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Kurzfassung

In dieser Dissertation werden Methoden der künstlichen Intelligenz (KI), wie z. B. Deep
Learning (DL), für zwei Anwendungen in der Kernspinresonanzspektroskopie (NMR) und
der Magnetresonanztomographie (MRT) untersucht. Konkret wurde ein KI-gesteuerter
Ansatz zur Verbesserung des mühsamen und zeitaufwändigen Shimming-Prozesses in der
NMR-Spektroskopie initiiert, und die Bildqualität einer neuen MRT-Technik, basierend auf
dem RASER (Radio-frequency Amplification by Stimulated emission of Radiation), wurde
durch DL-basierte Artefaktentfernung verbessert.
Ein hochgradig homogenes Magnetfeld, bis hin zu Teilen pro Milliarde (ppb), ist ent-

scheidend für genaue NMR/MRT-Ergebnisse. Dies kann durch die Verwendung von
"Shim-Spulen" erreicht werden, um Magnetfeldgradienten auszugleichen und das Feld
so einheitlich wie möglich zu gestalten, was jedoch ein zeitaufwändiger und mühsamer
Prozess ist. Daher ist ein angemessenes und schnelles Shimming von entscheidender
Bedeutung, das durch die Nicht-Bijektivität zwischen Feldverzerrungen im Volumen der
Probe und eindimensionalen NMR-Signalen erschwert wird. In vier Studien, die den
Hauptbeitrag dieser Arbeit darstellen, wurde ein KI-gesteuertes Shimming entwickelt, um
das Shimming durch die Einbeziehung von Deep Learning (DL) zu beschleunigen, wobei
die gesamte Pipeline mit Datenerfassung, Vorverarbeitung, Architekturdesign, Training
und Einsatz abgedeckt wurde.
In der ersten Studie wurde gezeigt, wie ein Ensemble von neuronalen Faltungsnetzen

(CNN) schnell drei lineare Shim-Ströme aus einer Menge von vier gemessenen Spektren
vorhersagen konnte, wodurch die spektrale Qualität bei verschiedenen Substanzen er-
heblich verbessert wurde. Dieser Ansatz vereinfachte und beschleunigte das Shimming,
entweder als eigenständige Methode oder in Verbindung mit herkömmlichen Ansätzen.
In der zweiten Studie wurde das KI-gesteuerte Shimming weiter verbessert. Diese Studie
nutzte eine zeitliche Historie durch rekurrente Verbindungen, und kombinierte Spektren
und vergangene Shim-Aktionen für ein schnelles, quasi-iteratives Shimming auf vier
Shims gleichzeitig. Der Ansatz führte auch eine effiziente Datenerfassung durch zufällige
Datensatzerfassung ein, was eine Skalierbarkeit und eine erhebliche Verbesserung sowohl
der Geschwindigkeit als auch der Leistung der Shimming-Algorithmen ermöglichte. Im
Durchschnitt reduzierte diese Methode die Linienbreiten von 4 auf 0.72 Hz, was ihre
Effizienz und Effektivität bei der Vermeidung lokaler Minima herkömmlicher Methoden
unter Beweis stellt. Eine weitere Studie befasste sich mit den Herausforderungen der
parallelen Detektion für einen hohen Durchsatz in der NMR-Spektroskopie, was eine
erhebliche Chance für die Erweiterung der Dektoren innerhalb der Magnetbohrung bietet.
Bei diesem Ansatz wurde ein maßgearbeiteter Messkopf entwickelt, welcher parallele
Spektroskopie ermöglicht, und ein separates Shim-System über jedem Detektor zentriert.
Deep Learning wurde eingesetzt, um deren sich überschneidenden, nicht orthogonalen
Shim-Felder zu verarbeiten, was eine schnelle Kalibrierung der parallelen Detektoren
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ermöglichte. Schließlich wurde Deep Reinforcement Learning (DRL), ein Teilbereich der
KI für strategische Entscheidungsfindung in Kombination mit DL, untersucht, um das
Shimming zu verbessern, da es die Notwendigkeit einer Datensatzerfassung überflüssig
macht und DRL direkt für ein Kriterium optimieren kann. Die ersten Experimente in
Simulationen und auf realer Hardware haben gezeigt, dass DRL für Shimming funktionieren
kann, aber weitere Herausforderungen mit sich bringt. Zusammenfassend lässt sich
sagen, dass die künstliche Intelligenz ein leistungsfähiges Werkzeug zur Überwindung der
traditionellen Herausforderungen beim Erreichen homogener Magnetfelder darstellt.

Ergänzend zu diesen Fortschritten in der NMR, wurde eine neue MRT-Technik, nämlich
RASER, in Angriff genommen. RASER-MRT-Bilderwerden (derzeit) entlang von Projektion-
en erfasst, aber Artefakte entstehen durch nichtlineare Wechselwirkungen zwischen den
Bildprojektionen und verhindern qualitative Aussagen in medizinischen Anwendungen.
Diese Artefakte wurden mit Hilfe eines DL-Ansatzes entfernt, der verzerrte Projektionen
mit einem CNN rekonstruiert und die zusammengesetzten 2D-RASER-MRT-Bilder mit
der U-Net-Architektur weiter entrauscht. Die Netzwerke wurden erfolgreich auf rein
synthetischen und zufälligen Bilddaten trainiert und getestet, die einer RASER-Simulation
unterzogen wurden. Die Modelle zeigten auch eine Generalisierung auf reale Messungen.

Zusammenfassend lässt sich sagen, dass die Integration vonKI undDL inNMR-Shimming
und RASER-MRT die verbesserten Möglichkeiten dieser Technologien demonstriert und
den Weg für zukünftige Innovationen im Bereich der magnetischen Resonanz ebnet.
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Abstract

This thesis explores artificial intelligence (AI) methods, such as deep learning (DL), for two
applications in nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance
imaging (MRI). Specifically, an AI-driven approach for enhancing the tedious and time-
consuming shimming process in NMR spectroscopy was initiated. Additionally, the
image quality of a new MRI technique, namely RASER (Radio-frequency Amplification by
Stimulated emission of Radiation), was improved through DL-based artefact removal.

A highly homogeneous magnetic field, up to parts-per-billion (ppb), is crucial to achieve
accurate NMR/MRI results. This can be achieved by using "shim coils" to compensate
for magnetic field gradients and make the field as uniform as possible, which is a time-
consuming and tedious process. Thus, proper and fast shimming is critical, which is
hampered by the non-bijectivity between field distortions in the sample volume and
one-dimensional NMR signals. As the primary contribution of this thesis, four studies
have been developed to accelerate shimming by incorporating deep learning (DL). These
AI-driven shimming studies cover the full DL pipeline from data acquisition, preprocessing,
architecture design, training, and deployment.

The first study demonstrated how an ensemble of convolutional neural network (CNN)
could rapidly predict three linear shim currents from a batch of four measured spectra,
significantly improving spectral quality across various substances. This approach simplified
and accelerated shimming, either as a standalone method or in conjunction with traditional
methods. The second study further enhanced AI-driven shimming. It employed a temporal
history through recurrent connections, combining spectra and past shim actions for fast,
quasi-iterative shimming on four shims simultaneously. The approach also introduced
efficient data collection through randomized dataset acquisition, allowing scalability and
significant enhancements in both the speed and performance of shimming algorithms. On
average, this method reduced linewidths from 4 to 0.72 Hz, demonstrating its efficiency
and effectiveness in avoiding the local minima of traditional methods. A further study
addressed the challenges in parallel detection for high-throughput NMR, presenting a
substantial opportunity in upscaling detection sites within the magnet bore. This approach
introduced a custom probehead design allowing for parallel spectroscopy, and centred a
separate shim system over each detector. Deep learning was employed to handle their
overlapping, non-orthogonal shimming fields, which enabled rapid calibration of parallel
detectors. Finally, deep reinforcement learning (DRL), a subfield in AI for strategic decision-
making combined with DL, was studied to improve shimming. Using DRL can eliminate
the need for the acquisition of a dataset, and can optimize for a criterion directly. The first
experiments in simulation and on real hardware revealed that DRL can work for shimming,
but inherit further challenges. In summary, AI introduces a powerful tool to overcome
traditional challenges in achieving homogeneous magnetic fields.
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Abstract

Complementing these advancements in NMR, a novel MRI technique, namely RASER,
was tackled. RASER MRI images are (currently) acquired along projections, but artefacts
arise from non-linear interactions among the image projections and prevent qualitative
statements in medical applications. These artefacts were removed by leveraging a DL
approach dedicated to reconstructing distorted projections with a CNN, and further
denoising the assembled 2D RASER-MRI images with the U-Net architecture. The networks
were successfully trained and tested on pure synthetic and random image data that
underwent a RASER simulation. The models also demonstrated generalization to real
measurements.

In conclusion, integrating AI and DL into NMR shimming and RASER MRI demonstrates
these technologies’ enhanced capabilities and paves the way for future innovations in the
field of magnetic resonance.
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1. Introduction

1.1. Motivation

Nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI)
are crucial techniques for non-destructive and non-invasive study of in vitro and in vivo
samples.
NMR can effectively provide information about a sample’s chemical composition or

concentration, making it an indispensable method in chemistry, biology and medicine.
Almost every chemistry lab or institute worldwide uses low- or high-field NMR magnets
to study food quality or drug discovery, e.g. for COVID-19 vaccinations. However, NMR
magnets are generally expensive and have complex hardware. Moreover, a magnetic field
with extreme homogeneities up to parts per billion (ppb) is required for goodmeasurements.
The resonance frequency of the sample’s spins is directly proportional to the magnetic
field over the sample, so even the slightest changes in the magnetic field homogeneity
result in various distortions of the NMR spectrum or the MRI image. The most common
solution to this problem is to use additional "shim coils", which make the magnetic field
homogeneous over the sample to the highest possible degree. Currents passing through
these shim coils superimpose correction fields and help to homogenize the magnetic field
by compensating its gradients. One of the challenges is correct and fast shimming of the
magnet, i.e., finding the best set of shim currents. The algorithms developed to automate
(especially) the signal-based procedure are “non-intelligent”, slow and may get stuck in
local optima. Local optima in the optimization landscape arise due to inter-dependencies
between shim field patterns, and through the lack of bijectivity in mapping a 3D magnetic
field profile to a 1D NMR signal. This can potentially render the whole process painstaking
and time-consuming, i.e. shimming is still a problem in NMR.

Similarly, almost every clinic has an MRI magnet for diagnosing and identifying diseases
in the human body. Immediate results are crucial both for early disease detection and
patient convenience. One way to boost MRI measurements is through hyperpolarization,
and especially a new MRI technique called RASER (Radio-frequency Amplification by
Stimulated emission of Radiation) can be applied as a molecular contrast agent. However,
RASER images contain artefacts. Thus, artefacts in RASER images (so far) prevent their
use for medical purposes.

The challengesmentioned above can be addressed usingwell-known scientific paradigms,
namely empirical, theoretical, and computational approaches. A fourth paradigm has
emerged in recent years: data-intensive scientific discovery (Hey et al., 2009). It is driven
by the availability of large datasets and the growing computing power needed to process
them. This paradigm includes artificial intelligence approaches that are increasingly being
applied in various domains, such as ChatGPT, utilizing state-of-the-art algorithms.

1



1. Introduction

This thesis aims to tackle two large problems in NMR and MRI with the help of artificial
intelligence methods, namely the shimming problem in NMR, and artefacts of RASER MRI
images. Particularly, there is great potential for accelerating and improving the shimming
procedure with the help of AI algorithms. For this purpose, different machine learning
methods were investigated, linked and applied to the shimming problem, focusing on
simpler ML methods according to Occam’s razor theorem. By interpreting NMR spectra
as 1D images, state-of-the-art deep learning (DL) approaches for computer vision can be
adopted. Furthermore, deep learning has shown great success in artefact removal and
denoising in computer vision tasks, and should be able to handle the non-linear behaviour
of RASER signals.
These challenges have not been studied before, and thus, it was necessary to develop

the whole DL pipeline from scratch.
In summary, this thesis has the following objectives:

1. Development of an AI-driven shimming approach. Data-wise, this includes
evolving a suitable data sampling strategy and performing acquisition and preprocess-
ing. On the AI side, a proper model needs to be designed, i.e. conceiving DL
architectures depending on the inputs’ shape, which needs to be trained on the
collected dataset. Finally, tests on real hardware need to prove the advantages of
AI for shimming compared to traditional methods. The process should be repeated
to eliminate the limitations of each preceding approach, while scaling to broader
applicability.

2. Artifact removal for RASERMRI images. A simulation of the RASER effect must
be created and used to generate a dataset of images with RASER-specific distortions
and artefacts. Proper deep learning architectures should be carefully selected and
tested to assess their ability to improve the resolution of 2D RASER images.

1.2. Thesis structure

The thesis is structured in 10 chapters, and consists of twomain parts. After the introduction
in chapter one, chapter two describes some fundamentals of NMR and AI. Part I of
this thesis covers chapters 3 to 9 and focuses on AI-driven shimming, while describing
general considerations in chapter 3. Chapters 4, 5, 6, and 7 describe several use cases and
improvements. Chapter 8 summarizes several ablation studies, and chapter 9 discusses
AI-driven shimming in general. Part II of this thesis includes chapter 10 and introduces
deep learning for predicting RASER MRI profiles. Finally, the thesis concludes in chapter
11 with a brief summary and an outlook for future work.

1.3. Main contributions

The research conducted within this PhD project has led to three publications as leading
first author, one with shared first authorship, and one with co-authorship.
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1.3. Main contributions

• Deep regression with ensembles enables fast, first-order shimming in low-
field NMR
Published in Journal of Magnetic Resonance, 2022 (Becker et al., 2022a).
Authorship: Lead author.
Own contributions: This study showcases the first proof-of-concept study of
accelerating the shimming process in nuclear magnetic resonance (NMR) through
deep learning (DL). The paper demonstrates that DL can efficiently predict shim
currents of three linear shims by correlating measured spectral shapes with shim
current specifications, based on just four input spectra. It introduces a database for
developing shimming algorithms, which helps understand the impact of shim offsets
on 1H NMR signals.

• Acquisitions with random shim values enhance AI-driven NMR shimming
Published in Journal of Magnetic Resonance, 2022 (Becker et al., 2022b).
Authorship: Lead author.
Own contributions: This paper enhances AI-driven NMR shimming by using
acquisitions with random shim values. The approach significantly improves the
speed and performance of shimming algorithms, reducing linewidths in a low-field
benchtop magnet from around 4 Hz to below 1 Hz in less than 10 NMR acquisitions in
87 out of 100 random distortions. By combining AI-driven with traditional shimming
approaches, AI-assisted shimming helps in 96% of the cases to avoid getting stuck in
local minima in shim space.

• Artificial intelligence-driven shimming for parallel high field nuclear mag-
netic resonance
Published in Scientific Reports, 2023 (Becker et al., 2023).
Authorship: The first authorship was shared with Yen-Tse Cheng.
Own contributions: This research addresses the challenge of achieving parallel
NMR spectroscopy with custom hardware, and shimming such a setup. It employs
and modifies AI-driven shimming, enabling rapid calibration of parallel detectors
with local shim coils in high-throughput screening technologies like drug devel-
opment. The method outperforms the theoretical requirements of conventional
shimming methods by predicting close-to-optimal shim values for each channel
with a few random acquisitions.

• Deep learning corrects artefacts in RASER MRI profiles
In preparation.
Authorship: Lead author.
Own contributions: This study focuses on AI-driven correction of artefacts in
RASER MRI images, which arise due to non-linear interactions among image pro-
jections. A convolutional neural network is used to correct 1D image slices, and a
U-Net model denoises the corresponding reconstructed image. After AI correction,
previously distorted and unrecognizable RASER images can be interpreted and
demonstrated both in simulation and on real-world measurements.
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1. Introduction

• Dynamic dielectrophoretic cell manipulation is enabled by an innovative
electronics platform
Published in the journal Biosensors and Bioelectronics: X, 2022 (Julius et al., 2023).
Authorship: Coauthor.
Own contributions: This study reports a portablemanipulation platform to position
and immobilize cells with an array of symmetrically arranged electrodes. A deep
learning model is developed to map the electrodes’ voltage phases to trap the
positions of the cells.
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2. Fundamentals and related work

Within this chapter, the fundamental concepts for the presented thesis are introduced.
Section 2.1 will introduce the principles of nuclear magnetism, followed by nuclear
magnetic resonance (NMR) and magnetic resonance imaging (MRI), and concludes with
the essential hardware components of such devices. Shimming for NMR spectroscopy,
and algorithms used for it, are introduced and described in section 2.2. In section 2.3, an
overview of artificial intelligence (AI) methodologies in the area of NMR and MRI will be
given, followed by the basics of deep learning (DL) and reinforcement learning (RL).
The topics in this chapter are mostly derived from the following excellent textbooks,

and specific sources are given where appropriate:

• Magnetic resonance

– Spin Dynamics by Malcom Levitt (Levitt, 2008).
– Understanding NMR Spectroscopy by James Keeler (Keeler James, 2006).
– Shimming for High-Resolution NMR Spectroscopy by Markus Weiger (Weiger

& Speck, 2011).

• Artificial intelligence

– Deep Learning by Ian Goodfellow et al. (Goodfellow et al., 2016).
– Reinforcement Learning: An Introduction by Richard Sutton and Andrew G.

Barto (Sutton & Barto, 2018).

2.1. Nuclear magnetic resonance

The nuclear magnetic resonance principle is the basis for highly sensitive, versatile, and
non-destructive techniques such as nuclear magnetic resonance spectroscopy andmagnetic
resonance imaging, widely used in various fields such as chemistry and medicine. It can
provide valuable insights into the structure and function of complex biological systems,
including proteins, enzymes, small molecules, or even human body parts in the case of
MRI.

2.1.1. Nuclear magnetism

All nucleons in matter have the following intrinsic properties: mass, charge, spin angular
momentum (®𝑆), and magnetic moment (®𝜇). While the mass affects physical properties,
and the electrical charge affects the chemical properties of the nucleus, the spin angular
momentum and magnetic moment are interconnected but less evident. Magnetism and
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2. Fundamentals and related work

spin barely affect chemical and physical properties, but measuring them provides insight
into the microscopic structure of samples.
Each sub-atomic particle (electron, proton, neutron) exhibits (net)1 spin 1/2, and based

on their combination, each isotope has a certain total spin number (𝐼 ). The spin angular
momentum vector ®𝑆 describes the total angular momentum of particles:

| ®𝑆 | = ℏ
√︁
𝐼 (𝐼 + 1), (2.1)

where ℏ is the Planck constant ℎ/2𝜋 .
As a consequence of spin, amagnetic moment is generated:

𝜇 = 𝛾 ®𝑆, (2.2)

where the gyromagnetic ratio 𝛾 is unique for each nucleus.
Because NMR spectroscopy predominantly measures samples with spin 1/2, the remain-

ing thesis will refer exclusively to spins as spin-1/2 particles, such as hydrogen 1H or carbon
13C (which only has a natural abundance of 1.1%), which have two possible spin states
following the formula2 2𝐼 + 1. In an ensemble of spins and the absence of a magnetic
field, the spin vectors are randomly distributed and cancel each other out, leaving no net
magnetization (Figure 2.1a).
When placed in a magnetic field, all spins tend to align parallel (𝛼) or anti-parallel (𝛽)

with the magnetic field to minimize their magnetic energy (Figure 2.1b,c). This effect
is called Zeeman splitting, and the total energy difference Δ𝐸 between the potential
energies of particles in each state (𝐸𝛼 , 𝐸𝛽 ) depends on the strength of the static magnetic
field 𝐵0:

Δ𝐸 = 𝐸𝛽 − 𝐸𝛼 =

(
−
(
− 1

2
)
𝛾ℏ𝐵0

)
−
(
−
(1
2
)
𝛾ℏ𝐵0

)
= 𝛾ℏ𝐵0 (2.3)
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Figure 2.1.: (a) Nuclear spins in the absence of a magnetic field. (b) The spins align with
the magnetic field and (c) split into two energy levels: the 𝛼 and 𝛽 state. At
thermal equilibrium, more spins occupy the lower energy state 𝛼 . (d) Spins
during RF excitation.

In equilibrium, the ratio of splitting, i.e. spins oriented up 𝑁high vs. oriented down
𝑁low, is roughly 10 ppm (parts per million) for a temperature of 𝑇 = 300 K, as given by the
Boltzmann distribution:
1Given by total spins of quarks and charges.
2Note that as a general rule of thumb, even-mass isotopes are NMR silent.
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2.1. Nuclear magnetic resonance

𝑁high

𝑁low
= 𝑒

−Δ𝐸
𝑘𝐵𝑇 = 𝑒

−ℏ𝛾𝐵0
𝑘𝐵𝑇 ≈ 1 − ℏ𝛾𝐵0

𝑘𝐵𝑇
, (2.4)

where 𝑘𝐵 = 1.380649× 10−23m2 kg s−2 K−1 is the Boltzmann constant. This splitting results
in a net magnetization 𝑀0 of the ensemble along the magnetic field axis (usually in the
𝑧-direction), also called longitudinal magnetization.

Hyperpolarization methods increase the polarization difference of nuclear spins,
enhancing the NMR signal intensity. It is achieved by transferring the polarization from
highly polarized states (e.g. para-hydrogen states) to the target molecules. The highly
polarized states can be produced using techniques such as spin exchange, optical pumping,
or parahydrogen-induced polarization (PHIP).
In analogy to Zeeman splitting of the magnetic moments, the spin vectors precess

around the static magnetic field’s axis. The frequency of precession, known as the Larmor
frequency, is defined as:

𝜔𝐿

(
=
Δ𝐸

ℏ

)
= 𝛾𝐵0 (2.5)

The Larmor frequency is directly proportional to the field strength 𝐵0 for each spin, and is
probably the most crucial property for NMR, as the locally experienced magnetic field is
distorted depending on the measured molecule’s chemical shielding properties.

2.1.2. The path to a signal: Larmor precession

𝐵0

𝛾 > 0

𝜔0 = −𝛾𝐵0

Figure 2.2.: Precession and Larmor
frequency.

To get a magnetic resonance signal, spins (and
their net magnetization 𝑀0) are distorted from
equilibrium by excitation with a radiofrequency
(RF) pulse (Figure 2.1d).

Applying an RF-pulse that matches the frequency
𝜔𝐿 of the observed nuclei, the net magnetization
𝑀0, still in equilibrium and thus full longitudinal
magnetization (𝑀0 = 𝑀𝑧), will get flipped by
angle 𝛼𝑅𝐹 towards the 𝑥𝑦-plane, and yield some
transversal magnetization 𝑀𝑥𝑦 . The flip angle is
dependant on both 𝐵1 and the pulse duration 𝜏 :

𝛼𝑅𝐹 = 𝛾𝐵1𝜏 , (2.6)

where 𝐵1 is the oscillating magnetic field with 𝜔𝐿 . For a 90° flip angle, 𝑀𝑧 reaches zero
and𝑀𝑥𝑦 will be maximum (𝑀𝑥𝑦 = 𝑀0).

Turning off the RF-pulse, the spin ensemble (and thus net magnetization𝑀0) will "tilt",
i.e., the planar components of𝑀0 start decreasing, while the longitudinal magnetization
recovers back to align with the main magnetic field 𝐵0 (Figure 2.3a). This effect is called

7



2. Fundamentals and related work

0

x
y

z

(a) Relaxation.

T1T2
Time (a.u.)

0.00

0.37

1.00

M
x
y
/M

0

e−t/T2

Re(Mxy)

Im(Mxy)

1− e−t/T1

0.00

0.63

1.00

M
z
/M

0

Free induction decay (FID)

(b) A decaying FID signal and its connection to 𝑇1 and 𝑇2 times.

Figure 2.3.: Visualization of relaxation and Bloch’s equations.

spin-lattice relaxation, measured as the time𝑀𝑧 takes to reach 63% of𝑀0, i.e. the spin-
lattice relaxation time 𝑇1. Meanwhile, slight variations in 𝐵0 due to molecular structure
cause the magnetic moments of each spin to accumulate slight frequency differences and
phase incoherences during spin precession. This dephasing, in turn, leads to a transverse
magnetization decay, characterized by the spin-spin relaxation time 𝑇2 that represents
the time𝑀𝑥𝑦 takes to decay below 37%𝑀0.

According to Faraday’s law, placing a coil close to the sample and perpendicular to 𝐵0,
the precessing nuclear transverse magnetization 𝑀𝑥𝑦 induces a voltage in the coil. The
measured voltage will be exponentially decaying according to the decay of𝑀𝑥𝑦 and will
follow a sinusoidal curve with 𝜔𝐿 . This signal is also known as the free-induction decay
(FID) signal (Figure 2.3b).

Bloch’s equations approximate the evolution of net magnetization during and after
the pulse:
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The FID signal ismathematically defined as complex-valued, where the real and imaginary
parts conveniently contain𝑀𝑥 and𝑀𝑦 , respectively. Fourier-transforming the FID signal
gives a complex-valued NMR spectrum of all frequencies in the sample. The line shapes
of the real and imaginary Lorentzian peaks are called absorption and dispersion lines,
respectively. Usually, phase correction is applied such that the imaginary or dispersion
part of frequency space can be discarded, and the spectrum is purely absorption (see
Figure 2.4). For both perfect hardware and a single isotope sample, the real part of the
FID’s FFT would yield a Lorentzian peak at 𝜔𝐿 with a linewidth measured as the "full
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2.1. Nuclear magnetic resonance

width at half maximum" (FWHM):

Δ𝑣 =
1
𝜋𝑇 ∗2

, (2.8)

where Δ𝑣 is measured in Hz and𝑇 ∗2 is𝑇2 including faster decay due to 𝐵0 inhomogeneities.
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Figure 2.4.: Influence of initial phase shifts on frequency domain line-shapes. With
no initial phase shift (top), the magnetization vector𝑀 (0) yields an absorption
line that does not require phase correction. Initial phase shifts (bottom) lead
to peaks that are out of phase and necessitate phase correction.

2.1.3. Nuclear magnetic resonance (NMR) spectroscopy

Several non-idealities contribute to the measured NMR signal, causing the frequencies
of the spectrum to differ from 𝜔𝐿 . These deviations can be separated into internal spin
interactions, which contain the useful NMR information (fingerprint) due to spin couplings
and local shieldings 𝜎𝑖 inside the measured molecule, and (unwanted) external influences.
Internal spin interactions provide a unique fingerprint of the measured molecule, and can
be seen as different frequencies and splittings in the NMR spectrum:

𝐵𝑖 = 𝐵0(1 − 𝜎𝑖) (2.9)

Intra-molecular magnetic field differences are caused by:

Chemical shift Chemical shifts arise through local electron density differences between
nuclei in amolecule, affected by factors such as electronegativity, bond lengths or neighbour-
ing atoms. The electron distribution around a nucleus shields it from the external magnetic
field, and thus affects its precession frequency. The chemical shift is measured in parts per
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Figure 2.5.: Multiplet patterns in 13C NMR spectra arising from J-coupling, illustrating a
doublet, triplet and quartet as interactions with one, two, or three 1H protons.

million (ppm) relative to the resonance frequency 𝜈reference of a reference compound (e.g.
Tetramethylsilane, TMS):

𝛿 =
𝜈sample − 𝜈reference

𝜈reference
(2.10)

The chemical shift strongly depends on the atom’s electronegativity, where typical values
for 1H are usually between 0-10 ppm. The chemical shift allows to identify the types of
atoms in a molecule.

Dipole-dipole couplings Indirect dipole-dipole couplings or J-couplings (or spin-spin
couplings) describe indirect interactions between two nuclear spins through local electrons.
J-couplings appear as a splitting of the resonance signal into multiple peaks (see Figure 2.5),
with the spacing between the peaks corresponding to the J-coupling constant, where typical
1H-1H couplings are between 1-10 Hz (𝐵0 independent). This effect contributes to the
distinctive NMR fingerprint of a molecule. (Direct) dipole-dipole coupling appears as
the direct influence between neighbouring spins that are not directly bonded to each
other. However, this coupling is effectively suppressed by the tumbling of molecules in an
isotropic liquid and is thus negligible for the scope of this thesis.

External deviations mostly originate in hardware imperfections and include:

Noise The overall signal in NMR only comes from the difference in polarization (see
Equation 2.4), thus, the signal intensity itself is already very low. However, additional
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2.1. Nuclear magnetic resonance

noise sources, such as the thermal noise of the coils or the sample, contribute to the finally
measured signal. Therefore, signal-to-noise ratio (SNR) is an important quality factor of
every NMR spectrometer.

B1 distortions The RF-pulse exciting the spins for an NMR measurement is designed
to be as uniform as possible. However, hardware imperfections induce non-uniform flip
angles at different positions.

B0 inhomogeneities Fluctuations of the static magnetic field 𝐵0 lead to every voxel of the
sample experiencing a different field 𝜔 = 𝜔𝐿 · 𝐵0(𝑥,𝑦, 𝑧) depending on its position in 3D
space. If 𝐵0 is inhomogeneous, individual voxel frequencies vary, which results in spectral
line broadening and distortions. See section 2.2 for a more detailed description.

Generally, external deviations are stronger than internal effects, exceeding typical chemical
shifts and j-coupling values. Therefore, shimming is required to enable the identification
of those values.

2.1.4. Magnetic resonance imaging (MRI)

Magnetic resonance imaging (MRI) uses the principles of nuclear magnetism to produce
monochromatic images of the internal structures of the human body without ionizing
radiation. MRI can reveal information about the anatomy, physiology, metabolism, and
pathology of various organs and tissues, as well as the brain’s blood flow and oxygen
consumption. MR imaging is fundamentally different from other imaging techniques that
usually use "scattering" to obtain images (Callaghan, 1993). In MRI, however, the data
comes from the chemical environments of each atom’s spin. Thus, this section introduces
the two main concepts to achieve MRI images based on magnetic resonance: the technique
of spatial encoding for volumetric data, and the contrast mechanism of the monochromous
images.

Spatial encoding

To encode three-dimensional MRI images, three distinguishable encodings must be applied.

Slice selection Linear gradient along (𝑥,𝑦, 𝑧)-directions allows for location-specific frequen-
cies:

𝜔𝑖 = 𝛾𝐵0 +𝐺𝑥𝑥 +𝐺𝑦𝑦 +𝐺𝑧𝑧 , (2.11)

where the proton frequency 𝜔𝑖 at position (𝑥,𝑦, 𝑧) varies with the gradient 𝐺 .
Applying a linear 𝑧-gradient along the human body, and using a bandwidth-limited RF

excitation pulse, only specific image slices along 𝑧 are excited and lead to the selection of
an imaging slice (Figure 2.6a). The stronger the gradient, the smaller the slice thickness.
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Figure 2.6.: Spatial encoding in MRI.

Frequency and phase encoding Frequency and phase modulations are used to encode the
position in an image slice. Frequency encoding is done by applying an additional gradient
along one image dimension (𝑥-axis in Figure 2.6b), and the other dimension is modulated
by different phases via a third phase-encoding gradient (PEG). PEG is applied step-wise
so that in each repetition of the sequence, a different amplitude of the PEG gradient is
used, and a single line of the k-space is acquired. This allows acquiring a two-dimensional
image with pixels encoded by frequency and phase for a selected slice.

MRI contrast

The contrast in (proton) MRI mainly comes from the different chemical shifts of hydrogen
bound to water or lipid molecules (Schild, 1990). The electronegative oxygen of water
pulls the protective electron clouds covering the hydrogen nuclei, causing deshielding and
a higher resonant frequency. Therefore, water has a larger spin-lattice relaxation 𝑇1 time
than fat.
The contrast of MR images can be adapted based on 𝑇1 or 𝑇2 weighting. 𝑇1-weighting

uses short echo and repetition times, leading tissues with shorter 𝑇1 relaxation times (like
fat) to appear brighter. 𝑇2-weighted images use longer TE and TR values, and tissues with
longer 𝑇2 relaxation times (like water) appear brighter here.

The path to an image: Acquisition sequences and k-space

A typical imaging sequence consists of an RF excitation and three different encoding
gradients to generate an MR image. The order of slice selection, phase encoding and
frequency encoding can vary, leading to two common MRI sequences: spin-echo (SE)
and gradient-echo (GRE) sequences. The SE sequence is generated by two successive RF
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2.1. Nuclear magnetic resonance

pulses, one 90° pulse to excite the spins, followed by a 180° pulse, which rephases the
spins and leads to an echo signal (see Figure 2.7). The duration between the excitation
pulse’s midpoint and the echo signal’s peak is called the echo time (TE). Contrarily, the
repetition time (TR) is the interval between successive excitation pulses used in different
phase encoding steps. GRE sequences, on the other hand, use an excitation pulse and a
bipolar (de- and rephasing) gradient instead of a 180° pulse to force an echo. GRE usually
can have much shorter TE and TR and, thus, can produce images faster.
Repeated imaging sequences are used to fill the k-space, which defines an object in

terms of spatial frequencies and is a complex matrix of size 𝑀 × 𝑁 , where each row is
the MR signal from one measurement. The transformation from k-space with (𝑘𝑥 , 𝑘𝑦) to
image space (𝑥,𝑦) is carried out through the inverse Fourier Transform:

Image(𝑥,𝑦) = F −1 [k-space(𝑘𝑥 , 𝑘𝑦)] =
∬

k-space(𝑘𝑥 , 𝑘𝑦)𝑒𝑖2𝜋 (𝑘𝑥𝑥+𝑘𝑦𝑦) 𝑑𝑘𝑥 𝑑𝑘𝑦 (2.12)

TE

Slice selection

Phase encoding

Frequency encoding

Signal

90° 180° 90°

Radio-frequency

TR

Figure 2.7.: Pulse diagram for a standard spin-echo imaging sequence.

2.1.5. New MRI method: RASER MRI

Recently, Radio-frequency Amplification by Stimulated emission of Radiation (RASER)
has emerged to improve NMR and MRI resolution (Suefke et al., 2017; Lehmkuhl et al.,
2022). It works by coupling a population inversion created through Signal Amplification
by Reversible Exchange (SABRE) to a high-quality-factor resonator. Hyperpolarization
is achieved by pumping parahydrogen, which exchanges its polarization with the target
molecules, leading to a large total population inversion (TPI) of the spins, i.e. a higher
Zeeman splitting. These hyperpolarized molecules then couple to the resonator, producing
a sustained RASER signal derived from the scalar couplings of nuclei within the molecule,
resulting in NMR spectra with sub-millihertz resolution. This means that RASER-MRI
signals spontaneously emerge due to spin interactionswithout the need for a radiofrequency
pulse (RF), which enhances the safety of the process. Since there is no RF pulse, the
surrounding molecules do not contribute any signal to the images, which results in images
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without any background signal. Importantly, RASERs only emerge if a large enough initial
total population inversion (TPI) (𝑑 (0) = 𝑁high − 𝑁low) is given, which should be above the
RASER threshold

𝑑th = 4 · 𝑉𝑠

𝜇0ℏ𝛾2𝑇 ∗2𝑄
, (2.13)

where 𝑉𝑠 is the sample volume, 𝜇0 is the vacuum permeability, and 𝑄 is the resonator’s
quality factor. The evolution of the measured signal is still governed by Bloch’s equation,
and extensively derived by Lehmkuhl et al. (2022).

One way to measure RASERMRI images is by means of projection reconstruction, which
is widely used for computed tomography (CT), where 1D projections of an object are
measured from different angles, and then Radon-transformed into an image. For RASER
MRI, each 1D projection represents the TPI spread over the image domain.

However, RASER-MRI images frequently exhibit significant image artefacts due to the
nonlinear behaviour among image slices.

2.1.6. Hardware

Typical NMR (and MRI) hardware’s main components are the magnet, the RF coil, and the
shim coils, depicted in Figure 2.8. For MRI, additional gradient coils are required.

NMR

Sample

Radiofrequency 

(RF) coil

Gradient coils

Shim coils

Magnet

Main components

Electronics

Shim driver Gradient 

amplifiers

�, �, �

Transmitter

Receiver

LNA Filter ADCx

Duplexer

PA
Pulse 

Generator

Frequency 

Synthesizer

Figure 2.8.:Magnetic resonance hardware, divided into the main components and
corresponding electronics.

Magnet

The magnet generates a strong and uniform magnetic field 𝐵0 that aligns the nuclear spins
of the sample, and increases Zeeman splitting depending on its strength. The magnets can
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2.1. Nuclear magnetic resonance

either be permanent or superconducting. Permanent magnets usually produce low field
(< 2 T), whereas superconducting magnets can achieve static magnetic fields up to 28 T,
but they require liquid nitrogen or helium for cooling.

The main difficulty of building such magnets is their required homogeneity of parts per
billion because the resolution of the acquired spectra strongly depends on a homogenized
magnetic field. Traditionally, the magnet was controlled by placing small, local magnetic
fields inside the bore to eliminate global field inhomogeneities. These local fields were
produced by permanent magnets mostly made from iron, in the shape of thin wedges,
so-called "shims"3. Nowadays, local magnetic fields can be generated by altering the
current in electrical coils, the "shim coils", and the term "shimming" was adopted for
modern technology from its iron ancestors.

Radiofrequency electronics

The radiofrequency (RF) electronics include a transmitter and receiver part (see Figure 2.8).
The RF transmitter serves as the part to excite the spins with a temporary magnetic field
𝐵1 perpendicular to 𝐵0 such that the spin ensemble leaves its equilibrium state, and the RF
receiver picks up the spins’ relaxation back to 𝐵0 to yield an FID.

The transmitter starts with an RF synthesizer, which produces an oscillating signal with
𝜔Ref, the spectrometer’s reference frequency. The pulse generator is a fast switching gate
to allow time slices of RF wave to pass through. Finally, the RF signal is amplified and sent
to the RF coil.
The duplexer switches between transmitting and receiving and ensures (diverts) that

high-power RF does not interfere with low-power read-out signals.
The receiver starts with a preamplifier of signal from the duplexer as picked up from

the RF coil. Then, the quadrature receiver converts a high-oscillating signal around the
Larmor frequency to a relative Larmor frequency Ω𝐿 = 𝜔𝐿 − 𝜔Ref. This process is called
frequency demodulation and filters out the high-frequency carrier wave, allowing the
following analogue-to-digital (ADC) converter to work in a lower regime.

The precession of the signal ensemble along the 𝑥-𝑦 plane is a 2D movement, and thus
leads to two RF output signals. This 𝑥-𝑦 position is then encoded into a complex-valued
signal.

Gradient coils

Dedicated gradient coils are not available in every NMR spectrometer; however, they are
crucial for MRI devices. Gradient coils produce high linear gradients 𝐺 along the 𝑥,𝑦 and
𝑧 axes to allow encoding of the signal’s location.

For example, applying a gradient 𝐺𝑧 during acquisition will lead to the resonance
frequency varying linearly with the coordinate 𝑧 and give a 1D projection image of the
sample:

𝐵(𝑧) = 𝐵0 +𝐺𝑧 · 𝑧 (2.14)
3The English noun "shim" originally describes a thin piece of material that is inserted between two objects
to level them.
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Shim coils

Shim coils are electrical coils that are used to generate small, localized magnetic fields to
adjust or "shim" inhomogeneities in the main magnetic field 𝐵0.

Shim coil electronics They are controlled with a (high-resolution) digital-to-analogue
(DAC) converter, followed by a stable and low-drift current source, which is required to
produce precise shim field patterns that are time-invariant over the whole measurement
time.

Shim coil design Usually, the coils are designed to produce/superimpose magnetic fields
with a spatial variation governed by spherical harmonic (SH) functions. SH can represent
3D field deviations over a spherical volume, which aligns well with the 3D spatial nature of
the magnetic field inhomogeneities encountered in MRI and NMR systems. Furthermore,
SH is a basis set with orthogonal functions that can describe the magnetic field 𝐵0 as an
expansion of SH (Golay, 1958):

Figure 2.9.: Visualization of spherical harmonics, up to second order.

𝐵0 =
∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝑎𝑙𝑚𝑌𝑙𝑚 (𝜓, 𝜙) , (2.15)

where 𝑎𝑙𝑚 are the coefficients of the expansion, 𝑌𝑙𝑚 (𝜓, 𝜙) are the spherical harmonic
functions of degree 𝑙 and order 𝑚, and 𝜓 (polar) and 𝜙 (azimuthal) being the angular
coordinates. In turn, the SH functions are defined as:

𝑌𝑙𝑚 (𝜓, 𝜙) =

√︄
(2𝑙 + 1) (𝑙 −𝑚)!

4𝜋 (𝑙 +𝑚)! · 𝑃𝑚
𝑙
(cos(𝜓 )) · 𝑒𝑖𝑚𝜙 , (2.16)

where 𝑃𝑚
𝑙
is the associated Legendre polynomial.

Assuming that 𝐵0 can be accurately described by SH functions, shim coils are designed
to produce spherical harmonic correction fields. The design of shim coils is intricately
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based on Biot-Savart’s Law:

𝐵(𝑟 ) = 𝜇0
4𝜋

∫
I × r̂
𝑟 2 𝑑l , (2.17)

which dictates that the magnetic field 𝐵(𝑟 ) with position vector r depends on the current I
and permeability 𝜇0. Through this principle, specific winding geometries of the shim coils
are determined. For instance, Figure 2.10 displays saddle coils designed for different SH
correction fields. Furthermore, Table 2.1 identifies the SH fields in Cartesian coordinates
and their corresponding shim names.

Figure 2.10.: Saddle coil designs to produce specific gradient fields along the (a) 𝑧-axis,
(b), 𝑥𝑧-axis, (c) (𝑥 or 𝑦)-axis, (d) (𝑥2-𝑦2)-axis.

Using shim coils is an essential step in preparing the main magnetic field for imaging
and spectroscopy, and it allows for a more homogeneous magnetic field and a higher signal-
to-noise ratio. However, the general assumption that the produced SH are orthogonal and
independent usually does not hold in practice. Furthermore, the manufacturing of the
shim coils introduces some shim impurities. Thus, the shimming process requires a lot of
time and experience from the person performing the NMR measurement, and it could be
tedious and painstaking (Chmurny & Hoult, 1990).

2.2. Shimming for NMR spectroscopy

Order Degree Common Name
0 0 𝑍 0

1 0 𝑍

1 1 𝑋

1 1 𝑌

2 0 𝑍 2

2 1 𝑋𝑍

2 1 𝑌𝑍

2 2 𝑋 2 − 𝑌 2

2 2 2𝑋𝑌
3 0 𝑍 3

Table 2.1.: Common shim coil functions.

Hardware non-idealities due tomanufactur-
ing tolerances in wiring or material of the
coil introduce inhomogeneities to the main
magnetic field 𝐵0. Any material placed in
a (passively) optimized magnet will further
distort the homogeneity, e.g. the coils, the
probe, or the sample itself. The field can be
homogenized by superimposing correction
fields as produced by a finite set of shim
coils, i.e. "shimmed".
To understand the effects of 𝐵0 inhomo-

geneities, the three-dimensional inside of
the bore (which holds the sample) can
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conceptually be broken down into small sub-volumes (voxels). With the number of
sub-volumes approaching infinite, each voxel in three-dimensional space contains a single
spin described by its Larmor frequency. The Larmor frequency directly depends on the
local magnetic field: 𝜔𝐿 = 𝛾𝐵0. For a perfectly homogeneous magnetic field 𝐵0 = const at
each point in space, each voxel has the same Larmor frequency, which results in a spectrum
containing a single Lorentzian line with natural width centred at 𝜔𝐿 . The amplitude of
this Lorentzian line is given by the sum of voxels contributing to the spectrum.
In an inhomogeneous magnetic field 𝐵0, the sub-volumes experience different local

fields, thus possessing frequencies shifted around a central Larmor frequency. The acquired
spectrum can be described as a convolution or superposition of the Lorentzian lines of all
voxels (see Figure 2.11a). This means inhomogeneities broaden the spectrum’s lineshapes,
decreasing their amplitude and consequently decreasing the signal-to-noise ratio (SNR).
For example, a practical drawback of inhomogeneities w.r.t. NMR spectroscopy can

be described as follows: At 14.1 T, the proton scalar coupling lies between 4 − 7 Hz.
With a field disturbance of only 10 ppb (resulting in a linewidth broadening of 5 Hz), this
coupling constant would be obfuscated and lost. In Figure 2.11b, it can be observed that
neighbouring resonances cannot be distinguished if the linewidth becomes too large.4

(a) Conceptual peak broadening under
an inhomogeneous field.

(b) Empirical peak broadening.
Nicotinamide (vitamin B3) in HDO in a
1.8T benchtop NMR magnet measured
in a homogenous 𝐵0 (shimmed) and
inhomogeneous 𝐵0 (unshimmed).

Figure 2.11.: Effects of 𝐵0 field inhomogeneity.

In a theoretical spherical volume, spatial mutually-orthogonal correction fields are
generated by adjusting the currents𝑤𝑖 in a set of shim coils, producing the field profiles
®𝑆𝑖 , 𝑖 ≤ 𝑛 ∈ N, to cancel the field inhomogeneities Δ𝐵0(®𝑟 ). In other words, a shimming
algorithm must find the scalar weights (𝑤1,𝑤2, ...,𝑤𝑛) for the 𝑛 shim currents that render
4The strict homogeneity requirements in the ppm range can be interpreted as a deviation of less than 1cm
in a 1km road.
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𝐵∗0 as uniform as possible:

Δ𝐵0(®𝑟 ) = 𝐵∗0 (®𝑟 ) − 𝐵0(®𝑟 ) ≈
𝑛∑︁
𝑖=1

𝑤𝑖 ®𝑆𝑖 (®𝑟 ). (2.18)

2.2.1. Quality criteria

To evaluate the convergence of shimming algorithms, a quantitative or qualitative criterion
is needed to judge the goodness of shimming. Criteria can mainly be differentiated based
on the signal source they are measured on, namely either a field map or the FID signal (or
spectrum via FFT of the FID).
Field map-based shimming is performed in a least-squared sense, making the need for

another criterion redundant. Nevertheless, the homogeneity can be described qualitatively.
One can distinguish between peak-to-peak homogeneity, measuring themaximumdeviation
within a field, and Volume-root-mean-square (VRMS) homogeneity, an "integral" specifi-
cation and industry-wide standard for the specification of an empty magnet.

Spectral quality can be judged using several metrics:

• Spectral peak width, e.g., full width at half maximum (FWHM).

• Spectral peak height.

• Decay of FID (relaxation time 𝑇 ∗2 ).

• Area Under Curve (AUC) of the FID.

• Shape and symmetry of spectral peaks.

• Envelope (Weiger et al., 2006) of spectral peaks.

• Shim quality quotient (Schlenke et al., 2013) by virtual peaks. (Suitable for multiple
peaks.)

• Second moment of the spectrum (Ernst, 1968).

Furthermore, the tolerance of shimming depends on the targeted experiments. For
example, some applications do not require very high field homogeneity, as measured by
the linewidth at different percentages of the peak height. An exemplary overview is given
in Table 2.2.

% of peak Important for
50% SNR (e.g. exchange & lifetime), Splittings
0.55% Integral, Shape
0.11% Water suppression, Selective excitation

Table 2.2.: Linewidth requirements for different applications.
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2.2.2. Signal-based shimming

Without access to the shim field profiles 𝑆𝑖 or the magnetic field 𝐵0 to solve Equation 2.18,
shimming must be performed using only a surrogate function 𝑓 (𝐵0(®𝑟 )) that maps the
3D space onto a 1D signal, i.e. signal-based shimming on either FIDs or spectra. This
imposes several challenges, including spectral line broadening effects and ambiguities
between shims and their influence on the signal. For example, the signal caused by an
inhomogeneity in the 𝑥-direction cannot be distinguished from an inhomogeneity in the
𝑦-direction, as the spectrum is just a histogram of all frequencies encountered in the
sample volume.
The non-bijective mapping from 3D to 1D space without direct correlation to the

shim values prevents using robust methods with gradient calculations w.r.t. an objective
function.
Generally, shimming is an iterative process that optimizes a criterion of choice by

adapting all shim currents until a satisfactory quality is achieved (see Figure 2.12a).
Figure 2.12b and Figure 2.12c visualize the iterative shimming process for a simulated
Lorentzian peak that is distorted by 𝑍 , 𝑍 2, 𝑍 4 shim functions. Gradually, higher order
terms are corrected, which leads to improved lineshapes. The remanent inhomogeneities
are plotted underneath.

1-D signal-based shimming

2

3

1

1 2 3

4

f(x)

x

Figure 2.13.: Parabola shimming. 𝑥

represents one shim current,
and 𝑓 (𝑥) is an inhomogeneity
measure.

1-D optimization algorithms optimize
a single variable at a time, and do
not incorporate interdependences among
variables. 1D algorithms for shimming
include the Tuning (Hull, 2003), Coggins
(Holz et al., 1988) or the general parabolic
interpolation (Press, 2014) algorithms,
which repeatedly compare three NMR
acquisitions until the minimum quality
criterion of choice can be approximated
by fitting a parameterized parabolic curve.
These methods are simple and fast, but
often need to be iterated as the shim coils
have parasitic terms of other coils.
The methods all share similarities to

other well-known optimization algorithms,
e.g. Coggins is a combination of Powell’s method and Davies-Swann method, as stated by
Ghani & Barnes (1972), and Brent’s method (Press, 2014) also uses parabola interpolation.
The shimming method used on Spinsolve spectrometers (Magritek GmbH, Aachen

Germany, www.magritek.com) is called QuickShim or parabola shimming. In fact, it shares
the main characteristics of Hull (2003) and Holz et al. (1988): Finding the minimum of a
Gaussian or parabola curve fitted to 3 points. The only difference is that it does not "hill
climb" towards the minimum but adjusts the non-central shim values until the criterion
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Criterion 

optimal?
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(a) Flowchart.

(b) Spectra.

(c) Remanent inhomogeneity.

Figure 2.12.: Flowchart and an example of iterative shimming. (Adapted from Becker et al.
(2022a).)

differs more than 5% from the centre value. However, if the values are monotonously in-
or decreasing, the algorithm moves sideways until a valley is found (i.e. same as in Tuning
and Coggins). The optimized objective is the root-mean-square (RMS) of the FID.

Finding an optimal value for a single shim can be described with the following example:

1. Start at an initial point.

2. Increase step size until the function is more than 5% different from the centre value.

3. If all values are monotonously in- or decreasing, move sideways towards the valley.

4. Fit parabola to the last three smallest values (1, 2, 3).

5. Take parabola minimum (4) as optimum.

Figure 2.13 visualizes a parabolic fit through three points. The parabola has a superlinear
convergence rate of 1.325, but is prone to getting stuck in local optima.
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N-D signal-based shimming

Updating variables one at a time and sequentially leads to long iteration processes or not
finding a solution at all. Thus, simultaneous adaption of the variables (i.e. shim currents)
should be performed to compensate for the mentioned drawbacks. Optimization methods
that optimize 𝑛 variables at a time are called 𝑛-dimensional.

Downhill simplex method and modifications thereof The widely used method downhill
simplex method (Nelder & Mead, 1965), has also been applied for NMR shimming (Ernst,
1968). The simplex method optimizes 𝑛 shims by evolving a geometrical polytope (a
"simplex") of 𝑛 + 1 vertexes through the shim space by geometrical operations such
as reflection, expansion, and contraction. Each vertex represents the quality criterion
corresponding to specific shim settings, sorted based on the worst, average and best quality
criterion to decide for the next evolution until a local minimum is reached.
For convenience, assume a two-dimensional scenario with two shims to adapt. The

solution to the shimming problem lies in 2D space (i.e. coordinate system) and can be
visualized (see Figure 2.14a). After defining an initial simplex5 in the solution space,
the quality criterion is evaluated at the vertices and ordered from best to worst (worst
𝑊 , middle 𝑀 , best 𝐵). The simplex then evolves in space by contracting, reflecting and
expanding towards a solution, represented by the simplex’s area being as small as possible.
Extraction and expansion are done by inverting the worst point𝑊 w.r.t. the centre 𝐴
of ¯𝐵𝑀 , and the new simplex is calculated according to the scheme in Figure 2.14b. The
default scaling factors for reflection (𝛼), expansion (𝛽), contraction (𝛾 ) and shrinkage (𝛿)
can be defined as [𝛼, 𝛽,𝛾, 𝛿] = 1, 2, 0.5,−0.5 and yield the points 𝑅, 𝐸,𝐶 and 𝑆 , respectively.

Ernst (1968) stated that the advantages of the Simplex algorithm are robustness in terms
of convergence speed depending on the initial simplex definition, and efficiency (especially
in comparison to the gradient method mentioned below). Nevertheless, the runtime is
exponential in worst-case (Klee & Minty, 1972), and optimization can dwell in a local
optimum depending on the starting point. Furthermore, Hull (2004) stated that the major
limitation of the downhill simplex method is its slow convergence speed.

During the last few years, the Nelder-Mead Simplex method has experienced different
refinements to improve either its convergence speed or accuracy. For instance, quasi-
gradient methods are used instead of simple reflection (Pham et al., 2011), the shrinking
coefficients are adapted depending on the dimensionality (Gao & Han, 2012) or a perturbed
centroid (Fajfar et al., 2019) can be used instead of the midpoint between the best and
worst criterion (B and W, resp.). Yao et al. (2021) combine all these improvements for an
automatic shimming method and further include compensation of magnetic susceptibilities
to strengthen their method.

5By definition, a simplex is the "most elementary geometric figure in Euclidean space of a given
dimension"[https://www.collinsdictionary.com/de/worterbuch/englisch/simplex], e.g. in 2D represented
by a triangle.
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(a) Simplex for shimming, where 𝑥 and 𝑦
represent two shim coils; each vertex
measures homogeneity.
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(b) Simplex evolution scheme (Ernst, 1968).

Figure 2.14.: Nelder-Mead downhill simplex method.

Other approaches

Michal (2007) introduced a method to orthogonalize the shim coil gradients such that
shimming can be reduced to one-dimensional optimization. This is done by calculating
truly orthogonal "composite shims" through theGram-Schmidt orthogonalization procedure.
However, the current supply, heating, and other hardware components introduce non-
linear behaviour, affecting the composite shims’ symmetry. Thus, the composite shims
themself are non-orthogonal again and require n-dimensional optimization or iterated 1D
optimization.
Webb & Macovski (1991) have developed an FID-based shimming method for in-vivo

MRS, which the authors themselves define as a "rapid, modified simplex"6. However, the
inhomogeneities must be realizable by pure (and first-order only) gradients. With𝑇 ∗2 being
much shorter than 𝑇2, it is guaranteed that the faster decay due to inhomogeneities can
be observed. For each of the three linear shims, two additional measurements with offset
±Δ𝐺 to the gradient field 𝐺 are obtained to get a relation level of shim current changes.

The modified steepest descent method has been taken from Kiefer & Wolfowitz (1952);
Sacks (1958) and adapted for magnet shimming by Ernst (1968). The procedure is as
follows (Ernst, 1968): For each axis 𝑘 (i.e. each shim), two auxiliary points 𝑋 +𝑘𝑛 , 𝑋−𝑘𝑛
are placed symmetrically around a point 𝑋𝑛 at the 𝑛-th iteration. Their corresponding
quality criteria are denoted as 𝑌 +𝑘𝑛 , 𝑌−𝑘𝑛 and span a vector of measured differences Δ𝑌𝑛 =
[𝑌 +1𝑛 , 𝑌−1

𝑛 , ..., 𝑌 +𝑘𝑛 , 𝑌−𝑘𝑛 ]. The next point 𝑋𝑛+1 is then given by

𝑋𝑛+1 = 𝑋𝑛 − 𝛼𝑛 (Δ𝑌𝑛/2Δ𝑛), (2.19)

where 2Δ𝑛 is the sequence of spacings of the auxiliary points and 𝛼𝑛 is the sequence of
positive step sizes. However, the simplex method seemed more efficient than this gradient
method (Ernst, 1968).
The most recent publications to advance shimming propose using a genetic algorithm

(Jang et al., 2023) or Bayesian optimization (Walter et al., 2023). Jang et al. utilize a
genetic algorithm shimming in NMR/MRI superconducting magnets, which mimics the
process of natural selection. This algorithm starts with a population of randomly generated
solutions (shim settings), and in each iteration, evaluates these solutions based on the
FWHM. The best-performing solutions are then selected, combined, and mutated to create
6In the author’s humble opinion, the method shares few similarities with the downhill Simplex method.
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a new generation of solutions. Over successive generations, the algorithm converges
on an optimal or near-optimal set of shim settings that achieve the desired uniformity
in the magnetic field. However, this method starts with an initial population of 50, and
evolves roughly 9 generations, each requiring many NMR acquisitions to test the objective
function.
Walter et al. discuss the use of Bayesian optimization for shimming in magnetic

resonance-based dark matter search. Bayesian optimization (BO) sequentially samples
an unknown target function to construct and improve a surrogate of it by placing a
prior probability distribution over the function and then updating the prior with the data
gathered through sampling to calculate the posterior probability distribution. The authors
claim that BO could potentially be faster than the simplex method.

2.2.3. Gradient shimming

Gradient shimming is especially used for in-vivo MRI and requires strong gradient coils to
map the magnetic field.
Conventional automated shim methods based on a measured signal (FID, spectrum)

adapt to the iterative way a human operator would proceed. Prammer et al. (1988) identified
the main drawbacks: First, due to the ambiguity of the 3D-to-1D mapping from sample to
spectrum or FID), no spatial information about the field distortion can be inferred. Second,
finding a global optimum is not guaranteed and third, the shim sets are, in reality, not
ideally orthogonal and thus influence each other, requiring longer algorithm iterations until
convergence. Consequently, Prammer et al. (1988) developed a non-iterative method for
in-vivo MRI, which solved the shim value problem in a single step using spatial magnetic
field maps, and the technique has been widely adapted and improved. The main procedure
contains the following steps:

1. Field mapping: Acquire a mapping 𝐵0(𝑥,𝑦, 𝑧) of the sample, either as an image or
projection using principles of MRI (gradient & phase encoding).

2. Shim system calibration: (Optional) Measure the true field shapes 𝑆𝑖 of the basis
functions for all 𝑛 shims due to non-orthogonalities, e.g. measured on a default
uniform phantom.

3. Calculation of correction coefficients: Calculate an optimal combination of the
basis functions (correction fields) 𝑆𝑖 to null the inhomogeneities of the acquired field
map with an algorithm, i.e. minimizing a given criterion generally in a least-square
sense.

4. Application: Apply shim values in a single step (or iterate). This includes the
conversion of the predicted shim strengths to an actual shim coil current.

Despite the advantage of fully image-based techniques, the required time to get a field
map of high resolution is still an obstacle. Gruetter & Boesch (1992) thus developed
a method solving the three-dimensional, in-vivo shimming problem using only six
exemplary, orthogonal and linear 1D-projections through the sample’s centre. Since
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the introduction of this fast automatic shimming technique by mapping along projections
(FASTMAP), several improvements (e.g. FAST(ER)MAP (Shen et al., 1997), FAST(EST)MAP
(Gruetter & Tkáč, 2000)) have been proposed. Weiger et al. (2006) state that the main
disadvantage of gradient shimming is that the goodness of the shimming outcome is
only evaluated in the spatial domain, although a good quality of the frequency domain
(spectrum) is the target of desire7. Therefore, they introduce a method that performs
gradient shimming by simulation upon an initially acquired field map 𝐵0 while simulta-
neously optimizing for an optimal quality criterion relying on a calculated spectrum.
Finally, the best-simulated shim setting is realized, and the process is repeated at will. An
experts’ consensus on in-vivo shimming is given by Juchem et al. (2021) in 2020.
Like the previous automated shimming techniques, gradient shimming also involves

limitations and pitfalls. The main disadvantages can be summarized as:

• Trade-off between the time required to obtain a well-resolved field map and the
mapping resolution is limited by the volume of interest (VOI) and the gradient
strengths. Therefore, 𝐵0 maps may experience large steps among adjacent voxels.

• For large ΔTE or Δ𝐵0, phase correction must be carried out, such that the phase is
in the range [−𝜋, ..., +𝜋].

• Optimizing the mean squared error (MSE) of the field delta is no guarantee for a
spectrum of good quality.

• An a priori basis set selection may miss field variations. The risk can be reduced
with the calibration of shim functions.

• Thermal effects.

• 3D mapping requires a probehead with a three-axis gradient system and appropriate
three-channel gradient current amplifiers (Weiger et al., 2006) that can be switched
rapidly. (In principle, shim coils should be possible but must be pulsed rapidly. Stable
power supplies of modern systems are not designed for pulsed operation. A possible
solution could be ramping the coils.)

This thesis focussed on signal-based shimming, mainly due to the abovementioned
reasons, especially the unavailability of gradient systems on low-field benchtop magnets.

2.2.4. General limitations of shimming

Shimming, whether done manually, signal-based or with field maps, has several limitations
and pitfalls.
Hardware-wise, a prerequisite for successful shimming is a temporally stable environ-

ment, i.e. there should be no changes during the acquisition and correction of the magnetic
field. This can be controlled by tracking the field lock and temperature of the bore.
Furthermore, no ideal manufacturing of the coils and their material can be guaranteed,
7Still, gradient shimming solves the interaction among the shims to some extend and converge faster than
solely iterative methods.
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leading to, e.g. non-orthogonality of the shim functions. As a result, each shim coil
produces parasitic fields of other coils. Additionally, the available current range depends
on the power source and can be insufficient if the inhomogeneities are too large. The
number of coils also restricts the order to which the magnetic field can be corrected; e.g.
nine shims coils can cover only first- and second-order distortions.

On the software side, the shims’ independence is often assumed, leading to inaccurate
calculations/optimization. Most severely, the abovementioned methods have the possibility
to get stuck in local minima.
However, some of these limitations are opportunities for an artificial intelligence or

deep learning algorithm.

2.3. Artificial intelligence (AI), deep learning (DL) and
reinforcement learning (RL)

This chapter describes the basics of Deep Learning (DL) and Reinforcement Learning
(RL), showcasing their distinct roles within the broader domain of Artificial Intelligence
(AI). While AI is an umbrella term for smart computational functionalities, Machine
Learning (ML) narrows down to data-driven algorithmic learning. DL further specializes
in deep neural networks, while RL is a different problem-solving paradigm focusing on
maximizing rewards through interactions with an environment.

Artificial

intelligence

(AI)

Machine

learning

(ML)

Deep learning

(DL)

Convolutional

neural networks

(CNNs)

Recurrent neural

networks (RNNs)

Actor-Critic

(AC) 

networksReinforcement learning (RL)

Deep reinforcement learning (DRL)

Figure 2.15.: Map of artificial intelligence, focussed on approaches used within this thesis.

A widely accepted definition of machine learning, which also holds for DL and RL, is
given by Mitchel (1997):

A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at
tasks in T, as measured by P, improves with experience E.

Experience E is usually provided as a collection of data (usually a dataset), ideally
independent and identically distributed (i.i.d. assumption). Regarding RL, the experience is
collected through interactions with an environment (see Subsection 2.3.5). The amount of
data samples, their quality, biases (Torralba & Efros, 2011), and the domain (Farahani et al.,
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2021) of the data are important aspects that influence the success of machine learning
models.
Machine learning tasks T can be differentiated (or split into two groups) depending

on the learning nature and availability of labelled data. Supervised learning tasks
include classification (R𝑛 → 1, ..., 𝑘) and regression (R𝑛 → R), and require a label (or
target value) for each data sample (usually provided by field experts). Examples of
unsupervised learning tasks include clustering and dimensionality reduction, and hand-
crafted labels are not required. Furthermore, discriminative and generative algorithms
can be differentiated, where the former learns decision boundaries or conditional probability
𝑝 (𝑦 |𝑥), and the latter learns the data distribution 𝑝 (𝑥,𝑦), from which it can generate new
data points. Finally, reinforcement learning focuses on making decisions by interacting
with the environment to achieve a goal or maximize a reward.

Depending on the task, the machine learning model’s performance P can be evaluated
by metrics such as accuracy and precision for classification, L-norms such as the mean
absolute error (MAE) or mean squared error (MSE) for regression problems, or task-specific
metrics, e.g. rewards for RL approaches.

The last aspect of Mitchell’s definition, namely the choice of the computer program,
decides the affiliation to subgroups within AI, e.g. if a (deep) neural network is used to
solve the task, one commonly refers to deep learning.

2.3.1. Benefits of AI

Why bother implementing complex AI systems instead of using standard methods? Several
reasons show the advantages of such systems.
AI algorithms, especially deep learning models, can reconstruct high-quality images

from under-sampled data, reducing scan times while maintaining or even improving image
quality. Furthermore, AI can automate complex data analysis, identifying patterns and
features that human observers might miss, consequently assisting in the diagnosis of
diseases, which can lead to earlier and more precise treatments. Finally, AI can optimize
scanning parameters, improving measurement efficiency.

Several approaches have been developed to enhance specific areas of NMR and medical
imaging by incorporating AI algorithms, and examples are given below.

AI in (Proton) NMR

The utilization of AI in NMR has been a progressive field that aims to augment the existing
capabilities of NMR. Key areas where AI has shown promising results are:

• Designing NMR experiments with AI can overcome the technical challenges
of NMR spectrometers to enhance data acquisition. For example, an evolutionary
algorithm designs novel radio frequency (RF) pulses for 2D biomolecular NMR
experiments (Manu et al., 2023). Shimming has also been studied by incorporating
genetic algorithms (Jang et al., 2023) or Bayesian optimization (Walter et al., 2023).

• NMRprocessing includesmethods for the reconstruction of non-uniformly sampled
(NUS) spectra (Hansen, 2019; Jahangiri et al., 2023) and truncated free induction
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decays (FIDs) (Lee et al., 2020). Enhancing the overall visual quality of NMR spectra
can be achieved by peak picking (Li et al., 2021), deconvolution (Schmid et al., 2023)
or restoration (Xiao et al., 2023). Extrapolation to higher spinning frequencies of
magic angle spinning has been studied by Cordova et al. (2023).

• Data analaysis of NMR spectra covers chemical shift prediction (Liu et al., 2019;
Williams & Jonas, 2023), or full structure prediction (Jonas, 2019) via imitation
learning. Further approaches study spectra quantification (Rizzo et al., 2023) or
tumour classification (Zhao et al., 2022) in MRS.

Chen et al. (2020); van de Sande et al. (2023); Shukla et al. (2023) summarize AI applications
for solving NMR challenges. However, most of these approaches are applied at the post-
processing stages after the NMR measurement has taken place, taking the hardware setup
for the NMR measurement as granted. In contrast, section I of this thesis proposes to
optimize the preparation preceding an NMR acquisition with deep learning methods.

These diverse applications of AI in NMR reflect a growing trend towards leveraging the
4th scientific paradigm of data-driven discovery to address complex challenges in NMR
spectroscopy, from data analysis to experiment design, thereby expanding the possibilities
of NMR technology.

AI for medical imaging

AI applications in clinical MRI (Magnetic Resonance Imaging) and CT (Computed Tomo-
graphy) are revolutionizingmedical diagnostics and treatment planning. These technologies,
leveraging the latest AI advancements, are making significant strides in enhancing image
quality, diagnostic accuracy, and patient care. A selection of key contributions includes:

• Experimental design can be improved for automatic slice alignment and cardiac
shimming in clinical cardiac magnetic resonance imaging (MRI) (Edalati et al., 2022),
or by ultrafast design of multidimensional RF pulses, intended for real-time pulse
updates (Vinding et al., 2019).

• Data processing mainly cover denoising and segmentation of magnetic resonance
images (Jiang et al., 2018; Akkus et al., 2017; Ronneberger et al., 2015). In computed
tomography imaging, Shen et al. (2019) predict 3D patient data from one projection
slice only, and Dong et al. (2019) reconstruct CT data from incomplete sinograms.

• Data analysis, for example, clinical diagnosis such as the diagnosis and prognosis
of cancer (Huang et al., 2020).

Extensive andmore detailed overviews are provided forMRI by Lundervold& Lundervold
(2019); Bogner et al. (2021), and for CT, focusing on reconstruction, by Willemink & Noël
(2019); Wang et al. (2020).
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2.3.2. The basis of DL: Artificial neurons and multi-layer perceptrons

An artificial neuron is a simple processing unit and the fundamental building block of
artificial neural networks. It applies a (non-linear) activation function to the sum of all
its inputs8. This idea has been introduced as the McCulloch-Pitts neuron (McCulloch &
Pitts, 1943), and refined as the perception (Rosenblatt, 1958), describing how neurons and
neural networks remember and predict.

Neural networks incorporate multiple artificial neurons, usually organized into layers,
including an input layer that takes in the data, hidden layers that extract features, and
an output layer that produces a corresponding response (see Figure 2.16b). The standard
feedforward network is a multi-layer perceptron (MLP), also called a fully connected
(FC) neural network, because all neurons of one layer are connected to all neurons of
the next layer with nonlinear activation functions.
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∑ ��_
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��

��

Inputs
Weights

Sum

Non-linearity

Output

(a) A basic artificial neuron. (b) General deep neural network structure.

Figure 2.16.: The basis of artificial neural networks.

2.3.3. Training a deep neural network

A neural network "learns" by adapting its internal parameters or weights during training
on a given dataset. The training process is guided through external variables, the so-called
hyperparameters, determined outside the learning algorithm.

The learning principle

Given the (training) datasetD = {(x, y)𝑖} |D|𝑖=1 , where (x, y)𝑖 is an input-output pair, a typical
feedforward neural network F𝜃 is trained by (Figure 2.17):

1. Forward pass

ŷ = F𝜃 (x) (2.20)

The inputs x are fed into the neural networks, and the activations of each layer are
computed until the final output ŷ.

8For a single neuron, and no activation function, the artificial neuron is just a simple linear regression
function.
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Figure 2.17.: The learning principle of a neural network, including forward pass, loss
calculation, backpropagation and gradient descent.

2. Loss calculation

L(ŷ, y) (2.21)

The output ŷ is compared to the true label y of the input, and the loss L is calculated,
which measures the difference between y and ŷ as a scalar error of the network.

3. Backpropagation

∇𝜃L (2.22)

The gradients of the loss w.r.t. the network’s weights are computed using the chain
rule of calculus through the network.

4. (Stochastic) gradient descent

𝜃𝑖 = 𝜃𝑖 − 𝛼
𝜕L
𝜕𝜃𝑖

(2.23)

The weights are updated using the learning rate 𝛼 in the direction that minimizes
the loss function. Usually, momentum (Sutskever et al., 2013) or other optimizers
(Kingma & Ba, 2014; Dozat, 2016) are used to speed up convergence (on mini-batches
of the dataset).

5. Iteration Steps (1-4) are repeated until the network converges, i.e. the (non-
convex) loss function is minimized on the training data to achieve the best function
approximator.

Because neural networks possess nonconvex loss functions, training the network’s
parameters should avoid local minima and thus require regularization.
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Regularization techniques

The generalization performance of a neural network is judged by the prediction per-
formance on new, previously unseen (out-of-sample) data, also known as the test set.
Therefore, regularization techniques are used to prevent the model from overfitting,
i.e. fitting or memorizing the training data too closely, and improve its generalization
performance.

To mitigate and avoid overfitting, the most commonly used techniques include:

• Dropout9 is a technique that randomly sets some of the neuron outputs to zero
during training. This prevents the neurons from co-adapting and forces them to
learn more robust features that generalize better to new data.

• Data Augmentation pretends the availability of more data by applying random
transformations such as rotations, translations, and scaling (depending on the data
format) during training.

• Early stopping prevents overfitting by stopping the training process when the
performance on the validation set starts to decay.

• Batch and Layer Normalization stabilize the training process and reduce the
model’s sensitivity to the initial weights and learning rate. Batch normalization
normalizes the inputs across the entire batch, while layer normalization normalizes
the inputs across each feature map or channel of the layer.

• L1 and L2 regularization add a penalty term to the loss function that forces the
weights to be small. L1 regularization adds the absolute values of the weights, while
L2 regularization adds the squared values of the weights.

It is important to note that proper regularization does not release from the necessity to
tackle biases of the domain, data, application or method.

Activation functions

The activation function of an artificial neuron is applied to the output of each layer. It
introduces nonlinearity into the model, which allows neural networks to learn complex
and nonlinear relationships between the inputs and outputs.

Commonly used activation functions include:

• Sigmoid maps any input to [0, 1] via:

𝑓 (𝑥) = 1
1 + 𝑒−𝑥 (2.24)

.
9Dropout can be seen as a form of "cheap" bagging ensembles.
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Figure 2.18.: Activation functions’ output behaviour, visualized for ReLU, tanh and sigmoid.

• ReLU (Rectified Linear Unit) is defined as:

𝑓 (𝑥) =𝑚𝑎𝑥 (0, 𝑥) (2.25)

.

• Tanh (Hyperbolic Tangent) maps any input to [−1, 1], and is defined as:

𝑓 (𝑥) = 𝑒𝑥 − 𝑒−𝑥
𝑒𝑥 + 𝑒−𝑥 (2.26)

.

• Softmax is commonly used as an activation function in the output layer of classification
networks. It maps the output to a probability distribution over the classes via:

𝑓 (𝑥𝑖) =
𝑒𝑥𝑖∑
𝑒𝑥 𝑗

(2.27)

.

See Figure 2.18 for a visualization. The choice of the correct activation function is not
straightforward and depends on the range of input data, and the target.

Hyperparameter optimization

Usually, DL training, and regularization methods used within, include additional tunable
parameters (e.g. dropout rate or the extent of data augmentation), which all fall into the
set of hyperparameters that must be optimized to train a well-performing neural network.
Because it is not appropriate to optimize hyperparameters on the training set, or even
worse on the test set, an additional validation set is needed to measure the influence
of different hyperparameters. Thus, a proper set of hyperparameters prevents the model
from overfitting, and helps it to generalize well on the test scenario it was trained for.
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2.3.4. Neural network architectures

Architecture refers to the overall structure of the neural network, and allows the handling
of different data structures, e.g. images or time series.
MLP and FC neural networks (see Subsection 2.3.2) are the most basic architecture

without any assumption about the data format spatial or temporal dependencies. Given
enough capacity, they are able to approximate any imaginable function.

Convolutional neural networks

Convolutional neural networks (CNNs) are a type of neural network that is specialized
for processing data with fixed dimensionality (e.g., spectra, images and videos). CNNs use
(multiple stacked) convolutional layers and pooling layers to extract features from the
input and reduce the dimensionality of the data, and fully connected layers to perform a
classification or regression task (see Figure 2.19b).
The idea behind convolutional layers is to use trainable filter kernels that sweep over

a grid-like input to generate representations for the next layer, inspired by the visual
cortex. This is in contrast to direct links used in fully connected layers. CNNs incorporate
parameter sharing and sparse connectivity to decrease memory requirements and allow
predictions independent of the features’ locations (Goodfellow et al., 2016).
Local patterns, so-called feature maps, of the input are captured by moving multiple

different filter kernels over the input and computing the dot product of the filter weights
and the corresponding pixels (or values) of the input (see Figure 2.19a). Each filter typically
covers a small receptive field, but the overall receptive field of the network is increased by
stacking convolutional layers (and pooling and activation layers).

The output dimension of the feature maps depends on the following parameters, which
need to be optimized depending on the task at hand:

dimout =
dimin + 2 · 𝑃 − 𝐾

𝑆
+ 1 , (2.28)

where 𝑃 is the padding, 𝑆 is the stride and 𝐾 is the filter kernel size.
Pooling layers downsample the feature maps produced by the convolutional layers,

reducing their spatial dimensionality.
NMR spectra in the frequency domain can be interpreted as 1D-images (Qu et al., 2020),

to apply CNNs and developments from computer vision.

Recurrent neural networks

In contrast to standard feedforward neural networks (such as FCNs and CNNs), which
take an input x, and provide an output ŷ = NN(x), recurrent neural networks (RNN)
sequentially maps a pair of input x𝑡 and hidden state ℎ𝑡 to an output and a new hidden
state:

ŷ, ℎ𝑡+1 = RNN(x𝑡 , ℎ𝑡 ) (2.29)

Here, the hidden state encodes the previously processed input, and acts as a cyclic memory
to retain explicit information over several steps. Internally, RNNs contain three function
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Figure 2.19.: Deep learning with convolutions.

approximators 𝑉 ,𝑈 and𝑊 : 𝑈 maps the inputs to features, 𝑉 maps those features to the
output, and𝑊 the features to the next hidden state: ℎ𝑡 = tanh(𝑈 · x𝑡 +𝑊 · ℎ𝑡−1) and
ŷ𝑡 = 𝑉 ·ℎ𝑡 . Standard forward and backward propagation algorithms can be utilized to learn
the network’s parameters by unfolding the repeated network function in time (Figure 2.20).
RNNs are not restricted to fixed input or output dimensions and, thus, are more flexible
than e.g. CNNs.

Long short-term memory (LSTM) networks are RNNs with special gate functions to
forget unimportant information in the (input and hidden) sequences. Different flavours of
LSTM gates, connections, and activations are discussed in Greff et al. (2017).
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Figure 2.20.: Recurrent neural network, unfolded in time.
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Encoder-decoder networks

Another special network architecture is the encoder-decoder network, which consists
of an encoder that takes an input and encodes it into a useful representation, while the
decoder takes this representation and decodes it into a transformed output.
An example of encoder-decoder networks includes the autoencoder. Autoencoders

(Hinton & Salakhutdinov, 2006) (see Figure 2.21) rely on the general assumption that data
shares a low-dimensional non-linear manifold, which can be exploited for dimensionality
reduction. Thus, autoencoders primarily focus on input reconstruction and effectively
learn to preserve essential features by using an encoder 𝐸 to map the input x into a (usually
lower-dimensional) representation, i.e. the latent space ℎ = 𝐸 (x), and a decoder 𝐷 to
reconstruct x̂ = 𝐷 (ℎ). If the decoder and encoder of an autoencoder are linear functions,
it is nearly principal component analysis (PCA), a standard ML method. Generally, the
encoder and decoder may use different network layers, such as recurrent or convolutional
layers. Encoder-decoder networks are often developed for supervised learning tasks
to decode a target value y, compared to autoencoders that copy their input x. The U-
Net architecture (Ronneberger et al., 2015), for example, was originally developed for
semantic segmentation of biomedical images, and utilizes convolutional layers during
encoding, deconvolutional (or transposed convolutional) layers during decoding, and skip
connections between the encoder and the decoder to preserve spatial information and
improve the localization accuracy of the segmentation. Transformers, described in the
next section, can be configured in encoder-decoder structures.

Figure 2.21.: Example of a fully-connected autoencoder architecture.

Attention layers and transformers

One of the major breakthroughs in recent years was the attention mechanism and trans-
formers (Vaswani et al., 2017), which are basically just attention layers without recurrent
connections. Transformer models are the basis of large language models such as ChatGPT.
Unlike RNNs, Transformers simultaneously look at a full input sequence using the (self
and multi-head) attention mechanism, instead of token by token.

Attention mechanisms bias the selection over values (sensory inputs). They achieve this
by employing attention pooling, a technique that utilizes both intentional and unintentional
cues in the form of queries and keys, respectively. The process involves mapping a
query and a set of key-value pairs to an output, all represented as vectors. The output is
then computed as a weighted sum of the values, where each weight is determined by a
compatibility function of the query with the corresponding key (Vaswani et al., 2017).
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Ensemble methods

Ensemble methods in machine learning combine multiple models to construct a more
powerful model to achieve higher accuracy or lower variance in predictions (Breiman, 1996;
Dietterich, 2000). In general, ensembles consist of two levels: multiple weak learners (level-
0), and a combination of their predictions (level-1), often represented by a meta-model.
Several forms, like bagging, boosting, or stacking (Dietterich, 1990), can be distinguished,
and they differ in data handling or training of the different levels’ models. Bagging
(bootstrap aggregation) divides the training set into bootstrap replicates (subsets) of the
original set, such that each weak learner is trained on such a subset (Breiman, 1996). Here,
the level-0 models generally have the same structure. In comparison, stacking uses the
same training set for heterogeneous weak learners, and the fusion strategy usually is
not defined a priori, i.e., a meta-model is fitted (Dietterich, 1990). Boosting is used for
sequentially improving a model on samples that the previous version got wrong (Schwenk
& Bengio, 2000).
Overall, the variance of an ensemble method is reduced as follows. Assuming 𝑛

independent models with a variance of 𝜎2, each predicting the same target variable,
represented as random variables 𝑋1, 𝑋2, ..., 𝑋𝑛 . Combining predictions by averaging, gives
𝑌 = 1

𝑛

∑𝑛
𝑖=1𝑋𝑖0. The variance of the ensemble prediction Var(𝑌 ) can be calculated using

the properties of variance for independent random variables: Var(𝑌 ) = Var
( 1
𝑛

∑𝑛
𝑖=1𝑋𝑖

)
=

1
𝑛2
∑𝑛
𝑖=1 Var(𝑋𝑖). Which, for 𝑋𝑖 with the same variance 𝜎2, simplifies to: Var(𝑌 ) = 𝜎2

𝑛
. Thus,

the variance of the ensemble’s prediction should decrease inversely with the number of
models in the ensemble.

Ensembles can also be seen as some sort of regularization or used to quantify uncertainty
(Lakshminarayanan et al., 2017).

2.3.5. (Deep) reinforcement learning

Reinforcement learning (RL) is based on the idea that agents learn to take actions in an
environment to maximize a cumulative reward from their experience and feedback, rather
than from explicit supervision or prior knowledge given by a fixed dataset. RL agents
observe the consequences of their actions as states and rewards. RL aims to find a policy,
i.e., a rule which maps states to actions, that maximizes the sum of discounted rewards
over time.
One of RL’s challenges is balancing exploration (trying new actions for potential

future benefits) and exploitation (opting for the best-known action). Another challenge
is dealing with large and complex state and action spaces, which make it difficult for
the agent to learn. To overcome this challenge, deep reinforcement learning (DRL)
combines RL with deep neural networks, which are powerful function approximators that
can learn from high-dimensional and nonlinear data.

DRL has achieved remarkable results in various domains, such as playing Atari games,
mastering the game of Go, and controlling robots.
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Figure 2.22.: Differences between RL and DRL frameworks. DRL agents use deep neural
networks as function approximators.

A standardized reinforcement learning description

In a standard RL setup, the environment provides the agent with a state 𝑠𝑡 at each discrete
time step 𝑡 = 0, 1, 2, ... and the agent responds by taking action 𝑎𝑡 , causing the next reward
𝑟𝑡+1 and next state 𝑠𝑡+1 from the environment until the agent reaches a terminal state, i.e.
the end of an episode. Whenever the environment is only partially observable, i.e. partially
observable Markov decision processes (POMDP), a history of observation-action pairs
𝑠𝑡 = (𝑜1, 𝑎1, ..., 𝑎𝑡−1, 𝑜𝑡 ) may be necessary to describe the state.

Mathematically, reinforcement learning may be characterized by aMarkov decision
process (MDP) with the state space 𝑆 , action space 𝐴, the transition dynamics 𝑃 (𝑠𝑡+1 |𝑠, 𝑎)
and a reward function 𝑅(𝑠, 𝑎). The agent’s action selection is given by a policy 𝑎𝑡 = 𝜋 (𝑜𝑡 )
defining the probability to perform an action for each observation, which ideally matches
the real transition dynamics 𝜋 : 𝑆 → 𝑃 (𝐴). The goal in RL is that the agent learns a policy
which maximizes the sum of discounted future rewards (= total return)

𝐺𝑡 =

𝑇∑︁
𝑖=𝑡

𝛾 𝑖−𝑡𝑟 (𝑠𝑖, 𝑎𝑖) , (2.30)

where 𝛾 ∈ [0, 1] is the discount factor which enables long-term correlations during one
episode. The policy may be learned directly or via a proxy, e.g. the action-value 𝑞𝜋 (𝑠, 𝑎) or
state-action value function 𝑣𝜋 (𝑠), which describes the expected return given state (and
action). Many RL approaches make use of the Bellman equation to determine state-action
values (q-values), and Bellman optimality is defined as:

𝑞∗(𝑠, 𝑎) =
∑︁
𝑠𝑡+1,𝑟

𝑝 (𝑠𝑡+1, 𝑟 |𝑠, 𝑎)
(
𝑟 + 𝛾 ·max

𝑎𝑡+1
𝑞∗(𝑠𝑡+1, 𝑎𝑡+1)

)
(2.31)

Under the premise of Q-learning (off-policy) this rewrites as 𝑅𝑡+1 + 𝛾𝑄 (𝑆𝑡+1, 𝑎𝑡+1).
The main problem in RL is to find an optimal policy 𝜋∗ that maximizes the expected

reward. Generally, RL algorithms can be trained with temporal difference (TD) learning
from experience. TD combines Monte Carlo methods with dynamic programming, using
bootstrapping to update its value function.
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𝑄 (𝑠𝑡 , 𝑎𝑡 )︸   ︷︷   ︸
new value

← 𝑄 (𝑠𝑡 , 𝑎𝑡 )︸   ︷︷   ︸
old value

+ 𝛼︸︷︷︸
learning rate

·

temporal difference︷                                                                            ︸︸                                                                            ︷(
𝑟𝑡︸︷︷︸

reward

+ 𝛾︸︷︷︸
discount factor

·max
𝑎

𝑄 (𝑠𝑡+1, 𝑎)︸     ︷︷     ︸
estimate of optimal future value︸                                                            ︷︷                                                            ︸

new value (temporal difference target)

−𝑄 (𝑠, 𝑎)︸ ︷︷ ︸
old value

)

(2.32)

Taxonomy of RL

Classifying RL algorithm types strongly depends on the objective, and several grouping
options are available, which, however, are non-exclusive. A helpful overview is given by
Zhang & Yu (2020).
One can differentiate between RL agents with continuous or discrete action; also, the

agent’s training can learn either on- or off-policy, where off-policy learning learns an
optimal policy 𝜋 from suboptimal behaviour from another policy (i.e. exploration and
exploitation are separated), whereas on-policy learning improves 𝜋 by following 𝜋 ; or
the agent can be trained online by interacting with the environment directly or offline by
using a pre-sampled dataset (or experience).

Furthermore, one can differentiate between model-free and model-based RL. Model-free
RL learns (1) a policy, (2) the value, or (3) both (see Paragraph 2.3.5) directly, whereas
model-based RL learns a model of the environment and then uses planning to select actions.
Value-based methods focus on estimating the value of states or state-action pairs, and
popular algorithms includeQ-learning andDeepQ-Networks (DQN). Policy-basedmethods
aim to directly learn the optimal policy, which defines the agent’s actions. Algorithms
like REINFORCE and Trust Region Policy Optimization (TRPO) fall into this category.
Actor-critic methods combine elements of both value-based (critic) and policy-based (actor)
methods. This category includes algorithms like Proximal Policy Optimization (PPO) and
Deep Deterministic Policy Gradient (DDPG).
However, there is not a single RL algorithm that can be considered "the one". Instead,

several types and flavours of RL algorithms are designed to address different challenges
and requirements. Therefore, it is important to carefully choose the appropriate algorithm
for a particular RL task, and this thesis focuses on model-free actor-critic methods with
continuous action space (of shim values), which are trained in an off-policy fashion.

Deep reinforcement learning

For large state spaces 𝑆 or action spaces 𝐴, tracking all possible combinations of expected
returns becomes impossible. DRL can handle high-dimensional and complex state and
action spaces by using neural-network-based function approximators to model various
agent components, such as policies 𝜋 or values 𝑞, and learn from raw sensory inputs such
as images or sounds.
Various flavours of DRL models can be differentiated based on the state and action

dimensionality and/or continuity.
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2.3. Artificial intelligence (AI), deep learning (DL) and reinforcement learning (RL)

DQN A Deep Q-Network (DQN) is a deep learning model that learns control policies
directly from high-dimensional sensory input using reinforcement learning (Mnih et al.,
2013). A DQN is trained with a variant of Q-learning, where the input to a convolutional
neural network are raw pixels of an image, and the output is a value function that estimates
future rewards. DQN has been primarily limited to discrete action tasks, such as playing
Atari games. Several improvements have been proposed and combined into one "rainbow"
method (Hessel et al., 2017). Main modifications include prioritized experience replay (see
below), multisteps, distributional Q-learning, noisy networks and duelling networks.

AC networks Actor-critic models combine the advantages of policy-based and value-
based methods in reinforcement learning, and they consist of two components: an actor-
network that learns the policy (the action selection) and a critic network that learns the
value function (the expected future rewards). The actor-network takes the current state as
input and predicts a probability distribution over the actions. On the other hand, the critic
network estimates the value function, representing the expected future rewards given the
current state and the predicted action from the actor.

DDPG Deep Deterministic Policy Gradient is a specific actor-critic algorithm designed
for continuous action spaces (Lillicrap et al., 2015). DDPG uses an actor-critic architecture
with two tricks to improve stability: a replay buffer to store and reuse past experiences
(see the next paragraph), and target networks to avoid divergence during training. Target
networks are copies of the original actor and critic networks updated sparsely with "soft"
updates.

The pseudocode for internal DDPG updates is given below.
Severalmodifications and improvements have beenmade to theDDPGmethod/technique,

e.g., delayed updates to twin networks for both actor and critic (TD3) (Fujimoto et al.,
2018), or stochastic policies with entropy are used instead of deterministic ones in soft
actor-critics (Haarnoja et al., 2018).

Other advances in DRL convergence and performance As the agent’s interactions with
the environment are generally expensive, observed transitions (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1, 𝑎𝑡+1) (or
𝑜𝑡 instead of 𝑠𝑡 for POMDPs) can be stored in memory. Updating the policy might
then also use previously observed transitions from a (static) dataset or memory D =

{(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1, 𝑎𝑡+1)𝑖} |D|𝑖=1 . Prioritized experience replay (Schaul et al., 2015) is a technique
that improves the efficiency of reinforcement learning agents by sampling replay transitions
from such a memory with high expected learning progress more frequently. Not all
experiences are equally useful for learning, e.g. similar random exploratory steps are more
frequent in early training episodes. Prioritized experience replay assigns a priority value
based on the magnitude of the temporal difference error to measure the usefulness of
each experience. The higher the priority, the more likely the experience will be sampled
for learning. As prioritization can lead to a loss of diversity, using stochastic sampling
interpolates between pure greedy prioritization and uniform random sampling during
experience replay.
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Algorithm 1: Deep Deterministic Policy Gradient. Modified from Achiam (2018)
and Lillicrap et al. (2015).
Randomly initialize actor 𝜇𝜃 , and critic network 𝑄𝜙 with parameters 𝜃 , 𝜙
Set target parameters equal to main parameters 𝜃targ ← 𝜃 , 𝜙targ ← 𝜙

Initialize replay buffer D
for episode = 1, M do

Initialize random noise process N for exploration
Get initial observation 𝑠1
for t=1,T do

Observe state 𝑠 and select action 𝑎 = 𝜇𝜃 (𝑠) + N
Execute 𝑎, observe next state 𝑠𝑡+1, reward 𝑟 , and done signal 𝑑
Store (𝑠, 𝑎, 𝑟, 𝑠𝑡+1, 𝑑) in replay buffer D
if 𝑠𝑡+1 is terminal then

Reset environment state
if update interval reached then

for updates do
Randomly sample a batch of transitions 𝐵 = {(𝑠, 𝑎, 𝑟, 𝑠𝑡+1, 𝑑)} fromD
Compute targets 𝑦 (𝑟, 𝑠𝑡+1, 𝑑) = 𝑟 + 𝛾 (1 − 𝑑)𝑄𝜙targ (𝑠𝑡+1, 𝜇𝜃targ (𝑠𝑡+1))
Update critic by one step of gradient descent using
∇𝜙 1
|𝐵 |

∑
(𝑠,𝑎,𝑟,𝑠𝑡+1,𝑑)∈𝐵

(
𝑄𝜙 (𝑠, 𝑎) − 𝑦 (𝑟, 𝑠𝑡+1, 𝑑)

)2

Update actor by one step of gradient ascent using
∇𝜃 1
|𝐵 |

∑
𝑠∈𝐵 𝑄𝜙 (𝑠, 𝜇𝜃 (𝑠))

Update target networks with 𝜙targ ← 𝜏𝜙targ + (1 − 𝜏)𝜙
𝜃targ ← 𝜏𝜃targ + (1 − 𝜏)𝜃
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Part I.

Artificial Intelligence for NMR shimming
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Shimming is a cumbersome and time-consuming procedure preceding most NMR experi-
ments. This part of the thesis describes several approaches that speed up shimming by
incorporating artificial intelligence aspects by learning and leveraging features from
distorted spectra during the shimming process.
First, the general problems of shimming are revisited in chapter 3, and why AI could

learn from 1D spectra to speed up the process. Also, the general requirements to enable
such a framework are described. Chapter 4 introduces the first feasibility study that
used DL to enable fast, first-order shimming. In chapter 5, most limitations of this first
proof-of-concept study were tackled, which led to an improved methodology that allows
DL to shim four shims based on acquisitions from random shim offsets. This method was
further utilized to tackle another problem when using parallel NMR channels for high
throughput NMR: an increased number of interconnected shim coils. Chapter 6 describes
the first study for AI-driven shimming of a custom-built parallel probehead with two NMR
channels, each equipped with six local shim coils. Finally, chapter 7 introduces another
paradigm of AI, namely reinforcement learning (RL), which does not require pre-labelled
datasets and interacts with an environment to explore it. The foundations of using this
approach for shimming were explored. Finally, chapter 8 describes several ablation studies
that prove design choices made during the development of all the methods mentioned
above. Part I of this thesis concludes with a discussion about AI-driven and AI-assisted
shimming.

An overview of corresponding publications per chapter is given in Table 2.3. All
published articles generally include a repository with the published code and the data
(collected at mobecks/ShimDB) used, allowing reproducibility or easy improvements.
Unfortunately, most publications in NMR research lack this standard.

Chapter Method name Publication Github repository
4 Deep Regression with Ensembles (DRE) Becker et al. (2022a) mobecks/dre-nmr-shim
5 enhanced Deep Regression (eDR) Becker et al. (2022b) mobecks/random-ai-shim
6 Parallel eDR (PeDR) Becker et al. (2023) mobecks/parallel-ai-shim
7 RL-based (In preparation.) -

Table 2.3.: Overview of the developed methods for AI-driven shimming. All datasets for
the corresponding publications are also published.
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3. Why and what can DL learn from 1D
spectra for shimming?

AI has just started gaining momentum in NMR (Chen et al., 2020; van de Sande et al.,
2023; Shukla et al., 2023). However, most of these approaches take the hardware setup for
granted and focus on post-processing methods, which, in turn, require shimming before
the experiments to allow for a minimum signal quality.
In part I of the thesis, AI is introduced to speed up and improve shimming based on

1D spectra. The assumption that this is possible is based on two main concepts: (as
theoretically proven and known) specific peak distortions help to identify the shim order,
and (not exploited previously) hardware non-idealities introduce additional distinguishable
features between shims. These effects are described in section 3.2 and section 3.3, followed
by requirements to exploit those features with DL or RL methods in section 3.5.
Iterative signal-based shimming is the main focus of this thesis. The optimization

process is based on a scalar quality criterion using signals such as the FID, lock channel, or
spectral lineshapes. The approach allows to neglect the theoretical limitations of spatial
functions and instead directly optimizes the shim currents.

3.1. Problems of shimming (revisited)

(Signal- based) shimming generally suffers from multiple problems that leave the process
tedious and time-consuming. The main challenges summarize as:

• Non-orthogonality of the spherical harmonic shim system, mainly due to manu-
facturing inaccuracies of the coils.

• Line broadening effects due to susceptibility differences and 𝐵0 inhomogeneities.

• Large number of shim coils.

• Ambiguity problem, originating from non-bijectivity between 3D sample volume
and 1D signal.

Existing shimming algorithms automate the shimming procedure to increase the spectral
quality. However, the following issues remain. Gradient shimming requires rapidly
switchable gradient coils and can lead to distorted 𝐵0 field maps (Bao et al., 2016), which
makes the process iterative. Signal-based shimming methods, which are iterative by design,
also suffer from local optima, especially due to the non-orthogonality of shims. Robust
against orthogonality issues are𝑛-dimensional optimization algorithms such as the simplex
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3. Why and what can DL learn from 1D spectra for shimming?

method (Ernst, 1968; Yao et al., 2021); however, they converge slowly and leave shimming
to be time-consuming.

When considering new shimming approaches, all available (visible and hidden) features
of the unshimmed NMR spectra should be exploited, instead of only a single optimization
scalar, to extract more knowledge during the shimming process. This starts with dis-
ambiguating the shims, incorporating their non-orthogonality, and consequently, speeding
up shimming.
Chmurny & Hoult (1990) already gave guidelines for manual shimming in 1990, and

called it an "art" to interpret the distortion effects of shims on the FID and spectrum.
However, a human expert operator must incorporate this knowledge for shimming.

3.2. Line shapes reveal shims’ order

The first step in solving the ambiguity between shims is to differentiate the order of shim
distortion from the peak distortions of a single peak in 1H spectra.

Figure 3.1.: Shim order revealed by peak’s distortion shape.

Fortunately, different distortions to the spectral line shape can reveal the shims’ order,
particularly if they are designed as spherical harmonics (Weiger & Speck, 2011; Pearson,
1993). Distortions caused by odd-ordered gradients tend to be symmetrical, while those
induced by higher-ordered shims predominantly affect the lower parts of the spectral
peaks. Figure 3.1 visualizes these distinguishable broadening effects of 𝑍, 𝑍 2, 𝑍 3 shims,
simulated with the SHIMpanzee shimming environment (see Subsection 3.5.1).

However, this effect only reveals the shims’ order and is ambiguous between shims, i.e.,
𝑋 2 and 𝑌 2 would yield the same distortion.

3.3. Hardware non-idealities reveal shim‘s sign and allow
disambiguity

Besides the theoretically known distinguishable effects among higher-order shims, shims
of the same order should ideally be fabricated orthogonal; thus, they should have the
same broadening effect. Empirical evidence, regardless, demonstrates that shims of the
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3.4. Summary - Why learning is needed (and the solution)

same order also show distinct features when measured on real hardware. This effect was
observed on different spectrometers, and is presented for two Magritek benchtop NMR
magnets described in Subsection 3.5.1.
Both negative and positive shim offsets, as well as the shims themselves, can be

differentiated and lead to unique peak distortions and frequency shifts (see Figure 3.2a
and Figure 3.2b). Unique spectral features can be distinguished between coils, such as the
right spike for the 𝑌 shim on 80 MHz, as visualized in Figure 3.2b. This spike is similar
for positive and negative offsets, and does not appear for 𝑋 shim offsets. Furthermore,
positive and negative offsets can be differentiated as a peak position shift. This effect,
however, was not unique to the Magritek 60 Ultra for the 𝑋 shim (see Figure 3.2a).

All these effects could be caused by hardware non-idealities of the spectrometer, such as
differences between the shim coils wiring. Furthermore, off-centre positioning or non-ideal
coil wirings could lead to a 𝑍 0 shift. This effect is expected to be even more severe for
manufactured custom hardware.

A DL algorithm is expected to discover even more such features that are not visible to
the human eye, as they are minor and hardware-dependent.

(a) Measured on 60 MHz. (b) Measured on 80 MHz.

Figure 3.2.: Non-idealities of different machines allow to disambiguate between shims but
are unique per device. (Subfigure b adopted from Becker et al. (2022a).)

3.4. Summary - Why learning is needed (and the solution)

In summary, the above-mentioned features of spectral peak distortions can be exploited to
infer and distinguish shim currents. This, however, required a more sophisticated approach
that can process full spectra and correlate them to shim correction terms.

This gap was filled using AI algorithms to guide the shimming process. It is hypothesized
that an AI algorithm, either DL or RL, can learn shim values given 1D 1H spectra. The main
objective of the approaches in this thesis was to enhance and accelerate the shimming
process.
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It was anticipated that developing an AI-driven shimming approach would lead to the
realization of the following benefits:

1. An AI algorithm, either DL or RL, can learn shim values given 1D 1H spectra.

2. AI-driven shimming can speed up and improve shimming.

3. AI extracts additional hidden features in sequences of multiple spectra.

4. Using AI relieves the necessity to define priors or mathematical formulations of the
spatial shim functions, as required for gradient shimming

5. AI-driven shimming is supposed to be a knowledge-based approach, simply learning
from data.

3.5. Requirements for a DL-based shimming approach

Setting up a machine learning framework for a new problem brings many hidden technical
costs, i.e., theML code itself is comparably simple to implement compared to the surrounding
infrastructure that, for example, includes configuration, data collection, or machine
interfaces. For an AI-driven shimming approach to function, several requirements are
given (see Figure 3.3), namely a target system to be shimmed, an interface to this, and some
form of data(set) from this system, which then can be used to train a formerly selected
neural network architecture. Finally, a reproducible evaluation scenario should be created,
both "offline", i.e. on a hold-out test set, and "online", i.e. on real hardware.

Data acquisition Preprocessing Learning

Architecture

Inference

�����

Machine

NMR

Online

Offline

Figure 3.3.: Working sites of a deep learning pipeline, where online (on real hardware) and
offline are differentiated.

3.5.1. System to shim

Generally, deep neural networks can be trained in either simulation or reality. Simulated
environments are cheap and easy to compute and do not require real hardware, which is
expensive to buy and operate. However, simulated environments often do not represent
the real world, and models trained in one domain, usually do not generalize well to new

48



3.5. Requirements for a DL-based shimming approach

domains (Farahani et al., 2021; Pan & Yang, 2010). This is also described as the reality gap.
This is particularly notable for the hardware non-idealities for NMR spectrometers, as
seen in section 3.3.
This makes it unavoidable to use real hardware for testing purposes. However, simu-

lations can be utilized for prototyping and to reduce the search space of hyperparameters.
The following systems are considered within this thesis:

SHIMpanzee – A shimming simulation The SHIMpanzee simulator is an open-source
project published by van Meerten and Franssen that mimics the shimming problem for
shims up to third order (van Meerten & Franssen, 2017). The simulation allows inferring
changes to a single spectral peak by applying spherical harmonic distortions (the shims’
usual spatial representation (Golay, 1958)) to a cylindrical volume. The spectrum is
obtained as the histogram over all voxels of the distorted volume, which follows the
general shimming idea (section 2.2).

Due to orthogonality among most shims in an ideal simulation, any changes to similar
shim pattern currents (e.g. 𝑋 and 𝑌 ) result in the same line broadening effects. Thus,
𝑍, 𝑍 2, 𝑍 3 shims must be used to get distinguishable broadening effects for DL training.

For the purpose of this thesis, the SHIMpanzee simulator has been modified, namely,
normalization of shim values to [−1, 1] and spectrum scaling to avoid vanishing gradients
during DL training. Further, the simulation has been wrapped into a gym environment
(Brockman et al., 2016) to allow easy interfacing with common RL algorithms.

Magritek benchtop NMR spectrometers Low-field benchtop magnets are relatively low
cost (<100k€), and their compactness allows usage within small laboratories. Furthermore,
they do not require maintenance, such as filling liquid nitrogen or helium for cooling.
However, they show lower resolution than high-field systems and usually do not have any
gradient coils.

Three spectrometer systems from Magritek GmbH (Aachen Germany, 202 (2021)) were
used with standard 5 mm sample tubes:

• Magritek Spinsolve 80 Carbon with a 1H frequency of 80.24 MHz.

• Magritek Spinsolve 60 Ultra Carbon with a 1H frequency of 61.92 MHz.

• Magritek Spinsolve 60 Ultra Multi-X with a 1H frequency of 61.95 MHz.

The systems are equipped with first and second-order shim coils, and come with the
Spinsolve-Expert software that allows script editing.

Preclinical Bruker MRI magnet A preclinical 15.2 T ultra high field magnet (Bruker, Ett-
lingen, Germany) was used with a commercial probe equipped with a 35 mm diameter
birdcage coil tuned to 650 MHz for 1H nuclei. The system was controlled with the
Paravision software.

49
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3.5.2. System interface

An interface between the DL framework and the actual shim controller and corresponding
NMR signal outputs is required to allow flexible control of the systems mentioned above.
In terms of the simulator, a simple Python wrapper in the form of a gym environment
(Brockman et al., 2016) was implemented.

For real hardware, special scripts are required:

Magritek systems An interface between Python and the python-like programming language
Prospa, the basis of Magritek’s Spinsolve Expert software, was implemented. The interface
allows to utilize open-source python libraries for NMR data processing (nmrglue Helmus
& Jaroniec (2013)) and deep learning frameworks (PyTorch (Paszke et al., 2019), and ray

tune (Liaw et al., 2018)).

Bruker systems It is challenging to modify deployed software applications to access
specific hidden parameters, such as the hardware shim components in Bruker’s Paravision
software. Also, this magnet was used with a custom-built parallel probehead (see chapter 6),
which requires an external shim control source (and software). Conveniently, a Python
click bot was utilized to connect the Bruker software for automated spectra acquisition,
the shim current source’s interface, and the file system for signal output.

3.5.3. Data collection and preprocessing

Deep learning algorithms strongly rely on the availability of datasets. Ideally, the datasets
should be as large as possible and represent the shimming task accurately and in an
unbiased way. Indeed, biases are often overlooked issues in datasets (Torralba & Efros,
2011) but are sometimes unavoidable due to the desired application. Therefore, each
AI-driven shimming approach requires the acquisition of a new dataset tailored for the
dedicated shimming use case and the number of shims, e.g., shimming a probe from scratch,
regular fine-tuning, or shimming parallel channels.

Proper preprocessing steps such as data cleaning, normalization, and feature extraction
are crucial after data acquisition to ensure sufficient and representative data that is
digestible1 by a DL model.

A sharing platform has been created to make all acquired datasets publicly available for
other researchers. The shimming database (ShimDB), available via https://github.com/
mobecks/ShimDB, collects proton NMR signals recorded under shim coil field distortions.

3.5.4. Input data design and architecture selection

In contrast to computer vision problems, where a bijective mapping between inputs
and outputs is usually given at the input’s pixel level, NMR problems are non-bijective.
Shimming an NMR spectrometer, for example, originates in an inhomogeneous 3D volume,
yielding a 1D NMR signal. Thus, there is no straightforward link from a single 1D signal
1For example, data that is not normalized will lead to exploding gradients during training.
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3.5. Requirements for a DL-based shimming approach

to all proper shim values. For example, even for a 𝑍 2 distortion that will give asymmetric
line distortion, from which the sign of the shim correction can be inferred, it is unclear
what values the other shim coils must take.

DL, however, is well known to find hidden patterns in data (sequences). Therefore, the
input to the neural network should consist of a smart batch or sequence of 1D NMR signals
under different known shim perturbations. This can be compared to RGB images, where
each image channel represents a differently coloured "viewpoint" of the actual target.

Once a proper input shape has been selected, a fitting neural network architecture must
be chosen to process these (high-dimensional) inputs and give proper (low-dimensional)
predictions. For example, an NMR spectrum will benefit from convolutional processing,
where spatial features of the spectrum can be detected by convolutional feature maps. On
the other hand, Recurrent Neural Networks (RNNs) are more appropriate for sequential
data of varying lengths, as theyworkwell in handling temporal dynamics and dependencies
in the data. Notably, the architecture’s output layer must be carefully tailored to align
with the specific objectives of shimming.

The choice of architecture, therefore, is not just a technical decision but a strategic
one, directly influencing the success of the shimming process. Incorporating automated
neural architecture search (NAS) algorithms offers a systematic and efficient method
for exploring the vast landscape of possible architectures, identifying the most suitable
tasks like shimming. NAS algorithms automate the design process of neural network
architectures, iterating through numerous configurations to find the optimal structure
that balances performance with computational efficiency.

3.5.5. Training and optimization

The DL model must be trained on the collected data using an appropriate optimization
algorithm, such as stochastic gradient descent (SGD) or Adam (Kingma & Ba, 2014). This
involves defining a suitable loss function and determining the optimal hyperparameters
for the approach, such as the learning rate, batch size or the number of epochs, as they
significantly influence the model’s learning process and performance.

Automated Hyperparameter Optimization (HPO) algorithms can be employed to simplify
the hyperparameter tuning process. HPO basically acts as an optimizer for the DL
optimizer. It automatically trains multiple models with different hyperparameter settings
and optimizes these parameters to minimize an error function. This method significantly
enhances the efficiency of the model’s training, leading to more accurate DL models, while
reducing manual interactions.

3.5.6. Evaluation and validation

Evaluating and validating a trained DL model are critical steps to assess the model’s
performance and applicability. Firstly, testing the model on a separate test set, unseen
during training, is essential to objectively evaluate its performance and generalization.
Analyzing the error on the test set ensures that the DL model is statistically sound.
Finally, and most importantly, the model’s real-world applicability must be assessed,
which, in the context of shimming, means evaluating the model’s performance in an
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"online" setting. These in situ evaluation tests ensure they are practically effective in their
intended application.
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4. Feasibility study for AI-driven shimming
of linear shims

The proposed method of this chapter was published in an article titled "Deep regression
with ensembles enables fast, first-order shimming in low-field NMR" in the "Journal of
Magnetic Resonance" in 2022. The work was also presented at the Experimental Nuclear
Magnetic Resonance Conference (ENC) 2022 and the European Conference on Magnetic
Resonance (EUROMAR) 2022. This chapter’s text and figures were reproduced and adapted
from the author’s published work.

4.1. Overview
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Figure 4.1.: Graphical abstract of deep regression with ensembles (DRE). Differences
from the other approaches within this thesis are highlighted.

Signal-based shimming is still a tedious and time-consuming process, mainly due to
the non-orthogonalities of the shim coils and ambiguities between field distortions in
the sample volume and one-dimensional NMR signals. Even though it was known that
NMR signals reveal information about inhomogeneity patterns (see chapter 3), general
optimization algorithms were used to shim the magnetic field.
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This chapter describes a unique proof-of-concept for utilizing AI for shimming, i.e.
AI-driven shimming, and hypothesized that a deep neural network could learn shim
values given a batch of one-dimensional 1H NMR spectra (see Figure 4.1). Accordingly,
a method for rapid shimming was established based on a supervised deep regression
approach with ensembles. Deep regression approaches are supposed to automatically
detect non-linear relations between high-dimensional input data and numerical targets.
Furthermore, ensembles of multiple weak learners are usually combined to reduce the
prediction variance. The proposed approach was called deep regression with ensembles
(DRE), which focused on a non-iterative scenario for initial shimming to reach a state
near the global optimum rapidly. The use-case represented shimming a probe from scratch
with first-order shims only, which could be beneficial for the acceleration or improvement
of existing automated shimming methods, focusing on high-throughput NMR alone or in
conjunction with miniaturized hardware (Li et al., 1999; Korvink et al., 2019), without the
use of gradients or even a lock channel.

Due to the lack of publicly available data and machine-specific non-idealities, a dataset
for first-order NMR shimming that allowed inference of spectral changes depending on
shim offsets was acquired. The dataset was then used to train multiple deep regression
models (so-called weak learners) that could simultaneously predict three first-order shim
currents given four distinct NMR measurements: the current unshimmed spectrum, and
three spectra with individually modified shim values. An ensemble then combined the
predictions of its weak learners via a meta-model to increase prediction stability. The
performance of the proposed method was evaluated on real hardware. Furthermore, a
limited comparison with regular shimming based on the downhill simplex method was
conducted.

The main contributions of this chapter are summarized as follows:

• First feasibility study of AI-driven shimming,

• by applying a deep convolutional neural network to regress shim correction values,

• utilizing the first dataset of NMR spectra for shimming.

4.2. Method - DL part

This section focused on the deep learning part of AI-driven shimming, starting with a
formal problem definition, followed by a description of the neural network architectures
used for this chapter’s approach, and completed with the concept of how the DL approach
was applied to shimming.

4.2.1. Problem definition

Let D = {(x, y)𝑖} |D|𝑖=1 be a database, where (x, y)𝑖 is a pair including the input x ∈ R𝑊×4

with dimensions𝑊 × 4, where𝑊 is the input spectra’s width, and the associated target
y = (𝑦1, 𝑦2, ..., 𝑦𝑛) ∈ R𝑛 is defined as a real-valued vector of 𝑛 separate shim coils. Also,
consider the regression model F𝜃 (·), represented by a deep convolutional neural network
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with parameters 𝜃 . The network parameters 𝜃 are learned in a supervised manner using the
database D to minimize the mean squared error (MSE) between the prediction ŷ = F𝜃 (x)
and the target y.

Regarding shimming, each shim value𝑤𝑖 is represented by a prediction ŷ𝑖 . The inputs x
are defined as x = [𝑢 (0), 𝑢 (𝑠𝑋 ), 𝑢 (𝑠𝑌 ), 𝑢 (𝑠𝑍 )], where the unshimmed spectrum 𝑢 changes
as a function of the systematic shim offsets 𝑠𝑋 , 𝑠𝑌 , 𝑠𝑍 to the 𝑋,𝑌, 𝑍 shim coils. The DL
model predicts the shim correction terms F𝜃 (x) = (𝑦𝑋 , 𝑦𝑌 , 𝑦𝑍 ), such that y𝑖 − ŷ𝑖 ≈ 0. Note
that neither the shim field patterns 𝑆𝑖 , nor the magnetic field 𝐵0 is know.
The model F is represented by an ensemble of weak learners combined with different

meta-models, e.g. a multi-layer perceptron (MLP).

4.2.2. DL architecture

CNNs are a great candidate for high-dimensional input data with sparse information
or spatially distributed features across multiple and high-dimensional input dimensions
(see Subsection 2.3.4). Thus, a one-dimensional convolutional neural network regressed
shim values given (multiple) NMR spectra. Furthermore, an ensemble of numerous weak
learners was supposed to reduce prediction variance and uncertainty.

(a) Weak learner.
(b) Ensemble of weak learners with MLP

meta-model.

Figure 4.2.: DL architectures for DRE. Given a batch of four spectra, the convolutional
neural network (and ensemble thereof) predicts three shim correction values.
(Edited from Becker et al. (2022a).)

Level-0 weak learners Each level-0 model (see Figure 4.2a) consisted of a convolutional
block that extracted features from the four input spectra, followed by two fully connected
layers with 32 nodes that predicted the shim corrections. In detail, the convolutional block
consisted of 3 − 5 layers, each represented by a sequence of one-dimensional convolutions
with 32 filters and varying kernel sizes, ReLU activation, and dropout. The last layer used
linear activation for the regression of the targets.

Level-1 meta models The meta-model combined features of its 𝑚 weak learners, re-
presenting a mixture of stacking and boosting (see Subsection 2.3.4). Heterogeneous weak
learners were chosen to allow for higher variance in predictions useful for the ensemble
model. The following modifications were considered and evaluated against each other:
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• Simple averaging of the weak learner predictions.

• A single fully connected layer combining the weak learners’ regression layer (∈
R𝑚×𝑛).

• A two-layermulti-layer perceptron (MLP) based on the second-to-last fully-connected
layer of the level-0 models. The MLP used𝑚 × 32 nodes in its first and 32 in its
second layer (see Figure 4.2b).

4.2.3. Concept

Conceptually, shimming with DRE is a non-iterative process. Starting with the unshimmed
initial spectrum, three offsets were applied to 𝑋 , 𝑌 and 𝑍 shims. The corresponding batch
of four spectra was fed into the DL model to predict the shim corrections (Figure 4.3).

Figure 4.3.: Concept of deep regression with ensembles (DRE). Three-dimensional
distortions (illustrated as inhomogeneity cubes) of the sample volume collapse
to a one-dimensional signal. A batch of distinguishable spectra is obtained
by systematic offsets of the available shim currents, which serve as input to
a deep neural network. The prediction contains the shim values to achieve a
more homogeneous field and, thus, a higher-quality spectrum. (Adapted from
Becker et al. (2022a).)

4.3. Method - Hardware setup and dataset acquisition

4.3.1. Spectrometer hardware and sample

A low-field benchtop magnet (Magritek 80MHz) without gradient coils was chosen for the
feasibility study in this chapter (see chapter 3 for a detailed description).

The measured sample consisted of distilled water mixed with copper sulfate to reduce
spin-lattice or longitudinal relaxation time 𝑇1, allowing for faster data acquisition. In
analogy to the study (Kjær et al., 1987), the 50 mLH2Owasmixedwith 0.062 gCuSO4+5H2O
(CAS No. 7758-99-8), resulting in a concentration of 5 mmol/L CuSO4. Inversion recovery
experiments revealed that 𝑇1 ≈ 290 ms.
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4.3. Method - Hardware setup and dataset acquisition

4.3.2. Dataset acquisition

A small-scale dataset containing over 9000 NMR signals has been recorded under the
application of linear shim offsets. The dataset is called LinearShimDB and is part of the
ShimDB database. LinearShimDB allows inference of changes to the NMR spectrum or
free induction decay (FID) depending on 𝑋 , 𝑌 and 𝑍 shim offsets.
The dataset’s reference spectrum R and reference shim values Ref have been acquired

after shimming the magnet with the manufacturer’s automated shimming technique, based
on the downhill simplex method (Press, 2014). All data samples were then obtained by
relative, systematic offsets 𝑠 from the reference shim values R in a range 𝑅 with step sizes
𝛼, 𝛽,𝛾 , which change in a grid-like manner and define the target y = yR + (𝛼𝑠𝑋 , 𝛽𝑠𝑌 , 𝛾𝑠𝑍 ).
𝑅 is chosen large enough to mimic shimming a probe from scratch.

Each data instance includes the following information: A binary file containing the
raw 1H-FID with dimensions 1 × 32768; the shim values ∈ [−215, 215] for 𝑛 shims; the
acquisition parameters; and the processing parameters. We pretend that the spectrometer
only has 𝑛 = 3 first-order shims. Thereby, only 𝑋 , 𝑌 , and 𝑍 shim values are non-zero.

All experimental parameters and the dataset’s characteristics are summarized in Table 4.1.

Characteristics

Nr. spectra 9261
Shim range 𝑅 ±10000
Step size 𝑠 1000
Shims 𝑋,𝑌, 𝑍

Acquisition
parameters

Nucleus 1H
Bandwidth 20 kHz
Points 32768
Repetition time 2000 ms
Filtering -
Phase correction 𝜙0

Table 4.1.: Characteristics and acquisition parameters of the first-order shimming dataset
(LinearShimDB).

Transfer dataset Acquisition in a grid-like manner exhibits several disadvantages. One
is a temporal discrepancy between samples acquired at the beginning versus at the end
of dataset collection. During inference, offsets close to the starting values are sampled,
compared to row and column-like acquisition in row and columns during grid-like dataset
collection. Therefore, an additional transfer database T with |T | = 100 has been acquired
to differentiate from the systematic nature of data collection. T was obtained under the
same conditions as D, but each of the four spectra in a batch x was jointly acquired and
used to fine-tune the weak learner or the meta-model.
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4.4. Results - Deep Learning

4.4.1. Data preprocessing

Dataset creation The input batches xwere constructed from the dataset by mining unique
target values ŷ from the dataset D, and three spectra corresponding to offsets 𝑠 to 𝑋 , 𝑌 ,
and 𝑍 shims, respectively. All labels were defined as relative shim offsets to the reference
spectrum of D to prevent the model from memorising absolute shim values for spectra.
The spectra were generated by fast-Fourier-transformation and phase-correction of the
raw FIDs using nmrglue (Helmus & Jaroniec, 2013) and the phase correction values given
by the system’s auto-phase method. Then, the real part of the spectrum was extracted.

The dataset was split into training, validation, and test of size 6400/800/801, respectively.

Normalization To achieve faster convergence, each spectrum was normalized by a
constant normalization factor of 105 (the maximum intensity for perfect shims) such
that the spectral values lie within the range [0, 1]. All spectra were downsampled from
32768 to 2048 data points as the distorted peaks span almost the full bandwidth of the
spectrum. The int-16 regression targets were divided by 215 to avoid exploding gradients
and multiplied by 100 to avoid vanishing gradients during training.

Augmentation Data augmentation included shifting the spectra, i.e. the peak position
changes and imitates a drifting magnet. Furthermore, label noise was used to increase the
prediction robustness.

4.4.2. DL training of a convolutional neural network for shimming

As mentioned in section 2.3, tuning the hyperparameters during DL training and designing
an optimal neural network architecture for the task at hand is as cumbersome and error-
prone as shimming a magnet by hand.

Here, Hyperparameter Optimization (HPO) and Neural Architecture Search (NAS) are
handy to significantly accelerate the model development process and enhance performance
while reducing the need for manual intervention. Both methods can be utilised by
frameworks such as ray tune (Liaw et al., 2018), where one can define search spaces
across different hyperparameters and architecture design choices.

Weak learners training The NAS search space of a single model (or weak learner) consisted
of a variable number of layers ℓ , kernel sizes, and other design choices.

More precisely, the search space for convolutional layers covers 3, 4 or 5 layers, kernel
sizes ∈ {11, 21, 31, 41, 51, 71}, stride ∈ {1, 2, 4}, 32 or 64 feature channels and pooling of 1
or 2. Dropout was used for convolutional and fully connected layers with probabilities 0.2
and 0.5, respectively.

Ensemble training Ensembles of neural networks are trained by first training several
weak learners, e.g. as described in the previous chapter, and their weights are "frozen", i.e.
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the trained weights of the weak learners are not allowed to be updated. The prediction of
several weak learners was combined by a meta-model, which needs to be trained to shift
importance between or combine the level-0 predictions.
The two trainable meta-model types introduced in Subsection 4.2.2, namely FC and

MLP, were trained with hyperparameter optimization (HPO) using random search and
early stopping. The search space of HPO for meta-model training is described in Table 4.2.
For both meta-models, 500 networks with different hyperparameters were trained, and
the best models were selected w.r.t. their validation loss.

Target Parameter Options
Architecture Nr. weak learners {10, 50}

Meta type {FC, MLP}
Dropout {0, 0.1, 0.2, 0.5, 0.8}

Augmentation Shift type {individual,batch}
Shift values ∈ {5, 10, 100}
Label noise {0, 0.1, 0.5, 1}

Training details Learning rate [1 × 10−4, 1 × 10−6]
Epochs {50,100}

Batch sizes [8, 16, 32, 64, 128]
Weight decay {0, 10−4, 10−2, 0.1, 0.5, 1, 2, 10}

Optimizer {SGD, Adam}
Training set {D,T }

Table 4.2.: HPO and NAS search space for ensemble training.

The shift type, given in array indices, describes whether all spectra in the batch were
shifted differently (individual), or the whole batch was shifted with the same value (batch).
The SGD optimizer used a momentum of 0.9, and the Adam optimizer 𝛽1 = 0.9 and
𝛽2 = 0.999 to minimize the MSE loss.

Hardware requirements The training was performed using an AMD Ryzen 5900X with
64 GB RAM, and a graphics processing unit NVIDIA GeForce RTX 3090. The LinearShimDB
dataset roughly requires 3.4 GB of disc space. Each weak learner allocated between 0.5
and 2.5 MB of disc space, and the meta-models roughly 200 KB. Time-wise, inference with
the most resource-intense MLP-based ensemble model required 190 ms on average for
prediction, using an Intel Core i5-8500 and 200 MB of RAM. In comparison, a typical NMR
acquisition can take more than 4 s, and the raw FID takes more than 350 kB of disc space.
Thus, AI-driven shimming does not put an additional burden on resource requirements.

4.4.3. DL training results

Before this thesis, whether DL could learn shim correction terms from a batch of NMR
spectra was unknown. Offline training on the dataset D already showed that a DL model
can predict three shim corrections given four 1D-signals while there is no apparent
correlation between the input and output. A single model achieved an MAE of 596 ± 769

59



4. Feasibility study for AI-driven shimming of linear shims

(mean± standard deviation) on the test set. The sampling resolution of the offset steps was
𝑠 = 1000; thus, the prediction performance was close to the optimum near 1/2 of sampling.

Detailed results are given in Table 4.3. The entire network with ensembles was tested
in situ only.

Weak learner results The top-50 architectures among 300 runs were selected w.r.t. vali-
dation error, and an exemplary selection of the top 10 is given in Table 4.3, which shows
that the models have heterogeneous architectures with varying test errors. This, in turn,
is beneficial for the diversity of the ensemble as it can ignore predictions of "bad" level-0
models by masking the weights with ReLU.

Additionally to NAS on level-0 weak learners, HPO was investigated, leading to worse
in situ results. Thus, HPO was neglected for ensemble training.

Rank MSE (↓) val Channels Kernel Layers Pooling Stride MAE (↓) test
1 10.1 64 51 3 1 2 596 ± 769
2 10.2 64 41 3 1 2 666 ± 806
3 11.5 64 31 3 1 2 702 ± 919
4 12.2 64 31 5 1 2 573 ± 622
5 12.4 32 51 4 1 2 575 ± 744
6 13.5 32 71 4 1 2 662 ± 758
7 18.3 32 71 3 1 4 717 ± 859
8 19.3 32 31 3 1 2 814 ± 954
9 20.2 64 51 5 1 1 813 ± 954
10 24.4 32 11 5 1 2 844 ± 891

Table 4.3.: Exemplary training results for the top-10 weak learners. Reported
parameters are the mean squared error (MSE) on the validation set, the number
of filter channels, kernel sizes and stride, the number of layers, the pooling
factor, and the mean absolute error (MAE) on the test set.

Ensemble results The best parameters w.r.t. the validation error for both FC- and MLP-
based meta-models shared 50 weak learners utilizing dataset D, augmentation with full
batch shifts of 10, weight decay 10−4, 100 epochs and dropout of 0. The best FC-based
ensemble achieved an MSE𝑣𝑎𝑙 = 22.0 and was trained with batch size 32 and the SGD
optimizer and a learning rate of 3.5 × 10−5. The best MLP-based ensemble achieved an
even better MSE𝑣𝑎𝑙 = 3.5, while being trained with a batch size of 16, label noise of 0.1
(w.r.t. step size 𝑠) and the Adam optimizer with a learning rate of 1.5 × 10−5.
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4.5. Results - Experiments

4.5.1. Performance metrics and evaluation protocol

Several performance metrics were used to judge the improvement of spectral quality
through shimming.

Metrics A custom criterion 𝑐 has been introduced that combines linewidth and peak
height into a single scalar value, and 𝑐 describes whether a spectrum 𝑔 is better than a
reference spectrum 𝑟 as:

𝑐 (𝑔, 𝑟 ) = 1
2

(
𝜆1 ·

FWHM(𝑟 )
FWHM(𝑔) + 𝜆2 ·

max(𝑔)
max(𝑟 )

)
, (4.1)

where𝑚𝑎𝑥 (·) is the maximum peak height and FWHM(·) is the full width at half maximum
of that peak. The criterion 𝑐 indicates whether spectrum 𝑔 is worse (0 < 𝑐 < 1) or better
(𝑐 > 1) than the reference 𝑟 . Furthermore, 𝜆𝑖 is a weighting term between linewidth and
peak height.

Based on this custom criterion, the success rate was introduced, which describes whether
shimming was successful and is defined as:

SR =

{
1, if 𝑐𝑠ℎ > [𝑐𝑖𝑛𝑖𝑡 , 𝑐𝑋 , 𝑐𝑌 , 𝑐𝑍 ]
0, otherwise ,

(4.2)

where [𝑐𝑖𝑛𝑖𝑡 , 𝑐𝑋 , 𝑐𝑌 , 𝑐𝑍 ] are the quality values for the input batch, calculated on the initial
spectrum and the spectra with shim offsets to the 𝑋,𝑌, 𝑍 shims, and 𝑐𝑠ℎ is the criterion
after shimming.
Furthermore, the direction ratio DiR was introduced to indicate whether the signs of

prediction and distortion match for all 𝑛 shims. This indicates whether the method pointed
towards the global minimum, and it is defined as:

DiR =
1
𝑛

𝑛∑︁
𝑖=1
(sgn(𝑦𝑖) == sgn(𝑦𝑖)) , (4.3)

where sgn(·) is the sign function, 𝑦𝑖 is the model’s prediction and 𝑦𝑖 is the true distortion.
Finally, the mean absolute error (MAE) between predicted and true shim distortions

was measured.

Evaluation protocol To evaluate in-situ functionality and generalizability, in total 5
different models, i.e. DR and DRE with different meta-models, were tested on 100 random
distortions𝑦𝑋 , 𝑦𝑌 , 𝑦𝑍 ∈ [−10000, 10000] of𝑋,𝑌, 𝑍 shims, drawn from a uniform distribution.
The investigated samples include pure water with CuSO4, ethanol (CAS No. 67-66-3)
dissolved in water with a molar fraction of 𝜒 = [0.1, 0.5], and isopropanol (CAS No.
67-63-0) in water with 𝜒 = 0.5.
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4.5.2. In-situ experiments

Average values for all models, metrics, and the selected samples are reported in Table 4.4.
The results indicate that an AI-driven shimming method works in practice, and it can
predict shim correction terms given only a batch of four unshimmed NMR spectra with
systematic offsets to the three linear shim currents.
The following describes detailed comparisons between the different model types and

generalization tests to other samples.

Different model architectures Both the single model (weak learner) and MLP-based DRE
achieve SR of 93% and SR 94% on water, respectively.

Simple averaging of the best 50 weak learners shows worse performance, and confirms
that a meta-model needs to be trained. Here, a two-layer MLP with non-linear connections
of the second-to-last features offers an advantage in improving all metrics compared to a
non-linear combination of the weak learners’ last layer.
The major difference between single and MLP-based DRE is the variance in criterion

improvement and error. The results indicate a slightly more robust prediction behaviour
for ensembles, especially in its variance. A qualitative evaluation is also given in section 8.5.
The single model can, on average, achieve narrower linewidths but shows higher variance.
This can also be seen in Figure 4.4, showing the distribution of linewidth change compared
to the first spectrum, where the MLP was overall more stable.

Figure 4.4.: Probability density function of
linewidth changes, compared
between a single model and
an MLP ensemble. The dashed
line indicates a fitted Gaussian.
(Edited from Becker et al.
(2022a).)

Even a single model, i.e. weak learner,
achieved an SR of 93% and a large
improvement (mean of +435%) on the
spectral quality for water.

For the most promising models, namely
a single model and MLP-based DRE,
graphical shimming results are reported in
Table 4.5 for H2O, ethanol and isopropanol.

Generalization to different samples Gen-
eralization of AI-driven shimming based
on DR(E) was tested on samples with
more than one spectral peak, namely
ethanol with 𝜒 = [0.1, 0.5] and isopropanol
with 𝜒 = 0.5. As the training datasets
D and T only consist of one sample
with a single peak (water with CuSO4),
general DL findings would assume that the
prediction performance was biased towards
this sample. Surprisingly, shimming
performance yielded success rates above
91% for ethanol and isopropanol despite the risk of confusion among the peaks. One
reason could be that the initial distortions of the peaks are so broad, that the peaks overlap
and smear into one broad peak.
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Single model Ensemble
Untuned Tuned to T Average FC MLP

H2O Success Rate SR ↑ 0.93 0.91 0.61 0.76 0.94
Direction Ratio DiR ↑ 0.90 0.89 0.77 0.78 0.89
Mean 𝑐 boost ↑ +435%±559 +394%±471 +125%±244 +127%±124 +399%±560

Averaged MAE ↓ 1878±1271 1703±969 3989±2529 3191±1459 1756±1016

Ethanol (0.5) SR 0.92 0.89 0.55 0.73 0.93
DiR 0.86 0.86 0.79 0.78 0.85
Mean 𝑐 boost 157%±130 136%±99 28%±14 73%±63 123%±34

Averaged MAE 2431±1287 2492±1303 4510±1999 3441±1602 2460±1217

Ethanol (0.1) SR 0.91 0.90 0.68 0.71 0.89
DiR 0.87 0.85 0.77 0.78 0.85
Mean 𝑐 boost +265%±214 +205%±158 +77%±38 +91%±66 +257%±314

Averaged MAE 2170±1292 2478±1334 3995±2344 3462±1701 2250±1217

Isopropanol (0.5) SR 0.91 0.95 0.65 0.80 0.90
DiR 0.89 0.90 0.77 0.82 0.87
Mean 𝑐 boost +299%±320 +257%±278 +74%±154 +91%±107 +201%±156

Averaged MAE 1967±1177 2102±1229 4199±2533 3393±1561 2097±956

Table 4.4.: In situ results of AI-driven shimming using the DR(E) approach with
a single model and different ensemble types. Values are reported as mean
± standard deviation over 100 random distortions drawn from a uniform
distribution for different samples with molar fraction (𝜒). The best values
are marked in bold. Abbreviations: FC = fully-connected, MLP = multi-layer
perceptron, T = transfer database, SR = success rate, DiR = direction ratio,
MAE = mean absolute error, 𝑐 = criterion.

4.6. Results - Comparison

The shimming performance of the best models in this chapter, namely a single model (DR)
andDREwithMLP as themeta-model, were compared toMagritek’s built-in implementation
of the downhill simplex method, which in turn is based on the algorithm in Press (2014).

The following scenarios were compared:

1. Theoretical minimum number of acquisition

2. Required number of acquisitions of AI-driven vs traditional shimming

3. Criterion improvement by combining AI and traditional methods, called "AI-assisted"
shimming

Theoretical minimum The simplexmethod requires at least𝑛+1measurements for𝑛 shims
to initialize its simplex structure, and one to four (average of two) function evaluations
per iteration (Ernst, 1968). The proposed DRE method consistently needs four spectra for
one iteration, and one spectrum to check the results, allowing for faster shimming in a
fixed amount of time, given that the method succeeds.
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Table 4.5.: Exemplary selected results of shimmed spectra for water, ethanol (𝜒 = 0.5),
and isopropanol. A singlemodel’s performancewas compared to ensembleswith
an MLP-based meta-model. Additionally, the optimal spectrum was reported
by applying the simplex method only to the first-order shims. Abbreviations:
EtOH = ethanol, i-PrOH = isopropanol. (Adopted from Becker et al. (2022a).)

64



4.6. Results - Comparison

Method FWHM𝑖𝑛𝑖𝑡𝑖𝑎𝑙 FWHM𝑠ℎ𝑖𝑚𝑚𝑒𝑑 (↓) fe (↓)
DR 1432±532 516±330 4+1
simplex " 552±411 16.3±11.1

DRE " 486±342 4+1
Simplex " 473±414 21.1±16.6

Table 4.6.: Comparison of necessary NMR acquisitions of the simplex method to achieve
a similar criterion as obtained with the DR(E) method. The best values are
marked in bold. Abbreviations: fe = function evaluations, FWHM = full width
at half maximum, DR = Deep Regression, DRE = DR with ensembles.

Convergence speed of AI-driven vs traditional shimming The convergence speed, i.e. the
number of necessary acquisitions, of AI-driven and traditional shimming was compared:
The DR and DRE methods proposed in this chapter predicted shim corrections for 100
random distortions drawn from a uniform distribution. Then, the simplex was started from
the same distortion with step size 𝑠 = 1000, and it was stopped if it reached a linewidth
equivalent to the one achieved with either DR or DRE, or it was stopped if it could not
find an equivalent criterion within 50 iterations.
The resulting number of acquisitions is reported in Table 4.6 and proves that DR and

DRE can accelerate the shimming process, even though the simplex tends to be robust
against the initial simplex’ size and shape (Ernst, 1968), and is known to produce rapid
drops of initial values (Lagarias et al., 1998).

Criterion improvement of AI-assisted shimming The second comparison covers "AI-assisted"
shimming, i.e. traditional methods were initialized with the prediction of the DL-based
approach proposed in this chapter.
The results in criterion improvement were reported after 𝑖 iterations of the simplex

method with step size 𝑠 = 1000, and after 𝑖 − 4 simplex iterations while initialized with DR
or DRE. Iterations were reduced by four because one iteration of DRE needs four spectra
for its prediction.
Table 4.7 demonstrated the advantage of AI-assisted shimming: By initialising a tra-

ditional optimization method, which guarantees convergences, with a powerful but
unstable DL method, the criterion could be increased roughly by a factor of 3, and this
for the same number of NMR acquisitions. Thus, AI-assisted shimming is a promising
candidate to achieve fast and reliable shimming results.
Note that deep regression (DR) performs similarly to deep regression with ensembles

(DRE) in quality improvement. Still, ensembles demonstrate an advantage in the number
of necessary NMR acquisitions compared to the simplex method. Compared to the simplex
method’s iterative procedure, which can take up to one hour, this is a major step in reducing
time requirements (and can thus save money).
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4. Feasibility study for AI-driven shimming of linear shims

Method Iterations 𝑖 (↓) Criterion after DR/DRE (↑) Criterion after simplex (↑)
simplex 10 - ×5.2 ± 3.96
DR + simplex 1 + 6 ×4.6 ± 4.9 ×15.4 ± 11.1
DRE + simplex 1 + 6 ×5.0 ± 6.3 ×15.7 ± 11.7

Table 4.7.: Comparison of criterion improvement w.r.t. initial spectrum between the default
downhill simplex and simplex initialized with the DRE method. Default simplex
was run for 𝑖 iterations and DR/DRE+simplex for 𝑖 − 4 iterations because one
iteration of DR/DRE requires four measurements. Here 𝑖 = 10. Values are
reported as the initial criterion 𝑐𝑖𝑛𝑖𝑡× improvement± std. Best values are marked
in bold. Abbreviations: DR = Deep Regression, DRE = DR with ensembles.

4.7. Discussion/Limitations

The first proof-of-concept for AI-driven shimming to accelerate the shimming process
focused on a scenario with a deep convolutional neural network and only three linear
shims, which generally was insufficient to achieve spectroscopy resolution. Nevertheless,
the approach demonstrated that very broad initial lineshapes could be improved, nearly
reaching the optimum achievable with linear shims only, and this, despite the non-
orthogonality of shims and the bijectivity (or ambiguity) problem between field distortions
and NMR signals.

However, DRE is a one-shotmethod compared to traditional iterativemethods. Therefore,
convergence is not guaranteed. Nevertheless, all DL-based approaches cannot guarantee
convergence due to their stochasticity inside the network but can only provide uncertainty
with their predictions. After all, the main drawback of DRE is its grid-like data acquisition,
which does not scale well to more shims.

The next chapter introduces solutions, namely by addressing a different data sampling
strategy, more shims, and allowing for an iterative AI-driven shimming method.
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5. Doubly-deep learning for shimming with
random shim values

The method proposed in this chapter has been previously published in an article titled
"Acquisitions with random shim values enhance AI-driven NMR shimming" in the special
issue on "Artificial Intelligence in NMR, EPR, and MRI" in the "Journal of Magnetic
Resonance" in 2022. Additionally, the work has been presented at the Experimental
Nuclear Magnetic Resonance Conference (ENC) 2023 and the Helmholtz AI conference
2023. The text and figures in this chapter have been reproduced and adapted from the
author’s published work.

5.1. Overview

� � � �

Random steps � Predictive steps �Unshimmed � AI-shimmed �����

?

NMR

Shim values

0


 1�

AI

�

Figure 5.1.: Graphical abstract of enhanced deep regression (eDR). Differences from
the other approaches within this thesis are highlighted. (Edited from Becker
et al. (2022b).)

In chapter 4, the advantage of using DL to speed up shimming has been proven, and
it was shown that a batch of NMR spectra contain information to correct broad peak
distortions of linear shims, i.e., the ambiguity between same-order shims can be solved.
However, the DREmethodwas limited to providing one-shot predictions without iterations,
making it susceptible to failure. A significant drawback was data collection in a grid-like
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5. Doubly-deep learning for shimming with random shim values

manner, which exponentially1 increased time consumption depending on the number of
shims.

The approach described in this chapter was therefore developed to include more efficient
data collection and more sophisticated DL algorithms, and the following enhancements
(see Figure 5.1) have been implemented compared to chapter 4:

1. Incorporating an additional higher order shim, namely, Z2,

2. Setting other available shim coils to a reference optimum value2,

3. Experimental dataset collection with random sampling, including shim influence
weighting,

4. Customneural network architecture that combines convolutional layerswith recurrent
"action" information over temporal sequences,

5. Below 1 Hz linewidths on a reference sample peak.

The approach in this chapter was titled enhanced deep regression (eDR), for fast,
signal-based, and AI-driven shimming and focused on machine-specific shimming of
reference sample peaks for compact NMR.

5.2. Method - DL part

This section focuses on the deep learning part of AI-driven shimming, starting with a
formal problem definition, followed by a description of the neural network architectures
used for this chapter’s approach, and completed with the concept of how the DL approach
was applied for shimming.

5.2.1. Problem definition

Let D = {(x, y)𝑖} |D|𝑖=1 be a static dataset, where (x, y)𝑖 is an input-output pair. With 𝑛
being the number of separate shim coils, the input sequences x ∈ R𝑡×(𝐿,𝑛) of 𝑡 entities
are defined as x =

[ (
𝑢 (®0), ®0

)
,
(
𝑢 (𝑎1), 𝑎1

)
, ...,

(
𝑢 (𝑎𝑡 ), 𝑎𝑡

) ]
, where the unshimmed spectrum

𝑢 of length 𝐿 changes as a function of (random) shim offsets (or actions) 𝑎 ∈ R𝑛. Each
associated target y = (𝑦1, 𝑦2, ..., 𝑦𝑛) ∈ R𝑛 represents the distortion from the optimum and
is defined as a real-valued vector of 𝑛 elements. The regression model F𝜃 (·), represented
by a custom deep neural network with parameters 𝜃 , predicts the shim correction terms
F𝜃 (x) = (𝑦𝑋 , 𝑦𝑌 , 𝑦𝑍 , 𝑦𝑍 2), such that y𝑖 − ŷ𝑖 ≈ 0. The network parameters 𝜃 are learned in
a supervised manner using the dataset D to minimize a loss term L (usually the mean
squared error) between the prediction ŷ = F𝜃 (x) and the target y. Note the difference of the
shim distortions S w.r.t. the reference spectrum (see Subsection 5.2.3), that simultaneously
represent the labels y, and the shim offsets (or actions) 𝑎𝑡 w.r.t. the first, unshimmed
spectrum in a shimming sequence.
1It is important to note that this issue could be resolved by ensuring each batch is sampled together.
2This imposes different requirements on the DL models due to significantly different features.
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5.2. Method - DL part

5.2.2. Architecture

A custom, "doubly-deep" neural network architecture was designed (see Figure 5.2), where
each component has a specific advantage:

1. A convolutional part (CNN) extracts features from the individual spectra,

2. Past actions relative to the initial unshimmed spectrum are infused into the model,
and

3. An LSTM cell allows to learn temporal dependencies in shimming sequences of
flexible lengths.

The model’s input-to-features section (i2f) extracts features from the spectrum via 𝑙
convolutional blocks and infuses them with the current action 𝑎𝑡 in a fully-connected
layer. Taking the features and the last hidden state ℎ𝑡−1 as inputs, the LSTM cell then
generates two outputs: a prediction of the shim distortions ŷ via a small fully-connected
head (f2o), and the new hidden state ℎ (via f2h). Different regularization techniques such
as dropout (Srivastava et al., 2014) and layer normalization (Ba et al., 2016) are implemented
throughout the architecture.

Figure 5.2.: Convolutional LSTM architecture of enhanced deep regression (eDR).
Convolutional layers in the i2f block extract features from spectra, combined
with the past action information. An LSTM cell maps these features and the
last hidden state to the output prediction via f2o, and to the next hidden state
via f2h. (Edited from Becker et al. (2022b).)

The input at time step 𝑡 consists of a 1D spectrum, and the current shim offsets 𝑎𝑡 .
Action infusion helps the model to locate itself in shim space by learning from a sequence
of past spectra and corresponding actions relative to the initial, unshimmed spectrum.
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5. Doubly-deep learning for shimming with random shim values

The value of action 𝑎𝑡 depends on the time step:

𝑎𝑡 =


®0, for 𝑡 = 0
N , for 𝑡 = [1, ..., 𝑟 ]
ŷ𝑡−1, for 𝑡 = [𝑟 + 1, ..., 𝑟 + 𝑝 + 1],

(5.1)

where either Gaussian noise N or the last prediction ŷ𝑡−1 was used to generate the next
spectrum.

section 8.3 gives a detailed description of the architecture design process.

5.2.3. Concept

The AI-driven shimming concept (see Figure 5.3) in this chapter was based on a fixed
number of 𝑟 random shim offset steps applied to an initial, unshimmed spectrum 𝑢.
Correspondingly, acquired spectra and shim offsets are fed into a convolutional recurrent
neural network. These random steps serve as an exploration phase to resolve ambiguities
between shims and generate a model-internal "shimming history". This helps the model
locate itself in shim space while its predictions are ignored. During the following 𝑝
predictive steps, the model’s output was applied to correct the shim distortions, which
gives an ideally shimmed spectrum 𝑢 (𝑎𝑡 ) after 𝑡 = 𝑟 + 𝑝 + 1 steps with actions 𝑎𝑡 .

Figure 5.3.: Concept of enhanced deep regression (eDR) for AI-driven shimming.
The model receives the current spectrum and shim offset values at each time
step 𝑡 to predict the shim corrections ŷ. For 𝑟 random steps, the shim offsets
are represented by Gaussian noise 𝑎𝑡=[1,...,𝑟 ] = N , and for 𝑝 predictive steps the
predicted shim corrections serve as the next action 𝑎𝑡=[𝑟+1,...,𝑟+𝑝+1] = ŷ (shim
offset). (Edited from Becker et al. (2022b).)
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5.3. Method - Hardware setup and dataset

As random exploration steps help the model locate itself, the dataset needs to be acquired
correspondingly, and a static dataset of random shim offsets was used. Thus, the model
was trained on only random steps 𝑟 during training. The randomness avoids the limitations
of grid-like sampling (see Figure 5.4a) for high dimensions: The number of acquisitions
𝐴 in a grid-like sampling with𝑚 steps would increase exponentially with the number of
dimensions 𝑛: 𝐴 = 𝑚𝑛. Thus, randomized data sampling was used, independent of the
problem’s dimensions (see Figure 5.4b). Randomized sampling only requires adding the
information of the current offset vector to the model’s input.
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(a) Grid-like acquisition.
Shim 1

Reference
Sampled

S
h
im

 2
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R

Unshimmed
Offsets
Offset vectors

(b) Random acquisition.

Figure 5.4.: Comparison between grid-like and random data sampling for a scenario
of two shim coils. Abbreviations: A = absolute shim value frame, R = relative
reference frame. (Adapted from Becker et al. (2022b).)

5.3. Method - Hardware setup and dataset

5.3.1. Spectrometer hardware and sample

For this study, a Magritek 80 MHz low-field benchtop magnet was selected, which did not
have any gradient coils.
The measured samples consisted of (I) distilled water mixed with copper sulfate (5

mmol/L CuSO4; CAS No. 7758-99-8) and (II) the magnet’s reference sample, a mixture of
5vol% H2O in D2O.

5.3.2. Shim weighting

Shims coils, due to their different wiring patterns or specific sample’s geometrical a-
symmetry, have different influences on the NMR signal. This means the same step size
for all shim coils would introduce a strong bias towards the most prominent shim coil.
Therefore, the shim effects are normalized by extracting weighting factors based on the
shim’s influence on the root mean square (RMS) of the FID signal.
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5. Doubly-deep learning for shimming with random shim values

Figure 5.5.: Linewidth changes of a single peak with the same offsets to all shims. First-
order shims have a stronger impact on the resolution.

Starting from a perfectly shimmed FID of a 5vol% H2O in D2O sample, each shim was
changed until the FID’s RMS decreased below 50% from its maximum. The number of
steps needed for each shim with values ∈ [−215, 215] to reach 50% degradation are used to
define their influence. On the Magritek Spinsolve 80, the 𝑌 -shim had the most substantial
impact, and thus, all other shims were re-normalize w.r.t. the 𝑌 shim, resulting in a shim
range of ±50 for 𝑌 and weights𝑊 (𝑋,𝑌, 𝑍, 𝑍 2) = [1.2, 1.0, 2.0, 18.0]. Figure 5.5 visualizes
the impact of each shim on the linewidth of a single peak depending on the same shim
offsets. The linewidth is affected differently by various shims. For example, the 𝑌 shim
has a more significant impact than the 𝑍 shim.

5.3.3. Dataset acquisition

The shimming dataset RandShimDB consists of 5k and 10k spectra for samples I and II,
respectively.
The reference spectrum R of optimal quality was obtained by the manufacturer’s

automated shimming techniques. The data samples were then acquired random distortions
S ∈ R𝑛 from the reference shim values y𝑅 , following a Gaussian distribution: S =

N(0, 1
3

2) ·𝑅 ·𝑊 , where the weights𝑊 represent the shim influence and 𝑅 is the range. Each
instance of RandomShimDB includes the following information: a binary file containing
the raw 1H-FID with dimensions 1×32768, the shim values for 𝑛 shims, the acquisition and
processing parameters. By intent, only the 𝑋 , 𝑌 , 𝑍 , and 𝑍 2 shim values were varied, and
the other shims were kept at their reference values to avoid the large distortions resulting
from setting them to zero, as revealed in chapter 4.

All experimental parameters and the dataset’s characteristics are summarized in Table 5.1.
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5.4. Results - Deep Learning

Dataset
parameters

Shims 𝑋,𝑌, 𝑍, 𝑍 2

Weightings𝑊 [1.2, 1.0, 2.0, 18.0]
Shim range 𝑅 ±50
Sample I H2O+CuSO4
Sample II 5vol% H2O in D2O
Nr. spectra {5000, 10000}

Acquisition
parameters

Nucleus 1H
Bandwidth 5 kHz
Points 32768
Repetition time 2000 ms
Phase correction 𝜙0

Table 5.1.: Parameters of the randomized shimming dataset (RandomShimDB). 𝑊
normalizes the influence between shims, and 𝑅 is the discrete range for possible
shim distortions, given as int-16.

5.4. Results - Deep Learning

This section describes critical pre-processing details to achieve faster convergence and
generalization, which includes normalization and augmentation, as well as deep learning
training details, and the results achieved offline on the dataset.

5.4.1. Data preprocessing

Dataset creation Input to the DL model was a sequence x of real-valued spectra and
corresponding shim actions. The first spectrum in the sequence is uniformly random
sampled from the dataset D with input-target pairs (x, y)𝑖 (see Subsection 5.3.3), where
the target value to this sequence is ŷ (≡ S). The following 𝑡 spectra and their relative
offsets 𝑎𝑡 w.r.t. the first spectrum were added to the sequence by random extraction from
the training set of D. Thus, each sampling from the dataset during training yielded a
sequence of changing spectra-actions pairs. Splitting ratios of train, validation, and test
set for DL training were 80/10/10 % of D, respectively.

Normalization The neural network’s training convergence strongly relies on normalized
input and output data to avoid vanishing or exploding gradients. Thus, the first spectrum
of a sequence x was normalized to [0, 1], and the following spectra according to the first’s
maximum. A region of interest (ROI) with 2048 points was defined around the HDO
(hydrodeuterium oxide) peak, resulting in a sampling resolution of 0.15 Hz. The regression
targets were normalized to [−1, 1].

Augmentation Data augmentation can artificially increase the amount of data samples
for scenarios where data acquisition is expensive, for example, NMR measurements.
Augmentation included uniformly random 𝑍 0 shift ∈ [−4, 4] (array indices), uniform
label noise of 0.1 w.r.t. the step size of each shim (derived from 𝑅 and𝑊 ), uniform shim
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5. Doubly-deep learning for shimming with random shim values

interaction noise of 0.1, first-order phase distortions of [−0.5, 0.5], additive white Gaussian
noise (AWGN) with signal-to-noise ratio (SNR) of 30.

5.4.2. DL training of a ConvLSTM for shimming

An automated search algorithm using ray tune (Liaw et al., 2018) was utilized to find the
best combination of architecture choices and hyperparameters. 150 models with varying
architecture and hyperparameter search spaces were trained, and the best model was
selected based on the validation error. All models during HPO were trained with sequence
lengths 𝑡 = 10, a learning rate of 5 × 10−4, batch size of 32, and the Adam optimizer
(Kingma & Ba, 2014) with 𝛽1 = 0.9, 𝛽2 = 0.999 for a maximum of 100 epochs to minimize
the Huber loss while utilizing early stopping. The search space included between 3 and 5
convolutional layers with different kernel sizes and strides, and hidden sizes for the LSTM
block.
The best parameters were selected as 5 convolutional layers with 64 channels, kernel

size 19 and stride 2; a 2-layer LSTM cell with 1024 hidden units; dropout probabilities of
0.2 after both convolutional and fully-connected layers. The final training was conducted
step-wise on varying sequence lengths, where every 25th epoch, the length of the input
sequence was increased by 2 (up to 10).

5.4.3. DL training results

Convergence of the model during offline training, i.e. training on the static dataset D,
confirmed that a DL model can learn shim correction terms for first- and higher-order
shims, given a sequence of random offsets and corresponding spectra.

The model achieved a normalized MAE on the test set of 0.023± 0.019 (mean ± standard
deviation), where one discrete sampling step in shim space equals 0.02. The per-shim error
of [0.028, 0.023, 0.025, 0.017] for [𝑋,𝑌, 𝑍, 𝑍 2] indicated that the error was influenced by
the shims’ order. This can be explained as the sign of distortion of even-ordered shims
can be inferred from a single spectrum as an asymmetric behaviour on the spectral line
shapes.

5.5. Results - Experimental

This section captures experimental results on real hardware, including the corresponding
performance metrics and evaluation protocol.

5.5.1. Performance metrics and evaluation protocol

Metrics To evaluate in-situ shimming performance, the linewidths at FWHM (50%) and
0.55% of the peak’s maximum were reported. Furthermore, the mean absolute error (MAE),
direction ratio DiR, and modified success rate SR (compared to Subsection 4.5.1) were
reported. DiR indicates whether the predictions’ and targets’ signs match, and the modified
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5.5. Results - Experimental

success rate SR ∈ [0, 1] for 𝑁 experiments is defined as

SR =
1
𝑁

𝑁∑︁
𝑖=1

max
(
𝑢𝑖 (ŷ𝑡 )

)
> max

(
𝑢𝑖 (®0)

)
, (5.2)

where 𝑢 (®0) is the initial spectrum, and 𝑢 (ŷ𝑡 ) the corrected spectrum with prediction 𝑦𝑡 at
time step 𝑡 .

Evaluation protocol The eDR method was tested in situ on different samples and a set
of 100 random distortions y𝑋 , y𝑌 , y𝑍 , y𝑍 2 = 𝑅 ·𝑊 · N (0, 1

3
2) of 𝑋,𝑌, 𝑍, 𝑍 2 shims. The

generalization ability of the approach was tested on multiple samples, i.e., 5vol% and
10vol% H2O in D2O, respectively, 100% distilled water, and Nicotinamide (CAS No. 98-92-0,
400 mg) in 1 mL D2O (CAS No. 7789-20-0).

The following samples were used during dataset acquisition and evaluation experiments:

Nr Content Dataset Evaluation
I H2O+CuSO4 ✓
II 5vol% H2O in D2O ✓ ✓
III 10vol% H2O in D2O ✓
IV 100% distilled water ✓
V Nicotinamide (CAS No. 98-92-0, 400 mg)

in 1 ml D2O (CAS No. 7789-20-0)
✓

Table 5.2.: Samples used during dataset acquisition and evaluation experiments.

5.5.2. In-situ experiments

H2O [%] lw50 [Hz] lw0.55 [Hz]
in D2O SR DiR Best Initial Shimmed +𝑥% Initial Shimmed MAE
5% 0.99 0.93 0.34 3.9 ± 1.6 0.72 ± 0.28 +507% 59.7 ± 13 25.4 ± 4 0.041
10% 1.00 0.92 0.38 3.8 ± 1.6 0.76 ± 0.25 +444% 54.9 ± 12 24.2 ± 4 0.049
100% 0.99 0.89 1.63 4.4 ± 1.5 2.25 ± 0.56 +104% 50.8 ± 10 34.0 ± 4 0.084

Table 5.3.: In situ results of AI-driven shimming with the eDR method for 7 random steps
and 2 predictive steps. Values are reported as mean ± standard deviation over
100 random distortions drawn from a uniform distribution for different H2O
concentration. The best values are marked in bold. Abbreviations: SR = success
rate, DiR = direction ratio, lw{50,0.55} = linewidth at {50,0.55}% of the maximum,
MAE = mean absolute error.

The results reported in Figure 5.6 show that AI-driven shimming with sequences of
random shim offsets yields overall promising results. Distorted spectra were shimmed to
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5. Doubly-deep learning for shimming with random shim values

(a) Random distortion #1.

(b) Random distortion #2.

(c) Random distortion #3.

(d) Random distortion #4.

Figure 5.6.: Visualization of selected shimming results of the eDRmethodwith 𝑟 = 7
random and 𝑝 = 2 predictive steps on the reference sample. The unshimmed
spectrum 𝑢 (𝑎𝑡 ) changes with the actions 𝑎𝑡 over 𝑡 = {1, ..., 𝑟 + 𝑝 + 1} steps.
(Subfigures a and b adopted from Becker et al. (2022b).)
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well-defined peaks using four shims simultaneously. Random offsets from the unshimmed
spectrum 𝑢 show similarly bad lineshapes but help the model to predict shim corrections
close to the global optimum. Table 5.3 gives a qualitative analysis showing that the spectral
quality could be improved in 99% of the cases. Within only 9 NMR acquisitions, eDR could
reduce the linewidth from ∼4 Hz to 0.72 Hz on average, and in 87% of the cases even to
below 1 Hz FWHM. Compared to the true distortions, the model’s predictions had an MAE
error of 0.041, corresponding to 4% discrepancy to the reference shim values for 5% H2O.

Impact of sequence length As the model was designed to handle variable sequence lengths
with both flexible random and predictive steps, their impact was investigated. Overall, the
evaluation protocol of Subsection 5.5.1 was repeated for 𝑟 = [0, 10] random and 𝑝 = 10
predictive steps. Correspondingly, the full width at half maximum (FWHM)was reported in
Figure 5.7, averaged over all 100 runs. Figure 5.7a shows the mean FHWM improvement in
dependence on 𝑟 random and 𝑝 predictive steps. On the other hand, Figure 5.7b visualizes
the impact on the absolute FWHM directly. The results showed that 𝑟 = 7 random and
𝑝 = 2 predictive steps yield the best FWHM improvement, a good compromise between
predictive performance and the number of total steps. Furthermore, increasing the number
of random steps improves the FWHM significantly more than the predictive steps.

In general, this experiment showed that the number of random steps was more critical
than the number of predictive steps. This could be explained by the fact the model was
trained on random steps only during offline training, and was not prepared to handle
predictive steps.
Furthermore, it seemed that the model’s predictive performance saturates around the

global optimum after 8 − 10 random steps, where the spectral features are not visible
anymore, and the model misinterprets noise in already shimmed peaks.

Shimming performance on other samples The successful shimming results of the method
on various samples with different water concentrations indicated that the technique is
generally applicable. For instance, the method could shim nicotinamide (vitamin B3)
dissolved in D2O, as illustrated in Figure 5.8. It should be noted that the lw50 optima in
Table 5.3 differ due to radiation-damping effects in higher water concentrations.

Hardware requirements DL training was conducted on an AMD Ryzen Threadripper
3970X with 256 GB RAM and two NVIDIA GeForce RTX A5000 graphics processing
units. The training process took approximately 47 minutes, and the RandomShimDB
requires about 5.5 GB of disk space. The trained model has ∼ 26M parameters allocating
102 MB of disc space. Inference required 15-50 ms using an Intel Core i5-8500. Compared
to acquisition times for the NMR measurement, and storage space available on recent
computers, these are negligible requirements. Loading the model and the first step of
eDR takes 19 s, and consecutive steps roughly 10 s. Standard proton experiments without
time-saving effort were acquired, i.e. full acquisition time 6.5 s for 32k points and a dwell
time of 200 µs, which are not necessarily necessary for shimming, and require more time.
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(a) Impact on mean FWHM improvement.
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(b) Impact on the FWHM directly.

Figure 5.7.: Influence of random steps 𝑟 and predictive steps 𝑝 of the model’s input
sequence on the shimmed FWHM.Average values are visualized for 100 random
distortions. The green dotted line represents the initial spectrum without any
improvement. (Adopted from Becker et al. (2022b).)

5.6. Results - Comparison

To prove that AI-driven shimming was superior, the developed method of this chapter was
compared to the default shimming methods available on Magritek devices. This includes
the parabola method (see Subsection 2.2.2), and the simplex method (see Subsection 2.2.2).
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5.6. Results - Comparison

The following three scenarios were considered. First, the theoretical number of minimal
required NMR acquisitions was compared. Then, AI-driven shimming was directly
compared to traditional methods, and finally, an AI-assisted approach was considered.
Note that the optimum line width was only achieved after multiple hours of standby

shimming, and no method (AI-driven or traditional) could achieve it within its first
iterations.

(a) Random distortion #1. (b) Random distortion #2. (c) Random distortion #3.

Figure 5.8.: Shimming comparison of AI-driven shimming (eDR), a combination of
traditional and AI-driven shimming, and the simplex method. eDR shims on
the HDO peak of nicotinamide (vitamin B3) in D2O, and all methods are run
until convergence was achieved. (a) demonstrates an example of AI-driven
shimming that does not require fine-tuning, while (b) and (c) show examples
for which traditional shimming may be beneficial afterwards. (Subfigures a
and b adopted from Becker et al. (2022b).)

Theoretical comparison Both signal-based methods require a minimum number of steps
for initialization: The initial simplex shape of the Nelder-Mead method requires 𝑛 + 1
spectra, and the parabola needs at least 3𝑛 spectra to fit a parabola for each of the 𝑛
shims. On the other hand, shimming via DL can have a flexible number of acquisitions,
demonstrating linewidth improvement after even 1 step and decent performance with
below 10 measurements (see Figure 5.7).

AI-driven vs traditional shimming It was compared how many NMR acquisitions the
related methods require to reach the linewidth that the eDR method achieved after (𝑟 =
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5. Doubly-deep learning for shimming with random shim values

7, 𝑝 = 2) steps (Table 5.4). The direct comparison (Table 5.4) between eDR and traditional
shimming methods shows a significant speed-up of AI-driven shimming. The parabola
method needs ∼ 6.1 ± 6 more spectra, and the simplex method even needs ∼ 3.7× more
acquisitions. Both methods fail to reach the linewidth achieved by eDR in some cases,
and the parabola even fails in over 65% of the cases. Note that the maximum number of
convergence steps for the simplex method was cut off after 150 steps.

Method NMR acquisitions Failure
eDR (ours) 9 (1%)
Parabola 15.1 ± 6.0 65%
Simplex 33.4 ± 16.7 26%

Table 5.4.: Comparison of necessary NMR acquisitions to reach eDR’s shimmed linewidth.
Average values ± standard deviation are reported over 100 random distortions
if the method can reach eDR’s linewidth; otherwise, it was counted as a failure.
Failure of eDR itself is 1 − SR. Lower is better, and the best values are marked
in bold. Abbreviations: eDR = enhanced Deep Regression.

AI-assisted shimming AI-assisted shimming (Table 5.5) is a promising approach that
combines traditional methods with AI-driven shimming: By leveraging eDR to forecast
an initial point near the global optimum of shim values, the initialization of the parabola
method was notably optimized. This integration not only lowers performance variance but
also enables the parabola method to circumvent local minima in 96% of cases. Consequently,
AI-assisted shimming achieves linewidths nearly equivalent to the optimal full width at
half maximum (FWHM) with just 30% of the steps needed by the simplex method.

Method NMR acquisitions FWHM [Hz]
Unshimmed 3.9 ± 1.6
eDR(ours) 9 0.72 ± 0.28
Parabola 26.7 0.82 ± 0.29

+ eDR 15.9+9 0.44 ± 0.05
Simplex 87.7 0.41 ± 0.04
+ eDR 70.8 + 9 0.41 ± 0.05

Optimum 0.34

Table 5.5.: Combination of traditional and AI-driven shimming methods ("AI-assisted
shimming"). Traditional shimming methods are initialized with the eDRmethod,
and then iterated until converging on their own. Average values for necessary
acquisitions and FWHM are reported over 100 random distortions. Lower is
better, and important values are marked in bold. Abbreviations: FWHM = full
width at half maximum.
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5.7. Discussion/Limitations

A graphical comparison between AI-driven, AI-assisted, and traditional shimming on
nicotinamide dissolved in D2O is given in Figure 5.8. The water peak of the (99.9 atom %)
D2O solvent was used for shimming.
The method in this chapter only tackles the most important and, consequently, a

relatively small number of shims. Thus, it was not compared to Yao et al. (2021), as they
report equal performance between their improved and the standard simplex implementation
if a low number of shims is considered.

Comparison to DRE Contrasting with the approach outlined in chapter 4, which involves
employing four systematic shim offsets and their corresponding spectra as network
input, the model, in this case, achieves only a 1.7-fold improvement in Full Width at
Half Maximum (FWHM). This outcome supports the notion that incorporating random
steps enhances the model’s ability to navigate the shim space more effectively, leading to
improved predictions.

5.7. Discussion/Limitations

The modifications proposed in this chapter did effectively enhance AI-driven shimming.
Substantial contributions employed a shimming history enabled through recurrent connec-
tions in the neural network’s architecture, and random sampling for fast and scalable data
acquisition.
The experiments have shown that AI-assisted shimming, i.e., initializing traditional

1D optimization methods with an AI-driven approach, avoids local minima and can
significantly accelerate shimming.

Still, the scalability tomore shimswas questionable, as for high-fieldmagnets, sometimes
over 28 shim coils are used. Furthermore, the supervised learning nature of this DL
approach requires an a priori known reference optimum, and a labelled dataset with
machine-specific spectral features.
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6. AI-driven shimming of a custom parallel
probehead for high-field NMR

This chapter’s proposed method was published together with Yen-Tse Cheng in an article
titled "Artificial intelligence-driven shimming for parallel high field nuclear magnetic
resonance" in the "Scientific Reports" journal in 2023. This chapter’s text and figures were
reproduced and adapted from the authors’ published work.

6.1. Overview

� � � �

Random steps � Predictive steps �Unshimmed � AI-shimmed �����

?

Local shim values

0


 20�

AI

ch1 ch2
�

Figure 6.1.: Graphical abstract of parallel enhanced deep regression (PeDR).
Differences from the other approaches within this thesis are highlighted.

Traditional NMR spectroscopy with a single channel suffers from low throughput due to
time-consuming steps such as sample loading or coil tuning. Even though automated flow
systems for liquid samples (Nassar et al., 2021) can increase sample loading speeds, the
experiments are still limited by their sequential measurement style. Parallel spectroscopy
aims to drastically increase throughput by enabling simultaneous experiments on multiple
samples with additional channels (Cheng et al., 2022). However, shimming becomes a
challenging task when multiple channels are used to acquire signals from different samples
in one coherent magnetic field. Unlike single-channel spectroscopy, where a single set
of orthogonal shim coils can correct the field inhomogeneity, parallel shimming requires
a more sophisticated approach considering shim interactions and RF couplings between
the channels. Additionally, custom hardware may exhibit non-idealities due to manual
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assembly, resulting in non-orthogonal shim fields that complicate the optimization process.
Even if the shim coils are orthogonal for each channel taken separately, they may not
necessarily be for two or more coils, making classical algorithms such as the simplex
method prone to performing many redundant actions.

This chapter summarizes a study on parallel shimming supported by artificial intelligence,
i.e., AI-driven shimming of a custom parallel probehead (see Figure 6.1), and the approach is
titled Parallel enhanced Deep Regression (PeDR). AI has shown the ability to manage
shimming, which has high-dimensional and non-linear complexities. Furthermore, it
should take note of the complicated cross-sensitivity among parallel channels. This chapter
showed that AI can adjust itself to non-orthogonal shim fields and identify adequate shim
settings for every channel. Overall, the following contributions were made regarding AI-
driven shimming, and the differences to previous approaches are highlighted in Table 6.1.

DRE & eDR PeDR
Channels 1 2
Magnet Permanent Super-conducting
Vendor Magritek Bruker
Probehead Built-in Custom
Local RF and shim coils - ✓

Table 6.1.: PeDR contributions: Differences to previous approaches (DRE and eDR).

6.2. Method - DL part

This section focuses on the deep learning part of parallel AI-driven shimming, starting
with a formal problem definition, followed by a description of the modifications to the
neural network architecture used for this chapter’s approach, and completed with the
concept of how the DL approach was applied for shimming.

6.2.1. Problem definition

Let D = {(x, y)𝑖} |D|𝑖=1 be a static dataset, where (x, y)𝑖 is an input-output pair. With 𝑚
being the number of parallel channels, and 𝑛 the number of separate shim coils, the input
sequences x ∈ R𝑚×𝑡×(𝐿,𝑛) of 𝑡 entities are defined as

x𝑚 =

[ (
𝑢𝑚 (®0), ®0

)
,
(
𝑢𝑚 (𝑎1), 𝑎1

)
, ...,

(
𝑢𝑚 (𝑎𝑡 ), 𝑎𝑡

) ]
,

where the unshimmed spectrum 𝑢𝑚 of length 𝐿 for each channel𝑚 changes as a function
of (random) shim offsets (or actions) 𝑎 ∈ R𝑛 . Each associated target y = (𝑦1, 𝑦2, ..., 𝑦𝑚·𝑛) ∈
R𝑚·𝑛 represents the distortion from the reference shim values and is defined as a real-
valued vector of𝑚 ·𝑛 elements. The regression model F𝜃 (·), represented by a custom deep
neural network with parameters 𝜃 , predicts the shim correction terms ŷ = F𝜃 (x), such
that y𝑖 − ŷ𝑖 ≈ 0. The network parameters 𝜃 are learned in a supervised manner using the
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Figure 6.2.: Simplified neural network architecture for PeDR. Given two spectra, processed
by convolutional and recurrent layers, the model predicts shim correction
values. (Edited from Becker et al. (2023).)

dataset D to minimize the loss term L between the prediction ŷ and the target y. Note
that the shim distortions 𝑆 w.r.t. the reference spectrum serve as the labels y, whereas the
shim offsets (or actions) w.r.t. the first, unshimmed spectrum are denoted as 𝑎𝑡 .

6.2.2. Architecture

AI-driven shimming for parallel spectroscopy followed the same architecture as single-
channel shimming with the eDR method (see chapter 5), although two input channels
were used for the model. A minimum schematic overview is given in Figure 6.2.

The model consists of (1) a convolutional part that extracts features from the two input
spectra at each time step 𝑡 , (2) layer normalization and concatenation with the past actions
𝑎𝑡 w.r.t. the initial spectrum, (3) a long short-term memory (LSTM) that allows recurrency
of the model and learning of temporal dependencies in sequences, and (4) an output head
(f2o) that predicts the shim corrections for the two channels. The convolutional part
consists of 3 blocks with convolutions (64 filters, kernel size 41, stride 2), ReLU activation,
dropout, and pooling. The normalization was done on the concatenated convolutional
feature maps and last actions. The normalized features were fed into the LSTM cell with
the last hidden state ℎ𝑡−1 to generate a new output and the next hidden state. The f2o part
consists of a first layer normalization layer, followed by one FC layer with dropout and
ReLU, and a final FC layer with tanh activation, which predicts the shim correction values.

6.2.3. Concept

The AI-driven shimming process from chapter 5 was adopted, which consists of an
initialization step, two phases with varying steps, and a final wrap-up step (see Figure 6.1).
This process begins with acquiring an initial, unshimmed spectrum denoted as 𝑢. After-
wards, 𝑟 random shim offset steps are applied, forming an internal shimming history
within the model and assisting the DL model in navigating the shim space. Following this,
𝑝 predictive steps are undertaken, where the model’s output dictates the subsequent shim
action 𝑎𝑡 . After 𝑡 = 𝑟 + 𝑝 + 1 steps, a shimmed spectrum 𝑢 (𝑎𝑡 ) was obtained.
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Global shim on ch1 Global shim on ch2

Local shims onGlobal shims interpolated

a. b.

c. d.

14 Hz

236 Hz 213 Hz

3.2 Hz

60 Hz 163 Hz

24 Hz 28 Hz

ch1

ch2

Figure 6.3.: Necessity of local shim coils. Global shimming (a,b) leaves the respective
other channel with bad linewidths. Only with local shim (d), both channels
show decent linewidths. (Edited from Becker et al. (2023).)

During the random step phase, the action 𝑎𝑡 was characterized as Gaussian noise N . In
the predictive phase, the model uses the previous prediction (𝑎𝑡 = ŷ𝑡−1) to generate the
next spectrum.

6.3. Method - Hardware setup and dataset

Commercially available shim set systems can largely homogenize the field of standard
superconducting magnets, provided that the sample is in a 5 mm or 10 mm tube and is
placed at the isocenter of the shim coils. Small sample volumes require precise placement
of the shim system at the centre of the sample.

Thus, a parallel scenario requires more sophisticated modifications to the hardware. A
custom parallel probehead has been developed based on the concept of an NMR cell (NC)
(Cheng et al., 2022).

6.3.1. Custom parallel probehead

A custom probehead is essential, as a conventional single-coil probe cannot accommodate
parallel detection on different samples. Furthermore, shimming of such a system cannot be
achieved with the global shim system, and thus, local shim coils were required per channel.
Figure 6.3 depicts this issue, showing that with global shims (built-in shim set), only a
single channel could be shimmed for spectroscopy. Local shim coils allow the shimming
of parallel channels independently.
The design and manufacturing of the probehead were performed by Yen-Tse Cheng,

the first author of the corresponding publication. A brief overview of essential parts will
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6.3. Method - Hardware setup and dataset

be given below, but a detailed description in Becker et al. (2023) or Yen-Tse Cheng’s PhD
Thesis is recommended.

The parallel probehead (see Figure 6.4a) was designed for a 15.2 T preclinical MRI magnet
(see Figure 6.5) from Bruker (Bruker, Ettlingen, Germany), and consists of two parallel
channels, each equipped with a folded-up stripline RF coil, shim coils, and flow channels
for sample loading.

PTFE tubing

Local shim set
(X,Y,Z,Z2,Z3,Z4)

Stripline (folding)

Glass capiliary (0.7mm)

3D printed support

Trimmer capacitor
Z

YX 4mm

(a) Probehead.

folding

1.5

1.3

5 support

20

frame

(b) RF coils.

F.Cu B.Cu In.CuPCB layout

2mm

Via

(c) Shim coils.

Figure 6.4.: Hardware of the custom parallel probehead. (Courtesy of Yen-Tse Cheng from
Becker et al. (2023).)

Folded-up stripline RF coil The stripline’s dimensions are 25 mm in length and 5 mm in
width, and it has a sensitive conductor section of 8 mm × 1.3 mm. The coil has a sensitive
volume of interest that equals 1.57 µL and a self-resonance frequency of 1.75 GHz. Both
RF coils were placed in the probehead, with their 𝐵1 fields arranged perpendicular to the
static magnetic field 𝐵0.

Shim coils Each RF coil or channel has a local shim set to correct local field distortions
(see Figure 6.4c). To allow for easy fabrication on a single 3-layer flexible PCB, (𝑋 , 𝑌 , 𝑍 ,
𝑍 2, 𝑍 3, and 𝑍 4) shim coils were chosen as they possess sufficient shimming capabilities.
The shim coils’ design was based on finite element simulations.

Flow channels A fluidic tubing was used for each channel’s sample loading, allowing
continuous high-throughput screening measurements (Nassar et al., 2021).

Custom shim current source Additionally to the local shim coils, an extremely-low drift
current source was developed by Achim Voigt (IMT, KIT). The current source featured 28
channels with ±300 mA, from which 12 channels were used for the local shim coils. For a
detailed description of the electronic design, see Becker et al. (2023).

6.3.2. Dataset collection

As shown in chapter 3, AI can learn features for shimming due to machine-specific
hardware non-idealities. Thus, a real dataset with 8799 samples was acquired with the
custom-built parallel probehead. Each dataset sample contains two 1H spectra as a result
of random shim distortions 𝑆 to the reference shim values Ref of the local shim coils,
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following a Gaussian distribution with 𝜎 = 1
3 × Ref. The manufacturer’s automated

shimming algorithm was used to achieve optimal global shim settings for each channel
individually. The global linear shim values were then obtained by interpolating between
the two NC (see Figure 6.3c), i.e., each cell was shimmed with the vendor’s automated
shimming routine and the isocenter was linearly interpolated between their optimized
shim values. The local reference shim values Ref were achieved by manually shimming
for several hours. In total, the dataset consists of four subsets with varying numbers of
samples acquired within two consecutive days. The measured sample for dataset collection
was 50 vol% H2O in D2O for both channels. Detailed parameters are reported in Table 6.2.

Dataset
parameters

NC channels 2
Local shim coils 6
Reference values Ref [0, 90, 140, 14, 0, 60, 8, 80, 20, 22, 0, 0]
Shim range 𝑅 ±2 × Ref

Sample 1 and 2 50 vol% H2O in D2O
Number of spectra per subset {524, 1536, 2738, 4001} × 2

Acquisition
parameters

Nucleus 1H
Excitation bandwidth 5 kHz
Recorded FID points 19736
Repetition time 1500 ms
Postprocessing Bruker default

Table 6.2.: Parameters of the parallel randomized shimming dataset (PaRandShimDB).

6.4. Results - Deep Learning

Preprocessing the data and training the DL model followed the same procedure described
in chapter 5. Differences are highlighted below.

6.4.1. Data preprocessing

Dataset creation For the offline deep learning training, the splitting ratios of the train,
validation, and test set were 80/10/10 %, respectively. As was done in chapter 5, sequences
were constructed on the fly during training. All steps were assumed to be random offsets
from the initial unshimmed spectrum 𝑢 (0).

Normalization Normalization of input spectra of sequence x and regression target 𝑦
followed the same scheme as chapter 5, i.e., normalization to [0, 1] for input and [−1, 1]
for output. The only difference was that all spectra were cut to a region of interest (ROI)
of size 4096 and then downsampled by a factor of 2 to yield size 2048.
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6.5. Results - Experimental

Figure 6.5.: Schematic setup of parallel
spectroscopy and AI-driven
shimming. (Adopted from Becker
et al. (2023), created by Yen-Tse
Cheng.)

Augmentation The input spectra were
shifted randomlywith a uniform distribution
between −4 and 4 array indices. To
simulate real-world situations, different
types of noise were added, including
uniform label noise of 0.1, uniform shim
interaction noise of 0.1, first-order phase
distortions of ±0.5, and additive white
Gaussian noise (AWGN) with a signal-to-
noise ratio (SNR) of 30. This process was
similar to the one described in chapter 5.

6.4.2. Training details
of a ConvLSTM for parallel shimming

The model was trained for 100 epochs with
a learning rate of 10−4 (reduced on plateau
by an automated scheduler), a batch size of 256, and the Adam optimizer to minimize the
Huber loss. The sequence (or shim trajectory) length during training was increased by 2
for every 25 epochs, ranging from 4 to 10.

6.4.3. DL training results

The model achieved a normalized MAE (∈ [0, 1]) of 0.033 on the test set of the static
dataset D.

Hardware requirements DL training was conducted on an AMD Ryzen Threadripper
3970X with 256 GB RAM and two NVIDIA GeForce RTX A5000 GPUs. The PaRandShimDB
requires about 5.1 GB of disk space, and the trained model allocates 331 MB of disc space.

6.5. Results - Experimental

6.5.1. In-situ spectroscopy experiments

Spectroscopic capabilities of the parallel probehead were tested on homonuclear and
heteronuclear scenarios, namely

1. homonuclear 1D 1H measurement, i.e. a 0.4 M Niacinamide solution in channel 1
and 17.4 M Acetic acid in channel 2.

2. homonuclear 1D 1Hmeasurement, with a 0.16 M D-(+)-maltose solution in channel 1
and a 0.3 M Tris(hydroxymethyl)aminomethane acetate (Trizma) solution in channel
2.

3. heteronuclear 1D 1H & 19F measurement, where samples were water in channel 1
and FC-770 (C10F22) in channel 2.
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Figure 6.6.: Spectroscopic experiments on a custom parallel probehead in 15.2 T. (Adopted
from Becker et al. (2023), created by Yen-Tse Cheng.)

During the experiments, 256 scans were performed, and the resulting spectra are averaged
and displayed in Figure 6.6. However, due to the RF coupling between the two RF channels,
which mainly occurred due to the RF coils and coaxial cables used, the raw spectra had to
be post-processed by signal subtraction. Despite this, all the necessary main peaks were
resolved and detected in the measurement results.

It is worth noting that homonuclear parallel NMR can cause signal coupling between the
two channels due to simultaneous excitation and signal reception at the same frequency.
However, true simultaneous parallel spectroscopy without coupling signals between the
striplines can be achieved in heteronuclear mode by tuning them to different frequencies,
such as 1H and 19F.
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6.5.2. DL performance metric and experimental evaluation protocol

Metrics Similar to chapter 4 and chapter 5, the linewidth at 50% (FWHM), the mean
absolute error (MAE), direction ratio (DiR) and success rate (SR) were reported.

Due to severe 𝐵0 field inhomogeneities around the parallel channels, the spectral peak
could experience splitting, and thus, the linewidth was measured on a Voigt line fit
(Marshall et al., 1997) for split peaks. For a visualization of the Voigt fit on split peaks,
refer to Figure 6.7. As a reminder, the custom metric direction ratio DiR ∈ [0, 1] indicates
whether the predictions’ and targets’ signs match, and the success rate SR ∈ [0, 1] equals
to 1 when the spectral peak intensity increased for both channels.

(a) Example 1. (b) Example 2. (c) Example 3.

Figure 6.7.: Examples of a Voigt fit (top) to spectra with split peaks. Gaussian (middle) and
Lorentzian (bottom) fits are visualized for comparison.

Evaluation protocol Parallel shimming performance of the PeDR method was evaluated
over 50 random distortions ∈ 2× the reference values obtained by manual shimming. The
samples in channels 1 and 2 were 50 vol% H2O in D2O. Furthermore, generalization was
tested with shimming on acetic acid in channel one (ch1) and water in channel two (ch2)
to mimic a high-throughput scenario with different solvents per channel.

6.5.3. In-situ shimming experiments

The AI-driven shimming method PeDR could, within only 10 NMR acquisitions, success-
fully and simultaneously shim distorted spectra from two parallel NMR channels with six
shims each, to well-defined lineshapes. Evaluated over 50 random distortions (Table 6.3),
PeDR was able to shim from 93 ± 142 Hz for channel 1 and 91 ± 102 Hz for channel 2 to
39± 19 Hz and 26± 20, respectively. This corresponds to a relative linewidth improvement
of +139% and +436%, drastically reducing the standard deviation. PeDR achieved an 88%
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Figure 6.8.: Exemplary results of parallel AI-driven shimming. Visualization (a) on
HDO in channels one and two (ch1, ch2), and (b) on acetic acid in both channels.
(Adapted from Becker et al. (2023).)

success rate, a DiR of 0.9, and a total MAE between real distortions and predictions of
0.089.

The shimming process of PeDR is visualised in Figure 6.8, starting from the unshimmed
spectrum (grey). Random shim offsets lead to distorted spectra (light-blue), fed into the
DL model to predict a shim correction term. The predictions yielded shimmed spectra
(blue) after one predictive step. Similar to the findings of chapter 5, random steps were
more crucial for shimming performance than predictive steps.

Generalization of the AI-driven shimming approach was demonstrated by shimming the
X-OH peak of acetic acid. Evaluated over the same 50 random distortions as above, a mean
success rate of 78%, DiR of 0.85, and an MAE of 0.112 were achieved. The performance
was slightly worse than for water in both channels, which was unsurprising as the dataset
consists of HDO spectra only, leaving the model uncertain in its predictions on other
samples.
section 8.5 discusses the reliability of shimming, and Figure 8.6 shows a clear trend

in the distributions between unshimmed and shimmed linewidths for the experiments.
Furthermore, if a more diverse dataset was available, the model should generalize well to
any single peak in the spectrum, i.e., a reference TSP peak.

6.6. Results - Comparison

Recent chapters have demonstrated that AI-powered shimming can produce well-shimmed
spectra with only a few acquisitions. Specifically, four and nine spectra for DRE and eDR,
respectively. Traditional signal-based methods, such as simplex (explained in
Subsection 2.2.2) and parabola (described in Subsection 2.2.2) methods, are typically slow
and require initial acquisitions before optimization can begin. However, implementation
of these algorithms was not available for the Bruker device used in this study for parallel
spectroscopy, so only a comparison with the minimum number of initialization acquisitions
was feasible.
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Sample Channel #1 - lw50 [Hz] Channel #2 - lw50 [Hz]
SR DiR Reference Initial Shimmed Reference Initial Shimmed MAE

D2O .88 .90 18.1 93 ± 142 39 ± 19 7.4 91 ± 102 26 ± 20 0.089
AA .78 .85 16.9 73 ± 51 52 ± 26 8.7 85 ± 91 30 ± 23 0.112

Table 6.3.: In situ results of automated shimming of the PeDR method for 7 random
steps and 3 predictive steps for D2O in H2O and acetic acid (AA). Values are
reported as mean ± standard deviation over 50 random distortions drawn from
a uniform distribution. If the peak shows splitting, the linewidth was measured
on a Lorentzian/Voigt fit. The best values are marked in bold. Abbreviations:
SR = success rate, DiR = direction ratio, lw{50,0.55} = linewidth at {50,0.55}% of
the maximum, MAE = mean absolute error.

Nevertheless, a theoretical comparison of the minimum number of acquisitions for both
methods was conducted. The parabola and simplex method scale with the number of
channels𝑚 and the number of shim coils 𝑛, and both methods need a minimum number of
spectra to initialize. Parabola initialization requires𝑚 ·𝑛 · 3 acquisitions. Provided that the
first guess does not need iterations, and the best value lies at the parabola’s minimum, 1
acquisition per shim coil is required to check the resulting linewidth. For the present case,
with two channels and six shims each, this would total 48 acquisitions. To initiate a simplex
polytype, (𝑚 ·𝑛) + 1 spectra are required, i.e., 13 acquisitions in the current scenario. Then,
each optimization step takes 2.5 acquisitions, on average. Due to the simplex method’s
slow convergence speed (Lagarias et al., 1998) (up to 90 steps in chapter 4), more than 200
additional acquisitions would be required for shimming.
As mentioned in this chapter, the proposed parallel AI-driven shimming technique

demonstrated runtimes below the specified thresholds. Moreover, it was possible to predict
shim corrections near the global minimum region by performing only 10 NMR acquisitions.
It’s worth noting that manual adjustment of shims to the reference values for dataset

collection required approximately two hours. This highlights the impracticality of manual
shimming for parallel spectroscopy. The inefficiency of manual shimming is not only due
to the time-consuming nature of the process but also because it becomes increasingly
unmanageable as the number of parallel sites grows.

6.7. Discussion/Limitations

In conclusion, the proposed work represents a significant advance in parallel NMR
spectroscopy, as it combines parallel high-field detection and AI-driven shimming in
a compact and scalable probehead design. The system can potentially enable high-
throughput compound screening and analysis via NMR, with applications in drug devel-
opment, metabolomics, and material science.
Scaling up the number of channels and shim coils is recommended to improve the

system’s performance. However, the study found that using six local shim coils was
sufficient for shimming the major field inhomogeneities, while also being easy to manu-
facture on a 3-layer PCB. Additionally, a combined shimming approach that incorporates
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both local and all global shim coils could significantly enhance the resolution to the point
of achieving spectroscopic linewidths.

The study utilized a water-only dataset comprising 8,000 samples to concentrate solely
on evaluating the effectiveness of the AI-driven shimming approach in a controlled
environment, without the complexities that could arise from other types of samples.
Additionally, the relatively small dataset helped to avoid costly data collection while still
permitting exploration of the model’s behaviour and limitations. Future research could
broaden the dataset to enhance its generalizability.
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for shimming
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Figure 7.1.: Graphical abstract of shimming with a deep reinforcement learning
(DRL) agent. The agent interacts with the environment by taking shim actions
and receiving corresponding spectra and a reward or punishment until a given
tolerance threshold (e.g. linewidth) is reached. Differences from the other
approaches within this thesis are highlighted.

Recent studies (chapter 4, chapter 5, chapter 6) have showcased the significant potential
of AI-driven shimming using supervised deep learning techniques. However, these
approaches necessitate the acquisition of a labeled dataset with labels defined relative to a
pre-established optimum. Additionally, they do not inherently optimize for a direct quality
criterion, such as spectral quality. Furthermore, even the automatic shimming routines
available in commercial systems can fail for applications such as micro samples, which
raises a persistent need for time-consuming manual shimming.

In light of these limitations, this chapter explores shimming using deep reinforcement
learning (DRL), as outlined in Figure 7.1. The objective is to develop an AI-driven shimming
method that autonomously navigates its environment to maximize a predefined reward,
explicitly focusing on enhancing spectral quality.
To achieve successful results in shimming, the application of DRL relies on numerous

critical factors: the design of a suitable environment that accurately represents the
shimming process, the definition of clear and effective action and state representations,
the careful shaping of the reward function to align with the spectral quality goals, and
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the selection of an appropriate RL agent or algorithm capable of efficiently learning and
making decisions in this context.

7.1. Environment setup

Essential aspects of custom RL environments include appropriate Markov Decision Process
(MDP) (or Partially Observable Markov Decision Process POMDP) properties
(see Subsection 2.3.5), and other design choices such as proper reward function shaping,
appropriate state representations, initial state distributions, reward, and episode termi-
nation procedures (Reda et al., 2020).

RL problems must fulfil the Markov property, i.e., the next state can only depend on the
current state and action. In the case of partially observable MDP (POMDPs), a state can
be defined as a fixed history of observations, including actions, and still fulfil the Markov
property (Sutton & Barto, 2018).

The following environments were designed and considered for RL-driven shimming.

Simulated environment A digital twin of the shimming problem was utilized to rapidly
prototype different RL algorithms, namely a gym(nasium) wrapper of the SHIMpanzee
simulator (see Subsection 3.5.1). gymnasium (Brockman et al., 2016), formerly OpenAI gym,
is a common playground and API standard for RL research problems, and allows for an
easy interface to most state-of-the-art RL methods.

Real hardware environment A dummy gymnasium wrapper enabled RL on real hardware,
which interfaced a Magritek 80 Carbon spectrometer. The implementation was modified
such that the spectrometer’s software returned a new state (compressed spectrum) and
reward (current linewidth) given an action (shim values). As described below, the gymnasium
wrapper furthermore internally included a VAE for state compression.

7.1.1. State representation

Four compressed NMR spectra were merged into one observation to extract more features,
which was necessary during the previous chapters. The set was organized as a queue,
meaning that each new observationwas added to the end, shifting the existing content. This
allowed for a more comprehensive data analysis, providing a more detailed understanding
of the underlying chemical composition.

State space compression Training an RL agent with raw images or high-dimensional input
data has additional disadvantages, namely slow learning speed for the model (actor and
critic in RL), and high computational loads such as memory footprint and consequentially
high bandwidth demands. Kendall et al. (2019) used a variational autoencoder (VAE) to
compress images before training their RL agent for autonomous driving, and this idea
seemed useful for high-dimensional NMR spectra.
Spectra compression was tested in two different scenarios before being applied to RL.

Both studies are described in section 8.1.
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(b) Internal structure and update paths of the
DDPG agent. In the shimming scenario, the
states 𝑠𝑡 are given as observations 𝑜𝑡 due to
POMDP constraints.

Figure 7.2.: RL setup for real experiments, and internal structure of the DDPG (Deep
Deterministic Policy Gradient) agent with Prioritized Experience Replay (PER).

Consequently, instead of feeding NMR spectra to the RL agent, the spectra were
compressed to a latent vector with the encoder part of a convolutional VAE and then
provided to the agent to support training convergence. By using a pre-trained VAE
to extract essential features of spectral peaks, the RL agent’s internal actor and critic
models were relieved from learning this task, and could directly optimize their networks
in correspondence to the expected rewards (see Figure 7.2a). Thus, the observation was
represented as:

𝑜𝑡 =

[ (
E𝜃 (𝑢 (𝑎𝑡−3)), 𝑎𝑡−3

)
,
(
E𝜃 (𝑢 (𝑎𝑡−2)), 𝑎𝑡−2

)
,
(
E𝜃 (𝑢 (𝑎𝑡−1)), 𝑎𝑡−1

)
,
(
E𝜃 (𝑢 (𝑎𝑡 )), 𝑎𝑡

) ]
, (7.1)

where E𝜃 (·) was the pre-trained VAE encoder that mapped the unshimmed spectrum
𝑢 (·) ∈ R𝐿 of size 𝐿 = 2048 to a latent vector ∈ R16, and 𝑎𝑡 ∈ R𝑛 was the shim actions at
step 𝑡 for 𝑛 shims.

Initial state distribution The initial observation was represented by the unshimmed
spectrum without any shim offset, repeated four times, i.e., 𝑜𝑡 =

[(
E𝜃 (𝑢 (®0)), ®0

)
× 4

]
.

Terminal state An agent was defined to be done when the reward exceeded a given
tolerance threshold (e.g. linewidth). The corresponding terminal state was the following
spectrum, however, the next Q-value of the target critic must be defined as zero before
being saved in the PER memory.
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7.1.2. Action representation

The agent’s shimming capabilities depend on the representation of the action space, which
affects the convergence speed and impacts the solution quality. The action space was set
to be continuous to reflect the multi-target regression nature of shimming, i.e. the action
at step 𝑡 was represented as a vector 𝑎𝑡 ∈ R𝑛 for the 𝑛 available shim coils.
Furthermore, the action was always defined with respect to the last spectrum 𝑢 (𝑎𝑡−1),

in contrast to the DL definition in previous chapters that described it with respect to the
first unshimmed spectrum 𝑢 (®0).

Lower action space During several testing runs, it was observed that the agent tried to
reach the terminal state within one step instantly; thus, it did not try to improve the Area
Under Curve (AUC) of the FID. This corresponds to strong greedy exploitation behavior,
and no exploration occurs. Accordingly, and to force the agent to improve the criterion of
choice, the maximum possible step size was reduced with a scaling factor 𝜆𝑎 · 𝑎𝑡 such that
the agent needed to improve the reward step by step.

7.1.3. Reward function

Designing the reward function is one of the most crucial and challenging aspects of an RL
algorithm. It requires extensive hand-crafting and testing as it guides the agent’s learning,
and improper design could lead to the agent exploiting design faults in the reward system.

A reliable way to evaluate the uniformity of a magnetic field is by measuring the Area
Under Curve (AUC) of the Free Induction Decay (FID), calculated via RMS =

√︃
1
𝑛

∑𝐿
𝑖=1 FID2

for an FID of length 𝐿, and it is the main objective for high-resolution NMR measurements.
This is because field inhomogeneity is reflected by low 𝑇 ∗2 , which also directly gives the
linewidth Δ𝜈 ≈ 1

𝜋𝑇 ∗2
. Each sample’s global maximum FID area can further be calculated via

its 𝑇2 time, e.g., measured by a nutation experiment.
However, optimizing only for the direct measure of the FID area alone did not guarantee

convergence, and the reward was additionally shaped. The following modifications were
added:

Log reward Inspired by Kaiser et al. (2022), a logarithmic reward was used to increase the
rewards when approaching an acceptable state. The agent, therefore, learned to improve
the reward more than just trying to hit the termination state, which had no specific reward
assigned. Additionally, the reward was clipped to [−100, 100].

𝑟𝑡+1 = 𝑙𝑜𝑔𝑒

(
|RMS𝑡 − RMS𝑏 |

RMS𝑏

)
− 𝑙𝑜𝑔𝑒

(
|RMS𝑡+1 − RMS𝑏 |

RMS𝑏

)
, (7.2)

where RMS𝑏 was the RMS of the optimum FID area, RMS𝑡 the current and RMS𝑡+1 the next
criterion.
Using traditional metrics, such as the MSE, would yield vanishing rewards near the

optimum.
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Double negative punishment Negative rewards were multiplied with the bad action scale
factor 𝜆−. Whenever the agent took an action that gave a negative reward, this reward
was doubled (𝑟 = 𝜆− = 2 · 𝑟 ) to stress the badness of this action.

Out-of-bounds punishment As high shim currents could damage the hardware, predicted
shim values outside the allowed range were punished by an OOB factor 𝜆OOB. The
punishment intensity depended on the degree of surpassing 𝑎𝑚𝑎𝑥 :

𝑟 = 𝜆OOB ·
√︂
𝑎 − 𝑎𝑚𝑎𝑥
𝑎𝑚𝑎𝑥

2
· 𝑟 (7.3)

7.2. Deep reinforcement learning agent

The shimming agent was based on the Deep Deterministic Policy Gradient (DDPG)
(Lillicrap et al., 2015), and the baseline implementation fromAchiam (2018), with prioritized
experience replay (PER) (Schaul et al., 2015) memory (see Figure 7.2b). The agent took the
observation 𝑜𝑡 , a history of four compressed spectra and actions, to predict the following
action 𝑎𝑡+1. Internally, the actor and critic models were multi-layer perceptrons (MLP)
with four fully connected linear layers with 512 hidden neurons, ReLU activations in
between, and a tanh activation in case of the actor’s last activation. Their weights were
initialized with Glorot initialization (Glorot & Bengio, 2010). Both networks had twin
target networks, updated using a soft update strategy governed by the parameter 𝜏 , which
ensured a gradual convergence towards the main networks’ weights.
Furthermore, a prioritized experience replay (PER) memory was used, a strategic

refinement to the standard experience replay mechanism. By prioritizing each experience
based on its temporal difference error, PER ensures a higher replay probability for ex-
periences with greater learning potential. This method improves sample efficiency and
mitigates the risk of catastrophic forgetting by frequently revisiting rare but pivotal
experiences. For clarification, PER’s control variables 𝛼 and 𝛽 balance exploring new
experiences and exploiting known experiences, where 𝛼 adjusts the level of prioritization
in sampling experiences, and 𝛽 manages the bias correction to ensure that the learning
process remains stable and effective.

7.3. Experiments and results

The experiments as described in Table 7.1 using DRL for shimming were conducted.

7.3.1. RL in simulation

For rapid prototyping and testing different environmental and agent settings, the initial
shimming experiments with DRL were executed in simulation. RL in simulation was
conductedwith theDDPG agent described above, andwith the hyperparameters reported in
Table 7.2. The overall exploration noise decay was defined via (explore noise start) (episode) .

99



7. Towards deep reinforcement learning for shimming

Training Data type Shims
Offline Simulated Z, Z2, Z3
Online Real X, Y, Z

Table 7.1.: Overview of conducted deep reinforcement learning (DRL) experiments for
shimming.

Target Variable Value
Architecture Compressed size 16

Compression training data Real
FC layers 4

FC hidden size 512
Replay buffer length 100k

Environment Concatenated observations 4
PER 𝛼 0.9
PER 𝛽 0.9

Action scale 𝜆𝑎 0.3
Reward Objective FID area

Target tolerance 0.92
Discount factor 𝛾 0.55

Delayed target update 𝜏 10−2

OOB punishment 𝜆OOB -10
Bad action scale 𝜆− 2

Training Episodes 4000
Critic LR 10−3

Actor LR 10−4

Batch size 128
Explore noise start 0.99

Max steps 20

Table 7.2.: RL hyperparameters in simulation.

After training the agent, evaluation was done on 100 random distortions. For two
simulated shims, the agent could achieve the tolerance within 3.61 steps, on average, and
for three simulated shims, the agent required roughly 8 steps. The results are summarized
in Table 7.3. Two exemplary shimming results on 3 shims are displayed in Figure 7.3,
where each step is displayed. In Figure 7.3a, the RL agent reached the target region within
10 steps, and in Figure 7.3b, within 6 steps. Furthermore, Figure 7.3 shows that the agent
needs more steps to locate itself in shim space (steps 0-5) and corrects a prediction error
in step 11.

Hardware requirements Training in simulation (2-shim scenario) takes roughly 4 hours
using an AMD Ryzen Threadripper PRO 3955WX with 256 GB RAM and two Nvidia RTX
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Shims Mean nr. steps Mean reward MAE
2 (𝑍, 𝑍 2) 4.5 ± 4.1 2.3 ± 1.5 0.017 ± 0.008
3 (𝑍, 𝑍 2, 𝑍 3) 8.1 ± 5.5 1.45 ± 0.78 0.035 ± 0.015

Table 7.3.: Simulation results after training an agent for 4k episodes on the SHIMpanzee
gym wrapper. The average number of steps, mean reward and the normalized
MAE are reported for simulation with 2 and 3 shims.

(a) Example 1. (b) Example 2.

Figure 7.3.: Two exemplary RL shimming results on 𝑍, 𝑍 2, 𝑍 3 shims in simulation. Peaks
are shifted for visualization, and axes are arbitrary units.

A5000 GPUs. The trained actor (without the critic, as this is not required for inference)
roughly allocates 2.2 MB of space.

7.3.2. Online RL on real hardware

After confirming the success of RL for shimming in a simulated environment, this approach
was applied to an actual spectrometer. All findings during the simulationwere incorporated.
However, modifications were made to the reward function and the shims. Instead of using
the RMS of the FID area (see Equation 7.2), the reward was now defined with respect to
the optimal linewidth achievable on the spectrometer, expressed as 1 − lw. This implies
that linewidths greater than 1 Hz get a negative reward. Additionally, the corresponding
tolerance was adjusted to assess the feasibility of RL for shimming under less stringent
conditions. The shims of interest were also changed to 𝑋,𝑌, 𝑍 , replacing the 𝑍, 𝑍 2, 𝑍 3

configuration, a modification motivated by the optimality of the simulation.
All hyperparameters for training the online RL agent are reported in Table 7.4. Online

training of the RL agent required 26′272 NMR acquisitions; thus, the process was time-
consuming compared to supervised DL training. The total training time took roughly
three days and three hours using an Intel Core i5-8500 with 8 GB RAM interfaced with the
Magritek 80 spectrometer. Indeed, RL is known to be sample inefficient, especially when
trained online. Nevertheless, the RL agent managed to explore the shim space on its own
to exploit it for shimming.
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Target Variable Value
Architecture Compressed size 16

Compression training data Real
FC layers 4

FC hidden size 512
Replay buffer length 100k

Environment Concatenated observations 4
PER 𝛼 0.9
PER 𝛽 0.9

Action scale 𝜆𝑎 0.3
Reward Objective 1-lw

Target tolerance 0.5
Discount factor 𝛾 0.55

Delayed target update 𝜏 10−2

OOB punishment 𝜆OOB -10
Bad action scale 𝜆− 2

Training Episodes 1500
Critic LR 10−3

Actor LR 10−4

Batch size 128
Explore noise start 0.99

Max steps 20

Table 7.4.: RL hyperparameters on real hardware.

lw50 [Hz]
Stage Nr. samples Average steps SR DiR Initial Shimmed MAE
1 50 14.1 ± 6.3 0.92 0.86 3.86 ± 1.64 1.5 ± 2.3 0.107
1 ↩→ 24 8.75 ± 5.0 1 0.93 3.96 ± 1.57 0.59 ± 0.05 0.044
2 10 18.6 ± 4.2 0.70 0.80 3.93 ± 1.22 2.47 ± 1.30 0.160

Table 7.5.: In situ results of AI-driven shimming with a DRL agent. Values are reported as
mean ± standard deviation over 100 random distortions drawn from a uniform
distribution. Stage 1 is tested directly after training, while stage 2 includes
reshimming and resetting the environment. Abbreviations: SR = success rate,
DiR = direction ratio, lw50 = linewidth at 50% of the maximum, MAE = mean
absolute error.

Convergence curves for mean reward, mean number of steps, and actor and critic losses
are displayed in Figure 7.4. After training, the agent was directly tested on 50 random
distortions and could shim to 1.5 ± 2.3 Hz within 14.1 steps, on average. Testing directly
after training, without resetting the environment or shimming, was "stage 1" of evaluation.
During this stage 1, 24 runs achieved a "Done" state, i.e. were able to reach the tolerance
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region, whereas the remaining runs were stopped after a maximum of 20 steps. For those
24 converged runs, shimming performance was superior to any previous results, namely
0.59 ± 0.05 Hz within 8.75 ± 5.0 steps.
Figure 7.5 showcases exemplary shimming results obtained using an RL agent during

stage 1 of testing. A variation was evident in the average number of steps required to
achieve a linewidth within the accepted tolerance. Specifically, in Examples 1, 2, and 4,
the agent achieved linewidths below 1 Hz in just 3, 10, and 6 acquisitions, respectively.
Example 3 presents a case where the desired linewidth exceeded the tolerance range. In
this instance, the agent oscillates between states close to 1 Hz.
However, in "stage 2" of the evaluation, namely reshimming the magnet and resetting

the environment (including calibration and locking), the DRL agent was tested again on
10 random distortions. Here, only one run could achieve a done state, and consequently
shim to 0.56 Hz within 6 steps. All other runs took the maximum allowed number of steps,
and were then stopped, still achieving some linewidth improvement (≈ 2.5 Hz), but not
the target value.

Failure causes / Environment drift The evaluation results of DRL-based shimming in stage
2 showed that the trained actor could not achieve decent shimming results after resetting
the environment, shimming, and reloading the network weights. This may be caused due
to environmental drifts that the agent explored and exploited. Resetting those drifts leaves
the agent in a new domain, thus failing to shim.
Overall, this behaviour causes DRL to be impracticable for real shimming scenarios if

this environmental drift cannot be solved. More efforts should be made to investigate that
issue.

7.4. Limitations of reinforcement learning

DRL enables surpassing several issues of a supervised DL approach for shimming. This
includes the acquisition of a labelled dataset, which further needs a known optimum to
define the targets. Also, DL-based approaches do not optimize for a quality criterion.

However, RL methods bring their own limitations, and they are

• heavily sample-inefficient, making it expensive for NMR applications,

• strongly dependent on the correct reward function design,

• prone to local optima,

• weakly reproducible, even with the same hyperparameters and seeds.

The major limitation of RL during the completed experiments was the environmental
drift that caused the agent to fail after a reset, making it applicable only to a standby
shimming scenario.
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(a) Mean episode length. (b) Mean reward per episode.

(c) Mean critic loss. (d) Mean policy loss.

Figure 7.4.: Metric plots of training an RL agent online and on real hardware.
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(a) Example 1. The RL agent achieves an
accepted linewidth after only 3 steps.

(b) Example 2. The RL agent converges after 10
steps.

(c) Example 3. The agent oscillates between two
local optima until stopped.

(d) Example 4. The RL agent converges after 6
steps.

Figure 7.5.: Arbitrarily chosen RL shimming results on a real spectrometer (stage 1), tested
directly after training.
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AI-driven shimming has proven to be successful, and it can greatly accelerate the cumber-
some shimming procedure. This innovative approach, a first in its field, opens a virtually
boundless realm of possibilities, given the previously unexplored nature of this research
area. Throughout the preceding chapters, several ablation studies were conducted to
understand the various components of this AI-driven method, and an overview is given in
Table 8.1. This section aims to overview the critical design choices, challenges encountered,
and unresolved questions related to scalability and explainability.

Experiment Device Method Data Tested Shims
Spectral peak compression M80 VAE Real Offline -
Compressed eDR M80 CeDR Real Online 4
Dataset size influence B650 PeDR Real Online 2 × 6
Architecture choice SHIMpanzee eDR Sim Offline 3
Reliability and robustness M80 DRE, eDR, PeDR Real Online 3-12
Nr. of simultaneous shims M80 eDR Real Online 1-16
Input signal M80 eDR Real Online 6
Explainable AI (XAI) M80 eDR Real On&Off 4
Dataset drift M80 - Real Online -

Table 8.1.: Overview of all conducted ablation studies. Abbreviations: M80 = Magritek
benchtop NMR with 1H frequency of 80 MHz, B650 = Bruker preclinical MRI
with 650 MHz, Sim = Simulated data.
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8.1. Compression

NMR spectra are usually sparse, i.e., they contain much non-informative data such as noise.
Thus, compression of spectra to a lower dimensional representation should be feasible
without losing too much information.

First, this section describes the variational autoencoder for spectra (or peak) compression,
including its architecture and training. The compression performance of the VAE was
evaluated after being trained on real NMR spectra. Furthermore, this section describes an
ablation study conducted for AI-driven shimming, especially the supervised DL method
eDR, introduced in chapter 5. The new method was referred to as compressed eDR (CeDR),
and the CeDR architecture uses spectra that were compressed to size 16 with a trained
VAE, instead of feeding full spectra of size 2048, and then predicts shim correction terms.

As described in chapter 7, an RL agent’s computation complexity and convergence could
be improved with compressed spectra.

8.1.1. Variational autoencoder for spectral peak compression

DL problem definition for peak compression Let D = {x𝑖} |D|𝑖=1 be a dataset comprising
only spectral data, where each x𝑖 ∈ R2048 is a spectrum of length 2048. A convolutional
Variational Autoencoder (VAE) is tasked with compressing these spectra into a latent space
z ∈ R16 and subsequently reconstructing them. The encoder E𝜃 (·), parameterized by 𝜃 ,
maps the input spectrum x to the latent representation z. Conversely, the decoder D𝜓 (·),
with parameters𝜓 , reconstructs the spectrum from z. The VAE is trained to minimize a
loss function L, which includes a reconstruction loss and a 𝛽-weighted Kullback-Leibler
divergence term that regularizes the latent space. The loss function can be formulated as
follows:

L = MSE(x,D(E(x)))︸                ︷︷                ︸
Reconstruction Loss

+ 𝛽 · 𝐾𝐿(𝑞𝜃 (z|x) | | 𝑝 (z))︸                       ︷︷                       ︸
KL Divergence Term

, (8.1)

where MSE measures the mean squared error between the original spectrum x and
its reconstruction, and KL is the Kullback-Leibler divergence between the learned latent
distribution 𝑞𝜃 (z|x) (as modelled by the encoder) and the prior distribution 𝑝 (z) (typically
a standard Gaussian with mean 𝜇 and standard deviation 𝜎).

Variational autoencoder architecture For the purpose of spectra compression, a variational
autoencoder (see Figure 8.1) was used that consists of a 3-layer convolutional encoder
with kernel size 51 and [8, 32, 16] hidden neurons per layer. Each encoder layer included a
convolutional layer, a batch normalization (BN) layer, and a LeakyReLU activation function.
The decoder layers include transposed convolutions (or up-convolutional layers), a BN
layer, and LeakyRelU, respectively. The last VAE layer was an upconvolutional layer,
followed by a linear FC layer, and a sigmoid activation. For reconstruction, only the mean
vector of the latent space was taken. The convolutional layers in the encoder and decoder
efficiently captured the local structures within the spectral data, which was essential for
effective compression and accurate reconstruction.

108



8.1. Compression

Figure 8.1.: Simplified variational autoencoder (VAE) structure. 𝜇 and 𝜎 are the latent
Gaussian distribution’s mean and standard deviation vectors.

Preprocessing The dataset from chapter 5 was used for VAE training. This dataset
includes one-dimensional NMR spectra with adjustments to 𝑋,𝑌, 𝑍, 𝑍 2 shims. All spectra
were normalized to a range of [0, 1].

Compression training HPO was incorporated to find a balance between hidden dims
2[3−7], 2[3−6], 2[3−5] , learning rate (LR) of [10−3, 5 × 10−4], L2 weight [10−6, 10−2], KLD
weight [10−7, 10−4] to yield the best performing model. The final model was trained for
200 epochs using the Adam optimizer with an LR of 2 × 10−4 and batch size 32. The KLD
part of the VAE loss was weighted by 8.5 × 10−7, and the L2 weight was 1.1 × 10−6.
Augmentation during the training included a normal shift of 4 and phase distortions of 10.
A Gaussian kernel of 15 was used to smoothen the predictions during testing.

Compression results The trained VAE could compress spectra of size 2048 to a latent
dimension of size 16, and reconstruct the original spectra with an average MSE test
loss of 0.00043. Exemplary reconstruction examples are displayed in Figure 8.2. Out-of-
distribution samples from additional monitoring datasets had similar errors of 0.00052 and
0.00049.

Figure 8.2.: Exemplary results of VAE compression and reconstruction on real spectra.
Latent dim = 16.
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8.1.2. Compressed enhanced deep regression for DL-based shimming

As described in the previous chapters, DL-driven shimming has succeeded in speeding up
the shimming process. So far, the used architectures handle high-dimensional NMR spectra
together with shim actions to predict shim corrections. The NMR spectra are internally
processed by a convolutional neural network block to extract features. However, these
features are over-represented, i.e., they usually have more neurons than the actual input,
increasing the memory footprint and computational load of running AI-driven shimming.
Compressed enhanced deep regression (CeDR) was a proxy method to infer whether

the latent space of a previously trained VAE captures the essential information content
of the input spectra. The CeDR architecture replaces the CNN part of ConvLSTM with a
pre-trained compression stage, represented by a VAE. See Figure 8.3 for an illustration.

Figure 8.3.: CeDR architecture, including VAE for spectra compression. The compression
VAE is trained separately, and CeDR incorporates the encoder with frozen
weights.

Training The CeDR model was trained similarly to eDR, and corresponding hyperpara-
meters are summarized in Table 8.2.

The only differences were that only label noise was applied during training, as the data
was compressed beforehand for faster training, and different hidden sizes were utilized
due to the smaller input shape.
After training on the same datasets of eDR, namely 10k H2O and 5k H2O with CuSO4

(see Table 5.1), CeDR achieves an MAE of 0.0427 ± 0.0376 on the test sets, and averages
of [0.0479, 0.0406, 0.0584, 0.0240] for [𝑋,𝑌, 𝑍, 𝑍 2] shim. In comparison, eDR achieved an
MAE of 0.023 ± 0.019 on the test set.

Real experiments Experiments on real hardware also validated that spectra compression
with a VAE covers the important features of the spectra for shimming. In-situ performance
was slightly worse than eDR with full spectrum as an input, but CeDR performed well
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8.1. Compression

Target Variable Value
Architecture Compressed size 16

Data type Real
Input sequence length 10

FC hidden size 64
Dropout 0.2

LSTM layers 4
Augmentation Label noise 0.1
Training Epochs 200

Learning rate 0.0027
Optimizer Adam

Loss MSE

Table 8.2.: DL hyperparameters of CeDR.

enough and achieves a success rate of 0.98, and it can shim from 3.91 Hz to 1.27 Hz with a
mean absolute error of 7.89% (see Table 8.3).
Figure 8.4 furthermore visualizes the performance of CeDR compared to eDR in de-

pendency of the number of random steps during inference. The results of both methods
are reported over ten random distortions.

Model SR DiR initial FWHM shimmed FWHM MAE
eDR (chapter 5) .99 0.93 3.9 0.72 0.041
CeDR .98 .878 3.91 1.27 0.079

Table 8.3.: Results of AI-driven shimming with compressed eDR (CeDR) after 7 random
and 2 predictive steps.

Figure 8.4.: In-situ comparison between shimming results of compressed eDR and eDR over
ten random distortions indicating the dependency on the number of random
steps. (Gratefully modified from Pierre Labouré.)
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Shimming experiments with CeDR have proven that the compressed latent state of
a spectrum contains all necessary features for shimming, and thus, the VAE is a fitting
candidate to compress the state space for an RL agent from high-dimensional spectra to a
latent vector.

8.2. Influence of dataset size

Figure 8.5.: Influence of dataset size, given for PeDR’s performance. The model’s prediction
performance scales with the available training data. (Adopted from Becker
et al. (2023).)

Deep learning models generally require large datasets to achieve good performance,
while, especially for NMR applications, the exact relationship between dataset size and
performance remains unclear. Most AI approaches for NMR use simulated data, which can
be generated infinitely, but real data acquisition is expensive, as required for AI-driven
shimming.
An ablation study was conducted on subsets of a whole dataset for parallel shimming

to test this dependency. As expected, more training data results in a lower error in both
the test set and real experiments (see Figure 8.5).
Furthermore, an apparent discrepancy between offline and online evaluations can be

observed, probably caused by drifts in the experimental setup and stochasticity of data
generation. This issue was indeed present in all AI-driven shimming methods.

8.3. Architecture impact

Neural network architecture design is not straightforward, especially in research fields
currently being explored with AI. Thus, it was unclear whether to choose well-explored
architectures that have proven to work or state-of-the-art (SOTA) approaches.

The design process for the eDR NN architecture incorporated several decisions, which
were validated in simulation, and included:

• systematic versus random data acquisition,

• adding action information to the model’s input sequence,
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• convolutional neural network (CNN) versus Long Short Term Memory (LSTM)
networks versus a combination of CNN and LSTM (ConvLSTM) versus a combination
of CNN and Transfomer (ConvTransformer).

8.3.1. Data

The architecture design choices were evaluated using data from the SHIMpanzee simulator
(see section 3.5) on 𝑍 , 𝑍 2 and 𝑍 3 shims, which give distinguishable peak distortions. The
simulation used 105 "spins" (or voxels) with 3 shims (𝑍, 𝑍 2, 𝑍 3) and 2048 spectral points.
Depending on the architecture, input type and sampling strategy, i.e. random offsets or
action infusion, a dataset with 5000 samples was created.

8.3.2. Architectures

The following modifications to the network architectures were undertaken: If action
information was infused, it was done in the first fully connected layer, followed by an
additional layer normalization. The stand-alone LSTM architecture consists of a 2-layer
LSTM, where the input sequence consists of a concatenated spectrum and action. The
convolutional recurrent NN (ConvLSTM) architecture was similar to chapter 5 and 5 layers
with 64 channels, kernel size 20, stride 2, no pooling, a 3-layer LSTM with hidden size
1024 was used to cope with the simulated data. A dropout of 0.2 for convolutional and
fully-connected layers was applied. The CNN-Transformer combination replaces the LSTM
of ConvLSTM with a transformer block, including four transformer encoder layers with
seven heads and a dropout of 0.2. No positional encoding or masking was used, as the
order inside a shimming sequence does not matter.

Ensemble architectures in chapter 4 have high computational requirements but did not
show significant performance advantages and were neglected. Furthermore, AI research
has an environmental footprint (Strubell et al., 2020), i.e., without major benefits, large
computations should be reconsidered.

8.3.3. Training

All networks were trained with the same hyperparameters. This includes 4 input spectra
(batched or as a sequence), uniformly random 𝑍 0 shift ∈ [−32, 32], label noise of 0.1, and
phase distortions of [−10, 10]. All models were trained for 100 epochs with a learning rate
of 2 × 10−4 and the Adam optimizer to minimize the Huber loss. Gradients were clipped
to a maximum norm of 2 during training. Only the transformer-based architecture was
trained with a lower learning rate of 10−5.

The computations were performed with an AMD Ryzen Threadripper 3970X equipped
with 256 GB RAM, and two graphics processing units NVIDIA GeForce RTX A5000.

8.3.4. Testing and evaluation

The MAE over 500 test samples for each architecture is reported in Table 8.4. The
experiments validated that infusing past actions and using temporal information in the
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neural network architecture allows random offsets during inference and concurrently
improves the prediction performance. Using the SOTA transformer did not seem to give
improvements, probably due to its demand for massive datasets.

Acquisition Action info CNN LSTM Transformer MAE
Systematic - ✓ - - 0.039
Random - ✓ - - 0.292
Random - ✓ ✓ - 0.114
Random ✓ ✓ - - 0.117
Random ✓ - ✓ - 0.051
Random ✓ ✓ ✓ - 0.031
Random ✓ ✓ - ✓ 0.036*

Table 8.4.: Comparison of dataset acquisition strategies and architecture choices on the test
set’s mean absolute error (MAE) in simulation. *: ConvTransformer required
lower LR to converge. Abbreviations: CNN = convolutional neural network,
LSTM = long short-term memory, MAE = mean absolute error.

8.4. Domain shifts in AI-driven shimming

Domain adaptation is a significant area of research in AI that aims to address a common
problem where AI models are unable to generalize in the real world after being trained in a
simulated environment. This issue, known as the sim2real gap, results from the differences
that emerge when models trained in a controlled, simulated environment are applied to
unpredictable real-world scenarios. Even if models are trained with real-world data, there
is still the risk of small environmental drifts, where the underlying distribution of the data
changes over time, which may lead to a decline in model performance.

These two challenges also arise in AI-driven shimming. While a shimming simulation
can never accurately represent real hardware non-idealities and still maintain an acceptable
computational load, the studies in the previous chapters have also suffered from environ-
mental drifts, some more than others. For instance, DL approaches only experienced a
slight performance decrease compared to the test set. At the same time, an RL agent trained
online failed entirely when the environment, i.e., the NMR spectrometer, was recalibrated.
Also, refer to the next section for an example of the discrepancy between offline tests

and online performance.

8.5. Reliability of AI-driven shimming

DL methods involve a trade-off between risk and return due to the random nature of their
networks. However, the DL-driven shimming methods, including DRE, eDR, and PeDR,
demonstrated remarkable stability under experimental conditions. The probability density
functions between the initial and shimmed linewidths (FWHM) for all experimental test
runs are plotted in Figure 8.6.
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The probability density function (PDF) over 100 in situ runs for DRE is plotted in 8.6a.
eDR exhibited the best performance, with over 99% probability of improving the initial
linewidth in all 100 random distortions while keeping the improvement below 1 Hz in
87% of the cases. PeDR’s performance was measured on 50 random distortions, showing a
clear trend in linewidth improvement for both channels in the parallel setup.
In summary, all methods revealed some degree of variance in their prediction, which

may be reduced through ensemble methods, as demonstrated in the case of DRE. However,
traditional methods also tend to fail, as shown in Table 5.4, while having less chance for
fast shimming.

(a) Skewed DRE. (b) Skewed eDR.

(c) Skewed PeDR.

Figure 8.6.: Reliability of DL-based shimming approaches. Probability density
function (PDF) indicating the distribution of initial and shimmed linewidths
(FWHM). The dashed lines visualize skewed normal distributions fitted to the
histogram (continuous line). (Adapted from Becker et al. (2022a,b, 2023))
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8.6. Number of simultaneous shims

AI-driven shimming allows the prediction of shim corrections for multiple shims simulta-
neously. The first feasibility study in chapter 4 predicted three shim corrections. The
enhanced method from chapter 5 already used four shims, and parallel shimming (see
chapter 6) was conducted on 2 × 6 shims. However, the limit of simultaneous shims was
unknown and strongly depended on their interdependencies and the used hardware. For
example, in the parallel scenario, a total of 12 shims were corrected, but they were arranged
as 2 × 6 (primarily independent) shims.

The ablation in this section summarizes shimming performances for different numbers
of shims, and additional experiments were conducted. Especially, the most promising
eDR method was tested on varying numbers of shims. However, this required acquiring
a new dataset for each experiment. Note that the eDR model (ConvLSTM) experienced
slight adjustments per experiment, e.g., kernel size, sequence length or learning rate, to
accommodate higher learning complexity and different features.

Nr. Method Range Nr. data Steps Initial Shimmed MAE
shims samples (random, predictive) lw [Hz] lw [Hz]
3 DRE 10000 9261 4 1438 534 0.176
4 eDR 50 15k (7,2) 3.9 0.72 0.041
6 eDR 20 30k (10,1) 1.71 0.69 0.093
2 × 6 PeDR 2 × Ref 8799 (7,3) 92|93 39|26 0.089
8 eDR 20 10k (7,2) 1.74 1.12 0.156
8 eDR 20 60k (7,2) 1.69 1.21 0.141
16 eDR 20 10k (17,3) 1.98 1.64 0.098
16 eDR 10 10k (17,3) 1.17 1.02 0.263

Table 8.5.: Performance of simultaneously shimmed coils. The range was derived from
int16 shim values [-32768, 32768]. The number of steps is given in the format
"(random, predictive)", where systematic offsets are applied in the case of the
DRE method. Linewidths are reported as the mean over in-situ evaluations.
MAE is given in percentage to the range.

The results indicate a soft limit of simultaneous shim-able parameters for more than
6 shims. This decision is derived from the shimmed linewidth, which does not go below
1 Hz for more than 8 simultaneous shims. This could have several reasons: Insufficient
random and predictive steps, DL architecture not being capable of learning all correlations,
and (most probably) overlapping features and interdependencies introducing ambiguities
that are not even visible to a DL algorithm. Furthermore, the MAE of predictions increased
with the number of shims, indicating that either more data is needed or that the model
might not be large enough to capture all underlying patterns.

Note that even though larger datasets were acquired for 6 and 8 shims, the performance
did not seem to benefit from more samples. Also, the experiments with 16 shims seem
to have an overall lower MAE, but as the number of shims is higher, the distortion from
non-ideal values accumulates to worse linewidths.
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8.7. Input signal

During shimming experiments with different samples using the eDR method, phase issues
were encountered on spectra with multiple peaks. It was hypothesized that this could
be resolved by training the model on the spectral magnitude (Becker et al., 2022b), if a
higher degree of robustness is needed. Therefore, an ablation study was conducted to test
the influence of the spectrum’s value, i.e. taking the real part as input to the model was
compared to the magnitude and the real plus imaginary part of the spectrum.

The same eDR model was trained three times, once with the real spectrum as the input
signal, one with the magnitude of real and complex, and one with complex-valued input
via two additional channels to the model. For 50 random distortions and an offset range of
20, the resulting shimming performance is reported in Table 8.6. The best performance
was still achieved with the model designed for real spectra only, while a complex-valued
network performed on par. However, feeding the real and imaginary did not yield any
benefit as one may expect. Furthermore, a model trained with the magnitude of the
spectrum performs worse.
In summary, a phase-robust approach would have some performance trade-offs or

require further developments.

Input signal SR DiR initial FWHM shimmed FWHM MAE
Real 0.96 .86 1.71 ± 0.70 0.69 ± 0.21 0.093 ± 0.042
Absolute 0.88 0.81 1.74 ± 0.64 0.94 ± 0.34 0.127 ± 0.057
Complex 1 0.85 1.66 ± 0.67 0.72 ± 0.19 0.103 ± 0.039

Table 8.6.: Results of AI-driven shimming with eDR using different input signals, on 6
shims for 10 random and 1 predictive step.

8.8. Towards explainable AI (XAI)

Neural networks are usually treated as black boxes. The concept of Explainable Artificial
Intelligence (XAI) aims to make the decision-making process of intelligent machines
transparent and understandable to humans. Recently, the European Union proposed the
AI Act, which seeks to ensure the trustworthiness, fairness, accountability, and ethicality
of AI applications, especially in critical domains that impact human lives, rights, or values.

This chapter discusses and conducts experiments introducing XAI inAI-driven shimming.
Although XAI is not necessary for AI-driven shimming for NMR spectroscopy, it is
beneficial for transparency and understanding of the decision-making process.

Uncertainty of AI-driven shimming One key point of XAI is trustworthiness, which could
be measured by the uncertainty of a neural network’s predictions. A common approach to
measure DL models’ uncertainty is using the variance in the ensemble of multiple models
(Lakshminarayanan et al., 2017). In chapter 4, ensembles have proven to reduce prediction
variance, i.e. increase trustworthiness. However, training a large quantity of models has
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a substantial environmental footprint (Strubell et al., 2020), and should be avoided if no
immediate benefit is present. This is the case for AI-driven shimming with DRE, where
the ensemble did not perform much better than a single model, and trustworthiness is not
crucial.

Another approach for ensemble methods that do not require repeatedly training multiple
models can be achieved by dropout during inference (Gal & Ghahramani, 2016). This
will lead to different predictions if queried with varying rates of dropout. Exemplary
experiments were conducted with the best-performing eDR model from chapter 5 for two
different dropout probabilities. First, a high dropout of 0.2 for the FC and convolutional
layer, and second, a lower probability of 0.02|0.01 for conv|fc, respectively. The predictions
were averaged by querying each spectrum of one step 10 times.

However, the resulting performance did not seem to improve. Both experiments show
success rates of 1.00, DiR of 0.915 and 0.87, but the linewidths could only be shimmed from
3.9 Hz to 1.2 Hz and 1.23 Hz for dropout 0.2 and 0.02|0.01, respectively. The errors were
MAE of 0.086 and 0.07. In comparison, eDR without dropout during inference achieved
linewidths of 0.72 Hz, on average.

Opening the black box It is nearly impossible to reliably explain a neural network’s
predictions for custom DL architectures as used for eDR, which includes convolutional
layers, recurrent connections, and fully-connected heads.

Commonly, SHapley Additive exPlanations (SHAP) values are used to explain predictions
of neural networks (Lundberg & Lee, 2017). SHAP values are calculated by considering
all possible combinations of input features and computing the difference in the model’s
prediction with and without the feature in question, which only works well for small
dimensions. A neat approach to diving into understanding (or unscrambling) fully con-
nected networks has been developed by Amey et al. (2021). Furthermore, the captum
framework (Kokhlikyan et al., 2020) allows to interface of Pytorch models and allows
for some explainability. Captum especially enables the explanation of predictions for
computer vision models, where, for example, heatmaps can be superimposed on the input
image to show importance weightings. Integrated Gradients, a feature attribution method
in the Captum library, helps explain a neural network’s predictions by attributing them to
input features through gradient integration. This provides insights into important features
and the model’s behaviour for specific inputs.

First efforts were made to explain eDR’s predictions with integrated gradients (IG) from
Captum. One issue related to explaining sequences, and the initial step involved calculating
the importance values with IG for a single input spectrum. Figure 8.7 gives two examples
for integrated gradients of the trained eDR model on spectra with pure distortions, i.e.,
offsets of one shim only. Figure 8.7a shows a scenario with a pure distortion of the 𝑌 shim.
As expected in section 3.3 and visualized in Figure 3.2b, the 𝑌 shim leads to lineshape
distortion as a spike on the right side. Figure 8.7a also demonstrates that the models gave
more importance to this region of the peak for 𝑌 while putting less emphasis on the 𝑋
shim. However, residual importance is given to other regions of the spectrum and the
other shims. A pure 𝑍 2 shim distortion of [0, 0, 0, 20] is given in Figure 8.7b. Despite the
fact that the model predicted the correction values quite closely ([−1, 4,−3, 15]) given only
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Spectrum index

(a) Feature importance on a pure 𝑌 shim
distortion.

Spectrum index

(b) Feature importance on a pure 𝑍 2 shim
distortion.

Figure 8.7.: Towards explainability with integrated gradients. Tested on pure distortions
with the trained eDR model.

one (!) input spectrum, the integrated gradient showed importance values to other shims
as well. The results indicate that the model can differentiate single shim distortions, but
mainly benefits from the sequence of spectra and actions, which were not considered
here. Finally, this ablations study does not help to understand the reason behind the NN’s
predictions.

Another approach could be compression, which can enable more explainable predictions.
For example, the decoder part of VAE can be designed to force the compression into a
set of human-readable variables, such as moments or parameters of a Lorentzian peak.
Afterwards, the decisions of an NN model should be explainable.

The central question of XAI approaches, however, is whether they help to explain what
is going on inside the network, or (more importantly) really help to understand the reason
behind it (Krenn et al., 2022) to lead to new scientific insight.

8.9. Shim optima drift

Why is it not possible to store the best reference shims for each sample, and load them at
will?

A drift of the magnet clearly prevents the implementation of this idea, where the
drift leaves the reference shim values to vary over time. Temperature, as well as other
environmental influences, could also play a role that influences the drift. To show the
shim optima drift exemplarily for an 80 MHz benchtop NMR, small monitoring datasets
were acquired sparsely distributed among the years 2021 and 2024, and the reference shim
values were extracted from all additional datasets with H2O. Plotting the deviation from
the first reference values indicates a drift of the optimum shim values, making it impossible
to rely on a saved file of absolute shim values for a sample of choice. Figure 8.8 shows
both the absolute deviation of the shim values as stored as int16 values, and the deviation
normalized by the shim influence or weightings, as measured in Subsection 5.3.2.
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(a) Absolute deviation given in int16.

(b) Deviation normalized by influence in %.

Figure 8.8.: Reference shim value deviation on a benchtop NMR magnet.
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9. Discussions on shimming with artificial
intelligence

Using AI-driven shimming with DL models or RL agents is a promising approach to
streamline the tedious shimming process. These methods could easily be incorporated
into commercial systems.

So far, the following challenges remain:

• Scalability. Increasing the number of channels towards commercially available
shim systems with up to 48 coils introduces overlapping features and will make
shimming, even for an intelligent algorithm, harder. Splitting the problem into
subgroups, such as what is done for the simplex method, will keep complexity in a
controllable state.

• Related approaches. This thesis did not consider gradient shimming algorithms as
they generally require gradients that are unavailable on most permanent benchtop
magnets and on custom miniaturized hardware. Furthermore, the resolution of 𝐵0
maps may be insufficient for parallel microtubes, as used in chapter 6. However,
signal-based shimming with random offsets shows similarities to projection-based
gradient shimming, where systematic projections with gradients along different
orientations are taken to map the field. Intrinsically, random shim offsets similarly
produce projections along randomdirections, butwith veryweak gradients (produced
by the shim coils).

• Algorithms. Supervised deep learning can obtain internal feedback by a shimming
history, however, this is not correlated to spectral quality, as in the case of RL. Thus,
one may think that a DL model, instead of doing "real shimming" by improving
spectral quality, correlates spectral peak shapes to shim distortions, which can be
corrected in a second step if that correlation is correct.

• Data. Maybe the most severe challenges refer to the data necessary for AI-driven
shimming.

– Dataset. The features exploitable by a neural network are due to hardware non-
idealities and, thus, are machine-specific. This imposes an unavoidable bias
in the data distribution. Furthermore, DL models strongly depend on a large
amount of available data samples, and RL agents are even more data-hungry
(and sample-inefficient). As a consequence, it is inevitable to acquire machine-
specific datasets for effective shimming on the machine. Transfer learning
from a large database collected from different spectrometers and fine-tuning
powerful models could reduce this constraint and reduce dataset biases.
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– Measured sample. Another data-related challenge is the sample measured.
So far, a hydro-deuterium oxide (HDO) peak was selected for all datasets,
which may not be the solvent of choice. Thus, shifting to a generally available
reference peak, such as tetramethylsilane (TMS) or trimethylsilylpropanoic
acid (TSP)1, would allow broader generalizability beyond water peaks.

– Reference values. Finally, DL models require a labelled dataset, which is
defined relative to the global optimum (that must be known). An RL agent
mitigates this challenge and can optimize for spectral quality directly.

1The chemical structure of TMS and TSP is mostly symmetric, and thus, their chemical shift is close to
0 ppm.
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Artificial Intelligence for RASER MRI
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10. AI for RASER MRI

The proposed method of this chapter is being prepared as an article titled "Deep learning
corrects artefacts in RASERMRI profiles", to be submitted to a journal in 2024. Additionally,
the work in this chapter led to the master thesis "Deep Learning for the prediction of
RASER-MRI profiles" (Arvidsson & Bertilson, 2023), conducted by Filip Arvidsson and
Jonas Bertilson, which focused on several testing phases toward feasible AI correction of
RASER MRI images. Figures were modified from this work.

10.1. Overview

Magnetic resonance imaging (MRI) is a critical diagnostic tool in medical practice but
has inherent spatial resolution limitations, which may limit its diagnostic capabilities.
Furthermore, standard MRI is limited by the following requirements: Strong gradients1 are
necessary for spatial encoding, an RF excitation pulse needs to be applied to excite the spins
from equilibrium, leading to heating of tissues due to the absorption of RF power, and MRI
images show background signals as all surrounding molecules in an excited image slice
are excited. Recently, Radio-frequency Amplification by Stimulated emission of Radiation
(RASER) has emerged to improveMRI resolution by hyperpolarization. RASER-MRI signals
spontaneously emerge without the need for a radiofrequency pulse (RF), which enhances
the safety of the process. Furthermore, the signal of RASER MRI images is higher due to
hyperpolarization, which relatively reduces background noise. Currently, RASER MRI
images are acquired along projections, only requiring small gradients to create angles for
the image projections. Furthermore, RASER eliminates 𝑇 ∗2 constrictions of pulsed NMR
when continuous parahydrogen pumping is used. However, RASER-MRI images frequently
exhibit significant image artefacts due to the nonlinear nature of the signals.
This chapter examines the effectiveness of using deep artificial neural networks to eliminate
image artefacts in RASER MRI (see Figure 10.1). However, RASER is a very new technique,
and barely any RASER images exist. On top of that, hyperpolarized MRI is not very well
automated, making the idea of measuring a dataset with tens of thousands of images, which
is necessary for effective deep learning, impossible. Fortunately, the RASER equations are
known (Lehmkuhl et al., 2022), which allows the simulation of RASER signals, and the
neural networks are trained on purely simulated data.
The study is divided into two phases from a DL perspective: correcting the projections
themselves (1D AI) and denoising the entire image (2D AI). The main objective was to
reconstruct random 2D RASER-MRI images with varying degrees of realism during dataset
simulation. The findings revealed that a simple convolutional neural network trained with
synthetic data can correct RASER distortions in image projections, and adding a denoising
1The resolution is inversely proportional to the gradient’s strength.
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image-to-image network to the 1D correction network can significantly enhance image
quality.

RASER also requires good magnetic field homogeneity; thus, it also benefits from a fast
shimming algorithm.

Figure 10.1.: Traditional MRI imaging requires strong gradients, an RF excitation pulse, and
shows background noise. On the other hand, RASER MRI does not require an
RF pulse, and has lower background noise due to hyperpolarization, however,
it shows significant artefacts. AI can correct RASER MRI image slices to yield
images of better quality.

10.2. Method - DL part

This section will focus on the deep learning part of RASER image correction using deep
learning. It will start with a formal problem definition and describe the neural network
architectures used for this chapter’s approach. Then, the concept of the DL approach for
projection correction and image enhancement is explained, concluding with DL training
details.

10.2.1. Formal problem definition

Let D = {x𝑖} |D|𝑖=1 be a static dataset, where x is the input, and T𝑖 = {{𝑘 𝑗 , 𝑝} 𝑗 }𝑁𝑗=1 be a subset
for every x with 𝑁 slices/angles.
In detail, let x ∈ R44×44 be a randomly generated image, and 𝑝1, . . . , 𝑝 𝑗 ∈ R1×67 be

slices/projections thereof, with 𝑗 being the number of projections/angles. Each slice
undergoes a RASER simulation 𝑅𝛼 with different parameters 𝛼 (TPI, pumping rate, . . . ),
yielding a RASER signal 𝑟 𝑗 = 𝑅𝛼 (𝑝 𝑗 ) ∈ R1×4096. The distorted spectra 𝑘 𝑗 ∈ R1×200 can be
obtained by Fourier transformation (FFT) of 𝑟 𝑗 , and cutout to a region of interest (ROI). By
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Radon transformation (RT) of the spectra 𝑘 𝑗 , the RASER image z = RT(𝑘1, . . . , 𝑘𝑁 ) with
artifacts can be obtained.
Now a 1D model F𝐴

𝜃𝐴
(𝑘 𝑗 ) is defined, where 𝐹𝐴 is a convolutional neural network with

parameters 𝜃𝐴, that is supposed to correct each distorted spectra 𝑘 𝑗 (or a number of 𝑘 𝑗
with different RASER parameters 𝛼) to its original slice counterpart 𝑝 𝑗 = F𝐴𝜃𝐴 (𝑘 𝑗 ). Ideally,
ŷ = RT(𝑝1, . . . , ˆ𝑝𝑁 ) of all corrected slices should match the random image x, and be of
better quality/resolution than the RASER image z.
An additional model x̂ = F𝐵

𝜃𝐵
(ŷ), where 𝐹𝐵 is an encoder-decoder architecture based

on U-Net (Ronneberger et al., 2015) with parameters 𝜃𝐵 , should denoise the 1D-corrected
image ŷ to x̂ = x.

Both networks are trained in a supervised manner, 𝐹𝐴 using subset T to minimize the
MSE loss 𝐿1 between the predictions 𝑝 and 𝑝 , and 𝐹𝐵 to minimize the MAE loss 𝐿2 between
x̂ and x.

10.2.2. Architectures

The architectures used for RASER artefact removal are twofold. First, a 1D-AI model
corrects image projections, and then a 2D-AI model enhances the entire 2D image quality.
All final models were carefully selected from a large space/cohort of candidates, all

trained with limited neural architecture search (NAS) and hyperparameter optimization
(HPO) using raytune.

Figure 10.2.: 1D-AI: Convolutional neural network to correct 1D spectra/projections.
(Created by Arvidsson & Bertilson.)

1D RASER signal correction architecture One-dimensional distorted RASER slices were
corrected with a vanilla convolutional neural network architecture. The architecture
(depicted in Figure 10.2) consists of a convolutional and a fully connected part. Three
convolutional blocks are used, each consisting of convolution, ReLU, dropout and pooling.
Kernel size 8, 64 filters and a dropout of 0.2 are used. The FC part has five fully connected
blocks, each represented by an FC layer, activation, batch normalization and dropout of
0.2. The final activation is an Exponential Linear Unit (ELU).
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10. AI for RASER MRI

When designing the architecture for the neural network, there were several options
to choose from. Batches of input spectra, ranging from 1 to 16, all with varying TPI
values, were evaluated, and the corresponding TPI value was fed to the network. Different
approaches were tried for batched inputs, including providing each spectrum individually
or treating them as "RGB" channels. Additionally, different numbers of filter kernels
(< 128), kernel sizes, convolutional layers, and fully connected layers were incorporated
into the network. Finally, different learning rates were experimented with. The ablation
experiments (summarized byArvidsson&Bertilson (2023)) revealed that the best-performing
network used a single spectrum with the highest possible TPI, without feeding this TPI
value to a convolutional neural network. This approach kept the network complexity at a
minimum.

Figure 10.3.: 2D-AI: U-Net encoder-decoder architecture to correct 2D RASER MRI images.

2D RASER image denoising architecture Image-to-image denoising was enabled with a
U-Net architecture with reduced feature size, adapted from Persson (2021) and depicted in
Figure 10.3.

The input to the architecture was the inverse Radon transform of the 1D-AI-corrected
image slices, and the output was an image of size 44 × 44 pixels. The "down path" of
the U-Net architecture was made up of four double convolution layers, each consisting
of convolutions, batch normalization, and ReLU activation, with increasing numbers of
features [8, 16, 32, 64] and a kernel size of 3. The "up path" of the architecture had four
transposed convolutions with kernel size 2 and stride 2, with the number of features being
inverted, i.e., [64, 32, 16, 8].
Amongst the cohort of possible architectures were autoencoders and the U-Net with

varying input-output combinations. For example, sinogram-to-image, sinogram-to-sinogram
and image-to-image modalities were tested. The sinogram-to-image approach was inspired
by Zhang et al. (2023), and should avoid losses induced by Radon transformation. However,
all tests performed worse, and the best architecture was chosen as an image-to-image
U-Net.
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10.2.3. Concept

The process for correcting RASER MRI images with AI is illustrated in Figure 10.4. This
approach was developed and tested using simulated RASER data. Initially, images x are
generated using a custom random image generator and then sliced into projections 𝑝 𝑗 .
These image slices are then processed through a RASER simulation 𝑅𝛼 with varying
parameters 𝛼 , resulting in distorted spectra 𝑘 𝑗 = 𝑅𝛼 (𝑝 𝑗 ) that mimic the non-linear effects
of RASER. When these distorted spectra are subjected to an inverse Radon transformation,
the resulting image z will be distorted or unrecognizable. Therefore, a two-phase deep
learning approach was used to correct the images. The first DL model (1D-AI) was trained
to correct one-dimensional distorted spectra 𝑘 𝑗 back to their original projection 𝑝 𝑗 . The
individually corrected projections were then subjected to a Radon transformation, and
the resulting image ŷ was processed through a second DL model (2D-AI) that removes
further artefacts to achieve a predicted image x̂ that matches the original image x before
the RASER simulation.

(a) Simulation pipeline. Slices with different angles from randomly generated images are fed
through a RASER simulation to obtain RASER signals. The RASER signals exhibit non-linear
effects depending on different input parameters to the simulation and yield distorted spectra
after Fourier transformation.

(b) DL pipeline. Random images and corresponding slices from a simulated dataset are fed to DL
models. A convolutional neural network (1D AI) corrects one-dimensional distorted spectra,
which are reconstructed with the Radon transformation to an image. This image is further
enhanced by a U-Net model (2D AI).

Figure 10.4.: Concept of DL for the correction of RASER MRI images, separated into
simulation and deep learning parts.
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10.2.4. DL training

Normalization To improve the resolution for the followed Fourier transformation, all
image slices are zero-padded by double the number of points on both sides of the time
domain. The absolute value of the resulting spectrum was then cut to a region of interest
(ROI) of size 200, which was centred at the maximum value. This ROI was then normalized
to [0, 1] with respect to the TPI value. Similarly, the target slices, which are the regression
targets, are also normalized to [0, 1].

Training details All models are trained using the Pytorch framework, using the Adam
optimizer (Kingma & Ba, 2014) with a learning rate of 4.145 × 10−5 and weight decay
of 1.012 × 10−6. The 1D model was trained for 500 epochs, and a batch size of 300 to
minimize the MSE loss, and the 2D model was trained for 20 epochs with a batch size of 5
to minimize the MAE loss.

Hardware requiremens The simulations and DL training were performed with an AMD
Ryzen 9 5950X equipped with 64 GB RAM, and a graphics processing unit NVIDIA GeForce
RTX 3080Ti. The datasets roughly allocate 99.6 GB of disc space. The trained 1D-AI
convolutional and U-Net models have ∼ 7.2M and ∼ 490k parameters allocation 27.9 MB
and 1.9 MB and of disc space, respectively.

10.3. RASER simulation

10.3.1. Random image generator

(a) Example 1. (b) Example 2. (c) Example 3. (d) Example 4.

Figure 10.5.: Examples of randomly generated 44 × 44 pixels images for the RASER MRI
simulation. (Created by Arvidsson & Bertilson.)

For a diverse range of images, a random image generator was implemented. The
randomness was inspired by domain randomization (Tobin et al., 2017), where models are
trained on synthetic data from several domains with arbitrary variations. The real domain
should appear to the model as another domain, and it should be able to generalize well.
For RASER MRI, this means that a "real" RASER MRI image should appear to the model as
one random image, and it should be able to process it.

Each generated image was of size 44× 44, combining basic shapes and image transform-
ations. Arbitrarily, 2 to 20 shapes were selected from a circle (80%) or a polygon shape
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with 4-8 vertices and a random opacity ∈ [0, 1]. Additionally, Gaussian blur (𝜎 = 2) was
applied with 50% chance, and Gaussian white noise with 𝜎2 = 0.01 was added with 30%
chance. The image was then masked with a circle (56%), square (24%), star (5%), scribble
(5%), KIT logo (5%), or liu logo (5%), each scaled randomly between 50-100% of the images’
width and the centre location shifted randomly within 1

4 of the image size, also randomly
rotated ∈ [0, 360]° and Gaussian blurred with 𝜎 ∈ 1, 2, 3. Finally, a line with random width
among [2, 10] pixels, random rotation ∈ [0, 360]° and 70% Gaussian blur (𝜎 ∈ 1, 2, 3) was
added to 80% of the images. Examples are given in Figure 10.5. Furthermore, parahydrogen
pumping was simulated with a decaying pumping rate at two random positions between
the index 24 and 42 of each projection.

In total, 10k images were generated without pumping, 10k images with pumping, and
1k images with high TPI fluctuations (pm 20% TPI) among slices of one image. Each image
was sliced into 30 signals, which underwent the RASER simulation to yield input-output
pairs for the 1D-AI model.

10.3.2. RASER simulation details

The RASER simulation 𝑅𝛼 is governed by non-linearly coupled differential equations
(Lehmkuhl et al., 2022) with different parameters 𝛼 , including the population inversion 𝑑 ,
signal amplitude 𝐴, phase 𝜙 , pumping rate Γ of para-hydrogen, and the total population
inversion (TPI), which is defined at 𝑑 (0). During the simulation of RASER signals, written
by Sören Lehmkuhl and Peng Wang in MATLAB, the signal amplitude 𝐴 and phase 𝜙
were varied at a random value within the scope of typical experimental noise, while 𝜙
experienced uniform and 𝐴 normal noise, respectively. Most importantly, different TPI
values were chosen for different signals both within one image as well as between images.
The TPI is supposed to be above the RASER threshold (Equation 2.13). Thus, varying TPI
intrinsically covers different resonator Q factors, varying number of spins𝑛𝑆 , concentration
changes𝑉𝑆 of the substrate, i.e., the chemistry’s “goodness”, and changing relaxation times
𝑇 ∗2 . Additionally, variations of the polarization pumping rate Γ were considered, which
can occur, for example, when mixing is not perfect, or there is still parahydrogen diffusion
even if bubbling or shaking the sample for parahydrogen dissolution has been halted.
A decaying pumping rate Γ was included on two needles at random positions between
positions 24 and 42 of each slice.

Each randomly generated image of size 44 × 44 underwent RT to generate sinograms
with 30 angles (evenly distributed between 0° and 180°). Then, each projection was fed
to the RASER simulation with varying parameters 𝛼 , resulting in a RASER signal of 4096
points. After FFT of this signal, a distorted spectrum was obtained and cut to 200 points.

RASER simulation on all 32k images results in over 300k distorted and target spectra
pairs.
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10.4. Results

10.4.1. Performance metric and evaluation protocol

To evaluate the performance of artefact removal and reconstruction of 2D RASER MRI
images, the mean squared error (MSE) and the Structural Similarity Index Measure (SSIM)
(Wang et al., 2004), a quality measure based on human perception, are used.

The AI pipeline for correction of RASER MRI images, including 1D and 2D models, was
evaluated first on a simulated test set, and then on real RASER images.

A hold-out test set of 100 images was simulated with the random image generator from
Subsection 10.3.1. Additionally, the Modified Shepp-Logan CT phantom was generated,
and its projections were fed through the RASER simulation.
Finally, the generalization of the AI models from simulation to reality was tested on a

real RASER image of a standard 5 mm glass tube.

10.4.2. Simulated RASER experiments

The trained 1Dmodel achieved anMSE of 0.015±0.007 and SSIM of 0.449±0.151, and the 2D
model an MSE of 0.002± 0.002 and SSIM of 0.906± 0.065 on a hold-out set of 100 randomly
generated images. Generalization to out-of-distribution samples was demonstrated on the
Modified Shepp-Logan CT phantom (see Figure 10.6), which the model has not seen before
during its training process, yielding an MSE of 0.056 and SSIM of 0.275 after AI-driven
correction of the 1D signals, and MSE of 0.026 and SSIM of 0.599 after the entire correction
pipeline (1D+2D). All important structures are visible after correction, as compared to the
raw RASER MRI image, even though the resolution was relatively low at 44x44 pixels.
Figure Figure 10.7 showcases exemplary results from the 1D-AI component of this

study, which reconstructs projections 𝑝 𝑗 given distorted RASER spectra 𝑘 𝑗 . The input
for this model consists of spectra 𝑘 𝑗 with a size of 200, while the targets 𝑝 𝑗 are image
projections sized at 67. The model’s predictions align well with the general features of
the target projections. However, it overlooks the high-frequency variations in the profiles,
leading to a smoothed appearance in the resultant images. This issue might stem from the
convolutional layers’ kernels not effectively capturing these high-frequency features, as
the primary improvement in loss reduction was achieved by approximating the overall
projection shape. Implementing stricter regularization strategies could potentially enhance
the model’s ability to predict these high-frequency variations more accurately.

10.4.3. Real RASER experiments

To evaluate the generalizability of AI-based correction of RASER MRI images, real images
were measured on a Magritek 60 Ultra Multi-X benchtop magnet. The shim coils of
the device were used to produce gradients such that projections of the sample could be
measured.
For the measurements, it was crucial to have precisely the same parameters as used

during the simulation; otherwise, a capture bias would introduce a domain shift or reality
gap, and good predictions are not guaranteed.
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10.4. Results

(a) Distorted RASER
image z.

(b) 1D-AI-
corrected image
ŷ = 𝑅𝑇 (𝑝1, . . . , ˆ𝑝𝑁 ).

(c) 2D-AI-corrected
image x̂.

(d) Target image x.

Figure 10.6.: RASER MRI image correction using deep learning on the Shepp-Logan
phantom with 44 × 44 pixels. The Structural Similarity Index Measure (SSIM)
after 1D and 2D corrections were 0.275 and 0.599, respectively.

(a) Example 1: projection at 24.8°. (b) Example 2: projection at 55.9°.

(c) Example 3: projection at 68.3°. (d) Example 4: projection at 130.4°.

Figure 10.7.: Correction of RASER MRI image projections with the 1D-AI part.
Examples of the Shepp-Logan phantom from Figure 10.6. Given input signals
as cut-outs from the frequency domain (left), the model is supposed to predict
the target profile (right, grey). The 1D AI neural network predictions are
overlayed (right, blue).
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Experimental setup A SABRE experiment with a standard sample (mixture of Ir-IMes
catalyst, pyrazine and methanol) ensured hyperpolarization. The Ir-IMes catalyst was
made in-house, leading to C19H36ClIr (0.451 mg, 70.3%). The SABRE sample was prepared
with 0.6 mL deuterated and degassed methanol, 3 mM catalyst and 60 mM pyrazine.

Parahydrogen gas of 98%, obtained by a helium compressor at 23 K with an Iron (III)
oxide hydroxide catalyst, was bubbled for 20 s with a thin capillary through the sample in a
5 mm NMR tube, while placed in a 6.5 mT magnetic field to ensure maximum polarisation
transfer. Then, the capillary was removed from the tube, and the sample was transferred
to a Spinsolve 60 spectrometer (Magritek). 1H-NMR spectra were recorded in deuterated
methanol (Sigma Aldrich) at room temperature with a custom acquisition pulse sequence.
The "pulse sequence" itself does not contain an excitation pulse, but acquires the receiver
signal with 32768 points, a dwell time of 500 µs, and a bandwidth of 2 kHz.

(a) Intermixed TPI variations.

(b) High TPI regime.

Figure 10.8.: AI-corrected real RASER MRI images of a tube with an inner diameter
(ID) 4.1 mm. Uncorrected RASER projections would yield a distorted image
(left). After correcting the 1D projections with AI, the real dimensions of the
tube are visible (middle), and even enhanced with the 2D AI pipeline (right).
(a) Real experiments vary in quality. (b) Consistent TPI values increase the
reconstruction performance. The image obtained with additional MRI shows
low signal-to-noise, and background noise.

Results on a standard 5 mm tube The first subject for imaging was a standard 5 mm tube
with an inner diameter (ID) of 4.1 mm. Thus, the measured image should show a clear
round circle with that diameter. Overall, 30 projections were measured of the tube at 30
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different angles between [0,180]°. The initial reconstruction of the raw RASER projections
yielded a distorted image, as seen in Figure 10.8 (left). However, after applying the 1D
correction to the image projections and 2D artefact removal, the tube phantom’s outline
became visible, as shown in Figure 10.8.
Nonetheless, several artefacts remained, predominantly due to signals measured with

TPI values close to the RASER threshold 𝑑th (see Equation 2.13). This issue is evident in
Figure 10.9 (a), where projections at 0, 6, 18, 24° show signal intensities (which directly
correlate to TPI) below 150, resulting in poor predictions.
As the simulation was restricted to high TPI values, the DL model expects signals

measured with overall high TPI values. Thus, measurements close to the RASER threshold
were repeated. Figure 10.9 (b) displays these signals, now with consistently high TPI
values, and demonstrates improved prediction performance for these projections. The
overall reconstructed and AI-corrected image is visualized in Figure 10.8 (b), where the
tube phantom is clearly visible, approximating its true 4 mm inner diameter.

As a reference, a traditional (2D cross-section) MRI was measured of the 5 mmNMR tube
using a standard spin-echo sequence, while the shim coils are exploited to produce (small)
gradients2. A mock sample of 90%D20 and 10%H20 is placed in the resonator, encoded
using frequency and phase encoding and the recorded k-space is Fourier transformed (FT)
to yield the image.

2Note that no slice selection was applied.

135



10. AI for RASER MRI
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(a) Varying total population inversion (TPI).
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(b) High TPI.

Figure 10.9.: Real RASER signals with varying TPI values for the first 15 angles,
leading to the images as reported in Figure 10.8. Low TPI values, visible as
RASER signal intensities below 150, yield distorted spectra and predictions.
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10.5. Discussions

Scalability One limitation of the current setup was that the DL model’s input was limited
to 67 modes, corresponding to 44 × 44 pixel images after Radon transformation. Scaling
the simulation dimensions would be required but would have a massive computational
cost. Figure 10.10 shows that increasing the number of modes, i.e. the width of the input
spectrum to the RASER simulation scales computational time 𝑡3. For each mode, 30 slices
are simulated, corresponding to one image.

To extend the applicability of this approach to high-resolution imaging, the simulation
should be expanded to include larger images and the neural network architectures should be
adapted accordingly. Consequently, better prediction generalizability should be addressed.

Figure 10.10.: Duration of RASER simulation for one image with 30 angles and different
modes. Time demands for simulating more modes roughly scales cubic.

Total Population Inversion (TPI) values During the simulation, strong hyperpolarization,
i.e. high TPI values, was assumed. However, the DL model strongly depends on these
high TPI values, and it fails for TPI values close to the RASER threshold. Real RASER
experiments were conducted to verify this, and the DL model’s accuracy was compared
with the experimental results. The measurements showed that the predictions are far
from accurate for signals with lower TPI, recognizable by a broader "blob" in time and a
shorter peak in the spectrum. On the other hand, for high TPIs, the model works perfectly
fine. The signal intensity in the time domain scales with the TPI value, and it can be seen
that values below 200 yield worse predictions, as the DL model was trained with high
TPI values. To better understand the results, Figure 10.9a illustrates the measurements of
varying TPI with the time signal, frequency domain, and AI prediction on the spectrum,
and Figure 10.9b repeated and high TPI.
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Conclusion and outlook
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11. Conclusion

The rising success of artificial intelligence approaches in all areas of research and science
did not stop at the magnetic resonance frontier. This thesis demonstrated success in
enhancing two main challenges: The cumbersome shimming process in NMR, previously
tackled by slow optimization algorithms, and the presence of artefacts in RASER MRI
images, previously unsolved remainders in measured images.

11.0.1. Can AI speed up shimming?

The first objective of this thesis was to speed up the tedious shimming process by
incorporating AI approaches. Several methods were developed, each surpassing the
limitations of the previous one. Overall, a significant contribution was made in gaining
insight into the working sites needed for AI-driven shimming: A proper dataset, its
preprocessing steps, a fitting neural network architecture, and finally, evaluation protocols
to test generalization on real hardware. DL architectures ranging from vanilla CNNs
to custom convolutional LSTM architectures showed great success in handling varying
input designs to the neural network, such as sequences of "shim histories". Experiments
have demonstrated success for varying numbers of shims, or even for a parallel custom
probehead setup. A paradigm shift to DRL built a foundation for further research, where
no dataset and no optimum are required, and the spectral quality can be optimized directly.
However, a primary challenge still remains, namely environmental drift, which causes
discrepancies between offline training and testing, and deployment to the machine.

Taking a look beyond the shimming horizon Several broader questions affecting shimming
remain.
First, it’s worth asking if shimming with a finite set of electrical coils is the only

approach to this problem. Researchers have investigated the usage of multi-coils that are
not restricted to a small set of simple (orthogonal) basis functions (Juchem et al., 2011), as
well as making (higher-order) shim coils less crucial or even obsolete through methods
such as RF shimming or "Shim pulses" (Topgaard et al., 2004).

Ultimately, the question arises: Is shimming the only solution at all to acquire a spectrum
of good quality? This leads to the promising approach of reference deconvolution, a post-
processing technique applied to imperfect measurements. Although several NMR methods,
such as selective excitation of peaks and hyperpolarisation, need decent shimming, this
technique can provide an excellent alternative. The idea is already several years old (Metz
et al., 2000; Morris et al., 1997), and more recently, attracted DL-based approaches (Schmid
et al., 2023).

141



11. Conclusion

Combining AI-driven shimming and (AI-driven) deconvolutionwill undoubtedly provide
the most time savings for users of NMR spectrometers who don’t want to waste time
optimizing the machine.

11.0.2. Can AI correct RASER MRI image artefacts?

RASER is a new hyperpolarized MRI technique that offers better image contrast and
resolution than traditional pulsedMRI but can cause unwanted artefacts along themeasured
image projections. To address this issue, AI has shown promising results in removing
the non-linear effects of RASER from image projections and Radon-transformed images
thereof. The approach involved using a vanilla convolutional neural network or a standard
U-Net architecture, both of which have shown significant reconstruction and denoising
performance. While the AI models were trained using synthetic and random image data,
they have been found to work on real MRI measurements. Further experiments with
more complex phantoms have to prove whether DL stays a robust candidate for artefact
correction.

Future directions RASER MRI requires a form of hyperpolarization, and in experimental
setups, signal amplification by reversible exchange (SABRE) or parahydrogen-induced
polarisation (PHIP) can be used. These approaches, however, require the use of (toxic)
catalysts and solvents. Targeting human MRI, current research focuses on biocompatible
solutions of hyperpolarization (MacCulloch et al., 2023).
Furthermore, acquiring RASER along projections to measure 2D images requires an

extension to map 3D volumes of interest, which should include higher resolutions than
the studies conducted within this thesis.
Finally, and for the sake of interpretable and reliable medical diagnosis, mathematical

denoising techniques (Gaa et al., 2023) could be considered.
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