
Parallel and VectorizedWavelet Tree
Construction

Master’s Thesis of

Marcel Hollerbach

at the Department of Informatics

Theoretical Informatics

Karlsruhe Institude of Technology

Reviewer: Prof. Dr. Peter Sanders

Advisor: Dr. Florian Kurpicz

01. September 2021 – 01. March 2022

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself, and

have not used sources or means without declaration in the text.

PLACE, DATE

. .

(Marcel Hollerbach)

Abstract

The wavelet tree [13] is a fast look up structure for strings over an alphabet [0, 𝜎) and
the length 𝑛. It can be used to answer rank, select, and access queries in 𝑂 (log𝜎) time. In

this work, the algorithms of Kaneta [9] are implemented. This implementation is based

on the work of Babenko et al. [10] and Munro et al. [4], they showed that wavelet trees

could be build in𝑂

(
𝑛 log(𝜎)/

√︁
log(n)

)
by utilizing table look ups to process entire words.

Kaneta implemented this approach using special instruction like pext, and pshufl, which
replaced the need of creating tables. Additionally, parallel versions are implemented by

using domain decomposition. As an additional parallel construction, the approach of [8]

is implemented. As before, the table look ups are replaced with pext instructions.
All the construction algorithms implemented are then compared to PWM from Dinklage

et al. [2], which require 𝑂 (𝑛 log(𝜎)) time for construction. In the comparison of PWM

with the sequential algorithms, the pext tree creation were able to outperform the PWM

algorithms for log𝜎 > 3. For matrix creation, they only performed better for log𝜎 > 5.

Comparing the parallel approaches of domain decomposition and the approach of Shun

showed, that domain decomposition performs a lot better compare to Shun. Comparing

the domain decomposition of PWM with the one of the pext algorithms showed that the

pext versions are outperforming the PWM versions. This time only for log𝜎 = 8 for the

biggest payloads. And log𝜎 > 6 for medium sized payloads. Additionally to that, the

relation between 𝜏 and log𝜎 is getting explained. Finally, a new alternative approach to

the algorithm from Babenko et al. and Munro et al. is described.

i

Zusammenfassung

Wavelet trees [13] werden als Index für Zeichenketten über ein [0, 𝜎) und einer Länge

𝑛 genutzt. Der Index wird genutzt um rank, select und access Anfragen zu beantworten.

Diese Anfragen beantworten wie oft ein Buchstabe vorkommt, wo der n-te Buchstabe

in der Zeichenkette vorkommt, oder welcher Buchstabe an einer bestimmten Position

steht. All diese Anfragen können in 𝑂 (log𝜎) Zeit beantwortet werden. In den Arbeiten

von Babenko et al. [10] und Munro et al. [4] wurde erstmals ein ansatz gezeigt, indem man

Wavelet Strukturen in 𝑂

(
𝑛log(𝜎)/

√︁
log(n)

)
Zeit Konstruieren kann. Dieser Ansatz nutzt

dabei Tabellen, um mehrere Bits auf einmal zu verarbeiten. In der Arbeit von Kaneta [9]

werden diese Tabellen dann durch Instruktionen wie pext und pshufl ersetzt. Das resul-

tiert darin, dass die theoretisch benötigte Zeit von 𝑂 (𝑛log(𝜎)) auf 𝑂
(
𝑛log(𝜎)/

√︁
log(n)

)
verringert wird. In dieser Arbeit werden diese Algorithmen mit pext zunächst erneut
implementiert. Dann werden diese durch Domain Decomposition parallelisiert. Zusätzlich

wird ein weiterer Ansatz von Shun [8] implementiert. Dieser bildet eine Alternative zur

Domain Decomposition. Im zweiten Teil der Arbeit werden dann die sequentiellen Algo-

rithmen von Dinklage et al. [2] mit den pext Versionen verglichen. Dabei zeigt sich, das die

pext Algorithmen für log𝜎 > 3 schneller als diese in PWM sind. Die Matrix zu erstellen

ist ebenfalls schneller für log𝜎 > 5. Der Vergleich der beiden parallelen Versionen von

Domain Decomposition und dem Ansatz von Shun zeigt, dass die Domain Decomposition

wesentlich schneller ist, als die von Shun. Die Domain Decomposition wird dann mit den

parallelen Algorithmen von PWM verglichen. Dabei zeigt sich, dass hier die pext Versionen
bei großen Eingaben für log𝜎 > 8 schneller als die PWM Algorithmen sind. Bei mittleren

Eingabegrößen sogar für log𝜎 > 6. Zusätzlich wird in der Arbeit der Zusammenhang

zwischen 𝜏 und log𝜎 erklärt. Letztlich wird noch ein neuer Ansatz vorgestellt, welcher

die Idee von Babenko et al. und Munro et al. aufgreift, und diese leicht verändert.

iii

Contents

Abstract i

Zusammenfassung iii

1. Introduction 1
1.1. Related Work . 1

1.2. Wavelet Tree and Wavelet Matrix . 2

1.2.1. Rank / Select Queries on Wavelet Trees and Matrices 4

1.3. Additional Instructions . 5

1.4. Algorithem Parallelization . 5

1.5. Contribution . 7

2. Sequential Algorithms 9
2.1. Bignode Tree Building . 9

2.2. Creating Wavelet Tree and Wavelet Matrix out of Bignode Tree 11

2.2.1. Wavelet Tree Construction . 14

2.2.2. Wavelet Matrix Construction . 16

2.2.3. Influence of 𝜏 . 17

2.2.4. Runtime . 17

2.3. Dynamic 𝜏 Adjustment . 18

3. Parallel Algorithms 21
3.1. Domain Decomposition . 21

3.2. Shun Parallelization . 23

4. Evaluation 29
4.1. Sequential Runtime of Basic Settings . 30

4.2. Comparing Domain Decomposition Mergers 32

4.3. Comparing Shun and Domain Decomposition 32

4.4. Comparing to PWM . 35

4.4.1. Comparing using Real World Data 36

4.4.2. Comparing using Generated Data 40

4.5. Memory Consumption . 42

4.6. Intrinsic Functions . 44

4.7. Code-Size . 46

4.8. Runtime prediction for dynamic 𝜏 setting 46

5. Conclusion 49
5.1. Conclusion over pext algorithms . 49

v

Contents

5.2. Further Improvements . 50

Bibliography 51

A. Appendix 53
A.1. Parallel wavelet construction using generated data 54

A.2. Histograms of example texts . 57

vi

List of Figures

1.1. Visualization of a wavelet tree for log𝜎 = 4. Each cell has always 2

children, and characters initially in the cell, must end up in one of its

children. Additionally, the length of all cells of a level is always 𝑛. 3

1.2. Visualization of a wavelet matrix for 𝜎 = 4. Each cell has always 2 children,

and characters initially in the cell, must end up in one of its children. The

big difference to the tree is here, that the order of children cells is different. 3

1.3. The wavelet tree of the word hello world. The vertical lines are showing
where each cell starts or ends. Not each line fills all available cells, hence

the number of visible cells is not always the maximum that is possible. . 4

1.4. Thewavelet matrix of theword hello world. The vertical lines are separating
the 0s cells from the 1s cells. If one cell is empty, no vertical line is added.

. 4

1.5. Explanation of the pext semantics. A/B/C/D/E/F/G/H are placeholders for

bits. 5

2.1. Overview showing the relation between input, first phase, second phase,

bignode tree, and resulting wavelet tree. The arrows of the first phase

display that these values are represented in the associated line. The arrows

of the second phase show in which lines the pack operation results are

stored. 9

2.2. Example bignode tree for in the input sequence hello world and 𝜏 = 2. . . 11

2.3. Constant values ℓ and ℎ for 𝜏 = 4, which are used for split&sort and pack
operations. 12

2.4. Subtraction result of a block

with a MSB not being set . 13

2.5. Subtraction result of a block

with a MSB being set . 13

2.6. Results of the splitsort(0, input) call. 𝐿0 contains all blocks that have a 0 at
block position 0. 𝐿1 contains all blocks that have a 1 at block position 1.

Each result has two blocks of result. 14

2.7. Results of a pack(1, input) call. 14

2.8. An example histogram line, and bignode line at 𝑖 = 2. The bignode tree

line is stored using 𝛽 = 8. There are 4 cells in total, which are stored in 2

8-bit long words. 15

2.9. Wavelet tree construction for the input ’he’. Each new line is after a

split&sort and pack call. Each pack call is extracting the bold numbers.

The split&sort call is sorting based on the bold character. 20

vii

List of Figures

3.1. Diagram showing the threaded parts of domain decomposition. The ex-

ample input has 32 characters, the calculation unit has 4 parallel units. 𝑛𝑥
with 𝑥 ∈ 0, 1, 2, 3, the 𝑥 ’th part of the input is meant. The picture shows,

that the execution of 𝜆𝜎 as well as the merging is parallelized. 22

3.2. Conceptional display of the Shun parallelization. Without displaying the

creation of the bignode tree. 26

4.1. Comparison of tree construction for cell iterator and word iterator with a

𝜏 of 4. 31

4.2. Comparison of tree construction and matrix construction. Both with 𝜏 = 4.

As input, randomized content with log𝜎 = 8 is used. 32

4.3. The two plots show the internals of wavelet matrix construction, for

log𝜎 = 8. On the left side for 𝜏 = 4 on the right side 𝜏 = 2. The prefix

phase is the one creating the histogram, the bignode phase is building the

bignode tree. And the pack&split phase transforms the bignode tree into

the result object. Finally, this shows that the bignode building takes longer

when there is a smaller 𝜏 . As input, randomized content with log𝜎 = 8 is

used. 33

4.4. This plot shows the two different parallel matrix construction methods.

The a0 construction algorithm is the one from Shun, and a1 is the domain

decomposition. Running with 64 threads. As input, randomized content

with log𝜎 = 8 is used. 34

4.5. Time spent for splitting, and merging. In domain decomposition compared

to Shuns approach. The construction runs with 𝜏 = 4 and 64 threads. . . 35

4.6. Weak and strong scaling experiments for the real world data. In weak

scaling, 100M per thread are added. In strong scaling 6400MB are performed. 39

4.7. Weak scaling experiment, per thread 100MB are assigned. In each step 4

more threads are added. 44

4.8. Strong scaling experiment with 6,4GB of payload. With each step 4 more

threads are added.

. 44

4.9. Plot of memory usage divided by the payload size. The plot shows 6 cluster.

Two clusters are from the PWM algorithm. Two from the normal pext
algorithm and their domain decomposition versions. The last 2 clusters

are from the Shun parallelization. For parallel constructions, 64 threads

are used. 45

4.10. Plots showing the difference between the internal phases of the construc-

tion on a Intel E5 CPU on the left, and of the AMD CPU on the right. . . 45

viii

List of Tables

4.1. All algorithms described in this work. All for 𝜏 ∈ 2, 4. 29

4.2. Construction time with different block sizes 𝜏 in bits. Each algorithm name

written as𝑤𝑚log𝜎 . All evaluated with payload of the size 1000M. All times

in s. 𝜏 > log𝜎 are not evaluated. The algorithm wt0 is the word iterator,

wt1 is the cell iterator. 30

4.3. Runtime construction methods, parallelized using domain decomposition,

for wavelet structures. The first two columns are for matrix construction,

the left construction times for the merger described here, on the right those

of the PWM repository. The second two columns are for tree construction.

The right one for the matrix construction. As input, randomized content

with log𝜎 = 8 is used. The columns called Thesis Merger is referring to the
merger explained in 3.1. The columns called PWM Merger are referring to

the merger of Dinklage et al. [2]. All values in ms. 33

4.4. These payloads are transformed into an alphabet without unused charac-

ters. This results in a more compact alphabet, where the log𝜎 value has a

direct impact on the depth of the levels that need to be walked. The script

for transforming the input can be found in the repository of this work.

From payload CC and 1000G, only a 80GB prefix is used, as the original

payload was too big for the available hardware. 36

4.5. Comparison of constructing wavelet tree times for real datasets. The pext
algorithm is the cell iterator approach. Each result in ms. 37

4.6. Comparison of constructing wavelet matrix times for real datasets. Each

result in ms. 37

4.7. Comparing construction times for parallel tree creation. Each result in ms. 38

4.8. Comparing construction times for parallel matrix creation.Each result in ms. 38

4.9. Sequential speedups of wavelet tree creation and the fastest PWM algo-

rithm, with payloads with different log𝜎 . Each column is described as

𝑠⌈log𝜎⌉ . With 64 threads. 41

4.10. Sequential speedups of wavelet matrix creation and the fastest PWM

algorithm, with payloads with different log𝜎 . Each column is described as

𝑠⌈log𝜎⌉ . With 64 threads. 41

4.11. Parallel speedups for wavelet tree creation with payloads with different

log𝜎 . Each column is described as 𝑠⌈log𝜎⌉ . With 64 threads. Further details

can be received from A.1. 42

4.12. Parallel speedups for wavelet matrix creation with payloads with different

log𝜎 . Each column is described as 𝑠⌈log𝜎⌉ . With 64 threads. Further details

can be received from A.1. 43

ix

List of Tables

4.13. Different code sizes compared in lines. For pext, cell iteration for tree

building is evaluated. The phase flushing is constructing the result buffer.

For PWM algorithm this is the normal insertion of bits according to pc,
ps, or pc_ss. For pext, Shuns algorithms this is the transformation from

bignode tree to result. 46

4.14. Table showing the prognoses for the alternative algorithm approach de-

scribed. The prognoses are calculated using Formula 4.1. The input values

𝑡8, 𝑡4, and 𝑡2 are used from measuring the internals of the algorithms with

𝜏 = 8, 𝜏 = 4, and 𝜏 = 2. All values in seconds 47

x

1. Introduction

The wavelet structure [13] is a space efficient lookup structure. The work of Dinklage

et al. [2] also gives a survey, that gives further use cases in compression, computational

geometry, and a helper to create the Burrows-Wheeler Transform. Further information

can be found in the Introduction of Dinklage et al. It can be used to answer rank / select

queries. The wavelet structure itself, is build from an input string. Each character of the

input string is within the range [0, 𝜎). Therefore each character requires at least ⌈log𝜎⌉
bits to be stored. In practice, a single character is always stored in a multiple of 8-bit long

character.

In the next Section 1.1, a brief overview of the current states is given, after that, the wavelet

tree and matrix are explained in Section 1.2. Then, intrinistic functions, which will get

used in this work are explained in Section 1.3. After that, basics for parallel algorithms are

introduced 1.4. In the next Chapters 2 and 3 these basic blocks are used to introduce the

algorithms.

1.1. RelatedWork

In this work a range of different algorithms are implemented. All of them do use assembler

instructions used by Keneta in [9]. Additionally, those algorithms are compared to those

from the work of Johannes Dinklage et al. [2]. They introduced a github
1
repository, this

repository is collecting a wide range of algorithms. The algorithms pc, ps, pc_ss and the

domain decomposition of those are used for comparison, as they are the fasted sequential

construction algorithms, as well as the fasted parallel constructions. The algorithms are

briefly explained in Section 4.4. The algorithms in PWM do construction in 𝑂 (𝑛log(𝜎)).
Munro et al. [4] and Babenko et al. [10] showed that construction is also possible in

𝑂

(
𝑛log(𝜎)/

√︁
log(n)

)
time, however, this was only shown theoretically. In 2018, Kaneta

implemented those theoretical ideas in [9]. He used so called pext instructions to use

RAM bit-wise parallism for the construction algorithms. He also implemented versions

using pshufl instructions. However, the pext versions showed to be the fastest for tree

constructions. For matrix construction pext and pshufl instructions both have been fast.

However, in this work only pext versions have been used.

For parallel construction there are multiple construction algorithms in PWM [2]. A few

do use customized parallelization strategies. Other versions in PWM do use domain

decomposition. The fastest parallel algorithms are those utilizing domain decomposition.

This also applies to other works from Fuentes-Sepúlveda et al. [5], and Labeit et al. [7].

Additionally to that, Shun [8] is proposing an alternative parallel algorithm that is not

1
Github repository hosted at: https://github.com/kurpicz/pwm

1

https://github.com/kurpicz/pwm

1. Introduction

using domain decomposition. This work also uses the ideas of Munro et al. [4] and Babenko

et al. [10]. Shun proposes to use parallel integer sorting, described in [12] and [14], to run

the first phase. The second phase is then parallelized individually.

1.2. Wavelet Tree andWavelet Matrix

The wavelet tree and matrix structure is a perfectly balanced binary tree like object, with

bit vectors in its nodes. For a given input sequence of length 𝑛, with a alphabet size of 𝜎 ,

the tree has ⌈log𝜎⌉ levels. Every edge between a child node and its parent has a associated

0 or 1. This association is later used to explain the construction, however, it is not stored.

The exact meaning of these labels depends on if this is a wavelet tree or matrix. Every

node it this wavelet structure has a level, the level is the number of edges between the

node, and root, these levels are annotated as 𝑖 ∈ [0, ⌈log𝜎⌉). Each node in a level has an

index 𝑥 . In a level 𝑖 there are 2𝑖 different nodes. In the following two paragraphs, the

relation between children and theire parent nodes are explained. The example memory

representation in the next sections are representing the character sequence hello world.
The bit representation of these characters are:

char Bit representation

h 0 1 1 0 1 0 0 0

e 0 1 1 0 0 1 0 1

l 0 1 1 0 1 1 0 0

l 0 1 1 0 1 1 0 0

o 0 1 1 0 1 1 1 1

0 0 1 0 0 0 0 0

w 0 1 1 1 0 1 1 1

o 0 1 1 0 1 1 1 1

r 0 1 1 1 0 0 1 0

l 0 1 1 0 1 1 0 0

d 0 1 1 0 0 1 0 0

Wavelet Tree. For wavelet trees, with a parent node at index 𝑥 the children indexes are

2𝑥 + 1 or 2𝑥 . Additionally, the cell at level 𝑖 for character 𝑐 can be calculated by obtaining

the first 𝑗 bits of the character 𝑐 , these bits are then the index within the level. The resulting

tree structure can be seen in Figure 1.3.

For building the wavelet tree, the first bit of each character is going to get copied into cell

0 at level 0. The second bit is added to the cell 0 of level 1, if the first bit is 0, or cell 1 if the

first bit is 1. Recursively this means, that characters in level 𝑖 from cell 𝑥 are copied into

cell 2𝑥 + 1 at level 𝑖 + 1 if the bit at position 𝑥 of the character is 1, to cell 2𝑥 if the bit at

the position is 0.

In Figure 1.3, the example wavelet tree of the input sequence "hello world" is shown.

Wavelet Matrix. In the following explanations, a function 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 (𝑏 : 𝑏𝑦𝑡𝑒, 𝑘 : 𝑖𝑛𝑡) : 𝑏𝑦𝑡𝑒
is required. It takes the first 𝑘 bits of the byte 𝑏 and reverses their order, all bits ≤ 𝑘 are

not changed. This means, conceptionally: 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 (𝑎𝑏𝑐𝑑𝑒 𝑓 𝑔ℎ𝑏, 4) = 𝑑𝑐𝑏𝑎𝑒 𝑓 𝑔ℎ𝑏 , and with

2

1.2. Wavelet Tree and Wavelet Matrix

concrete numbers: 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 (01110000𝑏, 4) = 11100000𝑏 . For each node at index 𝑥 at level

𝑖 the children are 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 (𝑥, 𝑖) ≫ 1 and (𝑟𝑒𝑣𝑒𝑟𝑠𝑒 (𝑥, 𝑖) ≫ 1) | (1 ≪ 7). With ≫ and ≪
symbolizing shifting operations. Building the wavelet matrix is the same as building the

tree, just with the different formula for calculating the children. The difference in the built

structure can be observed in the Figure 1.2 When constructing the wavelet matrix, the first

child is used for insertion if the bit at position 𝑖 is 0, the second child is used if the bit is 1.

Additionally, the cell for character 𝑐 in level 𝑖 can be calculated by 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 (𝑐, 𝑖). Building
the wavelet matrix is the same as the tree above. However, the children have a different

positioning, as it can be seen in Figure 1.4 compared to Figure 1.3. This repositioning of

the children has the advantage, that this lowers the amount of complexity required for

building the wavelet matrix. This is further explained in the later chapter 2.2.2.

Cell 0

Cell 0

Cell 0

... ...

Cell 1

... ...

Cell 1

Cell 2

... ...

Cell 3

... ...

Level 0

Level 1

Level 2

Level 3

Figure 1.1.: Visualization of a wavelet tree for

log𝜎 = 4. Each cell has always 2

children, and characters initially

in the cell, must end up in one

of its children. Additionally, the

length of all cells of a level is al-

ways 𝑛.

Cell 0

Cell 0

Cell 0

... ...

Cell 1

... ...

Cell 1

Cell 2

... ...

Cell 3

... ...

Level 0

Level 1

Level 2

Level 3

Figure 1.2.: Visualization of a wavelet matrix

for 𝜎 = 4. Each cell has always 2

children, and characters initially

in the cell, must end up in one of

its children. The big difference to

the tree is here, that the order of

children cells is different.

Storage of Wavelet Tree and Matrix. Kaneta [9] is describing a few different ways of stor-

ing wavelet structures in memory. The easiest way of storing the wavelet structure is to

have one memory object per cell, and each cell has two children cells, which are stored

by pointer. The object itself then additionally has a vector of bits stored. This way of

storing does not leverage the fact that the length of each line, hence the amount of bits

per line, is known. However, when allocating cell per cell, the exact length is not known

in the beginning, additionally, the vector of bits might have an overhead, as the smallest

addressable entity is a 8 bit word, so there is a worst-case overhead of 7 bits per cell.

Following the idea of knowing the bit length per line, a single memory object for storing

all bits of the entire structure arises. This object must be 𝑛 log(𝜎) bit long. The bits of
all cells of a level are forming the bits of a single line. The memory object can then be

allocated as an array of 64 bit words. Figures 1.3 and 1.4 are showing how these layouts

look like in memory.

3

1. Introduction

0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 1 0 1 0 0

0 1 0 1 1 1 1 1 0 0 0

0 1 1 0 1 1 1 1 1 1 0

0 0 0 0 0 0 1 1 0 1 1

0 1 0 0 0 0 0 1 1 0 1

Figure 1.3.: The wavelet tree of the word hello
world. The vertical lines are show-
ing where each cell starts or ends.

Not each line fills all available

cells, hence the number of visible

cells is not always the maximum

that is possible.

0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 1 0 1 0 0

0 1 0 1 1 1 1 1 0 0 0

0 1 1 1 0 0 1 1 1 1 1

0 1 0 0 0 1 0 0 1 1 0

0 0 1 0 0 0 0 0 1 1 1

Figure 1.4.: The wavelet matrix of the

word hello world. The verti-
cal lines are separating the 0s

cells from the 1s cells. If one

cell is empty, no vertical line

is added.

1.2.1. Rank / Select Queries on Wavelet Trees and Matrices

Three main queries that are performed on wavelet structures are access, rank, and select

queries.

𝑎𝑐𝑐𝑒𝑠𝑠 (𝑝𝑜𝑠 : 𝑖𝑛𝑡) : 𝑐ℎ𝑎𝑟 : is returning the character on the position 𝑝𝑜𝑠 . For that, the

wavelet structure is scanned through from the first level to the last. For each line iter-

ated, a 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 and 𝑐𝑒𝑙𝑙 index is maintained. At level 0, the 𝑐𝑒𝑙𝑙 0 is used, and 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

initially passed is used. In the iteration, 𝑐𝑒𝑙𝑙 and 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 is adjusted according to the bit

retrieved at the 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛. If the bit is 1, the right child 𝑐𝑒𝑙𝑙 is taken, and the position is

updated to the number of 0’s + the number of 1’s until the 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛. If the bit is 0, the left

child 𝑐𝑒𝑙𝑙 is taken, the the position is updated to the number of 0’s. In each iteration the

retrieved bit is captured. The concatenation of these bits is the results from the access query.

𝑟𝑎𝑛𝑘 (𝑎 : 𝑐ℎ𝑎𝑟, 𝑝𝑜𝑠 : 𝑖𝑛𝑡) : 𝑖𝑛𝑡 : is returning the number of character 𝑎 that is occurring

until 𝑝𝑜𝑠 . For that, like in 𝑎𝑐𝑐𝑒𝑠𝑠 , a 𝑐𝑒𝑙𝑙 index and 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 is maintained. At the first

iteration 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 is what got passed, and cell is 0. In each iteration the the bit from that

level is taken out of 𝑎, if the bit is 1, the right child 𝑐𝑒𝑙𝑙 is selected, and position is set

the the number of 0’s + the number of 1’s until the current 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛. After the iterations

the starting bit of the 𝑐𝑒𝑙𝑙 is retrieved. The result of the function is then 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛−𝑐𝑒𝑙𝑙𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔.

𝑠𝑒𝑙𝑒𝑐𝑡 (𝑎 : 𝑐ℎ𝑎𝑟, 𝑥 : 𝑖𝑛𝑡) : 𝑖𝑛𝑡 : is returning the position of the n’th occurrence of a.

For this, a stack of𝑚𝑖𝑛𝑖 and𝑚𝑎𝑥𝑖 per level 𝑖 is maintained. Initially for level 0𝑚𝑖𝑛0 = 0

and𝑚𝑎𝑥0 = 𝑛. Then, in every line,𝑚𝑖𝑛𝑖+1 and𝑚𝑎𝑥𝑖+1 are set according to the 𝑖th bit in

𝑎. If this bit is 1, then𝑚𝑖𝑛𝑖+1 = 𝑚𝑖𝑛𝑖 + 𝑐𝑜𝑢𝑛𝑡0(𝑚𝑖𝑛𝑖,𝑚𝑎𝑥𝑖) If this bit is 0, then𝑚𝑎𝑥𝑖+1 =

𝑚𝑎𝑥𝑖 −𝑐𝑜𝑢𝑛𝑡1(𝑚𝑖𝑛𝑖,𝑚𝑎𝑥𝑖) When this algorithm has reached the last level, then 𝑐𝑒𝑙𝑙𝑚𝑖𝑛 and

4

1.3. Additional Instructions

𝑐𝑒𝑙𝑙𝑚𝑎𝑥 are the boundaries of the cell that is addressed by 𝑎. For the lowest level𝑚𝑖𝑛log𝜎 +𝑥
is the position in the bit vector, that is describing the 𝑥 ’th occurrence of 𝑎 in the string.

Now, this position needs to be maintained up to level 0 in order to get the real position.

For that, the iteration starts at the lowest level with 𝑝 = 𝑥 . For each level at 𝑖 , the position

for 𝑖 − 1 can be calculated. If𝑚𝑖𝑛𝑖 =𝑚𝑖𝑛𝑖−1 and𝑚𝑎𝑥𝑖 =𝑚𝑎𝑥𝑖−1, then the position is not

updated. If𝑚𝑖𝑛𝑖 =𝑚𝑖𝑛𝑖−1 and𝑚𝑎𝑥𝑖 ≠𝑚𝑎𝑥𝑖−1, then the bit at level 𝑖 − 1 was 0, and the new

position is the 𝑝th zero between𝑚𝑖𝑛𝑖−1 and𝑚𝑎𝑥𝑖−1. If𝑚𝑖𝑛𝑖 ≠𝑚𝑖𝑛𝑖−1 and𝑚𝑎𝑥𝑖 =𝑚𝑎𝑥𝑖−1,
then the bit at level 𝑖 − 1 was 0, and the new position is the 𝑝th one between𝑚𝑖𝑛𝑖−1 and
𝑚𝑎𝑥𝑖−1. Finally, the the position is stored again into 𝑝 . When this is executed until 𝑖−1 = 0,

then the position in the input string is found.

1.3. Additional Instructions

For exploiting word parallelism, Kaneta is using instructions like pext and pshufl. In this

work, only the pext versions are implemented. Additionally popcnt is used for queries.

The pext instruction is part of the BMI2 (Bit Manipulation Instruction Set 2) instruction

extension. It was first introduced in Haswell processors of Intel and the Excavator archi-

tecture from AMD.

The instruction popcnt is from the ABM (Adcanced Bit Manipulation) according to AMD,

Intel considers it as part of SSE4.2.

pext Instruction. The pext instruction can be explained as 𝑝𝑒𝑥𝑡 (𝑎 : 𝑤𝑜𝑟𝑑,𝑚𝑎𝑠𝑘 : 𝑤𝑜𝑟𝑑) :
𝑤𝑜𝑟𝑑 where word can be a 8/16/32/64 bit word. The bits of the result are extracted from a,

where the mask bits are 1. Those extracted bits are then shifted to the right. The semantics

of the instruction can also be explained with the Figure 1.5. In the following work, 𝛽 is

used to express the amount of bits processed as once with a single pext instruction.

popcnt Instruction. The popcnt instruction is counting the set bits in a passed word. The

passed word can be a 8/16/32/64 bit word.

a A B C D E F G H

mask 0 0 1 1 0 1 1 1

result 0 0 0 C D F G H

Figure 1.5.: Explanation of the pext semantics. A/B/C/D/E/F/G/H are placeholders for bits.

1.4. Algorithem Parallelization

The algorithms in this work are implemented using C++. C++ has several threading

frameworks. For example: boost, posix-threads, OpenMP. As this work is closely following

PWM, the same framework, OpenMP, is used in this work. This framework allows to

execute for loops and entire blocks in parallel. Additionally, the framework provides

barriers for synchronization.

In general, parallelization can happen in two ways, either by splitting the problem into

5

1. Introduction

parts, where each part gets solved in parallel, and then merged back into a single solution.

Or by an individual algorithm, which does not use any sequential algorithm.

Domain Decomposition. The definition of domain decomposition, outside the scope of

wavelet trees, from [3] is "Domain decomposition refers to partitioning of computational

work among multiple processors by distributing the computational domain of a problem,

in other words, data associated with the problem". This explains in a general way, that

a sequential algorithm can be parallelized, under the assertion that multiple solutions

can be merged into a single one. For implementing a solution like this, first the input is

divided into multiple parts, which are solvable on their own. Then every part is computed

with the sequential version of the algorithm. Finally, the solution of each computation

must be merged into a single solution. The merging itself can then be parallelized again.

However, not every problem can be split up into useful parts. As an example, calculating

prefix sums can be split into different sub arrays. However, the merging back together

part will take as much time as normally calculating the entire prefix sum, which renders

the parallelization useless. However, a problem like creating a histogram over an int array

is perfectly capable of being solved by domain decomposition, each thread can walk a part

distinguished part of the input, the histogram of each thread can then be simply merged

together by adding every cell of the histogram into the final one.

In the Section 3.1 this principle is applied to the problem of wavelet tree construction. The

exact principal for merging solutions will be explained there.

Individual Parallelization. An alternative idea to domain decomposition is to run smaller

parts of the algorithm in parallel. For that, different sequential operations can be broken

up into different threads, just like in domain decomposition. The improvement here over

the domain decomposition is, that by choosing the place for parallelization the time spend

in merging the results can be minimized. To follow the example of histogram building,

each thread could be assigned a range of elements where only that single thread is building

the histogram for. This would result in the fact that no merging would be required. As

each cell of the final histogram would only be written by a single thread. However each

thread would have to scan the entire input.

Runtime Analysis of Parallel Algorithms. In order to analyze parallel algorithms the work-
time (also called work-depth) model described in [6] as well as [11] is used. In this model

the algorithm is analyzed by its work and by its depth. The analyzed work W is expressing

how many operations are required in order to fully execute the algorithm. The depth D is

expressing how long the longest single execution path from the beginning to the end is.

The variable 𝑝 is used to express the number of available parallel executing units.

Using the construction of the wavelet tree as an example. The input is split into two parts.

Now the work W contains the amount of work required to construct the wavelet tree for

the one half, as well as the other half, and finally the work of merging the solutions back

together. The depth D is only the amount of work of one half, and the work required to

merge.

After those two values have been analyzed, the parallelism of an algorithm can be expressed

by𝑊 /𝐷 . Using Brent’s scheduling theorem from [1], the running time can be bound by

𝑊 /𝑝 + 𝐷 .

6

1.5. Contribution

1.5. Contribution

In this work, sequential and parallel wavelet construction algorithms leveraging pext
instructions are implemented. These algorithms do have the runtime 𝑂

(
𝑛 log(𝜎) (1

𝜏
+ 𝜏

𝛽
)
)
.

Using pext instruction enables extracting a subset of bits out of a 𝛽 bit long word. The basic

idea of this paradigm was introduced by Munro et al. [4] and Babenko et al. [10]. Kaneta

implemented these ideas for sequential algorithms and compared them to PWM in [9]. In

this work, additionally parallel construction algorithms are performed and compared to

PWM. For parallel construction, domain decomposition and parallelization according to

Shun [8] are implemented and compared. It was learned, that the Shuns parallelization

is too fine granular and therefore caused a too big overhead. More details for that are in

Section 4.3. In the evaluation chapter, it is shown that the here implemented algorithms are

faster than those in PWM, with the sequential versions for log𝜎 > 3, with parallel versions

for 𝜎 > 7. The experiments compare the runtime as well as the memory consumption.

While the runtime was able to be lower, the memory required increased. This is a result of

the fact, that we need to bring the input into a memory layout where pext instructions
can be used. The result from these experiments have been, that depending on log𝜎 and

𝑛 pext algorithms can be faster than PWM. Finally, in Section 4.2 it is evaluated which

parameters result in the best runtime.

7

2. Sequential Algorithms

The construction algorithm described here follows the same pattern the algorithms from

Munro et al. [4] and Babenko et al. [10] are following. They are splitting the construction

into two phases, in the first, the bignode tree is constructed. In the second, the bignode tree

is used to fill the final result. This second phase utilizes pext instructions, this leverages
parallel processing of 𝛽 bit long words. In Figure 2.1 this concept of the two phases is

visualized. In this work here, this parallel processing of multiple bits is done with the so

called pext instruction. Munro et al. and Babenko et al. are using look up tables for that.

The first phase is then only there to create a memory layout that allows this instruction /

table lookup to be used.

An addition to the paradigm from Munro et al. and Babenko et al. is the construction of

a histogram in the first phase of the algorithm. This strategy is also used by Dinklage

et al. [2] in the construction algorithms of PWM. Further more, this chapter explains

two different ways to implement the wavelet tree. Over the process of this chapter, it is

assumed, that 𝜏 < log𝜎 < 𝑛.

Wavelet Structure Construction using two Phases

h 0 1 1 0 1 0 0 0

e 0 1 1 0 0 1 0 1

l 0 1 1 0 1 1 0 0

l 0 1 1 0 1 1 0 0

o 0 1 1 0 1 1 1 1

0 0 1 0 0 0 0 0

w 0 1 1 1 0 1 1 1

o 0 1 1 0 1 1 1 1

r 0 1 1 1 0 0 1 0

l 0 1 1 0 1 1 0 0

d 0 1 1 0 0 1 0 0

1. Line 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1

2. Line 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0

3. Line 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 0

4. Line 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 1 1

1. Line 0 0 0 0 0 0 0 0 0 0 0

2. Line 1 1 1 1 1 0 1 1 1 1 1

3. Line 1 1 1 1 1 1 1 1 1 1 1

4. Line 0 0 0 0 0 0 1 0 1 0 0

5. Line 0 1 0 1 1 1 1 1 0 0 0

6. Line 0 1 1 0 1 1 1 1 1 1 0

7. Line 0 0 0 0 0 0 1 1 0 1 1

8. Line 0 1 0 0 0 0 0 1 1 0 1

Input Bignode tree Wavelet Tree
First Phase Second Phase

Block 1

Block 2

Block 3

Block 4

Figure 2.1.: Overview showing the relation between input, first phase, second phase,

bignode tree, and resulting wavelet tree. The arrows of the first phase display

that these values are represented in the associated line. The arrows of the

second phase show in which lines the pack operation results are stored.

2.1. Bignode Tree Building

The bignode tree is a tree like structure. Each node of the tree has 2
𝜏
children. Each child

edge is associated with an 𝑖𝑑 ∈ [0, 2𝜏 − 1). In this work, the level of the node, is the level

9

2. Sequential Algorithms

of the parent plus one. This results in 𝑖 ∈ [0,
⌈
log𝜎

𝜏

⌉
). The root node has the level 0. Each

level has 2
𝑖 ·𝜏

nodes. Every node consists of 𝜏 bit long blocks. The sum of all blocks per

node in level 𝑖 is 𝑛. The node of a level 𝑖 has an index 𝑥 which is the bit wise concatenation

of all edge ids, starting at root, going to the current node.

In order to get 𝜏 bit long blocks from the input character, the characters bit representation

is split after 𝜏 bits. Which results in each character having

⌈
log(𝜎)

𝜏

⌉
blocks. As an example,

the bit representation of ’h’ is ℎ := 01101000𝑏 with log𝜎 = 8, its block representation is

looking like:

ℎ =

𝑏0︷︸︸︷
01

𝑏1︷︸︸︷
10

𝑏2︷︸︸︷
10

𝑏3︷︸︸︷
00

In case there are not enough bits in the original character, the missing ones are filled up

with zeros.

Histogram. Before building the bignode tree, a histogram over the input is created. For

the histogram, an additional binary tree like structure, which consists out of nodes is built.

As its a binary tree, each level 𝑖 has 2𝑖 nodes, with 𝑖 ∈ [0, ⌈log(𝜎)⌉) levels. Each node at

level 𝑖 with position 𝑥 is storing a counter. The node is counting how many characters are

within

[
𝜎

𝑖𝑖𝑛𝑣𝑒𝑟𝑠𝑒
𝑥 ; 𝜎

𝑖𝑖𝑛𝑣𝑒𝑟𝑠𝑒
(𝑥 + 1)

)
with 𝑖inverse := log(𝜎) − 𝑖 . When later building the bignode

tree, only blocks of 𝜏 bits are stored, therefore the histogram is here storing the number of

characters, multiplied with 𝜏 . Lastly, for each level 𝑖 the prefix sum over each node at level

𝑖 is calculated and stored.

The algorithms is build in 3 stages. First, the entire input is walked and the node in level

⌈log𝜎⌉ representing the character is increased. Due to the fact that this is a binary tree,

the level at ⌈log𝜎⌉ has ≥ 𝜎 nodes. Therefore, each node is addressed by using the number

representation of the character. After that, in the second stage, each node in level 𝑖 < log𝜎

must be build. Assuming level 𝑖 +1 is already built, level 𝑖 is built by calculating the counter
of each node 𝑥 by calculating the sum of both children. The indexes of the two children

can be calculated with the formulas from the tree paragraph and matrix paragraph in the

section 1.2. As the level at ⌈log𝜎⌉ is already filled from the first stage, the histogram is

build by walking from the deepest level to the root at level 0. Finally, in the last stage

the prefix sum of each node in a level is calculated, by walking over each node of a level

and add the previous node to it. The first element of the prefix sum is always 0. This is

required in practice as this histogram is used to store the state for bignode building.

After these stages, every last node in a level must be equal to 𝑛. For creating the histogram,

the entire input must be scanned, which is 𝑂 (𝑛), for building the histogram, 𝑂 (2⌈log𝜎⌉)
sums must be calculated and assigned. For the prefix sum, each node of the tree must be

iterated, which is again in 𝑂 (log𝜎). This creates the final runtime of:

𝑂 (𝑛 + 𝜎) (2.1)

Memory wise, only the counters must be stored, which requires words:

𝑂 (𝜎) (2.2)

10

2.2. Creating Wavelet Tree and Wavelet Matrix out of Bignode Tree

Bignode Tree building. Finally, the bignode tree is build. In the work of Babenko et al.

[10] and Munro et al. [4], this step is described as the first phase. The bignode tree is build

as an array of bit vectors. The array is

⌈
log𝜎

𝜏

⌉
long. Each bit vector is 𝑛𝜏 bits long. These

bit vectors are filled by iterating over each character. As already described, a character can

be split into blocks. A character is inserted by scanning over each block. For each block,

the concatenation of the previous 𝜏 long blocks is used as an index 𝑥 to find the correct

histogram node at level 𝑖 . For the first block, the index is 0. When building for a matrix

instead of a tree, the index is bit wise reversed. The block is then written into the bit vector

𝑖 of the bignode tree at the position stored in the histogram cell. The histogram cell is

then incremented by 𝜏 . The result of such a bignode tree is displayed in Figure 2.2. This

method is quite similar to the algorithm called prefix counting (pc) in [2]. The algorithm

is briefly explained in Section 4.4.0.1. However, here always a block consisting of bits is

inserted, not just a single bit. Lastly, the bignode tree is a compact memory structure,

which is prepared in order to be able to use pext instructions later on.

1. Line 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1

2. Line 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0

3. Line 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 0

4. Line 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 1 1

Figure 2.2.: Example bignode tree for in the input sequence hello world and 𝜏 = 2.

Runtime. In order to create a bignode tree, the entire input is scanned. For every character,⌈
log(𝜎)

𝜏

⌉
insertions are performed. This results in a runtime of:

𝑂

(
𝑛

⌈
log(𝜎)

𝜏

⌉)
(2.3)

This runtime is equal to the first phase described by Babenko et al. [10].

Memory. The bignode tree stores ⌈log𝜎⌉ /𝜏 lines of 𝜏 · 𝑛 bits. Which results in a require-

ment of bits of:

𝑂 (⌈log(𝜎)⌉ 𝑛) (2.4)

This is the same as the wavelet structure itself. In the following section, the bignode tree

is used to create the wavelet tree and wavelet matrix.

2.2. Creating Wavelet Tree andWavelet Matrix out of Bignode
Tree

For the second phase, the bignode tree is used as an input. On each 64-bit word, the two

operations split & sort and pack can be performed. First, we describe the two operations.

Later, we describe how these operations are used to build trees and matrices. In this thesis,

11

2. Sequential Algorithms

we use 𝛽 as an abstraction for 64-bit words.

For the two operations, there are two constants, ℓ and ℎ, both are 𝛽 bits long words. The

constant ℓ is the concatenation of blocks where the lowest bit per block is set. The constant

ℎ is the concatenation of blocks where the highest bit per block is set. If 𝛽 > 0 mod 𝜏 ,

then the last block is considered incomplete and gets ignored. All blocks are aligned at the

MSB. Figure 2.3 is showing the value of ℓ and ℎ for 𝜏 = 4 and 𝛽 = 16. Bitwise operations

for left shifting, right shifting, exclusive or, and are denoted as ≪, ≫, ⊕, &. The next two
paragraphs will explain two operations that are used over the process of constructing the

matrix

constants block 0 block 1 block 2 block 3

ℓ 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

ℎ 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

Figure 2.3.: Constant values ℓ and ℎ for 𝜏 = 4, which are used for split&sort and pack
operations.

Split & Sort. The operation is annotated as 𝑠𝑝𝑙𝑖𝑡𝑠𝑜𝑟𝑡 (𝑏𝑙𝑜𝑐𝑘_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 : 𝑖𝑛𝑡, 𝑣𝑎𝑙𝑢𝑒 : 𝑤𝑜𝑟𝑑) :
(𝑤𝑜𝑟𝑑,𝑤𝑜𝑟𝑑). With the operation, a single 𝛽 bit word is virtually split into its blocks.

These blocks are then sorted based on the bit at position 𝑏𝑙𝑜𝑐𝑘_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛. All blocks with a

0 at 𝑏𝑙𝑜𝑐𝑘_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 are inserted into the first word. All blocks with a 1 at 𝑏𝑙𝑜𝑐𝑘_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

are inserted into the second word. The first word of the result is called 𝐿0, the second 𝐿1,

both are also named 𝐿𝑥 with 𝑥 ∈ {0, 1}.
In order to calculate that result, first the so called 𝑐ℎ𝑒𝑐𝑘1, 𝑐ℎ𝑒𝑐𝑘0 values are calculated, they

are also expressed as 𝑐ℎ𝑒𝑐𝑘𝑥 with 𝑥 ∈ {0, 1}. After that 𝑓 𝑖𝑙𝑙0 and 𝑓 𝑖𝑙𝑙1 are calculated, they

are as well expressed as 𝑓 𝑖𝑙𝑙𝑥 with 𝑥 ∈ {0, 1}. Both are 𝛽 bit long words. 𝑓 𝑖𝑙𝑙𝑥 is getting

used as a mask for two pext calls, the result of this called is then the result of the entire call

to this operation. The pext instruction has been explained in the introduction at Section

1.3.

The value 𝑐ℎ𝑒𝑐𝑘𝑥 consists of blocks, where the lowest bit of a block is 1, if the bit at

𝑏𝑙𝑜𝑐𝑘_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 is set to 𝑥 , 0 otherwise. This can be calculated by:

𝑐ℎ𝑒𝑐𝑘1 := (𝑣𝑎𝑙𝑢𝑒 ≫ 𝑏𝑙𝑜𝑐𝑘_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) & ℓ (2.5)

And the opposite by:

𝑐ℎ𝑒𝑐𝑘0 := 𝑐ℎ𝑒𝑐𝑘1 ⊕ ℓ (2.6)

These two formulas do not change the order to the blocks yet. The values do have the

relation, that ℓ = 𝑐ℎ𝑒𝑐𝑘1 & 𝑐ℎ𝑒𝑐𝑘0. This means, that each block from the 𝑣𝑎𝑙𝑢𝑒 is having

its lowest bit set in either 𝑐ℎ𝑒𝑐𝑘1 or 𝑐ℎ𝑒𝑐𝑘0. So no block is going to be list by calculating a

mask out of these two values.

In order to get a mask to select the correct blocks via 𝑝𝑒𝑥𝑡 , we need to set each bit in a

block where the lowest bit is set. This can be calculated by:

𝑓 𝑖𝑙𝑙𝑥 := (ℎ − 𝑐ℎ𝑒𝑐𝑘𝑥) ⊕ ℎ (2.7)

12

2.2. Creating Wavelet Tree and Wavelet Matrix out of Bignode Tree

This formula can be explained by looking at the binary representation of a subtraction

of a single block. There are two possible ways for the subtraction either the lowest bit

in the block is set as in Figure 2.5 or not, as in Figure 2.2. The result performed on an

a 1 0 0 0

b 0 0 0 0

a - b 1 0 0 0

Figure 2.4.: Subtraction result of a block

with a MSB not being set

a 1 0 0 0

b 0 0 0 1

a - b 0 1 1 1

Figure 2.5.: Subtraction result of a block

with a MSB being set

entire 64-bit word is resulting in the concatenation of these results. This can be proven by

implicitly splitting the 64-bit word into numerical pieces, where each piece is one block.

First, split 𝑐ℎ𝑒𝑐𝑘𝑥 into numerical blocks, where each block is 𝑋𝑛 ∈ {0000𝑏, 0001𝑏} = {0, 1}:

𝑐ℎ𝑒𝑐𝑘𝑥 =

64/𝜏∑︁
𝑛=0

𝑋𝑛2
𝑛𝜏

Additionally, the same sum can be build for h:

ℎ =

64/𝜏∑︁
𝑛=0

2
𝜏−1

2
𝑛𝜏

The subtraction 𝑓 𝑖𝑙𝑙𝑥 = ℎ − 𝑐ℎ𝑒𝑐𝑘𝑥 can now be rewritten as:

𝑓 𝑖𝑙𝑙𝑥 =

64/𝜏∑︁
𝑛=0

(2𝜏−1 − 𝑋𝑛)2𝑛𝜏

2
𝜏−1

is exactly the value of 𝑎 in the examples. And 𝑋𝑛 is exactly both possible cases of 𝑏.

Lastly, the two subtractions do not cause any carryovers for the next block. Hence, 𝑓 𝑖𝑙𝑙𝑥 is

just the bit concatenation of the blocks shown in Figure 2.2 and Figure 2.5.

As seen in the example figures, the entire block is set correctly, only the MSB is inverted.

This can be repaired by performing xor with the constant h.
For both values of 𝑓 𝑖𝑙𝑙0 and 𝑓 𝑖𝑙𝑙1, no block positions have been changed yet. The two

values do have the relation ¬(𝑓 𝑖𝑙𝑙0 ⊕ 𝑓 𝑖𝑙𝑙1) = 0. This shows, that for all blocks of the

original 𝑣𝑎𝑙𝑢𝑒 , no block is in two masks. Additionally, every block of the original 𝑣𝑎𝑙𝑢𝑒 is

going to be masked by one 𝑓 𝑖𝑙𝑙𝑥 . Finally, the here calculated masks are used in two pext
calls, which results in the 𝐿0 and 𝐿1. In order to receive how many blocks in each 𝐿𝑥 , the

bits of each mask 𝑓 𝑖𝑙𝑙𝑥 are counted, and divided by 𝜏 . This procedure can be executed by

using the 𝑝𝑜𝑝𝑐𝑛𝑡 instructions. However, for the sake of readability, the number of valid

blocks per word is not added to the function notation. As an example, Figure 2.6 shows

the result and calculated variables of a split&sort call.

Pack. This work makes heavy use of bit blocks, that are concatenated into 𝛽 bit long

words. With the pack operation, a single bits out of every block is extracted. The extract

13

2. Sequential Algorithms

input 0 1 1 0 1 1 0 0

𝑐ℎ𝑒𝑐𝑘0 0 1 0 0 0 0 0 1

𝑐ℎ𝑒𝑐𝑘1 0 0 0 1 0 1 0 0

𝑓 𝑖𝑙𝑙0 1 1 0 0 0 0 1 1

𝑓 𝑖𝑙𝑙1 0 0 1 1 1 1 0 0

Result:

𝐿0 0 1 0 0 - - - -

𝐿1 1 0 1 1 - - - -

Figure 2.6.: Results of the splitsort(0, input) call. 𝐿0 contains all blocks that have a 0 at block
position 0. 𝐿1 contains all blocks that have a 1 at block position 1. Each result

has two blocks of result.

bits are then written next to each other in a single 𝛽 long word. The function is called

𝑝𝑎𝑐𝑘 (𝑏𝑙𝑜𝑐𝑘_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 : 𝑖𝑛𝑡, 𝑣𝑎𝑙𝑢𝑒 : 𝑤𝑜𝑟𝑑) : 𝑤𝑜𝑟𝑑 . 𝑏𝑙𝑜𝑐𝑘_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 is describing to position

of the bit within the block that is going to be extracted. 𝑣𝑎𝑙𝑢𝑒 is the 𝛽 bit long word, which

is the concatenation of bits. This is again done by first calculating a mask, calling pext
with this mask, and returning the result. The mask is created, by left shifting the constant

ℓ by 𝑏𝑙𝑜𝑐𝑘_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛. The formula for that is:

𝑚𝑎𝑠𝑘 := ℓ ≪ 𝑏𝑙𝑜𝑐𝑘_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (2.8)

Lastly, the result of the function is simply the pext call with the calculated mask. In Figure

2.7 an example call, with the calculated mask is shown.

input 0 1 1 0 1 1 0 0

mask 1 1 1 0 1 1 1 0

Result: 0 1 1 0

Figure 2.7.: Results of a pack(1, input) call.

2.2.1. Wavelet Tree Construction

For creating the wavelet tree, the histogram and the bignode tree are passed as input. The

goal of building the a wavelet tree is to fill log𝜎 lines of 𝑛 bits. This filled structure is then

used later in query implementations for answering rank/select/access calls. The way how

the wavelet tree is stored, is explained in the introduction at Section 1.2.

Briefly describing what needs to be done in order to construct the wavelet tree: With the

bignode tree, a partially sorted tree is given as input. Each bignode tree level 𝑖 is having

the correct sorted order for line 𝑖 · 𝜏 in the result, this order only must be extracted into

the result using pack operations. All lines in the result at 𝑖 · 𝜏 + 𝛼 with 0 < 𝛼 < 𝜏 are

not in the correct state yet. In order to correct this line, each block in this line must be

sorted according to cells in the current line. This can be done, while assuming split&sort
operations on a cell cover all blocks of a cell, by calling this operation on every cell of the

line 𝑖 . Every cell is then split into two child cells. These cells are then written next to each

other, the exact order how children in a tree are ordered can be seen in Figure 1.1. Finally,

14

2.2. Creating Wavelet Tree and Wavelet Matrix out of Bignode Tree

Histogram:

cell id 0 1 2 3 4

counter 0 4 6 10 16

Bignode line: 0 0 1 1 0 1 1 0 0 1 0 1 0 0 0 0

cell 0 cell 1 cell 2 cell 3

Figure 2.8.: An example histogram line, and bignode line at 𝑖 = 2. The bignode tree line is

stored using 𝛽 = 8. There are 4 cells in total, which are stored in 2 8-bit long

words.

pack operations are used to extract the correctly sorted blocks.

In order to implement the creation, two additional lines with the sizes of bignode lines are

allocated. In the following explanation, we make use of bignode lines associated with a

level, written as 𝑗 . For 𝑗 ≡ 0 mod 𝜏 , 𝑗 is the 𝑗/𝜏 line of the originally passed bignode

tree. For 𝑗 . 0 mod 𝜏 , every 𝑗 has one of the two additional bignode lines assigned.

This assignment ensures, that 𝑗 ≠ (𝑗 + 1). To build the tree, each level 𝑖 ∈ [0, ⌈log𝜎⌉)
is iterated. In every level 𝑖 , each 𝛽 long word of the 𝑖 bignode line is processed with the

pack operation, and the results are written into the 𝑖th line of the result buffer. If 𝑖 . 𝜏 − 1

mod 𝜏 , all cells 𝑥 ∈ [0, 2𝑖) are iterated. The exact starting position of each cell can be

received from the histogram. For every 𝛽 bit long word, that contains blocks from the

cell 𝑥 , split&sort must be executed. This exact task can be implemented in two different

approaches, either by iterating cell by cell, or word by word. In the following paragraphs

two implementations are explained, that are used to perform split&sort operations on all

cells of a single line in the bignode tree. In order to explain the results better, we denote

the results 𝐿0 and 𝐿1 of a single split&sort operation on a cell 𝑥 , described as 𝑟𝑥,0 = 𝐿0 and

𝑟𝑥,1 = 𝐿1. The result of both implementations is a bignode tree line with the content of:

𝑟0,0 · 𝑟0,1 · 𝑟1,0 · 𝑟1,1 · 𝑟𝑖,0 · 𝑟𝑖,1 . . . , where · is interpreted as bit wise concatenation.

2.2.1.1. Using Cell Iteration.

Implementing this can be done by iterating over each cell 𝑥 and its boundaries. This

explanation will call 𝑖 the index of the current line. The boundaries [𝑧,𝑦) can be fetched

from the histogram. From these boundaries the first, and last id of 𝛽 bit long word can

be calculated by 𝑖𝑑 𝑓 𝑖𝑟𝑠𝑡 = 𝑧/𝛽 and 𝑖𝑑𝑙𝑎𝑠𝑡 = 𝑦/𝛽 . These words can then be iterated, and the

split&sort operation on a single, 𝛽 bit long word can be performed. Each 𝐿0 and each 𝐿1
can then be stored in the buffer of the next line. The position where to store 𝐿0 or 𝐿1 can

be received from the histogram. To receive the exact position, the line 𝑖 and cell 𝑥 ∗ 2 and
cell 𝑥 ∗ 2 + 1 can be read. After 𝐿0 and 𝐿1 is written, the histogram cells containing the

positions are updated accordingly. If a 𝛽 bit long word is not entirely within a cell, a mask

is used to mask the 𝑓 𝑖𝑙𝑙𝑥 variables in the split&sort operation, to only contain the blocks

that are part of the cell.

As an example, Figure 2.8 is showing a line at 𝑖 = 2 in the bignode tree, storing blocks

within a 𝛽 = 8. As it is in 𝑖 = 2, there are 4 cells. Cell 0 is 2 blocks long, cell 1 is 1 block

long, cell2 is 2 blocks long, and cell3 is 6 blocks long. The two words, which are used to

15

2. Sequential Algorithms

store the blocks are called𝑤0 and𝑤1. In order to process this line using the cell iterator,

these 5 split&sort calls are done: w0 for cell 0, w0 for cell 1, w0 for cell 2, w1 for cell 2,
w1 for cell 3. All of them have a mask applied in order to only process the blocks of the

correct cell.

2.2.1.2. Using Word Iterator.

As shown in the previous paragraph, using the cell iterator results in multiple calls to

split&sort with the same word. By iterating over each word, performing split&sort on it,

and splitting 𝐿0 and 𝐿1 after each call. The split results are then stored in the 𝑖 + 1 bignode

tree line. When inserting 𝐿0, we know that this is going to be in the position denoted as 𝑥0,

insertions of 𝐿1 will go into position 𝑥1. The splitting can be done, by checking how many

blocks still need to be added to a cell, using the histogram. As explained in Paragraph

histogram of Section 2.1, the cells of the histogram are a prefix sum, so the size of a cell in

the wavelet tree can be calculated by subtracting the prefix sum at position 𝑥 minus the

position at 𝑥 − 1. When the processing of the line starts, 𝑥0 is zero and 𝑥1 is one. When

processing a word, the result 𝐿0 is stored at the bit position in the histogram at 𝑥0. When

it is detected that the number of blocks in 𝐿0 is bigger than the space left in the cell 𝑥0,

then 𝑥0 is increased by 2, and the remaining blocks are stored in the new cell. If this cell is

also not having enough space, the process of increasing 𝑥0 and storing the next blocks

there is repeated. The same process is repeated for storing the blocks of 𝐿1. After each

write of blocks, the histogram is updated accordingly.

Simulating this approach again for the example bignode line from Figure 2.8 will now only

call split&sort two times, once for w0 and once for w1. However, comparing it to the cell

iterator shows, that there is a logic overhead for handling the splits

2.2.2. Wavelet Matrix Construction

As described in Section 1.2, the difference between wavelet matrix and wavelet tree is

the ordering of cells. The impact of that can be seen best in split&sort by rebuilding the

word iterator approach for this. In order to reuse the word iterator approach for this, the

formulas for calculating the children must be remodeled. In this case, 𝑥0 is initialized with

0, 𝑥1 is initialized with the value in the histogram cell at 2
𝑖−1

. This value is equal to the

amount of zeros in the 𝑖’th level. Finally, 𝑥0 and 𝑥1 must be increased by one, if the cell

is full. This means, that when the cell is full, the blocks will simply be added to the next

word, which is equal to inserting the entire 𝐿𝑥 to where the last write ended. This means,

that the defined order of cells, removes the need to split the 𝐿𝑥 results. This can also be

seen when looking at the matrix visualization from the introduction in Figure 1.2.

For implementing the matrix creation, the same basic setup as for tree building is taken,

the two additional bignode tree lines are allocated, and the same annotation, 𝑖 , is used

in order to express which bignode tree line is read / written to. Now, finally building

the matrix, each level 𝑖 ∈ [0, ⌈log𝜎⌉) is iterated. In every level 𝑖 , each 𝛽 long word of

the 𝑖 bignode line is processed with the pack operation, and the results are written into

the 𝑖th line of the result buffer. If 𝑖 . 𝜏 − 1 mod 𝜏 , each 𝛽 bit long word of 𝑖 is iterated

and split using split&sort operation. In order to write each 𝐿0 and each 𝐿1 two indexes

16

2.2. Creating Wavelet Tree and Wavelet Matrix out of Bignode Tree

are maintained, called 𝑖𝑑0 and 𝑖𝑑1. 𝑖𝑑0 is initialized with 0, and 𝑖𝑑1 with the value of the

histogram at level 𝑖 and cell 2
𝑖−1

. For each split&sort operation, the resulting blocks in 𝐿0
are written to the bit index stored in 𝑖𝑑0. The blocks of 𝐿1 to the bit index stored in 𝑖𝑑1.

After these writes, 𝑖𝑑0 and 𝑖𝑑1 are updated accordingly.

2.2.3. Influence of 𝜏

As a short recap, the parameter 𝜏 is defining the number of bits per block in the bignode

tree. Every line stores 𝑛 blocks of bits. They are stored in 𝛽 bit long words. Later on in

the construction, these 𝛽 bit long words are used for executing pext instructions. These
instructions are used to leverage the possibility of parallel sorting using split&sort opera-
tions. In practice, the bit vectors are stored as 64-bit words, so

⌊
64

𝜏

⌋
blocks can be stored

per word. Hence, a higher 𝜏 results in a lower number of blocks in a single 𝛽 bit long word.

Which overall results in a lower amount of parallelism leverages by split&sort operations.
However, a higher 𝜏 also means, that the bignode tree creation does iterate over fewer

blocks per character, and fewer memory writes in this phase are performed. Which lowers

the expected runtime. This shows that 𝜏 must be evaluated while executing real runs,

as the parameter can be used to move work between the first and second phase of the

construction. The whole outcome of this effect is compared in the evaluation chapter 4.

2.2.4. Runtime

For transferring a bignode line to a result line, 𝑂

(⌈
𝑛𝜏
𝛽

⌉)
split&sort operations are required.

This is ignoring that in tree creation, using the cell iterator approach, multiple split&sort
operations are performed for the same word. Finally, log(𝜎) lines are getting transferred,
therefore the complete transferring takes:

𝑂

(⌈
𝑛𝜏

𝛽

⌉
log(𝜎)

)
(2.9)

For reference, the algorithms from Munro et al. [4], and Babenko et al. [10] are taking

𝑂 (𝑛 log𝜎𝜏/log𝑛)) in its second phase. As a short recap: Munro et al. as well as Babenko

et al. do use pre computed tables. The key of the table has a bit length. Each possible key is

in the table. The key can also be interpreted as a concatenation of blocks, where the value

in the table is the same result as 𝐿0 from split&sort operation explained here. The opposite

operand 𝐿1 can be calculated my inverting the key, and inverting the value. With the help

of this table, split&sort operations can be implemented without using pext instructions.
The difference in runtime arises from the difference between the table, and 𝛽 . While taking

the approach of Munro et al. or Babenko et al., the length of the key can be freely chosen,

as the table is created for the runtime of the algorithm. In order to minimize the runtime,

the assertion log𝑛 ≡ 0 mod 𝜏 is taken, and a table with
log𝑛

2𝜏
, entries is chosen. This way

𝑛 must be divided into multiple parts of the length of the keys. Every part is then looked

up and the results are stored. This means: 𝑂 (𝑛𝜏
log𝑛

) look ups are necessary in order to build

a single line. Again, not accounting for looking up a single word multiple times, as it

17

2. Sequential Algorithms

would be required for the cell iterator approach.

When replacing the look up tables with pext instruction calls, the bit length of the keys is

limited to what the hardware can provide. Therefore, 𝛽 cannot be freely chosen in order to

minimize the runtime. However, when assuming 𝛽 = log𝜎 , for the sake of compatibility,

the runtime of both algorithms is the same.

Summing up all the pieces in order to get the entire runtime of the construction: This

is 𝑂 (𝑛) for histogram building, 𝑂 (𝑛
⌈
log(𝜎)

𝜏

⌉
) for bignode building, and 𝑂 (

⌈
𝑛𝜏
𝛽

⌉
log(𝜎)) for

creating the final result. This yields a final runtime as 𝑂 (𝑛 + 𝑛

⌈
log(𝜎)

𝜏

⌉
+
⌈
𝑛𝜏
𝛽

⌉
log(𝜎)). In

practice, the length of the input is ensured to be a multiple of 𝛽 , therefore the ceil operation

in the last phase can be removed. Additionally, the 𝑛 part is dominated by the other terms,

and is ignored therefore. Later on, in the evaluation, it will show that only 𝜏s dividing 8

evenly are considered. This finally means that the runtime reduces to:

𝑂

(
𝑛 log(𝜎) (1

𝜏
+ 𝜏

𝛽
)
)

(2.10)

Again, the difference to Munro et al., and Babenko et al. is, that 𝛽 cannot be chosen here

in order to minimize the runtime, as this is bound for our approach to the size of hardware

registers.

However, if 𝛽 =
log𝜎

2𝜏
, and 𝜏 =

√︁
log𝜎 , as it is in the work of Munro et al., and Babenko et

al., the same simplifications can be done, and the result is: 𝑂 (𝑛 log𝜎/
√︁
log𝑛), which is the

same runtime.

Memory usage. For memory usage, the construction requires the memory for storing the

histogram, the bignode tree, the result, and the two swapping lines. For the histogram,

𝑂 (2log𝜎) counters are required, each counter is some multiple of a byte. The bignode

tree requires 𝑂 (⌈log𝜎⌉ 𝑛) bits. The result buffer requires again 𝑂 (⌈log𝜎⌉ 𝑛). And the two

swapping buffers need𝑂 (𝜏 ·𝑛). Overall, this results in the overall memory usage of words:

𝑂 (𝜎 + 𝑛 log(𝜎)) (2.11)

2.3. Dynamic 𝜏 Adjustment

In this Section an alternative approach for constructing a wavelet structure is explained.

In the work of Munro et al. [4] and Babenko et al. [10], a constant 𝜏 is assumed. In this

new approach, 𝜏 is set dynamically per line.

The process of building the wavelet structure is split into the first phase, and the second

phase. As a short recap, the first phase builds a memory layout that can be then be fast

sorted and extracted into the result buffer. This memory layout consists of ⌈log𝜎⌉ so called
packed lists. Each packed list consists of N 𝜏 bit long bit parts. The disadvantage of this is

that the building of this memory layout also takes time. The gained performance however

only happens during the second phase, as the first one is conceptional the same as pc in
PWM. This phase could be replaced if the input is already in an usable memory layout.

18

2.3. Dynamic 𝜏 Adjustment

The memory layout that is used as input of the bignode tree consists of 𝑛 characters, where

each character is a multiple of 8 bits. These characters are big enough, that log𝜎 bits do

fit into it. This means, that for example 𝜏 = 8 and ⌈log𝜎⌉ = 8 no first phase is required,

as the layout itself is already correct. This is mostly caused by the fact that the amount

of parallelization gained by a single pext instruction is not enough to be faster than the

algorithms in the PWM repository.

The alternative approach to get rid of the first phase is to adjust the length of each 𝜏 per line.

This can be achived by shrinking 𝜏 in the split&sort phase. The overall algorithm would

then take the string as the input. First a histogram is build. The histogram is build in the

same way described in Paragraph histogram in Section 2.1. Then, each line 0 ≤ 𝑖 < ⌈log𝜎⌉
is iterated. In each line, for each cell 0 ≤ 𝑥 < 2

𝑖
, the operations split&sort and pack are

performed on the 𝛽 bit long words. This can again be performed using the word iterator

approach, or cell iterator approach. The insertion in the next line can be written with the

indexes stored in the histogram. After each split&sort operation, 𝐿0 as well as 𝐿1 must

be processed in order to lower the amount of bits per block by one. This can be done by

masking the results 𝐿𝑥 with a selector, which has only ones at those bits, that still need to

be sorted. This selector can be calculated by: (𝑙 ≪ 𝜏 − 1)& ... &(𝑙 ≪ 1)&𝑙 . This means,

that in each iteration, the memory allocated shrinks by 𝑛 bits. Additionally, choosing 𝜏 on

the fly for each line means that the value of ℓ and ℎ must be calculated for each line. In

Figure 2.9, the process of building a wavelet tree according to this approach is displayed.

In each line, 𝜏 is getting decreased by one. Each character is exactly one block long. The

evaluation will show in Section 4.2 that uneven 𝜏 are worsening the performance as they

impose a logical overhead. Therefore 𝜏 ∈ {8, 4, 2} are valid candidates to choose from.

Initially, 𝜏 = 8 due to the nature that every character is having 8-bit. Now, after 4 split&sort
calls, 𝜏 can be adjusted to 4, after 2 more split&sort calls, 𝜏 can be again adjusted to 2.

The idea of this algorithm appeared at the end of this work. For implementing this,

nothing in the existing software structure could be used, as this always assumed a constant

𝜏 . Therefore, this approach was not implemented. However, the runtime is theoretically

calculated in the evaluation chapter.

Runtime. For the entire construction, we would require 𝑂 (𝑛 + 𝜎) memory reads and

writes for building the histogram, as described in Paragraph 2.1. After that, in each

line 𝑖 ∈ 1, ⌈𝜎 log⌉, (𝑖𝑛)/𝛽 pext instructions needs to be executed, as the amount of pext
instruction decreases with every line, where the bignode lines do get smaller. This results

in the overall runtime:

𝑂 (⌈log𝜎⌉ 𝑛
𝛽
) (2.12)

Memory Consumption. Implementing this requires the histogram, two swapping lines,

and the input buffer. The histogram requires𝑂 (𝜎) counters of memory, as described in 2.2.

For the two swapping lines, and the input buffer 𝑂 (𝑛) bytes are required. Which results

overall in words of:

𝑂 (𝑛 + 𝜎) (2.13)

19

2. Sequential Algorithms

Visualization of approach for input ’he’

0 1 1 0 1 0 0 0 0 1 1 0 0 1 0 1 𝜏 = 8

1 1 0 1 0 0 0 1 1 0 0 1 0 1 - - 𝜏 = 7

1 0 1 0 0 0 1 0 0 1 0 1 - - - - 𝜏 = 6

0 1 0 0 0 0 0 1 0 1 - - - - - - 𝜏 = 5

1 0 0 0 0 1 0 1 - - - - - - - - 𝜏 = 4

1 0 1 0 0 0 - - - - - - - - - - 𝜏 = 3

0 0 0 1 - - - - - - - - - - - - 𝜏 = 2

0 1 - - - - - - - - - - - - - - 𝜏 = 1

h e

Figure 2.9.: Wavelet tree construction for the input ’he’. Each new line is after a split&sort
and pack call. Each pack call is extracting the bold numbers. The split&sort
call is sorting based on the bold character.

20

3. Parallel Algorithms

In this chapter, two ways of parallelization are introduced and explained. First domain

decomposition with a explanation how multiple wavelet trees can be merged into a single

one. After that Shuns [8] approach. Later in the evaluation, the merger explained here will

be compared to the one of the PWM repository. When speaking of parallel algorithms, it

is meant, that the algorithm has parts that are executed in parallel. The parallel execution

happens on 𝑝 different units. So the same algorithm is executed 𝑝 times in parallel. These

units are called threads. All units executing instructions in parallel are accessing the same

memory. Over the process of this work, 0 ≤ 𝑡 < 𝑝 is used as a numerical identifier for each

thread. The same assumption as for the sequential algorithm are taken here: 𝜏 < log𝜎 < 𝑛.

3.1. Domain Decomposition

As already described in the Introduction in Chapter 1, when executing an algorithm in

parallel, using domain decomposition, the splitting of the input needs to be defined, as

well as the merging of the results. Each part of the split input is then transformed using

the sequential version of the algorithm, this execution will be denoted as 𝜆𝜎 (𝑛). After that,
the result of each execution 𝑡 , denoted as 𝑟𝑡 := 𝜆𝜎 (𝑛) is merged back together.

For splitting, the input is just split into 𝑡 parts. The length of the different parts are ensured

to be evenly dividable by 64. Then the results are created using the matrix creation,

tree creation with cell iteration as well as the word iteration. Lastly, 𝑡 different wavelet

structures need to be merged into a single one. In the following, 𝑥𝑡 ∈ [0, 2𝑖𝑡) in level

𝑖𝑡 ∈ [0, ⌈log𝜎⌉), are defined to address the cell or level of the wavelet structure resulting

from the parallel execution 𝑡 . In order to merge them back together, each cell 𝑥 ∈ [0, 2𝑖𝑡)
in level 𝑖 ∈ [0, ⌈log𝜎⌉) of the resulting wavelet structure is iterated. For each 𝑥 , all bits of

𝑥𝑡 with 0 ≤ 𝑡 < 𝑝 are written next to each other.

For implementing this, the splitting can be realized without copying, by only passing

pointers to the string, with the length of the segment. The merging back together, is also

parallelized. For that, first the histogram of all 𝑝 wavelet structures have been merged into

a single one. This can be done by simply summing up every counter of them. After that,

each thread 𝑡 is assigned a range of bits with a starting bit and a length. Each thread is

copying exactly those bits described by the start bit and the length to the result buffer, for

all lines 𝑖 ∈ [0, ⌈log𝜎⌉). The length is therefore a multiple of 64-bits, this way it is ensured

that each thread can copy entire 64-bits words, if the cells are bigger than that. The threads

can find the position where to start copying by scanning through all histograms of the

threads and starting when the sum of previously copied bits is getting equal to the starting

bit. Then they just iterate through all threads, and copy the number of cells in order to fill

the length of bits. This algorithm is conceptional showed in Figure 3.1. This method of

21

3. Parallel Algorithms

01101010 01010101 01101010 01101010

01101111 11110000 01101010 01101010

11001110 00010101 01101010 01101010

10100101 10101010 01101010 01101010

Join

Start

𝜆𝜎 (𝑛0) 𝜆𝜎 (𝑛1) 𝜆𝜎 (𝑛2) 𝜆𝜎 (𝑛3)

End

Parallel execution

of 𝜆𝜎 (𝑛𝑥)

Parallel merging

of difference 𝑟𝑡

Figure 3.1.: Diagram showing the threaded parts of domain decomposition. The example

input has 32 characters, the calculation unit has 4 parallel units. 𝑛𝑥 with

𝑥 ∈ 0, 1, 2, 3, the 𝑥 ’th part of the input is meant. The picture shows, that the

execution of 𝜆𝜎 as well as the merging is parallelized.

merging already used and implemented in PWM. The fastest three algorithms from PWM

do use domain decomposition.

Runtime. As explained, the domain decomposition uses a sequential algorithm. Therefore,

the runtime depends on the runtime of the sequential algorithm, 𝑂 (𝜆𝜎 (𝑛/𝑝)),. Additional
parameters like 𝜏 or 𝛽 or not noted, however, the parameter for each execution would be

the same.

The first phase of splitting can be done in constant time. After that, the execution of

𝑝𝜆𝜎 (𝑛) is needed. Finally, the results need to be merged together. For that, each thread

is copying the bits relevant to him. The actual position where to start copying can be

calculated from the histogram of each thread. This requires 𝑂 (𝑝) time, after that, the

copying takes
𝑛
𝑝
log𝜎 operations which results in 𝑂 (𝑝 + 𝑛

𝑝
log𝜎) operations per thread

when merging. Summing up the operations required for wavelet structure construction,

and the merging of the wavelet structure, requires work:

𝑂

(
𝑝𝜆𝜎 (𝑛/𝑝) + 𝑝 (𝑝 + 𝑛

𝑝
log(𝜎)))

)
(3.1)

For depth, the operations on one sequential construction plus the operations of one thread

merging contents is required:

𝑂

(
𝜆𝜎 (𝑛/𝑝) + 𝑝 + 𝑛

𝑝
log(𝜎))

)
(3.2)

With the runtime from wavelet construction in Equation 2.10, this results in work:

𝑂

(
𝑛 log𝜎 (1

𝜏
+ 𝜏

𝛽
) + 𝑝2 + 𝑛 log𝜎)

)
(3.3)

22

3.2. Shun Parallelization

And depth:

𝑂

(
𝑛

𝑝
log𝜎 (1

𝜏
+ 𝜏

𝛽
) + 𝑝 + 𝑛

𝑝
log𝜎)

)
(3.4)

Memory usage. The sequential implementation of each thread requires𝑂 (2log(𝜎)+log(𝜎) (𝑛
𝑡
))

bytes of memory, which is explained for Equation 2.11. This is required 𝑝 times. Addition-

ally, the buffer for the end result requires 𝑂 (𝑛 log𝜎) bits of memory. Finally, the memory

requirements in words are:

𝑂 (𝜎 + log(𝜎)𝑛) (3.5)

The required memory for the domain decomposition scales the same as the sequential

version.

3.2. Shun Parallelization

Shun [8] introduced a parallel construction algorithm for wavelet trees. The algorithm is

similar to the paradigm followed here. First, a bignode tree is built, then the bignode tree

is transferred into the result buffer.

Bignode Tree building by Shun. Shun proposed to build the bignode tree using stable sort

algorithms. For each line 𝑖 in the bignode tree, all characters in the input array are sorted

according to the key. The key, is the prefix of blocks. The prefix of blocks, are the 𝜏 · 𝑖 bits
before the current block. So for line 𝑖 = 2 the character h:

ℎ =

𝑏0︷︸︸︷
01

𝑏1︷︸︸︷
10︸ ︷︷ ︸

prefix

𝑏2︷︸︸︷
10

𝑏3︷︸︸︷
00

This example shows, for 𝑖 = 0, the prefix is empty, which results in no sorting work. For

all lines 0 < 𝑖 < ⌈log𝜎⌉, all lines are sorted. When a line is completely sorted, the current

blocks are extracted from the character and appended to the bignode tree line. After that,

the next line can be sorted. In order to build the bignode tree for matrix instead of the

tree, the key can be calculated, by reversing the bits of the key. For sorting algorithms,

Shun proposed two algorithms:

1. An algorithm with work of 𝑂 (𝑛 log(log(𝑛))) and a depth of 𝑂 (log𝑛) which would

make thewhole buildingwork𝑂 (𝑛 log(log(𝑛)) ⌈log(𝜎)/𝜏⌉) and depth𝑂 (log𝑛 ⌈log𝜎/𝜏⌉).
The algorithm is explained in [12].

2. An algorithm with work of 𝑂 (𝑛/𝜖) and depth of 𝑂 (𝑛𝜖/𝜖) with 0 < 𝜖 < 1. Which

results in a total work of𝑂

(
(𝑛/𝜖)

⌈
log𝜎

𝜏

⌉)
and𝑂

(
(𝑛𝜖/𝜖)

⌈
log𝜎

𝜏

⌉)
depth. The algorithm

is explained in [14].

The difference between the two algorithms is that 2) is work efficient, 1) is not.

23

3. Parallel Algorithms

Bignode Tree building with Domain Decomposition. Another possibility for bignode build-

ing is taking the sequential algorithm presented in Section 2.1, and run it in parallel with

domain decomposition. This can be done following the same pattern as the domain decom-

position of the entire wavelet structure construction. First we define the splitting of the

input. Followed by the merging back together 𝑝 different bignode trees. The input string

is split into 𝑝 evenly sized segments. After that, the bignode trees are build for all parts.

Lastly, these different bignode trees need to be merged back together. They can be merged

in the same way as the wavelet structure itself. We denote 𝑥𝑡 as the index of the cell in line

𝑖𝑡 of wavelet structure 𝑡 . Now, for every cell 𝑥 in line 𝑖 of the final bignode tree is iterate,

for these cells, every cell 𝑥𝑡 from thread 0 < 𝑡 < 𝑝 is getting written next to each other. In

order to implement this, each thread is building the histogram as described in Paragraph

histogram in Section 2.1. After that, each bignode tree is build in its thread 𝑡 . Finally, the

bignode tree cells are walked and merged, as described above. The histogram building for

all threads, takes 𝑂

(
𝑝 ∗ 2

log𝜎

𝜏

)
. Building the bignode trees is within: 𝑂

(
𝑛𝜏

⌈
log(𝜎)

𝜏

⌉)
. The

merging takes: 𝑂

(
𝑛𝜏

⌈
log𝜎

𝜏

⌉)
write operations. The results in a total runtime of:

𝑂

(
𝑛𝜏

⌈
log𝜎

𝜏

⌉
+ 𝑝 ∗ 2

log𝜎

𝜏

)
(3.6)

and depth:

𝑂

(
𝑛𝜏

𝑝

⌈
log𝜎

𝜏

⌉
+ 𝑝 ∗ 2

log𝜎

𝜏

)
(3.7)

This shows that the algorithms proposed by Shun are theoretically scaling better. However,

implementing Shuns approach brought up the following problems:

Using Arbitrary Integer Sorting for Bignode Building. A implementation problem of this

approach is, the building of the actual bignode lines. Babenko et al., Munro et al., and

Kaneta do call this list of blocks packed lists. They are required in order to extract value

either due to pext instructions, or key value table look up. In order to build them while

integer sorting, these packed lists need to be written. In order to do so, the algorithm must

be able to synchronize/organize writes to RAM words in a way, that no other thread is

writing to the same 𝛽 bit long word, as that would overwrite previous writes. If this is not

the case, another parallel walk over the entire sorted array must be done, extracting the

required 𝜏 bits.

Additionally, there are two different paradigms that either a bignode tree or the entire

structure can be created.

1. Iterating over each character, and insert every block into the correct position in the

line. This way, previous knowledge over where each cell starts must be in place, this

is realized using the histogram.

2. Iterating over each line, walking over each character, inserting the required block

from the character, storing the block, as well as the entire character in the next line.

Storing the character is required to maintain its internal order, for the next sorting

iteration.

24

3.2. Shun Parallelization

Both of these solution have theoretically the same number of insertions. However,

paradigm 1 requires to have knowledge over where to insert a specific part of a character

beforehand. And paradigm 2 requires to store a buffer with relative sorting after each line.

Both paradigms have been implement in PWM. Paradigm 1 is followed by wt_naive,
paradigm 2 is followed by wt_pc and others. What shows based on the construction times

from wt_naive compared to wt_pc is that paradigm 2 is a lot faster, since writing to the

additional buffer is way too slow. The algorithms referred here are explained in Section

4.4.0.1.

Summing up: Using integer sorting for bignode building requires more as twice as much

memory writes, compared to bignode building described in Section 2.1. Therefore, in

this work, the domain decomposition of bignode tree construction is used and evaluated,

instead of using integer sorting.

Wavelet Tree and Wavelet Matrix creation. After the creation of the bignode tree, each

level is then again iterated. In the work of Shun, tables are used where parts of bignode

tree is the key, and the value is the result of the block sorting. In the work of Kaneta [9]

it is shown, that these tables can be replaced using pext instructions. In the following

implementation explanation, the same notation 𝑗 as in Section 2.2.1 is used. The algorithm

proposed by Shun iterates over each line 𝑖 ∈ [0, ⌈log𝜎⌉]. In each line, the entire bignode

tree line is split into 𝑝 evenly sized chunks. These chunks are denoted as 𝑐𝑖,𝑡 . For every

chunk in parallel, the splitting as well as extracting is performed, this processing is denoted

as 𝑃 (𝑐𝑖,𝑡). This can be implemented by iterating each cell in the chunk, and writing the

𝐿0 and 𝐿1 results of split&sort operation into the according buffer. The result of each

operation is stored in a buffer allocated exclusively for each chunk. After the operations on

each chunk has been finished. First, the results of the result line 𝑖 are written, by walking

through the chunks and writing the pack results of each chunk next to each other into the

result buffer. Secondly, the results of the split&sort must be written into 𝑗 (𝑖 + 1). This is
done by iterating through all chunks, and write all contents to the cell where they belong

to. The position for that write can be received from the histogram. After each write, the

histogram is updated. For the matrix, the chunk will only have two result cells, therefore

only to two cells can be written, the positions for that are again known from the histogram,

which is updated after each write. After this process is repeated ⌈log𝜎⌉ times, the entire

result buffer is filled. This algorithm is visualized in Figure 3.2, every parallel execution is

displayed as a line in the image each arrow symbolizes a thread. The major difference to

domain decomposition is how many different groups of threads are started and joined back

together. In the domain decomposition only 2 groups are ran. The Shun [8] parallelization

runs the 1 group from the bignode creation plus ⌈log𝜎⌉ groups for the transformation

to the result buffer. This solution has its difference from the domain decomposition that

the parallel execution is happening finer graded. In Domain Decomposition the entire

structure construction is running in a single thread. Here, the threading is happening for

bignode tree construction and each line of the flushing process.

Runtime. In each line 𝑂 (𝑛) work has to be performed, with a depth of 𝑂 (𝑛/𝑝). This
results in total of 𝑂 (𝑛 log𝜎) work for constructing the wavelet structure with a given

bignode tree, and 𝑂 (𝑛/𝑝 log𝜎) depth.

25

3. Parallel Algorithms

𝑃 (𝑐0,0) 𝑃 (𝑐0,1) 𝑃 (𝑐0,2) 𝑃 (𝑐0,3)

𝑃 (𝑐1,0) 𝑃 (𝑐1,1) 𝑃 (𝑐1,2) 𝑃 (𝑐1,3)

Start

Join & Merging

. . .

End

Parallel processing of chunks

Parallel processing of chunks

Repeating chunk processing

Figure 3.2.: Conceptional display of the Shun parallelization. Without displaying the

creation of the bignode tree.

For the entire algorithm, the bignode building with work of Equations 3.6 and depth of

Equation 3.7 is performed. Due to that, this results in work:

𝑂

(
𝑛

⌈
log𝜎

𝜏

⌉
+ 𝑝 ∗ 2

log𝜎

𝜏 + 𝑛 log𝜎
)

(3.8)

and depth:

𝑂

(
𝑛

𝑝

⌈
log𝜎

𝜏

⌉
+ 𝑝 ∗ 2

log𝜎

𝜏 + 𝑛/𝑝 log𝜎
)

(3.9)

Memory usage. The general memory setup is the same as in the normal construction. Two

buffers for writing the split&sort results. The bignode tree in its normal form. Additionally

to that, each chunk needs to have a buffer, where split&sort results are written before they

are getting merged.

The size of this buffer depends on if the structure is either a tree or a matrix. For splitting

a single chunk in trees, 2
𝑖
possible cells can be filled. In worst case, only one cell will be

filled with the entire bits from the chunk. Therefore the buffer must be 2
𝑖 ∗ 𝑛𝑐 where 𝑖 is

the current depth that is processed, and 𝑛𝑐 the length of the chunk. For matrices, only 2

possible cells can be filled. Therefore the size of this buffer needs to be 2 ∗ 𝑛𝑐 .
This results in a final memory usage for matrices in words of:

𝑂 (𝜎 + 𝑛 log𝜎 + 2𝑛) (3.10)

26

3.2. Shun Parallelization

And for trees:

𝑂 (𝜎 + 𝑛 log𝜎 + 2
(log𝜎)𝑛) (3.11)

27

4. Evaluation

In this chapter, the different algorithms described earlier are evaluated. All the algorithms

are listed in Table 4.1. First, the evaluation shows which wavelet structure construction

Algorithm title Description

𝑤𝑚_𝑝𝑒𝑥𝑡𝑏𝜏𝑎0 normal matrix creation 2.2.2

𝑤𝑚_𝑝_𝑝𝑒𝑥𝑡𝑏𝜏𝑎0 parallel, Shun 3.2

𝑤𝑚_𝑝_𝑝𝑒𝑥𝑡𝑏𝜏𝑎1 parallel, domain decomposition 3.1

𝑤𝑚_𝑝_𝑝𝑒𝑥𝑡𝑏𝜏𝑎2 parallel, PWM domain decomposition Dinklage et al. [2].

𝑤𝑡_𝑝𝑒𝑥𝑡𝑏𝜏𝑎0 Word iterator 2.2.1.2

𝑤𝑡_𝑝𝑒𝑥𝑡𝑏𝜏𝑎1 Cell iterator 2.2.1.1

𝑤𝑡_𝑝_𝑝𝑒𝑥𝑡𝑏𝜏𝑎0 Word iterator 2.2.1.2,

parallel, domain decomposition 3.1.

𝑤𝑡_𝑝_𝑝𝑒𝑥𝑡𝑏𝜏𝑎1 Cell iterator 2.2.1.1,

parallel, domain decomposition 3.1.

𝑤𝑡_𝑝_𝑝𝑒𝑥𝑡𝑏𝜏𝑎2 Word iterator 2.2.1.2,

parallel, domain decomposition from Dinklage et al. [2].

𝑤𝑡_𝑝_𝑝𝑒𝑥𝑡𝑏𝜏𝑎3 Cell iterator 2.2.1.1,

parallel, domain decomposition from Dinklage et al. [2].

Table 4.1.: All algorithms described in this work. All for 𝜏 ∈ 2, 4.

method is the fastest for its structure type. For that, cell iterator and word iterator for

wavelet tree construction are compared. For parallel construction of wavelet matrix,

Shuns approach is compared with domain decomposition. Additionally, for the parallel

construction the merger from PWM is compared with the merger presented in this thesis.

Lastly, the impact of 𝜏 is measured. For the evaluation the algorithms have been executed

on a Intel(R) Xeon(R) CPU E5-2683 v4 @ 2.10GHz CPU. The CPU has 2 sockets, with 16

cores per socket, and 2 threads per socket, resulting in 64 parallel execution units.

Experiment Payloads. For the experiment, two different types of payloads are used.

Randomly generated payloads, where each payload with a certain size is created by adding

random characters from /dev/random into a file.

The second type of payloads are the first five PWM [2]. They are known as XML, DNA,

ENG, PROT, CC, 1000G, and SRC. The details of them can be taken from Table 4.4. The

exact histograms of these payloads can be seen in A.2. XML consists of multiple XML

documents. DNA contains sequenced DNA data with 16 different characters. ENG is a

selection of english texts. PROT is a selection of stored proteins. SRC is a selection of

c source code. The biggest payloads are CC and 1000G. CC is a collection of wikipedia

articles. 1000G is a set of DNA elements from the 1000 Genomes Project.

29

4. Evaluation

4.1. Sequential Runtime of Basic Settings

In this section the different versions of algorithms are compared. Additionally, the impact

of the settings 𝛽 and 𝜏 are compared. As a short recap: The algorithms first build the

bignode tree, which consists of 𝜏 bit long blocks per line. In the second phase, these

bignode tree lines are processed with pext instructions. These instructions can process 𝛽

bits at once.

Different 𝜏 values. All three algorithms presented in this work, can be executed with

different block sizes. The different construction times can be compared in the Table 4.2.

It can be observed, that for ⌈log𝜎⌉ = 8 and 𝜏 = 4 all algorithms are the fastest. For

other log𝜎 ≠ 8, 𝜏 = 2 are the fastest. Additionally, uneven bits are slower than even bits.

This can be explained with the overhead uneven 𝜏s cause. First, bignode lines cannot

be used entirely, as for 𝛽 ≡ 0 mod 𝜏 , the last ⌊𝛽/𝜏⌋’th block of 𝜏 bits cannot be used.

Furthermore, when packing bignode lines into the result buffer, additional conditional

jumps are required, as not every 𝜏 pack call is completing an entire 64 bit word in the

buffer. This finally results in more instructions being executed for packing a single result

line.

𝜏 𝑤𝑚8 𝑤𝑡08 𝑤𝑡18 𝑤𝑚6 𝑤𝑡06 𝑤𝑡16 𝑤𝑚4 𝑤𝑡04 𝑤𝑡14 𝑤𝑚2 𝑤𝑡02 𝑤𝑡12
2 19.1 19.2 18.6 14.1 13.7 13.2 10.3 9.9 9.6 6.8 6.8 6.8
3 24.2 24.4 23.4 16.3 17.1 16.4 14.3 14.5 14.2

4 17.5 19.1 16.9 14.9 15.6 14.3 10.8 11.5 10.6

5 23.2 26.3 23.7 18.5 20.0 18.5

6 27.9 31.6 27.9 17.5 21.8 19.3

7 32.5 36.5 33.9

8 26.8 31.7 27.9

Table 4.2.: Construction time with different block sizes 𝜏 in bits. Each algorithm name

written as𝑤𝑚log𝜎 . All evaluated with payload of the size 1000M. All times in s.
𝜏 > log𝜎 are not evaluated. The algorithm wt0 is the word iterator, wt1 is the
cell iterator.

Comparing Cell Iterator and Word Iterator. In Figure 4.1 the difference between cell iterator

and word iterator is shown. The cell iterator, which is displayed red, is faster than

the word iterator, which is blue. When comparing the implementation details of both

implementations, the word iterator requires more code for performing writes for a single

𝛽 bit long word compared to the cell iterator, as the result of a single word can be part of

multiple cells. In order to implement that, a while loop is executed which scans over how

many bits are left from the last cell, and either the whole word is added to this cell, or a

smaller amount. The downside of this is, that before adding bits to a cell, the while loop is

entered, and the current state of the cell is checked.

These problems are solved in the cell iterator, as the cell itself is always known by definition,

as all cells are iterated one by one. Additionally, the current state of the cell can also just

be kept within the iteration, which at least replaces the fetching of this state from within

30

4.1. Sequential Runtime of Basic Settings

100 200 300 400 500 600 700 800 900 1,000
0

0.5

1

1.5

·104

Input [MB]

T
i
m
e
[
s
]

Comparing Cell Iterator and Word Iterator

wt_pextb4a0

wt_pextb4a1

Figure 4.1.: Comparison of tree construction for cell iterator and word iterator with a 𝜏 of

4.

the history. Additionally, if the cell is full must be checked in the last word, and that can

be easily calculated using the histogram and keeping track of how many bits are already

processed in this cell.

The only positive argument for the word iterator approach is, that it minimizes the amount

of pext calls. As the cell iterator would perform the same operations twice on the words

where two or more cells are part of. However, assuming the input size 𝑛 grows, the number

of duplicated 𝑝𝑒𝑥𝑡 calls can only be 2
⌈log𝜎⌉

, which invalidates the initial approach.

Comparing Wavelet Tree with Wavelet Matrix Construction. Comparing the tree and matrix

construction, one can see in Figure 4.2 that they have a almost identical runtime. Only in

upper payload sizes tree construction is slightly faster.

Comparing again the details of tree and matrix: First, the tree needs to handle all cells in

a single line. Matrices do not need that. However, matrices do need to reverse the cell

address in order to get the real address. This reversing is required when building the

histogram, as well as when the bignode tree is build. Not for transferring the bignode tree

to the result.

Lastly, the overhead of reversing the addresses cancel out most of the overhead caused by

handling every cell.

Internals of Sequential Algorithm. As described in Section 2, the algorithm works in

two phases: bignode tree building, filling the result buffer. Bignode tree building is for

measurement purposes split into the bignode building and histogram building. In Figure 4.3

the 3 different phases can be seen for 𝜏 = 4 on the left side, and 𝜏 = 2 on the right side.

The big difference is that the bignode tree building phase takes longer than before.

Additionally, the two plots can be used to verify if the scaling of the different 𝜏 values do

31

4. Evaluation

100 200 300 400 500 600 700 800 900 1,000

0.5

1

1.5

·104

Input size [MB]

T
i
m
e
[
s
]

Comparing Wavelet Tree / Matrix Construction

wm_pextb4a0

wt_pextb4a1

Figure 4.2.: Comparison of tree construction and matrix construction. Both with 𝜏 = 4. As

input, randomized content with log𝜎 = 8 is used.

show the impacts visible from the Runtime O-Notations. For the histogram building, this

shows that variations in the 𝜏 variable does not have an impact on the runtime. For the

bignode tree building phase, this shows that a bigger 𝜏 reduces the amount of time spent

in building. Finally, the time spent in flushing the bignode tree to the result is growing

with a bigger 𝜏 . The experiment itself shows that the flushing does scale better than the

bignode tree building. This can also be seen when comparing the runtime O-Notation of

bignode building in Section 2.3 and filling the result buffer in Section 2.9.

4.2. Comparing Domain Decomposition Mergers

The merger is used in the domain decomposition to merge the wavelet structure from

different threads into a single. In this work, a merger was explained and implemented.

Another merger is implemented in PWM. In Table 4.3, the two different mergers are

compared. It can be observed, that except for 20GB, the merger of PWM is always the

fastest. Therefore, in the rest of the work, the merger from pwm is used.

4.3. Comparing Shun and Domain Decomposition

In this work two different ways of creating the matrix have been shown. First the way via

domain decomposition, and secondly the algorithm following the idea of Shun. In figure

4.4, it can be observed that the domain decomposition is always faster. Additionally, 𝜏 = 2

is faster than 𝜏 = 4. In the following section, the different internal parts of the algorithm are

32

4.3. Comparing Shun and Domain Decomposition

Internal Phases of Matrix Construction

20 40 60 80 100

0

0.5

1

1.5

Input size [MB]

T
i
m
e
[
s
]

𝜏 = 4

bignode

pack&split

prefix

20 40 60 80 100

Input size [MB]

𝜏 = 2

Figure 4.3.: The two plots show the internals of wavelet matrix construction, for log𝜎 = 8.

On the left side for 𝜏 = 4 on the right side 𝜏 = 2. The prefix phase is the one

creating the histogram, the bignode phase is building the bignode tree. And

the pack&split phase transforms the bignode tree into the result object. Finally,

this shows that the bignode building takes longer when there is a smaller 𝜏 .

As input, randomized content with log𝜎 = 8 is used.

Tree Matrix

Input size Thesis Merger PWM Merger Thesis Merger PWM Merger

5𝐺𝐵 4207 4174 4160 4014
10𝐺𝐵 8463 8260 8353 8132
15𝐺𝐵 13372 13300 12837 12405
20𝐺𝐵 17619 17645 17328 17659

25𝐺𝐵 22799 22354 22663 21979
30𝐺𝐵 28880 28025 27416 26732

Table 4.3.: Runtime construction methods, parallelized using domain decomposition, for

wavelet structures. The first two columns are for matrix construction, the left

construction times for the merger described here, on the right those of the PWM

repository. The second two columns are for tree construction. The right one for

the matrix construction. As input, randomized content with log𝜎 = 8 is used.

The columns called Thesis Merger is referring to the merger explained in 3.1.

The columns called PWM Merger are referring to the merger of Dinklage et al.

[2]. All values in ms.

explained in order to show where the time is spent. Additionally, the difference between 𝜏

values are explained.

33

4. Evaluation

200 400 600 800 1,000

0

2,000

4,000

Input size [MB]

T
i
m
e
[
m
s
]

Comparison of different parallel matrix construction methods

wm_p_pextb2a0

wm_p_pextb2a1

wm_p_pextb4a0

wm_p_pextb4a1

Figure 4.4.: This plot shows the two different parallel matrix construction methods. The a0
construction algorithm is the one from Shun, and a1 is the domain decomposi-

tion. Running with 64 threads. As input, randomized content with log𝜎 = 8 is

used.

Comparing Internals with 𝜏 = 4. There are 2 tasks dominating the execution time. Con-

struction of the wavelet structures, and the merging. In Figure 4.5 the phases are shown,

both for 𝜏 = 4. The same 𝜏 is selected in order to see the difference between the same

amount of split&sort calls. The measurements of the phases is the sum of all times, that

each thread group takes to perform either merging or splitting. The time is taken between

the point where the algorithm goes into parallel execution, until it returns to sequential

execution. In the Figure, it can be observed, that merging and splitting scales way worse

in the Shun algorithm compared to the Domain decomposition. In order to explain the

increased runtime, the overhead added by the Shun approach would need to scale with 𝑛.

The implementation of Shun makes use of parallelization first for splitting of every single

line, then for merging of every single line. This means, that the overhead for synchronizing

the end of a thread group is added 8 times instead of only once. This however does not

scale with 𝑛. Looking at the caching behavior of Shuns approach: When a single line is

split, the cache must be first filled with the content of the bignode tree line. After the

splitting is done, merging will read all lines from chunks, which will replace the already

cached lines of the previous bignode line. The splitting operation of the next line will now

need to read again the entire bignode tree line. Comparing this caching behavior with

the domain decomposition: When doing splitting of lines in domain decomposition, again

each word from the bignode tree line must be read. In the process of splitting, the next

bignode tree line is already filled. Now, that the phase of merging is not happening here,

the cache will not be rewritten with different words. And the words, that are already in

the cache will be reused in the next line to perform the split operations. Therefore the

cache utilization is better in the domain decomposition. This overhead also scales with 𝑛

34

4.4. Comparing to PWM

and would explain the seen behavior.

Matrix Construction

20 40 60 80 100

0

0.1

0.2

0.3

0.4

Input size [MB]

T
i
m
e
[
s
]

Domain Decomposition

20 40 60 80 100

Input size [MB]

Shuns Approach

merging

splitting

Figure 4.5.: Time spent for splitting, and merging. In domain decomposition compared to

Shuns approach. The construction runs with 𝜏 = 4 and 64 threads.

Difference in 𝜏 . A major conceptual difference is: In Shuns approach, the entire bignode

tree for the entire 𝑛 is build over the process of constructing the wavelet structure. This is

however not necessary, as the bignode tree structure is only required for the result. But is

not part of the result. Therefore, the time spent in order to merge the bignode tree into a

single object is not an advantage. The value of 𝜏 also has an influence on this. A single

bignode tree line is bigger with 𝜏 = 4 than with 𝜏 = 2. Therefore the time spent in merging

bignode tree lines is bigger when having 𝜏 = 4 compared to 𝜏 = 2. Which also explains

that 𝜏 = 4 is slower than 𝜏 = 2

4.4. Comparing to PWM

The fasted available wavelet construction algorithms are currently hosted in the PWM

repository. This repository was introduced in [2]. The names of the fastest algorithms

are: pc, pc_ss, and ps. Additionally, the parallel versions derived from these are used for

comparison.

4.4.0.1. Algorithms from PWM

In this section, the three fastest algorithms from PWM are briefly explained, then, the

naive approach wt_naive is explained. More details can be found in the code hosted on

github. The algorithm pc first computes the histogram. Then the all levels are iterated

35

4. Evaluation

bottom up. In each level, all the characters are scanned, and the bit at position level is

written into the correct position of the result. This can be realized using the position from

the histogram. The version called ps is doing this similar. However, instead of writing the

bit directly into the result buffer, the entire character is stored in a array. Later on, this

array is scanned, and the bits are extracted. The algorithm pc_ss is walking the entire input,
for each character then all the levels are iterated, and the according bit is written into the

result buffer. The algorithm wt_naive is the slowest and easiest approach. In this approach,

each level is iterated. In each level 𝑖 , 2𝑖 buckets are allocated. Then, all the characters of

the input sequence are scanned, the bit of level 𝑖 is then added to the according result

line, additionally, the character is added to the corresponding bucket. The bucket can be

calculated by calculating the index of the cell, as it was explained in Section 1.2. Lastly,

the different buckets are joined into a single character sequence. This sequence is then

replacing the input sequence, and the next levels are continued with this new input.

4.4.1. Comparing using Real World Data

In this section the 5 real word examples are constructed with the construction algorithms

pc, pc_ss, ps as well as those from this thesis. The data payloads reflecting real world

Name 𝑛/108 𝜎 ⌈log𝜎⌉
XML 2.9 97 7

DNA 4 16 4

ENG 22.1 239 8

PROT 11.8 27 5

SRC 2.1 230 8

CC 80 243 8

1000G 80 4 2

Table 4.4.: These payloads are transformed into an alphabet without unused characters.

This results in a more compact alphabet, where the log𝜎 value has a direct

impact on the depth of the levels that need to be walked. The script for trans-

forming the input can be found in the repository of this work. From payload

CC and 1000G, only a 80GB prefix is used, as the original payload was too big

for the available hardware.

usages are showed in Table 4.4. Notably, two payloads do have log𝜎 values that are not

evenly dividable by 𝜏 . For these payloads normal algorithms, that do not using bignode

trees have an advantage. Due to the nature of the algorithm explained in this work always

𝜏 bits per character have to be handled. Therefore the payload XML has the same runtime

as running with a log𝜎 = 8 and PROT log𝜎 = 6. The construction is evaluated for 𝜏 = 4

and 𝜏 = 2.

Sequential Algorithms Comparison for Real Data. For comparing PWM and this work, tree

and matrix construction times are evaluated and compared in Figure 4.6 and Figure 4.6.

One of the bigger differences from PWM to the this work is that 0 . ⌈log𝜎⌉ mod 𝜏 results

in an overhead. Therefore the advantage of the here explained algorithm is lower for prot.

36

4.4. Comparing to PWM

For matrix construction this disadvantage is bigger, so the PWM algorithms are faster. As

the size of 1000G and cc are quite big, they are skipped for sequential construction.

𝑎𝑙𝑔𝑜 𝑥𝑚𝑙 𝑑𝑛𝑎 𝑒𝑛𝑔 𝑝𝑟𝑜𝑡 𝑠𝑟𝑐

𝑤𝑡_𝑛𝑎𝑖𝑣𝑒 11750 9614 112095 32322 9252

𝑤𝑡_𝑝𝑐 5240 4377 49044 14360 4461

𝑤𝑡_𝑝𝑐_𝑠𝑠 5311 3933 46109 13953 4367

wt_pextb2a1 5130 3592 36362 14684 3488

wt_pextb4a1 4648 3900 33924 15875 3328
𝑤𝑡_𝑝𝑠 5573 5119 54687 15716 4849

Table 4.5.: Comparison of constructing wavelet tree times for real datasets. The pext
algorithm is the cell iterator approach. Each result in ms.

𝑎𝑙𝑔𝑜 𝑥𝑚𝑙 𝑑𝑛𝑎 𝑒𝑛𝑔 𝑝𝑟𝑜𝑡 𝑠𝑟𝑐

𝑤𝑚_𝑛𝑎𝑖𝑣𝑒 11916 10790 113568 41676 10364

𝑤𝑚_𝑝𝑐 5217 4369 49148 14441 4447

𝑤𝑚_𝑝𝑐_𝑠𝑠 5298 3825 45977 13782 4329

wm_pextb2a0 5227 3798 37050 15816 3526

wm_pextb4a0 4537 3949 32835 16413 3233
𝑤𝑚_𝑝𝑠 5534 5117 54713 15518 4825

Table 4.6.: Comparison of constructing wavelet matrix times for real datasets. Each result

in ms.

Parallel Algorithms Comparison for Real Data. The results of the parallel constructions, in

Table 4.4.1, do look similar as ones from sequential ones. It can be observed, that wavelet

tree construction for DNA, ENG, SRC, CC, and 1000G payloads, the pext versions are the
fastest. For wavelet tree construction with pext, the payload XML is also faster compared

to PWM’s algorithms. For wavelet matrix constructions, PWM’s wm_dd_ps algorithm is

faster. In this case, the disadvantage with having to iterate one more level compared to

PWM cases this. However, the speed difference is only 0,4%. The payload PROT is being

constructed faster with PWM algorithms. For this payload, the disadvantage with having

to iterate one more level is also applying. In the next section randomly generated payloads

are used to measure construction times.

37

4. Evaluation

𝑎𝑙𝑔𝑜 𝑥𝑚𝑙 𝑑𝑛𝑎 𝑒𝑛𝑔 𝑝𝑟𝑜𝑡 𝑠𝑟𝑐 𝑐𝑐 1000𝐺

𝑤𝑡_𝑑𝑑_𝑝𝑐 221 172 1980 684 166 78973 13879
𝑤𝑡_𝑑𝑑_𝑝𝑐_𝑠𝑠 228 176 1795 666 169 75872 19930

𝑤𝑡_𝑑𝑑_𝑝𝑠 207 172 1906 457 160 72142 25380

wt_p_pextb2a3 202 166 1806 618 147 69646 23917

wt_p_pextb4a3 188 151 1765 894 154 67833 28815

𝑤𝑡_𝑝𝑝𝑐 1100 1495 8153 4038 1120 271403 258318

𝑤𝑡_𝑝𝑝𝑐_𝑠𝑠 1071 2141 7982 4254 866 292911 247550

𝑤𝑡_𝑝𝑝𝑠 462 470 3409 1439 362 128893 74403

Table 4.7.: Comparing construction times for parallel tree creation. Each result in ms.

𝑎𝑙𝑔𝑜 𝑥𝑚𝑙 𝑑𝑛𝑎 𝑒𝑛𝑔 𝑝𝑟𝑜𝑡 𝑠𝑟𝑐 𝑐𝑐 1000𝐺

𝑤𝑚_𝑑𝑑_𝑝𝑐 218 169 1750 475 156 82242 23481

𝑤𝑚_𝑑𝑑_𝑝𝑐_𝑠𝑠 226 173 1786 868 168 76889 17824
𝑤𝑚_𝑑𝑑_𝑝𝑠 211 170 1889 501 154 69996 26321

wm_p_pextb2a2 212 158 1858 631 152 72222 24485

wm_p_pextb4a2 213 173 1738 815 139 68031 29451

𝑤𝑚_𝑝𝑝𝑐 1117 1509 8135 4038 760 288285 256209

𝑤𝑚_𝑝𝑝𝑐_𝑠𝑠 1116 1459 8067 4195 801 292421 248635

𝑤𝑚_𝑝𝑝𝑠 442 468 3401 1458 339 127339 76339

Table 4.8.: Comparing construction times for parallel matrix creation.Each result in ms.

Strong scaling and weak scaling In Figure 4.6, weak and strong scaling experiments for

the payloads cc, 1000G, and eng are plotted. It can be observed, that 1000G has a lot higher

throughput compared to the other two payloads. Roughly 1.25 ∗ 106 Byte

ms
with eng and cc,

and roughly 3 ∗ 106 Byte

ms
for 1000G. The difference between those is, that log𝜎 of 1000G is

2, while those of eng and cc is 8. Comparing the throughput to the algorithms of PWM

shows a similar situation as Figure 4.8 and Figure 4.4.1. The payloads eng, and cc do have a
higher throughput for all thread configurations, except 30 threads. For the payload 1000G,
PWM constructions are faster.

wm_dd_pc

wm_dd_pc_ss

wm_dd_ps

wm_p_pextb2a2

wm_p_pextb4a2

wt_dd_pc

wt_dd_pc_ss

wt_dd_ps

wt_p_pextb2a3

wt_p_pextb4a3

38

4.4. Comparing to PWM

0 10 20 30 40 50 60

0.2

0.4

0.6

0.8

1

1.2

1.4
·106

T
h
r
o
u
g
h
p
u
t
[
B
y
t
e

m
s
]

Weak scaling (CC)

0 10 20 30 40 50 60

·106
Strong scaling (CC)

0 10 20 30 40 50 60

1

2

3

4

5

6

·106

T
h
r
o
u
g
h
p
u
t
[
B
y
t
e

m
s
]

Weak scaling (1000G)

0 10 20 30 40 50 60

·106
Strong scaling (1000G)

0 10 20 30 40 50 60

0.5

1

1.5

·106

Threads

T
h
r
o
u
g
h
p
u
t
[
B
y
t
e

m
s
]

Weak scaling (eng)

0 10 20 30 40 50 60

·106

Threads

Strong scaling (eng)

Figure 4.6.: Weak and strong scaling experiments for the real world data. In weak scaling,

100M per thread are added. In strong scaling 6400MB are performed.

39

4. Evaluation

4.4.2. Comparing using Generated Data

In this section construction times for randomly generated payloads are compared. The

payloads do have sizes from 1GB to 3GB with a step size of 5GB.
For better benchmarks, each generated payload is copied and processed that each sized pay-

load log𝜎 ∈ {2, 3, 4, 5, 6, 7, 8}. The benchmarks are run with pc, pc_ss, and ps and its parallel
versions. As well as pext algorithms and the median runtime over 25 iterations is measured.

Sequential Comparison. In Tables 4.9 and 4.10 the comparison of sequential construction

times can be seen. Each cell of the table contains the speed up, which is calculated by

dividing the fastest PWM runtime with the fastest pext runtime. In each column titled

𝑠𝑝𝑒𝑒𝑑𝑢𝑝𝑥 , x is expressing the log𝜎 from the available payloads. What can be observed

in general, is that the tree construction is having a higher speedup than the matrix con-

struction. The speedup decreases with a decreasing log𝜎 . Additionally, uneven log𝜎 are

slower than the even predecessor. Finally, for tree construction, log𝜎 < 4 results in a

speedup below 1 which means that PWM is again faster. In matrix construction this is

already happening at log𝜎 = 5. The general decrease in speedup, for a decreasing log𝜎

can be explained by the fact that the pext algorithms are using two phases. The algorithm

runtime is heavily depending on the choice of 𝜏 , which can be used to perform more work

in the first phase, or in the second phase. This has already been shown in Section 4.2, it

also showed the choice of 𝜏 is depending on 𝜎 . For lower 𝜎 values, 𝜏 was also set to a lower

value. However, 𝜏 cannot be set lower than 2, if now the log𝜎 value gets too low, not

enough speedup can be realized by parallel bit extraction in the second phase. Therefore,

an algorithm not having a 𝜎 depended property can scale much better, which is the case

for PWM. Hence PWM scales better for a log𝜎 < 4.

The higher performance degredation for uneven log𝜎s can be explained again, by the

choice of 𝜏 , and the resulting implications. As shown in 4.2, 𝜏 = 4 is used for log𝜎 = 8 and

𝜏 = 2 for everything else. Just as a reminder: 𝜏 cannot be smaller than 2 as that would not

allow parallel extraction using pext. Also, when 𝜏 = 4 is selected, always 4 bits at once are

copied when the bignode tree is build. This means, that for a log𝜎 mod 𝜏 ≠ 0, at least

one bit too much is going to be copied into the bignode tree. This also results in a less

efficient pack phase. In PWM algorithms, the iteration can simply be stopped at a higher

depth, which results in fewer memory writes.

Parallel Comparison. The parallel construction algorithms in Table 4.11 show similar

results as in the real world data comparison. For ⌈log𝜎⌉ > 7 the construction is faster then

PWM. And only ⌈log𝜎⌉ = 4 is again a little bit faster than PWM. However, for increasing

size, the speedup is decreasing while staying bigger than 1.

Strong scaling and weak scaling. Two scaling experiments often done with parallel algo-

rithms are so called strong scaling and weak scaling experiments.

In a strong scaling experiment, the number of threads is varying while the problem size

stays constant. For a weak scaling experiment, the number of threads is varying as well,

however, the problem size per thread stays the same. This means, that
problem_size

threads
stays

40

4.4. Comparing to PWM

Payload 𝑠8 𝑠7 𝑠6 𝑠5 𝑠4 𝑠3 𝑠2
100𝑀𝐵 1.3120 1.1274 1.2488 1.0122 1.1162 0.7991 0.7374

200𝑀𝐵 1.3473 1.1424 1.2407 1.0297 1.1219 0.8027 0.7360

300𝑀𝐵 1.3082 1.1221 1.2426 1.0180 1.1272 0.8042 0.7276

400𝑀𝐵 1.3546 1.1598 1.2564 1.0313 1.1253 0.8079 0.7298

500𝑀𝐵 1.3348 1.0857 1.2426 1.0117 1.1162 0.8006 0.7259

600𝑀𝐵 1.3077 1.1451 1.2450 1.0264 1.1193 0.7990 0.7218

700𝑀𝐵 1.2963 1.1296 1.2522 1.0353 1.1179 0.7996 0.7238

800𝑀𝐵 1.3509 1.1423 1.2635 1.0349 1.1277 0.7965 0.7232

900𝑀𝐵 1.3124 1.1186 1.2457 1.0253 1.1202 0.8041 0.7247

1000𝑀𝐵 1.3478 1.1513 1.2542 1.0217 1.1238 0.7995 0.7217

Table 4.9.: Sequential speedups of wavelet tree creation and the fastest PWM algorithm,

with payloads with different log𝜎 . Each column is described as 𝑠⌈log𝜎⌉ . With 64

threads.

Payload 𝑠8 𝑠7 𝑠6 𝑠5 𝑠4 𝑠3 𝑠2
100𝑀𝐵 1.2958 1.1121 1.1522 0.9429 1.0500 0.7525 0.7487

200𝑀𝐵 1.3088 1.1292 1.1496 0.9490 1.0564 0.7518 0.7406

300𝑀𝐵 1.2756 1.1014 1.1465 0.9353 1.0516 0.7515 0.7348

400𝑀𝐵 1.3446 1.1446 1.1573 0.9412 1.0489 0.7516 0.7402

500𝑀𝐵 1.2734 1.1081 1.1380 0.9313 1.0621 0.7434 0.7299

600𝑀𝐵 1.3265 1.1381 1.1523 0.9462 1.0458 0.7463 0.7288

700𝑀𝐵 1.2913 1.0815 1.1082 0.9324 1.0491 0.7434 0.7296

800𝑀𝐵 1.3098 1.1164 1.1444 0.9546 1.0355 0.7453 0.7293

900𝑀𝐵 1.2987 1.1016 1.1405 0.9415 1.0482 0.7450 0.7439

1000𝑀𝐵 1.3246 1.1247 1.1427 0.9444 1.0596 0.7558 0.7577

Table 4.10.: Sequential speedups of wavelet matrix creation and the fastest PWM algorithm,

with payloads with different log𝜎 . Each column is described as 𝑠⌈log𝜎⌉ . With

64 threads.

constant.

In the Figure 4.7 the weak scaling experiment is plotted. In Figure 4.8 the strong scaling

experiment is plotted. It can be observed, that the throughput in the strong scaling has a

dent at around 35 threads. This dent also stays over several benchmark runs. Comparing

the PWM algorithms to the pext constructions do show, that the pext versions have a
higher throughput, except for 30 threads. This observation is also the same for the real

data payloads.

41

4. Evaluation

Payload 𝑠8 𝑠7 𝑠6 𝑠5 𝑠4 𝑠3 𝑠2
100𝑀𝐵 1.0132 1.1471 0.8305 0.6290 1.0465 0.6829 0.6154

200𝑀𝐵 1.0138 1.1221 0.8750 0.7037 1.0633 0.6933 0.6596

300𝑀𝐵 1.1466 1.1058 0.8704 0.7063 1.0000 0.6579 0.5658

400𝑀𝐵 1.0861 0.9751 0.8804 0.6729 1.0625 0.5519 0.6129

500𝑀𝐵 1.0804 1.0726 0.8702 0.7099 1.0162 0.6720 0.6316

600𝑀𝐵 1.1526 1.0806 0.9042 0.6977 1.0000 0.6682 0.6277

700𝑀𝐵 1.1556 1.1372 0.9158 0.6720 0.9960 0.6824 0.5754

800𝑀𝐵 1.1152 1.0233 0.9252 0.7536 0.9731 0.7517 0.6378

900𝑀𝐵 1.1655 1.0718 0.9236 0.7228 1.0636 0.6873 0.6093

1𝐺𝐵 1.1371 1.0836 0.9267 0.7446 1.0241 0.8000 0.8227

5𝐺𝐵 1.0415 0.9170 0.9585 0.8191 0.8726 0.6008 0.8062

10𝐺𝐵 1.0776 0.9133 0.9463 0.7787 0.8698 0.6187 0.5836

15𝐺𝐵 1.1195 0.9415 0.9671 0.7890 0.7993 0.6114 0.5624

20𝐺𝐵 1.0276 0.8927 1.0254 0.7823 0.8091 0.6245 0.6301

25𝐺𝐵 1.0449 0.8653 0.9487 0.7642 0.8820 0.7002 0.5658

30𝐺𝐵 1.0560 0.8487 1.0288 0.8526 0.9058 0.5997 0.6130

35𝐺𝐵 1.0854 0.9067 0.9570 0.7721 0.8133 0.6982 0.6752

40𝐺𝐵 1.0920 0.8873 0.9279 0.7850 0.8417 0.6647 0.7202

45𝐺𝐵 1.0689 0.8906 0.9076 0.7359 0.7849 0.6524 0.6706

50𝐺𝐵 1.1030 0.8359 0.9802 0.7849 0.7990 0.5624 0.7091

Table 4.11.: Parallel speedups for wavelet tree creation with payloads with different log𝜎 .

Each column is described as 𝑠⌈log𝜎⌉ . With 64 threads. Further details can be

received from A.1.

4.5. Memory Consumption

In order to measure the memory consumption, the allocation calls to malloc, calloc, and
free are counted, and the size of the allocated memory is summed up. As already explained,

there are 4 different allocations: for the histogram, the bignode tree, the result buffer, and

the two swapping lines. The histogram size is only depending on log𝜎 . The bignode tree

is always exactly the size of the input 𝑛. The result buffer is as well as big as 𝑛. The two

swapping lines are of the size 2𝜏𝑛/8. This means, that for 𝜏 = 2, 2.5𝑛 are required, and

for 𝜏 = 4 3𝑛 are required. In Figure 4.9 the two clusters can be seen at using 3.5𝑛 and 4𝑛.

The last missing 𝑛 that is required in order to explain the results, is the actual file that is

loaded into memory. The memory allocated for the histogram is not visible in this plot, as

it is too small in contrast of the input size.

The domain decomposition also stays within the the cluster of its underlying algorithm.

Even though the peak is measured, the additional result buffer allocated is not added to the

peaks top, as the bignode tree memory object is destroyed while the underlying algorithm

is finished.

Additionally to the two clusters, that explain the dependency on 𝜏 , it is also visible that

the domain decomposition does not require more memory than the normal sequential

version of the algorithm.

42

4.5. Memory Consumption

Payload 𝑠8 𝑠7 𝑠6 𝑠5 𝑠4 𝑠3 𝑠2
100𝑀𝐵 0.9747 1.0986 0.8167 0.7049 0.8182 0.6667 0.6000

200𝑀𝐵 1.1203 1.0211 0.7881 0.9138 1.0723 0.6582 0.6739

300𝑀𝐵 1.0140 1.0833 0.8758 0.7669 1.0348 0.6552 0.6522

400𝑀𝐵 1.0878 1.0303 0.9352 0.7411 1.0196 0.6846 0.5728

500𝑀𝐵 1.1191 1.0495 0.8425 0.7189 1.0000 0.6631 0.6637

600𝑀𝐵 1.0682 1.1018 0.8415 0.7378 0.9690 0.7589 0.6312

700𝑀𝐵 1.1069 1.0243 0.8892 0.7383 0.9768 0.6517 0.6398

800𝑀𝐵 1.0749 1.0558 0.8712 0.7773 0.9831 0.6711 0.6571

900𝑀𝐵 1.0753 1.0952 0.8703 0.7562 0.9231 0.6395 0.8182

1𝐺𝐵 1.1222 1.0382 0.9046 0.7650 1.0186 0.6603 0.6318

5𝐺𝐵 1.0785 0.9428 0.8972 0.7430 0.9748 0.5738 0.6562

10𝐺𝐵 1.0692 0.9474 0.9451 0.7712 0.7807 0.6725 0.7201

15𝐺𝐵 1.0766 0.8371 0.9671 0.8084 0.7584 0.6499 0.5933

20𝐺𝐵 1.0028 0.9344 1.0031 0.7902 0.8611 0.6404 0.7279

25𝐺𝐵 1.0483 0.8581 0.9270 0.7967 0.9884 0.6600 0.6894

30𝐺𝐵 1.0372 0.8663 0.9081 0.7553 0.8417 0.6147 0.7804

35𝐺𝐵 1.1120 0.9488 0.9045 0.8408 0.9421 0.7050 0.7523

40𝐺𝐵 1.0315 0.9148 0.8963 0.8284 0.8910 0.6640 0.6674

45𝐺𝐵 1.1092 0.8235 0.9874 0.8549 0.8818 0.6339 0.7002

50𝐺𝐵 1.0806 0.9007 0.9081 0.8031 0.8568 0.7077 0.8657

Table 4.12.: Parallel speedups for wavelet matrix creation with payloads with different

log𝜎 . Each column is described as 𝑠⌈log𝜎⌉ . With 64 threads. Further details can

be received from A.1.

Shun Parallelization. The memory usage of the Shun parallelization requires more mem-

ory than the normal domain decomposition. While building a matrix, each line of chunks

requires 𝑝 (3𝑛𝜏
𝑝
) = 3𝑛𝜏 bits and 3𝑛𝜏

8
bytes of memory. These are required to the additional

memory allocations from the previous paragraph. Therefore there are for 𝜏 = 2 an expected

memory usage of 4.25𝑛 and for 𝜏 = 4 a memory usage of 5.5𝑛

Comparison to PWM. There are 6 clusters in the plot, 4 are from the algorithms explained

in this work, the other 2 are from PWM, there are two cluster, one is residing at 2𝑛 the

other is located at 3𝑛. The cluster at 2𝑛 is consisting of: ppc_ss, pc_ss, ppc, pc and the 3𝑛

contains: dd_pc_ss, dd_pc, dd_ps, pps, ps.
The domain decomposition here does move the two construction methods pc_ss and pc
from 2𝑛 to 3𝑛. This is here happening, because after the construction inside the domain

decomposition, no freeing of any memory object big enough happens. This effect is

happening for the 𝑝𝑠 algorithm, however, this one is already in 3𝑛.

43

4. Evaluation

0 10 20 30 40 50 60

0.2

0.4

0.6

0.8

1

1.2

1.4
·106

Threads

T
h
r
o
u
g
h
p
u
t
[
B
y
t
e

m
s
]

Weak scaling

Figure 4.7.: Weak scaling experiment, per

thread 100MB are assigned. In

each step 4 more threads are

added.

0 10 20 30 40 50 60

·106

Threads

Strong scaling

Figure 4.8.: Strong scaling experiment with

6,4GB of payload. With each step

4 more threads are added.

wm_dd_pc

wm_dd_pc_ss

wm_dd_ps

wm_p_pextb2a2

wm_p_pextb4a2

wt_dd_pc

wt_dd_pc_ss

wt_dd_ps

wt_p_pextb2a3

wt_p_pextb4a3

4.6. Intrinsic Functions

In this work the two intrinsic functions are used. pext, and popcnt. popcnt is used to

answer query calls, and count bits in the mask 𝑓 𝑖𝑙𝑙𝑥 , which is used in split&sort. pext
instructions are used to extract bits in the split&sort phase, as well in the pack phase.

When the implementation of this work started, initially every benchmark was ran on AMD
Ryzen 7 3800X 8-Core Processor. It turned out that the algorithms using pext were a lot
slower than PWM ones. Researching the exact instructions for AMD brought up

1
that

these instructions are implemented as microcode in certain chips, which results in a 18

cycle latency.

1
AMD instruction wikipedia https://en.wikipedia.org/wiki/X86_Bit_manipulation_instruction_set.

44

https://en.wikipedia.org/wiki/X86_Bit_manipulation_instruction_set

4.6. Intrinsic Functions

Memory Usage for each Construction Algorithm

200 400 600 800 1,000

2

3

4

5

Input size [MB]

m
e
m
o
r
y
i
n
b
y
t
e
s

i
n
p
u
t
s
i
z
e
i
n
b
y
t
e
s

PWM1

PWM2

pext 𝜏 = 2

pext 𝜏 = 4

Shun 𝜏 = 2

Shun 𝜏 = 4

Figure 4.9.: Plot of memory usage divided by the payload size. The plot shows 6 cluster.

Two clusters are from the PWMalgorithm. Two from the normal pext algorithm
and their domain decomposition versions. The last 2 clusters are from the

Shun parallelization. For parallel constructions, 64 threads are used.

Different Phases of Matrix Construction

20 40 60 80 100

0

2

4

6

Input size [MB]

T
i
m
e
[
s
]

Running on Intel E5

bignode

pack&split

prefix

20 40 60 80 100

Input size [MB]

Running on AMD

Figure 4.10.: Plots showing the difference between the internal phases of the construction

on a Intel E5 CPU on the left, and of the AMD CPU on the right.

These speed differences are also visible in the plot at Figure 4.10, which displays the timing

of sequential construction of matrix. The phase pack&split, which is the only one utilizing

45

4. Evaluation

pack&split, can be seen to be roughly 10 times higher on the AMD side, compared to the

Intel side.

4.7. Code-Size

This work has now compared memory and runtime. Another interesting property is

the code size. The code sizes of the different algorithms from PWM and this work are

compared, for comparing them, the LOC of all called methods are compared. Methods from

c++ like vector construction is not counted. In Table 4.13 it can be seen, that histogram

building is roughly the same between this work, and PWM. The bignode phase of pext
algorithms is comparable to the flushing of the PWM repositories, conceptional as well

as judging by the size. However, flushing the bignode tree into the final results requires

another 93 lines of code. This shows that using any form of parallel processing of bits,

either by using pext or by using tables as described in [4] or [10], results in an significant

increase in complexity. The code size of the parallel versions is only having an impact

Algorithm Histogram [LOC] Bignode [LOC] Result filling [LOC]

pc 23 - 41

pc_ss 23 - 28

ps 23 - 28

pext 26 25 93

shun 26 169 269

Table 4.13.: Different code sizes compared in lines. For pext, cell iteration for tree building

is evaluated. The phase flushing is constructing the result buffer. For PWM

algorithm this is the normal insertion of bits according to pc, ps, or pc_ss. For
pext, Shuns algorithms this is the transformation from bignode tree to result.

on the none domain decomposition versions, as the merging of the wavelet structure is

performed by the same code, and has no difference in the conceptional working. The

Shun [8] approach is again a lot bigger in its code size, as a lot more different merging is

performed.

4.8. Runtime prediction for dynamic 𝜏 setting

In chapter 2.3, an alternative approach to Kaneta [9], Munro et al. [4], and Babenko et al.

[10] was explained. This algorithm could not be implemented due to the lack of time, and

the point of time when this approach started to form.

The other algorithms have been evaluated using a range of different 𝜏s. Therefore, the

time spend per line using a specific 𝜏 can be calculated. In the experiments, a payload

with ⌈log𝜎⌉ = 8 has been used. Therefore the time spend in a single line can be calculated

by dividing the time spend for the entire construction by 8. In the explanation of the

algorithm, it is explained that for line 4 ≤ 𝑖 < 8 𝜏 = 8 is used. For 2 ≤ 𝑖 < 4 𝜏 = 4 is used.

46

4.8. Runtime prediction for dynamic 𝜏 setting

And finally for 0 ≤ 𝑖 < 2 𝜏 = 2 is used. This means, that the time can be calculated using:

𝑇𝑑𝑦𝑛 =
1

2

· 𝑡8 +
1

4

· 𝑡4 +
1

4

· 𝑡2 (4.1)

With 𝑡𝑥 taken from the run with 𝜏 = 𝑥 . Using 𝑇𝑑𝑦𝑛 as a prognoses, the Table 4.8 shows

what runtime is to be expected. This prognoses shows, that this approach would roughly

be faster than the current implementations. And it replaces the entire bignode creation,

which lowers the amount of code required for the algorithm. Additionally, no 𝜏 must be

selected for a given input configuration, which makes the usage of the algorithm easier.

𝑠𝑖𝑧𝑒 𝜏 = 2 𝜏 = 4 𝜏 = 8 𝑇𝑑𝑦𝑛 𝑝𝑒𝑥𝑡

10MB 0.0207 0.0698 0.1748 0.1255 0.1396

20MB 0.0418 0.1508 0.3700 0.2643 0.3041

30MB 0.0718 0.2329 0.5675 0.4066 0.4633

40MB 0.1147 0.3306 0.8073 0.5804 0.6432

50MB 0.1447 0.4180 0.9754 0.7099 0.8064

60MB 0.1730 0.5074 1.2309 0.8835 0.9753

70MB 0.2012 0.5775 1.3775 0.9978 1.1228

80MB 0.2327 0.6537 1.5257 1.1151 1.2790

90MB 0.2639 0.7599 1.8271 1.3168 1.4631

100MB 0.2926 0.8376 1.9822 1.4372 1.6117

Table 4.14.: Table showing the prognoses for the alternative algorithm approach described.

The prognoses are calculated using Formula 4.1. The input values 𝑡8, 𝑡4, and 𝑡2
are used from measuring the internals of the algorithms with 𝜏 = 8, 𝜏 = 4, and

𝜏 = 2. All values in seconds

47

5. Conclusion

Wavelet structures can be used to answer select, access, and rank queries. These queries

can be used to process and work with strings. Wavelet structures can be of two kinds:

Trees and matrices. The construction of both takes a similar time, and the implementation

of select, access, and rank queries is similar. In the work of Dinklage et al. [2], construction

algorithms have been published in a github repository. These algorithms build these

structures in𝑂 (𝑛 log𝜎). Munro et al. [4] and Babenko et al. [10] showed, that the runtime

can be minimized to 𝑂

(
𝑛

⌈
log𝜎/

√︁
log𝑛

⌉)
by utilizing tables. The utilization of tables

results in a speedup utilizing bit word parallelization. Kaneta implemented this approach

in [9] replacing the table lookup with the intrinsic instructions like pext, pshufl. These
instructions are explained in Section 1.3. In this work, we implemented these construction

algorithms again using the pext instruction. We then used these implementations to

evaluate the performance for parallelization using domain decomposition. Additionally to

that, the idea from Shun [8] was implemented as well.

In this work, a second implementation of the wavelet structure merger from PWM was

produced. Lastly it showed that the PWM merger is mostly the fastest.

5.1. Conclusion over pext algorithms

With the idea of Munro et al. and Babenko et al. two additional parameter was added. In

Munro et al. and Babenko et al. one parameter, called 𝛽 , is defining how long the keys

of the key value pairs of the tables are. In these works, this parameter could simply be

chosen to minimize the theoretical runtime. However, in case of using pext, this is defined
by the hardware instruction, and the length of the registers. The second parameter is 𝜏 , is

controlling how many bits can be processed in parallel within a single word. It turned out

that this parameter has quite a big influence on the runtime, and must be chosen with a

dependency on log𝜎 .

Sequential Version. The sequential pext construction algorithms heavily depend on log𝜎 .

For log𝜎 = 8, it turned out to be faster than the PWM algorithms, this is detailed in

Figures 4.5 and 4.6. For a lower log𝜎 the speedup constantly decreases, lastly, for lower

log𝜎 values, the PWM construction algorithms are again faster. Over the process of

implementing all this, it turned out, that there are different implementation from the pext
instruction on a hardware level, this is detailed in 4.6

Parallel Version. The parallel versions of the algorithms turned out to also outperform

the PWM algorithms for log𝜎 = 8, however, by a lot lower margin. The speedup also

decreases way faster, and the PWM algorithms are faster at a higher log𝜎 compared to

the sequential versions.

49

5. Conclusion

The implementation of the Shun approach showed, that it cannot be faster than the domain

decomposition versions. A more detailed analysis of that can be found in Section 4.5.

5.2. Further Improvements

In the algorithms implemented here, only 64 bit registers have been used for pext instruc-
tions. However, it would be a good idea to elaborate if the pext instructions can be used

with 128 bit registers, as this would increase the amount of parallel extraction that can be

used to implement the two main function split&sort and pack.
Additionally, in Section 2.3 a new approach for implementing the construction of wavelet

structures has been presented. This elaborates the fact, that we can choose a free 𝜏 between

different lines. This is only possible due to using the pext instruction. In the approach

from Munro et al. and Babenko et al., it would require all tables to be recreated.

Further more, certain 𝜏 and log𝜎 configurations would allow for further simplifications of

the bignode tree creation. For example: 𝜏 = 2 and log𝜎 = 2 would mean, that the bignode

tree phase only consists of copying two bits from each character into the bignode tree.

This could also be implemented using pext, utilizing again bit word parallelization.

The work of Dinklage et al. [2] showed different approaches for walking the input. These

different approaches resulted in different run times. This knowledge could be used to

optimize bignode building further more.

50

Bibliography

[1] Brent, Richard P. “The Parallel Evaluation of General Arithmetic Expressions”. In: J.
ACM (1974). doi: 10.1145/321812.321815.

[2] Dinklage, Patrick and Ellert, Jonas and Fischer, Johannes and Kurpicz, Florian and

Löbel, Marvin. “Practical Wavelet Tree Construction”. In: ACM J. Exp. Algorithmics
(2021). doi: 10.1145/3457197.

[3] George, Thomas and Sarin, Vivek". “Domain Decomposition”. In: Encyclopedia of
Parallel Computing. Ed. by David Padua. Boston, MA: Springer US, 2011, pp. 578–587.

isbn: 978-0-387-09766-4. doi: 10.1007/978-0-387-09766-4_291.

[4] J. Ian Munro and Yakov Nekrich and Jeffrey Scott Vitter. “Fast construction of

wavelet trees”. In: Theor. Comput. Sci. 638 (2016), pp. 91–97. doi: 10.1016/j.tcs.
2015.11.011.

[5] José Fuentes-Sepúlveda and Erick Elejalde and Leo Ferres and Diego Seco. “Parallel

construction of wavelet trees on multicore architectures”. In: Knowl. Inf. Syst. 51.3
(2017), pp. 1043–1066. doi: 10.1007/s10115-016-1000-6.

[6] Joseph F. JáJá. An Introduction to Parallel Algorithms. Addison-Wesley, 1992. isbn:

0-201-54856-9.

[7] Julian Labeit and Julian Shun and Guy E. Blelloch. “Parallel lightweight wavelet

tree, suffix array and FM-index construction”. In: J. Discrete Algorithms 43 (2017),
pp. 2–17. doi: 10.1016/j.jda.2017.04.001.

[8] Julian Shun. “Improved parallel construction of wavelet trees and rank/select struc-

tures”. In: Inf. Comput. 273 (2020), p. 104516. doi: 10.1016/j.ic.2020.104516.

[9] Kaneta, Yusaku. “Fast Wavelet Tree Construction in Practice: 25th International

Symposium, SPIRE 2018, Lima, Peru, October 9-11, 2018, Proceedings”. In: Jan. 2018,

pp. 218–232. isbn: 978-3-030-00478-1. doi: 10.1007/978-3-030-00479-8_18.

[10] Maxim A. Babenko and Pawel Gawrychowski and Tomasz Kociumaka and Tatiana

Starikovskaya. “Wavelet Trees Meet Suffix Trees”. In: SODA. SIAM, 2015, pp. 572–

591. doi: 10.1137/1.9781611973730.39.

[11] Peter Sanders and Kurt Mehlhorn and Martin Dietzfelbinger and Roman Dementiev.

Sequential and Parallel Algorithms and Data Structures - The Basic Toolbox. Springer,
2019.

[12] Pramod Chandra P. Bhatt and Krzysztof Diks and Torben Hagerup and V. C. Prasad

and Tomasz Radzik and Sanjeev Saxena. “Improved Deterministic Parallel Integer

Sorting”. In: Inf. Comput. 94.1 (1991), pp. 29–47. doi: 10.1016/0890-5401(91)90031-
V.

51

https://doi.org/10.1145/321812.321815
https://doi.org/10.1145/3457197
https://doi.org/10.1007/978-0-387-09766-4_291
https://doi.org/10.1016/j.tcs.2015.11.011
https://doi.org/10.1016/j.tcs.2015.11.011
https://doi.org/10.1007/s10115-016-1000-6
https://doi.org/10.1016/j.jda.2017.04.001
https://doi.org/10.1016/j.ic.2020.104516
https://doi.org/10.1007/978-3-030-00479-8_18
https://doi.org/10.1137/1.9781611973730.39
https://doi.org/10.1016/0890-5401(91)90031-V
https://doi.org/10.1016/0890-5401(91)90031-V

Bibliography

[13] Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
January 12-14, 2003, Baltimore, Maryland, USA. ACM/SIAM, 2003. isbn: 0-89871-538-

5. url: http://dl.acm.org/citation.cfm?id=644108.

[14] Vishkin, Uzi. Thinking in Parallel: Some Basic Data-Parallel Algorithms and Techniques.
url: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.8.3584&

rep=rep1&type=pdf.

52

http://dl.acm.org/citation.cfm?id=644108
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.8.3584&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.8.3584&rep=rep1&type=pdf

53

A. Appendix

A. Appendix

A.1. Parallel wavelet construction using generated data
Algorithm 8 7 6 5 4 3 2

𝑤𝑚_𝑑𝑑_𝑝𝑐50𝐺𝐵 51601.0 42858.0 37529.0 28994.0 21428.0 19715.0 13007.0

𝑤𝑚_𝑑𝑑_𝑝𝑐_𝑠𝑠50𝐺𝐵 49156.0 39991.0 30800.0 26776.0 21086.0 16855.0 13519.0

𝑤𝑚_𝑑𝑑_𝑝𝑠50𝐺𝐵 47647.0 39712.0 34247.0 27728.0 23955.0 19105.0 17769.0

𝑤𝑚_𝑝_𝑝𝑒𝑥𝑡𝑏2𝑎250𝐺𝐵 44092.0 44091.0 33918.0 33341.0 24611.0 23815.0 15025.0

𝑤𝑚_𝑝_𝑝𝑒𝑥𝑡𝑏4𝑎250𝐺𝐵 46347.0 46275.0 38856.0 37665.0 27232.0 25030.0 18809.0

𝑤𝑚_𝑝𝑝𝑐50𝐺𝐵 162224.0 160064.0 161627.0 157670.0 172909.0 196855.0 155791.0

𝑤𝑚_𝑝𝑝𝑐_𝑠𝑠50𝐺𝐵 200992.0 210481.0 200871.0 217146.0 180143.0 184415.0 152028.0

𝑤𝑚_𝑝𝑝𝑠50𝐺𝐵 78795.0 78593.0 74302.0 62202.0 61529.0 52019.0 47234.0

𝑤𝑡_𝑑𝑑_𝑝𝑐50𝐺𝐵 48240.0 38747.0 34016.0 29364.0 19323.0 13602.0 11790.0

𝑤𝑡_𝑑𝑑_𝑝𝑐_𝑠𝑠50𝐺𝐵 48634.0 35947.0 31965.0 25002.0 20279.0 18442.0 11313.0

𝑤𝑡_𝑑𝑑_𝑝𝑠50𝐺𝐵 48058.0 39775.0 34657.0 29087.0 22291.0 17406.0 16005.0

𝑤𝑡_𝑝_𝑝𝑒𝑥𝑡𝑏2𝑎350𝐺𝐵 43572.0 43005.0 32610.0 31853.0 24183.0 24186.0 15955.0

𝑤𝑡_𝑝_𝑝𝑒𝑥𝑡𝑏4𝑎350𝐺𝐵 45303.0 44619.0 36923.0 36603.0 26144.0 25356.0 18055.0

𝑤𝑡_𝑝𝑝𝑐50𝐺𝐵 177602.0 166174.0 155719.0 157171.0 203019.0 198977.0 156542.0

𝑤𝑡_𝑝𝑝𝑐_𝑠𝑠50𝐺𝐵 203858.0 197630.0 205344.0 193890.0 178974.0 181599.0 174992.0

𝑤𝑡_𝑝𝑝𝑠50𝐺𝐵 78181.0 78822.0 72600.0 64694.0 59171.0 52045.0 48685.0

𝑤𝑚_𝑑𝑑_𝑝𝑐40𝐺𝐵 33287.0 32361.0 27022.0 23098.0 17134.0 12584.0 10400.0

𝑤𝑚_𝑑𝑑_𝑝𝑐_𝑠𝑠40𝐺𝐵 34271.0 29778.0 23986.0 22348.0 17092.0 13997.0 8616.0

𝑤𝑚_𝑑𝑑_𝑝𝑠40𝐺𝐵 35007.0 29552.0 27058.0 21728.0 18285.0 18241.0 10618.0

𝑤𝑚_𝑝_𝑝𝑒𝑥𝑡𝑏2𝑎240𝐺𝐵 35698.0 34365.0 26762.0 26228.0 19184.0 18952.0 12910.0

𝑤𝑚_𝑝_𝑝𝑒𝑥𝑡𝑏4𝑎240𝐺𝐵 32269.0 32304.0 28707.0 28189.0 20256.0 20607.0 14098.0

𝑤𝑚_𝑝𝑝𝑐40𝐺𝐵 129530.0 128463.0 132225.0 123720.0 156812.0 146338.0 123915.0

𝑤𝑚_𝑝𝑝𝑐_𝑠𝑠40𝐺𝐵 157497.0 159163.0 161522.0 155095.0 136040.0 145591.0 123237.0

𝑤𝑚_𝑝𝑝𝑠40𝐺𝐵 67595.0 58618.0 55225.0 50521.0 47646.0 41867.0 37395.0

𝑤𝑡_𝑑𝑑_𝑝𝑐40𝐺𝐵 37614.0 32440.0 23477.0 19763.0 15454.0 15540.0 10279.0

𝑤𝑡_𝑑𝑑_𝑝𝑐_𝑠𝑠40𝐺𝐵 34566.0 28920.0 24619.0 23450.0 15873.0 12347.0 9132.0

𝑤𝑡_𝑑𝑑_𝑝𝑠40𝐺𝐵 35361.0 30534.0 27064.0 22377.0 17161.0 16471.0 11666.0

𝑤𝑡_𝑝_𝑝𝑒𝑥𝑡𝑏2𝑎340𝐺𝐵 31654.0 32873.0 25300.0 25175.0 18360.0 18574.0 12680.0

𝑤𝑡_𝑝_𝑝𝑒𝑥𝑡𝑏4𝑎340𝐺𝐵 31772.0 32593.0 27840.0 27910.0 20265.0 20034.0 14809.0

𝑤𝑡_𝑝𝑝𝑐40𝐺𝐵 135139.0 130752.0 125093.0 125294.0 155916.0 147629.0 123989.0

𝑤𝑡_𝑝𝑝𝑐_𝑠𝑠40𝐺𝐵 165539.0 153463.0 161934.0 145853.0 139166.0 149293.0 121716.0

𝑤𝑡_𝑝𝑝𝑠40𝐺𝐵 62662.0 58898.0 54573.0 50769.0 47138.0 41245.0 37310.0

𝑤𝑚_𝑑𝑑_𝑝𝑐30𝐺𝐵 27788.0 21559.0 22355.0 19954.0 14821.0 10414.0 7330.0

𝑤𝑚_𝑑𝑑_𝑝𝑐_𝑠𝑠30𝐺𝐵 25762.0 21710.0 18254.0 15007.0 12529.0 9114.0 8167.0

𝑤𝑚_𝑑𝑑_𝑝𝑠30𝐺𝐵 26795.0 23357.0 19674.0 16081.0 13887.0 12452.0 8389.0

𝑤𝑚_𝑝_𝑝𝑒𝑥𝑡𝑏2𝑎230𝐺𝐵 25179.0 25522.0 20101.0 19869.0 14886.0 14826.0 9393.0

𝑤𝑚_𝑝_𝑝𝑒𝑥𝑡𝑏4𝑎230𝐺𝐵 24839.0 24886.0 21950.0 21671.0 15100.0 15191.0 11165.0

𝑤𝑚_𝑝𝑝𝑐30𝐺𝐵 99496.0 95516.0 93757.0 94943.0 113561.0 109307.0 98344.0

𝑤𝑚_𝑝𝑝𝑐_𝑠𝑠30𝐺𝐵 121768.0 137663.0 114555.0 111828.0 108458.0 102605.0 100681.0

𝑤𝑚_𝑝𝑝𝑠30𝐺𝐵 48795.0 45014.0 44492.0 38186.0 35648.0 30713.0 29102.0

𝑤𝑡_𝑑𝑑_𝑝𝑐30𝐺𝐵 26979.0 20993.0 19698.0 17621.0 12896.0 9651.0 5614.0

𝑤𝑡_𝑑𝑑_𝑝𝑐_𝑠𝑠30𝐺𝐵 26114.0 21650.0 20502.0 16577.0 13911.0 8590.0 6794.0

𝑤𝑡_𝑑𝑑_𝑝𝑠30𝐺𝐵 26657.0 23536.0 19676.0 16527.0 13108.0 10659.0 8597.0

𝑤𝑡_𝑝_𝑝𝑒𝑥𝑡𝑏2𝑎330𝐺𝐵 25201.0 25125.0 19125.0 19385.0 14237.0 14323.0 9158.0

𝑤𝑡_𝑝_𝑝𝑒𝑥𝑡𝑏4𝑎330𝐺𝐵 24729.0 24736.0 21216.0 21028.0 14782.0 14924.0 11015.0

𝑤𝑡_𝑝𝑝𝑐30𝐺𝐵 99164.0 146028.0 94016.0 95132.0 107593.0 103567.0 93699.0

𝑤𝑡_𝑝𝑝𝑐_𝑠𝑠30𝐺𝐵 119380.0 119192.0 107613.0 110821.0 109353.0 106139.0 91225.0

𝑤𝑡_𝑝𝑝𝑠30𝐺𝐵 48640.0 44230.0 43798.0 38588.0 35374.0 30807.0 28644.0

54

A.1. Parallel wavelet construction using generated data

Algorithm 8 7 6 5 4 3 2

𝑤𝑚_𝑑𝑑_𝑝𝑐20𝐺𝐵 16323.0 17960.0 15261.0 12144.0 9358.0 7998.0 5132.0

𝑤𝑚_𝑑𝑑_𝑝𝑐_𝑠𝑠20𝐺𝐵 17395.0 14852.0 13504.0 10487.0 8384.0 6181.0 4285.0

𝑤𝑚_𝑑𝑑_𝑝𝑠20𝐺𝐵 17608.0 15184.0 13098.0 10813.0 9036.0 7033.0 5301.0

𝑤𝑚_𝑝_𝑝𝑒𝑥𝑡𝑏2𝑎220𝐺𝐵 16701.0 16918.0 13057.0 13272.0 9736.0 9652.0 5887.0

𝑤𝑚_𝑝_𝑝𝑒𝑥𝑡𝑏4𝑎220𝐺𝐵 16277.0 15894.0 13819.0 13939.0 10105.0 9864.0 7074.0

𝑤𝑚_𝑝𝑝𝑐20𝐺𝐵 66063.0 64849.0 61854.0 67228.0 74680.0 74110.0 62350.0

𝑤𝑚_𝑝𝑝𝑐_𝑠𝑠20𝐺𝐵 84234.0 86476.0 81693.0 78307.0 71863.0 74261.0 61621.0

𝑤𝑚_𝑝𝑝𝑠20𝐺𝐵 32426.0 31130.0 29011.0 25910.0 23389.0 20422.0 18610.0

𝑤𝑡_𝑑𝑑_𝑝𝑐20𝐺𝐵 16109.0 13991.0 13386.0 9984.0 7713.0 5881.0 3714.0

𝑤𝑡_𝑑𝑑_𝑝𝑐_𝑠𝑠20𝐺𝐵 16963.0 14381.0 13026.0 10360.0 8220.0 6212.0 4297.0

𝑤𝑡_𝑑𝑑_𝑝𝑠20𝐺𝐵 17100.0 14934.0 13712.0 10928.0 8904.0 6957.0 5305.0

𝑤𝑡_𝑝_𝑝𝑒𝑥𝑡𝑏2𝑎320𝐺𝐵 16666.0 16816.0 12703.0 12762.0 9533.0 9417.0 5894.0

𝑤𝑡_𝑝_𝑝𝑒𝑥𝑡𝑏4𝑎320𝐺𝐵 15676.0 15672.0 13740.0 13881.0 9724.0 9876.0 7508.0

𝑤𝑡_𝑝𝑝𝑐20𝐺𝐵 66016.0 63234.0 63394.0 63039.0 76682.0 72704.0 63208.0

𝑤𝑡_𝑝𝑝𝑐_𝑠𝑠20𝐺𝐵 80416.0 80725.0 86005.0 77757.0 72652.0 75556.0 61332.0

𝑤𝑡_𝑝𝑝𝑠20𝐺𝐵 32139.0 31248.0 27645.0 24969.0 22854.0 20387.0 18554.0

𝑤𝑚_𝑑𝑑_𝑝𝑐10𝐺𝐵 9637.0 7870.0 7560.0 6476.0 3794.0 3663.0 2531.0

𝑤𝑚_𝑑𝑑_𝑝𝑐_𝑠𝑠10𝐺𝐵 8590.0 7362.0 6125.0 5036.0 4563.0 3199.0 2158.0

𝑤𝑚_𝑑𝑑_𝑝𝑠10𝐺𝐵 8742.0 7727.0 6418.0 5350.0 4616.0 3558.0 2661.0

𝑤𝑚_𝑝_𝑝𝑒𝑥𝑡𝑏2𝑎210𝐺𝐵 8299.0 8338.0 6481.0 6530.0 4860.0 4757.0 2997.0

𝑤𝑚_𝑝_𝑝𝑒𝑥𝑡𝑏4𝑎210𝐺𝐵 8034.0 7771.0 6990.0 6844.0 4925.0 4840.0 3613.0

𝑤𝑚_𝑝𝑝𝑐10𝐺𝐵 48098.0 32704.0 30723.0 31027.0 37205.0 33221.0 32483.0

𝑤𝑚_𝑝𝑝𝑐_𝑠𝑠10𝐺𝐵 42752.0 44302.0 39049.0 37778.0 36396.0 37911.0 31251.0

𝑤𝑚_𝑝𝑝𝑠10𝐺𝐵 16197.0 14844.0 13665.0 12560.0 11735.0 10644.0 9552.0

𝑤𝑡_𝑑𝑑_𝑝𝑐10𝐺𝐵 8482.0 7054.0 5937.0 5518.0 4242.0 2804.0 1762.0

𝑤𝑡_𝑑𝑑_𝑝𝑐_𝑠𝑠10𝐺𝐵 8835.0 7309.0 6139.0 5020.0 4054.0 3022.0 2617.0

𝑤𝑡_𝑑𝑑_𝑝𝑠10𝐺𝐵 8553.0 7653.0 6372.0 5309.0 4584.0 3718.0 2740.0

𝑤𝑡_𝑝_𝑝𝑒𝑥𝑡𝑏2𝑎310𝐺𝐵 8308.0 8191.0 6274.0 6447.0 4661.0 4532.0 3019.0

𝑤𝑡_𝑝_𝑝𝑒𝑥𝑡𝑏4𝑎310𝐺𝐵 7871.0 7724.0 6739.0 6805.0 4945.0 4897.0 3697.0

𝑤𝑡_𝑝𝑝𝑐10𝐺𝐵 46207.0 32761.0 31177.0 31555.0 50586.0 36927.0 31412.0

𝑤𝑡_𝑝𝑝𝑐_𝑠𝑠10𝐺𝐵 44037.0 38229.0 37352.0 35138.0 35923.0 37930.0 30713.0

𝑤𝑡_𝑝𝑝𝑠10𝐺𝐵 16234.0 14958.0 13977.0 12632.0 11782.0 10256.0 9491.0

𝑤𝑚_𝑑𝑑_𝑝𝑐1𝐺𝐵 707.0 682.0 493.0 407.0 383.0 280.0 179.0

𝑤𝑚_𝑑𝑑_𝑝𝑐_𝑠𝑠1𝐺𝐵 886.0 741.0 533.0 511.0 453.0 243.0 186.0

𝑤𝑚_𝑑𝑑_𝑝𝑠1𝐺𝐵 709.0 652.0 561.0 415.0 451.0 269.0 139.0

𝑤𝑚_𝑝_𝑝𝑒𝑥𝑡𝑏2𝑎21𝐺𝐵 682.0 710.0 546.0 532.0 377.0 368.0 220.0

𝑤𝑚_𝑝_𝑝𝑒𝑥𝑡𝑏4𝑎21𝐺𝐵 630.0 628.0 545.0 544.0 376.0 386.0 261.0

𝑤𝑚_𝑝𝑝𝑐1𝐺𝐵 3312.0 3198.0 3063.0 3135.0 3800.0 3865.0 3082.0

𝑤𝑚_𝑝𝑝𝑐_𝑠𝑠1𝐺𝐵 5807.0 4011.0 3876.0 3697.0 3417.0 3779.0 3073.0

𝑤𝑚_𝑝𝑝𝑠1𝐺𝐵 1697.0 1577.0 1410.0 1269.0 1191.0 1051.0 951.0

𝑤𝑡_𝑑𝑑_𝑝𝑐1𝐺𝐵 736.0 700.0 505.0 457.0 382.0 288.0 181.0

𝑤𝑡_𝑑𝑑_𝑝𝑐_𝑠𝑠1𝐺𝐵 891.0 725.0 779.0 564.0 404.0 318.0 184.0

𝑤𝑡_𝑑𝑑_𝑝𝑠1𝐺𝐵 705.0 763.0 468.0 382.0 421.0 336.0 217.0

𝑤𝑡_𝑝_𝑝𝑒𝑥𝑡𝑏2𝑎31𝐺𝐵 673.0 680.0 505.0 513.0 373.0 363.0 220.0

𝑤𝑡_𝑝_𝑝𝑒𝑥𝑡𝑏4𝑎31𝐺𝐵 620.0 646.0 522.0 522.0 403.0 360.0 266.0

𝑤𝑡_𝑝𝑝𝑐1𝐺𝐵 3259.0 3305.0 3157.0 3239.0 3912.0 3851.0 3128.0

𝑤𝑡_𝑝𝑝𝑐_𝑠𝑠1𝐺𝐵 5369.0 3907.0 4282.0 3432.0 3527.0 3612.0 3039.0

𝑤𝑡_𝑝𝑝𝑠1𝐺𝐵 1666.0 1542.0 1380.0 1267.0 1191.0 1028.0 957.0

55

A. Appendix

56

A.2. Histograms of example texts

A.2. Histograms of example texts

0 50 100 150 200 250

0.0

0.5

1.0

1.5

·107
C
o
u
n
t
e
r

xml

0 50 100 150 200 250

0.0

1.0

2.0

3.0

·107

src

0 50 100 150 200 250

0.0

2.0

4.0

6.0

8.0

·107

C
o
u
n
t
e
r

prot

0 50 100 150 200 250

0.0

0.2

0.4

0.6

0.8

1.0

1.2

·108

dna

0 50 100 150 200 250

0.0

1.0

2.0

3.0

4.0
·108

C
o
u
n
t
e
r

eng

0 50 100 150 200 250

0.0

0.5

1.0

1.5

2.0

·108

random

0 20 40 60 80

10
9

10
10

10
11

10
12

10
13

Characters

l
o
g
(C

o
u
n
t
e
r
)

1000G

0 20 40 60 80 100 120

10
3

10
5

10
7

10
9

10
11

10
13

Characters

cc

57

	Abstract
	Zusammenfassung
	Introduction
	Related Work
	Wavelet Tree and Wavelet Matrix
	Rank / Select Queries on Wavelet Trees and Matrices

	Additional Instructions
	Algorithem Parallelization
	Contribution

	Sequential Algorithms
	Bignode Tree Building
	Creating Wavelet Tree and Wavelet Matrix out of Bignode Tree
	Wavelet Tree Construction
	Wavelet Matrix Construction
	Influence of
	Runtime

	Dynamic Adjustment

	Parallel Algorithms
	Domain Decomposition
	Shun Parallelization

	Evaluation
	Sequential Runtime of Basic Settings
	Comparing Domain Decomposition Mergers
	Comparing Shun and Domain Decomposition
	Comparing to PWM
	Comparing using Real World Data
	Comparing using Generated Data

	Memory Consumption
	Intrinsic Functions
	Code-Size
	Runtime prediction for dynamic setting

	Conclusion
	Conclusion over pext algorithms
	Further Improvements

	Bibliography
	Appendix
	Parallel wavelet construction using generated data
	Histograms of example texts

