KIT | KIT-Bibliothek | Impressum | Datenschutz

Camera-based Anomaly Detection with Generative World Models

Ollick, Noël 1,2
1 FZI Forschungszentrum Informatik (FZI)
2 Institut für Informationssicherheit und Verlässlichkeit (KASTEL), Karlsruher Institut für Technologie (KIT)

Abstract:

Although huge improvements in the field of autonomous driving have been made in recent years,
dealing with unexpected situations remains a challenging task. Anomaly detection techniques aim
to detect those unknown cases. While generative world models have shown promising results
regarding the perception of the environment and predicting future driving conditions, they are
rarely utilized in anomaly detection for autonomous driving. This thesis presents a novel anomaly
detection method which leverages the advantages of world models and uses feature extraction,
reconstructed observations, and predictions of future observations in order to detect corner cases
in automated driving. The proposed anomaly detection model works fully unsupervised and does
not require anomalies in training data.


Volltext §
DOI: 10.5445/IR/1000170314
Veröffentlicht am 26.04.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Informationssicherheit und Verlässlichkeit (KASTEL)
Publikationstyp Hochschulschrift
Publikationsdatum 31.03.2024
Sprache Englisch
Identifikator KITopen-ID: 1000170314
Art der Arbeit Abschlussarbeit - Bachelor
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page