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Abstract

Optimally solving a given Rubik’s Cube is an extremely hard task even for a computer
assuming the immense size of the problem space. In 1997 Korf presented a work that first
solved random instances of cubes by using pattern database and IDA*. He hypothesised
that the run time (measured in generated nodes) has an inverse linear relationship with the
pattern database size. In this work we generated nearly one Terra byte of databases and
used them to show that Korf’s hypothesis still holds true for database sizes three orders
of magnitude greater than the ones he used in his work. We also present two techniques
to detect whether a state was visited in one iteration of IDA* before or not. The first
technique precomputes all move sequences up to a certain length together with a flag
that indicates whether another move sequence will traverse the corresponding state or
not, to prune so called duplicate states during the solve. Since a move sequence with a
length of 8 moves already has over ten billion different combinations the memory required
is too large for some machines. We also introduced another technique that has a more
optimal usage of memory with a small trade off for computations. It exploits the fact that
two different paths that lead the same state when applied to the solved state also lead
to the same state when applied to any other arbitrary state. We precompute and store
all states (represented by an index) that are reachable with two different paths from the
solved state and use a function that constructs the index of the state that has the same
relative position the solved state, as some arbitrary position has to the scrambled state.
With this we are able to access the precomputed duplicate states with the constructed
state index. The latter techniques allowed us to improve the run time by about ten percent
and achieve better performances than the best known implementation of Korf’s algorithm.
With all improvements we were able to solve 5 000 random cube instances in an average
of 63 seconds.
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Zusammenfassung

Das optimale Lösen des Rubik’s Cubes ist durch die immense Größe des Problemraums,
selbst für einen Computer eine extrem schwere Aufgabe. Mit seiner 1997 veröffentlichten
Arbeit war Korf der erste, der zufällige Instanzen des Rubik’s Cubes mithilfe von Zustands-
datenbanken und IDA* löste. In seiner Arbeit stellte er die Hypothese auf, dass die Größe
dieser Datenbanken einen invers proportionalen Zusammenhang mit der Laufzeit (ge-
messen an generierten Knoten) hat. In dieser Arbeit generierten wir knapp ein Terrabyte
an Zustandsdatenbanken und benutzten diese um zu zeigen, dass Korfs Hypothese auch
für Datenbanken, die drei Zehnerpotenzen größer sind als jene, die er in seiner Arbeit
benutzt hat, gilt. Wir presentieren außerdem zwei Techniken um Zustände zu erkennen,
die in einer Iteration von IDA* bereits abgearbeitet wurden. Die erste Technik erzeugt eine
Datenbank von allen Zugsequenzen zusammen mit einer Flag, die angibt ob der dazugehö-
rige Zustand von einer anderen Zugsequenz abgearbeitet wird, um Äste die sogenannte
Duplicate States (zu Deutsch: doppelte Zustände) darstellen bei der Suche abzuschneiden.
Da es nach bis zu acht Zügen bereits mehr als Zehnmilliarden verschiedene Kombinationen
gibt, ist diese Technik nicht für alle Maschinen geeignet. Wir stellen deshalb noch eine
weitere speichereffizientere Technik vor, die einen etwas größeren Rechenaufwand besizt.
Diese Technik nutzt die Tatsache, dass wenn zwei unterschiedliche Abfolgen von Zügen,
die wenn auf den gelösten Zustand angewendet, zum selben Endzustand führen, auch für
jeden anderen beliebigen Zustand zum selben Endzustand führen. Indem eine Tabelle vor
der eigentlichen Suche berechnet wird, in der alle Duplicate States (durch einen Index
repräsentiert) gespeichert sind, kann eine Funktion genutzt werden, die den Index des
Zustands konstruiert, der die gleiche relative Position zum gelösten Zustand hat, wie ein
beliebiger Zustand zu dem vermischten Startzustand. Damit können auf die im Vorhinein
generierten Duplicate States mit dem konstruierten Index zugegriffen werden. Die beiden
Techniken haben es ermöglicht die Laufzeit um ungefähr zehn Prozent zu verbessern
und damit eine bessere Performance als die beste bekannte Implementierung von Korfs
Algorithmus zu erlangen. Mit diesen Verbesserungen konnten wir 5 000 zufällige Zustände
durchscnittlich in 63 Sekunden lösen.
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1. Introduction

Figure 1.1.: A picture of a modern Rubik’s Cube [Source: www.hiclipart.com]

The Rubik’s Cube was invented in 1974 and named after it’s creator the Hungarian
architecture professor Erno Rubik [23]. He intended to find a task for his students while he
was teaching geometry, but the cube he came up with quickly spread beyond his classroom.
After filing a patent and releasing it to the public it became the fastest selling puzzle ever.
[5] Departing from a randomly scrambled state, the goal of this puzzle is to transform the
cube back to the state in which each face only shows one color by rotating the faces of the
cube. When a trained human solves the cube he requires about 55 moves [10] to solve the
cube. But it is known that every cube, with arbitrarily complex scrambles always can be
solved in 20 moves or less [19].
To find the shortest sequence of turns, that transform the cube back to it’s original

state, specialized algorithms are required in order to deal with the enormous amount of
of possible configurations of the cube. Only as recent as 1997 the first techniques for
optimally solving the Rubik’s Cube were published by Richard Korf [14]. In his work he
used pattern databases that stored the shortest distance (from a scrambled to the solved
state) of subgroups to estimate the real distance of an arbitrary state to the solved state.
This estimate was used as a heuristic for Iterative-Deepening A* (IDA*). With that he was
the first to find optimal solutions to random scrambles. Korf also hypothesized that the
search space has a inverse linear relationship with the size of the pattern databases. This
work concentrates on improving these algorithms and is structured as follows.

Chapter 2 introduces some basic notations that will be used throughout this work. Some
basic properties of the cube will be presented together with the derivation of the size of
the problem space. The chapter is concluded with the historically relevant achievement of
finding God’s Number (the greatest number of moves any scramble may take to be solved)
for the Rubik’s Cube.
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1. Introduction

Chapter 3 introduces three different representations of a configuration of the cube:
Storing the 54 facelets of the cube, storing only the positions and orientations of corners
and edges and storing only a four tuple coordinate for representing the cube. The chapter
compares the advantages and disadvantages of these representations and explains how
turns of the different layers can be applied to them. Next a naive approach is presented
to show the complexity of the problem and to lay a foundation for more sophisticated
techniques to optimally solve the cube. The pattern databases Korf used in his work as
well as new databases that were used in the modern implementation of Korf’s algorithm by
Ben Botto are presented. How the pattern databases can be used with the IDA* algorithm
is explained afterwords together with a short analysis and an optimality proof. At the end
of this chapter Korf’s hypothesis on the correlation between the size of pattern databases
and the run time of IDA* will be shown to be true for the bigger databases used by Botto
and us. Additionally this chapter can be seen as a survey on the different approaches that
were developed to optimally solve the cube.

In Chapter 4 we present our contributions which consist of using a 1 TB RAM machine
for the pattern database containing all 980 995 276 800 different arrangements of the edge
pieces - which to the best of our knowledge has not been generated before, as well as
two techniques to detect duplicate states to decrease the number of nodes that need to
be generated when optimally solving a scramble. The run time of our program with the
edge pattern database shows that Korf’s hypothesis still holds true for pattern database
sizes three order of magnitudes larger than the ones he used in his original work. The first
technique for duplicate state detection is to store an all sequences of moves up to some
sequence length bound and to attach a flag to all entries that indicates whether the state
the sequence leads to is found by another sequence of moves. The keys for this table are
indices that be computed from a sequence of moves. The other technique uses a state shift
function to construct the state that would be reached if the transformation that brought a
scrambled state to the current state in the search, would be applied to the solved state. This
can be used to index a hash table that holds all states that can be reached through different
move sequences (up to a certain sequence length bound) from the solved state and check
whether a certain state has been traversed before or not. The whole edge configuration
pattern base together with the duplicate state detection allowed us to solve each of 5 000
random scrambles in 63 seconds on average.

In Chapter 5 we take a closer look at some critical parts of the implementation, illuminate
some implementation techniques used to improve the performance and explain how we
parallelized IDA* and the pattern database generation.
More detailed results are presented in Chapter 6. We show what contribution of the

whole edge lookup table and the duplicate state detection have on the search in isolation.
Then we discuss these results.

Chapter 7 concludes everything presented thus far and gives an overview of future work
that can be done in this topic. E.g. to generate other lookup tables that take corners and
edges into account together instead of considering them in isolation. It briefly discusses
other combinatorial puzzles that the duplicate state detection can be used for like the 15
tile puzzle and finishes with some thoughts on how to solve even bigger cubes.

18



2. Preliminaries

In this chapter we introduce some notations used throughout this work as well as some
basic concepts that build the required knowledge base for the following chapters.

2.1. Notation

We define a move on the Rubik’s cube by the rotations of a single side by an arbitrary
angle. This type of counting moves is called face turn metric. There are other metrics like
the quarter turn metric, which counts 90° turns as single move and therefore 180° turns
as two moves. This means that rotating a face 180° only counts as one move throughout.
Throughout this work we make use of two notations. One to refer to one of the six faces
of the cube and their rotation and one to refer to the smaller pieces that make up the cube.
The Singmaster notation, developed by David Singmaster, is a method for denoting moves
that can be made on the Rubik’s Cube [7]. Let the cube face its user with the top and
bottom layer vertical and the front face pointing at him. In the following list the symbols
denote a clockwise rotation of a layer, clockwise meaning rotating as if the layer was
facing the user.

• U: rotates the top layer clockwise by 90 degrees.

• D: rotates the bottom layer clockwise by 90 degrees.

• F: rotates the front layer clockwise by 90 degrees.

• B: rotates the back layer clockwise by 90 degrees.

• R: rotates the right layer clockwise by 90 degrees.

• L: rotates the left layer clockwise by 90 degrees.

To denote a rotation in the counter clockwise direction we add an apostrophe after the
symbol (e.g. U’). To denote a rotation by 180 degrees a 2 is added to the symbol (e.g. F2).
To refer to a single piece or a position of the Rubik’s Cube the surrounding layer’s

symbols will be used. We provide some examples:

• URF: refers to the corner in the top right front.

• DBF: refers to the corner in the bottom right front.

• BL: refers to the edge that sits between the back and the left layer.

19



2. Preliminaries

• UF: refers to the edge that sits between the up and the front layer.

Note that we will use this notation not only to refer to a pieces but also to refer to
positions on the cube. To denote that we are referring to a piece we write "the UFR corner"
or "the UF edge". To refer to a corner position we write "at position URF" or "at position UF"
to refer to an edge position. On a solved cube at position XYZ always lies the XYZ corner
(e.g. the UFR corner lies at position UFR on a solved cube) and at position XY always lies
the XY edge (e.g. the UF edge lies at position UF on a solved cube). This notation allows to
disregard the color scheme of a cube and makes it irrelevant which color is defined to be
on top and on front.

2.2. Rubik’s Cube Basics

The Rubik’s cube consists of 26 cubies - 8 corner cubies, 12 edge cubies and 6 center
cubies. Each face of the cube can be rotated by 90°, 180° or 270° (equivalent to 90° in the
opposite direction). Such a turn affects the position of 4 corner cubies and 4 edge cubies
and rotates one center cubie. Each corner cubie can have three different orientations and
can occupy every corner position. The edge cubies have two possible orientations and
every edge cubie can be in any of the twelve edge positions. The center cubies can be in
one of four orientations, which are visually indistinguishable when dealing with regular
Rubik’s Cubes. Some cubes have pictures on the stickers (picture cubes) and require to
also have the center pieces in a certain orientation, but for this work we will only consider
cubes without pictures on their stickers. When assembling a cube, the first edge cubie
can be inserted in one of twelve edge positions, the second edge cubie in eleven and so
on. This yields 12! possible permutations of the edges. Similarly the eight corners have
8! possible permutations. Each edge has two orientations which leaves the cube with 212
possible configurations of edge orientations and 38 configurations for the corners. For
regular cubes this results in 12! · 8! · 38 · 212 ≈ 5.1902404 · 1020 possible configurations when
assembling the cube. Not all of these configurations are reachable as it will be shown in
the next section.

2.3. Laws of the Cube

There are some restrictions to configurations that are reachable through face turns. A
single corner’s orientation cannot be changed without another corner’s orientation being
changed as well. Also, a single edge cannot change its orientation. The sum of all corners
and all edges have to be divisible by three and two respectively. Besides those two
restrictions of corners and edges that apply to both types of cubies even in isolation, when
considering the positions of corners and edges no two corners can be swapped without
either swapping two more corners or swapping two edges. The same applies for the edges.
This is due to the parity properties of the cube [21, p. 7]. The orientation of a center cubie
also cannot be changed in isolation which divides the number of orientations of the center
cubies by two. The corner restriction divides the number of reachable configurations by
three. The edge restriction divides the number by two and the third restriction also divides

20



2.4. God’s Number is 20

the number by two. This means that we can only reach 1
2·3·2 =

1
12 of all configurations

when using face turns. In total there are

12! · 8! · 38 · 212
2 · 3 · 2 = 43 252 003 274 489 856 000 ≈ 4.3 · 1019 (2.1)

possible configurations of the Rubik’s Cube. On picture cubes the six center cubies could
be in 46 orientations, but with regular moves only half of these configurations can be
reached. Therefore the number of configurations is 2048 times larger for picture cubes.[6,
p. 46f]

2.4. God’s Number is 20

One important question about the Rubik’s Cube regarding its complexity is what are
the hardest configurations that one may solve and what is the least amount of moves it
would take to solve those configurations. In combinatorial puzzles with a finite number of
configurations, an algorithm that always yields the shortest sequence of steps resulting in
the ’solved’ configuration is sometimes referred to as ‘God’s algorithm‘ - a term coined
by John Conway in the discussion on the Rubik’s Cube [20, p. 26]. In connection to this
the upper bound of number of moves optimal solutions have is sometimes referred to as
‘God’s number‘. [11] A simple way for finding a lower bound for this number is to see
how many configurations are reachable after a certain number of moves and comparing it
to the number of all possible configurations. After one move, for example, there are 18
unique configurations that can be reached. This number arises because each of the six
faces can be turned in three distinct ways. Since 18 is smaller than the total amount of
possible configurations, there have to be configurations that need two moves to be solved.
Extending this logic by assuming how long a sequence of moves needs to be to contain
more combinations of moves than the number of configurations, one can search for the
smallest n which satisfies

𝑛∑︁
𝑖=0

18𝑖 ≥ 4.3 · 1019 (2.2)

With
∑15
𝑖=0 18𝑖 ≈ 7.14 · 1018 < 4.3 · 1019 and ∑16

𝑖=0 18𝑖 ≈ 1.29 · 1020 > 4.3 · 1019, it is
found that n = 16 is the smallest integer, that satisfies equation 2.2. So 16 must be a lower
bound for God’s number [8]. With this method the lower bound of God’s number can be
increased to 18 by using more precise ways to count the number of reachable states after
n moves. Some improvement for counting this number is introduced in Chapter 3.
An upper bound was found in the 1980 by Morwen Thistlewaite [22]. He developed

a method to solve Rubik’s Cube suboptimally and proved that his method would never
require more than 52 moves. With that, an upper and a lower bound were known for
God’s number. But the quest of bringing them closer together took three decades to be
completed. In 1995 Michael Reid showed that there is a configuration of the cube that
cannot be solved in less than 20 moves. The configuration he used is called the superflip
- every corner is at its solved position and has its correct orientation and all edges are
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Figure 2.1.: Timeline of the progress on finding God’s number [11]

in their solved position as well, but they are oriented the wrong way. He used special
properties of this position to improve the run time of an optimal solver that he used to
show that the shortest solution has length 20. Herbert Kociemba came up with a very
fast algorithm that could solve cubes nearly optimally. Reid showed that this method will
always find solutions with length 29. [18] Tomas Rokicki worked on further improving
the upper bound since 2003 and showed in 2008 that no position ever needs more than 27
moves to be solved. [11, 18] This bound was lowered to 25 in the following years.
Rokicki worked together with the two Mathematicians Kociemba and Reid and the

computer scientists Silviu Radu, Richard Korf, Gene Cooperman, Dan Kunkle and some
others who contributed to the problem of finding God’s Number. In 2008 progress on
this problem was so significant, that Sony’s John Welborn contacted Rokicki and offered
him CPU time on the farm of computers that Sony Pictures Imageworks uses to render
animated movies. With this Rokicki was able to extend the method used in his original
25-move upper bound to show that, every position can be solved in at most 22 moves.
After those results Google donated 35 CPU years on their supercomputers. With this the
number could be brought down to 20 and God’s Number was found. [11, p. 265] [19]
Four years later Rokicki and Morley Davidson also proved that God’s number is 26 in the
quarter turn metric. [9]

All contributions to improve the bounds are listed in figure 2.1.
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3. Prior Algorithms

Solving a Rubik’s Cube optimally can be mapped to a shortest path graph problem. A node
represents a single state of the cube and an edge represents one of the 18 possible moves.
The graph resulting from this construction can be arranged to a tree, with a scrambled
state as the root, the 18 adjacent states at depth one and all states reachable with two
moves at depth two. Naively this tree would have a branching factor of 18, but since a
sequence of moves of the same face can always be substituted with one move (e.g. L L =
L2, L2 L = L’) the branching factor can be reduced to 15 (except for the root node). We can
further improve this number by realising that opposite face turns are commutative (e.g. L
R = R L, U2 D’ = D’ U2). This means that for every node with the upper edge representing
a D move we can dismiss all subsequent moves of the U face since the state that would be
reached with these moves are equivalent to the states that will be reached from the node
with upper edge representing a U move at the same depth and moves of the D face. Take,
for example, the path R U D. The path along R D U will result in the same state. In general,
when generating the graph, the previous move P of any node can be stored to prune all
edges that [14]:

• rotate the same layer as P

• rotate the D layer if P rotated the U layer

• rotate the B layer if P rotated the F layer

• rotate the L layer if P rotated the R layer

There are still some redundant states that can be reached with two different paths, such
as U2 D2 F2 B2 and F2 B2 U2 D2. These paths yield the same state, but are not as easy to
detect with such a rule. States that can be reached via such paths will be called duplicate
states throughout this work. With the above described pruning rules the branching factor
of the tree search reduces even further. Exact numbers of nodes at certain depths can be
found in table 3.1. These rules result in a search tree with an asymptotic branching factor
of about 13.34847. In can be seen that when applying these rules only at a depth of 18 the
number of reached states exceeds the number of possible configurations. As described in
section 2.4 this shows that 18 is a lower bound for God’s Number.

3.1. Rubik’s Cube Representation

When constructing the graph of configurations of the cube, it is required to have some
representation of a state of the cube as well as a representation of moves that can be applied
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depth nodes

1 18
2 243
3 3,240
4 43,254
5 577,368
6 7,706,988
7 102,876,480
8 1,373,243,544
9 18,330,699,168
10 244,686,773,808
11 3,266,193,870,720
12 43,598,688,377,184
13 581,975,750,199,168
14 7,768,485,393,179,328
15 103,697,388,221,736,960
16 1,384,201,395,738,071,424
17 18,476,969,736,848,122,368
18 246,639,261,965,462,754,048

Table 3.1.: Nodes in a Rubik’s Cube search tree as a function of depth [14]

to the cube. Since applying moves to the cube when traversing the graph is one of the
most frequently invoked methods, it is crucial to use a performance optimized approach
to represent the cube and applying moves to it. In the following, three approaches are
presented.

3.1.1. Facelets

The most intuitive approach to represent a configuration of the cube is to specify which
colors lie on the 6 · 9 = 54 squares of the cube. One colored square will from here on be
referred to as a facelet. All facelets as well as all names for them can be seen in Figure 3.1.
To store the colors on each facelet, a two-dimensional array with dimensions 6 × 9 can
be used, where each color is described by a value between 0 and 5, representing a unique
color. When turning a face of the cube, three facelets of four different sides will cycle as
well as the eight facelets of the side that is turned. For a F move, for example, the facelets
groups (U7, R1, D3, L9), (U8, R4, D2, L6), (U9, R7, D1, L3), (F2, F6, F8, F4) and (F1, F3, F9,
F7) will cycle. The indices of the facelet groups that get cycled for each of the 18 moves
can be stored in lookup table and used in a function for applying the move. The center
facelets cannot be moved with regular face turns, so if the program only supports such
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Figure 3.1.: Facelets [Source: kociemba.org]

regular moves1 these facelets’ colors can be omitted in the array that represents the state
of the cube. With that the final dimensions of the array are 6 × 8.

This form of representing the state of the cube is not optimal, since corners and edges
have three and two facelets respectively that will never be separated. Therefore, a re-
dundancy of information on the state of the cube arises. Even if memory constraints are
irrelevant, moving more data than necessary results in computational overhead which can
be saved with the representation introduced in the next section.

Early iterations of our program made of use this representation but the approach had to
be discarded since the performance of applying moves wasn’t good enough. As stated, too
many operations were required for modifying the state by only one move. On the other
hand, this representation has the benefit that passing in information about the state of a
real Rubik’s Cube is easier than with the representations introduced in the next sections.
Also, for some forms of displaying a digital cube graphically, the easy lookup of the color
of a facelet can be beneficial.

3.1.2. Cubies

As stated in the last section the facelets of corners and edges cannot be separated, which
motivates a representation that only stores the orientation and position of corner and
edge cubies. The orientation of corners can be described by number between 0 and 2. The
orientation of edges can be described by a binary value. The position of the corners and
edges can be represented by numbers in the range from 0 to 7 and 0 to 11 respectively.
But since rotating any side of the cube needs to cycle pieces at specific positions, it is
computationally more reasonable to store the index of a piece at a certain position. Hence,
an array of size 8 with entries containing the index as well as the orientation of each
corner uniquely describe the state of the corners of the cube. The first element in the array
describes the position UBR on the cube and the next seven entries describe positions UFR,
UFL, UBL, DBR, DFR DFL and DBL respectively. Analogously the edges can be stored in
1Rotating the whole cube is no regular move. Also, turning any middle slice is no regular move but can be
achieved by rotating the two adjacent face in the opposite direction.
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Figure 3.2.: Corner Orientations at different Positions

an array with twelve entries. The twelve entries of this array refer to the positions UR,
UF, UL, UB, RB, RF, LF, LB, DR, DF, DL, and DB. The corner positions can be translated to
indices by assigning the number 0 to 7 to the positions in the order they were enumerated
(position UBR becomes 0, position UFR becomes 1, and so on). The numbers 0 to 11 can
be assigned to the edges positions the same way (position UR becomes 0, position UF
becomes 1, and so on). Similarly we can assign an index to a certain corner. So the UBR
corner (disregarding its current position) has index 0. We denote the a corner of the cube at
position index x with cube.c[x] and edges at position index y with cube.e[y]. The index of
the piece at and its orientation will be denoted with cube.c[x].i and cube.c[x].o respectively.
So cube.c[4].i = 2 means that at the position DBR sits the UFL corner.
To rotate a face of the cube four entries of the corner array have to be cycled and the

orientation of these entries have to be adjusted. The same has to be done for the edges.
For the change of the orientation of the pieces again a lookup table can be used. But in
our implementation the 18 moves are split up in 18 functions, which each encapsulate the
information of the orientation changes.
Orientation of a piece at a certain position alone is not sufficient to describe what the

actual cube would look like. For the corners, every position on the cube needs to have
some interpretation of the orientation of a piece. For instance, consider the UFR piece of
the upper left picture in Figure 3.2. It is stored in position one of the corner array. For
this piece at this position we define orientation 0 as the solved orientation. This means
that for orientation 0 (for this specific color scheme) the yellow facelet is on the top layer.
Conceptually we defined an upper facelet for the corner and an upper side for each corner
positions and the orientation indicates how these two are orientated relative to each other.
Increasing the orientation by one is equivalent to rotating the corner by 120° clockwise
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(when looking at the piece from outside of the cube), which the other two depictions of
the cube in the first row of Figure 3.2 show.
Analogously we can define the upper side of all remaining corners positions and the

upper facelets for the remaining corner pieces. For the corner positions adjacent to the
top layer an orientation of 0 refers to the upper facelet of a corner being on the top face
and for the remaining positions at the bottom an orientation of 0 refers to upper facelet
being on the bottom face. Let the the corners adjacent to the top layer on a solved cube
have their upper facelets on the top layer and the corners laying on the bottom face be
defined to have their upper facelets in the bottom layer (For this color scheme, white is on
the bottom layer, so the yellow and white facelets are the upper facelets of the corners).
The same applies to the edges. We define the the upper facelet of edges adjacent to the top
and bottom layer the same way. Let the remaining edges’ upper facelet be defined to be on
the right and left layer. As we will show in Chapter 5 the selection of upper facelets and
upper sides affect the performance since more adjustments of orientation then necessary
can result from a poor selection.
Figure 3.2 provides an example of how the position and orientations change when a

move is applied. The states in the second row are the results of an F turn being applied to
the states above them. When this move is applied to the solved state, the UFR corner which
had position 1 in the array will go to position 5. The orientation of the piece will increase
by 2, since the upper facelet of the corner which would face down with orientation 0 needs
to be rotated two times by 120° to face right.

The representation introduces in this section is the one used in our implementation.

3.1.3. Coordinates

An even more sophisticated approach for representing the configuration of the cube is to
store a single coordinate to represent the state of the cube. This coordinate consists of the
four scalar values(𝐶𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝐶𝑝𝑒𝑟𝑚, 𝐸𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛, 𝐸𝑝𝑒𝑟𝑚), each describing different parts of
the cube. 𝐶𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 describes the orientation of all eight corners, 𝐸𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 describes the
orientation of the twelve edges and 𝐶𝑝𝑒𝑟𝑚 and 𝐸𝑝𝑒𝑟𝑚 describe the permutation of corners
and edges respectively.

As seen earlier, all eight corners can be in 38 = 6561 different orientation arrangements.
Each of these arrangements can be mapped to a number between 0 and 6560, but since a
third of these orientation arrangements cannot be reached with regular move (no corner
orientation can be changed independently) this value range shrinks to 37 = 2187 possible
values. To calculate this number, seven orientations can be written together and read
like a ternary number. The edge orientation coordinate can be calculated analogously
by constructing an eleven digit binary number from the edge orientations. This number
ranges form 0 to 211 = 2048.
The number of permutation of the corners equals 8! = 40320. Mapping an index to all

these permutations is slightly more complex. As in Section 3.1.2 all eight corners receive
an unique index between 0 and 7. Then, from the UBR corner in clockwise order and
from the DBR corner also in clockwise order (or any other preferred order), listing out the
corners at these positions (e.g. URF, UFL, ULB, UBR, DFR, DLF, DBL, DRB) and replacing
the corner with its corresponding index results in a permutation of eight unique numbers.
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For this permutation its corresponding Lehmer code can be calculated. The Lehmer code
is a special way to encode permutations.

Let 𝜎 be a permutation with n elements where 𝜎𝑖 is the i-th element of the permutation.
The Lehmer encoding 𝐿(𝜎) for a permutation 𝜎 can be computed with

𝐿(𝜎) = (𝐿(𝜎)0, . . . , 𝐿(𝜎)𝑛) where 𝐿(𝜎)𝑖 = 𝜎𝑖 − { 𝑗 < 𝑖 : 𝜎 𝑗 < 𝜎𝑖} (3.1)

For each element at position i, its index minus the number of elements to the left
with a smaller index becomes the coefficient 𝐿(𝜎)𝑖 . We provide the example of how the
permutation of corners look like after an F move is applied:

Position URB URF ULF ULB DRB DRF DLF DLB
Corner at position URB ULF DLF ULB DRB URF DRF DLB
Index at position 0 2 6 3 4 1 5 7

i 0 1 2 3 4 5 6 7
𝐿(𝜎)𝑖 0 1 4 1 1 0 0 0

The number with digits constructed from the 𝐿(𝜎)𝑖 ’s (𝐿(𝜎)0 at highest value position
and 𝐿(𝜎)7 at the lowest value position and all other digits in descending order in between)
can be interpreted using the factorial number system to compute the final permutation
index. To convert the permutation of corners 𝜎𝑐 and permutation of edges 𝜎𝑒 to the decimal
numbers 𝐶𝑝𝑒𝑟𝑚 and 𝐸𝑝𝑒𝑟𝑚 the following equations can be used.

𝐶𝑝𝑒𝑟𝑚 =

7∑︁
𝑖=0

𝐿(𝜎)𝑖 · (7 − 𝑖)! 𝐸𝑝𝑒𝑟𝑚 =

11∑︁
𝑖=0

𝐿(𝜎′)𝑖 · (11 − 𝑖)! (3.2)

In the example the index of the lexicographic rank of the corner permutation comes out
to be

0 · 7! + 1 · 6! + 4 · 5! + 1 · 4! + 1 · 3! + 0 · 2! + 0 · 1! · 0 · 0! = 1230 (3.3)

To compute 𝐿(𝜎)𝑖 all elements with a smaller index to the left of position i need to
be counted. Since 𝑂 (𝑛) elements need to be counted and n Lehmer digits need to be
computed, this calculation has a time complexity of 𝑂 (𝑛2). In 2005 Korf et. al. published
paper titled "Large-Scale Parallel Breadth-First Search" [16] in which they described a
linear algorithm for computing lexicographic ranks. The algorithm uses a bitmap where
the i-th bit is set when the coefficient for the element i is computed and a lookup table
which is indexed by the bitmap used as a binary number and has the number of one of this
binary number stored. The details as well as an implementation will be omitted in this
work but we use the algorithm in our implementation. Ben Botto published "Sequentially
Indexing Permutations: A Linear Algorithm for Computing Lexicographic Rank", an article
with further details on the algorithm [3].

Now any configuration of the cube can be uniquely represented by the four-dimensional
coordinate (𝐶𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝐶𝑝𝑒𝑟𝑚, 𝐸𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛, 𝐸𝑝𝑒𝑟𝑚). It has to be noted, that due to the laws of
the cube coordinates exist that correspond to states that cannot be reached with regular
moves, since permutations of corners and edges are separated and for some configurations
of the edges certain permutations of corners cannot be reached and vice versa. To transition
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to an adjacent cube state, the approaches in the last two chapters cannot be used anymore
since there is no more representation of single cubies that could be moved around. To
resolve this problem, lookup tables which contain all adjacent states for all different
values of the coordinates are required. For example, the corner orientation can be in 2187
different states and for each one the 18 adjacent states must be saved in a lookup table,
which will have 2087 · 18 = 37566 entries. The edge orientation lookup table would have
2048 · 18 = 36 864 entries, whereas the corner and edge permutation lookup tables would
have 40320 · 18 = 725760 and 479 001 600 · 18 = 8 622 028 800 entries respectively. If one
entry is saved in one byte the last lookup table would take about 8 GB.

3.2. A Naive Approach

Algorithm 1 IDDFS
function IDDFS(cube)

𝑚𝑜𝑣𝑒𝑆𝑡𝑎𝑐𝑘 ← []
𝑏𝑜𝑢𝑛𝑑 ← 1
while not BoundDFS(cube, 0, bound) do

𝑏𝑜𝑢𝑛𝑑 ← 𝑏𝑜𝑢𝑛𝑑 + 1
end while
return moveStack

end function

function BoundedDFS(cube, depth, bound, moveStack)
if depth > bound then

return False;
end if
if IsSolved(cube) then

return True;
end if
for move={U , U’, U2, ..., D, D’, D2} do ⊲ Loop trough all possible moves

𝐴𝑝𝑝𝑙𝑦𝑀𝑜𝑣𝑒 (𝑐𝑢𝑏𝑒,𝑚𝑜𝑣𝑒)
moveStack.push(move)
if BoundedDFS(cube, bound, depth + 1) then

return True;
end if
moveStack.pop()
𝐴𝑝𝑝𝑙𝑦𝑀𝑜𝑣𝑒 (𝑐𝑢𝑏𝑒, 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 (𝑚𝑜𝑣𝑒))

end for
return False

end function

A simple candidate for finding shortest paths is breadth-first search (BFS). It has a space
complexity of 𝑂 ( |𝑉 |) and a time complexity of also 𝑂 ( |𝑉 |), where V is number of nodes
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generated for finding the solution. With a branching factor of about 13, configurations
with a solution sequence with more than 10 elements already become nearly impossible
to solve on normal hardware. Even if states could be stored in one byte, over 240 GB of
memory would be required in the worst case. For solutions of lengths ≥ 15 run time gains
relevance as well. If one billion nodes could be traversed per second, such a scramble
would require over 90 days to be solved.

A* is an algorithm for finding shortest paths in a graph. It uses a heuristic and a cost
function f(n) = g(n) + h(n), where g(n) is the distance from the start node to the current
node and h(n) is a heuristic that estimates the remaining distance to the destination. By
traversing nodes sorted by the cost computed with f(n) A* can find the shortest paths
with fewer nodes than a BFS. Though informed searches like A* can decrease the time
complexity, they can similarly require prohibitive amounts of memory. Therefore an
approach with a space complexity that is sublinear in the traversed states is required. A
depth-first serach (DFS) has close-to-constant space complexity for our means but does
not guarantee optimal solutions. But with some modifications a DFS-based approach can
still be used. Iterative deepening DFS (IDDFS) is an algorithm which borrows the two
properties of optimality and close to constant space complexity of BFS and DFS respectively.
It works by performing a DFS up to certain depth bound. If no solution is found, the
depth bound is increased. IDDFS guarantees to find optimal solutions , since if a path with
length n exist it will be found when searching with a limit of depth n and any longer paths
cannot be found beforehand because they would only be traversed later in the search with
a greater depth limit. Pseudo code of the IDDFS algorithm can be found in Algorithm 1.
The pseudo code here as well as all other instances will opt to use recursive version of
algorithms for didactic reasons and more readability.
In the IDDFS function, the cube parameter is a configuration of the Rubik’s Cube.

The IsSolved function returns true if the passed cube equals the solved cube. ApplyMove
modifies the state of the passed cube state by applying the passed move. Inverse inverts
the move that is passed in (e.g. L becomes L’ U2 stays U2).
This algorithm has a space complexity of 𝑂 (𝑏 · 𝑘), where k the depth at which the

solution can be found and b is the branching factor. Since no pruning rules are used, b =
18 and k is at most 20. The time complexity is𝑂 (𝑏𝑘). For shuffles with a solution length of
less than ten and with the pruning rules described in chapter 2.2, early tests have shown
that the program will halt in less than a couple hours. But without any further information
that can be used for pruning, the run time of the program is too big to generate solutions
for harder scrambles in reasonable time.

3.3. Pattern Databases

As described in the last chapter, solving scrambled Rubik’s Cube configurations requires a
near to constant space complexity approach that makes use of some information of the
graph to reduce the number of states that need to be traversed. A solution for the first
requirement was already presented, but what information about the state of a cube can
be used to reduce the size of the search space? To estimate the distance to the solution
state a lookup table for the number of moves it takes to solve partial problems can be used.
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A partial problem of the Rubik’s cube can be solving subset of pieces of the cube. One
could for example ask how many moves it would take to only solve only the corners of a
cube and take this information to better estimate the number of moves it takes to solve
the whole cube. This information can be used as a heuristic for an informed search. In the
following sections pattern databases that are used in Korf’s, Botto’s and our solver are
presented.
To use this information the lookup tables for several partial problems need to be gen-

erate beforehand and can then be used for all solves of cubes afterwards, amortizing the
generation costs. To generate any lookup table the distance from the solved node to all
other nodes of the new graph that arises from inspecting only a subset of pieces and their
configuration needs to be calculated and then stored. To do so, some sort of algorithm for
finding shortest paths is needed. Although a BFS could be used a IDDFS was chosen to
generate all lookup tables presented in this work.
Before presenting the algorithm to generate the lookup tables the question of how to

order and how to then access the information in the final search needs to be answered
first. To be able to access the stored distances it is required to map some key representing
the configuration to a value. A quick and naive approach could be to write out the order of
pieces of interest and attach the string of orientations to them. This would generate unique
keys but would not allow quick access since some sort of hash table would be needed
to access the entries. So optimally a function should be used that takes in a state of the
cube and yields a unique number in the range of zero to the number of entries the lookup
table will have. In section 3.1.3 the concept of lexicographic ranks for permutations of n
distinct elements and n non distinct elements was presented. These two methods together
can be used to develop a function that suffice the stated requirements. We saw that a
coordinate unambiguously can describe the state of the orientations and permutation of
all corners. These two can be combined into one number with the same properties for all
configurations of the corners. Let the number a bidirectional mapping from a configuration
of any subset of pieces of the cube to this number be called the index of this state. For
the corner example this index can be calculated from the corner permutation and corner
orientation coordinate with the following equation

𝐼𝑐 = 𝐶𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 ∗ 𝑁𝑐𝑜 +𝐶𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 (3.4)

where 𝑁𝑐𝑜 = 37 = 2187 is the number of possible corner orientation arrangements
reachable with regular moves. 𝐼𝑐 lies in the range from 0 to 37 · 8! = 88.179.840. In the
following subsections it will be explained in detail how to calculate this index for the
configuration of the corners, the configuration of a subset of the edges and the permutation
of edges disregarding their orientation. Lets assume that a generic function CalculateIndex
exist, that will return the index for a subset of pieces. This together with numStates, the
number of states reachable in this subset, an algorithm for generating lookup tables for
this partial problems can be constructed. An implementation for this can be found in
Algorithm 2.
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Algorithm 2 Generate Lookup Table
𝑓 𝑜𝑢𝑛𝑑𝑆𝑡𝑎𝑡𝑒𝑠 ← 0
𝑙𝑜𝑜𝑘𝑢𝑝𝑇𝑎𝑏𝑙𝑒 ← 𝑎𝑟𝑟𝑎𝑦 [𝑛𝑢𝑚𝑆𝑡𝑎𝑡𝑒𝑠]{−1,−1, . . . ,−1}

function GenerateLookupTable
𝑏𝑜𝑢𝑛𝑑 ← 0

while not 𝑓 𝑜𝑢𝑛𝑑𝑆𝑡𝑎𝑡𝑒𝑠 == 𝑛𝑢𝑚𝑆𝑡𝑎𝑡𝑒𝑠 do
𝑏𝑜𝑢𝑛𝑑𝑒𝑑𝐷𝐹𝑆 (𝑠𝑜𝑙𝑣𝑒𝑑𝐶𝑢𝑏𝑒𝑆𝑡𝑎𝑡𝑒, 0, 𝑏𝑜𝑢𝑛𝑑)
𝑏𝑜𝑢𝑛𝑑 ← 𝑏𝑜𝑢𝑛𝑑 + 1

end while

return moveStack
end function

function boundedDFS(cube, depth, bound)
if depth > bound then

return
end if

𝑖𝑛𝑑𝑒𝑥 ← 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐼𝑛𝑑𝑒𝑥 (𝑐𝑢𝑏𝑒)

if lookupTable[index] == -1 then ⊲ Set the entry when not set yet
𝑙𝑜𝑜𝑘𝑢𝑝𝑇𝑎𝑏𝑙𝑒 [𝑖𝑛𝑑𝑒𝑥] ← 𝑑𝑒𝑝𝑡ℎ

end if

for move={U , U’, U2, ..., D, D’, D2} do ⊲ Loop trough all possible moves
𝐴𝑝𝑝𝑙𝑦𝑀𝑜𝑣𝑒 (𝑐𝑢𝑏𝑒,𝑚𝑜𝑣𝑒)
BoundedDFS(cube, bound, depth + 1)
𝐴𝑝𝑝𝑙𝑦𝑀𝑜𝑣𝑒 (𝑐𝑢𝑏𝑒, 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 (𝑚𝑜𝑣𝑒))

end for
end function

3.3.1. Optimization

The algorithm in this form is too slow to generate the tables in reasonable time, since as it
will seen entries up to depth 14 will be need to be populated. This means that all states up to
depth 14 need to be traversed. As seen in table 3.1 this would be 7 768 485 393 179 328 nodes.
But there are some observations that can be used to drastically improve the performance
of the population of the lookup table.

3.3.1.1. Two paths, different length, same state

The first observation is that if a state s is reached with depth d and an entry at its index
with a depth d’ that is greater than d the traversal can be stopped. This is because, if s can
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be reached with d moves then all subsequent states at subsequent depths can be reached
with 𝑑 + 𝜖 moves, where 𝜖 is the difference of d and one of the subsequent depths. And
since 𝑑 + 𝜖 < 𝑑′ + 𝜖 no state will be reached with a depth smaller or equal to what the
lookup table has already have stored at the state’s index.

We provide an example of when this is happening. Consider the path p = U2 D2 R2 L2
U2. This path results in the same state as the path p’ = D2 R2 L2 does. Since the length of
p is greater than p’, all subsequent states reached from p will never yield smaller depths
than those reached via p’ and therefore any further traversal from p cannot result in any
state found with its shortest solution.

3.3.1.2. Two different paths, same length, same state

Inspired by the first observation, the number of nodes that need to be traversed can be
decreased even further by realizing that, no new entries will be populated from a search
of a state, that was already reached within the same depth bound. Take for example the
path p = U2 D2 R2 L2 and p’ = R2 L2 U2 D2. When p gets traversed first in the iteration
with the depth bound 5, the entry for the state that is reached with U2 D2 R2 L2 F will be
set in the lookup table. But the same state will later be reached with R2 L2 U2 D2 F and
no new information is generated. This and all other subsequent states that follow from
a state that was reached before in an iteration will be traversed for nothing. So pruning
the search at these states would decrease nodes that need to be traversed even further.
Unfortunately there is no way to detect whether a node has been visited before or not
without storing which states have been traversed already. When searching for a solution
of a scrambled cube, it is not reasonable to store all traversed states, since the number of
possible configurations and is just too big, but in the algorithm shown there is already an
array which holds information about every state that is reachable for the subset of pieces
of interest. Furthermore is it known, that no configuration (even if the configuration of the
whole cube is used) needs more than 20 moves to be solved. This means that the entries in
the lookup table only need 5 bits to store the distance of a state. If the entries are stored in
a byte, there are three bits left to store information about each state. So it is possible to
mark all reached states by setting a bit flag for states that have been reached in an iteration
and stop any further traversing of the graph when a state is reached that is marked. Note
that in between every iteration all flags have to be reset to avoid that the search is stopped
immediately, but the overhead is completely compensated with the improved generation
performance.

3.3.1.3. Inverse Lexicographic Rank

The last presented optimization of the lookup table generation is most relevant for the
bigger lookup tables that will be generated. For the last couple iterations a lot of entries
of the lookup table are already populated and many entries for states at the depth bound
already set. This motivates the approach to dismiss the IDDFS from a certain depth bound
and rather set the unpopulated states directly. This can be done by checking if the state
that corresponds with an unset entry has any adjacent states, whose corresponding entry
has already been set and if so setting the entry of the original state to the value of an
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adjacent state’s entry plus one. If the search finished the iterations with a depth bound of
8 for example, all entries that haven’t been set yet must have a distance of 9 or more. If a
state that corresponds with any unset entry that has distance 9, for one of the 18 moves,
applying it must result in a state which entry was set to 8. So the array can be scanned
linearly and for all unset entries the state can be reconstructed and checked if an adjacent
state is set already. Therefore this method requires it to be possible to reconstruct a state
from its index.

To reconstruct the state, the first step is to extract to two coordinates for the permutation
and the orientation. It is not hard to see that the index calculated with equation 3.4 can be
decomposed back into the original coordinates with

𝐶𝑝𝑒𝑟𝑚 = ⌊𝐼𝑐/𝑁𝑐𝑜⌋ 𝑎𝑛𝑑 𝐶𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 = 𝐼𝑐 mod 𝑁𝑐𝑜 (3.5)

where again 𝑁𝑐𝑜 is the number of possible corner orientation arrangements. Now from
the two coordinates the 7 orientations of the corners (the sum of the last orientation
together with all other orientations must be divisible by 3 and can therefore be computed
with this law) as well as the permutation of the 8 corners must be reconstructed. The ori-
entations can be constructed by converting𝐶𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 to a base-3 number and interpreting
each digit as the orientation of the corresponding corner. Therefore an equation for the
orientation 𝐶𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑖 of the i-th corner looks like

𝐶𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑖 = (𝐶𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛/3𝑖) mod 3 (3.6)

The edge orientations can be reconstructed in the same manner by converting 𝐸𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
to a base-2 number. The i-th orientation of the egdes 𝐸𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑖 can be computed with

𝐸𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑖 = (𝐸𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛/2𝑖) mod 2 (3.7)

Now the permuation of corners and edges need to be extracted as well. First the
coefficients 𝐿(𝜎)𝑖 of the Lehmer code needs to be computed from the lexicographic rank
of the corners with

𝐿(𝜎)𝑖 =
⌊ (𝐶𝑝𝑒𝑟𝑚 mod (7 − 𝑖 + 1)!)

(7 − 𝑖)!

⌋
(3.8)

To reconstruct a permutation from its Lehmer code each 𝜎𝑖 can be obtained successively
with 𝜎𝑖 = Σ(𝜔, 𝐿(𝜎)𝑖), where 𝜔 is a bitmap with the k-th bit set when 𝜎𝑖 was set to k in
an earlier iteration and Σ(𝑏, 𝑛) is a function that returns the index of the n-th zero in a
bitmap b. We elaborate the process a little further. The first element of the permutation is
always equal to the first Lehmer code digit, since there are no elements to its left. The bit
at 𝐿(𝜎)0 is set after 𝜎0 is set. The following 𝜎𝑖 become the position of the 𝐿(𝜎)𝑖th zero of
the bitmap.
In the example shown in Section 3.1.3 the coefficients were 0, 1, 4, 1, 1, 0, 0 ,0. So the

first edge index will 0. The first bit in the bitmap is set (𝐿(𝜎)1 = 1). The first zero of the
bitmap is at position 1. So 𝜎1 becomes 1 and the bit at index 1 is set. 𝜎2 now becomes the
forth zero in the bitmap which now is at index 6. Continuing this process 𝜎 can completely
be reconstructed.
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As with computing the lexicographic rank for a permutation the inversion of this
process, has a time complexity of 𝑂 (𝑛2) when a naive implementation is used since for
the n elements of the permutation the position of the k-th zero needs to be computed.
Both computations scale linear in the operations needed with respect to the number of
elements of the permutation.
We derived the presented algorithm together with the following optimization, which

we later identified to be a rediscovery of an algorithm that was first proposed in "Efficient
Algorithms to Rank and Unrank Permutations in Lexicographic Order" [1], which also
introduced a method improving the asymptotic run time to be linear. In the work they
precompute a lookup table that contains entries for all possible bitmaps and every index of
zero. This table has 2𝑛 · 𝑛 entries, where n is the number of elements of the permutations
that will be reconstructed. By that they can find the k-th zero in 𝑂 (1).

Our tests have shown that using the first two introduced optimization methods up to a
depth of 8 and then populating the rest of the table with an inverse lexicographic rank
search2 yields the best results. The inverse lexicographic rank search performs best when
few entries of the table are uninitialized, whereas the IDDFS is efficient for generating
entries up to a small depth bound.
If the graph can be traversed only with coordinates as described in Section 3.1.3 no

reconstruction of the permutations is required. But sincewe opted to use a cube represented
which does not purely rely on coordinates for the lookup table generation the inversion is
still required.

3.3.1.4. Space Optimization

The maximum move count stored in all pattern databases discussed in this work is 14. So
every entry in the databases could be stored in half a byte, but this can be improved even
further by realising that adjacent states can only differ by one move in their distance from
the solved state. Therefore the database can be confined to only store the real distance mod
3. The actual distance for a state then can be computed by taking the difference between
the current state’s stored value and the adjacent state’s value and adding it to the heuristic
value of the adjacent state. [12]

For pruning values in any search the absolute heuristic value is needed rather than
a relative one. But the absolute heuristic value of an arbitrary state s can be computed
beforehand: Start a search from s and only traverse nodes that decrease the heuristic
value, until the solved state is found. The distance of s to the solved state is the absolute
heuristic value. This needs to be done for every lookup table used. Since every node in
the pattern databases has a neighbour that is closer to the solved state, this search only
needs to generate 𝑂 (𝑏 ∗ 𝑑) nodes. Here b is the branching factor and d is the maximum
distance any entry of the database has.

With this method only 0, 1 and 2 are valid values for an entry. But instead of storing 4
entries in one byte (where each two bits represent one entry) 5 entries can be stored in
one byte when they are compressed because the number of configurations of five entries
does not exceed the number representable by one byte (35 = 243 < 256 = 28). But if the
2The edge group and the edge permutation pattern database generation used the IDDFS search only to a
depth of 7.
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first byte stores the entries (0,1,2,3,4) and the second byte (5,6,7,8,9), and so on, then the
index of the byte has to be computed with div-5 and mod-5 operations. Storing the entries
like (0,1,2,3,x), (4,5,6,7x+1), . . .where x is about 4

5 of the size of the whole database, allow
using div-4 and mod-4 operations, which are faster. [4, 12]

Since a fourth value (uninitialized) is required when generating pattern databases, one
byte can only store four values during the generation and only if all entries are set the
database can be compressed. To use a flag to indicate whether a state has been reached in
one iteration of the IDDFS-based generation, even more than two bytes need to used for
one entry. [4, 12]

This compression is a trade off of time for less space, since the lookup requires more
operations. For one lookup an entry has to be decompressed (this can also be done with
small lookup table). That is why we opted to use a full byte for one entry during the solve
of a scramble. But the pattern databases can be stored compressed and inflated only when
required. This adds some extra startup time of the program.

In our program only pattern databases that store absolute heuristic values are used. In
Chapter 5 a discussion on how the compression affects performance is presented.

3.3.2. Corners

One of the pattern databases that was used by Korf in his original work contained the
distances for all corner arrangements. With only 8! ∗ 73 = 88 179 840 entries in the table,
the database takes up only about 88 MB. The furthest configuration of corners from the
solved state has distance 11 so 4 bits are enough to store the distances and one byte can
hold two entries. With that all entries can be stored in about 44MB.

The index 𝐼𝑐 mapping the configuration of the corners to a number can be calculated
with

𝐼𝑐 = 𝐶𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 ∗ 𝑁𝑐𝑜 +𝐶𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 (3.9)

where 𝑁𝑒𝑜 = 211 is the number of possible edge orientation arrangements reachable with
with regular moves. This value can be used for indexing the pattern database. The state
distribution with respect to the depth can be found in Figure 3.2. The expected heuristic
value of the corner pattern database is 8.764.
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depth configurations

0 1
1 18
2 243
3 2 874
4 28 000
5 205 416
6 1 168 516
7 5 402 628
8 20 776 176
9 45 391 616
10 15 139 616
11 64 736

Table 3.2.: Corner configurations distribution per depth

With all optimization methods the generation of the corner pattern database takes less
than 60 seconds using 6 threads for the IDDFS and 8 threads for the inverse lexicographic
rank search.

3.3.3. Edge Groups

Using only information of the corners is not enough to obtain a sufficiently precise
estimates of the distance to the solved state, therefore Korf also used two pattern databases
that stored the distance for the configurations of the six edges [14].
When considering the positions of 6 of the 12 edges, there are 12!

6! = 665 280 possible
permutations. Each edge can be in one of two orientation, so 26 = 64 different orientation
arrangements are possible. In total there are 12!

6! ·2
6 = 42 577 920 different configurations for

six edges. To compute an index of the configuration of this subset of pieces an extension
of the method introduced in Section 3.1.3 needs to be used. To calculate the Lehmer code
of a partial permutation the same method can be used, but for converting the Lehmer code
to a decimal number the coefficients have to be multiplied by a different base. But the
permutation of a subset of pieces has to be constructed in a slightly different way. Instead
of the index of an edge at position p becoming the p-th element of the permutation, the
position of the piece with index i becomes the i-th element of the permutation. We provide
an example.

p 0 1 2 3 4 5 6 7 8 9 10 11
cube.e[p].i 3 2 1 6 4 9 10 11 8 0 5 7

cube.e[p].i is the index of the edge at position p. When considering the edge group
consisting of indices 0 to 5 the permutation would be (9, 2, 1, 0, 4, 10). For indices 6 to 11
the permutation would be (3, 11, 8, 5, 6, 7). With that permutations of any subset of pieces
can be constructed that can be used to compute their Lehmer code.
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Let 𝜎𝑒 be the permutation of one edge group and 𝐸𝑔,𝑝𝑒𝑟𝑚 be the lexicographic rank of
one of the edge groups then with

𝐸𝑔,𝑝𝑒𝑟𝑚 =

6∑︁
𝑖=0

𝐿(𝜎)𝑖 · 𝑝𝑖𝑐𝑘 (𝑁 − 1 − 𝑖, 𝐾 − 1 − 𝑖)

where 𝑝𝑖𝑐𝑘 (𝑛, 𝑘) = 𝑛!
(𝑛 − 𝑘)!

(3.10)

the permutation coordinate of one edge group can be computed [3]. N = 12 is the number
of edges and K = 6 is the number of edges in the edge group. To compute the lexicographic
rank of the configuration (position and orientation), 𝐼𝑒 = 𝐸𝑔,𝑝𝑒𝑟𝑚 ∗𝑁𝑐𝑜 ∗𝐸𝑔,𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 can used.
𝑁𝑐𝑜 = 26 is number of configurations for the orientation of the six edges and 𝐸𝑔,𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 is
the orientation coordinate of the six edges. Latter can be computed similarly as described
in Section 3.1.3 by just omitting the orientations of unused edges when constructing the
binary number.

Korf used edge groups with six elements since each database requires only about 21 MB
when compressed [15]. Adding one more edge increases the number of configurations
to 12!

5! ∗ 2
7 = 510 935 040 which would require about 255 MB when compressed. This

seemed to have been too much of a memory requirement for that time. Ben Botto used
two pattern databases storing the distances for configurations of 7 edges [2]. So did we in
our implementation.
While the pattern database Korf used only contained states up to a depth of 10, the

database used by Botto and in our implementation contains states up to a depth of 11.
Korf’s database yields an expected heuristic value of about 7.668 moves, while the larger
database improves this to about 8.507 moves. The state distribution with respect to the
depth can be found in Table 3.3. The generation of the pattern database took about 230
seconds.

depth configurations

0 1
1 15
2 191
3 2 455
4 30 519
5 356 462
6 3 766 700
7 32 719 467
8 186 297 009
9 274 719 633
10 13 042 507
11 81

Table 3.3.: Edge group configurations distribution per depth
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3.3.4. Edge Permutation

One pattern database used in out program that was used by Botto but not by Korf
contained the permutation of all edges, ignoring their orientations. This database has
12! = 479 001 600 entries and needs about 240MB of memory when compressed. For
indexing the database 𝐸𝑝𝑒𝑟𝑚 can be used which can be computed as described in Section
3.1.3. The state distribution with respect to the depth can be found in Table 3.4.

depth configurations

0 1
1 18
2 243
3 3 240
4 42 535
5 542 234
6 6 529 891
7 66 478 628
8 310 957 078
9 94 443 600
10 4 132

Table 3.4.: Edge permutation distribution per depth

The expected heuritisc value of this database is about 8.027 moves. The generation of
the database took about 170 seconds.

3.4. State of the Art: Iterative Deepening A*

With a near to linear space complexity graph search algorithm and an heuristic for the
remaining distance to the solved state, a first approach to solve any scrambles in reasonable
time can be made. This chapter introduces the algorithm that we used to solve random
instances of a cube.

3.4.1. The Algorithm

Richard Korf contributed to the solving of many combinatorial puzzles like the 15 sliding
tiles puzzle and the Rubik’s cube. In 1985 he published an article titled "Depth-first iterative-
deepening: An optimal admissible tree search", where he first describes an algorithm,
today known as iterative deepening A*(IDA*) [13].

Let 𝑓 (𝑛) = 𝑔(𝑛) + ℎ(ℎ) be a cost function, where g(n) is the sum of the edge costs from
the initial node s to a node n and h(n) a heuristic function that estimates the distance from
n to the goal node. Let 𝜏 be the cost threshold of a IDDFS iteration and d(s) the shortest
distance from s to the goal node. IDA* works like IDDFS, but it prunes paths from any
node n that satisfies 𝑓 (𝑛) > 𝜏 . The cost threshold in the first iteration is set to the cost
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value of the initial state (𝑓 (𝑠) = 𝑔(𝑠) + ℎ(𝑠) = 0 + ℎ(𝑠) = ℎ(𝑠)). The cost threshold 𝜏 of the
next iteration will be set to the lowest cost of all pruned nodes. It continues until a goal is
found, that not exceeds the cost threshold. Algorithm 3 shows an implementation of the
algorithm.

Algorithm 3 Iterative Deepening A*
function Iterative Deepening A*(cube)

𝑚𝑜𝑣𝑒𝑆𝑡𝑎𝑐𝑘 ← []
𝑏𝑜𝑢𝑛𝑑 ← 𝐺𝑒𝑡𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 (𝑐𝑢𝑏𝑒)
while IDA_Iteration(cube, 0, bound) == False do ⊲ As long as no solution is found

𝑏𝑜𝑢𝑛𝑑 = 𝑛𝑒𝑥𝑡𝐵𝑜𝑢𝑛𝑑

𝑛𝑒𝑥𝑡𝐵𝑜𝑢𝑛𝑑 = 𝑀𝐴𝑋_𝑉𝐴𝐿𝑈𝐸 ⊲ Let this be accessible for IDA_Iteration
end while
return moveStack

end function

function IDA_Iteration(cube, depth, bound)
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑀𝑜𝑣𝑒𝑠 ← 𝐺𝑒𝑡𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 (𝑐𝑢𝑏𝑒) + 𝑑𝑒𝑝𝑡ℎ
if estimatedMoves > bound then

return False;
else

if estimatedMoves < nextBound then
𝑛𝑒𝑥𝑡𝐵𝑜𝑢𝑛𝑑 ← 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑀𝑜𝑣𝑒𝑠

end if
end if
if IsSolved(cube) then

return True;
end if
for move={U , U’, U2, ..., D, D’, D2} do ⊲ Loop trough all possible moves

𝐴𝑝𝑝𝑙𝑦𝑀𝑜𝑣𝑒 (𝑐𝑢𝑏𝑒,𝑚𝑜𝑣𝑒)
moveStack.push(move)
if IDA*(cube, bound, depth + 1) == True then

return True;
end if
moveStack.pop()
𝐴𝑝𝑝𝑙𝑦𝑀𝑜𝑣𝑒 (𝑐𝑢𝑏𝑒, 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 (𝑚𝑜𝑣𝑒))

end for
return False

end function

Lemma 1. The algorithm will find shortest paths if h(n) is admissible. A heuristic function is
admissible :⇔ ∀𝑛 ∈ 𝑁 : ℎ(𝑛) ≤ 𝑑 (𝑛) where N is the set of all nodes and d(n) is the smallest
distance of n to the goal node. In other words: IDA* is optimal if and only if the heuristic
function never overestimates the remaining distance to the goal node.
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Proof. In the first iteration 𝜏 = 𝑓 (𝑠) = ℎ(𝑠) ≤ 𝑑 (𝑠) and since only paths {𝑠, 𝑛1, . . . 𝑛𝑘} with
𝑓 (𝑛𝑖) ≤ 𝜏 will be traversed, a solution is only contained if 𝜏 ≥ 𝑑 (𝑠). In the next iteration 𝜏
is set to the smallest cost value found so 𝜏 ≤ 𝑑 (𝑠) stays true. This is repeated until 𝜏 ≥ 𝑑 (𝑠)
and a solution is found. With 𝜏 ≤ 𝑑 (𝑠) in every iteration and 𝜏 ≥ 𝑑 (𝑠) only if a solution
with length 𝜏 is found, 𝜏 must be d(s) and the solution therefore optimal. [17] □

Since the heuristic function used is a pattern database that stores only distances for
subsets of pieces the heuristic values never exceed the real distance to the solved state
and therefore only optimal solutions will be found. To use multiple pattern databases
to estimate the distance to the solved state, the only way to combine the information
without the loss of admissibility is to take the maximum of all databases [14]. To further
improve performance Botto’s and our implementation sort the neighbours of a node that
gets traversed in best-first search manner to improve the number of traversed nodes in the
last iteration. Our tests have shown that sorting the adjacent nodes decreases the number
of nodes that can be generated per second by approximately 10 percent but improved the
run time overall.

3.4.2. Experimental Results

Korf reported that he solved ten random configurations of the Rubik’s Cube and generated
between 3 720 885 493 and 1 021 814 815 051 nodes during the solve. Of the ten scrambles
one had a solution length of 16, three had a solution length of 17 and six had a solution
length of 18. He could traverse 700 000 nodes per second [14]. With the new lookup tables
Botto introduced, we solved 16 random scrambles and generated between 274 289 501 and
39 526 346 646 - about 9 177 813 092 on average. We also had solution lengths between 16
and 18. Exact numbers are presented in Chapter 6.
Botto claims to have to have the fastest implementation of Korf’s algorithm. To the

best of our knowledge this is true. We used his program on the same hardware all other
tests also ran on and found that our implementation is approximately as fast as his when
running single threaded. All results shown in this work used multi threading. More details
on how the parallelization works and how it scales with the thread count is shown in
Chapter 5.

In his work "Finding Optimal Solutions to Rubik’s Cube Using Pattern Databases", Korf
stated that the number of nodes that need to be generated when solving a cube has an
inverse linear relationship with the size of the pattern databases used for pruning.

3.4.3. Performance Analysis

Let n be the number of states in the entire problem space, Let b be the brute-force branching
factor, let d be the average optimal solution length for a random problem instance, let e
be the expected value of the heuristic, let m be the amount of memory used, in terms of
heuristic values stored, and let t be the running time of IDA*, in terms of nodes generated.
Korf assumes that the average depth at which IDA* finds a solution can be estimated with
𝑑 ≈ 𝑙𝑜𝑔𝑏𝑛, e can be estimated with 𝑒 ≈ 𝑙𝑜𝑔𝑏𝑚 and t can be estimated with 𝑡 ≈ 𝑏𝑑−𝑒 . With
all that he derives
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𝑡 ≈ 𝑏𝑑−𝑒 ≈ 𝑏𝑙𝑜𝑔𝑏𝑛−𝑙𝑜𝑔𝑏𝑚 =
𝑛

𝑚
(3.11)

So the running time may be approximated with 𝑂 ( 𝑛
𝑚
) [14].

The number of states in problem space of the Rubik’s Cube is about𝑛 ≈ 4.3·1019 as shown
in Section 2.3. The size of the pattern databases used by Korf is𝑚 = 2 · ( 12!6! · 2

6 + 8! · 37) =
173 335 680. So 𝑡 = 𝑛

𝑚
= 352 656 042 894, which is only off by a factor of 1.4 from the

average of nodes generated by our 16 solves.
We used 4 pattern databases that have a combined size of𝑚′ = 2 · ( 12!5! · 2

7+8! · 37+12!) =
1589051520. With 𝑡 ′ = 𝑛

𝑚′ ≈ 27 060 167 312, we are only off by factor of about 2.95 from the
real average of nodes generated in our 16 solves.
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In this chapter we present our Contributions. First we explain how we generated the full
edge pattern database and discuss the findings. After that we introduce two techniques
for detecting states, that are have been visited before in an iteration of IDA* without the
need to store all states.

4.1. Full Edge State Database

One limitation of the pattern databases is that they need to be small enough to fit into the
RAM , since the latency of hard drives is so slow, that it becomes unreasonable to do a
lookup for every node. This is why a pattern database containing all possible configurations
of the edges has not been generated before. To the best of our knowledge, we are the first
to generate the whole database for the all edge permutations. As shown in Section 3.1.3
the edges can have 12! permutations and 211 orientation arrangements. So the indices of
this database can be in the range from 0 to 12! · 211 = 980 995 276 800. With the coordinate
values 𝐸𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 and 𝐸𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 , which can be computer as described in Section 3.1.3, the
edge index 𝐼𝑒 can be computed with

𝐼𝑒 = 𝐸𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 ∗ 𝑁𝑒𝑜 + 𝐸𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 (4.1)

where 𝑁𝑁𝑒𝑜 = 211 = 2048 is number the number of reachable edge orientation configu-
rations.

This pattern database requires about 1 Terra byte of memory when uncompressed. To
use it a machine with such an amount of memory is needed to prevent the long latency of
hard drives.

At the Karlsruhe Institute of Technology we used a machine with 1 Terra byte of RAM
to generate and use the database. In an early iteration of this work, we tried to generate
the database without the use of the inverse lexicographic rank optimization (see Section
3.3.1.3) and found, that after two weeks generation wasn’t finished. After implementing
the optimization we were able to generate the lookup table in less than three days. We
used 18 threads for the IDDFS step of the generation and 128 threads for the inverse
lexicographic rank step of the search. The lookup table contains the distances for states
up to a depth of 14. The distribution of states with respect to their depth can be found in
Table 4.1. The expected heuristic value of this database is about 11.17.

Loading the uncompressed lookup table into the RAM takes about 90 minutes, but
afterwards arbitrarily many shuffles can be solved. The three pattern databases described
in Section 3.3 that used a subset of the edges or the permutation of all edges were not used,
since they never contain greater heuristic values than the full edge database. We solved
5000 randomly generated shuffles with solution lengths that reached from 15 to 19 moves.
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depth configurations

0 1
1 18
2 243
3 3240
4 42807
5 555866
6 7070103
7 87801812
8 1050559626
9 11588911021
10 110409721989
11 552734197682
12 304786076626
13 330335518
14 248

Table 4.1.: Edge group configurations distribution per depth

None of the solves took more than 900s and the maximum number of nodes generated is
1 489 814 309. On average we needed about 78 seconds and 149 881 988 nodes to solve the
scrambles.

With a pattern database size of𝑚 = 12!∗211+8!∗37 = 981 083 456 640, we can use Korf’s
Equation 3.11 to get an estimated number of nodes of about 43 829 094. This number is off
by a factor of about 3.42. This shows, that Korf’s asymptotic approximation for the run
time of IDA* still holds true for pattern databases that are nearly 3 orders of magnitude
greater in size than the ones he used.

4.2. Duplicate State Detection

One deficiency of IDA* is that some nodes will be traversed multiple times. For the
graph constructed by applying moves to the Rubik’s Cube, this problem gains even more
relevance because a lot of states can be reached via different non trivial (paths that only
differ by swapped commutative moves) paths along the graph. The simplest way to detect
nodes that are reached multiple times is to store every traversed node together with the
depth at which it was reached in hash table and check for every node if it was reached
with a more shallow depth and if so prune it. But just like with the searching algorithm
the space of the problem is too great to store all traversed nodes. Table 3.1 shows an upper
bound of entries the hash table would have for searches up to a certain depth.

One easy way to solve the problem is to store and check only nodes up to a certain depth.
On household hardware (with about 8 GB of RAM) our tests have shown that up to a depth
of 6 storing all states lies in the capabilities of the memory, but the overhead of hash table
operations resulted in too few nodes generated per second to improve performance.
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Since populating the hash table during run time is too slow, some sort of table, generated
ahead of time, is required that can be accessed quick for looking up whether a state is a
duplicate or not. We present two types of lookup tables that improve the performance of
the search.

4.2.1. Relative States

Before explaining how indexing a state works, we have to address another problem: We can
compute which sequence of moves or which states, relative to some starting configuration
lead to a duplicate state, but the main search starts from some arbitrary state and the
entries in the lookup table will have absolute indices - meaning that if some state that
was shown to be a duplicate state when starting from a solved state, it is not necessarily a
duplicate state when starting from some arbitrary configuration. To resolve this problem
we either have to rely on a relative indexing, like using the all moves applied or take some
state indexing method, that is not absolute. We first show why using an index computed
from all moves applied resolves this problem.
Let p be the sequence of moves (𝑝1, . . . , 𝑝𝑛) and let s be the solved state. Further lets

define 𝑝 · 𝑠 = 𝑔 to be the operation, that applies 𝑝1 followed by the successive 𝑝𝑖 ’s to s to
reach the state g. Now assume a p’ with 𝑝′ · 𝑠 = 𝑝 · 𝑠 = 𝑔 with 𝑝 ≠ 𝑝′. Applying p and
p’ both transform s to g, or in others words applying the moves of p leads to the same
state as applying the moves of p’ does. In this case we would call g a duplicate state, since
there are at least two sequence of moves that lead to g. Note that without restricting the
length of the length of p and p’ every state is duplicate state1 So we’re just interested in
duplicates states with a length bound for p and p’.
We know that p and p’ transform s into the same state g, but we need that p and p’

transform any state s’ into the same state g’. We can proof this property with the following
thought experiment. Take a solved Rubik’s Cube and put a sticker on every facelet to
construct a any arbitrary state. If you apply p and then take off the stickers you will find
the same state, that you would have reached if you would have applied p’ in the same
process. Since the state of the cube with the added stickers have to the same for finding
the same state after removing the sticker with p and p’, we have shown that every for
every starting configuration p and p’ yield the same state after applying them.

4.2.2. Hashing a Rubik’s Cube State

We can compute the coordinate (𝐶𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 , 𝐶𝑝𝑒𝑟𝑚 , 𝐸𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 , 𝐸𝑝𝑒𝑟𝑚) for a given state s
as described in Section 3.1.3 and compose the corner and edge coordinates 𝐼𝑐 and 𝐼𝑒 as
described in Sections 3.3.2 and 4.1. In our program these two number as a tuple define
the index of a state of the Rubik’s Cube. For using this index in a hash table it has to be

1A sketch of an informal proof could look like: For every reachable state g there is a shortest path p
that transforms the solved state s to g. Another shortest path p’ with 𝑝 ′ ≠ 𝑝 can be constructed with
some random state g’ with (𝑠 ≠ 𝑔′ ≠ 𝑔). By taking the shortest paths 𝑝𝑠𝑔′ and 𝑝𝑔′𝑔 with 𝑝𝑠𝑔′ · 𝑠 = 𝑔′ and
𝑝𝑔′𝑔 · 𝑔′ = 𝑔 where 𝑝𝑠𝑔′ and 𝑝𝑔′𝑔 are no subset of p. Concatenating 𝑝𝑔′𝑔 and 𝑝𝑠𝑔′ yields a path p’, With
𝑝 ′ · 𝑠 = 𝑝𝑔′𝑔 · (𝑝𝑠𝑔′ · 𝑠) = 𝑝𝑔′𝑔 · 𝑔′ = 𝑔. Since 𝑝𝑠𝑔′ and 𝑝𝑔′𝑔 are no subsets p, we found a p’ with 𝑝 ′ ≠ 𝑝 that
also transforms s to g.
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comparable and mappable to an 64-bit integer. The number of states these two number
can be in is 12! · 211 · 8! · 37 ≈ 8.65 · 1019 which is twice as big as the number of reachable
states, since configuration of corner and edge permutations that are not reachable with
regular moves are contained in this number (see Section 2.3). With 𝑙𝑜𝑔2(8.65 · 1019) ≈ 66,
we see that the number cannot not be stored in 64-bit variable. But since 𝐼𝑐 can be stored
in 27 bit (𝑙𝑜𝑔2(8! · 37) < 27) and 𝐼𝑒 can be stored in 40 bits (𝑙𝑜𝑔2(12! · 211) < 40), a simple
hash function can be used. In our program we use H(I) = 𝐼𝑒 ⊕ (𝐼𝑐 « (64 - 27)) as the hash
function, where ⊕ is the XOR-operator and « is the left bit shift operator. With this only
27 + 40 - 64 = 3 bits are overlapping.

4.2.3. Sequence Index Calculation

After applying maximally n moves there are
∑𝑛
𝑖=1 18𝑖−1 possible sequences of moves. Let

𝑀 = {𝑚0, . . . ,𝑚𝑛} be a sequence of moves with length n where𝑚𝑖 is a number between 0
and 17, representing one of the 18 moves. To calculate a sequence index 𝐼𝑠 based on the
moves applied we can use the following formula

𝐼𝑠 =

𝑛∑︁
𝑖=0
(𝑚𝑖 + 1) ∗ 18𝑛−𝑖−1 (4.2)

With this index a lookup table can be generated that contains all paths up to length of
n, where each entry is a flag indicating whether a search from the corresponding node
needs to be continued or pruned. Since this flag can be stored in one bit a byte can hold
8 entries. For our program we used lookup tables with move sequences of length 7 and
8. The smaller one has

∑7
𝑖=0 18𝑖 = 648 232 975 entries and requires about 81MB when

compressed. The larger one has
∑8
𝑖=0 18𝑖 = 11 668 193 551 entries and requires about 1.46

GB when compressed.
During the solve of a scramble the current path can be used to compute the sequence

index. This index can then be used to retrieve the information about whether the path
was reached or will be reached reached or not2. The search is then continued or pruned
accordingly.

4.2.4. Shifted Configuration Index

The sequence-index-based approach saves for every sequence of moves whether a state
will be reached by at least one other path or not. This approach has the disadvantage,
that a lot of paths do not reach duplicate states and are therefore stored for nothing.
Furthermore all paths are stored that reach a duplicate state. Optimally only the duplicate
states represented by their index are stored. A table with only these state indices can be
computed ahead of time and while finding an optimal solution, for every node it can be
checked if it is contained in that lookup table and pruned if it was set to visited, or set
to have been visited otherwise. With this approach just a fraction of memory would be
required to detect duplicate states.
2Which sequence to a duplicate state is found first depends on the order the state space is searched in
while solving, during the lookup table generation or how the parallelization traverses the tree.
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Assume a lookup table was generated that contains all state indices of states that can be
reached with two different paths (with less than 8 moves) from the solved state. This does
not help finding duplicate states when starting from an arbitrary configuration, unless
some sort of index shift maps the indices in the table to indices of states that are reachable
with the same two same paths from some arbitrary state. Formally we require a state shift
function s(g, c) that for some state g and some starting configuration c returns the state
that would have been reached if the transformation that transformed c to g is applied to
the solved state3. We provide an example that clarifies this property. When we apply the
moves p = R2 L2 U2 L2 to the solved state s, we reach a state g with the state index I = (𝐶𝑐
= 88177653, 𝐶𝑒 = 845111005184). Applying the moves p’ = U2 D2 R2 L2 yields the same
state with the same state index. For an arbitrary configuration c that we want to solve
both move sequences p and p’ lead to the same state g’, but g ≠ g’, unless 𝑐 = 𝑠 . So the
state index I’ of g’ will be different to I. To detect that p and p’ lead to the same state for
every starting configuration, the shift function should return s(g’, c) = s(𝑝 · 𝑐 , c) = s(𝑝′ · 𝑐 ,
c) = 𝑝 · 𝑠 = 𝑔. Since we know that the state index I that corresponds with g is stored in the
duplicate state lookup table, we know that only for one of p and p’ the search needs to be
continued.
For two arbitrary states c and g we want to compute the transformation that applied

to c leads to g and apply it to the solved state. Assume a single corner. For any arbitrary
configuration c we can find the position p of the corner and can take the orientation o
of the corner. After applying a sequence of moves to this configuration we reach g. The
corner will be at position p’ and have orientation o’. For the solved cube we can look
know which piece is at position p and what orientation it has. After applying the moves
that transformed c to g to the solved state, this corner must be at p’. The transformation
changed the orientation o to o’ so the difference Δ𝑜 = 𝑜′ − 𝑜 mod 3 ( mod 3 prevents
negative orientations). Since all pieces on a solved cube have orientation 0, the corner that
lied at position p on the solved cube will have the orientation Δ𝑜 after the transformation
is applied.

We provide an example with Figure 4.1. The following steps describe what happens in
the figure:

1. Apply the scramble to reach c and save the positions and orientations of the pieces.

2. 2. In the search for a solution for this scramble we apply some move sequence, reach
g and see compare the new positions and orientations of the pieces with the old ones.

3. 3. We apply the changes to the solved state to compute the state index that we can
use to check if we reached a duplicate state.

The scramble move sequence S = {F}, which contains only one move for simplicity. The
UFL corner (corner index 2) will be at the UFR position (index 1) and have orientation 1
after S is applied to the solved state, so we store the old position of the UFL corner as 1
(oldPos[2] = 1) and its orientation (oldOri[2] = 1). The resulting cube can be seen on the
3An easy way to achieve this would be to just apply the moves that reached the current state in the search
to the solved state, but this approach’s number of operation scales linear to the depth. This is not as fast
as the method presented here.

47



4. Contributions

Figure 4.1.: Process of State Shifting

right of step 1 in the illustration. When we apply another move sequence P = {U’}, also
containing only a single move, to the already scrambled state, the corner moves to position
UBR and has orientation 1. So we know that the UFL corner now is at the UFB position
(newPos[0] = 2) and its orientation has not changed (newOri[0] = 1). We can compute
the the index and orientation for a corner at position i to reconstruct the state that would
have been reached if P would have been applied to the solved state. To compute which
corner is at position UFB (index 0), we can look at newPos[0] = 2 and find the position the
corner with index 2 came from with OldPos[2] = 1. So we know that the corner at this
position must have been at position 1 before p was applied. On position x of the solved
cube always lies the piece with index x, so finally we can conclude that at position UBR
(index 0) will be the UFR corner (corner index 1). To compute the orientation we do the
same with the saved information about the orientation. We check which orientation the
piece at position 0 had before p was applied (step 2, left) and find that it had orientation 1
(oldOri[newPos[0]] = 1). We compare it with the orientation it had after p was applied
with newOri[0] = 1. The difference Δ𝑜 = 1 − 1 = 0 is the orientation of the corner (we
would need to take the orientation of the corner of the solved state into account, but per
definition all corners of the solved state have orientation 0). With that we found that the
configuration of one corner. We can do the same for all other corners and the edges to
reconstruct the whole cube. How all of this put together looks as an algorithm is shown
in the next Section.
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In total, with a given scrambled state c and another state g that is reached in the search
after applying a move sequence P. We can now compute which state arises when the move
sequence is applied to the solved state and check if it is a duplicate state with a lookup
hash table. This can be used to check if a node represents a duplicate state:

1. Do a search to depth n from the solved state and store all state indices in a hash table.
For every state found that already has an entry in the hash table, save it to a separate
lookup hash table.

2. When arriving at some node g that was reached with the path p from the scrambled
state while solving a random scramble, take g’ = s(g, c). g’ is the state that would have
been reached if p was applied to the solved state (note that this all works without
knowing the moves of p).

3. Compute the state index I(g’) that corresponds with g’ and check if the lookup hash
table contains g’.

4. When the state index is contained set the value of the entry in the hash table to true.

5. When another node with the same state index is found the hash table tells us that the
entry has already been set, a duplicate state is found that already has been traversed
and the node can be pruned.

Computing all states indices that can be reached with two different move sequences
(with a length limit) from the solved state only has to be done once. The resulting lookup
hash table can be stored in a file. Only the keys need to be stored. They can be used to
populate a hash table on the startup of the program.

4.2.4.1. The State Shift Algorithm

Algorithm 4 shows how an implementation of the state shift. The algorithm first extract
the positions and orientations for all pieces of the scrambled state. This step has to be done
only once for solving one scramble. It then uses these information to reconstruct the state
that would have been reached if the transformation that transformed scramble (the state
that was passed to ComputeShiftedState) to cube (the state that is passed to GetStateShift)
is applied to the solved state. This state can then be used to compute its state index for
indexing the lookup hash table.
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Algorithm 4 ComputeShiftedState
𝑐𝑖𝑀𝑎𝑝 ← 𝑎𝑟𝑟𝑎𝑦 [8] ⊲ corner indices mapping
𝑐𝑜𝑀𝑎𝑝 ← 𝑎𝑟𝑟𝑎𝑦 [8] ⊲ corner rotation offset
𝑒𝑖𝑀𝑎𝑝 ← 𝑎𝑟𝑟𝑎𝑦 [12 ⊲ edge indices mapping
𝑒𝑜𝑀𝑎𝑝 ← 𝑎𝑟𝑟𝑎𝑦 [12] ⊲ edge rotation offset
function GetStateShift(cube) ⊲ For one scramble this needs to be computed once

for p = 0 to 7 do
𝑐𝑖𝑀𝑎𝑝 [𝑐𝑢𝑏𝑒.𝑐 [𝑝] .𝑖] ← 𝑖

𝑐𝑜𝑀𝑎𝑝 [𝑐𝑢𝑏𝑒.𝑐 [𝑝] .𝑖] ← (3 − 𝑐𝑢𝑏𝑒.𝑐 [𝑝] .𝑜)%3
end for
for p = 0 to 11 do

𝑒𝑖𝑀𝑎𝑝 [𝑐𝑢𝑏𝑒.𝑒 [𝑝] .𝑖] ← 𝑖

𝑒𝑜𝑀𝑎𝑝 [𝑐𝑢𝑏𝑒.𝑒 [𝑝] .𝑖] ← 𝑐𝑢𝑏𝑒.𝑒 [𝑝] .𝑜
end for

end function

function ConstructState(cube)
𝑟𝐶𝑢𝑏𝑒 ← 𝐶𝑢𝑏𝑒 () ⊲ reconstructed cube
𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑆𝑢𝑚 ← 0
for p = 0 to 7 do

𝑟𝐶𝑢𝑏𝑒.𝑐 [𝑝] .𝑖 = 𝑐𝑖𝑀𝑎𝑝 [𝑐𝑢𝑏𝑒.𝑐 [𝑝] .𝑖]
if i < 7 then

𝑟𝐶𝑢𝑏𝑒.𝑐 [𝑝] .𝑜 ← (𝑐𝑢𝑏𝑒.𝑐 [𝑝] .𝑜 + 𝑐𝑜𝑀𝑎𝑝 [𝑐𝑢𝑏𝑒.𝑐 [𝑝] .𝑖])%3)
𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑆𝑢𝑚 ← (𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑆𝑢𝑚 + 𝑟𝐶𝑢𝑏𝑒.𝑐 [𝑝] .𝑜)%3

end if
end for
𝑟𝐶𝑢𝑏𝑒.𝑐 [7] .𝑜 ← (3 − 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑆𝑢𝑚)%3
𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑆𝑢𝑚 ← 0
for p = 0 to 11 do

𝑟𝐶𝑢𝑏𝑒.𝑒 [𝑝] .𝑖 = 𝑒𝑖𝑀𝑎𝑝 [𝑐𝑢𝑏𝑒.𝑒 [𝑝] .𝑖]
if i < 11 then

𝑟𝐶𝑢𝑏𝑒.𝑒 [𝑝] .𝑜 ← (𝑐𝑢𝑏𝑒.𝑒 [𝑝] .𝑜 + 𝑒𝑜𝑀𝑎𝑝 [𝑐𝑢𝑏𝑒.𝑒 [𝑝] .𝑖])%2)
𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑆𝑢𝑚 ← 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑆𝑢𝑚 + 𝑟𝐶𝑢𝑏𝑒.𝑒 [𝑝] .𝑜

end if
end for
𝑟𝐶𝑢𝑏𝑒.𝑒 [11] .𝑜 ← 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑆𝑢𝑚%2
return rCube

end function

4.2.5. Lookup Table Generation

As with the pattern databases the lookup tables have to be computed beforehand to be
used for solving random scrambles. Algorithm 5 shows an implementation of for the
generation. We use a IDDFS to find the states ordered by depth. We store all states found

50



4.2. Duplicate State Detection

and mark a state as duplicate when it is found again. When we found a duplicate we can
stop traversing further cause all subsequent states will have been found before (See 3.3.1.2).
After the generation is finished the list of duplicate states and the array of move sequences
can be stored in a file and loaded on the startup of the program. The duplicate sequence
array can be used for indexing right away, but the every element of the duplicate states
list has to be put into a hash table before it can be used in the search.
The optimization presented in Section can also be applied here to decrease the time

needed for the generation.

Algorithm 5 GenerateDuplicateStateTable
function GenerateDuplicateStateTables(maxDepth)

𝑚𝑜𝑣𝑒𝑆𝑡𝑎𝑐𝑘 ← new Stack
𝑟𝑒𝑎𝑐ℎ𝑒𝑑𝑆𝑡𝑎𝑡𝑒𝑠 ← new HashTable
𝑑𝑢𝑝𝑙𝑐𝑖𝑎𝑡𝑒𝑆𝑡𝑎𝑡𝑒𝑠 ← new List
𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 ← 𝐴𝑟𝑟𝑎𝑦 [𝐺𝑒𝑡𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑆𝑖𝑧𝑒 (𝑚𝑎𝑥𝐷𝑒𝑝𝑡ℎ)]
for depthBound = 0 to maxDepth do

IDDFS(solvedCube, 0, depthBound);
end for

end function

function IDDFS(cube, depth, bound)
𝑠𝑡𝑎𝑡𝑒𝐼𝑛𝑑𝑒𝑥 ← 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑆𝑡𝑎𝑡𝑒𝐼𝑛𝑑𝑒𝑥 (𝑐𝑢𝑏𝑒)
if reachedStates.Contains(stateIndex) then

duplicateStates.Add(stateIndex);
𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 [𝐺𝑒𝑡𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝐼𝑛𝑑𝑒𝑥 (𝑚𝑜𝑣𝑒𝑆𝑡𝑎𝑐𝑘)] ← 𝑡𝑟𝑢𝑒

return
else

reachedStates.Add(stateIndex)
end if
for move={U , U’, U2, ..., D, D’, D2} do ⊲ Loop trough all possible moves

𝐴𝑝𝑝𝑙𝑦𝑀𝑜𝑣𝑒 (𝑐𝑢𝑏𝑒,𝑚𝑜𝑣𝑒)
moveStack.push(move)
IDDFS(cube, bound, depth + 1)
moveStack.pop()
𝐴𝑝𝑝𝑙𝑦𝑀𝑜𝑣𝑒 (𝑐𝑢𝑏𝑒, 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 (𝑚𝑜𝑣𝑒))

end for
end function

The function GetSequenceSize takes a length and returns the number of different move
sequences that can be construct up to that length. GetSequenceIndex takes a move sequence
and returns its sequence index. ComputeStateIndex takes a configuration of the cube and
returns the corresponding state index.
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Since we measured absolute run times of our program to be able to compare it with other
implementations is crucial to optimize every aspect of the search. In this chapter we
show how we improved the performance of IDA*, the usage and generation of the pattern
databases, as well as applying moves to the cube.

5.1. IDA*

The implementation shown in Algorithm 3 shows a recursive implementation of IDA* but
tests have shown that an implementation without recursion yields better performance. To
avoid the recursion we used a state stack on which the nodes adjacent to the currently
processed nodes are pushed on. The entries of the state stack consist of the state of the
cube, the depth this configuration was found at and the move that lead to this state. In the
Algorithms 1 and 3 a stack that stored all moves that were applied was used to extract the
sequence that solves the cube. But when no recursion is used the move stack cannot be
used normally, since jumps from nodes at high depths to nodes at low depths can occur.
This problem is solved by creating an null move, that is always set at the next place in the
move stack. When the search is finished only the moves up to the null move are used as
the solution. A more performant way to realize the move stack is to use an array with
length 21 (since we know that no solution will be longer than 20) and indexing it with the
depth of the current node.

Before a node is pushed on the state stack we check if it is pruned by the duplicate state
detection or by the pattern database heuristic, instead of doing this for nodes taken from
the state stack to avoid multiple stack operations.

Another optimization for IDA* is to omit the storing of the smallest cost threshold and
just increase it by one in between every iteration. This can be done since a threshold delta
of two adjacent states that is greater than 1 can only occur if a the heuristic yields two
values of neighbour edges with a difference greater than 1 but the pattern databases used
do not have this property even when combined.

5.1.1. Parallization

Our implementation used 18 threads for all experiments that we are shown in Chapter 6.
The parallelization is realised by distributing the branches that branch of the first node
(the scrambled state) onto 18 different threads. Each thread is running IDA* on a branch of
the state tree. As soon as one thread finds a solution the search is aborted. This approach
to parallelize IDA* theoretically can be used with as many threads as desired but when
the expected sizes of the branches distributed to the threads is not equal, some threads
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will stop traversing earlier. This leads to a less utilization of the parallelization, since new
threads will only be spawned when all others have finished. Therefore 18 threads is a good
candidate, since there are exactly 18 adjacent states to the solved state for which an equal
amount of subsequent states can be expected. Figure 5.1 shows how the 18 adjacent states
of the solved state would be distributed when six threads would be used.
The state-index-based duplicate state detection has the potential of race conditions

when more than one thread accesses the hash table. One thread could reach a state at the
same time as another state does before the state was marked as visited. So both threads
would continue traversing the subsequent nodes. To fix this some sort of semaphore
would be required. But our tests have shown, that this event is so unlikely and that the
consequences are so negligible that using some sort race condition prevention results in a
worse worse performance.

Figure 5.1.: IDA* Parallelization

5.2. Pattern Databases

The pattern databases (especially important for the full edge pattern database) only need
to be generated once but still optimization were made for generation, that allowed us to
generate all database in under three days. But during the solve the performance of the usage
of the databases also can be improved. The improvements made in our implementation
are presented in the next two sections.

5.2.1. Generation

The generation of the pattern databases, especially the full edge database, required substan-
tially less time with parallelization. The inverse lexicographic rank technique presented in
Section 3.3.1.3 can easily be parallelized by dividing the database in equally sized sections
and distributing the population to multiple threads. The IDDFS step together with the
optimizations described in Section 5.2.1 require a lit more deliberation when parallelized,
since without any prevention racing conditions can lead to false corrupted results. The first
obvious problem is that when counting how many states were reached the variable that
stores that information could be accessed by two threads at the same time and incremented
only once. This can be fixed by using an atomic integer. Another problem is that if a state
is reached at the same time by two threads and they both check if the entry is unset before
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the other thread can set it, the number of states is counted incorrectly. So before checking
an entry and until it is set a semaphore needs to be used. This leads to worse performance
per thread, but ensures that the pattern database is generated correctly.
When reconstructing the configuration of the cube from its lexicographic rank some

small optimizations were used for the partial permutations of the edge groups. When
finding the positions of the 12 edges which indices are used to generate the rank usually
all pieces would need to be processed, but a counter can be used to stop when all positions
were found. When the indices of the relevant edges are set from the rank the remaining
positions theoretically would be need set to the remaining indices to generate a valid
configuration of the cube. But since the configuration will only be used to compute the
edge group rank of an adjacent state the indices of the remaining positions can be set to
a constant value. Note that this constant value may not interfere with the indices of the
edge indices of interest.

5.2.2. Lookup

The size of the pattern databases exceeds the cache sizes of all three caches of most
household machines. The full edge pattern database for example is nearly four thousand
timer bigger than the L3 cache of the machine all tests ran on. This leads to a lot of
cache misses when accessing the pattern database, so every unnecessary lookup should
be avoided. An unnecessary lookup could be when we are at depth 6 and have a depth
bound of 12 in the current iteration and one lookup already yielded a distance greater
than 6. Regardless of the distances the other pattern databases contain the state will be
pruned. So one optimization we used is to pass the smallest value for which a the state
will be pruned to the lookup function and only access the other pattern databases if no
previous lookup exceeded that value. The lookups were ordered by the expected values of
the pattern databases.

The pattern databases require some bit manipulation when compressed, so we opted to
use uncompressed pattern databases during the solve.

5.3. Rubik’s Cube Representation

Applying moves to the cube is on of the most frequent invoked methods of our program
so every optimization applied to this part of the code yields more extensive performance
improvements. In Section 3.1.2 we already pointed out that the selection of the upper sides
and upper facelets of corners and edges influences the number of operations all moves
together require. The upper sides of the corners point in the directions the top and bottom
layer face. This allows any U and B rotation as well as every 180° rotation to leave the
orientations unchanged. Also the upper sides for the edges in the top and bottom layer
should face in the same direction to decrease operations. When the upper side of the edges
of the front and back layer also point in the direction of the two faces, only 90° rotations
of the front and back layer need to adjust edge orientations.
The adjustment of the corner orientation increases the orientation by 1 or 2 and then

takes the sum modulo 3 as the result. A mod 3-operation is expensive and can be replace

55



5. Implementation

by two if statements that check if the sum is 3 or 4 and set it to 0 or 1 respectively. The
edge orientations follow the same rules, but can only have orientation values of 0 and
1, so the addition and the mod 2-operation can be replaced by an XOR-operation with a
binary 1.

5.4. Duplciate State Detection

To generate the table containing the sequence indices and the pruning flags with an
recursive implementation the sequence index does not have to be computed completely
for every entry but rather every move applied and removed from the sequence can adjust
the index by adding or subtracting the move index times the depth term of Equation 4.2.
This can only be done when an iteration of IDDFS sets entries at the depth bound, because
n in the equation would be variable otherwise.
The state-index-based duplicate state detection, contrary to the sequence-index-based

method, not only reads but also sets flags in the lookup table. When using multiple threads
racing conditions can occur that would lead to duplicate states that will be traversed
further by different threads. But instead of using some techniques to prevent the racing
conditions we opted to allow some states to be traversed multiple times since tests have
shown that the parallelization overhead of such preventive methods have lead to worse
results than just allowing the racing conditions.

56



6. Evaluation

This chapter begins by specifying the machine that was used for all solves presented
in this work. Results of solves that did not use the full edge pattern database nor any
duplicate state detection are shown first in Section 6.2 to establish a base line all other solve
configurations can be compared to. Section 6.3 shows the result of solving 5 000 shuffles
with the full edge pattern database. Section 6.4 first presents the results of 15 solves that
did use the state-index-based duplicate state detection technique and then compares all the
different techniques with different maximal sequence lengths with data of 100 shuffles for
each configuration. Lastly we show the results of using solve configurations on shuffles
that are known to have a distance of 20 moves to be solved. The last section discusses all
the results.

We generated a list of 5 000 scrambles by applying 100 random moves for each scramble.
The only rule used for generating theses moves was not to allow two consecutive turns
of the same face. All results presented used the generated shuffles. All experiments that
solved less than 5 000 shuffles used the first shuffles in this list. All results we show used
18 threads and parallelized the search as described in Chapter 5.

Our implementation can be found on GitHub:

https://github.com/TanGrumser/rubikscube-solver

The version we used has the commit hash:

ec8b15535214088f2a16ed7a45d7f72d0ee5a03b

6.1. Setup

The specifications of the machine used for all solves presented in this work can be found
in Table 6.1.

OS Ubuntu 20.04
CPU AMD EPYC Rome 7702P - 64-core + HT, 2.0-3.35GHz
RAM 1024GB DDR4 ECC
Caches L3: 256MB

Hard Disks 512GB NVMe System-SSD, Intel 7600P
, 2 x 2TB NVMe Daten-SSD, Intel P4510

Table 6.1.: Specification of the Machine
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solution length nodes generated time (seconds)

16 274 289 501 125
17 729 252 017 327
17 913 874 902 413
17 1 253 793 474 559
17 1 824 394 068 857
17 3 531 115 249 1 568
18 3 481 595 519 1 726
18 5 097 761 131 2 364
18 7 105 639 133 3 291
18 9 435 875 048 4 265
18 9 654 313 831 4 457
18 10 356 872 845 4 691
18 11 423 610 423 5 316
18 19 863 983 642 8 855
18 22 372 292 049 10 039
18 39 526 346 646 17 509

Table 6.2.: Results with 4 Pattern Databases

6.2. Baseline

To establish a baseline all other solve configurations can be compared to we solved 16
scrambles. For this we only used the corner, the two edge group and the edge permutation
pattern databases and no duplicate state detection. The number of nodes generated and
the time required for all solves can be found in Table 6.2. For these solves our program
generated about 2 260 000 nodes per second. On average it took about 4 150 seconds and
about 9 177 813 092 generated nodes to solve the scrambles.

6.3. Full Edge Pattern Database

With the full edge and the corner pattern database we solved 5 000 scrambles. The absolute
and relative distance distributions of the scrambles can be found in Figures A.1 and in
Figure A.2 respectively in Appendix A. The distribution fits to the findings made before
during the search for God’s Number [8]. The full edge pattern database decreased the
average time to 78 seconds and the average nodes generated to 149 881 988 which is about
61.6 times fewer nodes than with the four lookup tables used by Botto and solved shuffles
about 53.2 times faster on average. This solving configuration was able to generate about
1 897 973 nodes per second. So about 17 percent less nodes per seconds were generated.

The number of nodes generated and the time required for a solve with respect to the
distance of a shuffle to the solved state are shown Figures 6.1 an 6.2 respectively.
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Figure 6.1.: Generated Nodes w.r.t. the Distance

Figure 6.2.: Solving Time w.r.t. the Distance
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6.4. Duplicate State Detection

We introduces two duplicate state detection techniques. Both have a variable depth limit,
to which duplicate states are generated and detected. We show the results of various
solving configurations with and without the use of the full edge pattern database.

6.4.1. 4 Pattern Databases

We solved the first ten of the five thousand scrambles with both duplicate state detection
techniques, each with depth limits of 7 and 8. These solves did not use the full edge pattern
database. The results of the different solving configurations are shown in Table 6.4.1. The
right most column only shows results of the first ten out the 16 solves presented in Section
6.2.

DS Detection Inverse state index turn index Off
Max Depth 7 8 7 8 -
Median Time 2 785 2 819 2 755 2 718 4 266
Average Time 3 913 3 961 3 834 3 751 5 026
Median Nodes 5 940 419 084 5 905 975 072 5 883 089 555 5 784 436 571 9 435 875 048
Average Nodes 8 563 754 644 8 581 022 002 8 387 809 751 8 184 571 366 11 203 560 198
Nodes / second 2 188 633 2 166 309 2 187 918 2 181 974 2 229 318

Table 6.3.: 4 Pattern Databases - Duplicate State Detection

These results show that the duplicate state detection techniques introduce can decrease
the time required to solve scrambles with Korf’s algorithm. With the state-index-based
method, the solving time was decreased by over 22 percent on average with a depth bound
of 7. Increasing the depth bound even further finds more duplicate states and decreases
the number generated states in total, but the overhead of the the shifted state index
computations are too high to improve the performance. With the sequence-index-based
technique the performance could be improved by nearly 24 percent in exchange for more
memory usage. With this method also a depth bound of 7 yielded better results, since the
sequence index calculation again raised too much overhead.

6.4.2. Full Edge Pattern Database

We solved the first one hundred of the five thousand generated scrambles with four different
solving configurations. Table 6.4.2 shows the results of these solves. The right most column
shows the results of the five thousand solves shown in Section 6.3 for comparison.
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DS Detection Inverse state index turn index Off
Max Depth 7 8 7 8 -
Median Time 50.08 55.3 47.08 48.3 51.82
Average Time 66.38 70.92 63.7 64.16 78.83
Median Nodes 85 767 000 85 238 026 83 977 156 82 856 152 94 201 241
Average Nodes 123 556 034 123 245 932 122 908 362 121 287 346 149 530 656
Nodes / second 1 861 444 1 737 827 1 929 565 1 890 457 1 896 959

Table 6.4.: Edge group configurations distribution per depth

The table shows the same characteristics as the results without the full edge pattern
database. This means that the duplicate state detection method still works for greater
heuristic values.

6.4.3. Nodes Generated and Time required

We solved all five thousand scrambles with the state-index-based duplicate state detection
and the full edge pattern database. The number of nodes generated and the time required
for a solve with respect to the distance are shown in Figures 6.3 and 6.4 respectively.

Figure 6.3.: Generated Nodes w.r.t. the Distance (Edge Pattern Database)

61



6. Evaluation

Figure 6.4.: Solving Time w.r.t. the Distance (Edge Pattern Database)

The figures show, that the statistical outliers with a high number of generated nodes
and seconds of solving time occur less often. The duplicate state detection therefore is
able to normalize these metrics over many solves.

6.5. Solving Distance 20 Shuffles

Since none of the randomly generated shuffles had a distance of 20, we took 10 random
distance 20 scrambles from an online database and solved them without the duplicate state
detection and with all four other solving configurations. The result of these solves can be
found in Table 6.5

DS Detection Inverse state index turn index Off
Max Depth 7 8 7 8 -
Median Time 3 036 3 067 3 026 2 991 4 266
Average Time 3 052 3 085 3 036 3 004 5 026
Median Nodes 5 551 051 059 5 531 074 376 5 502 933 823 5 430 530 683 9 435 875 048
Average Nodes 5 570 734 478 5 550 685 951 5 526 246 069 5 453 420 207 11 203 560 198
Nodes / second 1 824 797 1 798 889 1 819 825 1 814 959 2 229 318

Table 6.5.: Distance 20 Shuffles - Duplicate State Detection
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The table shows that for solves with a distance of 20 the sequence-index-based duplicate
state detection performed better with a depth limit of 8. But since distance 20 scrambles
are extremely unlikely [12], an overall better performance can be reached when using a
depth limit of 7.

6.6. Discussion

We found that with the two duplicate state detection methods we introduced and the full
edge pattern database we were able to solve random cube instances in under 65 seconds
on average. This is over 19 percent faster than without any duplicate state detection.
With a smaller memory overhead the state-index-based duplicate state detection improved
solving times over 15 percent. Without the full edge pattern databases the duplicate state
detection methods could decrease the solve time by about 22 percent. With a smaller
memory overhead the method still improved the times by nearly 24 percent.

We showed that the with a greater depth bound for the duplicate state detection number
of nodes generated are decreased even further but these methods decreased the nodes that
could be processed per second. We also encountered some counter intuitive results. The
number of nodes generated per second with the full edge pattern database is smaller then
the number of node generated without the edge pattern database. This is caused by the
size ratio of the database and the cache of the machine the experiments were run on. Since
the pattern databases show no signs of cache coherence nearly every access will yield
a L3 cache miss. There is no known way to address this problem. The smaller pattern
databases do not exceed the cache sizes of the machine in the same way so cache misses
occur less often which leads to more nodes that can be generated per second.
Some tables show less nodes generated for the sequence-index-based duplicate state

detection as the state-index-based duplicate state detection. As mentioned in Section 5.4
we do not use any techniques to avoid racing conditions when accessing the duplicate
state hash table. This results in some duplicates states, that are not pruned. The turn index
bases approach cannot miss duplicate states through racing conditions since the duplicate
sequence table is only read but never written to. This explains why the number of nodes
generated is lower for some experiments using the sequence-index-based duplicate state
detection.
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This work highlighted some techniques for optimally solving the Rubik’s Cube. Korf’s
algorithm was presented in more detail together with the results of the best known
implementation of it. An insight on the the method for generating pattern databases
was given, together with methods for improving the performance of the generation and
the performance of the other parts of the program. Using this foundation we introduced
the results of using the biggest pattern database generated yet were shown. Then we
introduces two techniques for detecting duplicate states. These techniques in isolation and
together with the full edge pattern database used to solve 5 000 random scrambled cubes.
Now we present some problems these techniques could be used for to try to improve
the performance of the best implementations. Lastly we present some thoughts on how
heuristics can be combined better on other puzzles like the 4x4x4 cube.

7.1. Future Work

The duplicate state detection is not bound to the problem space of the Rubk’s Cube and
may improve the performance of solvers for other combinatorial puzzles as well. Linked
with the Rubik’s Cube are the 15 tile puzzle, the Top-Spin puzzle and the Tower of Hanoi.
All of them are combinatorial puzzles with similar properties of the problem space. But
even without leaving the Rubik’s Cube problem domain further research on applications
of the presented techniques can be made. Other solvers that use different approaches for
solving the cube may benefit from these techniques. The usage of symmetries of the cube
may have the potential to be well combined with the duplicate state detection.

For Korf’s algorithm an obvious next step is to think about other pattern databases that
use the state of corners and edges combined instead of considering them in isolation. A
pattern database that uses 6 edges and 4 corners, for example, would only be about six
times larger then the pattern database of all edges. The pattern database containing all
permutations of edges and corners (disregarding the orientation) would be about 20 times
bigger.

7.1.1. Hash Tables

Neither the hash table we used to store the duplicate states nor the hash function used
had special properties, but since all elements that will lay in the hash table are known
beforehand. So special algorithms for handling static hash tables and better hash functions
could further improve the performance of the state index based duplicate state detection.
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7.1.2. Pattern Databases Combination

From the different pattern databases the maximum is used, but somehow combining the
different information to obtain greater approximations for the heuristic would greatly
improve the performance. Since every non trivial combination of moves on the Rubik’s
Cube does not transform any pieces in isolation, no intuitive groups of pieces could be
used for pattern databases that can be combined without just taking the maximum. In
early iterations of this work we worked on some concepts to improve the lower bound of
the 4 × 4 × 4 Rubik’s Cube, also known as the Rubik’s Revenge. A move on this cube can
not only turn the outer layers but also inner layers. Since rotations of the inner layers do
not affect the corners and rotations of the outer layers do not affect the centers relative
to each other on on one side heuristics that combine information of the two subsets of
pieces could be used obtain greater heuristic values than the pattern databases for the
3x3x3 Rubik’s Cube could provide.
There is also ongoing research on how to combine heuristics that do not affect each

other. The knowledge of these works could be used to attempt to find optimal solutions to
harder scrambles on the 4x4x4 cube and improve the lower bound for its God’s Number.
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A. Appendix

Figure A.1.: Distance Distribution Density

Figure A.2.: Absolute Distance Distribution
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