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Abstract
Graph partitioning is a prominent problem in computer science with many different

use cases. It deals with splitting the nodes of a graph into k disjoint blocks of roughly
equal size while cutting few edges. As graph partitioning is NP-hard, heuristic approaches
are used in practice, e.g., multi-level graph partitioning that uses local search heuristics or
refinement algorithms to improve an existing solution. A common application is parallel
computation where work has to be distributed to computational nodes while balancing
the work load. As the numbers of computational nodes in systems are steadily increasing,
the need for partitioning into a large number of blocks rises. We investigate the quality
and running times of current refinement algorithms for large values of k – in the order of
thousand. Hereby, we put a special focus on high-quality partitioning. For that purpose we
implement several advanced algorithms in the shared-memory multi-level graph partition-
ing framework KaMinPar. We compare algorithms based on label propagation [34, 46],
an extension of the Fiduccia-Mettheyses algorithm [39] and an algorithm that uses flow
networks to minimize cuts [18]. The latter proofs to produce the solutions with the high-
est quality while having moderate running times. We also introduce a novel refinement
algorithm that is based on integer linear programming (ILP) to refine clusters of blocks.
We want to investigate the possibilities of this powerful tool in the domain of graph par-
titioning. Experiments show that albeit finding high quality solutions, the values of the
cuts are still in the median 3% worse than with flow-based refinement. Furthermore, the
ILP-based approach is three orders of magnitude slower than all other algorithms. Only
experiments with tighter balance constraints show promising results.

Zusammenfassung
Die Graphpartitionierung ist ein prominentes Problem in der Informatik mit vielen

verschiedenen Anwendungsfällen. Es beschäftigt sich mit dem Aufteilen der Knoten ei-
nes Graphen in k disjunkte Blöcke mit ungefähr gleicher Größe, wobei wenige Kanten
geschnitten werden. Da Graphpartitionierung NP-schwer ist, werden in der Praxis heu-
ristische Ansätze verwendet, z.B. Multi-Level Graphpartitionierung, die lokale Suchheuri-
stiken oder Refinement-Algorithmen benutzt, um eine existierende Lösung zu verbessern.
Eine gängige Anwendung ist die parallele Verarbeitung, bei der Arbeit auf Rechenkno-
ten aufgeteilt wird, wobei die Last gleichmäßig verteilt werden soll. Da die Anzahl von
Rechenknoten in Systemen stetig steigt, wächst die Nachfrage nach Partitionierung in
eine große Anzahl an Blöcken. Wir untersuchen die Qualität und Laufzeit von aktuel-
len Refinement-Algorithmen für große Werte von k – in der Größenordnung von Tau-
send. Dabei fokussieren wir uns speziell auf hochqualitative Partitionierung. Zu diesem
Zweck implementieren wir verschiedene fortschrittliche Algorithmen in dem Multi-Level
Graphpartitionierungsframework KaMinPar mit geteiltem Speicher. Wir vergleichen
Algorithmen, die auf Label Propagation [34, 46] basieren, eine Erweiterung des Fiduccia-
Mattheyses Algorithmus [39] und einen Algorithmus der Flussnetzwerke nutzt, um den
Schnitt zu minimieren [18]. Letzterer zeigt hierbei die Lösungen mit höchster Qualität bei
moderaten Laufzeiten. Wir stellen außerdem einen neuartigen Algorithmus vor, der auf
ganzzahliger linear Optimierung (Integer Linear Programming, ILP) basiert, um Cluster
von Blöcken zu verbessern. Wir wollen die Möglichkeiten dieses leistungsfähigen Werk-
zeugs im Bereich von Graphpartitionierung untersuchen. Experimente zeigen, dass obwohl
hochqualitative Lösungen gefunden werden, die Werte der Schnitte trotzdem im Median
3% schlechter sind, als mit flussbasiertem Refinement. Desweiteren ist der ILP-basierte
Ansatz drei Größenordnungen langsamer als alle anderen Algorithmen. Nur Experimen-
te mit strikteren Bedingungen an die gleichmäßige Verteilung zeigen erfolgversprechende
Ergebnisse.
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1 Introduction

1 Introduction

Graphs are a prominent model to represent real-world structures. They are used throughout
various application domains where objects are related to each other. One important processing
task is balanced graph partitioning, i.e., splitting the nodes of the graph into k disjoint blocks
of roughly equal size such that the number of edges running between different blocks is mini-
mized. Graph partitioning is often used as a building block for many different graph algorithms.
Note that this problem is NP-hard [15, 6]. In addition, no constant factor approximation ex-
ist [6]. Therefore, heuristic approaches are used in practice. Multi-level graph partitioning is a
prominent metaheuristic. It uses local search heuristics or refinement algorithms to successively
improve a given partition by moving nodes between the blocks.

A notable application of graph partitioning can be found in the distribution of work across
parallel machines, e.g., in the field of scientific simulations [42, 2]. Here, work units are modeled
as nodes and necessary communication between them as edges. Minimizing the edges between
different machines can reduce the overall communication overhead, as communication within
one is significantly faster than between different machines. We can use balanced graph parti-
tioning to assign each work unit to one of the k available machines such that the connections
between them are minimized while balancing the workload across them. Further applications
are the sharding of data [46], optimization of VLSI circuit design [28] or as preprocessing step
for finding shortest paths [35].

For some applications it is sufficient to partition the graph only once. Here solution quality
is more important than speed, as for example a better distribution of data can improve the
execution times of any future operation on the data. In total, this outweighs the additional
partitioning time. One recent advance in the field of high quality partitioning is the shared-
memory framework Mt-KaHyPar by Gottesbüren et al. [18]. Here they use, among others,
flow-based local search to improve the solution quality. With this approach, they outperform
many other partitioner in terms of quality. However, it is more designed for partitioning into
a small number of blocks. They analyze the performance and quality only for k ≤ 128. This is
analogous to traditional research which also focused on rather small values for k.

Though, the need for partitioning into a large number of blocks is steadily increasing due
to recent developments in the application domains. For example, current supercomputers
for high-performance computing reach up to millions of cores [45] which requires partitioning
into many blocks for efficient work distribution. Only recently, solutions tailored for large k
have been introduced. One notable example is the shared-memory framework KaMinPar
by Gottesbüren et al. [20]. They modify a state-of-the-art heuristic, the multi-level graph
partitioning, to efficiently handle partitioning into large k. They use however rather simple
local search heuristics.

Our goal in this work is now to combine both worlds: Partitioning into large k while using
advanced local search heuristics to improve the solution quality. Therefore on the one hand,
we want to examine the performance of current refinement algorithms for this case. On the
other hand, we want to explore novel methods using integer linear programming (ILP). Using
ILPs for local search or graph partitioning in general is not a highly studied field, albeit being a
prominent general purpose tool with many highly optimized solution strategies. Further, ILPs
are a powerful tool and have the potential of providing high quality solutions. For example,
Henzinger et al. [23] use ILPs to improve solution quality and their results are promising.
However, a downside is the computational expense of solving ILPs.
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1 Introduction

1.1 Problem Statement

In this thesis, we analyze the solution quality and running times of different local search heuris-
tics for graph partitioning with large k. A novel refinement algorithm using integer linear
programming should be developed. This algorithm should then be compared with other ad-
vanced refinement algorithms, considering quality and running times. All algorithms should
be integrated into the shared-memory graph partitionier KaMinPar. The goal is to improve
the solution quality of KaMinPar and evaluate the potential of integer linear programming
in local search heuristics.

1.2 Contribution

We propose a refinement algorithm that is based on ILPs. Hereby, we construct an ILP from a
set of possible move candidates for a subset of the nodes. The ILP encodes information about
the improvement of the objective function for each individual node move, while considering bal-
ance and conflicts between adjacent nodes. It is used to decide which subset of the moves should
be executed to optimize the partition. We integrate this novel algorithm into the partitioner
KaMinPar [20]. Further, we implement a sequential k-way variant of the Fiduccia-Mattheyses
algorithm [12, 39], the Ugander-Backstrom algorithm [46] and a refinement algorithm based
on swapping nodes between blocks [16]. Additionally, we integrate flow-based refinement by
directly using the implementation from the Mt-KaHyPar [18] framework. The results show
that for 1000 ≤ k ≤ 1600 flow-based refinement provides the overall highest solution quality
while having moderate running times. The FM-algorithm also provides promising results with
the second highest quality, and is also faster than flow-based refinement. Our ILP-based refine-
ment is more than an order of magnitude slower than all other algorithms without producing
solutions with the highest quality. However, using stricter limits for the block weights increases
the quality relative to the other algorithms.

1.3 Outline

We introduce required notation and define the graph partitioning problem, (integer) linear
programming and flow networks in Section 2. In Section 3, we present related work concerning
refinement algorithms and the multi-level graph partitioning heuristic. We present our ILP-
based refinement algorithm in Section 4. Then, we outline our implementations of the other
evaluated refinement algorithms in Section 5. In Section 6 we present our experimental results
before concluding our findings and discussing future work in Section 7.
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2 Preliminaries

2 Preliminaries
Let G = (V,E) be an undirected graph with node weights c : V → N≥0 and edge weights
ω : V ×V → N≥0. The weight ω(u, v) for nonadjacent nodes u, v is defined to be 0. We extend
the weight functions to sets, i.e., c(V ′) := ∑

v∈V ′ c(v) and ω(E ′) := ∑
{u,v}∈E′ ω(u, v). We define

n := |V | and m := |E| as the number of nodes and edges respectively. We write G[V ′] for
the subgraph of G induced by the subset V ′ ⊆ V . We further define a contraction of a subset
V ′ ⊆ V of nodes as follows. The nodes in the subset are contracted into the single node v′
with the weight c(v′) = c(V ′). Possible parallel edges are replaced with a single edge with
accumulated weight, i.e., ∀u ∈ V \ V ′ : ω(v′, u) = ω(V ′ × {u}).

A solution to the graph partitioning problem for a number k ∈ N>1 is a partition of a graph
into non-empty blocks of nodes Π := {V1, . . . , Vk}, i.e., V1∪· · ·∪Vk = V and ∀i 6= j : Vi∩Vj = ∅.
We use Π[u] to denote the block in which the node u is in the current partition Π. The special
case k = 2 is called bipartitioning. The balance constraint further demands for a partition that

∀i ∈ {1, . . . , k} : c(Vi) ≤ Lk := (1 + ε)
⌈
c(V )
k

⌉
(balance constraint)

for some imbalance parameter ε.1 A partition that maintains the balance constraint is called
feasible. For a given partition the set Eij := {(u, v) ∈ E | u ∈ Vi, v ∈ Vj} for any i 6= j is the set
of cut edges between the blocks Vi and Vj. The objective is to minimize cut(Π) := ∑

i<j ω(Eij),
the total cut of a partition. We call a node with an incident cut edge a boundary node. The
set of all boundary nodes of a block is called its boundary. An abstract view of a partition
Π for a graph G is the quotient graph Q(Π, EΠ) where each block of the partitioned graph is
represented by a single node. Two blocks are connected via an edge if they share a non-empty
cut, i.e., EΠ := {(Vi, Vj) ∈ Π× Π | Eij 6= ∅}. The weight of an edge equals the sum of the
weights of all cut edges between the corresponding blocks.

For each node u in block Vi we define the gain

gj(u) := ω({(u, v) ∈ E | v ∈ Vj})− ω({(u, v) ∈ E | v ∈ Vi}) ,

that is the change in the total cut when moving u to block Vj. If the target block Vj is given
in the context, we use the short notation g(u). Note that the gain can be either positive or
negative.

(Integer) Linear Programming. Linear Programming (LP) is a method to describe op-
timization problems subject to linear constraints. The goal is to find a vector of variables
x = (x1, . . . , xn)T that minimizes or maximizes a given objective function. The linear con-
straints restrict the solution space. Mathematically we can define this as follows:

Definition 2.1 (Linear Program). Let A ∈ Rm×n be a matrix, b ∈ Rm and c ∈ Rn be vectors.
A linear program (LP) is defined as

maximize cT · x s.t.
Ax ≤ b

where x ∈ Rn is a vector of variables, cT · x is called the objective function and Ax ≤ b
represents the linear constraints. Note that the objective function can be not only maximized
but also minimized.

1There is an ongoing debate on the definition of the upper bound for the balance constraint. Some authors
use Lmax,k := max{(1 + ε) c(V )

k , c(V )
k + maxv c(v)} as upper bound.
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2 Preliminaries

A common metric for a given LP is the number of non-zeroes, that is the number of non-
zero entries in the matrix A. An Integer Linear Program (ILP) is a linear program where each
solution x must be a vector of integer values. Note that while linear programming is in P [27],
integer linear programming is NP-hard [26]. Accordingly, we can use ILPs to model many
different problems. In addition, much research has already been done in this area and many
efficient solvers have been developed. This recommends reducing a new problem to ILP and
using a solver for the latter, instead of developing a completely new algorithm.

One strategy for solving an ILP is the Branch-and-Bound algorithm [4]. We now shortly
describe it. Let therefore P be any integer linear program. The algorithm first relaxes P to a
linear program P ′. This only removes the integrality restrictions. It then computes an optimal
solution x′ for P ′. If all variables in x′ already have integer values, x′ is also an optimal solution
for P . In the other case, we begin branching into the two ILPs P1 and P2. Let xi be any
variable in x′ with a fractional value a. The two new problems are now defined as

P1 = P ∪ {xi ≤ bac}
P2 = P ∪ {xi ≥ dae}

where the union of the ILP P and a linear constraint means that the latter is added to the set
of constraints of P . Note that P1 and P2 are more restrictive versions of the original ILP that
both prevent xi = a to be part of a valid solution. Note however that for any optimal solution
for P , one of the additional constraints is fulfilled. The algorithm then recursively solves P1
and P2 by possibly branching further. This is repeated until the relaxation returns an integer
solution, which is then propagated to the higher levels. From the solutions for P1 and P2, the
algorithm picks the one with the higher objective. This gives us an optimal solution for P .
Each generated ILP in this method is called a node of the search tree.

Flows. A flow network is a directed graph N = (V , E , c) where each edge e ∈ E additionally
has a capacity c(e) ≥ 0. It has furthermore a dedicated source s ∈ V and sink t ∈ V . The goal
is to find a function f : V × V → R that assigns to each edge a number of flow units that are
sent over this edge. If f satisfies the following three constraints, it is called a (s, t)-flow.

∀u, v ∈ V : f(u, v) ≤ c(u, v) (capacity constraint)
∀u, v ∈ V : f(u, v) = −f(v, u) (skew symmetry constraint)

∀u, v ∈ V \ {s, t} :
∑

v∈V
f(u, v) = 0 (flow conservation constraint)

The value of a flow is defined by |f | := ∑
v∈V f(s, v) = ∑

v∈V f(t, v), i.e., the total amount of flow
units sent from the source to the sink. A flow f is called amaximum flow if no other flow f ′ exists
with |f | < |f ′|. For a given flow f we define the residual capacity as rf (e) := c(e)−f(e). An edge
with residual capacity rf (e) = 0 is called saturated. The residual capacities induce a residual
network or residual graph Nf = (V , Ef , rf ) where Ef := {(u, v) ∈ V × V | rf (u, v) > 0}.

According to the max-flow min-cut theorem [13], the value |f | of a maximum flow equals
the weight of a minimum (s-t)-cut. The latter is a set of edges that disconnect s and t. The
value of such a cut is the sum of the capacities of the contained edges. Each (s-t)-cut induces
a node bipartition (S,V \ S) with s ∈ S and t ∈ V \ S. The subsets S and V \ S can be also
calculated from a maximum flow f by traversing the corresponding residual graph Nf from the
source or the sink, respectively.
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3 Related Work
Graph partitioning is a highly researched area. Therefore, we refer the reader to survey pa-
pers [5, 7, 8, 43, 49] for a general overview of the topic. Here, we introduce local search heuristics
that are relevant for this work. Further, we present the multi-level graph partitioning which is
the metaheuristic that we used for our evaluation.

3.1 Refinement Algorithms

We start with presenting different refinement algorithms based on local searches. A refinement
has a graph G with an already feasible partition Π := {V1, . . . , Vk} as input. The goal is to
reduce the total cut by moving nodes between the blocks. The algorithms can be based on
moving single nodes or whole groups at once.

3.1.1 Kernighan-Lin

One of the first refinement algorithms was introduced by Kernighan and Lin [32]. The mo-
tivation is that for each bipartition V1, V2, there exist two subsets A ⊂ V1, B ⊂ V2 such that
swapping these sets results in a partition with minimum total cut. Finding these sets A,B is
however NP-hard. Hence, Kernighan and Lin propose a greedy algorithm to approximate these
sets. The general idea of this algorithm is to iteratively find pairs of nodes in different blocks
that decrease the total cut when swapped. In the following, we first describe the basic version
of the algorithm, that is designed to refine a perfectly balanced bipartition. Afterwards, we
present the extension to k-way partitioning with ε ≥ 0.

2-way Partitioning Algorithm. They start with an arbitrary partition V1, V2 and calculate
the gains g(v) for each node v ∈ V when moved to the other block. The next step is to find a
pair (a1, b1) ∈ V1 × V2 that maximizes the swap gain

g(a1, b1) = g(a1) + g(b1)− 2ω(a1, b1) , (3.1)

that is the decrease in edge cut when swapping a1 and b1. Note that if a1 and b1 are adjacent,
double the weight of their connection has to be subtracted to get the actual gain. They save
this pair (a1, b1) with maximum gain and remove it from further calculations. Afterwards they
recalculate the gains for the remaining nodes as if a1 and b1 had been swapped. With the
updated gain values they calculate and save a new maximum pair (a2, b2). This is repeated
until all nodes have been picked once. Thus, they obtain a sequence of pairs (a1, b1), . . . , (an, bn).
The partial sum GK = ∑K

k=1 g(ak, bk) is hereby the total gain when swapping the top K pairs.
Choose now K := arg max0≤k≤nGk, i.e., the number of pairs that maximize the gain when
swapped. Now, they swap the pairs (a1, b1), . . . , (aK , bK) such that bi ∈ V1 and ai ∈ V2 for each
1 ≤ i ≤ K. Afterwards the whole procedure is repeated with the improved partition as initial
solution. Note that if no partial sum is positive, the optimum is to swap no nodes. If this
is the case, the refinement is stopped as they reached a local minimum. The authors provide
an implementation with a running time of Ω(n2 log n). However, Dutt [11] could reduce it to
Θ(max(m ·∆,m log n)) where ∆ is the maximum degree of the graph.

Extension to k-way partitioning. For the general graph partitioning problem, Kernighan
and Lin [32] propose the following algorithm that uses the procedure for 2-way partitioning
described in the previous paragraph. They start with an arbitrary partition V1, . . . , Vk. The
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refinement algorithm for 2-way partitions is then used to refine pairs of the k blocks. They
repeat the pairwise refinement for several rounds, but only reschedule a pair if one of the blocks
changed in the last iteration. Further, they extend the algorithm to also handle ε > 0 by adding
isolated nodes. This enables that a perfectly balanced partition of a graph with the additional
nodes results in a feasible partition after removing them. Note that the cut is not affected by
isolated nodes.

3.1.2 Fiduccia–Mattheyses Algorithm

An improvement to the Kernighan-Lin algorithm was proposed by Fiduccia and Mattheyses
[12]. Their refinement algorithm (FM-algorithm) was originally designed for bipartitioning
hypergraphs. Note however that graphs are special cases of hypergraphs. One difference to
the Kernighan-Lin algorithm is that they move a single node in each step, instead of swapping
pairs. Further, they reduced the running time to O(m) by using a bucket array for saving
the gain values of move candidates. This significantly reduces the time required to find the
maximum gain move and to update gain values after moving nodes. We present further details
of the original bipartitioning algorithm in the following. Afterwards, we present modifications
to this version that remove the restriction to k = 2 blocks.

In each step of the FM-algorithm, the nodes with the currently highest gain of each block
are eligible for moving. Let these nodes be v1 ∈ V1 and v2 ∈ V2. If moving v1 into V2 would
violate the balance constraint, v2 is moved and vice versa. In case both nodes can move without
violating the constraint, they move the node with the higher gain. Ties are broken by the better
resulting balance. Note that they explicitly allow negative gain moves to hopefully escape a
local minimum. After moving a node, the algorithm updates the gain values of the other nodes
and the now two highest gain nodes become eligible. To guarantee linear running time, each
node can move at most once. When all nodes were moved once or the balance constraint
prevents further moves, it rolls back to the best found partition during the move sequence.
This algorithm can be repeated until no improvement of the total cut is achieved.

k-way Local Search. One method to extend any bipartitioning algorithm to the k-way
partitioning problem is recursive bisection. With this strategy, we first calculate a bipartition
of the original graph. Each block is then recursively split, until we reach the desired number of
blocks. This approach allows directly using 2-way refinement algorithms, however Simon and
Teng [44] have shown that recursive bisection can create solutions that are very far away from
the optimum. Hence, we are interested in direct k-way partitioning algorithms.

Several approaches exist to extend the FM-algorithm to k-way partitioning. An early
modification to it was proposed by both Sanchis [38] as well as Hendrickson and Leland [22].
They use k(k − 1) priority queues, i.e., two for each block pair. Each queue Pij contains all
possible moves from Vi to Vj. The priority of a move is its gain. Similar to the original FM-
algorithm, they move in each step the node with the highest gain that does not violate the
balance constraint.

Karypis and Kumar [30] improve this idea and use only one global priority queue P con-
taining nodes. The priority of v ∈ V is the maximum gain g(v) = maxi gi(v) for the respective
node. Further they initialize P with the nodes v where g(v) ≥ 0, i.e., a subset of the bound-
ary nodes. This improves the performance, as previously all possible moves of all nodes were
maintained in a queue. Otherwise, the algorithm works similar to the original algorithm: They
select in each step the top node v in P and find the block Vi that maximizes the gain gi(v) while
satisfying the balance constraint. Then they move v into Vi. Note that the gain of the executed
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3.1 Refinement Algorithms

move can differ from the priority as they ignore the balance constraint when initializing the
queue. Hence, also moves with negative gains are possible.

Osipov and Sanders [36] introduce a highly localized variation. They initialize the search
with single nodes. After moving a node its unmoved neighbors become eligible to move. They
further introduce an adaptive stopping criterion. This allows to stop a search early if further
improvements are unlikely. Starting from their approach, Sanders and Schulz [39] introduce a
FM variant called multi-try k-way FM. They add all boundary nodes into a todo list T . Then
they start a k-way local search from one random node v ∈ T . Afterwards they remove v from
T and start a new local search with a different initial node from T . Note that each local search
is restricted to nodes that have not been touched by any other local search before. This allows
an implementation in linear time, as each node is processed at most once.

We now shortly motivate the localization of the searches. Consider the case when the current
partition is in a local optimum, such that each boundary node has negative gain. To escape,
we have to move at least two nodes as the positive gain move is hidden behind the boundary.
If we now start a local search initialized with the whole boundary, we likely move many other
nodes before we find the correct move that allows us to escape the local minimum. However the
other moves maybe have worsened the partition too much already. If we localize the searches,
we rather roll back a move sequence when we do not find any improvement and start a new
search in a different location.

3.1.3 Label Propagation

The label propagation algorithm was introduced by Raghavan et al. [37] and is originally devel-
oped for community detection. This is a research field similar to balanced graph partitioning.
The task is to partition the node set as well, however the number of blocks is not fixed in
advance. Further the sizes of the block are not restricted. Instead of only minimizing the cut
edges, each block should represent a community. This is a group of nodes that share some
structural similarities, for example a clique, i.e., pairwise adjacent nodes. The algorithm now
works as follows: Each node has a label representing its block. Initially each node has its own
label, i.e., each node is in its own block. They then iterate over all nodes in random order.
When visiting a node u, they move u to the block Vi that maximizes the gain gi(u). Note
however that a node is not moved if the maximum gain is negative. Ties are broken uniformly
randomly. This is repeated until convergence.

Meyerhenke et al. [34] introduce a modification of this algorithm, called size-constrained
label propagation. Their version allows limiting the size of the resulting blocks. This enables
them to use this algorithm for refining a balanced partition. Therefore, they initialize each
node with its block in the current partition. Then they again traverse the nodes and greedily
move them to the best blocks. However, for each node u they only consider moves into blocks
Vi such that the balance constraint is respected, i.e., c(Vi) + c(u) ≤ Wmax where Wmax is the
maximum weight of a block. Thus, they always maintain a balanced partition after each move.
Again, they repeat the traversals until convergence, however they also stop after a maximum
number repetitions.

Ugander-Backstrom Algorithm. Another refinement algorithm that is based on the idea
of label propagation was proposed by Ugander and Backstrom [46]. The main difference to
(size-constrained) label propagation is that instead of directly moving nodes to the best block,
they gather these moves and later synchronously execute as many of them as possible while
maintaining balance. They use linear programming to decide how many nodes can move be-
tween the different block pairs while respecting given lower and upper bounds for the block
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sizes. Note that the algorithm is only designed for unweighted graphs. We now present further
details of this algorithm.

They start with gathering the moves that would be performed by classical label propagation.
Therefore, let V (i, j) be the nodes in Vi that would move to Vj, i.e., V (i, j) := {u ∈ Vi | gj(u) =
maxj′ gj′(u)}. They then sort each V (i, j) in decreasing gain which results in the ordered
sequence of nodes u1, . . . , uK with corresponding gains gj(u1) ≥ · · · ≥ gj(uK) ≥ 0. For each of
the sequences, they define the relocation utility function

fij(x) :=
x∑

k=1
gj(uk)

that describes the total gain by moving the leading x nodes from Vi to Vj. They now want
to find for each block pair (Vi, Vj) how many of the top gaining nodes should be moved to
maximize the gain while maintaining balance. Therefore, they introduce for each fij a variable
xij and maximize the sum ∑

i,j fij(xij). Further, they introduce the constraints

∀i : Si ≤ |Vi|+
∑

j 6=i
(xji − xij) ≤ Ti

and ∀i, j : 0 ≤ xij ≤ |V (i, j)|,

where the first restricts the size of each block Vi after moving the respective number of nodes
into and out of the block. The second constraint bounds the variables, as at most all nodes
in V (i, j) can move. Note that this is not yet a linear program, as fij is not linear. However,
they provide a translation into one. Note therefore that each fij is a piecewise linear concave
function because gj(uk) ≥ 0 and gj(uk) ≥ gj(uk+1). Note further that any piecewise linear
concave function f(x) can be transformed to f(x) = mink=1,...,l(akx+ bk), for appropriate ak’s,
bk’s and l. This leads to the following linear program:

max
X,Z

∑

i,j

zij s.t.

Si ≤ |Vi|+
∑

j 6=i
(xji − xij) ≤ Ti, ∀i

0 ≤ xij ≤ |V (i, j)|, ∀i, j
−aijkxij + zij ≤ bijk, ∀i, j, k

where the constants aijk and bijk can be directly derived from the relocation utility functions
fij. Solving this linear program returns for each block pair (Vi, Vj) the number xij of nodes that
should be moved to maximize the gain while maintaining balance. Afterwards the algorithm
moves the top xij nodes of each pair accordingly.

This procedure of gathering moves, solving the induced linear program and executing the
selected moves is one refinement round. The algorithm can be repeated for several rounds. One
drawback of this algorithm is that it is only designed for unweighted graphs. Hence, it can not
be used on every level of the multi-level partitioning, a prominent metaheuristic for graph par-
titioning. In Section 5, we introduce a weighted variant for the Ugander-Backstrom algorithm.
Note that the latter variant uses integer linear programming instead of linear programming.

3.1.4 Flow-Based Refinement

Sanders and Schulz [39] proposed an algorithm based on flows to refine a partitioned graph.
It was generalized to hypergraphs by Heuer et al. [24], further refined by Gottesbüren et al.
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[17] and parallelized by Gottesbüren et al. [18]. It is a pairwise refinement algorithm, i.e., they
refine pairs of blocks. It can move groups of nodes, however only between two blocks at once.
The general idea is to find a minimum cut, that separates two blocks. Therefore they construct
a flow network and find a maximum flow, which induces a minimum cut. They then move the
nodes such that this minimum cut is the new boundary between the blocks. We present further
details of the implementation in Section 5.

3.1.5 Refinement with Integer Linear Programming

Henzinger et al. [23] introduce an integer linear program that solves balanced graph partition-
ing to optimality. It is a generalization of a formulation for balanced bipartitioning. This does
however not scale well to large graphs. Hence, they combine the ILP with local search heuris-
tics to develop a refinement algorithm. We start with presenting the ILP and then show its
integration into a heuristic refinement algorithm.

For the ILP, they introduce a binary decision variable euv ∈ {0, 1} for every edge (u, v) ∈ E,
that decides whether (u, v) is a cut edge. The goal of the ILP is to find a partition with minimal
total cut. This translates into the objective function

min
∑

(u,v)∈E
euv · ω(u, v) .

They further introduce for every node u ∈ V and block Vi a variable xu,i ∈ {0, 1}, which is one
if u is in block Vi. Every node has to be assigned to exactly one of the k blocks, hence they
add the constraint

∀u ∈ V :
∑

1≤i≤k
xu,i = 1

which guarantees that exactly one variable per node equals 1. Further, the edge variables have
to be constrained to correctly represent its cut state. This means if both endpoints are in
different blocks, the variable has to equal 1 and 0 otherwise. Therefore, they add the following
two constraints:

∀(u, v) ∈ E,∀1 ≤ i ≤ k : euv ≥ xu,i − xv,i
∀(u, v) ∈ E,∀1 ≤ i ≤ k : euv ≥ xv,i − xu,i

If both endpoints of an edge (u, v) are in the same block, i.e., ∃i : xu,i = xv,i, every right-hand
side of the inequalities equals 0. Because the objective minimizes the sum of the edge variables,
euv correctly equals 0. Consider now the case where the endpoints are in different blocks. Here
one of the right-hand sides is 1, i.e., euv is correctly constrained to be 1. Lastly, they maintain
balance with the constraint

∀1 ≤ i ≤ k :
∑

u∈V
xu,i · c(u) ≤ Lk

where Lk is the maximum block weight. Minimizing the objective subject to the above con-
straints results in an optimal partition. Note however, that the size of the ILP grows linear
with the number of nodes and edges and therefore does not scale to large inputs.

We now present their refinement algorithm that uses the above ILP. Their main idea is to
use the ILP to partition a coarse representative, called model, of the original graph with less
nodes and edges. Therefore they select a subset of nodes K ⊆ V that are expected to be close to
the optimal cut. They contract the other nodes into one node per block of the original partition.
This means each Vi := Vi\K is contracted into the single node vi. Recall that a contracted node
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aggregates the node weights and edges. Their model now contains k+ |K| nodes. Then they use
the ILP to find an optimal partition of the model. This partition translates to a partition of the
original graph by assigning the contracted nodes v ∈ Vi to the block of its coarse representative
vi. Note that the partition has the same cut and balance properties due to the definition of a
contraction. However, this partition is not necessary optimal, as the nodes of each Vi can not
be assigned to different blocks. The quality is restricted by the selection of K, i.e., the nodes
that are not contracted.

They propose several strategies to find this subset K ⊆ V . The best strategy according to
their experiments is to find the nodes via a breadth first search that is initialized with all nodes
whose maximum gain is greater than or equal to ρ, i.e., {v ∈ V | maxi gi(u) ≥ ρ}. Here ρ is a
tuning parameter. With this strategy they select on the one hand nodes with high improvement
potential and on the other hand nodes that can counterbalance the block weight changes of the
moves.

3.2 Multi-Level Graph Partitioning

One metaheuristic for partitioning graphs is multi-level graph partitioning (MGP) [22]. The
motivation of this heuristic is to combine a more global view on the graph with local improve-
ments. Many current graph partitioners are based on this approach. A few examples are
KaHIP [40], KaMinPar [20], Metis [29] and Jostle [49]. This metaheuristic consists of
three steps: coarsening, initial partitioning and refinement.

The goal of the first step (coarsening) is to reduce the size of the original graph. This is done
by creating a hierarchy of successively smaller graphs by contracting matchings or clusters of
nodes. This allows a more global view of the graph on the coarse levels. In the initial partitioning
phase, a partition of the coarsest graph is calculated. A more expensive algorithm can be
used because of the decreased size of the graph. Many partitioners use a portfolio approach
composed of multiple different algorithms [41, 28, 20]. This initial solution is propagated to
the finer levels in the following refinement phase. We can extend the partition of the coarsened
graph to the finer graph by assigning each node to the block of its coarse representative. Note
that this partition has the same cut and balance properties as the coarsened graph. In each
uncoarsening step, refinement algorithms search for possible improvements of the current cut.

The multi-level graph partitioning combines at least two advantages: Firstly, on the coarse
level, groups of nodes can be moved in constant time. This global view on the graph is beneficial
for finding major improvements that would be harder to find on the finer levels [7]. Secondly, the
refinement on finer levels start from a good initial solution. This can improve the overall running
time, because the starting partition impacts the performance of many refinement algorithms [32,
46, 7].

Deep Multilevel Graph Partitioning. One improvement to the general multi-level graph
partitioning is Deep Multilevel Graph Partitioning (deep MGP) by Gottesbüren et al. [20]. It is
especially designed for handling partitioning with large values for k, i.e., in the order of millions.

Two typical strategies for the initial partitioning in classical MGP are direkt k-way parti-
tioning and recursive bipartitioning. The former directly calculates a k-way partition on the
coarsest representation of the graph. Therefore the coarsest graph has to have more then k
nodes left, usually kC nodes for an input parameter C. This means however that for large val-
ues of k, even the coarsest graph still has relative many nodes. This contradicts the design of
MGP and the initial partitioning can heavily impact the overall running time. Therefore many
systems use recursive bipartitioning after fully coarsening the graph when handling large k [30,
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39, 19]. This method first calculates a bipartition of the coarsest graph. It then recursively
further divides both blocks until it obtains the desired k blocks. This can however become a
scalability bottleneck when executing in parallel, especiall for large k [1].

Deep multilevel graph partitioning now tries to combine the advantages of both methods,
while mitigating the drawbacks. It starts with coarsening the graph until 2C nodes are left.
They then calculate a bipartition of the coarsest graph. During uncoarsening they successively
increase the number of blocks for the respective levels up to the final value for k. They use
recursive bipartitioning to further divide a partition from lower levels. The expected number of
blocks per level is chosen such that each bipartitioning handles roughly 2C nodes. Further they
use a balancer after uncoarsening to always guarantee that the balance constraint is fulfilled. On
each level they use a refinement algorithm to improve the current partition as in classic MGP.
When executing in parallel, in coarse levels, they copy the graph to fully use the potential of all
processing units. This is because the graph may become too small to be efficiently processed
by several units. They also justify the overhead of copying because it diversifies the search.

KaMinPar. Gottesbüren et al. [20] also present an implementation of the deep multilevel
graph partitioning scheme called KaMinPar. We used this framework as a basis for evalu-
ating the different refinement algorithms in this work. We now shortly describe the original
implementations that they used for the coarsening, bipartitioning and refinement.

For coarsening they use size-constrained label propagation [34] with a fixed upper bound
for the weight per cluster. This bound is dependent to k, ε and the total node weight. The
label propagation stops after at most five rounds. For the initial bipartitioning, they use a
multilevel algorithm. In this algorithm they again use label propagation for coarsening until it
converges. To initially partition the coarsest graph, they use random bipartitioning, breadth-
first searches and greedy graph growing [29]. They select the partition with the lowest total cut
from several tries of each algorithm. To refine the initial bipartition, they use 2-way FM [12].
After uncoarsening this initial partition to the finer levels, they use the same size-constrained
label propagation as in the coarsening step to refine the resulting partition.

We used this implementation mostly unchanged. The only modification was replacing the
refinement algorithm with the other algorithms that are presented and compared in this work.
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4 Refinement Based on Integer Linear Programming

Many refinement algorithms are based on moving single nodes at a time to improve the total
cut, whereby balance has to be respected after every move. However, this can make it difficult
to escape a local minimum, especially for strict balance constraints. In a local minimum, no
node can be moved to improve the cut without violating the balance constraint. At least one
node must be moved, temporarily worsening the result, to free up space in a block. Then a
different node can move into this block which possibly overcompensates the temporary loss.
Without considering multiple moves at once, it is however difficult to decide which negative
moves may later result in an overall gain. Therefore, approaches exist that move multiple
nodes at once, for example flow-based refinement. The latter has proven to compute high-
quality solutions [18]. However, this technique only refines the blocks pairwise, which hampers
finding more complicated move sequences between multiple blocks. We want to combine both
worlds: Direct k-way refinement that moves groups of nodes.

Based on this intuition, we propose an ILP-based refinement algorithm as sketched in Al-
gorithm 1. The algorithm works in rounds. In each round, we start by selecting a set of move
buffers M. Each move buffer M ∈ M consists of heuristically chosen move candidates, i.e.,
pairs (u, b) of nodes u and target blocks b. Note that a move buffer can contain multiple moves
for the same node. We then proceed by constructing an ILP for each move buffer M ∈ M,
which selects the subset MOPT ⊆ M of gain-maximizing moves. Using multiple move buffers
allows us to solve several smaller ILPs for different regions of the graph, rather than a single
large one. Note that we restrict moves in different buffers to not interfere with each other (see
Section 4.4 for further details). Finally, we apply the optimal moves MOPT to the current par-
tition and repeat the process for the next move buffer. After the last move buffer, we continue
with the next round or terminate if we exceeded the configured maximum number of rounds
imax.

Algorithm 1: High-level structure of the ILP refinement algorithm.
Data: G = (V,E), initial partition Π := {V1, . . . , Vk}

1 for i = 0; i < imax; i++ do
2 M := selectMoves(G, Π)
3 foreach M ∈M do
4 Mopt := solveILP(G, Π, M) // construct and solve the ILP
5 execute moves Mopt

For this section, we introduce the notation mu
i to describe the move of the node u to block

Vi. Note that we do not consider mu
i to be a valid move if u is already in block Vi. A set of

moves M is feasible if no two moves for the same node exist in M and if the partition remains
feasible after executing all moves. Informally, this means that we can safely execute all moves
in M with respect to balance. We further define for a set M of moves the local gain gL(M) as
the sum of the individual gains, i.e.,

gL(M) :=
∑

mu
i ∈M

gi(u) .

We further define the actual gain gA(M) as the cut reduction after executing all moves, i.e.,

gA(M) := cut(Π)− cut(Π′) ,
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where Π is the original partition and Π′ the partition after executing the moves inM . Note that
the local gain and actual gain can differ ifM contains moves for adjacent nodes (see Section 4.2
for further insights).

We call two moves M ′ := {mu
i ,m

v
j} of two different nodes u 6= v conflicting, if their local

gain differs from the actual gain, i.e., gL(M ′) 6= gA(M ′). Otherwise they are conflict-free. We
extend these definitions to pairs of nodes u, v ∈ V , i.e., they are conflict-free if and only if no
conflicting pair of moves {mu

i ,m
v
j} exists.

This section is structured as follows: In Section 4.1 we introduce a basic version of the ILP
that is constructed and solved in Line 4 of Algorithm 1. This version selects the subset of
moves M ′ ⊆ M that maximize the local gain gL(M ′). Note that this restriction simplifies the
formulation of the objective function of the ILP. However as we want to maximize the actual
gain, this version is only optimal if no conflicting moves exist inM . In Section 4.2, we elaborate
how conflicts arise and their influence on the difference between local and actual gain. We then
introduce an extended version of the ILP that optimizes directly the actual gain. Here, more
constraints are necessary to accurately model conflicts. Lastly, we introduce two algorithms for
the selection of move candidates in Line 2 of Algorithm 1.

4.1 Basic Integer Linear Program

In this section, we define the basic version of our ILP for selecting an optimal subset of moves
MOPT ⊆M such that the local gain gL(MOPT ) is maximized. We expect the moves in M to be
pairwise conflict-free. Recall that for conflict-free nodes the local gain equals the actual gain.
Note that only adjacent nodes can conflict (see the following section). Hence a simple method
to satisfy this restriction is to only add moves for disconnected nodes into M .

We now present the full definition of the basic ILP before shortly describing the different
parts. Afterwards, we show the correctness of the objective function and constraints.

Definition 4.1 (Integer Linear Program for Conflict-Free Moves). Let G = (V,E) be a graph
with node weights c and let Π := {V1, . . . , Vk} be a partition of G. Let M be a set of pairwise
conflict-free moves of nodes in G. The ILP for conflict-free moves is defined as

maximize
∑

mu
i ∈M

gi(u) · xui s.t.

∀u ∈ V :
∑

mu
i ∈M

xui ≤ 1 (4.1)

∀1 ≤ i ≤ k : W i
in −W i

out + c(Vi) ≤ W i
max (4.2)

where each xui is a binary decision variable, called move variable. A solution vector X for these
variables induces a subset of moves

MX := {mu
i ∈M | xui = 1} .

Further W i
max is a constant, that is the maximum weight of each block Vi and W i

in and W i
out

represent the incoming and outgoing weight, when executing the selected moves. The latter two
are linear functions of the move variables and defined as

W i
in :=

∑

u/∈Vi,mu
i ∈M

c(u) · xui and W i
out :=

∑

u∈Vi,mu
j ∈M

c(u) · xuj .
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As can be seen, the ILP introduces one binary decision variable xui ∈ {0, 1} for each move
candidate mu

i ∈ M . The move variables induce the subset of moves that should be executed.
The constraint 4.1 enforces that at most one move for each node u ∈ V is selected. Note that
if M contains at most one move for a node u, i.e., |{i | mu

i ∈ M}| ≤ 1, we do not add this
constraint for u, as it is always respected. The constraint 4.2 enforces that the block weights
remain below their respective limits after executing the selected moves. Note that for each
block arbitrary maximum weights or additional lower bounds are supported. We do not add
this constraint for a block Vi if moving all possible nodes into Vi does not exceed the maximum
block weight. Now, we show the correctness of the constraints and that an optimal solution to
the ILP induces a subset of moves that maximizes the gain.

Theorem 4.1. Let G = (V,E) be a graph with a partition Π = {V1, . . . , Vk} and let M be a
set of pairwise confict-free moves of nodes in G. For any optimal solution X to the ILP from
Definition 4.1 for G, Π and M , the induced subset MX ⊆M is feasible and has maximal actual
gain, i.e., gA(MX) ≥ gA(M ′) for any feasible M ′ ⊆M .

Proof. Let X be any optimal solution to the ILP above. We first show that MX is feasible.
Therefore, we have to show that
(i) at most on move per node is contained in MX and

(ii) the partition remains feasible after executing all moves in MX .
The constraint 4.1 implies that at most one move variable per node equals 1. This is due to
the domain of the variables. With the definition of MX , we can now directly conclude (i).

Further, consider any block Vi. When inserting the solution X into the definition of W i
in,

we see that it equals the sum of the weights of the nodes moved into Vi. Note therefore that
due to (i) no node weight is counted twice. Analogously, W i

out is the total weight of the nodes
moved out of Vi. Hence, W i

in−W i
out + c(Vi) is the weight of Vi after executing the moves. With

constraint 4.2 we can now conclude (ii).
It remains to show the optimality of MX . From the definition of MX and the local gain,

we can conclude that the value of the objective function equals the local gain gL(MX) when
inserting X. Because of the optimality of X, we can now follow for any solution X ′ to the ILP
that

gL(MX) ≥ gL(MX′) .

Now note that the moves in M are per requirement pairwise conflict-free, which holds for MX

as well. From the definition of conflicts, we can now conclude that gL(MX) = gA(MX), from
which we can conclude that MX has maximal actual gain.

4.2 Move Conflicts

In the previous section, we have restricted the ILP to conflict-free move candidates. To drop
this restriction and allow arbitrary sets of move candidates, we have to consider the various
types of conflicts that can occur when moving adjacent nodes simultaneously. To this end, we
now present the various types of conflicts and their influence on the actual gain. Note that
the following types are known within the research field of parallel refinement algorithms [31].
In the next section, we then extend the basic ILP with constraints that properly model the
different conflicts from this section.

Before introducing the different types, we first define the conflict value χ(mu
i ,m

v
j ) of a

conflict between two moves M := {mu
i ,m

v
j}. Recall therefore that a conflict arises when the
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actual gain gA(M) differs from the local gain gL(M). We define

χ(mu
i ,m

v
j ) := gA(M)− gL(M) = (cut(Π)− cut(Π′))

︸ ︷︷ ︸
actual gain

− (gi(u) + gj(v))
︸ ︷︷ ︸

local gain

,

where Π′ is the partition after executing both moves. Hence, the sum of the local gain and the
conflict value equals the actual gain, which is the desired value as it states the actual reduction
of the total cut. We say that a conflict is negative if χ(mu

i ,m
v
j ) < 0 and positive otherwise. In

the former case, we overestimate the actual gain of the two moves and underestimate it in the
latter.

We now describe the possible conflicts of two moves mu
i and mv

j for two nodes u, v ∈ V that
are connected via an edge e ∈ E. Recall that only adjacent nodes can create a conflict. The
possible values of a conflict depend on the source and target blocks of both nodes. Therefore,
we inspect every combination of source and target blocks. We start with the cases where u and
v are originally in different blocks and then where they are in the same block. Note that we
only have to consider the edge e for the calculation of the value of the conflict. Other incident
edges of u or v are not affected by moving the other node. Their cut state solely depends on
the move of u or v respectively. Therefore, we ignore other edges in the following. Note that
we use the short notations χ, gL and gA for the conflict value, local gain and actual gain of mu

i

and mv
j , respectively.

Let u be in Va and v in Vb with a 6= b, i.e., the source blocks are different. We can observe
either a negative or positive conflict between the moves mu

i and mv
j , depending on the target

blocks Vi and Vj. We can observe four different cases in total. These are depicted in Figure 1
and described in the following.

No Conflict. The target blocks are completely different from each other and the source
blocks, i.e., Vb 6= Vi 6= Vj 6= Va. This case creates no conflict. Both moves have no gain
individually, as the edge e remains a cut edge. After executing both moves, e again remains a
cut edge and therefore no gain is achieved. This results in no difference between the local and
the actual gain. Therefore the value of this conflict is χ = 0.

Positive Conflict. Both nodes move to the same block, i.e., Vb 6= Vi = Vj 6= Va. Here, the
local gain is again zero as e remains a cut edge in the local perspective of both moves. When we
however execute them together, e is removed from the cut and the actual gain is ω(e). Hence,
the value of this conflict is χ = ω(e).

Single Negative Conflict. One node moves to the source block of the other node, but the
latter moves into a complete different block, i.e., Vb = Vi 6= Vj 6= Va. Here the individual gain
for mu

i is ω(e) as it removes e from the cut from its local perspective. However v moves to a
different block itself, whereby e remains a cut edge. Hence, the actual gain is 0 and the value
of this conflict is χ = −ω(e).

Double Negative Conflict. Both nodes swap their blocks, i.e., Vb = Vi 6= Vj = Va. Here
the gain is ω(e) for both moves individually. Therefore, the local gain is gL = 2ω(e). However,
after moving both nodes at once, e remains a cut edge and the actual gain is gA = 0. This
results in a value of −2ω(e) for this conflict.
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(a) No conflict. Both nodes move to two dif-
ferent blocks. gA = gL = χ = 0.

u v
e

v

u

0 0

+w(e)

(b) Positive conflict. Both nodes move to the
same block. gA = ω(e), gL = 0, χ = ω(e).

u v
e

u

v

+w(e)

0
0

(c) Single negative conflict. The node u moves
into the block of v while v moves to a different
block. gA = 0, gL = ω(e), χ = −ω(e).

u v
e

uv

+w(e)+w(e)

0
(d) Double negative conflict. Both nodes swap
their blocks. gA = 0, gL = 2ω(e), χ =
−2ω(e).

Figure 1: Visualization of possible move conflicts between adjacent nodes that are initially
assigned to different blocks. The position of the nodes prior to and after moving them is drawn
in black and blue, respectively. The individual gain of each move is drawn in blue, while the
actual gain after moving both nodes is drawn in red.

These are the different types of conflicts for moves with different source blocks. Note that
the case where both nodes move to either Va or Vb does not exist as neither u nor v can move
to its own source. We do not allow such moves as they are irrelevant. To conclude, the value of
the conflict between mu

i and mv
j is x · ω(e) for x ∈ {−2,−1, 0, 1}. The concrete value depends

on the respective target blocks.
Let now u and v be both in Va, i.e., the source blocks are identical. We can again observe

conflicts between the moves mu
i and mv

j . In this case two different scenarios exist. Both
scenarios result in a positive conflict. We visualize them in Figure 2 and explain them in the
following.

Single Positive Conflict. Both nodes move to different blocks, i.e., Vi 6= Vj. From a local
perspective, each move adds the edge e to the cut and has therefore a gain of −ω(e). Hence,
the local gains is gL = −2ω(e). However the actual gain is gA = −ω(e) as the weight of the
edge is only added once to the total cut. To this end, the value of this conflict is χ = ω(e).

Double Positive Conflict. Both nodes move to the same block, i.e., Vi = Vj. Here the local
gain is gL = −2ω(e) again for the same reasons. The actual gain is however gA = 0 as after
moving both nodes, they are again in the same block and the edge is not added to the cut.
This results in a value of χ = 2ω(e) for this conflict.
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(a) Single Positive Conflict. Both nodes move
to two different blocks. gA = −ω(e), gL =
−2ω(e), χ = ω(e).
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(b) Double Positive Conflict. Both nodes
move to the same block. gA = 0, gL =
−2ω(e), χ = 2ω(e).

Figure 2: Visualization of possible move conflicts between adjacent nodes that are initially in
the same block. The position of the nodes prior to and after moving them is drawn in black
and blue, respectively. The individual gain of each move is drawn in blue, while the actual gain
after moving both nodes is drawn in red.

These two cases represent all types of conflicts between moves with the same source block.
To conclude, the value of the conflicts in this case are always χ = x · ω(e) where x ∈ {1, 2},
depending on the target blocks. Note that the conflicts are always positive.

4.3 Modeling Move Conflicts as Constraints

Recall that the ILP introduced in Section 4.1 is only accurate in the absence of any of the
move conflicts introduced in Section 4.2. Now, we incorporate these conflicts into the ILP to
accurately estimate the actual gain in all cases. Therefore, we add additional constraints and
a conflict term to the objective function. We calculate the sum of the values of each conflict
and add it to the objective function of the basic version. This results in the following ILP:

Definition 4.2 (Integer Linear Program for Conflicting Moves). Let G = (V,E) be a graph
with node weights c, edge weights ω and let Π := {V1, . . . , Vk} be a partition of G. Let M be
any set of moves of nodes in G. The ILP for conflicting moves is defined as

maximize
∑

mu
i ∈M

gi(u) · xui +
∑

(u,v)∈E
ω(u, v)·χu,v s.t.

∀u ∈ V :
∑

mu
i ∈M

xui ≤ 1 (4.3)

∀1 ≤ i ≤ k : W i
in −W i

out + c(Vi) ≤ W i
max (4.4)

and ∀(u, v) ∈ E with Va := Π[u] 6= Π[v] =: Vb :

χu,v + 2.5 (xub + xva) +
∑

i 6=b
xui +

∑

i 6=a
xvi ≤ 3 (4.5)

(k + 1) · χu,v +
∑

1≤i≤k
(i · xui − (i+ 1) · xvi ) ≤ k (4.6)

(k + 1) · χu,v +
∑

1≤i≤k
(i · xvi − (i+ 1) · xui ) ≤ k (4.7)
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and ∀(u, v) ∈ E with Π[u] = Π[v] :

(k + 1) · χu,v +
∑

1≤i≤k

(
i · xui − (i+ k + 2) · xvi

)
≤ k (4.8)

(k + 1) · χu,v +
∑

1≤i≤k

(
i · xvi − (i+ k + 2) · xui

)
≤ k (4.9)

where each xui is again a binary decision variables. Further χu,v is a bounded integer variable
for each (u, v) ∈ E that represents the type of the conflict between u and v. For Π[u] 6= Π[v] the
limits are −2 ≤ χu,v ≤ 1 and 0 ≤ χu,v ≤ 2 otherwise. The maximum, incoming and outgoing
weights W i

max, W i
in and W i

out, respectively, are defined as in the basic version in Definition 4.1.

As can be seen, this ILP contains all constraints from the basic version (see constraints 4.3
and 4.4), uses the same move variables xui for each move mu

i ∈ M and has the same sum as
first part of the objective function. The main additions are the conflict variables χu,v. The
ILP introduces one of these variables for each pair of conflicting nodes. The main idea of these
variables is to model the type of conflict. Consider for example two adjacent nodes u and v in
different blocks. Let further these nodes switch their blocks according to the move variables.
In this case the conflict variable has to be χu,v = −2. Recall therefore from Section 4.2 that
this is a double negative conflict. Analogously, the variable is expected to be −1, 1, 2 or 0 if
the corresponding nodes create a single negative, single positive, double positive or no conflict,
respectively. Note that for readability reasons we defined conflict variables and corresponding
constraints for every adjacent node pair (u, v) ∈ E. This is not necessary in practice, as we
only have to consider adjacent node pairs for which both nodes have at least one move in M .
Otherwise, no conflict can arise.

The objective function consists of two sums. The first sum is equivalent to the objective
function of the basic version, i.e., the local gain gL(MX) for any solution X. The second sum
adds the total conflict value due to the expected values of each χu,v. The sum of both equals
the actual gain gA(MX), as the conflict value is defined to be the difference between actual and
local gain. Hence the ILP maximizes the actual gain instead of just the local gain.

The constraints 4.5 - 4.7 enforce that the conflict variable χu,v has the correct value if
Π[u] 6= Π[v], i.e., u and v are initially in different blocks. The correct values for Π[u] = Π[v]
are enforced by the constraints 4.8 and 4.9. Note that the types of conflict differ if the nodes
are initially in different or the same block, hence we use different constraints for both cases.
We explain the constraints in the following. Note therefore, that the move variables xui are
binary decision variables and that constraint 4.3 guarantees that for each node at most one
move variable is 1. Note further that we maximize the conflict variables in the second sum
of the objective function. Hence, an upper bound χu,v ≤ C is sufficient to force the conflict
variable to be equal to C.

4.3.1 Handling Conflicts between Nodes in Different Blocks

We first explain the constraints 4.5 - 4.7 for conflicts between nodes in different blocks. There-
fore, we derive the constraints step by step. We first give an intuition to the general structure
of them. Then we parameterize the numerical values in the constraints. We can derive re-
quirements for these parameter from the requirements for the conflict variables for the different
types of conflicts. Finally, we show that the values we used in the ILP definition respect all
requirements.

Let therefore u, v ∈ V be adjacent nodes where Va := Π[u] 6= Π[v] =: Vb in the original
partition. We need to add constraints that set an upper bound to the conflict variable for the
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4.3 Modeling Move Conflicts as Constraints

four different cases: double negative conflict, single negative conflict, no conflict and positive
conflict. We first derive the necessary constraint for the cases of a negative conflict and later
the constraints for handling no or a positive conflict.

Handling Negative Conflicts. Recall that a double negative conflict arises if both nodes
swap their blocks. This means xub = xva = 1 and we need the constraint χu,v ≤ −2 to represent
the conflict correctly. A first idea would be the constraint

χu,v + xub + xva ≤ 0 . (4.10)
It simplifies to the required inequality when a double negative conflict arises.

We now consider the case of a single negative conflict. Recall that in this case one node
moves into the source block of the other node. Let the first node be u and the latter v. In
addition, the node v has to move to a block different than Va. This results in xub = 1 and xvj = 1
for j 6= a. When we insert these values into Equation 4.10, we can simplify the constraint to
χu,v ≤ −1. This is the expected behavior. So the constraint above correctly handles the cases
of negative conflicts.

When we however now consider the cases where the moves create no conflict, we will see that
this constraint wrongfully restricts the conflict variable. Therefore let xub = 1 and ∀j : xvj = 0,
i.e., only one node moves to the source block of the other while the other node does not move.
This does not create any conflict value, Equation 4.10 however simplifies to χu,v ≤ −1. Hence
we need to factor every move variable into our constraint to guarantee that the conflict variable
is only restricted if both nodes move. We however still have to differentiate between moving a
node into the source block of the other node and moving it into a completely different block.
This motivates the constraint

χu,v + c1 (xub + xva) +
∑

i 6=b
xui +

∑

i 6=a
xvi ≤ c2 (4.11)

for proper values of the constants c1 and c2. To find these values, we evaluate this constraint
for every conflict type. This results in inequalities that restrict the conflict variable depending
on c1 and c2. With the expected upper bounds for χu,v in each case, we can derive requirements
for c1 and c2. From these requirements for the different cases, we can derive proper values for
these constants. We start with the cases of negative conflicts. Recall therefore that for a single
or double negative conflict the equation must simplify to χu,v ≤ −1 or χu,v ≤ −2 respectively.

Single Negative Conflict. Let u be the node that moves into the source block of v. For
a single negative conflict we have the situation xub = 1 and xvj = 1 for a j 6= a. Inserting this
into Equation 4.11 results in χu,v ≤ c2 − 1 − c1. To achieve the expected upper bound of −1,
the inequality −1 ≤ c2 − 1− c1 < 0 must be satisfied. The range of [−1, 0) is allowed as upper
bound, as the conflict value is an integer. Simplifying this inequality results in the requirement

c1 ≤ c2 < c1 + 1 (4.12)
for the constants c1 and c2.

Double Negative Conflict. For a double negative conflict, both nodes swap their blocks,
i.e., xub = 1 and xva = 1. With these values, we can simplify the constraint 4.11 to χu,v ≤ c2−2c1.
In this case, the conflict variable has to equal to −2, hence the right side of the simplified
constraint has to be in [−2,−1). We therefore obtain the requirement

2c1 − 2 ≤ c2 < 2c1 − 1 (4.13)
for c1 and c2.
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Combining these two inequalities, we obtain 2c1 − 2 < c1 + 1 and thus c1 < 3. Substituting
this result into the right inequality of 4.12, we get c2 < c1 + 1 < 4. We now calculate lower
bounds of these constants by evaluating the cases where the move variables are set such that
no conflict or a positive conflict arises. In the former case, we expect the constraint to be
equivalent to χu,v ≤ C with a C ≥ 0. While in the latter, we expect it to be χu,v ≤ C for a
C ≥ 1. Note that we do not force the direct upper bound of 0 or 1 respectively. This is because
we later introduce two additional constraints that properly set the upper bounds for no and
a positive conflicts. By using this loose upper bound here, we guarantee to not interfere with
restrictions from these constraints. We now present every possible move variable assignment
that creates no or a positive conflict.

Both Move without Negative Conflict. If u and v move into blocks Vi 6= Vb and Vj 6= Va,
respectively, both nodes move, but no negative conflict arises. To translate this case to the
assignment of the move variables, we have xui = 1 and xvj = 1 for i 6= b and j 6= a. If Vi = Vj,
we observe a positive conflict. Otherwise, there is no conflict between the moves. However we
can not distinguish between both cases with the here discussed constraint 4.11. Therefore we
later introduce two other constraints. To not interfere with them, we expect that the constraint
here is in both cases equivalent to χu,v ≤ c with c ≥ 1. If we now substitute the assignment
of the move variables into our constraint 4.11, we get χu,v ≤ c2 − 2. With the expected lower
bound of c ≥ 1 for the right side of this inequality, we derive the lower bound

3 ≤ c2 . (4.14)

One Node is Moving. We now explain the case when exactly one node moves. Let u be
this node without loss of generality. This means xui = 1 for exactly one i and ∀j : xvj = 0. We
can simplify our constraint 4.11 to either χu,v ≤ c2 − c1 or χu,v ≤ c2 − 1, depending whether
the target of the move is the source block of v or not. As both cases create no conflict because
only one node moves, we expect the right sides of each inequality to be greater or equal to 0.
Hence, we can derive c2 − c1 ≥ 0 from the first case. This is however equivalent to c1 ≤ c2
which is identical to the left inequality in 4.12. From the second case we can derive c2 ≥ 1,
which is less restrictive then 4.14. Therefore, we do not derive further restrictions for c1 or c2
in this case.

No Node is Moving. Consider the case where each move variable for u and v is zero. Here
Equation 4.11 evaluates to χu,v ≤ c2. From the requirements to the upper bound, we can derive
c2 ≥ 0 which again is less restrictive then 4.14.

In total we get 3 ≤ c2 in order to properly handle the cases of no or a positive conflict.
Substituting this result into the right inequality of 4.12, we get 2 < c1. In total we result in
the ranges

2 < c1 < 3 (4.15)
3 ≤ c2 < 4 (4.16)

for c1 and c2. We can now select one value for either c1 or c2 in these ranges and find atleast
one value for the other constant while maintaining the requirements from above. We select
c2 := 3. Substituting this into the left inequality in 4.13, we get 2c1− 2 ≤ 3 which is equivalent
to c1 ≤ 2.5. The other requirements derived from negative conflicts (4.12 and 4.13) do not
further restrict c1. Hence we select c1 := 2.5. With this we get the final constraint for handling
negative conflicts and we can conclude:
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4.3 Modeling Move Conflicts as Constraints

Corollary 4.2 (Constraint for Negative Conflicts Between Nodes in Different Blocks). For
each adjacent nodes u, v ∈ V with Π[u] 6= Π[v] add the constraint

χu,v + 2.5 (xub + xva) +
∑

i 6=b
xui +

∑

i 6=a
xvi ≤ 3 (negative conflicts)

to properly restrict the conflict variable χu,v when single or double negative conflicting moves
are selected.

By substituting c1 = 2.5 and c2 = 3 in the case study above, we can see, that this constraint
leads to the desired upper bounds for each conflict type. For single or double negative conflicts
it is equivalent to χu,v ≤ −1 or χu,v ≤ −2 respectively. If the selected moves create no conflict,
the upper bound on the conflict variable is greater than or equal to 0. Further if a positive
conflict arises, it is greater or equal to 1. We now introduce the constraints to distinguish
between a positive conflict and no conflict.

Handling Positive Conflicts. We obtain a positive conflict if both nodes move into the
same block, i.e., xui = xvi = 1 for any a 6= i 6= b. In this case, we want the constraint χu,v ≤ 1
as the value of this conflict is 1 · ω(u, v). In any other case, we need the constraint χu,v ≤ 0
as this is either no conflict or a negative conflict. We use 0 as upper bound for both case to
not interfere with the constraint above, which distinguishes between single negative, double
negative and no conflict. This means we need different upper bounds when moves into the
same block are selected. Therefore we use the sum

S :=
∑

1≤i≤k
(i · xui − (i+ 1) · xvi )

which equals −1 if and only if moves into the same block are selected, i.e., a positive conflict
arises. In all other cases the sum is either less or greater than −1 Note that we use (i+1) as the
factor of xvi instead of i. This is necessary to distinguish between the case of a positive conflict
and the case where both nodes do not move at all, where the sum always equals 0. We can
now use the properties of this sum to force the desired upper bound of 1 for positive conflicts
and 0 in all other cases. The constraint χu,v ≤ f(S) for a function f , where

1 ≤ f(−1) < 2 and
∀x 6= −1 : 0 ≤ f(x) < 1

would have the expected behavior. Such a function exists, but it can not be linear, as it has a
global maximum at −1. Recall therefore that no linear function has a global maximum at one
specific point. We can however use a trick similar to modeling the absolute value of a variable.
The constraint |x| < 1 is equivalent to the two linear constraints x < 1 and −x < 1. This
motivates using the two constraints

c1 · χu,v +
∑

1≤i≤k
(i · xui − (i+ 1) · xvi ) ≤ c2 (4.17)

c1 · χu,v +
∑

1≤i≤k
(i · xvi − (i+ 1) · xui ) ≤ c2 (4.18)

to handle positive conflicts. Note that these two constraints only differ in the order of xui and
xvi inside the sum. We now derive proper values for c1 and c2 by evaluating every possible move
variable assignment, similar to above. Here our expected behavior is as follows: If moves that
are positive conflicting are selected, both constraints have to be equivalent to χu,v ≤ 1. In all
other cases, we expect at least one of the constraints to be equivalent to χu,v ≤ 0. The other
constraint can be equivalent to χu,v ≤ C for C ≥ 0. We now evaluate every possible move
variable assignment and derive requirements for c1 and c2 to achieve the expected behavior.
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Positive Conflict. Let xui = xvi = 1 for any a 6= i 6= b. Recall that the case where i equals a
or b does not exist, as then either u or v would move into its own source block, which we do
not allow. We can simplify both constraints to c1 · χu,v ≤ c2 + 1. The constants c1 and c2 must
be chosen so that this is equivalent to χu,v ≤ 1, as this case is a positive conflict. Therefore,
we obtain the requirement

1 ≤ c2 + 1
c1

< 2 ⇔ c1 − 1 ≤ c2 < 2c1 − 1 (4.19)

for c1 and c2. Recall that χu,v is an integer and therefore the upper bound can be any value
between 1 and 2 (excluding 2).

Both Move into Different Blocks. Let xui = 1 = xvj for any i 6= j. We expect in this
case that at least one of the constraints 4.17 or 4.18 simplifies to χu,v ≤ 0. Without loss of
generality let i > j. In this case, we expect that the first constraint simplifies to the expected
upper bound of 0 and the second is equal or less restrictive. Substituting the assumed move
variable assignment into 4.17, we get c1 · χu,v ≤ c2 − i + j + 1. From this we can derive the
requirement

0 ≤ c2 − i+ j + 1
c1

< 1 ⇔ i− j − 1 ≤ c2 < c1 + i− j − 1

where 0 ≤ i− j − 1 ≤ k − 2 because i > j and 1 ≤ i, j ≤ k. This is the most restrictive limit
for I := i − j − 1 as I = 0 for i = j + 1 and I = k − 2 for i = k and j = 1. When we insert
these limits into the inequality above, we obtain the lower and upper bound

k − 2 ≤ c2 < c1 (4.20)

for c2. Note that this implies 0 ≤ c2 and 0 < c1 because k ≥ 2. The second constraint, 4.18,
simplifies to c1 · χu,v ≤ c2 − j + i + 1. Here we expect the upper bound to be greater or equal
to 0. Because c2 ≥ 0 and we assumed j < i, we can conclude that c2 − j + i+ 1 ≥ 0. Further,
we already know that c1 > 0. Thus this constraint is, when the already found restrictions for
c1 and c2 hold, always equivalent to χu,v ≤ C for C ≥ 0. This is the expected behavior and we
therefore do not have to restrict c1 and c2 further.

One Node is Moving. Consider the case where exactly one node moves. Note that the
results are different, depending on which node is moving. As this creates no conflict, we again
expect that at least one of the constraints is equivalent to χu,v ≤ 0. Without loss of generality
let u be the node that is moving, i.e., xui = 1 for exactly one i and ∀mv

j ∈ M : xvj = 0. The
first constraint, 4.17, simplifies to c1 · χu,v ≤ c2 − i. To achieve the expected upper bound for
the conflict variable, we derive the requirement

0 ≤ c2 − i
c1

< 1 ⇔ i ≤ c2 < c1 + i

for c1 and c2. As i can be any number between 1 and k, we can derive the limits k ≤ c2 < c1 +1.
However the upper bound is here less restrictive than in the requirement 4.20. Hence, we can
ignore it. To conclude, we obtain from the case where only u moves the requirement

k ≤ c2 (4.21)

for c2. We now have to check that the second constraint for handling positive conflicts, 4.18,
is not more restrictive then the first. Substituting the values for the move variables, we get
c1 · χu,v − (i+ 1) ≤ c2. This translates to the requirement

0 ≤ c2 + i+ 1
c1
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for c1 and c2. Requirement 4.20 already demands, that c1 > 0 and c2 ≥ 0. Further is i greater
than zero. Hence, the requirement above is always true under the already derived requirements
and we do not have to further restrict c1 or c2.

No Node is Moving. Let xui = xvi = 0 for every i, i.e., both nodes do not move. Both
constraints 4.17 and 4.18 evaluate to c1 ·χu,v ≤ c2. As this case creates no positive conflict, the
expected constraint is χu,v ≤ 0. This creates the requirement

0 ≤ c2

c1
< 1 ⇔ 0 ≤ c2 < c1

for the constants c1 and c2. Because we already derived the tighter limits k ≤ c2 < c1 (see 4.20
and 4.21), this does not further restrict c1 and c2.

To conclude, we obtain the two requirements c1 − 1 ≤ c2 < 2c1 − 1 (4.19) and k ≤ c2 < c1
(4.20 and 4.21). If we now pick any values for c1 and c2 that satisfy these requirements, we
have shown that the constraints 4.17 and 4.18 together correctly set the limits for the conflict
variable to handle positive conflicts. We have also shown that then these constraints do not
conflict with the constraint for handling negative conflicts. To find correct values, we pick
c2 := k. We can then derive that c1 − 1 ≤ c2 = k. To also satisfy c2 = k < c1, we pick
c1 := k+1. The last requirement c2 = k < 2(k+1)−1 = 2c1−1 is also satisfied with this value
for c1. Hence, we found two values that satisfy all requirements and we conclude the following
constraints to correctly handle positive conflicts:

Corollary 4.3 (Constraints for Positive Conflicts Between Nodes in Different Blocks). For
each adjacent nodes u, v ∈ V with Π[u] 6= Π[v] add the constraints

(k + 1) · χu,v +
∑

1≤i≤k
(i · xui − (i+ 1) · xvi ) ≤ k (positive conflict I)

(k + 1) · χu,v +
∑

1≤i≤k
(i · xvi − (i+ 1) · xui ) ≤ k (positive conflict II)

to properly restrict the conflict variable χu,v when positive conflicting moves are selected.

These two constraints together with Theorem 4.2 are the three constraints 4.5 - 4.7 in the
complete definition of our ILP in Definition 4.2. These are added for every adjacent node
pair in different blocks. We have shown above, that with these three constraints, the conflict
variable χu,v is correctly restricted for each possible assignment of the move variables. This
means, that we correctly calculate the conflict value in the objective function of our ILP, if no
conflicting nodes share the same block originally. Now we derive and show the correctness of
the constraints for conflicts between nodes in the same block.

4.3.2 Handling Conflicts between Nodes in the Same Block

Let u, v ∈ V be adjacent nodes where Va := Π[u] = Π[v] in the original partition Π. Recall
that if both of these nodes move, we always have a positive conflict. It can be either single
positive, if they move into different blocks, or double positive, if they move into the same block.
If only one or none of them move, no conflict arises. Analogously to handling positive conflicts
for nodes in different blocks, we have to distinguish between moving in the same or different
blocks. This motivates using similar constraints. However we also have to distinguish between
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moving in different blocks (positive conflict) and moving at most one node (no conflict). Hence,
we use the slight modification

(k + 1) · χu,v +
∑

1≤i≤k
(i · xui − (i+ c3) · xvi ) ≤ k (4.22)

(k + 1) · χu,v +
∑

1≤i≤k
(i · xvi − (i+ c3) · xui ) ≤ k (4.23)

where we modified the sum, by replacing (i + 1) with (i + c3). Here c3 is a properly picked
constant. We can use this additional constant to distinguish between moving both nodes and
at most one of them. We now evaluate every possible cases for assigning the move variables.
We derive requirements for c3 to properly restrict χu,v by 0, 1 or 2, depending on the resulting
conflict.

Double Positive Conflict. Let xui = xvi = 1, i.e., u and v move into the same block. This is
a double positive conflict, hence χu,v ≤ 2 is expected. If we substitute the assumed values for
the move variables, both constraints simplify to (k+ 1) ·χu,v ≤ k+ c3. To achieve the expected
upper bound, we derive the requirements

2 ≤ k + c3

k + 1 < 3 ⇔ 2(k + 1)− k ≤ c3 < 3(k + 1)− k

for c3. We can simplify the lower and upper bound for c3. This results in the limits

k + 2 ≤ c3 < 2k + 3 . (4.24)

Single Positive Conflict. Let xui = 1 = xvj for i 6= j, i.e., u and v move into different blocks.
The results of the individual constraints differ, depending on whether i > j or i < j. In both
cases we expect that at least one of the constraints implies χu,v ≤ 1, while the other only has
to be less or equal restrictive. This is because the assumed assignment of the move variables
implies a single positive conflict.

Without loss of generality, we assume that i > j. The first constraint (4.22) simplifies to
(k+ 1) · χu,v ≤ k− i+ j + c3. We expect that c3 is picked such that this constraint implies the
upper bound of zero for the conflict variable. Hence, we obtain the requirement

1 ≤ k − i+ j + c3

k + 1 < 2 ⇔ 1 + i− j ≤ c3 < k + 2 + i− j

which we can further simplify. Because i ≤ k and j ≥ 1, the lower bound for c3 above, i.e.,
1 + i− j ≤ c3, implies 1 + k− 1 = k ≤ c3. This is however less restrictive then the lower bound
of k+ 2 derived from the case of a double positive conflict. We can therefore ignore it. We can
however derive from the upper bound c3 < k + 2 + i− j the requirement

c3 < k + 3 (4.25)

as i− j ≥ 1 because we assume i > j. The second constraint (4.23) simplifies to (k+ 1) ·χu,v ≤
k − j + i+ c3. Here we do not expect that this implies χu,v ≤ 1, as the first constraint already
enforces this upper bound for properly selected c3. We only expect, that the second constraint
is not more restrictive. Hence, we demand

1 ≤ k − j + i+ c3

k + 1 ⇔ k + 1− k + j − i ≤ c3

which implies j − i + 1 ≤ c3. This is however less restrictive for c3 than the lower bound of
k + 2 (see 4.24) because j − i < 0 and k + 2 ≥ 2. Hence, we do not obtain further restriction
for c3 in this case.
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One Node is Moving. Let xui = 1 for exactly one i and ∀1 ≤ j ≤ k : xvj = 0, i.e., only u is
moving. Note that the case when only v is moving is analogous. The first constraint evaluates
to (k + 1) · χu,v ≤ k − i. Because of 1 ≤ i ≤ k, we conclude 0 ≤ k−i

k+1 < 1. This shows that
the first constraint 4.22 correctly implies the upper bound of 0 for the conflict variable. To
evaluate the second constraint 4.23, we first substitute the move variables for this case and we
get (k + 1) · χu,v ≤ k + i + c3. We know that i ≥ 1 and we already derived the requirement
c3 ≥ k + 2 (see 4.24). This implies that this constraint is not more restrictive than the first
constraint, as k+ i+ c3 > k+ 1. In total, we have shown that our constraints correctly handle
the case where only one node moves when the already found requirements for c3 are satisfied.

No Node is Moving. Let xui = xvi = 0 for all i, i.e., no node is moving. Here both constraints
simplify to (k + 1) · χu,v ≤ k. This is equivalent to χu,v ≤ 0, as 0 ≤ k < k + 1. This is the
expected behavior. We have therefore shown, that our constraints handle this case correctly
for every value of c3.

To conclude, we have two requirements for c3. First we derived k+ 2 ≤ c3 < 2k+ 3 from the
case of a double positive conflict (see 4.24). From a single positive conflict we further derived
c3 < k + 3 in 4.25. In total we can select c3 := k + 2 while satisfying all requirements. Thus,
we conclude the following constraints that have to be added for every conflicting node pair in
the same block:

Corollary 4.4 (Constraints for Conflicts Between Nodes in the Same Block). For each adjacent
nodes u, v ∈ V with Π[u] = Π[v] add the constraints

(k + 1) · χu,v +
∑

1≤i≤k

(
i · xui − (i+ k + 2) · xvi

)
≤ k

(k + 1) · χu,v +
∑

1≤i≤k

(
i · xvi − (i+ k + 2) · xui

)
≤ k

to properly restrict the conflict variable χu,v when conflicting moves are selected.

The correctness of these constraints follows directly from the case study above. This means
after deriving the constraints to handle conflicts between different blocks, we have now derived
the constraints to properly restrict the conflict variable between nodes in the same block. In
total we have explained every constraint from Definition 4.2, the full description of our ILP.

4.4 Move Selection

We now present two different strategies for the move selection phase in Line 2 of Algorithm 1.
The goal of this phase is to find promising moves that could reduce the cut when executed.
We then use the above described ILP to find the optimal subset of the selected candidates,
such that the total cut is minimized after executing them. Note that we need to reduce the
search space for the ILP, as solving it for all possible move combinations is not feasible. We also
encourage selecting moves, that do not achieve an optimal gain from a local perspective. The
motivation behind this is to escape local minima by e.g. moving nodes out of an overloaded
block to allow moving other nodes into this block. This is especially essential as we expect to
be already close to a local minimum.

The output of the move selection phase is a set of sets M. Each M ∈ M is hereby a set
of moves from which we construct a single individual ILP. This means that we construct and
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4 Refinement Based on Integer Linear Programming

solve |M| ILPs after each move selection phase. This enables us to solve several smaller ILPs
for different regions of the graph, instead of one large ILP. It further allows us to solve each of
the move buffers in parallel. This approach can however lead to conflicts, if we allow arbitrary
moves in each M . If for example one node u has moves in several move sets, two ILPs could
move this node twice. This can then result in a faulty gain calculation, if both ILPs expect
that u is in its original block before moving. When we solve the move sets sequentially, we
can avoid these conflicts by recalculating the local gain for each move. This is however not
possible if we want to solve the move sets in M in parallel. Hence we expect that each pair
(M1,M2) ∈M×M fulfills the following two requirements:

(i) No node u ∈ V has moves in M1 and M2.

(ii) No two moves m1 ∈M1 and m2 ∈M2 exist, that are conflicting.

The first requirements avoids moving nodes twice. For the second requirement recall Sec-
tion 4.2. We have shown there, that the actual gain for moving two adjacent nodes can differ
from the sum of each individual gain. If now two different ILPs move two adjacent nodes, the
actual result can differ from the expected total cut, because each ILP does not necessarily know
that the other node will be moved. Hence we only allow conflicting moves in one move set.

We now present two different strategies for selecting moves. First a simple fully randomized
selection strategy, the Random Move Selection. Then we introduce our move selection algo-
rithm, the Promising Cluster Move Selection, that is based on the idea to cluster the quotient
graph. We then select moves only between blocks of each cluster.

Random Move Selection. The most simple move selection strategy is the Random move
selection. For the final result |M| = 1 always holds, i.e., we only populate one move buffer
M . This strategy selects the moves completely random. This means picks a random node u
and a random block Vi and adds the move mu

i to the move buffer M . This is repeated up to
a maximum number of moves. Because we only have one move buffer, we always respect the
necessary requirements to avoid conflicts between different ILPs.

V1

V2 V3

V4 V5

V1

V2 V3

V4 V5

Figure 3: Visualization of the PromisingCluster move selection strategy. The left side shows
the clustered quotient graph where the dashed outlines mark a cluster. The right side shows
the selected moves through coloring. The moves with the same color belong to the same move
buffer.
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4.4 Move Selection

Promising Cluster Move Selection. We now present the PromisingCluster move se-
lection (PC) strategy. The general idea of this strategy is to find regions where we expect
potential to improve the total cut. We then select moves only within the respective regions.
The general structure of this strategy can be seen in Algorithm 2 and is visualized in Figure 3.
We start with clustering the quotient graph Q (see Line 1 and the left side of Figure 3). Recall
that the quotient graph is an abstract view on the partitioned graph, where each block is repre-
sented by a single node. We restrict the size of each cluster with a tuning parameter cmax. By
clustering the quotient graph, we find groups of blocks that have heavy connections between
each other. We expect that mainly moves within each cluster reduce the total cut. This is
because if for example two blocks Vi and Vj are not connected in Q, nothing can be gained by
moving nodes between them, as no edge can be removed from the cut. Note however, that in
some cases it could be useful to move a node from Vi to Vj, if for example Vi is overloaded and
we can then move another node to Vi to reduce the total cut. But we expect that in general
regions with many connected blocks provide the best improvement potential. Hence, we then
find moves only within each cluster (see Line 4). For each cluster we populate a single move
buffer M . Therefore we result in the total set of move buffersM, where |M| = |C|.

Algorithm 2: PromisingCluster Move Selection
Data: G = (V,E), initial partition Π := {V1, . . . , Vk}, quotient graph Q(Π, EΠ),

maximum cluster size cmax
1 C := cluster(Q, cmax)
2 M := ∅
3 foreach C ∈ C do
4 M := find_moves_in_region(G, Π, C)
5 M :=M∪ {M}
6 return M

Before introducing our strategy to find moves within a single cluster, we now show that
our constructed set of move buffers M fulfills the two requirements mentioned above. Recall
therefore that the clusters in C are pairwise disjoint. Firstly, each node u ∈ V has moves in only
at most one move buffer, because its current block Π[u] is part of exactly one cluster C ∈ C.
Secondly, no two moves in different move buffers are conflicting. Let therefore M1,M2 ∈ M
be any two move buffers. Every two moves mu

i ∈ M1 and mv
j ∈ M2 have different source and

target blocks. This is because we demanded that the nodes move only within the respective
cluster for M1 and M2. In subsection 4.2 we have shown, that in this case no conflict between
mu
i and mv

j arises. Hence, no two conflicting moves in different move buffers exist.
To finalize the introduction of this move selection strategy, we describe how we find moves

within a given cluster, as in Line 4 of Algorithm 2. Let therefore C ∈ C be our currently
processed cluster. The general idea is to add some of the moves with the highest gain of each
block. Algorithm 3 shows the general structure of the selection strategy. We iteratively select
a block Vcur ∈ C and then find the move mu

i 6∈ M from Vcur to any other block in C with
maximum gain (see Line 4). We then add mu

i to M and select the next block from which we
pick the best move. This is repeated until we selected a maximum number of moves. We use
| · |ilp to calculate the ILP-size of a move buffer M . This is the number of non-zeroes of the
ILP constructed from M . We stop adding moves if the constructed ILP has more then zmax
non-zeroes.

Vcur is originally the block with the move with the highest gain in C (see Line 2). In Line 6
we then select the next block with two different methods. The first method is called along
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4 Refinement Based on Integer Linear Programming

path. Here if we added the move mu
i to M , we select Vcur := Vi, i.e., the block to which the

move moves the node. This is motivated by the balance constraint. If we for example only add
moves into Vi, the ILP can not select all of these moves, because Vi would exceed its size limit.
Hence we offer the ILP a move out of Vi to possibly counter balance the additional weight of
u. But this could result in only picking moves from two alternating blocks. Therefore we have
a second method called equally distributed. Here we choose equally distributed a block from C
as next block. We combine these two methods by using the first until M reaches a certain size,
and then switch to the second method.

Algorithm 3: Finding Moves in a Cluster of Blocks
Data: G = (V,E), current partition Π, cluster of blocks C = {Vi1 , . . . , Vic}

1 M := ∅
2 Vcur := block_highest_gain(C) // get block with highest gain move in C
3 while |M |ilp < zmax do
4 mu

i := max_move(C, Vcur, M) // find move with maximum gain from Vcur to Vi ∈ C
5 M := M ∪ {mu

i } // add this move to M
6 Vcur := next_block(Vcur, C) // find next block
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5 Other Refinement Algorithms
We now shortly present our implementation of the other refinement algorithms that we will
evaluate in Section 6. We used KaMinPar [20] as underlying framework where we implemented
each of the algorithms.

Fiduccia-Mattheyses Algorithm. We use the FM-algorithm in the version of Sanders and
Schulz [39], i.e., multi-try k-way FM local search. The so-called multi-try k-way FM-algorithm
works as follows. We first iterate over the nodes to find the set of boundary nodes B. Then we
pick a random node u ∈ B that has not been touched earlier in this round. From u we start a
local search. Therefore we add u into a priority queue P , where the priority is the maximum
gain when moving into any block. We then repeat the following steps until P is empty or a
stopping criterion is reached. Note that we use the adaptive stopping criterion introduced by
Osipov and Sanders [36].

Let v be the node in P with the highest priority. We remove v from P and try to move it.
Let Vj be the block that achieves the maximum gain for v, i.e., ∀k 6=i : gj(v) ≥ gk(v). Ties are
broken first by better balance and then by random. We move v into Vj and add all neighbors
into P . However, we skip nodes that have been touched by a previous local search. If a node is
already in P , we update its priority. Note that we do not move v if no feasible block Vj exists.
If the expected gain from the priority queue was positive and gj(v) is negative, we add v again
into P with the updated priority. This occurs when the best block at the time of adding v into
P is now overloaded.

After finishing one local search we roll back to the best solution. Then we randomly select
the next boundary node from B until it is empty. We repeat this whole procedure for up to 10
rounds, unless the last round did not improve the partition.

Size-Constrained Label Propagation. In the original version of KaMinPar, Gottesbüren
et al. [20] used size-constrained label propagation [34] as refinement algorithm. We did not
modify their implementation, but we still shortly describe it in the following. They iterate over
all nodes in parallel. To avoid conflicts, they use two atomic operations: fetch-and-add to move
nodes between blocks and compare-and-swap to update the weight of a block. This enables
them to strictly enforce the maximum weight per block. They repeat the label propagation at
most five times, but terminate early if no node was moved.

Ugander-Backstrom Algorithm. In our implementation of the refinement algorithm pro-
posed by Ugander and Backstrom [46] (UB-algorithm) we construct the proposed linear pro-
gram and solve it. We then execute the moves according to the values of the variables xij that
specify the number of nodes that should be moved from Vi to Vj. Note that we floor each xij,
because we can not partially move nodes. We repeat this up to 10 times, unless one round did
not move any nodes.

However this algorithm still has one drawback. It is exclusively designed for unweighted
graphs. Per design of MGP we however always obtain weighted instances on the coarse levels,
even if the input was unweighted. In order to solve this problem, we have two approaches.
The first approach is to only use the algorithm at the top level. For the coarse levels we
use size-constrained label propagation instead. As second approach, we introduce a weighted
alternative UBw to the original proposed algorithm. We now shortly explain the modifications.

We use the same variables xij to specify the number of nodes that should be moved between
block Vi and Vj. For the calculation of the gain and hereby the objective, we use the same
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piecewise linear concave relocation utility function. Only the constraints for limiting the block
weights needs to be updated. Recall that in the original version they simply use the difference
between xij and xji to calculate the weight that is moved from Vi and Vj. This is not correct
for weighted graphs. We define, similar to the relocation utility function, a function wij with

wij(x) :=
x∑

k=1
c(mk)

where m1, . . . ,mK are the positive gain moves between Vi and Vj sorted by decreasing gain.
Further c(mk) is the weight of the node corresponding to the move mk. This means that wij(x)
is the weight of the top x nodes between Vi and Vj. Note that each wij is a piecewise linear
function. It is however not necessary concave, unlike the relocation utility function. Hence, we
can not approximate wij with a linear program. An ILP can however model any piecewise linear
function with some additional variables [9]. Thus we transform the original linear program into
an ILP and use

Si ≤ c(Vi) +
∑

j 6=i
(wji(xji)− wij(xij)) ≤ Ti (5.1)

for each i to restrict the resulting weight of each block. This is our modification to the original
algorithm, which allows using it on all levels within the multi-level context.

Flow-Based Refinement Algorithm. We use the implementation of Gottesbüren et al. [18]
that is integrated into the Mt-KaHyPar framework. The latter is a parallel multilevel frame-
work for hypergraph partitioning. For each refinement step, we write the current graph and
partition into a temporary file. We then call a modified version of Mt-KaHyPar with these
files as input, where only one refinement step is executed, instead of a complete partitioning
process. Afterwards, we read the results and modify the current graph accordingly.

We now describe the implementation of flow-based refinement by Gottesbüren et al. [18].
Recall that the general idea is to construct a flow network for a pair of blocks, where finding
a maximum flow translates to finding the minimum cut between them. The details of the
algorithm can be seen in Algorithm 4 and are further described in the following.

Algorithm 4: Flow-Based Refinement (taken from [18] with modifications)
Input: Graph G = (V,E), k-way partition Π

1 Q ← buildQuotientGraph(G,Π)
2 while ∃ active (Vi, Vj) ∈ Q do // select block pair
3 B := Bi ∪Bj ← constructRegion(G, Vi, Vj)
4 (N , s, t)← constructFlowNetwork(G,B)
5 (M,∆exp)← FlowCutterRefinement(N , s, t)
6 if ∆exp ≥ 0 then
7 applyMoves(G,Π,M)
8 if ∆exp > 0 then mark Vi and Vj as active

After building the quotient graph, the algorithm starts with selecting a pair of blocks to
refine in Line 2. They use active block scheduling [39] for the selection of pairs to refine next.
Roughly speaking in this scheduling strategy, they first select all pairs that share a non-empty
boundary and afterwards pairs where one of the blocks changed during a previous refinement.
After selecting a pair (Vi, Vj) they try to improve the total cut of the bipartitioned graph
induced by Vi ∪Vj (see Line 3 - 8). Therefore they grow a size-constrained region B := Bi ∪Bj
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with Bi ⊆ Vi and Bj ⊆ Vj from two breadth-first-searches (BFS). This region is the subset of
nodes that are eligible to move in the current refinement step. The first BFS is initialized with
the boundary nodes of Vi. They add each traversed node during this search to Bi until

c(Bi) ≤ (1 + αε)
⌈
c(V )

2

⌉
− c(Vj)

for an input parameter α. In the case α = 1 this guarantees that each flow computation induces
cuts that result in a balanced partition, as at most the nodes Bi can be added to Vj. Hence,
the resulting weight of Vj is at most c(Bi) + c(Vj) ≤ (1 + ε)

⌈
c(V )

2

⌉
. The second BFS constructs

Bj analogously.
They now contract the nodes Vi \ Bi and Vj \ Bj into the source s and sink t respectively.

This results in a flow network N = (B∪{s, t}, E , c) where incident edges of s and t have infinite
capacity. The capacity of all other edges equals the weight of the corresponding edge in the
original graph. For this network they now calculate a maximum flow. Afterwards they search
a minimum cut that separates s and t by traversing the residual graph. This cut induces a new
partition {V ′i , V ′j } where some of the nodes in Bi or Bj are moved to V ′j and V ′i , respectively.
They collect all these moves. The expected gain ∆exp when executing these moves is the
difference between the weight of the minimum cut (which equals the weight of the maximum
flow [13]) and the total cut value of the original partition Vi, Vj. If the expected gain is greater
than 0 the algorithm executes the moves and marks both blocks, which makes them eligible
for further refinements. If no improvement can be found, this pair will not be scheduled for
refinement again.

Node Swapping Refinement Algorithm. Furthermore, we implemented a refinement al-
gorithm that is based on a deterministic refinement algorithm for weighted hypergraphs by
Gottesbüren and Hamann [16]. There they refine by swapping some of the nodes with the
highest gain between each pair of blocks. This approach is influenced by Kabiljo et al. [25].
However their version is only designed for unweighted graphs. We now describe our implemen-
tation for weighted graphs.

First, we calculate for each node u ∈ Vi the move mu
j with the highest gain and add v

into a set of nodes Sij. Note however, that we exclude nodes with only negative gain moves.
Each Sij then contains the nodes that want to move from Vi into Vj. We then refine each
pair of blocks (Vi, Vj) where either |Sij| > 0 or |Sji| > 0, i.e., at least one node in one of the
blocks wants to move to the other. The best solution would be to completely swap Sij and Sji,
because the corresponding moves all have positive gain. But this could result in imbalanced
solutions. Hence, we want to find good subsets of Sij and Sji that maintain balance when
swapped. Therefore, we sort the nodes in decreasing gain. We now search the longest prefixes
xi and xj of Sij and Sji that maintain balance when swapped, i.e.,

c(Vi) + c(Sji[xj]) ≤ Lk and c(Vj) + c(Sij[xi]) ≤ Lk

where S[x] denotes the top x nodes of S and Lk is the maximum block weight. We call prefixes
that maintain balance, feasible. From the trivial feasible solution xi = xj = 0 we iteratively
increase both prefixes.

If c(Sij[xi]) < c(Sji[xj]), i.e., less weight is moved from Vi into Vj, we increment xi, otherwise
we increment xj. If one prefix already contains its complete set, we always increment the other
prefix. When the new prefixes are feasible, we save them as current best solution. We stop,
when xi = |Sij| and xj = |Sji| and swap the largest feasible prefixes found. If the actual gain
after swapping the nodes is negative, we revert the moves. Recall therefore Section 4.2 where
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we have seen, that moving adjacent nodes at once can manipulate the actually achieved gain.
Then we proceed with the next block pair until we have refined all of them.
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6 Experimental Evaluation

In this section, we present an extensive experimental evaluation of the introduced ILP-based
refinement algorithm and the other heuristics from Section 5. We first examine the optimal
parameter configuration for the former, then compare it to the latter. We integrated all evalu-
ated refinement algorithms into the shared-memory graph partitioner KaMinPar. The code is
written in C++ and compiled with g++-10.3 with the flags -03 -march=native. As ILP solver
we used Gurobi version 9.5.0 [21].

Benchmark Set. We used a subset of the benchmark set from Gottesbüren et al. [20] consist-
ing of 55 graphs (set A). The selection strategy was based on the number of nodes and edges.
We selected every graph that fulfills 105 ≤ n ≤ 107 and m ≤ 107. We restricted the benchmark
set due to the high running times of our ILP refinement algorithm and limited computational
power. Further, we set a lower limit for the number of nodes to guarantee that for high values of
k (we used 1000 ≤ k ≤ 1600) each block has at least 100 nodes. The set A consists of 28 graphs
from the 10th DIMACS Implementation Challenge [3], 2 randomly generated graphs [14], 13
large social networks [47, 33] and 12 graphs from different application domains [50, 48]. For
parameter tuning we used the benchmark set B, which is a subset of A. This set contains 12 of
the smallest graphs in A that still properly represent each of the four sources. See Appendix A
for a statistical evaluation of both benchmark sets.

Setup. We performed our experiments for each graph with k ∈ {1000, 1200, 1400, 1600},
ε = 0.01 and three different seeds. We did not restrict the running times. All experiments
were run on a single machine equipped with an AMD EPYC 7551P processor (32 cores on one
socket) clocked at 2 GHz. The machine has 256 GB DDR4 main memory.

Due to the long running times of our ILP refinement algorithm and limited computational
resources, we start independent single-threaded runs for 64 instances in parallel, i.e., one for
each available thread as the processor has hyperthreading enabled. Note that the memory of
our machine was sufficient for 64 parallel runs. We use the same technique for the experiments
of the other refinement algorithms to mitigate any influence on the relative running times or
quality. Note however that due to this setup, the running times are not comparable in general.
But we experienced that especially for the ILP refinement the running times differ in more
than an order of magnitude, which gives a good indication of the actual execution time. The
only exception from the parallel execution of multiple instances is the flow-based refinement
algorithm that we execute strictly sequential. This is because the Mt-KaHyPar framework
uses thread pinning to the first processor core. Hence, when we start multiple instances on one
machine, they all compete for the same core.

Methodology. We define an instance to be a combination of a graph and a specific value
for k. We use the arithmetic mean to aggregate the experimental data over the three different
seeds for each instance. To further aggregate the running times over multiple instance, we use
the geometric mean. Note that all runs neither produced imbalanced solution nor exceeded a
time limit. Therefore we do not have to handle these cases in the aggregation of our results.

We use performance profiles [10] to compare the quality of the different algorithms. We
now shortly introduce them following the description from Gottesbüren et al. [20]. Let A be
the set of algorithms that we want to compare and I the set of instances. For each A ∈ A
and I ∈ I, we define qA(I) as the quality of algorithm A on the instance I. Further, let
IA(τ) = {I ∈ I | qA(I) ≤ τ · minA′∈A qA′(I)} be the set of instances for which A produces a
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solution that is less than a factor τ from the best solution for the respective instance. We now
plot |IA(τ)|

|I| on the y-axis with τ on the x-axis. The y-value for τ = 1 indicates the percentage
of instances where an algorithm produces the best solution. Note that if we include more than
two algorithms, we can not directly use the values at τ = 1 to rank the algorithms.

6.1 Algorithm Configuration

In this section we evaluate different tuning parameters for our ILP-based refinement algorithm.
First we compare the random move selection with the promising cluster move selection strategy.
We then evaluate every parameter for the latter. This results in the final configuration for
our algorithm that we will use for the comparison with other algorithms in section 6.3. All
experiments were done on the small benchmark set B, with k ∈ {1000, 1200, 1400, 1600} and
ε = 0.01. Note that ε = 0.03 is a commonly used value, we however want to explore stricter
balance constraints, as we expect that ILPs have a greater potential for improvements here.
Note that we always call label propagation before each refinement to bring the partition to a
local optimum. Further, we used five repetitions of our algorithm, i.e., imax = 5.

Evaluating Different Move Selection Strategies. We start our parameter configuration
with the move selection strategy. In Section 4.4 we have presented two different strategies:
Random and PromisingCluster. The former selects random moves for the ILP, while the
latter clusters the quotient graph and refines each cluster individually. For this evaluation we
selected the optimal parameter configuration for both strategies. For PromisingCluster the
optimal configuration is a maximum number of 50 000 non-zeroes, a maximum cluster size of
10 and a time limit of 20 seconds for each ILP. For Random we limit the non-zeroes to 100 000
and use the same time limit for each ILP. We evaluated the latter strategy for up to 2 million
non-zeroes and a time limit of 120 seconds and could not observe an increase in quality.
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Figure 4: Comparison of the Random move selection strategy KaMinPar-ILPRandom with
the PromisingCluster strategy KaMinPar-ILPPC . We performed the experiments with
ε = 0.1 and k ∈ {1000, 1200, 1400, 1600}.

Figure 4 shows the difference in solution quality between both selection strategies. We see
that the PromisingCluster strategy outperforms the other. The quality drops in the median
by about 1% and for 10% of the instances by more than 3%. This underlines the importance of
a good move selection strategy on the general quality. Hence, we focus our following evaluations
completely on the PromisingCluster move selection strategy.
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ILP Solver Time Limit. We now determine the optimal parameter configuration for the
PromisingCluster move selection strategy. One tuning parameter is the maximum running
time of each individually constructed ILP, i.e., each cluster. We stop the solver after this
maximum time and use the best solution found. This is not an optimal solution in most cases,
but in some cases we can still improve the cut. To find a proper time limit we evaluated a
run with a time limit of 60 seconds and a maximum of 50 000 non-zeroes. Figure 5 left shows
the results. It visualizes the sum of all gains found from each ILP run after x seconds per
graphs. The sums are presented relative to the sum of all final gains, i.e., the gain of an
optimal solution or of the best solution after running into the time limit. We have selected
three exemplary graphs. Two other graphs from the benchmark set show similar results as
scircuit. All other graphs show results between the curve of m14b and amazon0302 with a
stronger shift towards the distribution of the latter.

We can see that the solver finds almost no further improvements after 20 to 30 seconds.
Over 75% of the total gain is found within the first ten seconds. About half of all graphs show
almost no improvement after five seconds. This motivates using a time limit between 5 and 20
seconds. To further study this, we have evaluated the solution quality for a time limit of 1, 5,
10, 20 and 60 seconds. The quality between 10, 20 and 60 seconds is almost identical. Reducing
the time limit to 5 seconds slightly decreases the quality (see Figure 5 right). Further, we can
observe a significant drop for a limit of 1 second. For 20% of the instances, the quality drops
by over 2%.
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Figure 5: Left: The improvements found by the ILP solver after x seconds relative to the
highest gain after a maximum of 60 seconds. Right: Solution quality for a time limit of 1, 5
and 10 seconds.

Besides the quality, we also evaluated the percentage of ILP runs that were stopped due to
the time limit (see Figure 6). For a limit of 5 and 10 seconds this percentage is almost identical
(both rounded 43%). When increasing the limit to 20, we see a drop to 26%. For 60 seconds
still 16% of the ILP runs did not finish within the limit. This motivated us to use a limit
of 20 seconds for further parameter tuning. This limit decreases the running time (geometric
mean running time of 13 195s) compared to 60 seconds (29 233s) and further has a significant
lower ILP time out percentage compared to 5 and 10 seconds. We want to reduce the time
out percentage for parameter tuning to mitigate any effect of the time limit on the evaluation
of the other parameter. However, for the final evaluation we used a time limit of 10 seconds
because of the faster running times (8093s) and limited computational resources.
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Figure 6: Percentages of ILPs that were stopped due to the time limit for a limit of 1, 5, 10,
20 and 60 seconds. The percentages at the bottom indicate the geometric mean over the time
out ratio of all instances.

Maximum Cluster Size. For the PromisingCluster move selection strategy, we cluster
the quotient graph and construct an individual ILP for each cluster. Each cluster contains
hereby a maximum number of blocks cmax. Selecting small values for cmax restricts the search
space for possible refinements as nodes can only move within blocks of its cluster. On the other
hand, using large values increases the number of possible move candidates which could require
larger and more complicated ILPs. To find optimal values for cmax we started by analyzing the
actual sizes of the clusters when using cmax = 30. The experiments were done with a maximum
of 50 000 non-zeroes. We observe that the clustering for almost every graph falls into one of
two categories. Either most of the clusters have minimum size (2) or maximum size (30), where
each case occurs about the same number of times. The relative frequency of each cluster size
for four exemplary graphs can be found in Figure 7 left. The graph coAuthorsCiteseer is the
graph where the trend is least visible over the whole benchmark set. More than 50% of the
clusters have minimum size, however also around 25% have maximum size. The results for all
other graphs are similar to one of the other three depicted graphs.

Figure 7 shows on the right side the relative gain achieved by refining cluster with a specific
size. This is the ratio between the sum of the gains for a specific cluster size and the total
gain over all clusters. The results show that most of the graphs where minimum sized clus-
ters are dominant also achieve most of the gain via theses cluster (see coAuthorsCiteseer).
For graphs where maximum sized clusters predominate, nevertheless minimum sized clusters
achieve the most gain. Only two of them also have the highest gain in this cluster size (see
e.g. citationCiteseer). For the other graphs the total gain is either almost split between
cluster size 2 and 30 or up to 75% of the total gain was found in minimum sized clusters (see
coAuthorsDBLP). The graph m14b is the only exception where the gain is almost equally split
between clusters of size 2 and 30, whereby almost all clusters have size 2.

Looking at the solution quality for different maximum cluster sizes, we can see that it
depends on the maximum number of non-zeroes (see Figure 8). For lower number of non-zeroes
(50 000), the quality drops by almost 0.5% in the median and for 20% of the instances by
over 1% when increasing cmax from 10 to 30. When using higher limits on the non-zeroes, e.g.
150 000, we observe almost no difference in quality. However, using cmax = 30 (geometric mean
running time 7697s) is notably faster than cmax = 10 (14 540s). Still, both running times are
more than an order of magnitude higher than the times of all other refinement algorithms. To
conclude, we select in the following cmax = 10 because we focus on higher quality instead of
lower execution time.
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Figure 7: Comparison of the frequency (left) and relative gains (right) of the different cluster
sizes for four exemplary graphs.

Restricting Number of Non-zeroes. We restrict the maximum number of non-zeroes
(zmax) for each constructed ILP. Figure 9 shows a pairwise comparison when using a maxi-
mum number of 50 000, 100 000 and 150 000 non-zeroes. We see almost no difference in quality
between each value for zmax. However, using 50 000 non-zeroes results for most instances in the
lowest running time. The geometric mean running time is about 10% lower compared to the
other values for zmax. The running times for 100 000 and 150 000 non-zeroes are almost iden-
tical. We further examined the percentage of ILP runs that were stopped due to reaching the
time limit of 20 seconds. Interestingly, we do not see a significant difference here, analogously
to the quality. This shows that the time limit is here probably no bottleneck for the quality.

In the following, we use a limit of 50 000 non-zeroes because of the slightly better running
time and similar performance. Note however, that this limit is absolute and does not scale with
the size of the input graphs. We therefore expect, that the optimal limit for zmax differs when
using smaller or larger graphs.

6.1.1 Impact of Different Optimization Strategies

Next, we evaluate multiple approaches to mainly reduce the running times of our algorithm,
as this is its biggest drawback. Several results from the evaluation of our algorithm motivated
us to try different optimizations. We present these motivations and evaluate the impact of the
proposed optimization strategy concerning execution time and quality. Unfortunately, most
optimizations showed an unfavorable trade-off between running time reduction and solution
quality degradation. We still shortly present the optimization attempts in the following.
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Figure 8: Solution qualities for different number of non-zeroes and different maximum cluster
sizes cmax. We used a time limit of 20 seconds.
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Figure 9: Solution qualities when using different maximum numbers of non-zeroes per con-
structed ILP. We executed each run with an ILP time limit of 20 seconds and cmax = 10.

Early Stopping Policies. Instead of using a strict time limit for each ILP run, we can limit
the number of improvements after which we stop the solver. The motivation for this is that we
found that the first and second improvement had the most impact relative to the final gain. The
first improvements are found in about 75% of the cases in under 10 seconds. Afterwards, the
solver often searches unsuccessfully for further improvements. Limiting the maximum number
of improvements has therefore the potential to decrease the running times while maintaining
similar quality. Note that this approach differs from setting a lower time limit for the ILPs.
When using a strict time limit, every ILP is stopped after this limit. Here, optimizations that
need a long time to find any gain can run longer. We only stop ILPs earlier where a solution
is found fast.

The experimental evaluation shows that stopping after the second improvement can decrease
the running time. Note however, that they are still more than an order of magnitude slower
than for other refinement algorithms. However the solution quality also drops in the median by
0.5% and for 20% of the instances by over 1%. Stopping after the third improvement neither
reduces the running times nor decreases the quality significantly. We do not use this approach,
as either the solution quality dropped to far or the running times did not improve.
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6.1 Algorithm Configuration

Ignore Unchanged Regions. Kernighan and Lin [32] propose a strategy to schedule the
refinement of pairs of blocks. The general idea is that only pairs where at least one of the
block changed in a previous round are eligible for refinement. Sanders and Schulz [39] use a
similar approach, called active block scheduling. In our algorithm we select cluster of blocks
that should be refined. Since this is just a generalization of refining pairs of blocks, we tried a
similar approach.

In the first round we refine every cluster. Afterwards, we skip a cluster if all of its blocks
did not change in the previous round. With this optimization we could achieve a speed up
of about 2. However, the solution quality dropped in the median by 0.5%. For 20% of the
instances, it dropped by more than 1%. Further, the version without this approach records a
better quality in over 95% of the instances (46 out of 48). We expect that this is due to the
heuristic approach for selecting moves. If in one round the ILP could not find any improvements
for a cluster of blocks, it could still find improvements in the next round if for example the
blocks are differently clustered or the move selection strategy selects different moves.

Although we can obtain a good speed up with this optimization, we did not include it in
the configuration for the final evaluation. This is because the running time is still more than
an order of magnitude slower compared to the other algorithms. Therefore we focus again on
solution quality instead of faster running times.

Increase Locality of Selected Moves. The gain of each solution from a single ILP is the
sum of two terms. Firstly the sum of the gains of the individual moves, i.e., the local gain.
Secondly the sum of the conflict values. Recall therefore that moving two nodes at once can
create a higher or lower gain than originally expected. The conflict value equals this mismatch
between the local and the actual gain. We have evaluated which of the two parts dominates
the actual gain of the individual ILPs. The results for four representative graphs can be seen
in Figure 10. Here we see on the y-axis the difference between the conflict value and the local
gain. This means positive values indicate that the conflict value was higher than the local gain.
Note that we removed every ILP run that achieved no gain at all.
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Figure 10: Distribution of the difference between the conflict value and local gain of each ILP
for four representative graphs. Positive y values correspond to a higher conflict value than local
gain.

We can see that in most cases, the conflict value dominates. This also holds for all other
graphs. The geometric mean of the difference lies for all graphs between 10 and 1000. This
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indicates that the solver achieves the most gain by moving groups of adjacent nodes, as only
these can create conflicts. This motivated us to try and modify the method to find moves
within a cluster as follows:

In Algorithm 3 we have introduced a strategy to select moves in a given cluster, which
we call the TopGain-version. Generally speaking, we select the moves between the blocks
with the highest gain. Now, we instead pick a random node from the boundary of the blocks.
Then we start a breadth-first search (BFS) from this node with a maximum depth d. For each
touched node we add γ|C| moves to the ILP, where |C| is the size of the current cluster and
0 < γ < 1 is a tuning parameter. This means, we select γ|C| different target blocks for each
node. Our strategy is to select the target with the highest gain and fill with random blocks
until the desired number of moves is reached. After we processed every node from the BFS,
we repeat this process with a new random node. We repeat this until our move buffer M has
enough moves for the current cluster. We call this modification the BFS-version.

We made an initial guess of d = 2 and γ = 0.7. We then compared the modified version using
these parameter with the original version in the currently optimal configuration (cmax = 10,
zmax = 50 000 and a time limit of 20 seconds). For the BFS-version we used the same cmax, zmax
and time limit. The solution quality dropped for the modified version in the median by 0.5% and
for 20% of the instances by between 1.5% and 4%. The BFS-version (geometric mean running
time 4463s) is however also significantly faster than the original version (13 194s). With further
parameter tuning, we could improve the quality of the BFS-version by using zmax = 100 000
and d = 4. This however resulted in still slightly worse quality and almost similar running time
as in the original version.

An hypothesis for the drop in quality is that the BFS-version adds too few moves with high
individual gains. Hence we modified the method of selecting the root nodes for the individual
BFS searches. Instead of picking a random boundary node, we selected the next node according
to the TopGain strategy, i.e., we pick the nodes with the highest gains. This resulted in similar
results considering quality and performance compared to the original version.

To conclude, we chose neither of the two modification and did not investigate increasing
the locality of selected moves further. Although the BFS-version with the initial parameters
significantly reduces the running time, we did not chose this version as the quality dropped
while still not competing with the other algorithms in terms of execution time. We also did
not use the BFS-version with other parameters or the combination of both methods, since we
could not notice any improvement.

Balance as Secondary Objective. Graph partitioning is not only about minimizing the
total cut, but also about maintaining balance between the blocks. Hence, we modified our ILP
to not only maximize the gain, but also maximize the balance as secondary objective. This
means that the solver firstly optimizes the gain. Afterwards, it uses balance as tiebreaker. Note
that we restricted the running time for the first optimization to a fraction of the total time
limit per ILP. This guarantees that the solver optimizes the balance for at least some time.

In order to model balance as objective, we add a new variable w to the ILP. We then restrict
this variable to be greater than the linear expressions that calculates the resulting weight of
each block, i.e.,

∀1 ≤ i ≤ k : W i
in −W i

out + c(Vi) ≤ w

where W i
in and W i

out evaluate to the total weight of each node moving into or out of Vi, respec-
tively. The left side is identical to the balance constraint of our original ILP (see Definition 4.2).
This means that w is always greater than the weight of the heaviest block. We now minimize
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w. This maximizes balance, as the maximum block weight is minimal if the blocks are perfectly
balanced.

We compared the quality and performance when using balance as secondary objective with
the current optimal configuration. Therefore, we used the same values for cmax, zmax and
time limit. The quality is almost identical while the running time increased by about 30%.
Therefore, we did not use this approach for our final configuration.

6.2 Insights into ILP-based Refinement

Apart from parameter optimization, we also evaluated general properties of our refinement
algorithm. We experimented with parallelization and we evaluated statistics from the ILP
solver itself. In this section, we explain our findings.

Parallelization. We evaluated two different approaches at parallelizing our refinement algo-
rithm. In the first version, we run Gurobi - the used ILP solve - in its multi-threaded version,
i.e., each individual ILP is solved using multiple threads. The rest of the algorithm remains se-
quentially. In our second version, we construct and solve the ILPs for the different move buffers
in parallel. This means, we parallize the foreach loop starting at Line 3 of Algorithm 1. In our
PromisingCluster move selection strategy this translates to refining the different clusters of
blocks in parallel. Note that this also moves nodes in parallel. However, this does not create
any conflicts because the source and target blocks of moves in different move buffers are always
disjoint. This is because the moves are only within its respective cluster. Therefore we can
safely refine in parallel.
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Figure 11: Comparison of sequential and parallel quality and performance. Left: Box plot of
the running times when executing with one thread (KaMinPar-ILP 1), with 64 threads (64)
and when executing only the solver for each ILP with 64 threads (S-64). Right: Comparison
of the solution quality between sequential and multi-threaded execution.

We now evaluate the performance of both versions compared to the fully sequential version.
Note that we did not invoke label propagation before our algorithm (neither in the parallel
nor sequential versions). This is to minimize any external effects from the parallelization of
label propagation. In Figure 11, on the left, we can see that using multiple solver threads
only slightly reduces the running times (see KaMinPar-ILP S-64). When we however solve
multiple ILPs in parallel, we can observe a significant speed up. In the version with 64 threads,
the geometric mean running time is over 30 times faster than that of the sequential version.
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As expected, the quality is nevertheless similar, since the ILPs do not conflict with each other
(see Figure 11 right). Note that the quality when executing the ILP solver in parallel is also
almost identical.
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Figure 12: Comparison of the running times for the presolve and branch-and-bound phase of
the ILP solver.

Solver Statistics. The ILP solver can reduce the size of an ILP before starting the branch-
and-bound algorithm. To do so, it searches for multiple inequalities that together can be
replaced by a simpler one. This step is called presolve. It is beneficial for the running times
of an ILP if a high amount of work is done in the presolve phase. We evaluated the times of
our ILP optimizations inside the presolve and the branch-and-bound phase. The results can be
seen in Figure 12. We see that the time inside the branch-and-bound algorithm significantly
outweighs the time for the presolve phase. This is partly because the latter is in general faster
than the former. Moreover it also shows that our ILPs do not leave many possibilities for
reducing the size during presolving. This has a negative impact on the overall running times.

6.3 Comparison of Different Refinement Algorithms

Now, we compare our ILP-based refinement algorithm in its final configuration with the other
algorithms described in Section 5. Recall that we presented two variants of the Ugander-
Backstrom algorithm: the original variant (UB) for unweighted graphs and our extension to
weighted instances (UBw). We evaluated both variants on our large benchmark set A. The
solution quality is similar for both versions. In terms of running time, UB has a slight advantage
over UBw (geometric mean running time of 64s vs 73s). This is however expected as in the
former we use the Ugander-Backstrom algorithm only on the top levels and resign to label
propagation otherwise, while in the latter we use both algorithms on all levels. Moreover UBw

has a few outliers with over 1000 seconds of execution time. We expect that this is due to UBw

using ILPs instead of simple linear programming. We therefore used the original version for
our comparison with the other algorithms as the quality is comparable while it is more reliable
considering execution time. For all other algorithms, we used the default parameters as stated
in Section 5.

We ran our experiments on the large benchmark set A with k ∈ {1000, 1200, 1400, 1600}
and ε ∈ {0.01, 0.001}. We first present the results for ε = 0.01. Afterwards, we shortly outline
the difference that arise when reducing ε to 0.001.
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Figure 13: Comparison of running times (left) and solution quality (right) between all algo-
rithms for k ∈ {1000, 1200, 1400, 1600} and ε = 0.01.

Running Time. We start with the evaluation of the running times. Figure 13 shows box
plots for the running times per instance for each of the algorithm. The numbers indicate the
geometric mean running time. We can see that KaMinPar in its original version using size-
constrained label propagation is the fastest algorithm (geometric mean running time of 11s).
This is however expected, as all other algorithms invoke label propagation before their own
refinement. The second fastest is the NodeSwap algorithm (17s). It is only slightly slower
than label propagation. The FM-algorithm has the next lower geometric mean running time
(49s). Note however that some instances have a running time of up to 1000 seconds. The
Ugander-Backstrom Algorithm (UB) is on average slightly slower (64s), however we see less
variance in the running times. Flow-based refinement is the second slowest algorithm (91s)
with peaks up to over 1000 seconds per instance. The slowest algorithm is the ILP refinement
with an average running time of over 10 000 seconds. We see that using ILPs for refinement is
several orders of magnitude slower than all other methods.

Solution Quality. We now evaluate the solution quality of the algorithms in a pairwise
fashion. The results are shown in Figure 14 and refer to Appendix B for further pairwise
comparisons. Hereby, we start with the two fastest algorithms, the original KaMinPar con-
figuration and the NodeSwap algorithm. We see that almost no difference in quality exists.
Hence we prefer the label propagation algorithm from the original version as it is faster. When
we now compare this algorithm with the FM-algorithm, we see that the latter produces higher
quality solutions. For over 80% of the instances it produces better solutions and in the me-
dian they have 2% lower edge cuts. The FM-algorithm finds also better solutions than the
Ugander-Backstrom algorithm (UB), although running times of the latter are slightly higher.
In comparison with label propagation, UB produces slightly better solutions. In the median,
the instances have a 0.5% lower cut. The algorithm with the next highest running times is
flow-based refinement (Flow). This algorithm clearly outperforms the FM-algorithm. For
90% of the instances flow-based refinement finds the better solutions with in the median 2.5%
lower edge cuts. Flow-based refinement as well as the FM-algorithm outperform our ILP-
based refinement by 3% and 1% in the median, respectively. However, ILP-based refinement
has slightly higher quality than UB. The former has in the median 0.5% lower edge cuts.

To conclude, flow-based refinement shows the most promising results. It produces the
best solutions while having moderate running times. The FM-algorithm is faster but shows
also worse quality, however still better than all other algorithms. The NodeSwap and UB
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algorithms show no promising results as they are slower than label propagation while having
similar quality. Further, the quality of the ILP refinement algorithm does not justify its running
time, as FM and flow-based refinement both produce better solutions while being three orders
of magnitude faster.
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Figure 14: Pairwise comparisons of the solution quality for ε = 0.01 on the benchmark set A.

Running Time and Solution Quality for Small ε. We further compared the refinement
algorithms when using ε = 0.001 instead of ε = 0.01, i.e., with a stricter limit on the maximum
block weights. The results can be seen in Figure 15 with further pairwise comparisons in
Appendix B. Note that we performed the experiments on the smaller benchmark set B, due to
limited computational resources. We can see that the running times decreased for all algorithms,
however the relative difference between each of them does not significantly change. The ILP
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refinement remains clearly the slowest algorithm. In terms of quality, we can see that the
difference between flow-based refinement and the other algorithms shrinks (see Figure 15 right).
Especially the ILP refinement relatively improved. The median difference decreased from almost
3% to 1.5% when comparing them directly. Compared to the FM-algorithm, it could also
slightly improve in terms of quality. It now finds for 40% instead of 30% of the instances a
better solution. Interestingly, the node swapping algorithm achieves in this case better solutions
than label propagation, unlike for ε = 0.01. We expect that this is due to the fact that when
many blocks are close to the weight limit, it is hard to find individual moves that respect the
balance constraint. Swapping nodes can however move nodes more easily with respect to the
balance.
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Figure 15: Comparison of running times (left) and solution quality (right) between all algo-
rithms for a tighter balance constraint, i.e., ε = 0.001.
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7 Conclusion

In this work, we presented a novel refinement algorithm based on integer linear program-
ming and several other advanced refinement heuristics. We implemented the algorithms in the
KaMinPar [20] framework. Then, we evaluated the solution quality and running times for
partitioning with large k.

Our ILP-based refinement algorithm constructs an ILP from a set of move candidates.
Optimizing it results in the subset of moves that maximize the gain when executed. We
introduced constraints that properly predict if two moves are conflicting when executed in
parallel. Therefore, the ILP always predicts the accurate gain. We introduced two different
strategies to find promising move candidates, i.e., moves with high potential to decrease the cut:
A random selection strategy and one that clusters the quotient graph and looks for the moves
with the highest gain within each cluster. The former strategy did not provide promising results,
hence we used the latter strategy for the comparison with other heuristics. Our algorithm allows
parallelization with good speedups, because each cluster can be refined in parallel without
conflicts.

We compared our refinement algorithm with size-constraint label propagation [34], multi-try
k-way FM local search [39], the Ugander-Backstrom algorithm [46], flow-based refinement [18]
and a refinement algorithm based on swapping groups of nodes between blocks [16]. The first
algorithm is used in the original version of KaMinPar. Multi-try k-way FM local search is a
variant of the FM-algorithm, where individual local searches are started from random border
nodes. The UB-algorithm uses linear programming to decide which prefix of the highest gaining
nodes should be moved between blocks. Flow-based refinement creates a flow network between
a block pair and maximizes the flow to minimize the induced cut.

Our experiments with 1000 ≤ k ≤ 1600 and ε = 0.01 show that flow-based refinement
provides the overall best solution quality. This algorithm creates the best solutions for over
80% of the instances in our benchmark set with 55 graphs in comparison to all other algorithms.
Furthermore, the running times are still reasonable (geometric mean running time 91s). The
k-way FM-algorithm is almost twice as fast in the mean (49s) while producing the second
best results with 2.5% worse quality in the median compared to the flow-based approach. The
overall fastest algorithms are label propagation (11s) and the node swapping strategy (17s).
Both achieve similar, but overall the worst quality. However, all other algorithms use label
propagation as preprocessing step in their refinement. Our ILP-based refinement algorithm is
three orders of magnitude slower (13 287s) and still the quality is slightly worse than that of
k-way FM. The solution quality of the UB-algorithm is between label propagation and our
ILP-based refinement and it runs slightly faster (64s) than flow-based refinement. In total,
flow-based refinement and k-way FM are looking promising in terms of solution quality while
label propagation or node swapping provide fast execution times.

When we use a more strict balance constraint, i.e., ε = 0.001, we see that the quality of the
ILP-based and node swapping refinement improves relative to the other algorithms. However,
flow-based refinement provides still the highest quality over all. Furthermore, the relative
running times are similar to ε = 0.01.

7.1 Future Work

Flow-based refinement and the FM-algorithm have shown promising results, hence it might
be worth exploring more in these directions. For flow-based refinement, we used the imple-
mentation from Mt-KaHyPar [18] that was developed for hypergraphs instead of graphs
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and small values for k. Thus, we have to transform the graphs into hypergraphs before refin-
ing which creates much more overhead than necessary. Therefore, exploring implementations
that are specifically tailored for graphs and large k might reduce its running times. Further,
we did not examine parallelism for algorithms other than our ILP-based approach. Parallel
implementations of for example the k-way FM-algorithm could be worth exploring.

Although we achieved unpromising results for ILP-based refinement in this work, we still see
approaches for further research. One might try different move selection strategies. We have seen
that the chosen strategy can significantly impact the quality. Therefore, different approaches
might improve the quality. Further, we believe that the strength of ILP-based refinement lies
in situations with strict balance constraints. The results for small ε support this assumption.
Hence, it might be worth exploring perfectly balanced partitioning. Further, one might evaluate
the performance for small values of k. Lastly, for parallelization we have made use of the
fact that our refinement algorithm improves only small regions of the graph at once, whereby
each region can be processed independently. This might be a useful property for applying our
algorithm in distributed memory settings.
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Figure 16: Statistical evaluation of the number of nodes n, number of edges m, median node
degree d̃(v) and maximum node degree ∆v in our benchmark sets A and B.

56



B Detailed Comparison of Different Refinement Algorithms

B Detailed Comparison of Different Refinement Algo-
rithms

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

1 1.02 1.04 1.06 1.08 1.1 1.5
Quality relative to best

Fr
ac

tio
n

of
In

st
an

ce
s

KaMinPar-UB KaMinPar

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

1 1.02 1.04 1.06 1.08 1.1 1.5
Quality relative to best

Fr
ac

tio
n

of
In

st
an

ce
s

KaMinPar-UB KaMinPar-ILP

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

1 1.02 1.04 1.06 1.08 1.1 1.5
Quality relative to best

Fr
ac

tio
n

of
In

st
an

ce
s

KaMinPar-ILP KaMinPar

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

1 1.02 1.04 1.06 1.08 1.1 1.5
Quality relative to best

Fr
ac

tio
n

of
In

st
an

ce
s

KaMinPar-ILP KaMinPar-NodeSwap

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

1 1.02 1.04 1.06 1.08 1.1 1.5
Quality relative to best

Fr
ac

tio
n

of
In

st
an

ce
s

KaMinPar-Flow KaMinPar

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

1 1.02 1.04 1.06 1.08 1.1 1.5
Quality relative to best

Fr
ac

tio
n

of
In

st
an

ce
s

KaMinPar-UB KaMinPar-Flow

Figure 17: Additional pairwise comparisons of the solution quality for ε = 0.01 on the bench-
mark set A.
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Figure 18: Pairwise comparisons of the solution quality of all algorithms on the benchmark set
A for a stricter balance constraint, i.e., ε = 0.001.
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