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Abstract

In this paper we study the harmonic map heat flow on the euclidean space Rd and we show an uncondi-

tional uniqueness result for maps with small initial data in the homogeneous Besov space Ḃ
d
p
p,∞(Rd) where 

d < p < ∞. As a consequence we obtain decay rates for solutions of the harmonic map flow of the form 
‖∇u(t)‖L∞(Rd ) ≤ Ct− 1

2 .
Additionally, under the assumption of a stronger spatial localization of the initial conditions, we show 

that the temporal decay happens in a self-similar way. We also explain that similar results hold for the 
biharmonic map heat flow and the semilinear heat equation with a power-type nonlinearity.
© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

The diffusive stability method is a tool which allows us to prove stability results for parabolic 
partial differential equations in the case of a linearization possessing essential spectrum up to the 
imaginary axis. It is based on algebraic decay rates which hold for the heat semigroup (et�)t≥0

on Rd , defined by
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(et�u0)(x) = 1

(4πt)d/2

∫
Rd

e− |x−y|2
4t u0(y)dy.

We have the decay

‖et�‖Lp→L∞ ≤ Ct
− d

2p ,

for p ∈ [1, ∞), due to the diffusion which occurs for spatially localized initial conditions and the 
decay

‖et�∇‖L∞→L∞ ≤ Ct−
1
2

due to smoothing. These decays can be used for instance to prove stability results in (Lp ∩
C1

b)(Rd) of the trivial solution u = 0 in semilinear heat equations

∂tu = �u + f (u,∇u),

with x ∈ Rd , t ≥ 0, u(x, t) ∈ R, and a smooth nonlinear function f containing terms of the 
form um(∂1u)m1 . . . (∂du)md and satisfying f (0, 0) = 0. The underlying idea is as follows. If we 
assume that the dynamics of the nonlinear diffusion equation is dominated by the dynamics 
of the linear diffusion equation we heuristically find that the linear terms ∂tu and �u ap-

pearing in the nonlinear diffusion equation decay pointwise as t−
d

2p
−1 for t → ∞. However, 

under the same assumption we have that the nonlinear terms um(∂1u)m1 . . . (∂du)md decay as 

t
− (m+m1+...+md )d

2p
− m1+...+md

2 for t → ∞. Hence, they decay much faster and are asymptotically ir-
relevant with respect to the linear diffusion if

d

2p
+ 1 <

(m + m1 + . . . + md)d

2p
+ m1 + . . . + md

2
.

As an example for d = 1 and p = 1 all such terms are irrelevant except for u2, u3, and u∂xu. With 
this idea of asymptotic irrelevance of the nonlinear terms the stability of u = 0 in (Lp ∩C1

b)(Rd)

can be established for

∂tu = �u + um(∂x1u)m1 . . . (∂xd
u)md ,

if the above condition is satisfied.
After the introduction of this method in the papers of Fujita and Weisler [6,20], the last 

decades saw a successful application of this tool to stability questions arising for pattern form-
ing systems, see e.g. [3,14,13,7]. A summary and overview of various aspects of this diffusive 
stability method can also be found in the monograph [15].

It is the goal of this paper to use this tool for gaining new stability and uniqueness results for 
dissipative semilinear geometric flow problems on Rd , in particular for the harmonic map heat 
flow.

In the following we let N be a smooth Riemannian manifold which we assume to be isomet-
rically embedded into some euclidean space Rm. For δ > 0 sufficiently small we have a well 
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defined nearest point projection π : Nδ → N , where Nδ := {x ∈Rm : dist(x, N) < δ} and we de-
fine the second fundamental form A(y) : TyN ×TyN → T ⊥

y N for every y ∈ N and v1, v2 ∈ TyN

by A(y)(v1, v2) = −D2π(y)(v1, v2). A map u : Rd × [0, T ) → N is then a solution of the har-
monic map heat flow with initial data u(·, 0) = u0 : Rd → N if it solves the parabolic partial 
differential equation

∂tu − �u = A(u)(∇u,∇u). (1)

For instance, in case of N = Sm−1 = {x ∈ Rm : ‖x‖Rm = 1}, we compute

A(u)(∇u,∇u) = −(�u,u)u = −(∂2
k uα)uαu

= −∂k((∂kuα)uα)u + (∂kuα)(∂kuα)u = u|∇u|2,

where here and in the following we use Einstein’s summation convention and the fact that 
(∂kuα)uα = 0 which follows from the fact that uαuα = 1.

Rather general existence results for the harmonic map heat flow on euclidean space have been 
obtained by Koch and the first author [8] for initial maps with a small oscillation and by Wang 
[18] for initial maps with a small BMO-norm. These solutions were constructed by applying 
a fixed point argument on suitably constructed Banach spaces. As a byproduct of this method, 
the authors obtained a conditional uniqueness result for the harmonic map heat flow under the 
smallness assumptions on the initial data mentioned above.

One of our main goals of this paper is to use the diffusive stability method in order to improve 
this conditional uniqueness result to an unconditional uniqueness result. The price we have to 
pay is that our initial data have to be small in a strict subspace of the above mentioned space of 
functions of bounded mean oscillation. More precisely, we require our initial data to be small in 
a homogeneous Besov space, see Theorem 2.7 for further details.

The deviation v of a trivial spatially constant equilibrium u∗ satisfies a semilinear diffusion 
equation of the form

∂tv − �v = A(u∗ + v)(∇v,∇v). (2)

As above we have A(u∗ + v)(∇v, ∇v) ∼ t
− d

p
−1 for t → ∞, and so the nonlinearity is irrelevant 

w.r.t. to linear diffusion if p ∈ [1, ∞). For p = ∞ the linear and nonlinear terms are of the same 
order and a stability result on exponentially long time scales can be established, see Theorem 2.9.

For slightly stronger localized initial conditions the associated solutions of the linear heat 
equation decay in a self-similar way towards zero. The same is true for semilinear heat equa-
tions with nonlinearities which are irrelevant in L1 ∩C1

b(Rd) with the above counting. Using the 
discrete renormalization approach, cf. [2,3], gives that the renormalized solution td/2v(x

√
t, t)

of (2) converges towards a multiple of a Gaussian e−|x|2/4 for t → ∞. In the discrete renormal-
ization approach instead of solving the PDE (2) directly we consider an equivalent sequence of 
problems which converges formally towards the linear diffusion equation. Let

vn(x, τ ) = Ldnv(Lnx,L2nτ ),

with L > 1 fixed and n ∈N . Then vn satisfies
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∂τ vn − �vn = Ln(d+2−2−2d)D2π(u∗ + L−dnv)(∇vn,∇vn) (3)

= L−ndD2π(u∗ + L−dnv)(∇vn,∇vn)

for τ ∈ [L−2, 1], with

vn(x,L−2) = Ldvn−1(Lx,1). (4)

The influence of the nonlinear terms vanishes for n → ∞ with a geometric rate. In the limit we 
obtain a linear diffusion equation. With a simple fixed point argument the convergence of vn|τ=1
towards the limit of the renormalized linear diffusion problem, namely a multiple of the Gaussian 
e−|x|2/4 can be established, cf. Theorem 4.1.

A different approach for the harmonic map heat flow is the consideration of w = ∇v which 
satisfies

∂tw − �w = ∇(A(u∗ + v)(w,w)). (5)

We show that the above mentioned discrete renormalization approach can also be applied to this 
system of equations.

Finally, we show that our technique can be extended to various other semilinear heat equations 
on euclidean space, such as equations with a power-type nonlinearity or higher order equations, 
such as the biharmonic map heat flow.

A similar handling of dissipative quasilinear geometric flow problems, such as the Ricci-
DeTurck flow, the mean curvature flow, the Yamabe flow, and the Willmore flow of graphs, will 
be the topic of future research.

Notation. In the following many possibly different constants are denoted with the same sym-
bol C if they can be chosen independent of time t .

2. Stability and uniqueness results for the harmonic map flow

Our first main result about the harmonic map heat flow is given by an asymptotic stability and 
uniqueness result assuming smallness conditions on a certain homogeneous Besov norm of the 
initial map u0.

We note that due to the unboundedness of the domain the linearization around u = const.

for (1) possesses essential spectrum up to the imaginary axis and so the principle of linearized 
stability does not apply directly in this situation. Therefore, we use the diffusive stability method 
for establishing the following results. We start by extending a stability result for the harmonic 
map flow which was originally due to Soyeur [16]. Using the notation Ẇ 1,p(Rd , N) for the 
homogeneous Sobolev space, his result is as follows

Theorem 2.1. There exists a constant ε > 0 depending only on d and N such that if u0 ∈
Ẇ 1,p(Rd , N) with d < p < ∞ and ‖∇u0‖Ld < ε, then we have the estimate

t
1
2 − d

2p ‖∇u(t)‖Lp ≤ C‖∇u0‖Ld , (6)

where C = C(d, m, p), for every solution u ∈ C0([0, ∞), Ẇ 1,p(Rd , N)) of (1).
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Remark 2.2. In the same paper Soyeur also showed the existence of a solution u ∈ C0([0, ∞),

Ẇ 1,p(Rd , N)) for small initial data in the above sense. Additionally, the smallness assumption 
on the Ld -norm of ∇u0 implies that the BMO-norm of u0 is small and hence, by a paper of C. 
Wang [18], this implies the existence of a global smooth solution of the harmonic map flow.

Remark 2.3. This result can be extended to maps from complete Riemannian manifolds for 
which one has good heat kernel estimates as it was done in Li and Wang [10] for (6). Examples 
of such manifolds include manifolds with positive Ricci curvature.

The original result of Soyeur already extended a previous result of Struwe [17], who was 
the first one to show a convergence result for the harmonic map heat flow on Rd to a constant 
map with additional decay properties for the first derivative. More precisely, he showed in The-
orem 7.1 of the paper mentioned above, that for smooth initial maps u0 so that ‖∇u0‖L∞ is 
bounded and ‖∇u0‖L2 is sufficiently small, the unique smooth solution of the harmonic map 

heat flow satisfies for t large enough ‖∇u(·, t)‖L∞ ≤ Ct− 1
2 and hence converges to a constant 

map.
As a first result we improve Theorem 2.1 for initial data satisfying a slightly less restrictive 

smallness condition. More precisely, for a map v : Rd → Rm we denote by et�v = G(t) 	 v its 
heat extension, i.e. G(t) 	 v is a solution of the heat equation with initial data v. Here G(x, t) =

1
(4πt)d/2 e

−|x|2
4t , (x, t) ∈ Rd × (0, ∞), is the standard heat kernel. For d < p ≤ ∞ we define the 

homogeneous Besov space Ḃ
d
p
p,∞(Rd) as the set of functions for which the norm

‖v‖
Ḃ

d
p
p,∞

:= sup
t>0

t
1
2 − d

2p ‖∇(G(t) 	 v)‖Lp

is finite. It follows that

Ẇ 1,d (Rd) ⊂ Ḃ
d
p
p,∞(Rd) ⊂ BMO(Rd) ⊂ Ḃ0∞,∞(Rd)

for every d < p < ∞, where each of these inclusions is strict (see e.g. [4]).
Now we are in a position to state our first main result.

Theorem 2.4. For every d < p < ∞ with 2 ≤ p there exists a constant ε > 0 depending only on 

p, d and N such that if u0 ∈ Ḃ
d
p
p,∞(Rd , N) with ‖u0‖

Ḃ

d
p
p,∞

< ε, then we have the estimate

t
1
2 − d

2p ‖∇u(t)‖Lp ≤ C‖u0‖
Ḃ

d
p
p,∞

,

where C = C(d, m, p), for every solution u : (0, ∞) ×Rd → N of (1) with

t
1
2 − d

2p ∇u(t, x) ∈ C0([0,∞),Lp(Rd))
324



T. Lamm and G. Schneider Journal of Differential Equations 394 (2024) 320–344
and

lim
t↘0

t
1
2 − d

2p ‖∇u(t)‖Lp = 0.

Remark 2.5. Note that the existence of such solutions follows for example from the work of 
Soyeur under the assumption that u0 ∈ Ẇ 1,p(Rd, N) with a sufficiently small Ẇ 1,d(Rd)-norm.

In the proof of this result we need a standard estimate on the heat semigroup. Note that it 
relies on Young’s convolution inequality.

Lemma 2.6. We have the estimate

‖∇σ et�‖L(Lr ,Lq) ≤ Ct
− d

2 ( 1
r
− 1

q
)− σ

2 , (7)

where 1 ≤ r ≤ q ≤ ∞, σ ∈ N0 and C < ∞ is a constant. Additionally, we have that for some 
constant C < ∞

t∫
0

(t − s)−αs−β ds = Ct1−α−β (8)

if both 0 < α, β < 1.

Now we are in a position to prove Theorem 2.4.

Proof of Theorem 2.4: We start by noting that the variation of constants formula implies

∇(u(x, t) − (G(t) 	 u0)(x)) =
t∫

0

∫
Rd

∇G(x − y, t − s)(A(u)(∇u,∇u)(y, s)) dy ds.

Using the estimate (7) with σ = 1, r = p
2 and q = p we get for every t > 0

‖∇(u(t) − G(t) 	 u0)‖Lp ≤C

t∫
0

‖|∇u(s)|2‖
L

p
2
(t − s)

−( 1
2 + d

2p
)
ds

≤C

t∫
0

‖∇u(s)‖2
Lp(t − s)

−( 1
2 + d

2p
)
ds.

Setting

m(T ) = sup
0≤t≤T

t
1
2 − d

2p ‖∇u(t)‖Lp ,

the last inequality implies for all t > 0
325
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t
1
2 − d

2p ‖∇u(t)‖Lp ≤C‖u0‖
Ḃ

d
p
p,∞

+ Ct
1
2 − d

2p m(T )2

t∫
0

(t − s)
−( 1

2 + d
2p

)
s
−1+ d

p ds

≤C‖u0‖
Ḃ

d
p
p,∞

+ Cm(T )2,

where we used the identity (8) with 0 < α = 1
2 + d

2p
< 1 and 0 < β = 1 − d

p
< 1. Note that it is 

exactly here that we have to use the assumption d < p < ∞.
Taking the supremum over all 0 ≤ t ≤ T we thus obtain for every 0 < T < ∞

Cm(T )2 − m(T ) + C‖u0‖
Ḃ

d
p
p,∞

≥ 0

and for ε > 0 small enough this finally implies for all T < ∞

m(T ) ≤ C‖u0‖
Ḃ

d
p
p,∞

≤ Cε.

Here we used that m(0) = 0. By definition this estimate implies that

t
1
2 − d

2p ‖∇u(t)‖Lp ≤ C‖u0‖
Ḃ

d
p
p,∞

for every 0 < t < ∞, as claimed. �
In the next theorem we improve a uniqueness result for solutions of the harmonic map heat 

flow with initial data with small BMO-norm. For this we define the Banach space X as the space 
of functions such that the norm

‖u‖X := sup
0<t<∞

(
‖u(t)‖L∞(Rd ) + t

1
2 ‖∇u(t)‖L∞(Rd )

)
+ sup

x∈Rd

sup
0<R<∞

R− d
2 ‖∇u‖L2(BR(x)×(0,R2))

is finite. It was shown by the first author and Koch [8] that there exist constants ε > 0, C > 0
such that for every u0 : Rd → N satisfying ‖u0 − P ‖L∞ < ε, where P ∈ N is some arbitrary 
point, there exists a global solution u ∈ P +X of (1). Moreover, the solution is unique in the ball

BX(P,Cε) = {u : ‖u − P ‖X ≤ Cε}.

This result was later on extended to initial data u0 ∈ BMO(Rd) with small BMO-norm by Wang 
[18]. He obtained the uniqueness of the solution in the set BX(G(t)u0, Cε).

As our second main result for the harmonic map flow we improve this conditional uniqueness 
result to an unconditional uniqueness result (i.e. we no longer have to restrict to the class of 
solutions in X with small X-norm) but the price we have to pay is to go from BMO-initial data 
to homogeneous Besov initial data.
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Theorem 2.7. Let N be a smooth and closed manifold. For every d < p < ∞ with p ≥ 2 there 

exists ε > 0, C > 0 such that for every u0 ∈ Ḃ
d
p
p,∞(Rd , N) with ‖u0‖

Ḃ

d
p
p,∞

< ε and every solution 

u : (0, ∞) ×Rd → N of (1) with

t
1
2 − d

2p ∇u(t, x) ∈ C0([0,∞),Lp(Rd))

and

lim
t↘0

t
1
2 − d

2p ‖∇u(t)‖Lp = 0,

we have the estimate

‖u − G(t) 	 u0‖X ≤ C‖u0‖
Ḃ

d
p
p,∞

.

Moreover, there exists only one solution under these assumptions.

Remark 2.8. By a Carleson measure type characterization of Besov spaces, we know that there 
exist constants 0 < c1 ≤ c2 < ∞ so that

c1‖u0‖Ḃ0∞,∞ ≤ sup
t>0

t
1
2 ‖∇(G(t) 	 u0)‖L∞(Rd ) ≤ c2‖u0‖Ḃ0∞,∞,

respectively 0 < d1 ≤ d2 < ∞ with

d1‖u0‖BMO ≤ sup
x∈Rd

sup
0<R<∞

R− d
2 ‖∇(G(t) 	 u0)‖L2(BR(x)×(0,R2)) ≤ d2‖u0‖BMO

and since we have the inclusions

Ḃ
d
p
p,∞ ⊂ BMO ⊂ Ḃ0∞,∞

for every d < p < ∞, it follows from the above estimates that for every solution u ∈
C0([0, ∞), Ẇ 1,p(Rd , N)) of (1) as above with initial data u0 satisfying ‖u0‖

Ḃ

d
p
p,∞

< ε we have

sup
t>0

t
1
2 ‖∇u‖L∞(Rd ) + sup

x∈Rd

sup
0<R<∞

R− d
2 ‖∇u‖L2(BR(x)×(0,R2)) ≤ C‖u0‖

Ḃ

d
p
p,∞

.

Proof of Theorem 2.7. We fix p > d and we note that we get from Theorem 2.4 the estimate

sup
t>0

t
1
2 − d

2p ‖∇u(t)‖Lp ≤ C‖u0‖
Ḃ

d
p
p,∞

.

Next we use again the estimate (7) with σ = 1, r = p and q = ∞ to conclude for every t > 0
2
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‖∇(u(t) − G(t) 	 u0)‖L∞ ≤C

t∫
0

‖|∇u(s)|2‖
L

p
2
(t − s)

−( 1
2 + d

p
)
ds

≤C

t∫
0

‖∇u(s)‖2
Lp(t − s)

−( 1
2 + d

p
)
ds

≤C‖u0‖2

Ḃ

d
p
p,∞

t∫
0

s
d
p

−1
(t − s)

−( 1
2 + d

p
)
ds

≤Ct−
1
2 ‖u0‖2

Ḃ

d
p
p,∞

,

where we used (8) in the last estimate.
Similarly, we obtain

‖u(t) − G(t) 	 u0‖L∞ ≤C

t∫
0

‖|∇u(s)|2‖
L

p
2
(t − s)

− d
p ds

≤C

t∫
0

‖∇u(s)‖2
Lp(t − s)

− d
p ds

≤C‖u0‖2

Ḃ

d
p
p,∞

t∫
0

s
d
p

−1
(t − s)

− d
p ds

≤C‖u0‖2

Ḃ

d
p
p,∞

.

It remains to establish the bound

sup
x∈Rd

sup
0<R<∞

R− d
2 ‖∇(u − G(·) 	 u0)‖L2(BR(x)×(0,R2)) ≤ C‖u0‖

Ḃ

d
p
p,∞

.

Using Hölder’s inequality, we estimate for every x ∈ Rd and some p > d∫
BR(x)

|∇(u(t) − G(t) 	 u0)|2 ≤C(

∫
BR(x)

|∇(u(t) − G(t) 	 u0)|p)
2
p R

d(1− 2
p

)

≤Ct
d
p

−1
R

d(1− 2
p

)‖u0‖2

Ḃ

d
p
p,∞

.

From this it is easy to see that

sup
x∈Rd

sup
0<R<∞

R− d
2 ‖∇(u − G(·) 	 u0)‖L2(BR(x)×(0,R2)) ≤ C‖u0‖

Ḃ

d
p
p,∞

.

Note that the uniqueness result now follows from the previous work of Wang [18]. �

328



T. Lamm and G. Schneider Journal of Differential Equations 394 (2024) 320–344
Finally, we show a new stability result on exponentially long time scales for the harmonic 
map flow starting near a constant map. Note that in this result we do not assume that the initial 
values decay in space.

Theorem 2.9. For every C > 0 there exist b > 0 and ε0 > 0 such that for every ε ∈ (0, ε0) and 
every solution u :Rd ×[0, ∞) → N of (1) with ‖u0 −P ‖W 1,∞ ≤ ε, where P ∈ N is an arbitrary 
point, we have

sup
t∈[0,exp

(
b
ε

)
−1]

‖u(t) − P ‖C0 + sup
t∈[0,exp

(
b
ε

)
−1]

(1+t)
1
2 ‖∇u(t)‖C0 ≤ C.

Proof. We define the functions

a(t) = sup
0≤s≤t

‖u(s) − P ‖L∞ resp.

b(t) = sup
0≤s≤t

‖(1+s)
1
2 ∇u(s)‖L∞ ,

and we estimate (using the fact that ‖G(t) 	 (u0 − P)‖L∞ ≤ ‖u0 − P ‖L∞ )

‖u(t) − P ‖L∞ ≤ C‖u0 − P ‖L∞ + C

∥∥∥∥
t∫

0

G(·, t − s) 	 A(u)(∇u,∇u)(s)ds

∥∥∥∥
L∞

≤ Ca(0) + C

t∫
0

‖|∇u(s)|2‖L∞ds

≤ Ca(0) + Cb2(t)

t∫
0

(1+s)−1 ds

≤ Ca(0) + Cb2(t) log(1 + t)

and

(1 + t)
1
2 ‖∇u(t)‖L∞ ≤C(a(0) + b(0)) + Cb2(t)(1 + t)

1
2

t∫
0

(t − s)−
1
2 (1 + s)−1 ds

≤C(a(0) + b(0)) + Cb2(t)(1 + log(1 + t)),

where we used that

‖∇(G(·, t) 	 (u0 − P))‖L∞ ≤
{

C‖∇u0‖L∞ , for t ≤ 1,

Ct− 1
2 ‖u0 − P ‖L∞ , for t > 1.

Next we define the rescaled functions ã(t) = ε−1a(t) resp. b̃(t) = ε−1b(t) and we conclude
329



T. Lamm and G. Schneider Journal of Differential Equations 394 (2024) 320–344
ã(t) + b̃(t) ≤ C1(ã(0) + b̃(0)) + C2ε(1 + log(1 + t))b̃2(t)

for some constants C1, C2 > 0. Since ã(0) + b̃(0) ≤ 1 we conclude

ã(t) + b̃(t) ≤ 2C1

as long as

1 + t ≤ exp

(
1

4C1C2ε
− 1

)
.

Hence

a(t) + b(t) ≤ 2C1ε

for all 0 ≤ t ≤ exp
(

1
4C1C2ε

− 1
)

− 1 where we note that for ε > 0 sufficiently small, the last 
number satisfies the required properties in the statement of the Theorem. �
3. Related equations

In this section we want to show that the results obtained for the harmonic map heat flow can 
be extended to two other parabolic equations to either simplify proofs of existing results or yield 
new results. We note that in the case of the Navier-Stokes equation similar results have been 
obtained earlier by Cannone [5], Planchon [12] and Koch-Tataru [9].

3.1. Equations with power-type nonlinearities

Here we study the very classical semilinear equation

∂tu − �u = f (u) (9)

where u : Rd × [0, ∞) → R with u(·, 0) = u0 and f : R → R is a smooth function satisfying 
|f (s)| ≤ |s|q for some q > 1 and all s ∈ R. It was already shown in [6,20] that for non-negative 
initial data u0 so that the norm ‖u0‖

L
d(q−1)

2
is sufficiently small (here we also assume d(q−1)

2 > 1), 

there exists a non-negative global solution of (9) satisfying

sup
t>0

t
1

q−1 − d
2p ‖u(t)‖Lp ≤ C‖u0‖

L
d(q−1)

2

for every d(q−1)
2 < p <

dq(q−1)
2 . This result should be directly compared (and was in fact a 

motivation) to the one of Soyeur [16] (see Theorem 2.1) for the harmonic map heat flow. In fact, 
with the same technique that we used in the previous section, we are able to extend these results 
and we obtain
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Theorem 3.1. There exists a constant ε > 0 depending only on d and q such that if u0 ∈
B

d
p

− 2
q−1

p,∞ (Rd) with 1 < q < ∞, 1 < d(q−1)
2 and if ‖u0‖

B

d
p − 2

q−1
p,∞

< ε, then we have the estimate

sup
t>0

t
1

q−1 − d
2p ‖u(t)‖Lp ≤ C‖u0‖

B

d
p − 2

q−1
p,∞

,

where C = C(d, p), for every d(q−1)
2 < p <

dq(q−1)
2 and every solution u : (0, ∞) ×Rd → R of 

(9) with

t
1

q−1 − d
2p u(t, x) ∈ C0((0,∞),Lp(Rd))

and

lim
t↘0

t
1

q−1 − d
2p ‖u(t)‖Lp = 0.

If we know additionally that q > max{2, 1 + 2
d
} then we also get the estimate

sup
t>0

t
1

q−1 ‖u(t)‖L∞ ≤ C‖u0‖
B

d
p − 2

q−1
p,∞

.

Proof. Arguing as in the proof of Theorem 2.4, we obtain

‖u(t) − G(t) 	 u0‖Lp ≤C

t∫
0

‖|u(s)|q‖
L

p
q
(t − s)

− d(q−1)
2p ds

≤C

t∫
0

‖u(s)‖q
Lp (t − s)

− d(q−1)
2p ds

≤Cm(T )q

t∫
0

s
dq
2p

− q
q−1 (t − s)

− d(q−1)
2p ds

≤Ct
− 1

q−1 + d
2p m(T )q,

since 0 > dq
2p

− q
q−1 > −1 and 0 > − d(q−1)

2p
> −1. Note that here we let

m(T ) = sup
0≤t≤T

t
1

q−1 − d
2p ‖u(t)‖Lp .

As above, this estimate implies the desired claim since

sup t
1

q−1 − d
2p ‖G(t) 	 u0‖Lp ∼= ‖u0‖ d

p − 2
q−1

.

t>0 Bp,∞
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Next, if q > 2 there exists a p satisfying dq
2 < p <

dq(q−1)
2 and for one such value of p we 

note that for every 0 < t < ∞

‖u(t) − G(t) 	 u0‖L∞ ≤C

t∫
0

‖|u(s)|q‖
L

p
q
(t − s)

− dq
2p ds

≤C

t∫
0

‖u(s)‖q
Lp (t − s)

− dq
2p ds

≤Cm(T )q

t∫
0

s
dq
2p

− q
q−1 (t − s)

− dq
2p ds

≤Ct
− 1

q−1 m(T )q,

and hence we also get the estimate

sup
t>0

t
1

q−1 ‖u(t)‖L∞ ≤ C‖u0‖
B

d
p − 2

q−1
p,∞

. �

Note that the Lp-estimate in the previous theorem has been obtained earlier by Miao, Yuan 
and Zhang [11]. Related estimates have also been obtained by Blatt and Struwe [1] for small 
initial data in Morrey spaces.

3.2. Biharmonic map flow

As another example we consider solutions u : Rd × (0, T ) → Sm−1 ⊂ Rm of the (extrinsic) 
biharmonic map heat flow governed by

(∂t + �2)u = u(|�u|2 − �|∇u|2 − 2div〈�u,∇u〉)
= u|�u|2 + ∇u · (∇|∇u|2 + 2〈�u,∇u〉) − div(u∇|∇u|2 + 2u〈�u,∇u〉) (10)

=: f1[u] + divf2[u],

where we can estimate

|f1[u]| ≤ C(|∇2u|2 + |∇u|4) and

|f2[u]| ≤ C|∇u||∇2u|.

For the sake of simplicity we restrict ourselves to sphere-valued maps. The arguments below can 
easily be extended to general closed manifolds N and maps u : Rd × (0, T ) → N . Additionally, 
there exists another version of the biharmonic map flow, the so called intrinsic biharmonic map. 
All of the results shown below carry over directly to this fourth order parabolic PDE.

Again we are interested in an unconditional uniqueness resp. stability result for small initial 
data in a suitable Besov space. As before, the principle of linear stability cannot be applied 
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directly due to the fact that the linearization again possesses an essential spectrum up to the 
imaginary axis.

But as before some diffusive behavior can be used to control the nonlinear terms which are 
irrelevant w.r.t. this diffusive behavior. In the following we let b : Rd × (0, ∞) → R denote the 
biharmonic heat kernel. It follows from the results of [8] that Lemma 2.6 can be extended to this 
case, namely we have

Lemma 3.2. Let b : Rd × (0, ∞) → R be the biharmonic heat kernel and e−t�2
f = b(t) 	 f we 

have the estimate

‖∇σ e−t�2‖L(Lr ,Lq) ≤ Ct
− d

4 ( 1
r
− 1

q
)− σ

4 , (11)

where 1 ≤ r ≤ q ≤ ∞, σ ∈ N0 and C < ∞ is a constant.

Before we now state our main results for the biharmonic map flow, we note that we have 
another equivalent characterization of the homogeneous Besov space via the biharmonic heat 
kernel given by

‖u0‖
Ḃ

d
p
p,∞

:= sup
t>0

(
t

1
4 − d

4p ‖∇(b(t)u0)‖Lp + t
1
2 − d

2p ‖∇2(b(t)u0)‖
L

p
2

)
.

Here we note that the first term on the right hand-side indeed defines an equivalent norm on the 

homogeneous Besov space Ḃ
d
p
p,∞, whereas the second term defines an equivalent norm on the 

homogeneous space Ḃ
2d
p
p
2 ,∞. Since the second homogeneous Besov space is embedded in the first 

one we choose our norm as a definition of the larger space.

Theorem 3.3. For every d < p < ∞ with p ≥ 2, there exists a constant ε > 0 depending only on 

d , p and m such that if u0 ∈ Ḃ
d
p
p,∞(Rd , Sm−1) with ‖u0‖

Ḃ

d
p
p,∞

< ε, then we have the estimate

t
1
4 − d

4p ‖∇u(t)‖Lp + t
1
2 − d

2p ‖∇2u(t)‖
L

p
2

≤ C‖u0‖
Ḃ

d
p
p,∞

,

where C = C(d, p, m), for every solution u : (0, ∞) ×Rd → Sm−1 of (1) with

t
1
4 − d

4p ∇u ∈ C0([0,∞),Lp(Rd)), t
1
2 − d

2p ∇2u ∈ C0([0,∞),L
p
2 (Rd))

and

lim(t
1
4 − d

4p ‖∇u(t)‖Lp + t
1
2 − d

2p ‖∇2u(t)‖
L

p
2
) = 0.
t↘0
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Proof. We follow closely the proof of Theorem 2.4 by observing that for i = 1, 2

∇ i (u(x, t) − b(t) 	 u0(x)) =
t∫

0

∫
Rd

∇ ib(x − y, t − s)f1[u]dy ds

−
t∫

0

∫
Rd

∇ i+1b(x − y, t − s)f2[u](s) dy ds =: Ii + IIi .

Using the estimate (11) with σ = 1, r = p
4 and q = p we get for every t > 0

‖I1‖Lp ≤C

t∫
0

(
‖|∇u(s)|4‖

L
p
4

+ ‖|∇2u(s)|2‖
L

p
4

)
(t − s)

−( 1
4 + 3d

4p
)
ds

≤C

t∫
0

(‖∇u(s)‖4
Lp + ‖∇2u(s)‖2

L
p
2
)(t − s)

−( 1
4 + 3d

4p
)
ds.

Setting

m(T ) = sup
0≤t≤T

(
t

1
4 − d

4p ‖∇u(t)‖Lp + t
1
2 − d

2p ‖∇2u(t)‖
L

p
2

)
,

the last inequality implies for all t > 0

t
1
4 − d

4p ‖I1‖Lp ≤Ct
1
4 − d

4p m(T )2(1 + m(T )2)

t∫
0

(t − s)
−( 1

4 + 3d
4p

)
s
−1+ d

p ds

≤Cm(T )2(1 + m(T )2),

where we used again the identity (8).
Similarly, using (11) with σ = 2, r = p

3 and q = p we get for every t > 0

‖II1‖Lp ≤C

t∫
0

‖|∇u(s)||∇2u(s)|‖
L

p
3
(t − s)

−( 1
2 + d

2p
)
ds

≤C

t∫
0

(‖∇u(s)‖Lp‖∇2u(s)‖
L

p
2
)(t − s)

−( 1
2 + d

2p
)
ds.

Thus, we obtain
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t
1
4 − d

4p ‖II1‖Lp ≤Ct
1
4 − d

4p m(T )2

t∫
0

(t − s)
−( 1

2 + d
2p

)
s
− 3

4 + 3d
4p ds

≤Cm(T )2,

which implies

t
1
4 − d

4p ‖∇u(t)‖Lp ≤ C‖u0‖
Ḃ

d
p
p,∞

+ Cm(T )2(1 + m(T )2).

For i = 2 we argue similarly, only this time we choose σ = 2, r = p
4 and q = p

2 for I2 resp. 
σ = 3, r = p

3 and q = p
2 for II2 to obtain

t
1
2 − d

2p ‖∇2u(t)‖
L

p
2

≤ C‖u0‖
Ḃ

d
p
p,∞

+ Cm(T )2(1 + m(T )2).

Taking the supremum over all 0 ≤ t ≤ T we thus obtain for every 0 < T < ∞

Cm(T )2(1 + m(T )2) − m(T ) + C‖u0‖
Ḃ

d
p
p,∞

≥ 0

and for ε > 0 small enough this finally implies for all T < ∞ that

m(T ) ≤ C‖u0‖
Ḃ

d
p
p,∞

≤ Cε.

Here we used that m(0) = 0. By definition this estimate implies that

t
1
4 − d

4p ‖∇u(t)‖Lp + t
1
2 − d

2p ‖∇2u(t)‖
L

p
2

≤ C‖u0‖
Ḃ

d
p
p,∞

for every 0 < t < ∞, as claimed. �
As in the case of the harmonic map heat flow this result can now be used to improve the 

uniqueness result for solutions of the biharmonic map heat flow with small initial data in BMO

due to Wang [19]. For this we have to define again a suitable function space. This time it is given 
by the space of all functions u such that the norm

‖u‖Xb
:= sup

0<t<∞

(
‖u(t)‖L∞(Rd ) +

2∑
i=1

t
i
4 ‖∇ iu(t)‖L∞(Rd )

)

+ sup
x∈Rd

sup
0<R<∞

2∑
i=1

R− di
4 ‖∇ iu‖

L
4
i (BR(x)×(0,R4))

is finite.
Similarly to Theorem 2.7 we then obtain
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Theorem 3.4. For every d < p < ∞ with p ≥ 2 there exists ε > 0, C > 0 such that for every 

u0 ∈ Ḃ
d
p
p,∞(Rd , Sm−1) with ‖u0‖

Ḃ

d
p
p,∞

< ε and every solution u : (0, ∞) × Rd → Sm−1 of (10)

with

t
1
4 − d

4p ∇u(t, x) ∈ C0([0,∞),Lp(Rd)), t
1
2 − d

2p ∇2u(t, x) ∈ C0([0,∞),L
p
2 (Rd))

and

lim
t↘0

(
t

1
4 − d

4p ‖∇u(t)‖Lp + t
1
2 − d

2p ‖∇2u(t)‖
L

p
2

)
= 0,

we have the estimate

‖u − b(t) 	 u0‖Xb
≤ C‖u0‖

Ḃ

d
p
p,∞

.

Moreover there exists only one solution of (10) under these assumptions.
Additionally, one obtains the bounds

sup
t>0

2∑
i=1

t
i
4 ‖∇ iu(t)‖L∞(Rd ) + sup

x∈Rd

sup
0<R<∞

2∑
i=1

R− di
4 ‖∇ iu‖

L
4
i (BR(x)×(0,R4))

≤ C‖u0‖
Ḃ

d
p
p,∞

.

4. Self-similar decay

In this section we collect a number of results which show an asymptotic self-similar decay of 
the deviations v for the harmonic and bi-harmonic map heat flow. We start with the v-equation 
(2) for the harmonic map heat flow. The transfer of the presented method to the biharmonic map 
heat flow can be found below. We close this section with some remarks about similar statements 
for the w-equation (5).

4.1. Harmonic map heat flow

It is well known that for spatially localized initial conditions the solutions of the linear diffu-
sion equation

∂tv = �v, v|t=0 = v0

decay asymptotically in a self similar way, i.e., for x ∈Rd the renormalized solution td/2v(x
√

t, t)
converges towards a multiple of a Gaussian, Vlime−|x|2/4 with Vlim ∈ R. The same is true for the 
deviation v of a trivial spatially constant equilibrium u∗ for the harmonic map heat flow (1). As 
we have seen in the introduction, the deviation v satisfies a semilinear diffusion equation of the 
form

∂tv − �v = A(u∗ + v)(∇v,∇v), (12)
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where we recall that A(u∗ + v)(·, ·) is a smooth bounded bilinear mapping acting on the d-
dimensional tangent space. Our first result reads as follows

Theorem 4.1. There exist δ, C > 0, such that for all solutions v of (12) with ‖v|t=0‖Hm
r

≤ δ

where m > d/2 + 1 and r > d/2 + 1 we have a Vlim ∈Rd such that

‖td/2 v(·√t, t) − Vlime−|·|2/4‖Hm
r

≤ C(1+t)−d/2

for all t ≥ 0, where

‖v‖Hm
r

= ‖vσ r‖Hm, with σ(x) = (1 + |x|2)1/2.

Proof. We use the discrete renormalization approach which was introduced for such problems 
at the beginning of the 1990s, cf. [2,3]. Although the proof is documented in the literature for 
similar problems, we recall its main steps since to our knowledge such results have not been 
formulated for geometric flow problems so far.

Instead of solving (12) directly we consider an equivalent sequence of problems which con-
verges formally towards the linear diffusion equation. For this we let

vn(ξ, τ ) = Lndv(Lnξ,L2nτ ), (13)

with L > 1 fixed and n ∈N . Then vn satisfies

(∂τ vn − �ξvn) = Ln(d+2)(∂t v − �xv)

= Ln(d+2)A(u∗ + v)(∇xv,∇xv)

= Ln(d+2)A(u∗ + L−ndvn)(L
−n(d+1)∇ξ vn,L

−n(d+1)∇ξ vn)

= L−ndA(u∗ + L−ndvn)(∇ξ vn,∇ξ vn)

for τ ∈ [L−2, 1], with initial condition

vn(ξ,L−2) = Ldvn−1(Lξ,1). (14)

The influence of the nonlinear terms vanishes with a geometric rate for n → ∞. In the limit n →
∞ we obtain a linear diffusion equation. With a simple fixed point argument the convergence of 
vn|τ=1 towards the limit of the renormalized linear diffusion problem, namely multiples of the 
Gaussian ψ(ξ) = (2π)−d/2e−|ξ |2/4, can be established.

Notation. In the rest of the proof we use the symbol C for constants which can be chosen 
independent of L and n.

We need the projection

�vn =
∫

vn(ξ)dξ,

respectively �̂v̂n = v̂n|k=0 in Fourier space. The bound
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|�vn| ≤ C |̂vn|k=0| ≤ C‖̂vn‖C0
b
≤ C‖̂vn‖Hr

m
≤ C‖vn‖Hm

r

holds due to Sobolev’s embedding theorem Hr
m ⊂ C0

b for r > d/2. We set

Vn+1 = �vn|τ=1

and introduce the deviation of vn(ξ, 1) from Vn+1ψ(ξ) by

ρn+1(ξ) = vn(ξ,1) − Vn+1ψ(ξ).

By construction we have 
∫

ρn(ξ)dξ = 0, resp. ρ̂n|k=0 = 0. For proving the convergence of 
(Vn)n∈N towards a Vlim ∈ R and the decay of (ρn)n∈N towards zero we establish a number 
of inequalities.

Lemma 4.2. We have

|Vn+1 − Vn| ≤ CL−ndR2
n,

‖ρn+1‖Hm
r

≤ (C/L)‖ρn‖Hm
r

+ CL−ndR2
n + C|Vn+1 − Vn|

where

Rn = sup
τ∈[1/L2,1]

‖vn(τ )‖Hm
r

.

Proof. We consider the variation of constants formula

vn(ξ, τ ) = e(τ−1/L2)�ξ Ldvn−1(Lξ,1) + gn(τ) (15)

for τ ∈ [1/L2, 1], where

gn(τ) = L−nd

τ∫
1/L2

e(τ−s)�ξ A(u∗ + L−ndvn)(∇ξ vn,∇ξ vn)(s)ds.

Applying the projection � in case τ = 1 yields

Vn+1 = Vn + �gn(1), (16)

where we used∫
e(τ−1/L2)�ξ f (ξ)dξ = e−(τ−1/L2)k2 |k=0f̂ (0) = f̂ (0) =

∫
f (ξ)dξ

and ∫
Ldvn−1(Lξ,1)dξ =

∫
vn−1(ξ,1)dξ = Vn.
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Rearranging the terms in the variation of constant formula additionally yields

ρn+1(ξ) = e(1−1/L2)�ξ Ldρn(Lξ) (17)

+gn(1) + e(1−1/L2)�ξ LdVnψ(Lξ) − Vn+1ψ(ξ).

We estimate the terms on the right hand side of (16) and (17).
i) Using

e−(1−1/L2)|k|2e−|k/L|2 = e−|k|2

yields

‖e(1−1/L2)�ξ LdVnψ(L·) − Vn+1ψ(·)‖Hm
r

=‖(Vn − Vn+1)ψ(·)‖Hm
r

≤C|Vn+1 − Vn|.

ii) Since ρ has mean value zero and since ρ̂ ∈ Hr
m ⊂ C1

b for r > d/2 + 1 we have

‖e(1−1/L2)�ξ Ldρn(L·)‖Hm
r

≤ C‖e−(1−1/L2)|k|2 ρ̂n(·/L)‖Hr
m

≤ (C/L)‖ρ̂n‖Hr
m

≤ (C/L)‖ρn‖Hm
r

.

iii) For the integral term we obtain

‖gn(τ)‖Hm
r

≤ L−nd

τ∫
1/L2

‖e(τ−s)�‖
Hm−1

2 →Hm
r

×‖A(u∗ + L−ndvn)(∇ξ vn,∇ξ vn)(s)‖Hm−1
2

ds

≤ CL−ndR2
n

τ∫
1/L2

(τ − s)−1/2ds ≤ CL−ndR2
n. �

Using the first inequality of Lemma 4.2 to eliminate |Vn+1 − Vn| in the second inequality of 
Lemma 4.2 gives

Corollary 4.3.

|Vn+1 − Vn| ≤ CL−ndR2
n,

‖ρn+1‖Hm
r

≤ (C/L)‖ρn‖Hm
r

+ CL−ndR2
n.

For obtaining a closed system of inequalities in Vn and ρn, we have to estimate Rn in terms 
of Vn and ρn.
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Lemma 4.4. There exists C1 > 0 and C2 > 0, such that for all δ > 0 and L > 1 with L5/2δ < C1
the following holds. For vn−1|τ=1 ∈ Hm

r with

‖vn−1|τ=1‖Hm
r

< δ (18)

we have

Rn ≤ C2L
5/2(|Vn| + rn)

where rn = ‖ρn‖Hm
r

.

Proof. We consider the variation of constant formula (15), use the estimate iii) from Lemma 4.2, 
replace ii) from Lemma 4.2 by

‖e(τ−1/L2)�ξ Ldvn−1(L·)‖Hm
r

≤ C‖Ldvn−1(L·)‖Hm
r

≤ CL5/2‖vn−1‖Hm
r

,

to obtain

Rn ≤ CL5/2‖vn−1‖Hm
r

+ CL−ndR2
n.

Since there exist two intersection points R < R of the line Rn �→ Rn and the curve Rn �→
CL5/2‖vn−1‖Hm

r
+ CL−ndR2

n for L5/2δ > 0 sufficiently small, we have

Rn ≤ R ≤ 2CL5/2‖vn−1‖Hm
r

≤ 4CL5/2(|Vn| + rn).

Obviously there is local existence and uniqueness of solutions in the space Hm
r . Since the above 

estimate gives an a priori bound in Hm
r , the solution can be extended to the whole interval 

[1/L2, 1]. �
Corollary 4.3 and Lemma 4.4 yield

|Vn+1 − Vn| ≤ CL−nd(L5/2)2(|Vn| + rn)
2,

rn ≤ (C/L)rn + CL−nd(L5/2)2(|Vn| + rn)
2,

under the condition that the assumptions for the applicability of Lemma 4.4 are satisfied, i.e., as 
long as

C(|Vn| + rn) ≤ δ and L5/2δ ≤ C1. (19)

Let

N0 = inf{n ∈ N : (19) does not hold}.

We choose L0 > 1 so large that (C/L0) ≤ 1/10 and then n0 > 0 so large that CL
−n0d
0 (L

5/2
0 )2 ≤

1. Then, for all n > n0 and L > L0 we have
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|Vn+1 − Vn| ≤ L−(n−n0)d (|Vn| + rn)
2,

rn+1 ≤ rn/10 + L−(n−n0)d (|Vn| + rn)
2.

Now we choose an L > L0 and a δ > 0 so small, that

L5/2δ ≤ C1.

Since the quantities |Vn| and rn grow only for n0 steps we can choose the initial conditions so 
small that

max
n=1,...,n0

C(|Vn| + rn) ≤ δ/4.

Then (Vn)n∈N converges with a geometric rate towards a Vlim ∈ Rd and we have limn→∞ rn = 0. 
The estimates further guarantee that

sup
n≥n0

rn ≤ δ/4 und sup
n≥n0

|Vn| ≤ δ/2.

Therefore, N0 = ∞. Since convergence holds for all L ∈ [L0, L2
0], Theorem 4.1 follows. �

With a slight modification of this proof similar results can be established for the w-equation 
of the harmonic map heat flow (see (5)) and for the biharmonic map heat flow (see (10)). In the 
following we sketch the ideas for the equation (5) which we recall to be

∂tw − �w = ∇(A(u∗ + v)(w,w)) (20)

= 2A(u∗ + v)(w,∇w) + A′(u∗ + v)(w,w,w),

with A′(u∗ + v)(·, ·, ·) a smooth and bounded trilinear mapping acting on the tangent space and 
with w = ∇v. For the scaling

wn(ξ, τ ) = Lndw(Lnξ,L2nτ ) (21)

with L > 1 fixed and n ∈ N the previous analysis applies almost line by line. By this choice we 
have

vn(ξ, τ ) = Ln(d−1)v(Lnξ,L2nτ ),

and so wn satisfies

(∂τwn − �ξwn) = Ln(d+2)(∂tw − �xw)

= 2Ln(d+2)A(u∗ + v)(w,∇xw) + Ln(d+2)A′(u∗ + v)(w,w,w)

= 2Ln(d+2)A(u∗ + L−n(d−1)vn)(L
−ndwn,L

−n(d+1)∇ξwn)

+Ln(d+2)A′(u∗ + L−n(d−1)vn)(L
−ndwn,L

−ndwn,L
−ndwn)

= 2L−n(d−1)A(u∗ + L−n(d−1)vn)(wn,∇ξwn)
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+L−2n(d−1)A′(u∗ + L−n(d−1)vn)(wn,wn,wn)

for τ ∈ [L−2, 1], with

wn(ξ,L−2) = Ldwn−1(Lξ,1). (22)

Hence, the nonlinear terms are asymptotically irrelevant if d > 1 and so the rest of the previous 
proof allows us to establish the result

Theorem 4.5. There exist δ, C > 0, such that for all solutions w of (20) with ‖w|t=0‖Hm
r

≤ δ

where m > d/2 + 1 and r > d/2 + 1, we have a Wlim ∈ Rd×d such that

‖td/2 w(·√t, t) − Wlime−|·|2/4‖Hm
r

≤ C(1+t)−d/2 for all t ≥ 0.

However, since w = ∇v the choice w ∈ Hs
r excludes a number of interesting solutions. A typ-

ical example of an initial condition for v : R2 → R2 considered in Theorem 4.5 which can not 
have been handled by Theorem 4.1 or Theorem 4.5 is

v1(x1, x2) = v0erf(x1)e
−x2

2 .

We find

(w1j )j=1,2(x1, x2) = ∇v(x1, x2) = (v0e
−x2

1/4e−x2
2 ,−2x2v0erf(x1)e

−x2
2 )

which is not an element of Hs
r . We remark without any proof that initial conditions of the form 

v = c1erf(x1) + ṽ with c1 ∈ R and ̃v ∈ Hs
r can be included easily into the formulation and proof 

of Theorem 4.1.

4.2. Biharmonic map heat flow

Next we come to the biharmonic map heat flow in case u :Rd → Sm−1 ⊂ Rm. Similar to the 
linear diffusion equation we have for the linearized problem

∂tv = −�2v, v|t=0 = v0

that for spatially localized initial conditions the solutions decay asymptotically in a self similar 
way, i.e., for x ∈ Rd the renormalized solution td/4v(xt

1
4 , t) converges towards a multiple of a 

universal limit function, Vlimϕ(x) with Vlim ∈ R and ϕ = F−1ϕ̂ where ϕ̂(k) = e−|k|4 . The same 
is true for the deviation v of a trivial spatially constant equilibrium u∗ for the bi-harmonic map 
heat flow (1). Note that the deviation v satisfies a semilinear parabolic equation of the form

∂tv = −�2v − (�(∇v,∇v) + ∇ · (�v,∇v) + (∇�v,∇v))e1 (23)

−(�(∇v,∇v) + ∇ · (�v,∇v) + (∇�v,∇v))v.

Then we have:
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Theorem 4.6. There exist δ, C > 0, such that for all solutions v of (23) with ‖v|t=0‖Hm
r

≤ δ

where m > d/2 + 3 and r > d/2 + 1 we have a Vlim ∈Rd such that

‖td/4 v(·t 1
4 , t) − Vlimϕ(·)‖Hm

r
≤ C(1+t)−d/4

for all t ≥ 0.

Proof. As above instead of solving (12) directly we consider an equivalent sequence of problems 
which converges formally towards the linearized equation. For this we let

vn(ξ, τ ) = Lndv(Lnξ,L4nτ ), (24)

with L > 1 fixed and n ∈N . Then vn satisfies

(∂τ vn − �2
ξ vn) = Ln(d+8)(∂t v − �2

xv)

= Ln(d+4)(−(�x(∇xv,∇xv) + ∇x · (�xv,∇xv) + (∇x�xv,∇xv))e1

−(�x(∇xv,∇xv) + ∇x · (�xv,∇xv) + (∇x�xv,∇xv))v)

= Ln(d+4)(−(L−2n�ξ (L
−n(d+1)∇ξ v,L−n(d+1)∇ξ v)

+L−n∇ξ · (L−n(d+2)�ξv,L−n(d+1)∇ξ v)

+(L−n(d+3)∇ξ�ξv,L−n(d+1)∇ξ v))e1

−(L−2n�ξ (L
−n(d+1)∇ξ v,L−n(d+1)∇ξ v)

+L−n∇ξ · (L−n(d+2)�ξv,L−n(d+1)∇ξ v)

+(L−n(d+3)∇ξ�ξv,L−n(d+1)∇ξ v))L−ndv)

= L−nd(−(�ξ (∇ξ v,∇ξ v) + ∇ξ · (�ξv,∇ξ v) + (∇ξ�ξv,∇ξ v)))e1

+L−2nd(−(�ξ (∇ξ v,∇ξ v) + ∇ξ · (�ξv,∇ξ v) + (∇ξ�ξv,∇ξ v))v)

for τ ∈ [L−4, 1], with initial condition

vn(ξ,L−4) = Ldvn−1(Lξ,1). (25)

As for the harmonic map heat flow the influence of the nonlinear terms vanishes with a geometric 
rate for n → ∞. In the limit n → ∞ we obtain the linearized problem. The rest of the proof 
follows the associated parts of the proof of Theorem 4.1 almost line for line. �
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