeted attack path analysis (C4.2), we allow
more uncertainty because we only restrict the solution space by attack filters.
Nevertheless, it still requires at least the knowledge for the filters. In Walter
et al. [209], we already consider some mitigation techniques for uncertainty.
There, we created a variation model and combined it with our attack propaga-
tion analysis to evaluate the attack propagation for different starting points.
However, the approach comes also with additional drawbacks, such as a
high-performance overhead. Here, the combination with other uncertainty
mitigation approaches, such as Hahner et al. [66], might be helpful.

Consideration of other Security Properties Our vulnerability metamodel
considers similar to CVSS the impact on confidentiality, availability and in-
tegrity for a vulnerability. Our attack analyses consider the confidentiality
only by using the parameters. The other security properties are not consid-
ered in the attack analyses. Nevertheless, these properties can be relevant.
For instance, in an integrity attack, attackers could modify components to
use other credentials and thereby gain access to them. This also includes
the differentiation for writing or reading operations in our access control
metamodel. So far, we do not consider this explicitly.

States of access The attack analyses need to differentiate between accessible
and compromised architectural elements. The difference is that in the first
case, the attacker can only access the architectural element as a regular user.
In the second case, the attacker has compromised the architectural element
and has full control over it. In our attack propagation, we already have the
first steps for a differentiation between reachable services and confidentiality
threats. There, attacks can read data from services which are vulnerable.
However, this does not propagate further to other services which are called.
Furthermore, the targeted attack path analysis does not have this. Here, a
finer differentiation could be useful. For instance, by having two types of
nodes in the attack graph. One for accessible architectural elements and one
for compromised or full control. In this regard, also a finer differentiation

233

7. Evaluation

between different access layers can be considered. Currently, we assume
that if attackers get access by using credentials, they can fully control the
architectural element. However, it might be beneficial to differentiate here
between privileged access and non-privileged access. In our case, wemodelled
this differentiation by assigning access rights to services and the usually more
privileged maintenance access to the component. Another alternative is to
assign this to infrastructure services or add a second layer for services. The
first might be easier because the latter would require changes in the used
ADL.

Implicit Attacks Most of the attackers’ capabilities are modelled explicitly,
meaning that we have to specify them and assign attacks to attackers. In
contrast, we assume that attackers can perform some attacks implicitly. Our
first implicit attack is the automatic propagation from ResourceContainer

to the AssemblyContexts deployed on it. The underlying assumption is that
compromised hardware or operating system automatically affect the executed
programs. This assumption is valid for most cases, but not all attackers might
have the capability, or there might be mitigation steps to prevent the attack.
Nevertheless, we choose to keep this assumption because it simplifies the
propagation rules and still holds in most cases.

Another implicit assumption about the attackers’ capabilities is the usage
of the attributes as credentials. We assume that an attacker automatically
has the capability to use every gained attribute in the system. In reality, this
might not be possible. However, we chose this assumption since it simplifies
the analysis and is comparable to other related access control analyses.

Advanced Mitigation Our approach only supports simple mitigation strate-
gies like access control and network segregation and does not consider ad-
vanced strategies like data encryption or trusted execution environments
[158]. Nonetheless, our attack analyses can be used to identify potential
mitigation locations. For example, security experts can analyse the system
and get potential attack paths and propagations. Based on these results, the
security experts can determine architectural elements which are critical and
often affected by attack paths. Security experts can then introduce mitigation
strategies to break the attack paths for these elements.

234

7.4. Assumption and Limitations

One strategy to handle the limitation of the mitigation mechanism is the
manual removal of mitigated vulnerabilities by security experts or architects.
After the removal, they can reanalyse the system and thereby analyse a
software architecture with mitigations in it. However, this would lead to
an inconsistent model regarding the vulnerabilities, and it is a high manual
effort.

Furthermore, these mitigation strategies can be compromised in practice
[160]. Therefore, they should be considered during the attack analyses. At
least the mitigation strategies should be made explicit so that they can be
manually verified or automatically with approaches, such as Taspolatoglu
et al. [195].

Handling of Data The data model in our analyses is very limited and only
considered from the control flow. The access control rules are only defined
on services, components, and devices. Data is only indirectly considered.
There are certain ways to circumvent this, like in our education evaluation
scenario (c.f. Section 6.6), where we defined a component for a data object
and assigned operations for it. However, this is more like a workaround than
a good modelling solution.

In combination with the limited mitigation model, this limited data model
also limits the consideration of encrypted data during the data extraction in
the attack propagation. The data extraction does also not consider concrete
data instances. Hence, it cannot be used to differentiate data in multi-tenant
scenarios. The attack propagation analysis can only provide that all data
from a certain type is affected. In addition, the attack propagation analysis
cannot extract data from possible data flows in the system. In detail, in a real
system, a compromised network element could potentially see all the data
which is exchanged over it. However, we do not consider the data flow in our
analysis. Therefore, this data is not considered in our analysis. Furthermore,
the targeted attack graph analysis does not even provide the data extraction
feature so far.

Scalability for Large Software Architectures As the evaluation of our attack
analyses showed, there can be a performance issue for larger software archi-
tectures. This performance issue can limit the application of our analyses.
However, in the case of the targeted attack path analysis, software architects

235

7. Evaluation

or security experts can influence the performance by using a filter. Using
filters, such as the StartFilter, can reduce the problem size. Therefore, it
can speed up the analysis. The drawback is that it might affect the accuracy
of the results because the filter removes potential attack paths. Nevertheless,
the drawback can be justifiable in some cases, for instance, by considering
different trust levels in the architecture. There might be elements in the
software architecture, which are more vulnerable and less trustworthy than
others, such as the externally accessible components like in running exam-
ple the Terminal or outdated components. Nevertheless, for larger software
architectures, the filters are also useful, because they restrict the number of
results. For instance, in a software architecture with around 1000 elements,
our approach can calculate the results in around 17 minutes. However, in the
worst case, the result would also contain around 1,000 attack paths with up
to 1,000 elements per attack path. This might be already too many results to
handle for security experts. Hence, they must filter the results to identify the
relevant attack paths.

Access Control Model XACML is the foundation for our access control meta-
model. However, our analyses do not support its full functionality of it. The
most restricted analysis regarding the access control model is the targeted
attack path analysis (C4.2). Currently, it only supports the label comparison
of string attributes.

For the attack propagation, the limitation is regarding the attribute selection.
During the access request creation, the analysis creates a bag of values and
adds all the attributes it has in the bag. The bag is then used by the PDP to
extract the attributes and compare whether they match. Here, two problems
can arise. We explain the first example by giving a short simplified example.
An exemplary access control policy could require the requestor to have the
attribute a but not the attribute b. If our analysis gained both attributes, it
would add a and b to the bag of values. The PDP would then deny the access
because we also have the b attribute. However, a malicious attacker could
just simply not send b and then would get access. This tempering of the
attributes would gain them access. This problem is called attribute-hiding
attack [42]. Our analysis does not consider this issue and assumes that no
such policies exist. A solution for the problem is the usage of dedicated
policy analyses, such as Turkmen et al. [202] for identifying attribute-hiding
attacks. This can be done, for instance, by using our generated XACML file.

236

7.4. Assumption and Limitations

The second problem is with the bag itself, but it can also be traced back to
attribute tampering or hiding. For instance, an exemplary access control
policy could say that the access is granted if the first element in the bag is a.
Our analysis does not consider such orders in the bag creations. Therefore,
the value a might not be at the correct position in the bag, despite the fact
that the attacker has the value. A real attacker could try to change the order
in the bag. However, our analysis does not. Here, we also assumed that our
access control policies do not use this.

This assumption is also used in access usage analysis. There, we have the
same problem, that the order of the bag is determined during the request
creation and cannot be specified in the model.

Also, the XACML transformation does not support every available element in
the metamodel. Especially, the different datatypes cannot be used. Currently,
only the string datatype is supported in the implementation. In addition, the
model editors are also only considering string serializations. However, both
aspects can be solved by adding datatype converters to the transformations
and model editors.

Also regarding the XACML transformation and the possible reusability of the
generated policies during the runtime, we assume that element identifiers
are identical to the identifiers in the architectural model. During the transfor-
mation and the analyses, we use the PCM identifiers. However, in the real
system, these might vary. In this case, the PDP cannot identify the correct
element and might deny a request.

Static Access Control Policies As described in our problem definition (c.f.
Section 1.2 — P1), our access control policies are not self-adapting to a new
environment. Hence, the policy itself is static, while the access decision is
dynamic based on the context. In very dynamic environments, where the
access control system needs to automatically update to the new situation,
such as in Bureš et al. [34], our approach cannot directly be used. However,
suppose the adaption does not happen too often, meaning that the policy
stays the same for certain periods, for instance, because the situation does
not change, the current state of the adapted policy can be extracted as a static
policy. This policy can then be used as input for the analyses.

237

7. Evaluation

Potential Overestimation of Attacker Capabilities Our metamodel simplifies
the attackers’ capabilities to exploit vulnerabilities based on the identifier
of CWEs and CVEs. While we already consider some additional factors,
such as access control and the attack vectors, other factors might not be
considered. For instance, a static code analysismight find a potential weakness
(CWE) within a component. However, the existence of a weakness does not
automatically mean that there is an actual exploitation for attackers available.
Nevertheless, if we model it based on the static analysis, our analysis would
assume that attackers can exploit it. A similar issue is that we assume that
every CVE can be compromised by its CWE class. In general, while the
weakness is the same, the actual attack might be so different that an attacker
might not know the exploitation. In our evaluation scenarios, we did not
see this behaviour. However, this could be a limitation in other scenarios.
Also, other aspects, such as required resources like time or money, are not
considered. Other works, such as Yoshizawa et al. [222] or Ponikwar et al.
[149] differentiate between the motivation and attacker types such as state
(in the sense of a nation) attackers or “script kiddie” (amateur hacker). In our
work, we can only do this indirectly by assigning the CVEs.

Supported Architectural Elements On the technical side, we only consider
AssemblyContexts, Services, LinkingResources, and ResourceContainers
for the attack propagation. For the targeted attack path analysis, we sup-
port the same elements without the Services. The access usage analysis
only considers the Services. Specifically, the support is only for Services
based on OperationInterfaces. Services in other interfaces, such as the
InfrastructureInterface, are not considered. However, our chosen ele-
ments are the most commonly used elements in different PCM analyses.
Nevertheless, in the future, the analyses might be extended there to support
more elements. In most cases, the extension should be possible since it only
requires new propagation rules for the new elements.

7.5. Overall Evaluation Results & Discussion

In this section, we summarize the evaluation results for our different analyses
and discuss how well our contributions answer our research questions based
on our findings in the evaluation.

238

7.5. Overall Evaluation Results & Discussion

Our first research question RQ1 covers the aspect of access control policies.
In detail, the sub-question RQ1.1 is answered by the access control meta-
model, which is the contribution C1. In our evaluation, we do not investigate
the quality of the contributions independently of our second sub-research
question RQ1.2. This research question is answered by our contribution
C3. The contribution consists of the access usage analysis, which analyses
the access control policies based on modelled usage scenarios. These usage
scenarios contain context-based attributes and represent a context-dependent
scenario. In addition, we used the access control model (C1) to represent
access control policies. Using the context-dependent scenarios, we can stati-
cally analyse the system regarding potential violations as described in RQ1.
We evaluated the contribution C3 with our evaluation goal G1 regarding
the accuracy of analysis results. Because the contribution uses internally
also the contribution C1, we indirectly also evaluate the pragmatics of the
metamodel. This indirect evaluation is based on the fact that the analysis uses
the metamodel. Therefore, if the metamodel, for instance, is missing elements
which are required for the analysis, the result is affected. This results in that
if the metamodel is bad for modelling access control policies, our evaluation
results for C3 would be affected.

For the evaluation, we used four different evaluation scenarios with overall 18
different usage or misusage scenarios. During the evaluation, we investigated
two evaluation questions, which focus on the correct access decision for ser-
vices and the correct access decision for a usage or misusage scenario. In the
investigated scenarios, we had cases with access violation and non-violation.
We also had usage and misusage scenarios. Therefore, we investigated a
wide variety of scenarios for our analysis. We compared the analysis results
against a manually derived reference output. The evaluation suggests a high
accuracy. Our analysis provided a JC of 1.0 for our scenarios, meaning that all
the analysis results match the expected results. Based on the good evaluation
results for our contribution C3, we can assume that, to some extent, the
results are also based on the quality of the metamodel. Therefore, the good
evaluation results indicate to some extent a good quality for the contribution
C1. Overall, the evaluation indicates that our answer with the access control
metamodel (C1) and the access usage analysis C3 for the research question
RQ1 have a high accuracy and therefore are good solutions.

The second research question RQ2 investigates the propagation of attackers
in a software architecture. The first sub-research question RQ2.1 investigates
the relevant properties of an attack propagation. We answer it with our con-

239

7. Evaluation

tribution C4 and C1. The first contains the metamodel for the vulnerabilities,
the attacks, and the attacker. The second contains the access control meta-
model because attackers do not only propagate by exploiting vulnerabilities
but also exploit existing access control policies. As for the research question
RQ2.1, we do not explicitly investigate the quality of our contribution in our
evaluation but rather investigate them with our second sub-research question
RQ2.2. The reason is the same as for the C1, that we indirectly evaluate the
pragmatics by using the metamodels in our analyses. The research question
RQ2.2 investigates the different attack analyses. We answer it with our
contribution C4. This contribution is split into two sub-contributions. The
attack propagation analysis is contribution C4.1, and the targeted attack path
analysis is contribution C4.2. Both attack analyses reuse the metamodels
developed in the contributions C4 and C1. Therefore, these contributions
affect the results of the attack analyses because a non-appropriate metamodel
might result in bad analysis results.

The attack propagation analysis, the contribution C4.1, is evaluated regard-
ing the evaluation goals accuracy G2, effort reduction G3, and scalability
G4. For G2 and G3, we investigated 18 different evaluation scenarios and
sub-scenarios. The scenarios are built upon real-world breaches and eval-
uation cases enhanced with security vulnerabilities from security advisors
and vulnerability databases. For the evaluation goal G2, we manually created
a reference set containing the expected attack propagation, the expected
affected data, and attack complexity. We compared each reference set with
the metrics precision, recall, and F1 to the analysis results. In all investigated
evaluation scenarios, we got a precision, recall and F1 from 1.00, which is a
very good result. For the effort reduction, we got mixed results depending
on the evaluation scenario. In some evaluation scenarios, where the attack
propagation only affects a part of the software architecture, the results are
quite high. In other evaluation scenarios, where nearly the complete system is
affected, the effort reduction is lower. In addition, we discussed the effort for
applying our approach and showed potential approaches to reduce the effort
further. For investigating the scalability (G4), we scaled an input model re-
garding ResourceContainers and measured the runtime. The results showed
a potential long runtime for software architectures above 10,000 elements.
However, we identified different possibilities to improve the performance.
Overall the evaluation results indicate that our contribution C4.1 answers
research question RQ2.2 satisfactorily.

240

7.5. Overall Evaluation Results & Discussion

We evaluated the targeted attack path analysis, the contribution C4.2, regard-
ing the evaluation goals accuracy G5, effort reduction G6, and scalability
G7. During the evaluation goals G5 and G6, we investigated five evaluation
scenarios with 52 potential attack paths. Our evaluation scenarios stem from
real-world breaches and evaluation cases. For specifying the vulnerabili-
ties in the evaluation scenarios, we used security advisors and vulnerability
databases. Based on the evaluation scenarios, we manually checked the pos-
sible attack paths for each scenario. Afterwards, we compared in G5 the
found attack paths and their validity with the metrics precision, recall, and
F1. For all evaluation scenarios, we have a precision of 1.00, meaning that all
found attack paths are valid attacks. In two evaluation scenarios, we missed
some attack paths, which is why our lowest recall is 0.86 and our lowest F1
score is 0.93. Nevertheless, these results are quite good and indicate a high
accuracy. For the effort reduction, we again get different values depending
on the actual attack path. For the scalability goal G7, we investigated the
runtime with scaled ResourceContainers for the graph creation and the path
identification. Here, the results are better than for the attack propagation
analysis. The runtime for each part with 100,000 elements takes around 1.5
hours. Nevertheless, we also could identify some performance improvements.
Overall the good evaluation results indicate that our contribution C4.2 is
satisfactory. In combination with the evaluation of the contribution C4.1, the
contributions C4.2 provide in our eyes a sufficient answer to the research
question RQ2.2.

Both analyses together are our contribution C4 and answer research question
RQ2.2. The evaluation results indicate that the contribution answers the
research questions well. Furthermore, based on the evaluation results, we
can assume that the contribution C2 and C1 answer the research question
RQ2.1 satisfactorily. This is based on the fact that our attack analyses use
the metamodels developed in the contributions C2 and C1. Therefore, if
the metamodels are not sufficiently modelled, the analysis might result in
faulty results. However, most of the results for the attack analysis are good.
Nevertheless, there are some non-ideal results. The bad scaling behaviour is
influenced by the metamodel. The problem is less with the attributes used in
the metamodel but more related to the technical realization and underlying
framework because they require repeatable searches in lists of elements to
identify the relevant model element. Hence, the problem is the used extension
mechanism and not the metamodel itself. The other open problem regarding
the missed attack paths in G5 is not based on the metamodel but rather on

241

7. Evaluation

the used path finding algorithm. Hence, we assume that our contributions
C2 and C1 sufficiently answer the research question RQ2.1. Overall, based
on our evaluation, we can say that we have answered our research questions
RQ2.2 and RQ2.1 sufficiently. As a result, we also assume that we answered
the research question RQ2 because it is composed of the research questions
RQ2.1 and RQ2.2.

242

Part IV.

Epilogue

8. Related Work

This chapter discusses related approaches and tools to our developed ap-
proaches. We split the related work along our two main research questions
RQ1 and RQ2. The first Section 8.1 discusses approaches for analysing and
modelling confidentiality in software systems. This covers, among others,
different access control models and their analyses. In this section, we focus
on approaches with no explicit or no variable attacker models. Approaches
containing these properties are described in Section 8.2. Here, we focus on
approaches describing attackers, their behaviour, their attacks, and vulnera-
bilities in the system. In addition, this contains different analyses using the
descriptions.

8.1. Approaches focused on Confidentiality

This section discusses different approaches to analyse confidentiality. As
previously described, confidentiality is often provided by the access control
system. Other approaches, especially in combination with privacy aspects,
focus on anonymising the data, such as K-Anonymity [194] or Differential
Privacy [51]. Therefore, they provide means to protect the identity of the
data provider and, therefore, try to preserve the confidentiality of the data
provider. Another possibility to protect data from unauthorised access is the
usage of encryption. In our work, we focussed on the access control and
similar related approaches and analysis. Before discussing different analyses,
we first discuss in Section 8.1.1 different access control models in contrast to
our chosen model, which is ABAC. Afterwards, we describe different access
control policy analyses in Section 8.1.2. Here, we focus on approaches which
use existing policies and analyse them. We discuss various confidentiality
analyses in Section 8.1.3. Here, we focus on model-driven analyses. Usually,
access control only works at the moment data is accessed. After the data
is accessed, it might be that the data left the original data dominion, and

245

8. Related Work

theoretically, the data is unprotected. For solving this problem, usage control
approaches are used. We will discuss these in Section 8.1.4. After introducing
different scientific or applied research approaches, we will discuss some
exemplary industrial tools in Section 8.1.5.

8.1.1. Access Control Models

In our approach, we chose to use ABAC as our access control model because
it provides support for considering the context during the access control
decision. There exist various other access control models [118]. Some of these
can consider more attributes of the context others can consider less. The first
access control model is Discretionary Access Control (DAC) [205]. It defines
access control policies on the user level and only uses the user’s identity to
determine access. Therefore, the formalization of policies is complex since
access needs to be granted to single users. In addition, it does not consider
additional attributes like, for instance, the state of the machine in our running
example. Another approach is Mandatory Access Control (MAC) [206]. Here,
the access is controlled by a central entity. It differentiates access between
persons and processes and classifies the requested object, for instance, in
secret and public. A popular representative is the SELinux system to restrict
users in a Linux system12. Still, the definition can be quite complex, and there
is no possibility of considering different context states.

In contrast, RBAC [55] abstracts from the user by grouping similar users and
activities in roles. The access is then defined on the roles, not the user level.
For instance, the technician has the role technician in our running example.
This helps in the formalization and in the comprehension because the policies
abstract from the individual user performing a task to the role performing
a task. This role assignment can be seen as a first step to considering the
context. However, the context consideration is very limited because it only
covers the role and other aspects, such as the state of the machine in our
running example, are not considered. Several approaches exist extending the
RBAC approach to address some of the shortcomings. The dynamic RBAC

1 National Security Agency | Central Security Service > What We Do > Research > SE Linux. url:
https://www.nsa.gov/what-we-do/research/selinux/ (visited on 09/09/2019).

2 SELinux Userspace. url: https : / / github . com / SELinuxProject / selinux (visited on
03/20/2023).

246

https://www.nsa.gov/what-we-do/research/selinux/
https://github.com/SELinuxProject/selinux

8.1. Approaches focused on Confidentiality

(DRAC) [225] approach automatically updates the role assignments for users
based on the context. Therefore, it can consider further context attributes.
Nevertheless, the access is still determined solely by roles, and the context
cannot be directly used. A similar concept is used by temporal RBAC (T-
RBAC) [28], where roles are enabled and disabled based on time constraints.
However, there are also approaches which add additional context attributes
to the policy itself. For instance, privacy-aware RBAC [124] adds the context
of privacy-relevant information, such as purpose and obligations to RBAC.
Therefore, enabling a more privacy-aware access control. The same can be
done for ABAC, for instance, by using the dedicated extension points by
adding attributes and custom comparison methods. Yet, ABAC still provides
the consideration of more context attributes.

The Role-centric attribute based access control [83] aims to combine the
advantages of RBAC and ABAC. It assigns attributes to the requestor and
the requested object. However, in general, in contrast to ABAC, it does not
consider the environmental context.

The Organisation-based access control (OrBAC) [88] tries to tangle some
of the limitations of RBAC. It was developed for managing access within
an organisation and considers multiple different contexts, such as time or
user-related properties [43]. Many extensions exist for special purposes, such
as Trust-orBAC for considering trust [197] or special extensions for cloud
computing [221]. The approach can be an ideal candidate as an alternative
to our used ABAC. The approach could be integrated by replacing the PDP
and the access control query and transformation modules with modules for
OrBAC. However, in our approach, we choose ABAC together with XACML
because, in our eyes, they provide better documentation, more freely available
tools, and industrial applications.

A recent trend in access control models is the consideration of risk in the
access decision. It is some kind of dynamic access control approach targeting
dynamic environments, such as IoT. There exist various different risk-based
access control models [16]. They use different properties, such as the context,
the history, or the sensitivity to determine the access decisionwith approaches,
such as Fuzzy Logic, Machine Learning, or Game Theory [16]. Based on the
diversity of the considered properties, the approach itself is comparable to
ABAC. In our case, we choose to use ABAC because of its maturity and better
tool support.

247

8. Related Work

The Unified Access Control Modeling Language (UACML) [180] aims to find
a common metamodel for all access control approaches. It is based on UML
and supports the expression of access control requirements independent of
the chosen access control model. This metamodel can then be integrated into
existing design time modelling approaches. In contrast, to our approach, their
approach is more generic and includes multiple access control models, such
as DAC and MAC. However, they do not support attribute access control so
far, and there are no analysis capabilities.

Another model-based approach is SecureUML [106]. It extends UML with
the possibility to model access control properties and generate, based on
the model system, the runtime policies. Therefore, they are very similar
to our access control model and the transformation to XACML, where we
also can generate runtime policies. Our approaches differ in the chosen
access control model. Within their approach, they mostly use RBAC, but
they extended it with the capability to express dynamic expressions. These
dynamic expressions are realised by using OCL constraints. Therefore, they
can express situations like in our running example, that access is granted
only during a certain state of the machine. In contrast, our approach uses
ABAC, an approach which natively can already support different context
attributes. Furthermore, our access control model is based on an existing
industrial standard for modelling access control, which can increase the
applicability for practitioners. This is also continued in the generated access
control policies. SecureUML generates access control policies for EJBs (Java
Enterprise Beans), which are usually only used in the Java Enterprise domain.
In contrast, our generated access control policies are XACML policies. Despite
the requirement of an XACML-based PDP, these policies can be used in
heterogeneous programming language applications, and it is additionally a
common foundation for access control policies and their analyses.

8.1.2. Access Control Policy Analyses

Jabal et al. [80] provides an overview of different policy analysis approaches.
They investigate not only access control policy analyses but also consider
other analysis types, such as network policies or SELinux policies. Kasten
[89] also discusses different policy models, such as flow control or usage
control.

248

8.1. Approaches focused on Confidentiality

Alberti et al. [9] provides a policy analysis approach for analysing an extended
RBAC model. Their used access control model supports the consideration
of additional contexts. For analysing the policy, they use a symbolic model
checking approach. They analyse the problem arising through role dele-
gations. In other words, in RBAC, a role can delegate its permission to
another role. In contrast, in our approach, we do not support role delega-
tion because it is not included in our metamodel. However, there exist an
extension for XACML supporting delegation [133]. Using the extensions and
slightly adapting the propagation rules, our analysis might provide similar
results. Nevertheless, their approach is based only on the policy level, and
our approach uses the software architecture. Therefore, our approach needs
the software architecture but can in return identify components which are
problematic.

One policy analysis for XACML-based policies is Margrave [57]. It uses
decision-diagrams [58] internally to calculate whether users can perform
certain actions and get the impact of access control policy changes. In contrast,
our contribution C3 focuses more on a scenario-based testing approach.
Turkmen et al. [202] introduces also a XACML-based policy analysis. They use
satisfiability modulo theories (SMT) to analyse different access control policies
regarding attribute hiding and change impact. Other similar approaches are
Hughes et al. [75] using a sat solver for the analysis, Lin et al. [104] checking
for similarities, such as effect, Jabal et al. [79] determining various quality
attributes for policies or Ait El Hadj et al. [7] clustering policies to detect
anomalies, such as redundancy or conflicts.

Overall, our approach differs from the mentioned one by focusing on the
software architecture. The mentioned approaches consider mainly only the
policy and do not consider further information, such as components or hard-
ware devices. Therefore, our approach does need more initial input. In return,
we provide additional feedback about architectural elements and, in the case
of C3, additional about the intended usage. In contrast, our feedback about
access control policies is more limited. Furthermore, our approaches in C4
consider, besides the access control policies, additionally a dedicated attacker
model with vulnerabilities and attacks. This can provide feedback on how
attackers can exploit access control policies in combination with vulnera-
bilities. Nevertheless, it might be beneficial for security experts to analyse
our generated access control policies with other XACML-based analyses to
get insights into other security properties. This is possible because security
experts can use our generated XACML file. Therefore, the XACML file acts as

249

8. Related Work

a universal exchange format. On the technical side, there might be a problem
if the analysis uses different XACML versions, but there should be no other
restrictions.

Besides the analysis of a policy regarding certain security or quality proper-
ties, there exist also approaches that focus on the adaption of these policies
regarding a dynamic environment. Silva et al. [175] is such a self-adapting
policy model. It actively analyses the user behaviour with Markov-Chains
and can grant or remove permission for users. In contrast, in our approach,
we explicitly excluded the adaption of the policy itself. However, it might
be possible to integrate such approaches as long they can handle XACML
policies.

8.1.3. Confidentiality Analyses

In this section, we focus on confidentiality based on access control, especially
if they exploit model-driven techniques. Different surveys, such as Den
Berghe et al. [49] or Nguyen et al. [123], identified that many security-related
model-driven analyses target access control or confidentiality.

Zhang et al. [226] provides a very similar approach to C3 and C1. They
developed a custom Domain Specific Language (DSL) for specifying access
control policies. They later transformed the access control policies specified
in their DSL to a XACML-based policy. In addition, security experts can
define goals and malicious goals. These are operations a user should be able
to perform. Afterwards, they check whether a user can perform these. This
is comparable to our misusage and usage scenarios in C3. Our approaches
differ in that we additionally use the software architecture and can consider
service calls which are delegated by the original service call. In other words,
services can call other protected services, which can have different access
control policies and might be denied. Therefore, we have a more holistic view
of the system. Another exemplary approach using model checking to analyse
access control policies is, for instance, Guelev et al. [63].

In Basin et al. [21], SecureUML [106] is extended for a policy analysis. The
authors combine the security model and the component level to enable OCL
queries regarding the access control policies. Exemplary queries are, for
instance, the identification of required roles for accessing an object or whether
two rules have the same permissions. In contrast, in our work for C3, we

250

8.1. Approaches focused on Confidentiality

focussed on a given scenario and for C4 on the propagation of attackers,
which are so far not considered in SecureUML.

Sectet [64] is a model-based access control framework designed for work-
flows. It allows the modelling of workflows with security properties. Like
our approach, Sectet transforms the modelled access control properties into
XACML files, which can then be used by PDPs to determine the access deci-
sion. In contrast to our approach, Sectet focuses on workflow definitions and
does not take into account the software architecture aspect. In addition, they
do not consider vulnerabilities together with attack propagations, which is a
key aspect of our work.

The UML-based Web Engineering (UWE) [37] extends UML for modelling
different security properties. It also provides support for generating access
control policies. In Bertolino et al. [30, 31] UWE was used as a foundation
for test case generations for XACML. These test cases can be seen as similar
to our scenarios. However, in contrast, our analysis also supports attack
propagation.

The Data-centric Palladio [167, 168] approach extends PCM to support data-
flow-based confidentiality analyses. It mainly supports access control and
information flow analyses. The idea is to describe data with characteristics.
These can contain role information or other attributes. At each data pro-
cessing node then, the characteristics of the data can be checked against
the required characteristics of the data processing nodes. In addition, there
exist Prolog queries, which define the access control or information flow poli-
cies. There exist, also other extensions like our context-based access control
model [33]. Other extensions consider uncertainty in the input values [32]
or handling structural uncertainty [210]. In contrast to the data-flow-based
approach, our access control model (c.f C1) is defined on services. Further-
more, we also support the concept of misusage diagrams, which are so far not
considered in Data-centric Palladio. In addition, our approach has a dedicated
attacker model and uses the access control properties to propagate attacks.
Also, our access control model follows more closely the industrial standard
and our access control policies can be reused during the runtime. Neverthe-
less, the data flow analysis might be better in more data-oriented applications
than our approach. Also, the SecDFD [200] approach is a data-flow-based
analysis, which was extended in Tuma et al. [199] for automatic detecting of
security flaws based on the source code. However, they focus on information
flow analysis, whereas we focus on access control.

251

8. Related Work

Other information flow analyses are, for instance, the iFlow approach [90,
91] and Gerking et al. [60]. The first extends UML via profiles and then
generates the source code of the system based on the modelled system. In
addition, it is combined with a verification step to analyse the system for data
flow violations. In contrast, to our approach, they target a different security
property with information flow as our approach with access control. Also,
they choose their own access control model, which is more oriented on RBAC
instead of our access control which is built upon an existing standard for
ABAC. Furthermore, we support misusage scenarios and provide a dedicated
attacker model. The second approach, Gerking et al. [60], extends Mechatron-
icUML [26] and combines it with timed automata [14] to analyse whether the
real-time behaviour and message exchange is secured. As with the previously
described approach, our approach targets, in contrast, access control, which
is a different security property. In addition, our approach has a dedicated
attacker model and different propagation analyses. Nevertheless, we do not
support the analysis of real-time properties.

8.1.4. Usage Control Approaches

In a dynamic environment like in Industry 4.0, or IoT, it is important that
data can be secured even after leaving the company networks. Usage Control
approaches target this security issue by defining restrictions on the usage,
such as the data cannot be modified or only read once. 𝑈𝐶𝑂𝑁𝐴𝐵𝐶 [138] is
a model which allows specifying policies for usage control. In Pretschner
et al. [150], a model is proposed to combine the policy specification of UCON
with policy enforcement mechanisms like DRM [193]. While usage control
is important in dynamic exchanging environments, they are not entirely
necessary for our approach. We focus on the system analysis and not on the
runtime decision-making or enforcement, where usage control is necessary.
However, it might also be possible to integrate the concepts into the policy
generation similar to Munier et al. [120], which internally uses OrBAC to
specify the access control policies or like Hariri et al. [69] which extended
XACML to support UCON.

252

8.2. Approaches focused on Attacks & Attackers

8.1.5. Industrial Tools & Approaches

Besides the previously presented scientific approaches, different industrial
approaches exist considering contexts for the access decision. Axiomatics3
provides various systems for managing ABAC-based systems. Among other
tools, they provide a PDP for XACML. In contrast, our chosen PDP is freely
available. Nevertheless, it might be possible to integrate their PDP into our
approach. They also developed a custom DSL Alfa4 for specifying access
control policies. In this regard, their DSL is very similar to our contribution
C1. In contrast, our metamodel has special elements to support the easier
integration into our used ADL.

Regarding the risk-based authentication, various implementations exist, such
as Okta5 or IBM6.

8.2. Approaches focused on Attacks & Attackers

This section discusses related approaches to our contribution C2 and C4. It
also discusses parts of C1 if they are related to parts of the attacker.

8.2.1. Vulnerability & Attack Classifications

In our approach, we model our vulnerabilities based on the classifications
of CVE, CWE, and CVSS. These provide most of our properties describing a
vulnerability in our metamodel. All three approaches are also commonly used
in the industry or vulnerability databases. There also exist other classifications.
For instance, Garg et al. [59] proposes a classification based on technical
parameters, such as the targeted operating system or techniques. However,
their approach also uses internally CVSS for the identification of the severity.

3 Axiomatics. url: https://axiomatics.com/ (visited on 03/24/2023).
4 Axiomatics releases free plugin for the Eclipse IDE to author XACML 3.0 policies. url: https:

//axiomatics.com/news/press-releases/axiomatics-releases-free-plugin-for-the-

eclipse-ide-to-author-xacml3-0-policies (visited on 03/24/2023).
5 Risk-Based Authentication: What You Need to Consider | Okta. url: https://www.okta.com/

identity-101/risk-based-authentication/ (visited on 03/20/2023).
6 IBM Risk-Based. Mar. 7, 2021. url: https://www.ibm.com/docs/en/tfim/6.2.2.6?topic=

access-overview-risk-based (visited on 03/20/2023).

253

https://axiomatics.com/
https://axiomatics.com/news/press-releases/axiomatics-releases-free-plugin-for-the-eclipse-ide-to-author-xacml3-0-policies
https://axiomatics.com/news/press-releases/axiomatics-releases-free-plugin-for-the-eclipse-ide-to-author-xacml3-0-policies
https://axiomatics.com/news/press-releases/axiomatics-releases-free-plugin-for-the-eclipse-ide-to-author-xacml3-0-policies
https://www.okta.com/identity-101/risk-based-authentication/
https://www.okta.com/identity-101/risk-based-authentication/
https://www.ibm.com/docs/en/tfim/6.2.2.6?topic=access-overview-risk-based
https://www.ibm.com/docs/en/tfim/6.2.2.6?topic=access-overview-risk-based

8. Related Work

Another classification is Li et al. [103]. Both approaches are currently limited
in their application, and most databases use a combination of CVEs and
CVSS.

Another classification and scoring system similar to CVSS is the CWSS by
Mitre [112]. Both approaches are quite similar and consider similar properties.
However, they are not identical and target different usages. For instance,
CWSS can handle unknown properties for the score calculation. In our
case, we do not use the scoring and are more interested in the base metrics.
Therefore, we only use CVSS because it is more often used.

Nevertheless, as previously discussed, CVSS has limitations [185, 184]. For
some, the most critical aspect is that CVSS is used to determine the risk of
a vulnerability, but it only calculates the severity of the vulnerability7. For
instance, a high severity can be, in some cases, not a problem if the vulnerable
component is not critical. This is also in line with our approach (C4), where
we also look at the complete system to analyse the impact. For addressing
this issue, there exist different initiatives and research. For instance, the
Stakeholder-Specific Vulnerability Categorization (SSVC) [186] considers
further specialised attributes to calculate a more custom risk. Also, other
approaches, such as the Exploit Prediction Scoring System (EPSS) [81] [53],
follow a similar approach to consider the risk. However, the usage for both
approaches is still very small compared to CVSS, and some even include it.

Regarding the attack modelling, we use in our approach CVEs and CWEs to
identify an attack and automatically derive further attributes, such as the
attack vector from the context. Another alternative could be the CAPEC
[38] by Mitre. It describes textual typical attacks and links different attack
types similar to CWE with parents and children. Furthermore, it contains a
reference to the related CWE weakness for the attack. In contrast, our model
is a bit simpler because it reuses the same concept to model vulnerabilities
and attacks. However, because of the usage of CWEs in CAPEC, CAPEC
can also easily be integrated into our metamodel and analyses. It would just
require adding a new subclass of CategoryAttack and overriding the method
canExploit.

7 A. Liska. “CVSS Scores Are Dead: Let’s Explore 4 Alternatives”. Apr. 19, 2021. url: https:
//www.rsaconference.com/library/Presentation/USA/2021/cvss- scores- are-dead--

lets-explore-4-alternatives (visited on 03/28/2023).

254

https://www.rsaconference.com/library/Presentation/USA/2021/cvss-scores-are-dead--lets-explore-4-alternatives
https://www.rsaconference.com/library/Presentation/USA/2021/cvss-scores-are-dead--lets-explore-4-alternatives
https://www.rsaconference.com/library/Presentation/USA/2021/cvss-scores-are-dead--lets-explore-4-alternatives

8.2. Approaches focused on Attacks & Attackers

Open Safe

Pick Lock Learn Combo

Listen to spoken
Combo

Get someone to
speak the combo

and

Figure 8.1.: Exemplary simplified attack tree based on Schneier [162]

8.2.2. Attack Path & Threat Modelling

Many attack analysing approaches are modelling attacks as a direct acyclic
graph [98, 224, 18, 13]. For instance, Schneier [162] presents attack trees,
which are based on fault trees. Figure 8.1 illustrates such an attack tree. For
simplicity reason the example is based on the example given in Schneier
[162]. It is a simplified example for breaking into a safe. However, the
safe in this example could be easily replaced with software architecture
elements. The root node describes the goal (here, open safe), and then the
sub-goals are described. They can be connected by logical disjunction (or),
such as for Pick Lock and Learn Combo, or such in the case of Listen to
spoken combo and Get someone to speak the combo by a logical conjunction
(and). Furthermore, elements can be marked as impossible if the attack is
not possible. In Mauw et al. [109], a formal definition for attack trees is
given. Opdahl et al. [135] compares attack trees with misuse cases for threat
identification in an experiment. The results were that attack trees have
been better for identifying threats. Tøndel et al. [196] presents an approach
combining misuse cases and attack trees by linking use cases to attack trees.
In contrast, to attack trees, our approach does not explicitly list the impossible
sub-goals. However, the analysis results from C4 can be similarly interpreted.
For instance, the goal is the target in C4.2, and the subgoals are the necessary
architectural elements to reach the target. In the case of the C4.1, the result is
not a tree, and it is missing the goal. However, still, the concept of activities
leading to compromisation, such as with the subgoals, exists.

255

8. Related Work

A common application of attack trees is during threat modelling [172]. For
instance, Alhebaishi et al. [10] use attack trees to identify security metrics in
cloud computing during a threat analysis. For the identification of potential
threats during the threat modelling, Microsoft developed the STRIDE [96]
approach. It stands for 1. Spoofing of user identity 2. Tampering with data
3. Repudiability 4. Information disclosure (privacy breach) 5. Denial of Service
(D.o.S.) 6. Elevation of privilege. These also represent the different threat
categories. The approach provides a structured framework for thinking and
concentrating on security threats and, therefore, can help security experts
to identify more threats. Based on this concept, Microsoft developed the
Security Development Lifecycle (SDL)8. This lifecycle contains a process
which should produce more secure and reliable software applications. Also,
other processes target this aspect, such as the OWASP Software Assurance
Maturity Model (SAMM) [136]. Overall, most of these processes use a manual
process for identifying threats. Also, especially the lifecycle approaches are
not directly competing with our analyses. In fact, it might be beneficial to
integrate our analyses into the mentioned processes.

8.2.3. Attack Path Estimation & Automatic Analysis

In the previous section, we mainly covered the manual analyses and man-
ual generation parts for related approaches. In this part, we focus on the
automatic creation of the attack paths or the automatic analysis of graphs.

In recent years, there has been a trend to automate the generation or the
automatic analysis of attack trees or attack paths [218]. One keystone for
automatic analyses can be the availability of different easy-to-use DSLs for
specifying attacker behaviour. The Meta Attack Language [85, 219] tries to
tangle this issue by providing a metamodel for DSLs. These can then be used
to specify concrete attacker behaviour. Based on this concept, the VehicleLang
[92] was developed. It is a DSL for specifying attacker behaviour in vehicles
and their IT infrastructure. In contrast, our attacker behaviour is encoded in
the metamodel and Java propagation rules.

8 Microsoft. Security Development Lifecycle. url: https://www.microsoft.com/en- us/

download/details.aspx?id=29884 (visited on 10/13/2022).

256

https://www.microsoft.com/en-us/download/details.aspx?id=29884
https://www.microsoft.com/en-us/download/details.aspx?id=29884

8.2. Approaches focused on Attacks & Attackers

Different approaches cover the automatic identification of threats. For in-
stance, Berger et al. [27] proposes an approachwhich extracts potential threats
in a data flow diagram. Their threats are derived from CWEs and CAPECs.
Briefly summarised, they analyse the data flow for possible dangerous pat-
terns and mark these. In contrast, our approach does not search for these
patterns but considers the propagation of attackers. A very similar to Berger
et al. [27] data-flow-based threat detection approach is described in Tuma
et al. [201], which tries to identify design flaws. Another data-flow-based
approach is Sparta [179, 178].

Wortman et al. [220] provides an approach that generates an attack tree based
on a software architecture. The attack tree is created by first selecting a
target node as the root for the attack tree, similar as in C4.2. Afterwards, it
then identifies all possible paths to the target. The path elements are then
compared against a manually specified vulnerability file. This file then fills
the attack tree. This attack tree is then automatically analysed for risk and
potential costs. Our approach differs in regard that we additionally consider
the access control properties for the attack propagation, and for our C4.2,
we provide additional filtering options to identify relevant attack paths. In
contrast, we do not provide information about the risk or the cost. However,
to our understanding, our results could be used in combination with the
described risk estimation approach. Other similar attack tree generation
approaches are, for instance, Eckhart et al. [52] or Lemaire et al. [101]. The
first is a threat analysis tool in the industrial automation domain, which can
generate its own attack tree. The second generates attack trees based on a
modelled CPS.

Besides the attack tree identification, there are also various approaches for
generating attack paths or graphs [98, 13]. For instance, Arat et al. [15]
propose an attack path detection for CPSs in the industrial domain. Similar
to our approach, they first create an attack graph based on the modelled
entities. Afterwards, they find attack paths between two selected nodes.
This behaviour is quite comparable to our target node and the StartElement-
Filter in C4.2. Furthermore, they have filter operations to filter irrelevant
attack paths. However, in detail, the approaches differ in two parts. First, in
the attack path generation. Based on their focus on CPSs, they calculate the
communication between different elements based on the closeness of two
elements. In contrast, in our approach, this is a dedicated model element
because, in our case, it is important that also not physically close elements can
communicate. The second difference is the consideration of access control

257

8. Related Work

properties. Our approach uses a fine-grained access control model, where
their approach does not support access control so far.

Another similar attack propagation approach is Polatidis et al. [148, 147].
Their approach can identify attack paths between two elements. The ap-
proach uses information extracted from the CVE, CVSS and other vulner-
ability information for the attack propagation. Afterwards, they rank the
found attack paths to find the most relevant attack paths. Their ranking is
based on a recommender system. Our approach uses similar or the same
concepts like CVE or CVSS for the attack propagation. However, in con-
trast, we additionally consider context-based access control properties for the
propagation. Furthermore, our approaches differ in the selection of relevant
attack paths. In our case, we use different filter operations to identify attack
paths. In their case, they use a recommender system with an internal ranking
system. Deloglos et al. [48] provide an attack propagation analysis for CPS.
However, they do not consider access control properties in the propagation.
Wang et al. [216] proposes an attack graph analysis approach for IoT. It
uses similar to our approach CVEs to determine vulnerability properties. In
contrast to our approach, they quantify risk based on the vulnerabilities used
in an attack path. However, they do not consider attack propagations based
solely on access control policies, like in our approach. In their approach, a
CVE vulnerability is necessary for the attack propagation. Other automatic
attack analyses are Aksu et al. [8], Yuan et al. [223] Ghosh et al. [62]. These
approaches add support for considering privileges. Hence, they support ac-
cess control properties. However, their access control model is very limited
in contrast to our approach. For instance, it differs only between a user or
admin in some cases. In our case, we use a fine-grained context-based access
control system, which can provide more detailed feedback. Furthermore, our
approach uses a detailed software architecture with deployment and services
(for C4.1) for calculating the propagation. In contrast, their approaches use
something more similar to network topologies. Another similar approach
to the mentioned ones is Ibrahim et al. [76]. They focus on the automatic
creation of attack graphs for microservices based on docker files. However,
they also use a very limited access control model. Other approaches based on
the network topology are Sheyner et al. [171], Phillips et al. [142], and Jajodia
et al. [82]. The first, Sheyner et al. [171], describes an approach to extract
attack graphs based on the network topology by using a model checker. They
consider mitigation techniques, such as firewalls or intrusion detection sys-
tems, in their approach. In contrast, our approach uses a more fine-grained

258

8.2. Approaches focused on Attacks & Attackers

access control model and uses the software architecture. Phillips et al. [142]
describe an approach which can generate attack graphs with different privi-
leges. However, they do not consider logical connections between services
and only describe their concept theoretically. Jajodia et al. [82] describes
an approach for identifying attack paths to a target network element. They
automatically extract the network topology and vulnerabilities by using net-
work vulnerability scanners. In contrast to our attack analysis, they only
use physical network connections and cannot use logical connections for the
propagation.

An attack propagation approach using the software architecture is the Cy-
ber Security Modeling Language (CySeMoL) [182, 181]. It is developed for
enterprise architectures and calculates an attack graph. The attack graph is
calculated based on the likelihood of a successful attack on an architectural el-
ement. The likelihood is determined by measuring the time till a professional
pen-tester compromised the architectural element. Therefore, it needs for
each component type such measurements. Based on the likelihood and the
attack graph, CySeMol can then calculate the overall cyber-security risk for
the modelled system. In contrast, our approach does not need the likelihood
but reuses the knowledge stored in vulnerability databases. Nevertheless,
for new components, we also need security experts to identify new security
vulnerabilities within a component. Furthermore, they state that they did
not focus on confidentiality attacks. In contrast, our approach support a
fine-grained access control system for modelling confidentiality.

The previously discussed work mostly used attack trees or directed attack
graphs to express attacker and their behaviour. Chen et al. [39] presents
an approach using Petri nets to model attacks in smart grids. They argue
that Petri nets are more expressible than attack trees for describing attacks.
However, in their eyes, the creation of large models is problematic. Therefore,
they propose to individually model Petri nets by different stakeholders and
then merge these models. For merging these Petri nets, they provide a mod-
elling language for identifying matching parts. In contrast to our approach,
they focussed on the modelling part and merging of Petri nets and not on the
analysis of the propagation.

Kramer et al. [99] developed an attack analysis for PCM. In contrast to our
approach, they focus on the attack propagation of a physical attacker. In
other words, the attacker physically manipulates architectural elements to
get access. For instance, the attacker picks a lock to get physical access to the

259

8. Related Work

hardware in a protected room. By getting physical access, they canmanipulate
the hardware, and access or manipulate the deployed software components.
They do not consider virtual access control or software vulnerabilities. In
other words, they do not support the propagation of attackers based on
virtual attacks. Nevertheless, in contrast, our approach only supports limited
physical vulnerabilities (c.f. Section 7.4 — Software Vulnerabilities). Hence, it
might be a good idea to couple these analyses somehow.

Another model-based security and attack analysis is UMLsec [87, 86]. Like the
previously mentioned SecureUML [106], UMLsec extends UML for security
properties. It provides various different analyses for analysing security and
confidentiality properties, such as secure information flow, secure communi-
cation link or confidentiality analysis. In Ahmadian et al. [5], they presented
their CARiSMA tool, which is based on the concepts of UMLSec and adds the
support of context-based access control properties with the usage of Role-
centric attribute-based access control [83]. In contrast, to their approach, our
metamodel is more focused on the software architecture with components
and services. Furthermore, both approaches support dedicated attacker mod-
els. However, in our approach, we focussed on the usage of CWEs and CVEs
to describe vulnerabilities and specific propagation rules for them. These are
commonly used concepts in the industry to specify vulnerabilities. Therefore,
using these concepts for attack propagation in existing software might be
easier.

Another possibility to analyse the system is by systematically testing the
system for vulnerabilities, which can also be automated. For instance, Holm
[72] proposes an approach to emulate a red team (an internal team trying to
attack the system). Their approach systematically checks for vulnerabilities
in the network and tries to compromise these. In contrast, our approach does
not necessarily require a running system. Therefore, our approach can be
used during downtime or with what-if cases. Another similar runtime-based
approach is described by GhasemiGol et al. [61]. They suggest extending
attack graphs with information based on intrusion detection systems and,
therefore, providing a more accurate attack graph of the current network
state. In contrast, their approach might provide more detailed information but
requires a running system and a well-calibrated intrusion detection system.

260

8.2. Approaches focused on Attacks & Attackers

8.2.4. Industrial Tools & Approaches

In the field of automatic attack propagation, various different industrial tools
exist. Bloodhound910 identifies attack paths based on the Active Directory
(AD), which is a Microsoft service for managing a domain. Bloodhound
uses credentials as well as vulnerabilities to create an attack graph for the
identification of attack paths. In contrast to our approach, Bloodhound is
currently limited to attacks and credentials for the AD. In our approach, we
are not limited to this.

A similar tool is code_shield11. The tool focuses on identifying attack propa-
gation in cloud providers, such as Amazon AWS. They focus on access control
properties and finding the correct permission. Therefore, their benefit is very
similar to our contributions C3 and C4 because they can identify too wide
permissions or too few permissions. Therefore, they also target credential
changes. In contrast, our approach does provide similar feedback but is more
generalizable. Our approach is not limited to a specific cloud provider domain
and can handle more general types of vulnerabilities. However, our modelling
effort might be higher.

Another similar tool is CrowdStrike Falcon12. It markets itself as a threat
intelligence tool and provides insights into current attacks worldwide and
security vulnerabilities within a system. It can show vulnerabilities and their
exploitation. However, to our understanding, it does not consider the access
control properties for the attack propagation.

Regarding threat modelling, there exist various different tools. One widely
known tool is the Microsoft Threat Modelling Tool13. It is used with the
SDL14 and supports STRIDE. Another tool is Threat Dragon15 by OWASP.

9 BloodHound Enterprise. url: https://bloodhoundenterprise.io/ (visited on 03/20/2023).
10 BloodHound: Six Degrees of Domain Admin. url: https://bloodhound.readthedocs.io/en/

latest/ (visited on 03/20/2023).
11 CodeShield GmbH. Codeshield. url: https://codeshield.io/ (visited on 03/20/2023).
12 The CrowdStrike Falcon® Platform: One Platform, Complete Protection. crowdstrike.com. url:

https://www.crowdstrike.com/falcon-platform/ (visited on 03/20/2023).
13 Microsoft Threat Modeling Tool. url: https://learn.microsoft.com/en-us/azure/security/

develop/threat-modeling-tool (visited on 06/05/2023).
14 Microsoft. Security Development Lifecycle. url: https://www.microsoft.com/en- us/

download/details.aspx?id=29884 (visited on 10/13/2022).
15 OWASP Threat Dragon. url: https://owasp.org/www-project-threat-dragon/ (visited on

06/05/2023).

261

https://bloodhoundenterprise.io/
https://bloodhound.readthedocs.io/en/latest/
https://bloodhound.readthedocs.io/en/latest/
https://codeshield.io/
https://www.crowdstrike.com/falcon-platform/
https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool
https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool
https://www.microsoft.com/en-us/download/details.aspx?id=29884
https://www.microsoft.com/en-us/download/details.aspx?id=29884
https://owasp.org/www-project-threat-dragon/

8. Related Work

In contrast to our approach, both tools focus on identifying and mitigating
threats. They do not cover the attack propagation with fine-grained access
control. Nevertheless, their findings could be integrated as input for our
vulnerability models.

8.3. Related Work Summary

To summarise the related work, there are different existing approaches for
modelling and analysing access control. On the on hand many of these ap-
proaches, such as [88, 106, 9, 57], also support context-based access control
for fine-grained access decisions. Some of these approaches, such as [168,
106], are also targeting design time and software architectures. On the other
side, we have many approaches for modelling and analysing attacks, such as
[162, 87]. Some of these approaches, such as [162], are still manual or only
consider single threats and do not use vulnerability chaining or propagation
to detect combined attack paths. However, there exist also various attack path
estimation or propagation approaches such as [220, 8], which can provide
vulnerability chaining. Most of these approaches only consider a network
topology such as [171, 82] and cannot consider the software architecture. Us-
ing the software architecture can provide insights regarding the deployment
and the affected services. Therefore, it is beneficial to consider the software
architecture. However, the existing architectural attack path estimation ap-
proaches, such as CySeMoL [182, 181], do not consider fine-grained access
control policies for the attack propagation. Other industrial approaches, such
as Bloodhound1617 or code_shield18 consider the fine-grained access control
properties. However, they focus on their application domain, such as Mi-
crosoft Active Directory or Amazon AWS. To our knowledge, there exist no
approach on the intersection of fine-grained access control policy analysis and
attack propagation based on the software architecture level. Our approach
considers fine-grained context-based access control policies and supports
the identification of attack propagations based on the software architecture.

16 BloodHound Enterprise. url: https://bloodhoundenterprise.io/ (visited on 03/20/2023).
17 BloodHound: Six Degrees of Domain Admin. url: https://bloodhound.readthedocs.io/en/

latest/ (visited on 03/20/2023).
18 The CrowdStrike Falcon® Platform: One Platform, Complete Protection. crowdstrike.com. url:

https://www.crowdstrike.com/falcon-platform/ (visited on 03/20/2023).

262

https://bloodhoundenterprise.io/
https://bloodhound.readthedocs.io/en/latest/
https://bloodhound.readthedocs.io/en/latest/
https://www.crowdstrike.com/falcon-platform/

8.3. Related Work Summary

It is not restricted to a certain application domain but can be used for any
component-based software architecture.

263

9. Conclusion

This chapter concludes this thesis. We summarise our research and contri-
butions in Section 9.1. There, we provide an overview of the key findings
and outcomes of our work. Following the summary, we list the benefits of
our approach for security experts and software architects in Section 9.2. We
discuss how our access control metamodel, vulnerability metamodel and our
analyses can lead to a more secure design. Finally, we conclude the thesis by
outlining areas for future work in Section 9.3.

9.1. Summary

This thesis presented an approach for modelling and analysing access control
policies and vulnerabilities within a software architecture. We developed
four contributions and evaluated them on different evaluation scenarios. In
the following, we will summarise the results for each contribution and then
summarise the evaluation. The overall benefits of our approach are described
in the next section (c.f. Section 9.2).

We start the summary by providing an overview of the modelling artefacts
and their relationship to the security terms defined in Section 2.2.2. Fig-
ure 9.1 illustrates the security terms and how they relate to each other and
our artefacts. The security terms are the boxes with solid borders. Boxes
with dashed lines represent the artefacts. Our Common Vulnerabilities and
Exposure (CVE) and Common Weakness Enumeration (CWE) vulnerabilities
in our approach represent the concept of a Vulnerability. CVEs describes in
our approach concrete vulnerabilities and CWEs describe classes of vulner-
abilities. These vulnerabilities can be exploited by Threats. These threats
are represented in our model by the potential attacks and the credentials of
the attackers. If these threats are executed, they create compromised archi-
tectural elements or access violations. These are then the Security Events in

265

9. Conclusion

Security Incident Security Event

ThreatVulnerability

CVE/CWE
Vulnerability

Attack +
Credentials Attacker

Compromised
Element

Access Violations

Attack Path/Graph Failed Usage/Misusage Scenario

consists of

consists of

represents

represents

represents represents

represents

represents

executed

executed

Legend

Term Modelling Artefact
consists of represents executed

Figure 9.1.: Overview of the approach related to the security terms defined by ISO 27000 [77]

the terminology. Multiple of these potential events build than the Security
Incident. A representation of the Security Incident is the attack graph/paths
or the failed usage and misusage scenarios. It is important to mention that,
in our case, the Security Incident and Security Event are both only a potential
Security Incident and potential Security Event because they are based on our
analysis and not real incidents.

Summarising our research questions, RQ1 investigates how violations in
software architecture can be identified. In more detail, we investigate in
RQ1.1 how access control properties are modelled in relation to the software
architecture. These models are then the foundation for our research question
RQ1.2, where we investigate, how we can analyse these access control poli-
cies. Our second research question RQ2 investigate how attack propagation
can be identified in relation to the software architecture. The research ques-
tion RQ2.1 investigates the relevant properties for an attack propagation
and the research question RQ2.2 investigates how we can analyse software
architectures for attack propagations. In the following, we summarise our
answers based on our contributions.

C1 Access Control Metamodel Our first contribution is the access control
metamodel, which addresses our research question RQ1.1. In addition, it is
used together with C2 to answer research question RQ2.1. The access control
metamodel provides means to model context-based access control policies
for software architectures. It is based on eXtensible Access Control Markup
Language (XACML), an industry standard for modelling Attribute Based

266

9.1. Summary

Access Control (ABAC) policies. We provide custom model elements for the
integration into PCM. This includes new selection elements (in XACML called
match) to select PCM elements and assign them access control policies for
protection. These access control policies rely on attributes for access decisions,
and we also integrated these attributes within the software architecture. In
addition, we introduce means to specify attribute assignments within usage
scenarios. Furthermore, we add a new usage scenario type to PCM to model
malicious user behaviours with misusage scenarios. In our overview in
Figure 9.1, the Credentials of the Attackers and the Failed Usage/Misusage
Scenarios are based on our contribution C1. Overall, our metamodel enables
security experts to document access control properties within the software
architecture.

Besides the metamodel, we developed a transformation from access control
policies modelled with our access control metamodel to valid XACML files.
Thereby enabling the usage of the modelled policies during system runtime.

C2 Vulnerability Metamodel Our second contribution is the metamodel for
modelling vulnerabilities, attacks, and attackers within the software archi-
tecture. In conjunction with the previous contribution (C1), it answers our
research question RQ2.1. Our vulnerability metamodel reuses and extends
commonly used concepts in specifying and classifying software vulnerabili-
ties, such as CVE or Common Vulnerability Scoring System (CVSS). These
concepts are integrated into the software architecture and can be assigned to
different architectural elements, such as components or processing units. Fur-
thermore, we provide the means to model attack capabilities and knowledge
with metamodel elements for attack and attackers. Regarding the attackers,
we provide two different types of attackers. The first type uses concrete
knowledge and capabilities to represent an attack propagation. The second
type uses filters and knowledge to restrict the solution space for attacks. This
contribution is the foundation for the CVE/CWE Vulnerability, the Attack,
the Compromised Element and the Attack Path/Graph in our overview in
Figure 9.1. This contribution enables security experts to model vulnerabilities
within the software architecture.

C3 Scenario-Based Access Usage Analysis Our first analysis examines differ-
ent usage and misusage scenarios regarding access violations. It answers our
research question RQ1.2. The analysis checks each service call for violations

267

9. Conclusion

and then marks each usage or misusage scenario as either passed or not
passed. We use an externally Policy Decision Point (PDP) for XACML to
decide whether a service call is possible. A PDP evaluates access requests
regarding the specified access control policies. The contribution C3 enables
us to identify the Failed Usage/Misusage Scenarios in our overview Figure 9.1,
representing potential security incidents. Hence, the benefit of this analysis
is to identify potential security incidents before they occur.

C4.1 Attack Propagation Analysis Our second security analysis and first
attack analysis is the attack propagation analysis. It helps to answer our
research question RQ2.2. The analysis aims to provide a list of affected
architectural elements. Affected architectural elements are elements com-
promised by an attacker. To achieve this goal, the analysis propagates from
a starting point in the architecture and identifies all reachable architectural
elements. This propagation uses vulnerabilities in architectural elements and
access control policies an attacker can exploit with their knowledge. The
knowledge and capabilities of attackers restrict the propagation. For instance,
not all vulnerabilities can be exploited by all attackers. However, during
the propagation, attackers can gain knowledge and use this new knowledge
for further propagation steps. In the end, software architects get a list of
affected components, services, data, hardware devices and network nodes.
In our overview Figure 9.1, the potential Security Incident due to the Attack
Graph are produced by this contribution. Hence, the benefit is that security
experts become aware of these potential incidents and can discuss them with
software architecture to mitigate them potentially.

C4.2 Targeted Attack Graph Analysis Our last contribution helps in answer-
ing the research question RQ2.2. In contrast to the attack propagation anal-
ysis, the target attack graph analysis calculates attack paths leading to a
specific target within a software architecture. The detected potential attack
paths also use vulnerabilities and access control properties. However, un-
like the propagation analysis, which uses explicitly modelled attacks, C4.2
restricts attacks only based on their properties. Furthermore, the analysis
considers different filter criteria, such as the starting point or the initially
available credential, to calculate its attack paths. The results are attack paths
leading to the targeted element. These attack paths are also the potential
Security Incident in our overview Figure 9.1. This brings the security experts

268

9.1. Summary

the benefit of being aware of potential security incidents. Hence, they can,
together with the software architect, try to mitigate the potential security
incidents.

We evaluated our contributions C3, C4.1, C4.2 by creating for each contribu-
tion a GQMplan and using different evaluation scenarios. The twometamodel
contributions (C1, C2) are not separately evaluated. However, they are in-
directly evaluated based on their pragmatics because they are used in our
analyses. Therefore, if we cannot trace issues in the analysis evaluation to
the input types, we can assume that the metamodels are sufficient for our
investigated cases.

During the evaluation of the contribution C3, we investigated four evaluation
scenarios to assess the accuracy of our approach. In all scenarios, the analysis
identifies all access decisions correctly, which indicates a high accuracy of
our approach.

We evaluated the contribution C4.1 regarding the accuracy, effort reduction
and scalability. To assess accuracy and effort reduction, we used 18 scenarios
and sub-scenarios. The evaluation scenarios are based on real-world system
breaches and commonly used evaluation cases. In the evaluation scenarios,
we achieved a high accuracy which indicates a high overall accuracy. In
addition, we achieved some effort reduction in most evaluation scenarios,
and we discussed potential avenues for further improvements to reduce the
effort. The scalability evaluation showed for smaller software architecture a
reasonable runtime, but for larger systems (>=10,000 elements), the runtime
increases significantly.

Similar to the attack propagation analysis, we evaluated C4.2 regarding the
accuracy, effort reduction and scalability. For the accuracy evaluation, we
investigated five evaluation scenarios with 52 possible attack paths. The
evaluation scenarios are again based on real-world breaches and evaluation
cases from related approaches. Although our overall accuracy results were
not as high as those in the attack propagation analysis (C4.1), they were still
satisfactory. This was due to the fact that our precision remained very high
at 1.00, indicating that all identified attack paths are real attack paths, and
we successfully identified attack paths for most elements (see Section 7.3.3).
The main reason for the lower accuracy is the restriction to simple paths,
and we believe that removing this restriction will yield better analysis results.
However, this can come with performance drawbacks. Regarding the effort
reduction, we illustrated some effort reduction compared to a manual analysis.

269

9. Conclusion

As for scalability, our results are better than those in the attack propagation
analysis. Nevertheless, the runtime still increases significantly for larger
architectures without filters.

9.2. Benefits

Based on our contributions, the application of our approach can bring various
benefits to software architects or security experts. The main benefit is to
increase the understanding of security properties for a software architecture
and thereby increase the security of the overall architecture. In the following,
we describe the benefits in more detail.

Documentation of Security Properties The first identified benefit is based
on our contributions C1 and C2. The two metamodels are used to model
explicitly the access control policies and vulnerabilities. In addition, they put
them in relation to the software architecture. This enables software architects
or security experts, for instance, to quickly see whether a component is
vulnerable. In addition, it provides information about where certain access
control properties can be gained in the system. These documented security
properties can be a starting point for securing the system. Furthermore,
the documentation gives security experts a common basis for discussing
security properties with software architects. The models can also be used to
discuss the security with external stakeholders like management or security
consultants. We did not directly evaluated the quality of the metamodel
for documentation. However, the evaluation of our analyses (C3 and C4)
indicates the appropriateness of the metamodels through the used pragmatics
(c.f. Section 2.1.1 and Chapter 7). Also, the generated attack graphs can be
used for discussions with management because attack graphs may be better
suited for illustrating cyberattacks than a list-based approach [144].

Better understanding of Access Control Policy Impact As previously de-
scribed, understanding the impact of access control policies in complex sys-
tems can be challenging, especially for context-based access control policies
like in our contribution C1. For instance, a single access request could depend
on multiple different access control policies due to target selection in the

270

9.2. Benefits

policies. Our contribution C3 tries to increase the understanding of the im-
pact of access control policies by giving feedback on whether specific usage
scenarios are possible. This feedback is given by detecting violations in usage
and misusage scenarios. Our evaluation with our goal G1 indicates that our
approach can identify these violations in the given scenarios. Based on the
high accuracy in the evaluation, we assume that the results also increase the
understanding of access control policy impact. This benefit applies to multiple
aspects. The software architects can check already during the design time
whether the access control policies are sufficient to enable the intended usage.
At the same time, they get feedback on whether the policies are restrictive
enough to prevent malicious usage. Furthermore, they also can analyse the
impact of policy changes in evolution steps. In addition, with our contribution
C4, our approach provides information on whether attackers can abuse the
access control policies to compromise the system.

Better understanding of Vulnerability Impact Our contribution C4 enables
software architects or security experts to better understand the impact of
vulnerabilities on the software architecture. As previously discussed, under-
standing the impact of vulnerabilities relies on various factors, such as the
required privileges for exploitation and necessary attack vectors. Hence, for
considering the impact, the exploitation context is essential. This is especially
relevant for vulnerability chaining, where multiple vulnerabilities are com-
bined. Here, our attack analyses can provide valuable feedback because they
evaluate whether a vulnerability can be exploited and its potential effects
on the system, as our analyses provide a list of compromised elements. Our
evaluation for the attack analyses (C4) indicates that we can identify attack
paths and attack graphs. These paths and graphs use vulnerabilities. Hence,
they can provide an impact for vulnerabilities. Furthermore, through the
graphs and paths, this information allows security experts to assess whether
a vulnerability can be exploited and whether it leads to further compromi-
sation. Then, they can discuss these with the software architects to identify
mitigation techniques.

Identification of Mitigation Locations This benefit builds upon the previous
one. In detail, it builds upon the list of affected architectural elements provided
by our contribution C4. In our evaluation, we showed that we can generate
this list with a high accuracy. The list of affected architectural elements

271

9. Conclusion

provides security experts with the insights into which vulnerabilities are used
and how an attacker can move within a system. This knowledge is beneficial
because it can be used to identify mitigation locations to break attack paths.
For example, if all attack paths go over a specific component and exploit a
vulnerability there, mitigating that vulnerability can effectively break the
attack paths, thereby enhancing the system’s security by reducing potential
attack routes. The goal is to prevent, if possible, all attack propagations
or at least ensure that attack paths only lead to non-critical architectural
elements.

9.3. Future Work

In this section, we discuss possible future extensions to our approach. These
possible extensions consist of scientific contributions, such as the analysis
of further security properties, improving the evaluation, or new technical
extensions, such as more architectural elements.

Supporting Mitigation Action The main future work for our approach is the
consideration of mitigation approaches for the attack analyses. Currently, we
consider only specific mitigation techniques, such as network segregation
or access control. However, other techniques, such as encryption or the
handling of compromised hardware elements, are so far not considered. To
address this limitation, we could integrate a new metamodel element for mit-
igation. This metamodel element represents the mitigation techniques. This
mitigation element has different subtypes for different mitigation techniques.
For instance, trusted execution environments [158] can prevent the implicit
takeover for components based on compromised ResourceContainers. An-
other mitigation type can be the mitigation of certain CWEs or CVEs. Here,
annotating an architectural element with this mitigation would block the abil-
ity of an attacker to exploit the specified CWEs or CVEs. Besides mitigating a
vulnerability, the different mitigation techniques are usually also vulnerable
to certain attacks. In this regard, we plan to reuse our vulnerability model to
specify possible vulnerabilities which can circumvent the mitigation. This
extension could enable architects to analyse the effects of different mitigation
techniques on the system and also proactively prepare for scenarios where
mitigation measures could be compromised.

272

9.3. Future Work

Considering User Actions in Attacks During an attack, attackers sometimes
require the cooperation of other users in the system. Such cooperation can be
involuntary or accidental, as seen in phishing attempts within an organization.
In other scenarios, it can involve an internal accomplice intentionally assisting
in the attack. Our vulnerability metamodel has an attribute based on the CVSS
classification that indicates whether a vulnerability requires user interaction.
We currently use it only within our attack path filters in C4.2. However, this
usage can be extended by considering the usage scenarios of PCM. The usage
scenarios describe the grouped user behaviour. To realize this feature, we
need a mapping between user action and vulnerability. A solution could
be that we reference prerequisite actions for exploiting in our vulnerability
metaclass. These prerequisite actions can be system services. In addition,
we need to extend the attacker model to select the usage behaviour. With
these extensions, we can then check whether there exists a service call in the
referenced usage scenarios during the exploitation. This service call would
then represent the user interaction.

Considering Additional Security Impacts Our vulnerability metamodel con-
tains more impact information from CVSS regarding a vulnerability as we
use in our attack analyses. Currently, we only use the confidentiality impact.
However, CVSS also provides impact descriptions for integrity and availabil-
ity. Integrity refers to an attacker’s ability to manipulate or change services,
while availability describes an attacker’s potential to take down a service,
therefore, making it unavailable. As a potential integration within our attack
analysis, we could combine it with the possible extensions regarding attacker
states and provide a list of affected architectural elements for each impact. For
instance, for availability, the output could be a list of architectural elements
where attackers can affect the availability. The same can be done for integrity.
This can even be extended to not yet considered impact descriptions.

More Detailed Consideration of Data Our attack analyses do not consider
data flow properties. However, incorporating data flow analysis results could
improve the data extraction process for determining the affected data. For
instance, for compromised LinkingResources, the analysis could identify
unencrypted data flowing through them. To achieve this example, the analysis
is required to reuse the results of a data flow analysis to identify the data
and identify the characteristics of the data. The characteristics are metadata,

273

9. Conclusion

such as encrypted or unencrypted. In Walter et al. [209], we developed an
initial prototype for such a coupling. We used the data flow analysis for PCM
[168] to estimate the criticality of data elements and combined it without
our attack propagations. This combination enabled us to assess the overall
criticality of attack propagations.

Supporting Self-Adapting Access Control Approaches As previously describ-
ed in our limitations (c.f. Section 7.4 — Static Access Control Policies), our
access control policies do not support self-adaptation. While adding support
for self-adaptation could also be future work, these approaches are usually
more runtime-orientated. There are approaches such as Simulizar [24] for
performance simulation, which could be utilised to enable self-adaptation
for design time approaches. However, another interesting area is to leverage
our developed attack analyses to provide insights into the impact of access
decisions and use this knowledge for the self-adaptation process at runtime.
In Walter et al. [209], we already provided similar feedback to a non-self-
adapting runtime access control system. In that work, we analysed the critical
data that an attacker can access if access to a specific architectural element
is granted. Therefore, this approach is similar to risk-based access control
approaches (c.f. Section 8.1.1). We calculate the criticality of the data by
first identifying the affected data. For identifying the data, we utilise our
contribution C4.1 and select as a start point the architectural element to which
the access is granted. A similar approach could be realised with Bureš et al.
[34, 35], where our approach could provide the affected elements as input for
the self-adaption. This integration would support self-adapting access control
approaches by gaining insights into the impact of an access decision.

Increased Support for Automatic Model Generation One important area of
future work involves improving the automatic model generation process. We
presented the first prototype for automatically deriving security properties in
Kirschner et al. [94] and Section 4.3.5. Such approaches have the potential to
significantly reduce the modelling effort, making them particularly valuable
for legacy systems. However, the current state of the approach still has
some drawbacks regarding the architectural recovery and the vulnerability
derivation from source code. With respect to the architectural recovery, the
approach cannot recover all necessary architectural elements, such as the
AssemblyContexts or the ResourceContainers. Regarding the vulnerability

274

9.3. Future Work

derivation, the approach is limited to the concrete CVEs the used source
analysis can identify. However, newer versions of the used source-code
analysis can also identify potential CWEs in the source code. Here, an open
point would be how to handle the other missing vulnerability classification
properties. For the CVEs, we can automatically derive most of the properties
based on their CVE classification. However, for the CWEs, it does not yet
exist. A possible solution could be that this additional information needs to
be manually specified.

Improved Approach Evaluation One open topic for our analysis is the further
evaluation of our approach. This covers multiple topics. First, the evaluation
of the metamodels. Currently, we only evaluate the metamodel by the ap-
plication in our security analyses. While this is sufficient for our intended
usage, evaluating the model itself can be potentially beneficial. This can also
be relevant if the metamodel is used for the documentation. Here, especially
the usability is important. This can be evaluated by performing a user study
where participants should model different scenarios. Another aspect for the
metamodel and the analysis are the applicability or expressiveness. In this re-
gard, it is for security experts important whether the vulnerability metamodel
can be used to model commonly used vulnerabilities or attackers. Other
aspects can be whether the access control policy metamodel can be used to
model commonly used access control policies. This evaluation could also
provide information regarding whether we considered really all important
security properties and whether we considered all propagation rules.

Better Scalability for Attack Analyses During our evaluation, we identified
runtime scalability problems with our different attack analyses. In the future,
it could be beneficial to analyse the concrete runtime problems and improve
the scalability. The first starting point for this problem is the parallelisation of
the attack propagation analysis. In our current state, the attack propagation
analysis is a single-thread application. However, the attack propagation rules
are mostly independent of each other. Therefore, they can be executed in
parallel. In addition, selecting only relevant attack propagation rules based on
the previous propagation is possible, thereby reducing the necessary number
of checks. In addition, it may be good to change the underlying data structure
to a more efficient one. This change in the data structure is also beneficial
for the second attack analysis. For the second analysis, the chosen graph

275

9. Conclusion

framework could also be replaced with a more efficient one. This modification
could enable faster results or even bring better results if we can relax our
assumption about simple paths.

Support for more Architectural Elements Currently, our approach only con-
siders a subset of the available architectural elements within PCM. For the
future, it can be beneficial to extend the support. Especially the support of
CompositeComponents can be useful. This type can help to specify components
with subcomponents and enables a more fine-grained specification of vulnera-
bilities. The challenging factor here is that instantiated CompositeComponents
are not expressed directly in PCM but indirectly derived. Especially for han-
dlingmultiple subcomponents which build a hierarchy, the handling is slightly
different from other PCM elements. Our contributions C1, C2 C3 already
support the specification and analysis. We realized this integration similar to
other PCM analyses with modelling lists of AssemblyContexts. However, the
attack analyses C4 are missing the support. There the propagation rules and
the output needs to be updated. Besides the support of CompositeComponents,
other PCM elements, such as the interfaces for infrastructure calls, could
be beneficial. These additional elements would enable a more fine-grained
assignment of vulnerabilities. In our eyes, the integration should be possible.
It would require adding the new architectural elements to the metamodel
and then, for the attack analyses, the specification of new propagation rules.
For the scenario analysis, it would require a slight adjustment on the SEFF
finder.

So overall, in this thesis, we investigated the impact of access control policies
and vulnerabilities for the security of a system. We developed two meta-
models to express the software architecture’s access control policies and
vulnerabilities. These metamodels are used in our three security analyses to
estimate the impact of access violations and attack paths. There are still open
questions regarding the impact of mitigations or the impact of other security
properties such as integrity or availability. However, our developed approach
is a foundation to further investigate these questions in the future.

276

9.3. Future Work

Acknowledgement

During the writing of the thesis, I used the following tools to improve the
writing and the grammar:

• Grammarly1

• LanguageTool2

• ChatGPT3

• Google Bard4

However, the ideas and argumentation are based on my own ideas.

1 https://www.grammarly.com/
2 https://languagetool.org/de
3 https://openai.com/blog/chatgpt
4 https://bard.google.com/

277

https://www.grammarly.com/
https://languagetool.org/de
https://openai.com/blog/chatgpt
https://bard.google.com/

Part V.

Appendix

Bibliography

[1] A04 Insecure Design - OWASP Top 10:2021. url: https://owasp.org/
Top10/A04_2021-Insecure_Design/ (visited on 04/03/2023).

[2] About the Meta Object Facility Specification Version 2.5.1. url: https:
//www.omg.org/spec/MOF (visited on 04/12/2023).

[3] About the Unified Modeling Language Specification Version 2.5. url:
https://www.omg.org/spec/UML/2.5 (visited on 04/12/2023).

[4] ACM. Artifact Review and Badging Version 1.1. Aug. 24, 2020. url:
https://www.acm.org/publications/policies/artifact-review-

and-badging-current (visited on 02/27/2023).
[5] A. S. Ahmadian, S. Peldszus, Q. Ramadan, and J. Jürjens. “Model-

based privacy and security analysis with CARiSMA”. In: Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering.
ESEC/FSE 2017. ACM, Aug. 21, 2017, pp. 989–993. isbn: 978-1-4503-
5105-8. doi: 10.1145/3106237.3122823.

[6] A. V. Aho and J. D. Ullman. The Theory of Parsing, Translation, and
Compiling. USA: Prentice-Hall, Inc., 1972. isbn: 0139145567. url: http
s://dl.acm.org/doi/book/10.5555/578789 (visited on 01/09/2023).

[7] M. Ait El Hadj, M. Ayache, Y. Benkaouz, A. Khoumsi, and M. Er-
radi. “Clustering-based Approach for Anomaly Detection in XACML
Policies:” in: Proceedings of the 14th International Joint Conference on
e-Business and Telecommunications. 14th International Conference
on Security and Cryptography. SCITEPRESS - Science and Technol-
ogy Publications, 2017, pp. 548–553. isbn: 978-989-758-259-2. doi:
10.5220/0006471205480553.

[8] M. U. Aksu, K. Bicakci, M. H. Dilek, A. M. Ozbayoglu, and E. I. Tatli.
“Automated Generation of Attack Graphs Using NVD”. In: Proceedings
of the Eighth ACM Conference on Data and Application Security and
Privacy (ODASPY). ACM, 2018, pp. 135–142. isbn: 9781450356329. doi:
10.1145/3176258.3176339.

281

https://owasp.org/Top10/A04_2021-Insecure_Design/
https://owasp.org/Top10/A04_2021-Insecure_Design/
https://www.omg.org/spec/MOF
https://www.omg.org/spec/MOF
https://www.omg.org/spec/UML/2.5
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3106237.3122823
https://dl.acm.org/doi/book/10.5555/578789
https://dl.acm.org/doi/book/10.5555/578789
https://doi.org/10.5220/0006471205480553
https://doi.org/10.1145/3176258.3176339

Bibliography

[9] F. Alberti, A. Armando, and S. Ranise. “Efficient symbolic automated
analysis of administrative attribute-based RBAC-policies”. In: Pro-
ceedings of the 6th ACM Symposium on Information, Computer and
Communications Security - ASIACCS 11. ACM, 2011, p. 165. isbn: 978-
1-4503-0564-8. doi: 10.1145/1966913.1966935.

[10] N. Alhebaishi, L. Wang, S. Jajodia, and A. Singhal. “Threat modeling
for cloud data center infrastructures”. In: Foundations and Practice of
Security - 9th International Symposium, FPS. Springer, 2016, pp. 302–
319. isbn: 978-3-319-51966-1. doi: 10.1007/978-3-319-51966-1_20.

[11] R. Al-Ali, T. Bures, B.-O. Hartmann, J. Havlik, R. Heinrich, P. Hne-
tynka, A. Juan-Verdejo, P. Parizek, S. Seifermann, and M. Walter. Use
Cases in Dataflow-Based Privacy and Trust Modeling and Analysis
in Industry 4.0 Systems. Karlsruhe Reports in Informatics 9. Karl-
sruher Institut für Technologie (KIT), 2018. 43 pp. doi: 10.5445/IR/
1000085169.

[12] R. Al-Ali, R. Heinrich, P. Hnetynka, A. Juan-Verdejo, S. Seifermann,
and M. Walter. “Modeling of dynamic trust contracts for industry 4.0
systems”. In: Proceedings of the 12th European Conference on Software
Architecture: Companion Proceedings. 12th European Conference on
Software Architecture. ECSA 2018. ACM, 2018, 45:1–45:4. isbn: 978-
1-4503-6483-6. doi: 10.1145/3241403.3241450.

[13] O. S. M. B. H. Almazrouei, P. Magalingam, M. K. Hasan, and M. Shan-
mugam. “A Review on Attack Graph Analysis for IoT Vulnerability
Assessment: Challenges, Open Issues, and Future Directions”. In: IEEE
Access 11 (2023), pp. 44350–44376. issn: 2169-3536. doi: 10.1109/
ACCESS.2023.3272053.

[14] R. Alur and D. Dill. “The theory of timed automata”. In: Real-Time:
Theory in Practice. Ed. by J. W. de Bakker, C. Huizing, W. P. de Roever,
and G. Rozenberg. Berlin, Heidelberg: Springer Berlin Heidelberg,
1992, pp. 45–73. isbn: 978-3-540-47218-6. doi: 10.1007/BFb0031987.

[15] F. Arat and S. Akleylek. “Attack Path Detection for IIoT Enabled Cyber
Physical Systems: Revisited”. In: Computers & Security 128 (2023),
p. 103174. issn: 0167-4048. doi: 10.1016/j.cose.2023.103174.

[16] H. F. Atlam, M. A. Azad, M. O. Alassafi, A. A. Alshdadi, and A. Alenezi.
“Risk-Based Access Control Model: A Systematic Literature Review”.
In: Future Internet 12.6 (June 2020), p. 103. issn: 1999-5903. doi: 10.
3390/fi12060103.

282

https://doi.org/10.1145/1966913.1966935
https://doi.org/10.1007/978-3-319-51966-1_20
https://doi.org/10.5445/IR/1000085169
https://doi.org/10.5445/IR/1000085169
https://doi.org/10.1145/3241403.3241450
https://doi.org/10.1109/ACCESS.2023.3272053
https://doi.org/10.1109/ACCESS.2023.3272053
https://doi.org/10.1007/BFb0031987
https://doi.org/10.1016/j.cose.2023.103174
https://doi.org/10.3390/fi12060103
https://doi.org/10.3390/fi12060103

Bibliography

[17] M. El-Attar. “From misuse cases to mal-activity diagrams: bridging
the gap between functional security analysis and design”. In: Software
& Systems Modeling 13.1 (Feb. 2014), pp. 173–190. issn: 1619-1366,
1619-1374. doi: 10.1007/s10270-012-0240-5.

[18] M. S. Barik, A. Sengupta, and C.Mazumdar. “Attack Graph Generation
and Analysis Techniques”. In: Defence Science Journal 66.6 (Oct. 31,
2016), p. 559. issn: 0976464X, 0011748X. doi: 10.14429/dsj.66.10795.

[19] G. Basili, V. R. Caldiera, and H. D. Rombach. “The goal question metric
approach”. In: Encyclopedia of software engineering (1994), pp. 528–
532.

[20] V. R. Basili and D. M. Weiss. “A Methodology for Collecting Valid Soft-
ware Engineering Data”. In: IEEE Transactions on Software Engineering
SE-10.6 (1984), pp. 728–738. doi: 10.1109/TSE.1984.5010301.

[21] D. Basin, M. Clavel, J. Doser, and M. Egea. “Automated analysis of
security-design models”. In: Information and Software Technology 51.5
(May 1, 2009), pp. 815–831. issn: 0950-5849. doi: 10.1016/j.infsof.
2008.05.011.

[22] F. L. Bauer. “Encryption”. In: Encyclopedia of Cryptography and Se-
curity. Ed. by H. C. A. van Tilborg. Boston, MA: Springer US, 2005,
pp. 202–202. isbn: 978-0-387-23483-0. doi: 10.1007/0-387-23483-
7_141.

[23] L. Bauer, S. Garriss, and M. K. Reiter. “Detecting and resolving policy
misconfigurations in access-control systems”. en. In: ACM Transac-
tions on Information and System Security 14.1 (May 2011), pp. 1–28.
issn: 1094-9224, 1557-7406. doi: 10.1145/1952982.1952984.

[24] M. Becker, S. Becker, and J. Meyer. “Simulizar: Design-time model-
ing and performance analysis of self-adaptive systems”. In: Software
Engineering 2013 (2013).

[25] S. Becker, M. Hauck, M. Trifu, K. Krogmann, and J. Kofroň. “Reverse
Engineering Component Models for Quality Predictions”. In: Euro-
pean Conference on Software Maintenance and Reengineering. IEEE,
2010, pp. 194–197. doi: 10.1109/CSMR.2010.34.

283

https://doi.org/10.1007/s10270-012-0240-5
https://doi.org/10.14429/dsj.66.10795
https://doi.org/10.1109/TSE.1984.5010301
https://doi.org/10.1016/j.infsof.2008.05.011
https://doi.org/10.1016/j.infsof.2008.05.011
https://doi.org/10.1007/0-387-23483-7_141
https://doi.org/10.1007/0-387-23483-7_141
https://doi.org/10.1145/1952982.1952984
https://doi.org/10.1109/CSMR.2010.34

Bibliography

[26] S. Becker, S. Dziwok, C. Gerking, C. Heinzemann, W. Schäfer, M.
Meyer, and U. Pohlmann. “The MechatronicUML Method: Model-
Driven Software Engineering of Self-Adaptive Mechatronic Systems”.
In: Companion Proceedings of the 36th International Conference on
Software Engineering. ICSE Companion 2014. Hyderabad, India: ACM,
2014, pp. 614–615. isbn: 9781450327688. doi: 10.1145/2591062.2591
142.

[27] B. J. Berger, K. Sohr, and R. Koschke. “Automatically extracting threats
from extended data flow diagrams”. In: Engineering Secure Software
and Systems - 8th International Symposium (ESSoS). Lecture Notes in
Computer Science. Springer, 2016, pp. 56–71. doi: 10.1007/978-3-
319-30806-7_4.

[28] E. Bertino, P. A. Bonatti, and E. Ferrari. “TRBAC: A temporal role-
based access control model”. In: ACM Transactions on Information
and System Security 4.3 (Aug. 1, 2001), pp. 191–233. issn: 1094-9224.
doi: 10.1145/501978.501979.

[29] E. Bertino, A. A. Jabal, S. Calo, D. Verma, and C. Williams. “The
Challenge of Access Control Policies Quality”. In: Journal of Data and
Information Quality 10.2 (Sept. 7, 2018), pp. 1–6. issn: 19361955. doi:
10.1145/3209668.

[30] A. Bertolino, S. Daoudagh, F. Lonetti, and E. Marchetti. “An Auto-
mated Testing Framework of Model-Driven Tools for XACML Policy
Specification”. In: 9th International Conference on the Quality of Infor-
mation and Communications Technology. Sept. 2014, pp. 75–84. doi:
10.1109/QUATIC.2014.17.

[31] A. Bertolino, S. Daoudagh, F. Lonetti, and E. Marchetti. “Automatic
XACML Requests Generation for Policy Testing”. In: Verification and
Validation 2012 IEEE Fifth International Conference on Software Testing.
ISSN: 2159-4848. Apr. 2012, pp. 842–849. doi: 10.1109/ICST.2012.
185.

[32] N. Boltz, S. Hahner, M. Walter, S. Seifferman, R. Heinrich, T. Bureš,
and P. Hnětynka. “Handling Environmental Uncertainty in Design
Time Access Control Analysis”. In: 48th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA). IEEE, 2022,
pp. 382–389. doi: 10.1109/SEAA56994.2022.00067.

284

https://doi.org/10.1145/2591062.2591142
https://doi.org/10.1145/2591062.2591142
https://doi.org/10.1007/978-3-319-30806-7_4
https://doi.org/10.1007/978-3-319-30806-7_4
https://doi.org/10.1145/501978.501979
https://doi.org/10.1145/3209668
https://doi.org/10.1109/QUATIC.2014.17
https://doi.org/10.1109/ICST.2012.185
https://doi.org/10.1109/ICST.2012.185
https://doi.org/10.1109/SEAA56994.2022.00067

Bibliography

[33] N. Boltz, M. Walter, and R. Heinrich. “Context-Based Confidentiality
Analysis for Industrial IoT”. In: 46th Euromicro Conference on Soft-
ware Engineering and Advanced Applications (SEAA). IEEE, Aug. 2020,
pp. 589–596. isbn: 978-1-72819-532-2. doi: 10.1109/SEAA51224.2020.
00096.

[34] T. Bureš, P. Hnětynka, M. Kruliš, F. Plášil, D. Khalyeyev, S. Hahner, S.
Seifermann, M. Walter, and R. Heinrich. “Attuning Adaptation Rules
via a Rule-Specific Neural Network”. In: Leveraging Applications of
Formal Methods, Verification and Validation. Adaptation and Learning
(ISOLA). Ed. by T. Margaria and B. Steffen. Springer, 2022, pp. 215–230.
isbn: 978-3-031-19759-8. doi: 10.1007/978-3-031-19759-8_14.

[35] T. Bureš, P. Hnětynka, M. Kruliš, F. Plášil, D. Khalyeyev, S. Hahner,
S. Seifermann, M. Walter, and R. Heinrich. “Generating Adaptation
Rule-Specific Neural Network”. In: International Journal on Software
Tools for Technology Transfer (). accepted, to appear.

[36] K. Busch. “An Architecture-based Approach for Change Impact Anal-
ysis of Software-intensive Systems”. PhD thesis. Karlsruher Institut
für Technologie (KIT), 2019. 275 pp. doi: 10.5445/IR/1000097837.

[37] M. Busch. “Evaluating & Engineering: an Approach for the Develop-
ment of Secure Web Applications”. PhD thesis. Muinch, Germany:
Ludwig-Maximilians-Universität München, 2016. 215 pp. url: https:
//www.pst.ifi.lmu.de/~busch/thesisMarianneBusch.pdf (visited
on 03/22/2023).

[38] CAPEC - Common Attack Pattern Enumeration and Classification
(CAPEC™). url: https://capec.mitre.org/ (visited on 10/25/2021).

[39] T. M. Chen, J. C. Sanchez-Aarnoutse, and J. Buford. “Petri Net Model-
ing of Cyber-Physical Attacks on Smart Grid”. In: IEEE Transactions
on Smart Grid 2.4 (Dec. 2011), pp. 741–749. issn: 1949-3053. doi:
10.1109/TSG.2011.2160000.

[40] E. Cole. Advanced persistent threat: understanding the danger and how
to protect your organization. Newnes, 2012. isbn: 978-1597499491.

[41] M. Coscia. “Multidimensional network analysis”. PhD thesis. Univer-
sitá Degli Studi Di Pisa, 2012.

285

https://doi.org/10.1109/SEAA51224.2020.00096
https://doi.org/10.1109/SEAA51224.2020.00096
https://doi.org/10.1007/978-3-031-19759-8_14
https://doi.org/10.5445/IR/1000097837
https://www.pst.ifi.lmu.de/~busch/thesisMarianneBusch.pdf
https://www.pst.ifi.lmu.de/~busch/thesisMarianneBusch.pdf
https://capec.mitre.org/
https://doi.org/10.1109/TSG.2011.2160000

Bibliography

[42] J. Crampton and C. Morisset. “PTaCL: A Language for Attribute-
Based Access Control in Open Systems”. In: Principles of Security and
Trust: First International Conference, POST 2012, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS.
Ed. by P. Degano and J. D. Guttman. Springer, 2012, pp. 390–409. isbn:
978-3-642-28641-4. doi: 10.1007/978-3-642-28641-4_21.

[43] F. Cuppens and A. Miège. “Modelling contexts in the Or-BAC model”.
In: 19th Annual Computer Security Applications Conference (ACSAC).
IEEE, 2003, pp. 416–425. doi: 10.1109/CSAC.2003.1254346.

[44] CVSS Special Interest Group (SIG). CVSS 3.1. url: https://www.
first.org/cvss/v3-1/cvss-v31-specification_r1.pdf (visited on
10/25/2021).

[45] CVSS Special Interest Group (SIG). CVSS SIG. url: https://www.
first.org/cvss/ (visited on 10/25/2021).

[46] CVSS Special Interest Group (SIG). Vulnerability Chaining. url: https:
//www.first.org/cvss/v3.1/user-guide#3-4-Vulnerability-

Chaining (visited on 03/14/2022).
[47] Cyber Security Breaches Survey 2022. en. Mar. 2022. url: https://

www.gov.uk/government/statistics/cyber-security-breaches-

survey-2022/cyber-security-breaches-survey-2022 (visited on
04/03/2023).

[48] C. Deloglos, C. Elks, and A. Tantawy. “An Attacker Modeling Frame-
work for the Assessment of Cyber-Physical Systems Security”. In:
Computer Safety, Reliability, and Security - 39th International Con-
ference, SAFECOMP. Lecture Notes in Computer Science. Springer,
2020, pp. 150–163. isbn: 978-3-030-54549-9. doi: 10.1007/978-3-030-
54549-9_10.

[49] A. van Den Berghe, R. Scandariato, K. Yskout, and W. Joosen. “Design
notations for secure software: a systematic literature review”. In:
Software & Systems Modeling 16.3 (2017), pp. 809–831. doi: 10.1007/
s10270-015-0486-9.

[50] D. E. Denning. “A Lattice Model of Secure Information Flow”. In:
Communication ACM 19.5 (May 1976), pp. 236–243. issn: 0001-0782.
doi: 10.1145/360051.360056.

286

https://doi.org/10.1007/978-3-642-28641-4_21
https://doi.org/10.1109/CSAC.2003.1254346
https://www.first.org/cvss/v3-1/cvss-v31-specification_r1.pdf
https://www.first.org/cvss/v3-1/cvss-v31-specification_r1.pdf
https://www.first.org/cvss/
https://www.first.org/cvss/
https://www.first.org/cvss/v3.1/user-guide#3-4-Vulnerability-Chaining
https://www.first.org/cvss/v3.1/user-guide#3-4-Vulnerability-Chaining
https://www.first.org/cvss/v3.1/user-guide#3-4-Vulnerability-Chaining
https://www.gov.uk/government/statistics/cyber-security-breaches-survey-2022/cyber-security-breaches-survey-2022
https://www.gov.uk/government/statistics/cyber-security-breaches-survey-2022/cyber-security-breaches-survey-2022
https://www.gov.uk/government/statistics/cyber-security-breaches-survey-2022/cyber-security-breaches-survey-2022
https://doi.org/10.1007/978-3-030-54549-9_10
https://doi.org/10.1007/978-3-030-54549-9_10
https://doi.org/10.1007/s10270-015-0486-9
https://doi.org/10.1007/s10270-015-0486-9
https://doi.org/10.1145/360051.360056

Bibliography

[51] C. Dwork. “Differential Privacy”. In: Automata, Languages and Pro-
gramming. Ed. by M. Bugliesi, B. Preneel, V. Sassone, and I. Wegener.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,
2006, pp. 1–12. isbn: 978-3-540-35908-1. doi: 10.1007/11787006_1.

[52] M. Eckhart, K. Meixner, D. Winkler, and A. Ekelhart. “Securing the
testing process for industrial automation software”. In: Computers &
Security 85 (Aug. 2019), pp. 156–180. issn: 01674048. doi: 10.1016/j.
cose.2019.04.016.

[53] Exploit Prediction Scoring System (EPSS). FIRST — Forum of Incident
Response and Security Teams. url: https://www.first.org/epss
(visited on 03/28/2023).

[54] FALLOUT: THE REPUTATIONAL IMPACT OF IT RISK. Forbes Insights,
2014, p. 21. url: https://images.forbes.com/forbesinsights/
StudyPDFs/IBM_Reputational_IT_Risk_REPORT.pdf (visited on
08/30/2023).

[55] D. Ferraiolo, J. Cugini, and D. R. Kuhn. “Role-based access control
(RBAC): Features and motivations”. In: Proceedings of 11th annual
computer security application conference. 1995, pp. 241–248.

[56] A. Feutrill, D. Ranathunga, Y. Yarom, and M. Roughan. “The effect of
common vulnerability scoring systemmetrics on vulnerability exploit
delay”. In: 2018 Sixth International Symposium on Computing and
Networking (CANDAR). IEEE, 2018, pp. 1–10. doi: 10.1109/CANDAR.
2018.00009.

[57] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C. Tschantz.
“Verification and change-impact analysis of access-control policies”.
In: 27th international conference on Software engineering (ICSE). ACM,
2005, p. 196. doi: 10.1145/1062455.1062502.

[58] M. Fujita, P. McGeer, and J.-Y. Yang. “Multi-Terminal Binary Decision
Diagrams: An Efficient Data Structure for Matrix Representation”. In:
Formal Methods in System Design 10.2 (Apr. 1997), pp. 149–169. issn:
1572-8102. doi: 10.1023/A:1008647823331.

[59] S. Garg, R. Singh, and A. Mohapatra. “Analysis of software vulner-
ability classification based on different technical parameters”. In:
Information Security Journal: A Global Perspective 28.1 (Mar. 4, 2019),
pp. 1–19. issn: 1939-3555. doi: 10.1080/19393555.2019.1628325.

287

https://doi.org/10.1007/11787006_1
https://doi.org/10.1016/j.cose.2019.04.016
https://doi.org/10.1016/j.cose.2019.04.016
https://www.first.org/epss
https://images.forbes.com/forbesinsights/StudyPDFs/IBM_Reputational_IT_Risk_REPORT.pdf
https://images.forbes.com/forbesinsights/StudyPDFs/IBM_Reputational_IT_Risk_REPORT.pdf
https://doi.org/10.1109/CANDAR.2018.00009
https://doi.org/10.1109/CANDAR.2018.00009
https://doi.org/10.1145/1062455.1062502
https://doi.org/10.1023/A:1008647823331
https://doi.org/10.1080/19393555.2019.1628325

Bibliography

[60] C. Gerking and D. Schubert. “Component-Based Refinement and
Verification of Information-Flow Security Policies for Cyber-Physical
Microservice Architectures”. In: 2019 IEEE International Conference
on Software Architecture (ICSA). IEEE, Mar. 2019, pp. 61–70. isbn:
978-1-7281-0528-4. doi: 10.1109/ICSA.2019.00015.

[61] M. GhasemiGol, A. Ghaemi-Bafghi, and H. Takabi. “A comprehensive
approach for network attack forecasting”. In: Computers & Security
58 (2016), pp. 83–105. issn: 0167-4048. doi: 10.1016/j.cose.2015.11.
005.

[62] N. Ghosh and S. K. Ghosh. “A planner-based approach to generate and
analyze minimal attack graph”. In: Applied Intelligence 36.2 (Mar. 1,
2012), pp. 369–390. issn: 1573-7497. doi: 10.1007/s10489-010-0266-
8.

[63] D. P. Guelev, M. Ryan, and P. Y. Schobbens. “Model-Checking Access
Control Policies”. In: Information Security. Ed. by K. Zhang and Y.
Zheng. Lecture Notes in Computer Science. Springer Berlin Heidel-
berg, 2004, pp. 219–230. isbn: 978-3-540-30144-8. doi: 10.1007/978-
3-540-30144-8_19.

[64] M. Hafner, R. Breu, B. Agreiter, and A. Nowak. “Sectet: an extensible
framework for the realization of secure inter-organizational work-
flows”. In: Internet Research 16.5 (2006), pp. 491–506. issn: 1066-2243.
doi: 10.1108/10662240610710978.

[65] S. Hahner, T. Bitschi, M. Walter, T. Bureš, H. Petr, and R. Heinrich.
“Model-based Confidentiality Analysis under Uncertainty”. In: 2023
IEEE 20th International Conference on Software Architecture Companion
(ICSA-C). MDE4SA – 3rd International Workshop On Model-driven
Engineering for Software Architecture. IEEE, 2023, pp. 256–263. doi:
10.1109/ICSA-C57050.2023.00062.

[66] S. Hahner, R. Heinrich, and R. Reussner. “Architecture-based Un-
certainty Impact Analysis to ensure Confidentiality”. In: SEAMS.
IEEE/ACM, 2023. doi: 10.1109/SEAMS59076.2023.00026.

[67] S. Hahner, S. Seifermann, R. Heinrich, M. Walter, T. Bureš, and P.
Hnětynka. “Modeling Data Flow Constraints for Design-Time Confi-
dentiality Analyses”. In: 2021 IEEE 18th International Conference on
Software Architecture Companion (ICSA-C). IEEE, Mar. 2021, pp. 15–21.
doi: 10.1109/ICSA-C52384.2021.00009.

288

https://doi.org/10.1109/ICSA.2019.00015
https://doi.org/10.1016/j.cose.2015.11.005
https://doi.org/10.1016/j.cose.2015.11.005
https://doi.org/10.1007/s10489-010-0266-8
https://doi.org/10.1007/s10489-010-0266-8
https://doi.org/10.1007/978-3-540-30144-8_19
https://doi.org/10.1007/978-3-540-30144-8_19
https://doi.org/10.1108/10662240610710978
https://doi.org/10.1109/ICSA-C57050.2023.00062
https://doi.org/10.1109/SEAMS59076.2023.00026
https://doi.org/10.1109/ICSA-C52384.2021.00009

Bibliography

[68] B. A. Hamilton. Industrial Cybersecurity Threat Briefing. Tech. rep.,
p. 82.

[69] A. Hariri, S. Bandopadhyay, A. Rizos, T. Dimitrakos, B. Crispo, and M.
Rajarajan. “SIUV: A Smart Car Identity Management and Usage Con-
trol System Based on Verifiable Credentials”. In: ICT Systems Security
and Privacy Protection - 36th IFIP TC 11 International Conference, SEC.
Ed. by A. Jøsang, L. Futcher, and J. Hagen. IFIP Advances in Informa-
tion and Communication Technology. Cham: Springer, 2021, pp. 36–
50. isbn: 978-3-030-78120-0. doi: 10.1007/978-3-030-78120-0_3.

[70] R. Heinrich. “Architectural runtime models for integrating runtime
observations and component-based models”. In: Journal of Systems
and Software 169 (Nov. 2020), p. 110722. issn: 01641212. doi: 10.1016/
j.jss.2020.110722.

[71] R. Heinrich, S. Koch, S. Cha, K. Busch, R. Reussner, and B. Vogel-
Heuser. “Architecture-based change impact analysis in cross-disci-
plinary automated production systems”. In: Journal of Systems and
Software 146 (2018), pp. 167–185. issn: 0164-1212. doi: 10.1016/j.
jss.2018.08.058.

[72] H. Holm. “Lore a Red Team Emulation Tool”. In: IEEE Transactions
on Dependable and Secure Computing 20.2 (Mar. 2023), pp. 1596–1608.
issn: 1941-0018. doi: 10.1109/TDSC.2022.3160792.

[73] V. Hu et al. “Attribute-Based Access Control”. In: Computer 48.2 (Feb.
2015), pp. 85–88. issn: 0018-9162. doi: 10.1109/MC.2015.33.

[74] V. C. Hu, D. Ferraiolo, R. Kuhn, A. Schnitzer, K. Sandlin, R. Miller, and
K. Scarfone. Guide to Attribute Based Access Control (ABAC) Definition
and Considerations. NIST SP 800-162. National Institute of Standards
and Technology, Jan. 2014, NIST SP 800–162. doi: 10.6028/NIST.SP.
800-162.

[75] G. Hughes and T. Bultan. “Automated verification of access control
policies using a SAT solver”. In: International Journal on Software
Tools for Technology Transfer 10.6 (Dec. 1, 2008), pp. 503–520. issn:
1433-2787. doi: 10.1007/s10009-008-0087-9.

[76] A. Ibrahim, S. Bozhinoski, and A. Pretschner. “Attack graph gen-
eration for microservice architecture”. In: Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing. SAC ’19. ACM, Apr. 8,
2019, pp. 1235–1242. isbn: 978-1-4503-5933-7. doi: 10.1145/3297280.
3297401.

289

https://doi.org/10.1007/978-3-030-78120-0_3
https://doi.org/10.1016/j.jss.2020.110722
https://doi.org/10.1016/j.jss.2020.110722
https://doi.org/10.1016/j.jss.2018.08.058
https://doi.org/10.1016/j.jss.2018.08.058
https://doi.org/10.1109/TDSC.2022.3160792
https://doi.org/10.1109/MC.2015.33
https://doi.org/10.6028/NIST.SP.800-162
https://doi.org/10.6028/NIST.SP.800-162
https://doi.org/10.1007/s10009-008-0087-9
https://doi.org/10.1145/3297280.3297401
https://doi.org/10.1145/3297280.3297401

Bibliography

[77] ISO Central Secretary. Information technology — Security techniques
— Information security management systems — Overview and vocab-
ulary. en. Standard ISO/IEC 27000:2018. Geneva, CH: International
Organization for Standardization, 2018. url: https://www.iso.org/
standard/73906.html (visited on 07/20/2023).

[78] ISO Central Secretary. Information technology — The JSONdata in-
terchange syntax. Standard ISO 21778:2017(E). Geneva, CH: Inter-
national Organization for Standardization, Nov. 2017. url: https:
//www.iso.org/standard/71616.html (visited on 07/20/2023).

[79] A. A. Jabal, M. Davari, E. Bertino, C. Makaya, S. Calo, D. Verma, and
C. Williams. “ProFact: A Provenance-based Analytics Framework for
Access Control Policies”. In: Transactions on Services Computing 14 (6
2019), pp. 1–1. issn: 1939-1374. doi: 10.1109/TSC.2019.2900641.

[80] A. A. Jabal, M. Davari, E. Bertino, C. Makaya, S. Calo, D. Verma, A.
Russo, and C. Williams. “Methods and Tools for Policy Analysis”. In:
ACM Computing Surveys 51.6 (Feb. 2019), pp. 1–35. issn: 03600300.
doi: 10.1145/3295749.

[81] J. Jacobs, S. Romanosky, B. Edwards, I. Adjerid, and M. Roytman.
“Exploit Prediction Scoring System (EPSS)”. In: Digital Threats: Re-
search and Practice 2.3 (July 9, 2021), 20:1–20:17. issn: 2692-1626. doi:
10.1145/3436242.

[82] S. Jajodia, S. Noel, and B. O’Berry. “Topological Analysis of Network
Attack Vulnerability”. In: Managing Cyber Threats: Issues, Approaches,
and Challenges 5 (2005), pp. 247–266. doi: 10.1007/0-387-24230-9_9.

[83] X. Jin, R. Sandhu, and R. Krishnan. “RABAC: Role-Centric Attribute-
Based Access Control”. In: Computer Network Security - 6th Interna-
tional Conference on Mathematical Methods, Models and Architectures
for Computer Network Security, MMM-ACNS. Ed. by I. Kotenko and
V. Skormin. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2012, pp. 84–96. isbn: 978-3-642-33704-8. doi: 10.1007/978-
3-642-33704-8_8.

[84] E. Johns. Cyber Security Breaches Survey 2021: Statistical Release. en.
Tech. rep. London, United Kingdom: Department for Digial, Culture,
Media & Sport (DCMS), 2021, p. 66. url: https://assets.publishing.
service.gov.uk/government/uploads/system/uploads/attachme

nt_data/file/972399/Cyber_Security_Breaches_Survey_2021_

Statistical_Release.pdf (visited on 03/04/2023).

290

https://www.iso.org/standard/73906.html
https://www.iso.org/standard/73906.html
https://www.iso.org/standard/71616.html
https://www.iso.org/standard/71616.html
https://doi.org/10.1109/TSC.2019.2900641
https://doi.org/10.1145/3295749
https://doi.org/10.1145/3436242
https://doi.org/10.1007/0-387-24230-9_9
https://doi.org/10.1007/978-3-642-33704-8_8
https://doi.org/10.1007/978-3-642-33704-8_8
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/972399/Cyber_Security_Breaches_Survey_2021_Statistical_Release.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/972399/Cyber_Security_Breaches_Survey_2021_Statistical_Release.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/972399/Cyber_Security_Breaches_Survey_2021_Statistical_Release.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/972399/Cyber_Security_Breaches_Survey_2021_Statistical_Release.pdf

Bibliography

[85] P. Johnson, R. Lagerström, and M. Ekstedt. “A Meta Language for
Threat Modeling and Attack Simulations”. In: Proceedings of the 13th
International Conference on Availability, Reliability and Security (ARES).
ARES 2018. ACM, Aug. 27, 2018, pp. 1–8. isbn: 978-1-4503-6448-5.
doi: 10.1145/3230833.3232799.

[86] J. Jürjens. Secure Systems Development with UML. Springer, 2004. isbn:
978-3-540-00701-2. doi: 10.1007/b137706.

[87] J. Jürjens. UMLsec: Extending UML for Secure Systems Development.
Vol. 2460. Springer Berlin Heidelberg, 2002, pp. 412–425. isbn: 978-3-
540-44254-7. doi: 10.1007/3-540-45800-X_32.

[88] A. A. E. Kalam, R. E. Baida, P. Balbiani, S. Benferhat, F. Cuppens, Y.
Deswarte, A. Miege, C. Saurel, and G. Trouessin. “Organization based
access control”. In: Proceedings POLICY 2003. IEEE 4th International
Workshop on Policies for Distributed Systems and Networks, pp. 120–
131. doi: 10.1109/POLICY.2003.1206966.

[89] A. Kasten. “Secure semantic web data management”. doctoralthesis.
Universität Koblenz, Universitätsbibliothek, 2016, p. 280.

[90] K. Katkalov. “Ein modellgetriebener Ansatz zur Entwicklung infor-
mationsflusssicherer Systeme”. doctoral thesis. Universität Augsburg,
2017.

[91] K. Katkalov, K. Stenzel, M. Borek, and W. Reif. “Model-Driven Devel-
opment of Information Flow-Secure Systems with IFlow”. In: 2013
International Conference on Social Computing. IEEE, 2013, pp. 51–56.
doi: 10.1109/SocialCom.2013.14.

[92] S. Katsikeas, P. Johnsson, S. Hacks, and R. Lagerström. “VehicleLang: A
probabilistic modeling and simulation language for modern vehicle IT
infrastructures”. In: Computers & Security 117 (June 1, 2022), p. 102705.
issn: 0167-4048. doi: 10.1016/j.cose.2022.102705.

[93] Y. R. Kirschner. “Model-Driven Reverse Engineering of Technology-
Induced Architecture for Quality Prediction”. In: European Confer-
ence on Software Architecture (ECSA) Workshop Proceedings. Vol. 2978.
CEUR-WS.org, 2021. url: http://ceur- ws.org/Vol- 2978/ds-
paper100.pdf.

291

https://doi.org/10.1145/3230833.3232799
https://doi.org/10.1007/b137706
https://doi.org/10.1007/3-540-45800-X_32
https://doi.org/10.1109/POLICY.2003.1206966
https://doi.org/10.1109/SocialCom.2013.14
https://doi.org/10.1016/j.cose.2022.102705
http://ceur-ws.org/Vol-2978/ds-paper100.pdf
http://ceur-ws.org/Vol-2978/ds-paper100.pdf

Bibliography

[94] Y. R. Kirschner, M. Walter, F. Bossert, R. Heinrich, and A. Koziolek.
“Automatic Derivation of Vulnerability Models for Software Archi-
tectures”. In: 2023 IEEE 20th International Conference on Software
Architecture Companion (ICSA-C). MDE4SA – 3rd International Work-
shop On Model-driven Engineering for Software Architecture. IEEE,
2023, pp. 276–283. doi: 10.1109/ICSA-C57050.2023.00065.

[95] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss,W. Haas,M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom. “Spectre
Attacks: Exploiting Speculative Execution”. In: 40th IEEE Symposium
on Security and Privacy (S&P’19). IEEE, 2019. doi: 10.1109/SP.2019.
00002.

[96] L. Kohnfelder and P. Garg. “The threats to our products”. In: (1999).
url: https://www.first.org/global/sigs/cti/curriculum/The-
Threats-To-Our-Products.docx (visited on 03/29/2023).

[97] M. Konersmann, A. Kaplan, T. Kühn, R. Heinrich, A. Koziolek, R.
Reussner, J. Jürjens, M. al-Doori, N. Boltz, M. Ehl, D. Fuchs, K. Groser,
S. Hahner, J. Keim, M. Lohr, T. Sağlam, S. Schulz, and J.-P. Töberg.
“Evaluation Methods and Replicability of Software Architecture Re-
searchObjects”. In: 2022 IEEE 19th International Conference on Software
Architecture (ICSA). Mar. 2022, pp. 157–168. doi: 10.1109/ICSA53651.
2022.00023.

[98] B. Kordy, L. Piètre-Cambacédès, and P. Schweitzer. “DAG-based attack
and defense modeling: Don’t miss the forest for the attack trees”. In:
Computer Science Review 13–14 (Nov. 2014), pp. 1–38. issn: 15740137.
doi: 10.1016/j.cosrev.2014.07.001.

[99] M. E. Kramer, M. Hecker, S. Greiner, K. Bao, and K. Yurchenko.Model-
Driven Specification and Analysis of Confidentiality in Component-
Based Systems. Tech. rep. 2017,12. Karlsruhe: Department of Informat-
ics, Karlsruhe Institute of Technology, Dec. 2017. doi: 10.5445/IR/
1000076957.

[100] M. Lehman. “Programs, life cycles, and laws of software evolution”.
In: Proceedings of the IEEE 68.9 (1980), pp. 1060–1076. doi: 10.1109/
PROC.1980.11805.

[101] L. Lemaire, J. Vossaert, B. De Decker, and V. Naessens. “Security
evaluation of cyber-physical systems using automatically generated
attack trees”. In: Critical Information Infrastructures Security: 12th

292

https://doi.org/10.1109/ICSA-C57050.2023.00065
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/SP.2019.00002
https://www.first.org/global/sigs/cti/curriculum/The-Threats-To-Our-Products.docx
https://www.first.org/global/sigs/cti/curriculum/The-Threats-To-Our-Products.docx
https://doi.org/10.1109/ICSA53651.2022.00023
https://doi.org/10.1109/ICSA53651.2022.00023
https://doi.org/10.1016/j.cosrev.2014.07.001
https://doi.org/10.5445/IR/1000076957
https://doi.org/10.5445/IR/1000076957
https://doi.org/10.1109/PROC.1980.11805
https://doi.org/10.1109/PROC.1980.11805

Bibliography

International Conference, CRITIS. Vol. 10707. Lecture Notes in Com-
puter Science. Springer, 2018, pp. 225–228. doi: 10.1007/978-3-319-
99843-5_20.

[102] M. Levandowsky and D. Winter. “Distance between sets”. In: Nature
234.5323 (1971), pp. 34–35. doi: 10.1038/234034a0.

[103] X. Li, X. Chang, J. A. Board, and K. S. Trivedi. “A novel approach
for software vulnerability classification”. In: 2017 Annual Reliability
and Maintainability Symposium (RAMS). 2017 Annual Reliability and
Maintainability Symposium (RAMS). Jan. 2017, pp. 1–7. doi: 10.1109/
RAM.2017.7889792.

[104] D. Lin, P. Rao, E. Bertino, N. Li, and J. Lobo. “EXAM: a comprehensive
environment for the analysis of access control policies”. In: Interna-
tional Journal of Information Security 9.4 (Aug. 1, 2010), pp. 253–273.
issn: 1615-5270. doi: 10.1007/s10207-010-0106-1.

[105] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, J. Horn, S. Man-
gard, P. Kocher, D. Genkin, Y. Yarom, M. Hamburg, and R. Strackx.
“Meltdown: Reading Kernel Memory from User Space”. In: vol. 63. 6.
ACM, May 2020, pp. 46–56. doi: 10.1145/3357033.

[106] T. Lodderstedt, D. Basin, and J. Doser. “SecureUML: A UML-Based
Modeling Language for Model-Driven Security”. In: UML 2002 — The
Unified Modeling Language. Vol. 24. Springer, Berlin, Heidelberg, 2002,
pp. 426–441. isbn: 978-3-540-45800-5. doi: 10.1007/3-540-45800-
X_33.

[107] R. Martin. Agile Software Development: Principles, Patterns, and Prac-
tices. Alan Apt series. Pearson Education, 2003. isbn: 9780135974445.

[108] E. Martins and M. Pascoal. “A new implementation of Yen’s ranking
loopless paths algorithm”. en. In: Quarterly Journal of the Belgian,
French and Italian Operations Research Societies 1.2 (June 2003). issn:
1619-4500. doi: 10.1007/s10288-002-0010-2.

[109] S. Mauw and M. Oostdijk. “Foundations of Attack Trees”. In: Infor-
mation Security and Cryptology - ICISC 2005. Ed. by D. H. Won and
S. Kim. Vol. 3935. Lecture Notes in Computer Science. Springer, 2006,
pp. 186–198. isbn: 978-3-540-33354-8. doi: 10.1007/11734727_17.

[110] G. McGraw. Software Security - Building Security In. Addison-Wesley
Professional, 2006. isbn: 0-321-35670-5.

293

https://doi.org/10.1007/978-3-319-99843-5_20
https://doi.org/10.1007/978-3-319-99843-5_20
https://doi.org/10.1038/234034a0
https://doi.org/10.1109/RAM.2017.7889792
https://doi.org/10.1109/RAM.2017.7889792
https://doi.org/10.1007/s10207-010-0106-1
https://doi.org/10.1145/3357033
https://doi.org/10.1007/3-540-45800-X_33
https://doi.org/10.1007/3-540-45800-X_33
https://doi.org/10.1007/s10288-002-0010-2
https://doi.org/10.1007/11734727_17

Bibliography

[111] MITRE Corporation. CWE. url: https://cwe.mitre.org/ (visited on
10/25/2021).

[112] MITRECorporation.CWE - CommonWeakness Scoring System (CWSS).
url: https://cwe.mitre.org/cwss/cwss_v1.0.1.html (visited on
10/25/2021).

[113] MITRE Corporation. CWE-20: Improper Input Validation. url: htt
ps : / / cwe . mitre . org / data / definitions / 20 . html (visited on
06/14/2023).

[114] MITRE Corporation. CWE-312. url: https://cwe.mitre.org/data/
definitions/312.html (visited on 10/25/2021).

[115] MITRE Corporation. CWE-732. url: https://cwe.mitre.org/data/
definitions/732.html (visited on 02/06/2023).

[116] MITRE Corporation. CWE-798: Use of Hard-coded Credentials. url:
https://cwe.mitre.org/data/definitions/798.html (visited on
11/21/2022).

[117] MITRE Corporation. CWE-922. url: https://cwe.mitre.org/data/
definitions/922.html (visited on 10/25/2021).

[118] A. K. Y. S. Mohamed, D. Auer, D. Hofer, and J. Küng. “A systematic
literature review for authorization and access control: definitions,
strategies and models”. In: International Journal of Web Information
Systems 18.2 (Jan. 1, 2022), pp. 156–180. issn: 1744-0084. doi: 10.1108/
IJWIS-04-2022-0077.

[119] D. Monschein, M. Mazkatli, R. Heinrich, and A. Koziolek. “Enabling
Consistency between Software Artefacts for Software Adaption and
Evolution”. In: International Conference on Software Architecture (ICSA).
IEEE, 2021, pp. 1–12. doi: 10.1109/ICSA51549.2021.00009.

[120] M. Munier, V. Lalanne, and M. Ricarde. “Self-Protecting Documents
for Cloud Storage Security”. In: 11th International Conference on Trust,
Security and Privacy in Computing and Communications. IEEE, June
2012, pp. 1231–1238. doi: 10.1109/TrustCom.2012.261.

[121] M. Nabeel. “The Many Faces of End-to-End Encryption and Their
Security Analysis”. In: 2017 IEEE International Conference on Edge
Computing (EDGE). IEEE, 2017, pp. 252–259. doi: 10.1109/IEEE.
EDGE.2017.47.

[122] S. Newman. Building Microservices : Designing Fine-Grained Systems.
O’Reilly Media, Incorporated, 2015. isbn: 978-1-4919-5033-3.

294

https://cwe.mitre.org/
https://cwe.mitre.org/cwss/cwss_v1.0.1.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/312.html
https://cwe.mitre.org/data/definitions/312.html
https://cwe.mitre.org/data/definitions/732.html
https://cwe.mitre.org/data/definitions/732.html
https://cwe.mitre.org/data/definitions/798.html
https://cwe.mitre.org/data/definitions/922.html
https://cwe.mitre.org/data/definitions/922.html
https://doi.org/10.1108/IJWIS-04-2022-0077
https://doi.org/10.1108/IJWIS-04-2022-0077
https://doi.org/10.1109/ICSA51549.2021.00009
https://doi.org/10.1109/TrustCom.2012.261
https://doi.org/10.1109/IEEE.EDGE.2017.47
https://doi.org/10.1109/IEEE.EDGE.2017.47

Bibliography

[123] P. Nguyen, M. Kramer, J. Klein, and Y. L. Traon. “An extensive system-
atic review on the Model-Driven Development of secure systems”. In:
Information and Software Technology 68 (Dec. 2015), pp. 62–81. issn:
09505849. doi: 10.1016/j.infsof.2015.08.006.

[124] Q. Ni, E. Bertino, J. Lobo, and S. B. Calo. “Privacy-Aware Role-Based
Access Control”. In: IEEE Security & Privacy Magazine 7.4 (July 2009),
pp. 35–43. issn: 1540-7993. doi: 10.1109/MSP.2009.102. (Visited on
08/22/2019).

[125] NIST. cve-2009-0783. url: https://nvd.nist.gov/vuln/detail/cve-
2009-0783 (visited on 06/15/2023).

[126] NIST. CVE-2014-1761. url: https://nvd.nist.gov/vuln/detail/
CVE-2014-1761 (visited on 10/25/2021).

[127] NIST. CVE-2017-5715 Detail. url: https://nvd.nist.gov/vuln/
detail/CVE-2017-5715 (visited on 03/14/2022).

[128] NIST. CVE-2021-22879 Detail. url: https://nvd.nist.gov/vuln/
detail/CVE-2021-22879 (visited on 03/21/2022).

[129] NIST. CVE-2021-28374. url: https://nvd.nist.gov/vuln/detail/
CVE-2021-28374 (visited on 10/25/2021).

[130] NIST. CVE-2021-44228 Detail. url: https://nvd.nist.gov/vuln/
detail/CVE-2021-44228 (visited on 03/30/2022).

[131] NVD. url: https://nvd.nist.gov/vuln (visited on 10/25/2021).
[132] OASIS Open. eXtensible Access Control Markup Language (XACML)

Version 3.0. Jan. 22, 2013. url: https://docs.oasis-open.org/xacml/
3.0/xacml-3.0-core-spec-os-en.html (visited on 04/06/2022).

[133] OASIS Open. XACML v3.0 Administration and Delegation Profile Ver-
sion 1.0. Nov. 13, 2014. url: https://docs.oasis-open.org/xacml/
3.0/xacml- 3.0- administration- v1- spec- en.html (visited on
03/22/2023).

[134] OASIS Open. XML schema XACML. Jan. 22, 2013. url: http://docs.
oasis-open.org/xacml/3.0/xacml-core-v3-schema-wd-17.xsd

(visited on 04/06/2022).
[135] A. L. Opdahl and G. Sindre. “Experimental comparison of attack trees

and misuse cases for security threat identification”. In: Information
and Software Technology 51.5 (May 2009), pp. 916–932. issn: 09505849.
doi: 10.1016/j.infsof.2008.05.013.

295

https://doi.org/10.1016/j.infsof.2015.08.006
https://doi.org/10.1109/MSP.2009.102
https://nvd.nist.gov/vuln/detail/cve-2009-0783
https://nvd.nist.gov/vuln/detail/cve-2009-0783
https://nvd.nist.gov/vuln/detail/CVE-2014-1761
https://nvd.nist.gov/vuln/detail/CVE-2014-1761
https://nvd.nist.gov/vuln/detail/CVE-2017-5715
https://nvd.nist.gov/vuln/detail/CVE-2017-5715
https://nvd.nist.gov/vuln/detail/CVE-2021-22879
https://nvd.nist.gov/vuln/detail/CVE-2021-22879
https://nvd.nist.gov/vuln/detail/CVE-2021-28374
https://nvd.nist.gov/vuln/detail/CVE-2021-28374
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://nvd.nist.gov/vuln
https://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
https://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
https://docs.oasis-open.org/xacml/3.0/xacml-3.0-administration-v1-spec-en.html
https://docs.oasis-open.org/xacml/3.0/xacml-3.0-administration-v1-spec-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-core-v3-schema-wd-17.xsd
http://docs.oasis-open.org/xacml/3.0/xacml-core-v3-schema-wd-17.xsd
https://doi.org/10.1016/j.infsof.2008.05.013

Bibliography

[136] OWASP. Software Assurance Maturity Model. url: https://owaspsam
m.org/guidance/quick-start-guide/ (visited on 10/13/2022).

[137] OWASP Top Ten Web Application Security Risks | OWASP. url: https:
//owasp.org/www-project-top-ten/ (visited on 10/25/2021).

[138] J. Park and R. Sandhu. “ The UCONABC usage control model ”. In:
ACM Transactions on Information and System Security 7.1 (July 2004),
pp. 128–174. issn: 10949224. doi: 10.1145/984334.984339.

[139] A. Paverd, A. Martin, and I. Brown. “Modelling and automatically
analysing privacy properties for honest-but-curious adversaries”. In:
(2014). url: https://www.cs.ox.ac.uk/people/andrew.paverd/
casper/casper-privacy-report.pdf (visited on 07/31/2023).

[140] T. R. Peltier. “Social Engineering: Concepts and Solutions”. In: Infor-
mation Systems Security 15.5 (2006), pp. 13–21. doi: 10.1201/1086.
1065898X/46353.15.4.20060901/95427.3.

[141] R. Peters. cron. Springer, 2009, pp. 81–85. isbn: 9781430218418. doi:
10.1007/978-1-4302-1842-5_12.

[142] C. Phillips and L. P. Swiler. “A graph-based system for network-
vulnerability analysis”. In: Proceedings of the 1998 workshop on New
security paradigms. NSPW98: New Security Paradigms Workshop.
Charlottesville Virginia USA: ACM, Jan. 1998, pp. 71–79. isbn: 978-1-
58113-168-0. doi: 10.1145/310889.310919.

[143] R. Pilipchuk. “Architectural Alignment of Access Control Require-
ments Extracted from Business Processes”. PhD thesis. Karlsruher
Institut für Technologie (KIT), 2021. 258 pp. doi: 10.5445/IR/100014
0856.

[144] A. M. Pirca and H. S. Lallie. “An empirical evaluation of the effec-
tiveness of attack graphs and MITRE ATT&CK matrices in aiding
cyber attack perception amongst decision-makers”. In: Computers &
Security 130 (2023), p. 103254. doi: 10.1016/j.cose.2023.103254.

[145] M. Plachkinova and C. Maurer. “Teaching Case Security Breach at Tar-
get”. In: Journal of Information Systems Education 29.1 (2018), pp. 11–
20. url: https://jise.org/Volume29/n1/JISEv29n1p11.html (vis-
ited on 06/29/2023).

[146] V. S. Pless. “Encryption schemes for computer confidentiality”. In:
IEEE Transactions on Computers 26.11 (1977), pp. 1133–1136. doi:
10.1109/TC.1977.1674759.

296

https://owaspsamm.org/guidance/quick-start-guide/
https://owaspsamm.org/guidance/quick-start-guide/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://doi.org/10.1145/984334.984339
https://www.cs.ox.ac.uk/people/andrew.paverd/casper/casper-privacy-report.pdf
https://www.cs.ox.ac.uk/people/andrew.paverd/casper/casper-privacy-report.pdf
https://doi.org/10.1201/1086.1065898X/46353.15.4.20060901/95427.3
https://doi.org/10.1201/1086.1065898X/46353.15.4.20060901/95427.3
https://doi.org/10.1007/978-1-4302-1842-5_12
https://doi.org/10.1145/310889.310919
https://doi.org/10.5445/IR/1000140856
https://doi.org/10.5445/IR/1000140856
https://doi.org/10.1016/j.cose.2023.103254
https://jise.org/Volume29/n1/JISEv29n1p11.html
https://doi.org/10.1109/TC.1977.1674759

Bibliography

[147] N. Polatidis, M. Pavlidis, and H.Mouratidis. “Cyber-attack path discov-
ery in a dynamic supply chain maritime risk management system”. In:
Computer Standards & Interfaces 56 (2018), pp. 74–82. issn: 0920-5489.
doi: 10.1016/j.csi.2017.09.006.

[148] N. Polatidis, E. Pimenidis, M. Pavlidis, S. Papastergiou, and H. Moura-
tidis. “From product recommendation to cyber-attack prediction: gen-
erating attack graphs and predicting future attacks”. In: Evolving
Systems 11.3 (Sept. 2020), pp. 479–490. issn: 1868-6478, 1868-6486.
doi: 10.1007/s12530-018-9234-z.

[149] C. Ponikwar, H. Hof, S. Gopinath, and L.Wischhof. “Beyond the Dolev-
Yao Model: Realistic Application-Specific Attacker Models for Appli-
cations Using Vehicular Communication”. In: CoRR abs/1607.08277
(2016). arXiv: 1607.08277. url: http://arxiv.org/abs/1607.08277.

[150] A. Pretschner, M. Hilty, and D. Basin. “Distributed usage control”. In:
Communications of the ACM 49.9 (2006), pp. 39–44. issn: 0001-0782.
doi: 10.1145/1151030.1151053.

[151] Prioritization to Prediction Volume 8: Measuring and Minimizing Ex-
ploitability. Cyentia Institute, Kenna Security, 2022. url: https://
library.cyentia.com/report/report_008756.html (visited on
05/02/2023).

[152] G. Rasner. Cybersecurity and third-party risk third party threat hunting.
Wiley Data and Cybersecurity, 2021. isbn: 9781119809562.

[153] Report: IBM Security X-Force Threat Intelligence Index 2023. en-us. Mar.
2023. url: https://web.archive.org/web/20230320024631/https:
//www.ibm.com/downloads/cas/DB4GL8YM (visited on 04/04/2023).

[154] R. Reussner, S. Becker, J. Happe, R. Heinrich, A. Koziolek, H. Koziolek,
M. Kramer, and K. Krogmann. Modeling and Simulating Software
Architectures – The Palladio Approach. Cambridge, MA:MIT Press, Oct.
2016. 408 pp. isbn: 9780262034760. url: https://web.archive.org/
web/20180415104041/http://mitpress.mit.edu/books/modeling-

and-simulating-software-architectures.
[155] K. Rostami, R. Heinrich, A. Busch, and R. Reussner. “Architecture-

Based Change Impact Analysis in Information Systems and Busi-
ness Processes”. In: International Conference on Software Architecture
(ICSA). 2017, pp. 179–188. doi: 10.1109/ICSA.2017.17.

297

https://doi.org/10.1016/j.csi.2017.09.006
https://doi.org/10.1007/s12530-018-9234-z
https://arxiv.org/abs/1607.08277
http://arxiv.org/abs/1607.08277
https://doi.org/10.1145/1151030.1151053
https://library.cyentia.com/report/report_008756.html
https://library.cyentia.com/report/report_008756.html
https://web.archive.org/web/20230320024631/https://www.ibm.com/downloads/cas/DB4GL8YM
https://web.archive.org/web/20230320024631/https://www.ibm.com/downloads/cas/DB4GL8YM
https://web.archive.org/web/20180415104041/http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
https://web.archive.org/web/20180415104041/http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
https://web.archive.org/web/20180415104041/http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
https://doi.org/10.1109/ICSA.2017.17

Bibliography

[156] K. Rostami, J. Stammel, R. Heinrich, and R. Reussner. “Architecture-
Based Assessment and Planning of Change Requests”. In: Proceed-
ings of the 11th International ACM SIGSOFT Conference on Quality
of Software Architectures. QoSA ’15. ACM, 2015, pp. 21–30. isbn:
9781450334709. doi: 10.1145/2737182.2737198.

[157] P. Runeson and M. Höst. “Guidelines for conducting and reporting
case study research in software engineering”. In: Empirical Software
Engineering 14.2 (Dec. 19, 2008), p. 131. issn: 1573-7616. doi: 10.1007/
s10664-008-9102-8.

[158] M. Sabt, M. Achemlal, and A. Bouabdallah. “Trusted Execution Envi-
ronment: What It is, and What It is Not”. In: 2015 IEEE Trustcom/Big-
DataSE/ISPA. IEEE, pp. 57–64. doi: 10.1109/Trustcom.2015.357.

[159] J. Saltzer and M. Schroeder. “The protection of information in com-
puter systems”. In: Proceedings of the IEEE 63.9 (1975), pp. 1278–1308.
doi: 10.1109/PROC.1975.9939.

[160] S. van Schaik, A. Kwong, D. Genkin, and Y. Yarom. SGAxe: How SGX
Fails in Practice. 2020. url: https://sgaxeattack.com/ (visited on
09/01/2021).

[161] R. Schmidt, M.Möhring, R.-C. Härting, C. Reichstein, P. Neumaier, and
P. Jozinović. “Industry 4.0 - Potentials for Creating Smart Products:
Empirical Research Results”. In: Business Information Systems. Ed.
by W. Abramowicz. Vol. 208. Series Title: Lecture Notes in Business
Information Processing. Cham: Springer, 2015, pp. 16–27. doi: 10.
1007/978-3-319-19027-3_2.

[162] B. Schneier. “Attack trees”. In: Dr. Dobb’s journal 24.12 (1999), pp. 21–
29. url: https://www.schneier.com/academic/archives/1999/12/
attack_trees.html (visited on 03/29/2023).

[163] S. Schulz, F. Reiche, S. Hahner, and J. Schiffl. “Continuous Secure
Software Development and Analysis”. In: Symposium on Software Per-
formance 2021. 12th Symposium on Software Performance. SSP 2021
(Nov. 9–10, 2021). Vol. 3043. CEUR Workshop Proceedings. 46.23.01;
LK 01. RWTH Aachen, 2021. url: https : / / ceur - ws . org / Vol -
3043/short7.pdf (visited on 07/20/2023).

298

https://doi.org/10.1145/2737182.2737198
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1109/Trustcom.2015.357
https://doi.org/10.1109/PROC.1975.9939
https://sgaxeattack.com/
https://doi.org/10.1007/978-3-319-19027-3_2
https://doi.org/10.1007/978-3-319-19027-3_2
https://www.schneier.com/academic/archives/1999/12/attack_trees.html
https://www.schneier.com/academic/archives/1999/12/attack_trees.html
https://ceur-ws.org/Vol-3043/short7.pdf
https://ceur-ws.org/Vol-3043/short7.pdf

Bibliography

[164] Securing the Software Supply Chain: Recommended Practices Guide for
Developers. Cybersecurity and Infrastructure Security Agency (CISA),
Aug. 2022, p. 64. url: https://www.cisa.gov/sites/default/
files/publications/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_

DEVELOPERS.PDF (visited on 04/28/2023).
[165] S. Seifermann, R. Heinrich, D. Werle, and R. Reussner. “A unified

model to detect information flow and access control violations in soft-
ware architectures”. In: Proceedings of the 18th International Conference
on Security and Cryptography, SECRYPT 2021. 18th International Con-
ference on Security and Cryptography. SciTePress, July 2021, pp. 26–
37. isbn: 978-9897585241. doi: 10.5220/0010515300260037.

[166] S. Seifermann. “Architectural Data Flow Analysis for Detecting Viola-
tions of Confidentiality Requirements”. PhD thesis. Karlsruher Institut
für Technologie (KIT), 2022. 282 pp. doi: 10.5445/IR/1000148748.

[167] S. Seifermann, R. Heinrich, and R. Reussner. “Data-Driven Software
Architecture for Analyzing Confidentiality”. In: International Confer-
ence on Software Architecture (ICSA). Hamburg, Germany: IEEE, Mar.
2019, pp. 1–10. isbn: 978-1-72810-528-4. doi: 10.1109/ICSA.2019.
00009.

[168] S. Seifermann, R. Heinrich, D. Werle, and R. Reussner. “Detecting Vio-
lations of Access Control and Information Flow Policies in Data Flow
Diagrams”. In: Journal of Systems and Software 184 (2021), p. 111138.
issn: 0164-1212. doi: 10.1016/j.jss.2021.111138.

[169] S. Seifermann and M. Walter. “Evolving a use case for industry 4.0
environments towards integration of physical access control”. In:
Workshops of the Software Engineering Conference. Fachtagungen "Soft-
ware Engineering" - "Software Management". SE 2019 - SWM 2019
(Feb. 18–22, 2019). Ed. by M. Konersmann. Vol. 2308. CEURWorkshop
Proceedings, 2019, pp. 106–108. doi: 10.5445/IR/1000092827. url:
https://ceur-ws.org/Vol-2308/emls2019paper03.pdf.

[170] E. I. Sharing and A. C. (E-ISAC). Analysis of the cyber attack on the
Ukrainian power grid, Defense Use Case. Tech. rep. 2016, pp. 1–29.

[171] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. Wing. “Automated
generation and analysis of attack graphs”. In: Proceedings 2002 IEEE
Symposium on Security and Privacy. IEEE, May 2002, pp. 273–284. doi:
10.1109/SECPRI.2002.1004377.

299

https://www.cisa.gov/sites/default/files/publications/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF
https://www.cisa.gov/sites/default/files/publications/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF
https://www.cisa.gov/sites/default/files/publications/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF
https://doi.org/10.5220/0010515300260037
https://doi.org/10.5445/IR/1000148748
https://doi.org/10.1109/ICSA.2019.00009
https://doi.org/10.1109/ICSA.2019.00009
https://doi.org/10.1016/j.jss.2021.111138
https://doi.org/10.5445/IR/1000092827
https://ceur-ws.org/Vol-2308/emls2019paper03.pdf
https://doi.org/10.1109/SECPRI.2002.1004377

Bibliography

[172] A. Shostack. Threat modeling: Designing for security. John Wiley &
Sons, 2014. isbn: 9781118809990.

[173] X. Shu, K. Tian, A. Ciambrone, and D. Yao. “Breaking the Target: An
Analysis of Target Data Breach and Lessons Learned”. In: (Jan. 17,
2017). arXiv: 1701.04940. url: http://arxiv.org/abs/1701.04940
(visited on 08/30/2021).

[174] F. Shull, V. Basili, B. Boehm, A. Brown, P. Costa, M. Lindvall, D. Port,
I. Rus, R. Tesoriero, and M. Zelkowitz. “What we have learned about
fighting defects”. In: Proceedings Eighth IEEE Symposium on Software
Metrics. June 2002, pp. 249–258. doi: 10.1109/METRIC.2002.1011343.

[175] C. E. da Silva, J. D. S. da Silva, C. Paterson, and R. Calinescu. “Self-
adaptive Role-based Access Control for Business Processes”. In: Pro-
ceedings of the 12th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems. SEAMS ’17. Piscataway, NJ,
USA: IEEE Press, 2017, pp. 193–203. isbn: 978-1-5386-1550-8. doi:
10.1109/SEAMS.2017.13. url: https://doi.org/10.1109/SEAMS.
2017.13 (visited on 08/28/2019).

[176] G. Sindre. “Mal-Activity Diagrams for Capturing Attacks on Busi-
ness Processes”. In: Requirements Engineering: Foundation for Software
Quality, 13th International Working Conference, REFSQ. Vol. 4542. Lec-
ture Notes in Computer Science. Springer, 2007, pp. 355–366. isbn:
978-3-540-73030-9. doi: 10.1007/978-3-540-73031-6_27.

[177] G. Sindre and A. L. Opdahl. “Eliciting security requirements with
misuse cases”. In: Requirements Engineering 10.1 (Jan. 2005), pp. 34–
44. issn: 0947-3602, 1432-010X. doi: 10.1007/s00766-004-0194-4.

[178] L. Sion, D. Van Landuyt, K. Yskout, and W. Joosen. “SPARTA: Se-
curity & Privacy Architecture Through Risk-Driven Threat Assess-
ment”. In: 2018 IEEE International Conference on Software Architecture
Companion, (ICSA-C). IEEE, 2018, pp. 89–92. doi: 10.1109/ICSA-
C.2018.00032.

[179] L. Sion, K. Yskout, D. Van Landuyt, and W. Joosen. “Solution-Aware
Data Flow Diagrams for Security Threat Modeling”. In: Proceedings of
the 33rd Annual ACM Symposium on Applied Computing, (SAC). ACM,
2018, pp. 1425–1432. isbn: 9781450351911. doi: 10.1145/3167132.
3167285.

300

https://arxiv.org/abs/1701.04940
http://arxiv.org/abs/1701.04940
https://doi.org/10.1109/METRIC.2002.1011343
https://doi.org/10.1109/SEAMS.2017.13
https://doi.org/10.1109/SEAMS.2017.13
https://doi.org/10.1109/SEAMS.2017.13
https://doi.org/10.1007/978-3-540-73031-6_27
https://doi.org/10.1007/s00766-004-0194-4
https://doi.org/10.1109/ICSA-C.2018.00032
https://doi.org/10.1109/ICSA-C.2018.00032
https://doi.org/10.1145/3167132.3167285
https://doi.org/10.1145/3167132.3167285

Bibliography

[180] N. Slimani, H. Khambhammettu, K. Adi, and L. Logrippo. “UACML:
Unified Access Control Modeling Language”. In: 2011 4th IFIP Interna-
tional Conference on New Technologies, Mobility and Security. 2011 4th
IFIP International Conference on New Technologies, Mobility and
Security. Feb. 2011, pp. 1–8. doi: 10.1109/NTMS.2011.5721143.

[181] T. Sommestad. “A framework and theory for cyber security assess-
ments”. Stockholm. KTH Royal Institute of Technology, 2012. 248 pp.
isbn: 9789175015118.

[182] T. Sommestad, M. Ekstedt, and H. Holm. “The Cyber Security Model-
ing Language: A Tool for Assessing the Vulnerability of Enterprise
System Architectures”. In: IEEE SYSTEMS JOURNAL 7.3 (2013), p. 11.
doi: 10.1109/JSYST.2012.2221853.

[183] Source Code Analysis Tools | OWASP Foundation. url: https://owa
sp.org/www-community/Source_Code_Analysis_Tools (visited on
06/05/2023).

[184] J. Spring, E. Hatleback, A. Householder, A. Manion, and D. Shick.
“Time to Change the CVSS?” In: IEEE Security & Privacy 19.2 (Mar.
2021), pp. 74–78. issn: 1540-7993, 1558-4046. doi: 10.1109/MSEC.2020.
3044475.

[185] J. Spring, E. Hatleback, A. Manion, and D. Shic. Towards improving
CVSS. Tech. rep. Software Engineering Institute, Carnegie Mellon
University, 2018.

[186] J. M. Spring, E. Hatleback, A. D. Householder, A. Manion, M. Oliver,
V. Sarvapalli, D. Shick, and L. Tyzenhaus. Prioritizing vulnerability
response: A stakeholder-specific vulnerability categorization (version
2.0). Software Engineering Institute, Carnegie Mellon University, Apr.
2021, p. 68. url: https://resources.sei.cmu.edu/library/asset-
view.cfm?assetid=653459 (visited on 03/28/2023).

[187] H. Stachowiak. Allgemeine Modelltheorie. Springer, 1973. isbn: 3-211-
81106-0.

[188] T. Stahl, M. Völter, and K. Czarnecki. Model-driven software develop-
ment: technology, engineering, management. John Wiley & Sons, Inc.,
2006, p. 448. isbn: 978-1-118-72576-4.

301

https://doi.org/10.1109/NTMS.2011.5721143
https://doi.org/10.1109/JSYST.2012.2221853
https://owasp.org/www-community/Source_Code_Analysis_Tools
https://owasp.org/www-community/Source_Code_Analysis_Tools
https://doi.org/10.1109/MSEC.2020.3044475
https://doi.org/10.1109/MSEC.2020.3044475
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=653459
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=653459

Bibliography

[189] J. Stammel and R. Reussner. “Kamp: Karlsruhe architectural main-
tainability prediction”. In: Proceedings of the 1. Workshop des GI-
Arbeitskreises Langlebige Softwaresysteme (L2S2):" Design for Future-
Langlebige Softwaresysteme. 2009, pp. 87–98.

[190] J. J. Stammel. “Architekturbasierte Bewertung und Planung von Än-
derungsanfragen”. PhD thesis. Karlsruher Institut für Technologie
(KIT), 2015. doi: 10.5445/IR/1000053953. (Visited on 04/13/2023).

[191] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro. EMF: Eclipse
Modeling Framework. Eclipse Series. Pearson Education, 2008. isbn:
9780132702218.

[192] M. Strittmatter. “A Reference Structure for Modular Metamodels
of Quality-Describing Domain-Specific Modeling Languages”. PhD
thesis. Karlsruher Institut für Technologie (KIT), 2020. 482 pp. isbn:
978-3-7315-0982-0. doi: 10.5445/KSP/1000098906.

[193] S. R. Subramanya and B. K. Yi. “Digital rights management”. In: IEEE
Potentials 25.2 (Mar. 2006), pp. 31–34. issn: 0278-6648. doi: 10.1109/
MP.2006.1649008.

[194] L. SWEENEY. “k-ANONYMITY: A MODEL FOR PROTECTING PRI-
VACY”. In: International Journal of Uncertainty, Fuzziness and Know-
ledge-Based Systems 10.05 (2002), pp. 557–570. doi: 10.1142/S021848
8502001648.

[195] E. Taspolatoglu and R. Heinrich. “Context-Based Architectural Secu-
rity Analysis”. In: Working IEEE/IFIP Conference on Software Architec-
ture (WICSA). IEEE, Apr. 2016, pp. 281–282. isbn: 978-1-5090-2131-4.
doi: 10.1109/WICSA.2016.55.

[196] I. A. Tøndel, J. Jensen, and L. Røstad. “Combining Misuse Cases with
Attack Trees and Security Activity Models”. In: 2010 International
Conference on Availability, Reliability and Security (ARES). IEEE, Feb.
2010, pp. 438–445. isbn: 978-1-4244-5879-0. doi: 10.1109/ARES.2010.
101.

[197] K. Toumi, C. Andrés, and A. Cavalli. “Trust-orBAC: A Trust Access
Control Model in Multi-Organization Environments”. In: Informa-
tion Systems Security, 8th International Conference, (ICISS). Ed. by V.
Venkatakrishnan and D. Goswami. Vol. 7671. Lecture Notes in Com-
puter Science. Springer, 2012, pp. 89–103. isbn: 978-3-642-35129-7.
doi: 10.1007/978-3-642-35130-3_7. (Visited on 03/30/2021).

302

https://doi.org/10.5445/IR/1000053953
https://doi.org/10.5445/KSP/1000098906
https://doi.org/10.1109/MP.2006.1649008
https://doi.org/10.1109/MP.2006.1649008
https://doi.org/10.1142/S0218488502001648
https://doi.org/10.1142/S0218488502001648
https://doi.org/10.1109/WICSA.2016.55
https://doi.org/10.1109/ARES.2010.101
https://doi.org/10.1109/ARES.2010.101
https://doi.org/10.1007/978-3-642-35130-3_7

Bibliography

[198] A. Tria and H. Choukri. “Invasive Attacks”. In: Encyclopedia of Cryp-
tography and Security. Boston, MA: Springer US, 2011, pp. 623–629.
isbn: 978-1-4419-5906-5. doi: 10.1007/978-1-4419-5906-5_511.

[199] K. Tuma, S. Peldszus, D. Strüber, R. Scandariato, and J. Jürjens. “Check-
ing security compliance between models and code”. In: Software and
Systems Modeling 22.1 (Feb. 1, 2023), pp. 273–296. issn: 1619-1374.
doi: 10.1007/s10270-022-00991-5.

[200] K. Tuma, R. Scandariato, and M. Balliu. “Flaws in Flows: Unveiling
Design Flaws via Information Flow Analysis”. In: International Con-
ference on Software Architecture (ICSA). IEEE, 2019, pp. 191–200. doi:
10.1109/ICSA.2019.00028.

[201] K. Tuma, L. Sion, R. Scandariato, and K. Yskout. “Automating the
Early Detection of Security Design Flaws”. In: Proceedings of the
23rd ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems. MODELS ’20. ACM, 2020, pp. 332–342. isbn:
978-1-4503-7019-6. doi: 10.1145/3365438.3410954. url: https://
doi.org/10.1145/3365438.3410954.

[202] F. Turkmen, J. den Hartog, S. Ranise, and N. Zannone. “Analysis
of XACML Policies with SMT”. In: Principles of Security and Trust.
Springer, 2015, pp. 115–134. isbn: 978-3-662-46666-7. doi: 10.1007/
978-3-662-46666-7_7.

[203] C. Van Rijsbergen and C. Van Rijsbergen. Information Retrieval. But-
terworths, 1979. isbn: 9780408709293.

[204] D. Verma, E. Bertino, G. de Mel, and J. Melrose. “On the Impact of
Generative Policies on Security Metrics”. In: 2019 IEEE International
Conference on Smart Computing (SMARTCOMP). IEEE, June 2019,
pp. 104–109. isbn: 978-1-72811-689-1. doi: 10.1109/SMARTCOMP.2019.
00037.

[205] S. Vimercati. “Discretionary Access Control Policies (DAC)”. In: Ency-
clopedia of Cryptography and Security. Boston, MA: Springer US, 2011,
pp. 356–358. isbn: 978-1-4419-5906-5. doi: 10.1007/978-1-4419-
5906-5_817.

[206] S. Vimercati and P. Samarati. “Mandatory Access Control Policy
(MAC)”. In: Encyclopedia of Cryptography and Security. Boston, MA:
Springer US, 2011, pp. 758–758. isbn: 978-1-4419-5906-5. doi: 10.
1007/978-1-4419-5906-5_822.

303

https://doi.org/10.1007/978-1-4419-5906-5_511
https://doi.org/10.1007/s10270-022-00991-5
https://doi.org/10.1109/ICSA.2019.00028
https://doi.org/10.1145/3365438.3410954
https://doi.org/10.1145/3365438.3410954
https://doi.org/10.1145/3365438.3410954
https://doi.org/10.1007/978-3-662-46666-7_7
https://doi.org/10.1007/978-3-662-46666-7_7
https://doi.org/10.1109/SMARTCOMP.2019.00037
https://doi.org/10.1109/SMARTCOMP.2019.00037
https://doi.org/10.1007/978-1-4419-5906-5_817
https://doi.org/10.1007/978-1-4419-5906-5_817
https://doi.org/10.1007/978-1-4419-5906-5_822
https://doi.org/10.1007/978-1-4419-5906-5_822

Bibliography

[207] W3C. XML Path Language (XPath) 3.1. Mar. 21, 2017. url: https:
//www.w3.org/TR/xpath-31/ (visited on 01/13/2023).

[208] M. Walter. Dataset: Context-based Access Control and Attack Modelling
and Analysis. 2023. doi: 10.5281/zenodo.8208073.

[209] M. Walter, S. Hahner, T. Bureš, P. Hnětynka, R. Heinrich, and R. Reuss-
ner. “Architecture-based attack propagation and variation analysis
for identifying confidentiality issues in Industry 4.0”. In: at - Automa-
tisierungstechnik 71.6 (2023), pp. 443–452. doi: 10.1515/auto-2022-
0135.

[210] M. Walter, S. Hahner, S. Seifermann, T. Bures, P. Hnetynka, J. Pacov-
ský, and R. Heinrich. “Architectural Optimization for Confidentiality
Under Structural Uncertainty”. In: Software Architecture : 15th Euro-
pean Conference, ECSA 2021 Tracks and Workshops. 15th European
Conference on Software Architecture. ECSA 2021 (Online, Sept. 13–
17, 2021). Vol. 13365. Lecture Notes in Computer Science. Springer,
2022, pp. 309–332. isbn: 978-3-031-15115-6. doi: 10.1007/978-3-031-
15116-3_14.

[211] M. Walter, R. Heinrich, and R. Reussner. “Architectural Attack Propa-
gation Analysis for Identifying Confidentiality Issues”. In: 2022 IEEE
19th International Conference on Software Architecture (ICSA). IEEE,
Mar. 2022, pp. 1–12. isbn: 978-1-66541-728-0. doi: 10.1109/ICSA53651.
2022.00009.

[212] M. Walter, R. Heinrich, and R. Reussner. “Architecture-based Attack
Path Analysis for Identifying Potential Security Incidents”. In: Soft-
ware Architecture. 17th European Conference on Software Architec-
ture (ECSA). ECSA 2023. 2023. doi: 10.1007/978-3-031-42592-9_3.

[213] M. Walter, R. Heinrich, and R. Reussner. “Identifizierung von Ver-
traulichkeitsproblemenmithilfe vonAngriffsausbreitung auf Architek-
tur”. German. In: Software Engineering 2023. Hrsg.: R. Engels. Software
Engineering. SE 2023 (Paderborn, Deutschland, Feb. 20–24, 2023).
Vol. 332. GI-Edition : Lecture Notes in Informatics / Proceedings.
46.23.03; LK 01. Gesellschaft für Informatik (GI), 2023, pp. 123–124.
isbn: 978-3-88579-726-5.

[214] M. Walter and R. Reussner. “Tool-based Attack Graph Estimation and
Scenario Analysis for Software Architectures”. In: Software Architec-
ture. ECSA 2022 Tracks and Workshops. 16th European Conference
on Software Architecture. ECSA 2022. Ed. by T. Batista, T. Bureš, C.

304

https://www.w3.org/TR/xpath-31/
https://www.w3.org/TR/xpath-31/
https://doi.org/10.5281/zenodo.8208073
https://doi.org/10.1515/auto-2022-0135
https://doi.org/10.1515/auto-2022-0135
https://doi.org/10.1007/978-3-031-15116-3_14
https://doi.org/10.1007/978-3-031-15116-3_14
https://doi.org/10.1109/ICSA53651.2022.00009
https://doi.org/10.1109/ICSA53651.2022.00009
https://doi.org/10.1007/978-3-031-42592-9_3

Bibliography

Raibulet, and H. Muccini. Springer International Publishing, 2023,
pp. 45–61. doi: 10.1007/978-3-031-36889-9_5.

[215] M. Walter, S. Seifermann, and R. Heinrich. “A Taxonomy of Dynamic
Changes Affecting Confidentiality”. In: 11th Workshop Design For
Future – Langlebige Softwaresysteme. 11.Workshop "Design For Future
- Langlebige Softwaresysteme" (DFF 2020) - 22. Workshop Software-
Reeingineering and Evolution. 2020.

[216] H. Wang, Z. Chen, J. Zhao, X. Di, and D. Liu. “A Vulnerability Assess-
ment Method in Industrial Internet of Things Based on Attack Graph
and Maximum Flow”. In: IEEE Access 6 (2018), pp. 8599–8609. doi:
10.1109/ACCESS.2018.2805690.

[217] D. Werle, S. Seifermann, and A. Koziolek. “Data Stream Operations
as First-Class Entities in Component-Based Performance Models”.
In: Software Architecture European Conference on Software Architec-
ture (ECSA). Ed. by A. Jansen, I. Malavolta, H. Muccini, I. Ozkaya,
and O. Zimmermann. Cham: Springer International Publishing, 2020,
pp. 148–164. isbn: 978-3-030-58923-3. doi: 10.1007/978- 3- 030-
58923-3_10.

[218] W. Wideł, M. Audinot, B. Fila, and S. Pinchinat. “Beyond 2014: Formal
Methods for Attack Tree–based Security Modeling”. In: ACM Com-
puting Surveys 52.4 (Aug. 30, 2019), 75:1–75:36. issn: 0360-0300. doi:
10.1145/3331524.

[219] W. Wideł, S. Hacks, M. Ekstedt, P. Johnson, and R. Lagerström. “The
meta attack language - a formal description”. In: Computers & Security
130 (July 1, 2023), p. 103284. issn: 0167-4048. doi: 10.1016/j.cose.
2023.103284.

[220] P. A.Wortman and J. Chandy. “Translation of AADLmodel to security
attack tree (TAMSAT) to SMART evaluation of monetary security
risk”. In: Information Security Journal: A Global Perspective 32.4 (Aug. 4,
2022), pp. 1–17. issn: 1939-3555. doi: 10.1080/19393555.2022.21069
09.

[221] Z. B. Yahya, F. B. Ktata, and K. Ghedira. “Multi-organizational Access
Control Model Based on Mobile Agents for Cloud Computing”. In:
2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI).
Omaha, NE, USA: IEEE, Oct. 2016, pp. 656–659. isbn: 978-1-5090-4470-
2. doi: 10.1109/WI.2016.0116.

305

https://doi.org/10.1007/978-3-031-36889-9_5
https://doi.org/10.1109/ACCESS.2018.2805690
https://doi.org/10.1007/978-3-030-58923-3_10
https://doi.org/10.1007/978-3-030-58923-3_10
https://doi.org/10.1145/3331524
https://doi.org/10.1016/j.cose.2023.103284
https://doi.org/10.1016/j.cose.2023.103284
https://doi.org/10.1080/19393555.2022.2106909
https://doi.org/10.1080/19393555.2022.2106909
https://doi.org/10.1109/WI.2016.0116

Bibliography

[222] T. Yoshizawa, D. Singelée, J. T. Muehlberg, S. Delbruel, A. Taherkordi,
D. Hughes, and B. Preneel. “A Survey of Security and Privacy Issues
in V2X Communication Systems”. In: ACM Comput. Surv. 55.9 (Jan.
2023). issn: 0360-0300. doi: 10.1145/3558052.

[223] B. Yuan, Z. Pan, F. Shi, and Z. Li. “An Attack Path Generation Methods
Based on Graph Database”. In: 2020 IEEE 4th Information Technology,
Networking, Electronic and Automation Control Conference (ITNEC).
Vol. 1. IEEE, 2020, pp. 1905–1910. doi: 10.1109/ITNEC48623.2020.
9085039.

[224] K. Zenitani. “Attack graph analysis: An explanatory guide”. In: Com-
puters & Security 126 (Mar. 1, 2023), p. 103081. issn: 0167-4048. doi:
10.1016/j.cose.2022.103081.

[225] G. Zhang and M. Parashar. “Context-aware dynamic access control
for pervasive applications”. In: Proceedings of the Communication
Networks and Distributed Systems Modeling and Simulation Conference.
2004, pp. 21–30.

[226] N. Zhang, M. Ryan, and D. P. Guelev. “Evaluating Access Control
Policies Through Model Checking”. In: Information Security. Ed. by
J. Zhou, J. Lopez, R. H. Deng, and F. Bao. Lecture Notes in Computer
Science. Springer, 2005, pp. 446–460. isbn: 978-3-540-31930-6. doi:
10.1007/11556992_32.

306

https://doi.org/10.1145/3558052
https://doi.org/10.1109/ITNEC48623.2020.9085039
https://doi.org/10.1109/ITNEC48623.2020.9085039
https://doi.org/10.1016/j.cose.2022.103081
https://doi.org/10.1007/11556992_32

A. Evaluation Results Effort
Reduction Targeted Attack
Graph Analysis

Table A.1.: Evaluation results for Q6

Scenario Aff.Ratio SizeMinMax

Power-Grid-1 (Storage-Application) 4 0.21 19

0.11 0.26

Power-Grid-2 (WithVPNRights) 3 0.16 19
Power-Grid-3 (CorporateNetwork) 4 0.21 19
Power-Grid-4 (VPNBridgeExternal) 5 0.26 19
Power-Grid-5 (Workstation 02) 4 0.21 19
Power-Grid-6 (Workstation 01) 5 0.26 19
Power-Grid-7 (DataCenter) 5 0.26 19
Power-Grid-8 (CallCenter) 5 0.26 19
Power-Grid-9 (ExternalVPNBridge) 4 0.21 19
Power-Grid-10 (CallCenterApplication) 4 0.21 19
Power-Grid-11 (WithoutVPNRights) 4 0.21 19
Power-Grid-12 (DC) 4 0.21 19
Power-Grid-13 (DCS) 5 0.26 19
Power-Grid-14 (DMSClient) 2 0.11 19

Target-1 (FTP-Component) 2 0.13 15

0.13 0.27

Target-2 (BusinessComponent) 2 0.13 15
Target-3 (Database) 2 0.13 15
Target-4 (Intranet) 2 0.13 15
Target-5 (POS-Component2) 2 0.13 15
Target-6 (POS-Component3) 2 0.13 15
Target-7 (Storage-Server) 3 0.20 15
Target-8 (BusinessServer) 3 0.20 15

307

A. Evaluation Results Effort Reduction Targeted Attack Graph Analysis

Table A.1.: Continued evaluation results for Q6

Scenario Aff.Ratio SizeMinMax

Target-9 (POS3) 3 0.20 15
Target-10 (ExternalSupplier) 3 0.20 15
Target-11 (POS1) 2 0.13 15
Target-12 (POS2) 3 0.20 15
Target-13 (Internet) 3 0.20 15
Target-14 (SupplierMachine) 4 0.27 15

308

A. Evaluation Results Effort Reduction Targeted Attack Graph Analysis

Table A.1.: Continued evaluation results for Q6

Scenario Aff.Ratio SizeMinMax

CloudStorage-1 3 0.10 31

0.06 0.10

CloudStorage-2 3 0.10 31
CloudStorage-3 3 0.10 31
CloudStorage-4 2 0.06 31
CloudStorage-5 3 0.10 31
CloudStorage-6 3 0.10 31
CloudStorage-7 3 0.10 31
CloudStorage-8 3 0.10 31
CloudStorage-9 3 0.10 31
CloudStorage-10 3 0.10 31
CloudStorage-11 3 0.10 31
CloudStorage-12 3 0.10 31
CloudStorage-13 3 0.10 31
CloudStorage-14 3 0.10 31

Maintenance-1 (StorageServer) 2 0.25 8

0.25 0.50

Maintenance-2 (TerminalComponent) 4 0.50 8
Maintenance-3 (ProductionStorage) 4 0.50 8
Maintenance-4 (ProductionNetwork) 4 0.50 8
Maintenance-5 (MachineController) 4 0.50 8
Maintenance-6 (MachineComponent) 4 0.50 8

Travelplanner 2 0.20 10 0.20 0.20

The Table A.1 lists the effort reduction. The first column gives the scenario
with the architectural element as a starting point. The second column lists
the number of affected architectural elements, the third column the ratio, the
fourth the size and the two last columns give the minimum and maximum of
the ratio for a scenario.

309

Band 1 Steffen Becker
 Coupled Model Transformations for QoS Enabled

Component-Based Software Design.
 ISBN 978-3-86644-271-9

Band 2 Heiko Koziolek
 Parameter Dependencies for Reusable Performance

Specifications of Software Components.
 ISBN 978-3-86644-272-6

Band 3 Jens Happe
 Predicting Software Performance in Symmetric

Multi-core and Multiprocessor Environments.
 ISBN 978-3-86644-381-5

Band 4 Klaus Krogmann
 Reconstruction of Software Component Architectures and

Behaviour Models using Static and Dynamic Analysis.
 ISBN 978-3-86644-804-9

Band 5 Michael Kuperberg
 Quantifying and Predicting the Influence of Execution Platform

on Software Component Performance.
 ISBN 978-3-86644-741-7

Band 6 Thomas Goldschmidt
 View-Based Textual Modelling.
 ISBN 978-3-86644-642-7

Band 7 Anne Koziolek
 Automated Improvement of Software Architecture Models

for Performance and Other Quality Attributes.
 ISBN 978-3-86644-973-2

The Karlsruhe Series on
Software Design and Quality

ISSN 1867-0067

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Band 8 Lucia Happe
 Configurable Software Performance Completions through

Higher-Order Model Transformations.
 ISBN 978-3-86644-990-9

Band 9 Franz Brosch
 Integrated Software Architecture-Based Reliability

Prediction for IT Systems.
 ISBN 978-3-86644-859-9

Band 10 Christoph Rathfelder
 Modelling Event-Based Interactions in Component-Based

Architectures for Quantitative System Evaluation.
 ISBN 978-3-86644-969-5

Band 11 Henning Groenda
 Certifying Software Component

Performance Specifications.
 ISBN 978-3-7315-0080-3

Band 12 Dennis Westermann
 Deriving Goal-oriented Performance Models

by Systematic Experimentation.
 ISBN 978-3-7315-0165-7

Band 13 Michael Hauck
 Automated Experiments for Deriving Performance-relevant

Properties of Software Execution Environments.
 ISBN 978-3-7315-0138-1

Band 14 Zoya Durdik
 Architectural Design Decision Documentation through

Reuse of Design Patterns.
 ISBN 978-3-7315-0292-0

Band 15 Erik Burger
 Flexible Views for View-based Model-driven Development.
 ISBN 978-3-7315-0276-0

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Band 16 Benjamin Klatt
 Consolidation of Customized Product Copies
 into Software Product Lines.
 ISBN 978-3-7315-0368-2

Band 17 Andreas Rentschler
 Model Transformation Languages with

Modular Information Hiding.
 ISBN 978-3-7315-0346-0

Band 18 Omar-Qais Noorshams
 Modeling and Prediction of I/O Performance

in Virtualized Environments.
 ISBN 978-3-7315-0359-0

Band 19 Johannes Josef Stammel
 Architekturbasierte Bewertung und Planung

von Änderungsanfragen.
 ISBN 978-3-7315-0524-2

Band 20 Alexander Wert
 Performance Problem Diagnostics by Systematic Experimentation.
 ISBN 978-3-7315-0677-5

Band 21 Christoph Heger
 An Approach for Guiding Developers to

Performance and Scalability Solutions.
 ISBN 978-3-7315-0698-0

Band 22 Fouad ben Nasr Omri
 Weighted Statistical Testing based on Active Learning and Formal

Verification Techniques for Software Reliability Assessment.
 ISBN 978-3-7315-0472-6

Band 23 Michael Langhammer
 Automated Coevolution of Source Code and

Software Architecture Models.
 ISBN 978-3-7315-0783-3

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Band 24 Max Emanuel Kramer
 Specification Languages for Preserving Consistency between

Models of Different Languages.
 ISBN 978-3-7315-0784-0

Band 25 Sebastian Michael Lehrig
 Efficiently Conducting Quality-of-Service Analyses by Templating

Architectural Knowledge.
 ISBN 978-3-7315-0756-7

Band 26 Georg Hinkel
 Implicit Incremental Model Analyses and Transformations.
 ISBN 978-3-7315-0763-5

Band 27 Christian Stier
 Adaptation-Aware Architecture Modeling and

Analysis of Energy Efficiency for Software Systems.
 ISBN 978-3-7315-0851-9

Band 28 Lukas Märtin
 Entwurfsoptimierung von selbst-adaptiven Wartungs-

mechanismen für software-intensive technische Systeme.
 ISBN 978-3-7315-0852-6

Band 29 Axel Busch
 Quality-driven Reuse of Model-based

Software Architecture Elements.
 ISBN 978-3-7315-0951-6

Band 30 Kiana Busch
 An Architecture-based Approach for Change

Impact Analysis of Software-intensive Systems.
 ISBN 978-3-7315-0974-5

Band 31 Misha Strittmatter
 A Reference Structure for Modular Metamodels of

Quality-Describing Domain-Specific Modeling Languages.
 ISBN 978-3-7315-0982-0

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Band 32 Markus Frank
 Model-Based Performance Prediction for Concurrent Software
 on Multicore Architectures. A Simulation-Based Approach.
 ISBN 978-3-7315-1146-5

Band 33 Manuel Gotin
 QoS-Based Optimization of Runtime Management of Sensing
 Cloud Applications.
 ISBN 978-3-7315-1147-2

Band 34 Heiko Klare
 Building Transformation Networks for Consistent Evolution of

Interrelated Models.
 ISBN 978-3-7315-1132-8

Band 35 Roman Pilipchuk
 Architectural Alignment of Access Control Requirements

Extracted from Business Processes.
 ISBN 978-3-7315-1212-7

Band 36 Stephan Seifermann
 Architectural Data Flow Analysis for Detecting Violations of

Confidentiality Requirements.
 ISBN 978-3-7315-1246-2

Band 37 Sofia Ananieva
 Consistent View-Based Management of Variability in

Space and Time.
 ISBN 978-3-7315-1241-7

Band 38 Robert Heinrich
 Architecture-based Evolution of Dependable
 Software-intensive Systems.
 ISBN 978-3-7315-1294-3

Band 39 Max Scheerer
 Evaluating Architectural Safeguards
 for Uncertain AI Black-Box Components.
 ISBN 978-3-7315-1320-9

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Band 40 Sandro Giovanni Koch
 A Reference Structure for Modular Model-based Analyses.
 ISBN 978-3-7315-1341-4

Band 41 Maximilian Walter
 Context-based Access Control and Attack Modelling
 and Analysis
 ISBN 978-3-7315-1362-9

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

41

The Karlsruhe Series on
Software Design and Quality

Edited by Prof. Dr. Ralf Reussner

M
ax

im
ili

an
 W

al
te

r

This work develops architectural security analyses to detect access violations
and attack paths in software architectures. This is crucial due to the increasing
digitalization. Access control policies, influenced by contextual factors, and
vulnerabilities pose challenges, often analyzed separately. Existing methods
lack integration and overlook system deployment nuances. The proposed
solution employs software architecture models for early security assessment,
promoting “Security by Design.” Specific contributions include metamodels
for access control and vulnerabilities, scenario-based access control analysis,
and two attack analyses. Evaluation shows high accuracy in identifying access
violations and compromised elements, with potential effort reduction. This
approach aids in designing secure systems by estimating the impact of access
control policies and vulnerabilities during software development.

C
o

n
te

xt
-b

as
ed

 A
cc

es
s

C
o

n
tr

o
l

an
d

 A
tt

ac
k

M
o

d
el

lin
g

 a
n

d
 A

n
al

ys
is

ISSN 1867-0067
ISBN 978-3-7315-1362-9
Gedruckt auf FSC-zertifiziertem Papier

	Danksagung
	Abstract
	Zusammenfassung
	List of Figures
	List of Tables
	List of Acronyms
	Prologue
	Introduction
	Motivation
	Problem Statement
	Research Questions
	Contributions
	Outline

	Foundations
	Software Architecture Description and Analysis
	Model-Driven Software Development
	Software Architecture and Palladio Component Model
	Karlsruhe Architectural Maintainability Prediction Approach

	Security Related Concepts and Terms
	Access Control Specification
	Security Incidents and Vulnerabilities
	Vulnerability Classification
	Misuse Case

	Categorising Threats to Validity

	Running Example

	Contributions
	Modelling Influencing Factors for Context-Based Security
	Identification of Services and Components
	Considering Access Control Properties in Software Architecture Models
	Requirements for Modelling Access Control Properties
	Modelling Attributes
	Modelling Access Control Policies
	Modelling Attribute Providers and Scenarios
	Transformation to XACML & Access Requests

	Considering Vulnerabilities in Software Architecture Models
	Requirements for Modelling Vulnerabilities
	Modelling Identifiers for Vulnerabilities
	Modelling Vulnerabilities
	Integration in Palladio
	Automatic Derivation of Vulnerabilities

	Considering Attacks in Software Architecture Models
	Requirements for Modelling Attacks
	Modelling Attacks

	Considering Attackers in Software Architecture Models
	Modelling Attackers for Attack Propagation
	Modelling Attackers for Filtered Attack Paths

	Analysing Software Architectures for Potential Security Incidents
	Scenario-Based Access Usage Analysis
	Process for Analysing Scenario-based Access Control Policies
	Analysing Scenarios for Access Violations
	Analysing Misusage Scenarios for Access Violations
	Result Model for the Access Usage Analysis

	Attack Propagation Analysis
	Process for Analysing Attack Propagations with the Software Architecture
	Attack Propagation Process
	Data Extraction
	Analysing Attack Propagations
	Result Model for Attack Propagation

	Targeted Attack Graph Analysis
	Process for Analysing Attack Graphs based on the Software Architecture
	Attack Graph Analysis Process
	Creating an Attack Graph
	Identifying Attack Paths
	Result Model for the Targeted Attack Graph Analysis

	Validation
	Evaluation Scenarios
	TravelPlanner
	Power Grid
	Target
	Cloud Infrastructure
	ABAC-Banking
	Education
	Maintenance Scenario

	Evaluation
	Usage Analysis
	Goal, Question, Metric
	Evaluation Design
	Results & Discussion
	Threats to Validity

	Attack Propagation
	Goal, Question, Metrics
	Evaluation Design
	Results & Discussion of Accuracy
	Results & Discussion of Effort Reduction
	Results & Discussion of Scalability
	Threats to Validity

	Targeted Attack Graph Analysis
	Goal, Question, Metrics
	Evaluation Design
	Results & Discussion of Accuracy
	Results & Discussion of Effort Reduction
	Results & Discussion of Scalability
	Threats to Validity

	Assumption and Limitations
	Overall Evaluation Results & Discussion

	Epilogue
	Related Work
	Approaches focused on Confidentiality
	Access Control Models
	Access Control Policy Analyses
	Confidentiality Analyses
	Usage Control Approaches
	Industrial Tools & Approaches

	Approaches focused on Attacks & Attackers
	Vulnerability & Attack Classifications
	Attack Path & Threat Modelling
	Attack Path Estimation & Automatic Analysis
	Industrial Tools & Approaches

	Related Work Summary

	Conclusion
	Summary
	Benefits
	Future Work
	Acknowledgement

	Appendix
	Bibliography
	Evaluation Results Effort Reduction Targeted Attack Graph Analysis

