
Master thesis

Asynchronous Clause Exchange for
Malleable SAT Solving

Malte Sönnichsen

Date: February 1, 2022

Supervisors: Prof. Dr. Peter Sanders
Dominik Schreiber
Dr. Markus Iser

Institute of Theoretical Informatics, Algorithmics
Department of Informatics

Karlsruhe Institute of Technology

Abstract

This thesis presents and evaluates the use of gossiping communication and multi-armed
bandit strategies for clause exchange in portfolio based parallel SAT solving with mal-
leability of jobs. Malleability of jobs is the ability to add or remove processing power
during computation.

Modern parallel SAT solver scales up to thousands of cores. In modern portfolio based
parallel SAT solving, clause exchange is done either in an all-to-all manner over all nodes
or along a fixed communication graph. Our approach is to let the SAT solvers decide
from which nodes they want to receive clauses. This is done by applying the concept
of gossiping communication to clause exchange in portfolio based parallel SAT solving
and by only communicating useful clauses to neighbors which have benefitted from an
exchange in the past. We compare an informed neighbor selection with an uninformed
one, i.e., neighbor selection with uniform probability. We choose a communication graph
which is both highly connected and expandable. High connectivity is important for clause
distribution. The expandability is important for malleability of jobs.

Our approach did not match the performance of the state-of-the-art parallel SAT solver
Mallob. However, we observed formations of clusters in our communication graph and a
decrease of exchanged clause volume while improving the performance. We achieve this
using an informed neighbor selection instead of the uninformed one. We conclude that our
concept of a more organic clause exchange is promising and has potential.

Zusammenfassung

Diese Arbeit präsentiert und evaluiert die Verwendung von gossiping Kommunikation und
mehrarmigen-Banditen Lösungen für Klauselaustausch in Portfolio basiertem parallelen
SAT solving mit Verformbarkeit von Jobs. Die Verformbarkeit von Jobs bezieht sich auf
die Möglichkeit Rechenleistung während der Berechnung hinzuzufügen oder zu entfernen.

Moderne parallele SAT solver skalieren bis zu tausenden von Kernen. Der Klauselaus-
tausch findet in modernen parallelen SAT solvern entweder durch Versenden der Klauseln
von allen Knoten zu allen Knoten oder zu allen Nachbarn in einem festen Kommunikations-
graphen. In unserem Ansatz wird die Entscheidung von welchem Knoten Klauseln emp-
fangen werden sollen, den jeweiligen Knoten überlassen. Das wird durch die Anwendung
des Konzepts der gossiping Kommunikation auf den Klauselaustausch in Portfolio basier-
ten parallelen SAT solving erreicht. Außerdem werden ausschließlich nützliche Klauseln
mit Nachbarn, welche bereits von einem Austausch profitiert haben, kommuniziert. Wir
vergleichen eine informierte Nachbarauswahl mit einer uninformierten, d.h. eine Nachbar
Auswahl mit gleichverteilter Wahrscheinlichkeit. Wir verwenden einen Kommunikations-
graphen welcher hochzusammenhängend und zugleich erweiterbar ist. Die Eigenschaft des
Graphen hochzusammenhängend zu sein, ist wichtig für die weitreichende Verteilung von
Klauseln. Die Erweiterbarkeit des Graphen ist bedeutsam für die Verformbarkeit der Jobs.

Unser Ansatz erreicht nicht die Leistung des aktuell besten parallelen SAT solver Mal-
lob. Allerdings konnten wir die Bildung von Clustern in unserem Kommunikationsgraph
beobachten. Außerdem konnten wir eine Verringerung der Anzahl an ausgetauschten Klau-
seln bei gleichzeitiger Beschleunigung des Lösens der SAT-formeln erzielen. Dies wur-
de durch die Verwendung einer informierten Nachbarauswahl, anstelle der uninformierten
Nachbarauswahl, erreicht.

Insgesamt erwies sich dieser Ansatz eines organischeren Klauselaustausches als Viel-
versprechend, bedarf jedoch weiterer Forschung.

Contents

Abstract iii

Zusammenfassung iv

1 Introduction 1
1.1 Motivation . 1
1.2 Contribution . 2
1.3 Structure of Thesis . 2

2 Fundamentals 3
2.1 Boolean Satisfiability . 3
2.2 SAT Solving . 3

2.2.1 Davis–Putnam–Logemann–Loveland 3
2.2.2 Conflict Driven Clause Learning 4
2.2.3 CaDiCaL . 4

2.3 Parallel SAT Solving . 5
2.3.1 TOPOSAT . 5
2.3.2 Mallob . 5

3 Gossiping SAT Clause Communicator 7
3.1 Communication Graph . 7
3.2 Sharing Architecture . 11

3.2.1 Clause Filter . 11
3.2.2 Requesting Procedure . 12
3.2.3 Sending Procedure . 12
3.2.4 Receiving Procedure . 13
3.2.5 Edge Cases . 14

3.3 Neighbor Rating . 14
3.4 Neighbor Selection . 14

3.4.1 Multi Armed Bandit Problem . 15
3.4.2 Expected Reward . 15
3.4.3 Uniform . 16
3.4.4 Greedy . 16
3.4.5 Thompson Sampling . 17

vii

4 Experimental Evaluation 19
4.1 Implementation . 19
4.2 Experimental Setup . 19

4.2.1 Tuning Parameters . 20
4.2.2 Instances . 20

4.3 Results . 20
4.3.1 Comparison . 20
4.3.2 Expert Clusters . 22
4.3.3 Malleable Setup . 28

5 Discussion 31
5.1 Conclusion . 31
5.2 Future Work . 31

Bibliography 33

1 Introduction

The existence of fast SAT solver makes the reduction to Boolean Satisfiability (SAT) in-
teresting for many kinds of problems. Therefore, SAT solvers are used in a vast variety of
domains including planning and scheduling [27], hardware and software verification [17],
and cryptography [21]. The ever-increasing complexity of the problems to be solved re-
quires fast SAT solvers. Due to stagnation in single core speed but increase in CPU core
counts, parallel SAT solving is the logical next step. In recent years, the interest in parallel
SAT solving has continued to grow [12, 9, 8, 3, 28]. Nowadays, there is also interest in
massive parallelized on demand SAT solving in HPC environments with several thousand
nodes. The International SAT Competition features a cloud track since 2020 [10] that re-
flects this use case. Especially Mallob stands out with winning the cloud track in 2020 [13]
and 2021 [14].

1.1 Motivation

Mallob uses a synchronous clause sharing mechanism. Periodically all learned clauses get
merged and the merged buffer is distributed over all nodes and their SAT solvers. Thus, a
node receives a potentially large portion of useless clauses.

Our hypothesis is that SAT solvers do not benefit from all but only some of the other
SAT solvers and their learned clauses. Therefore, a potentially large part of the communi-
cation volume could be eliminated without disadvantage. In addition, the reduced clause
volume for each node could lead to a solving speedup, since the overhead for adding ex-
ternal learned clauses is reduced. This reduction in clause volume could also be exploited
to distribute clauses more frequently, allowing other SAT solvers to benefit from useful
clauses earlier.

In this thesis we build a more organic communication framework for exchanging learned
clauses. Nodes communicate in a decentralized peer to peer manner. For technical rea-
sons nodes communicate only with direct neighbors and the communication graph remains
fixed. However, each node maintains its own buffer and decides itself which neighbour
is requested for clauses. This could lead to formation of clusters of SAT solvers, where
information exchange is fast and efficient.

1

CHAPTER 1. INTRODUCTION

1.2 Contribution

Our contribution is a derivation of closed formulas for calculation of neighbor IDs for a
given node ID in a hexagonal grid graph, an analysis of clause exchange in a decentralized
peer-to-peer communication network, and applying multi-armed bandit (MAB) strategies
to clause sharing. Furthermore the code is added to Mallob as a swappable component.

1.3 Structure of Thesis

Chapter 1 outlines the interest in parallel SAT solving and motivates our approach of im-
proving the state-of-the-art massive parallel SAT solver. In chapter 2 we formalize defi-
nitions and notations used throughout the thesis. Moreover, in chapter 2 we introduce the
reader to the topic of SAT solving and explain how modern SAT solver and parallel SAT
solver work. Chapter 3 is about our approach of improving the state-of-the-art massive
parallel SAT solver Mallob. We then test and analyze our approach in chapter 4. Finally,
in chapter 5 we discuss our approach and give suggestions about future work.

2

2 Fundamentals

In this chapter we introduce concepts and definitions used throughout this thesis. First,
we explain the Boolean Satisfiability (SAT) problem and related terms. Subsequently, we
explain how this problem can be solved and present one modern SAT solver. Finally, we
show approaches on how to parallelize SAT solving and present two practical parallel SAT
solvers.

2.1 Boolean Satisfiability

The Boolean Satisfiability (SAT) problem is about determining if there exists an assignment
that satisfies a given Boolean formula. A brief introduction to the most important terms:
Boolean variable

Variable x with two possible values x ∈ {true,false}.
Literal

Boolean variable x or the negation x̄.
Clause

Formula C of literals with only disjunction operators x1 ∨ · · · ∨ xn.
Conjunctive Normal Form (CNF)

Formula of conjunctions of clauses C1 ∧ · · · ∧ Cn.

2.2 SAT Solving

The Boolean Satisfiability (SAT) problem is NP-complete. A problem is NP-complete if (a)
a solution can be verified in polynomial time and (b) all other problems for which (a) is true
can be reduced to this problem in polynomial time. Thus, it can be used to solve problems
of an entire problem class by reducing other problems to SAT. Therefore, building a solver
for this problem is attractive. Firstly, we explain the simple but not practical algorithm for
solving SAT problems. After that, we explain the state of the art solving algorithm.

2.2.1 Davis–Putnam–Logemann–Loveland

The Davis–Putnam–Logemann–Loveland (DPLL) algorithm is a simple depth first search
algorithm with backtracking [1, Chapter 3.5]. Intuitively it works by doing the following:

3

2 Fundamentals

1. Choose a variable.
2. Assign true or false to the variable.
3. Simplify the formula.
4. Check satisfiability.
5. Do chronological backtracking if not satisfiable.

Furthermore, the DPLL algorithm incorporates unit propagation before checking for satis-
fiability. In unit propagation each unit clause gets propagated, i.e., we set variables of unit
clauses to satisfy the respective unit clauses. This allows an early termination in the search
tree.

2.2.2 Conflict Driven Clause Learning

We outline the important parts of Conflict Driven Clause Learning (CDCL) that are relevant
for our distributed clause sharing algorithm. More precisely, we explain how clauses are
learned and the Literal Block Distance (LBD) metric for clause quality [2].

CDCL [1, Chapter 4] builds upon DPLL and its depth first search algorithm with back-
tracking and unit propagation. However, one crucial difference for our approach is that this
algorithm learns conflict clauses.

The technique which enables clause learning is called conflict analysis [1, Chapter
4.3.1.1.1]. The CDCL algorithm maintains an implication graph. This graph enables direct
retrieval of responsible literals for each unit clause propagation. Furthermore, the sinks
of this graph represent decisions about variable assignments. Thus, if a falsified clause is
identified, the implication graph shows the responsible decisions that led to the falsified
clause. A learned conflict clause is the disjunction of the negated responsible decisions.
These conflict clauses prune the search space.

Redundant clauses from conflict analysis must be handled with care, as too many clauses
can slow down the search and clog up memory. Therefore, modern solvers use a metric
called LBD to assess the quality of conflict clauses [2]. The number of different decision
levels of the literals in a conflict clause is the LBD metric. In the following we refer to
learned conflict clauses as redundant clauses, since these clauses can be explained with
sequences of resolution steps from the original clauses.

2.2.3 CaDiCaL

There are many well-performing SAT solvers [5, 20]. For our study, we chose CaDiCaL,
as it is a modern, state of the art, easy to modify solver written in C++. CaDiCaL is based
on CDCL with inprocessing rules [16].

As most modern SAT solver based on CDCL, CaDiCaL deletes unimportant redundant
clauses. To decide which redundant clauses should be kept and which should be deleted,
CaDiCaL maintains a three-tier system.

4

2.3 Parallel SAT Solving

• Tier-0 clauses (LBD ≤ 2) are kept forever.
• Tier-1 clauses (2 < LBD ≤ 6) survive one round of reduction.
• Tier-2 clauses can be deleted immediately if not used since the last reduction.

This is important for us since we use this information as explained in section 3.3.

2.3 Parallel SAT Solving

There are two approaches for parallelised SAT solving.
• Cube&Conquer.
• Portfolio:

– Pure portfolio.
– Parallel portfolio with clause sharing.

The Cube&Conquer approach divides the search space successively [15]. Following, inde-
pendently working SAT solvers can solve the resulting sub-formulas. However, distribut-
ing the workload equally is challenging, since this requires a balanced split of the search
space. Furthermore, the performance of SAT solvers depends highly on the combination
of parameters and instance properties. The latter is exploited by portfolio based parallel
SAT solving. In portfolio based parallel Boolean Satisfiability (SAT) solving the input for-
mula is distributed over several SAT solvers with different parameters. In addition, the SAT
solvers exchange redundant clauses. The first terminating SAT solver reports its results and
all other solvers terminate as well. The first portfolio solver was ManySAT [12].

2.3.1 TOPOSAT

TopoSAT [9] was the first solver which use a communication graph for clause sharing.
Instead of sharing clauses in an all to all manner, nodes may only communicate with each
other if they are connected by an edge. They showed that their approach scales well and
they gained significant speedups for up to 256 cores. However, in TopoSAT each node
sends and receives clauses from each neighbor in each epoch.

2.3.2 Mallob

Mallob builds upon HordeSat [3]. HordeSat and Mallob use an all-gather operation for
clause distribution. The result of this operation is that each node receives all shared clauses
in each epoch. However, this distribution is implemented in an efficient manner. Thus,
Mallob scales up to 2560 cores and enables SAT solving in a HPC environment. Further-
more, Mallob [28] adds load balancing and job scheduling to HordeSat and enables SAT
solving on demand.

5

2 Fundamentals

6

3 Gossiping SAT Clause
Communicator

In this chapter we explain our approach for applying the concept of gossiping to clause
sharing. At first, we show our communication graph and explain malleability of this com-
munication graph. After that we outline the concept of gossiping, the overall sharing ar-
chitecture, and how nodes exchange clauses. We then describe the process to decide which
neighbor to ask for clauses.

3.1 Communication Graph

The choice of the communication graph structure affects the effectiveness of the clause dis-
tribution and communication performance. The ideal graph is sparse and highly connected.
The sparsity ensures low communication volume. The high connectivity of the communi-
cation graph ensures far-reaching distribution of learned clauses. These two properties
result in an efficient communication between nodes and distribution of learned clauses.
Furthermore, Mallob allocates a dynamic number of workers per job by potentially remov-
ing the most recent workers and keeping the older workers. Older workers have a lower
ID. Therefore, we need a graph that is appropriate for malleability, i.e., dynamic number
of workers, in that sense that the remaining workers continue to communicate effectively
with each other.

We use the hexagonal grid graph as shown in Figure 3.1. Each node represents one
worker. In the following we refer to workers as nodes. If two nodes are connected by an
edge, we call these nodes direct neighbors. Direct neighbors can communicate with each
other. The hexagonal grid graph has one core node. The core node is surrounded by an
arbitrary number of rings of further nodes. This graph has some properties:

• Each node has six neighbors, except the border nodes on the outer ring.
• Each node has minimum two neighbors, if the graph has more than two nodes.
• New nodes arrange themselves in a ring around the existing nodes.
• Arbitrary number of nodes possible.

We need a function which gives us six neighbor IDs to a given node ID. Since there
is no trivial directly mapping, we solve this problem in a hexagonal grid coordinate sys-
tem. There are different coordinate systems for hexagonal grids [22]. Inspired by [22,

7

3 Gossiping SAT Clause Communicator

0 1

23

4

5 6

7

18

8

9
10

11

12

13

14

15
16

17

19

Figure 3.1: Communication graph without off-
set. First border node on each ring
r > 1 has only one neighbor on in-
ner ring.

0

12

3

4 5

6

8

7

9
10

11

12

13

14
15

16

17

18

19

Figure 3.2: Communication graph with offset.
First border node on each ring
r > 1 has two neighbors on inner
ring.

Chapter Rings] where the hexagonal grid gets traversed in a spiral manner around a core
hexagon, we choose the polar coordinate system. To calculate the neighbors for a given
node ID, we transform the node ID into polar coordinates and look for the polar coordi-
nates of the neighbors and transform these coordinates back to the node ID. The number of
nodes on ring x is calculated by:

f(x) =

(
1 x = 0

6x else

The following formula calculates the last ID of a node on a given ring r:

g(r) =
rX

i=0

6i = 6
rX

i=0

i = 6
r(r + 1)

2
= 3r2 + 3r

Through this formula we know that the IDs on ring r > 0 are in the interval (g(r−1), g(r)].
Given a ring r > 0 and the position 0 ≤ p < 6r on the ring, we can calculate the ID with
h(r, p) = g(r)− 6r + 1 + p = i.

Since we want to calculate the ring r and position p on the ring for a given ID i, we can
invert g(r) for r > 0:

g(r) = 3r2 + 3r

⇔ g−1(i) =
−3 +

√
9 + 12i

6

8

3.1 Communication Graph

The ring for a node with ID i is then given by ⌈g−1(i)⌉ = r. To get the position on the ring,
we need to subtract the value of the lowest ID on the same ring:

pi = i− (g(ri − 1) + 1) = i− 3r2i + 3ri − 1

To summarize for a given ID i > 0 we calculate the radius ri and position pi by:

ri =

�−3 +
√
9 + 12i

6

�

pi = i− 3r2i + 3ri − 1

For a given radius r and position p we calculate the ID i by:

i = 3r2i − 3ri + 1 + pi

The correct polar coordinates are (ri, p̂i =
pi
6ri

2π) where p̂i ∈ [0, 2π). However, in the
following we use the unscaled coordinates (ri, pi)for simpler calculations.

To calculate the neighbors for a given ID i we distinguish between three cases:
(i) The root i = 0.

(ii) The corner nodes on a ring pi mod ri
6
= 0.

(iii) The side nodes on a ring pi mod ri
6
̸= 0.

For case (i), the root, the neighbor IDs are [1, 6]. For case (ii), the corner nodes, one
neighbor is one ring below, two neighbors are on the same ring, and three neighbors are
one ring above. The polar coordinate (ri,j, pi,j) for neighbor j of node i one ring below is:

ri,1 = ri − 1

pi,1 =
pi
2

The polar coordinates for the neighbor left and right on the same ring are:

ri,2 = ri,3 = ri

pi,2 = pi − 1 mod 6ri

pi,3 = pi + 1 mod 6ri

The polar coordinates for the three neighbors one ring above are:

ri,4 = ri,5 = ri,6 = ri + 1

pi,4 = 2pi − 1 mod 6(ri + 1)

pi,5 = 2pi

pi,6 = 2pi + 1 mod 6(ri + 1)

9

3 Gossiping SAT Clause Communicator

For case (iii), the side nodes, two neighbors are one ring below, two neighbors are on
the same ring, and two neighbors are one ring above. The polar coordinates for the two
neighbors one ring below are:

ri,1 = ri,2 = ri − 1

pi,1 = pi −
�
pi
ri

�

pi,2 = pi −
�
pi
ri

�
− 1

The polar coordinates for the neighbor left and right on the same ring are:

ri,3 = ri,4 = r

pi,3 = pi − 1 mod 6ri

pi,4 = pi + 1 mod 6ri

The polar coordinates for the two neighbors one ring above are:

ri,5 = ri,6 = ri + 1

pi,5 = pr +
jpr
r

k

pi,6. = pr +
jpr
r

k
+ 1

The resulting communication graph is shown in Figure 3.1.
The first node on a new ring has only one neighbor. This leads to a reduced connectivity.

To ensure that each node has two neighbors, we introduce an offset per ring of one. For a
given ID i > 0 we calculate the radius ri and position pi by:

ri =

�−3 +
√
9 + 12i

6

�

pi = i− 3r2i + 3ri mod 6ri

For a given radius r and position p we calculate the ID i by:

i = 3r2 − 3r + 1 + (p− 1 mod 6r)

The resulting communication graph is shown in Figure 3.2. This is the graph we use in
all our experiments.

10

3.2 Sharing Architecture

3.2 Sharing Architecture

Our sharing architecture is based on gossiping. First introduced by Demers et al. [7]
as a randomized decentralized peer to peer protocol to ensure consistency in distributed
databases, gossiping is inspired by epidemic spreads. Modern database systems still work
according to that principle [18]. We extend the original definition in the regard that we do
not distribute all information but only what we consider useful. Our extension is that (a)
a node only shares and forwards what it considers useful itself and that (b) nodes tend to
communicate with each another based on how fruitful this particular exchange has been
in the past. Our hypothesis is that these two characteristics lead to formation of clusters
where the information gain with exchanged clauses is high.

In the following let A be the requesting and receiving node and B a sending node. Node
A has one or more direct neighbors. Node A chooses one direct neighbor B and sends
a request message to node B. Node B receives the request message, collects his most
useful clauses, and sends the collected clauses back to node A. The clause sources for
the collection are the received clauses from other nodes than A combined with the clauses
recently learned by the local solvers on node B. Node A receives the clauses from node B,
adds the clauses to its internal buffer, and feeds the clauses to the internal SAT solver.

To assess the quality of clauses received from some neighbor, we count (a) duplicate
clauses and (b) clauses which are quickly deleted by the local solver. For further distribu-
tion, we store all received clauses in clause buffers, which sort the clauses by Literal Block
Distance (LBD) and time of arrival in decreasing order. The buffers discard the trailing
clauses if there are too many clauses stored. To summarize, our architecture consists of the
following components:

• Filter for duplicate clauses.
• Filter for deleted clauses.
• Clause buffers.
• Duplicate clauses counter.
• Deleted clauses counter.

The counters store the number and point of time of received duplicate and deleted
clauses for each neighbor in a separate manner. Our neighbor evaluation algorithm uses
this information to determine the most promising neighbor to ask, i.e., the neighbor with
the lowest number of duplicate or deleted clauses sent. We present different strategies for
neighbor selection in section 3.4.

3.2.1 Clause Filter

As firstly introduced by Balyo et al. [3], Mallob filters clauses using a bloom filter. We reuse
the clause filter from Mallob to reject received and deleted clauses before importing them.
A bloom filter consists of a fixed size bit set of size m and k hash functions. Each hash

11

3 Gossiping SAT Clause Communicator

function h applied to a clause returns a bit position in the bit set h : C → [0,m). To add
a clause to the set, feed the clause into the k hash functions and set the bits at the resulting
positions to true. To check if a clause is in the set, feed the clause into the k hash functions.
The clause is assumed to be contained in the set if all bits at the resulting positions are
true. The bloom filter allows registration of clauses with constant time complexity and
memory consumption. This comes at the cost of possible false positives. The SAT solving
algorithm stays sound, since we insert and filter redundant clauses only. The filter for
duplicate clauses ensures that the internal buffer does not contain any duplicate clauses.
The filter for deleted clauses ensures that the internal buffer does not contain any clauses
that were deleted in the internal solver.

3.2.2 Requesting Procedure

A request message initiates an exchange of learned clauses between the solvers. Algorithm
1 outlines this procedure. To get up-to-date information about its neighbors, node A starts
to search for deleted clauses in the internal buffer (lines 1−2), removes the deleted clauses
from its internal buffer (line 3), and updates the respective counters (line 4). Following
this, node A selects one neighbor B based on the available information (line 5) and sends
a request message to the chosen neighbor B (line 6). We explain the decision process in
greater detail in section 3.4.

Algorithm 1: Requesting Clauses
1 for c ∈ buffer do
2 if IsDeleted(c) then
3 buffer.remove(c)
4 IncreaseDeleteCounter(c.source)

5 neighbor ← SelectNeighbor()
6 SendMessage(neighbor, msg_request)

3.2.3 Sending Procedure

Node B receives a request message from the requesting node A. Following this, node B
collects his top k clauses and sends them to node A. Algorithm 2 outlines this procedure.
To ensure that node B only sends meaningful clauses, node B removes all clauses that got
deleted (line 3), updates the respective counters (line 4) and skips clauses that have already
been sent to node A (line 6). Finally, node B sends the collected clauses to node A.

12

3.2 Sharing Architecture

Algorithm 2: Collecting Top K Clauses
Data: i: neighbor ID, k: max number of clauses, n: replicate factor
Result: s

1 for c ∈ buffer do
2 if IsDeleted(c) then
3 buffer.remove(c)
4 IncreaseDeleteCounter(c.source)
5 continue

6 if c.source = i or c.send.test(i) then
7 continue

8 c.send.set(i)
9 s.add(c)

10 if c.send.count() = n then
11 buffer.remove(c)

12 if s.size() = k then
13 break

14 return S

3.2.4 Receiving Procedure

Node A receives clauses from node B. Algorithm 3 outlines this procedure. Node A filters
out deleted and known clauses (line 2). Then node A inserts all clauses passing its filters
into the internal buffer (line 6) and into the internal SAT solver (line 7).

Algorithm 3: Receiving Clauses
Data: r: received clauses, i: source neighbor

1 for c ∈ r do
2 if IsDeleted(c) or c ∈ buffer then
3 r.remove(c)
4 continue

5 c.send.set(i)
6 buffer.add(c)

7 learn(r)

13

3 Gossiping SAT Clause Communicator

3.2.5 Edge Cases

In the malleable setting nodes may be removed from the computation. There are three edge
cases to consider in our sharing scheme:

• The requested node B is removed from the computation after sending the request
message.

• The buffer of the requested node B is empty.
• The requesting node A is removed from the computation after sending the request

message.
If the requested node B is removed or the buffer is empty, the requesting node A gets no
response message. In this case, A does not block, but will just proceed to send another
request to a new selected neighbor in the next round. Since we only update counters when
we receive clauses, these two cases do not have any impact on the rating of the requested
neighbor B. If the requesting node A is removed after sending the request message, the
requested node B proceeds with the sending algorithm. After the collection, the requested
node B tries to send the clauses to the requesting node A. The message is discarded because
the requesting node A does not exist any longer.

3.3 Neighbor Rating

We use three signals to gain information about how useful a neighbor is. The first signal
is the Literal Block Distance (LBD) metric of each clause. We consider a clause with a
small LBD as more useful [2]. Therefore, neighbors who send clauses with smaller LBD
are rated higher.

The second signal is whether an imported clause was deleted in the meantime. Modern
SAT solvers commonly delete redundant clauses if they are not useful. If received clauses
are deleted very quickly, we rate the source neighbor down. In addition to the three-tier
system described in subsection 2.2.3, we may delete received clauses directly during import
in CaDiCaL. A clause is deleted immediately during import if the clause contains (a) a
literal that is marked as witness, (b) a literal that was eliminated or substituted, or (c) a
fixed literal.

The last signal is the amount of already known received clauses. The clause can be
already known for two reasons, either because another neighbor has sent the clause before
or because the internal solver already learned the clause.

3.4 Neighbor Selection

In this section, we describe the problem of selecting a neighbor to request clauses from. To
reduce communication volume, only one neighbor can be selected in each epoch. There-

14

3.4 Neighbor Selection

fore, we want to select the neighbor where we get the highest expected reward. On the
other hand, we must explore to gain information on the reward to expect from each neigh-
bor. This dilemma of exploration versus exploitation can be formalized as a multi-armed
bandit (MAB) problem. At first, we describe the theoretical background of this problem.
Then we motivate our choice of distribution for the expected reward. After that, we show
three strategies for selecting one neighbor based on the available information on the ex-
pected reward.

3.4.1 Multi Armed Bandit Problem

The MAB problem, originally formulated by Robbins [25], is about the dilemma of explo-
ration versus exploitation. The setting is that we have k arms from which we can choose
one in each round. We want to select the arm that gives us the greatest reward. Since we
do not know beforehand how much reward we get from each arm, we must explore to gain
information.

The expected reward of each arm can be modeled as distributions R = {R1, ..., RK}.
The parameters of each distribution can be learned from observed outcomes of chosen
actions.

The general setting for a MAB problem consists of three components. A set of actions
X with size |X| = k, an observable outcome yt at time t for executing action xt, and a
reward function r : Y → [0, 1] for mapping an observed outcome to a reward rt = r(yt).
The goal is to find a sequence of actions with minimal regret. Let µ∗ be the maximal reward
mean µ∗ = max

k
E[Rk], the regret is:

ρ = Tµ∗ −
TX

t=1

rt

In the next subsections, we explain strategies for choosing an action based on the avail-
able information.

3.4.2 Expected Reward

In the following, we assume that the selected neighbor exists and that we get a set of clauses
back. We execute an action, observe an outcome and map the outcome to a reward. In our
setting the action is sending a request message to a neighbor i. The outcome is a set of
received clauses C from neighbor i. We use the signals that we describe in section 3.3 to
map the outcome to a reward. Our objective is to get as many useful clauses as possible.
Therefore, our reward is r = 1 for a useful clause and r = 0 for a useless clause. The
expected reward can be approximated by a Bernoulli distribution, where we interpret a
useful clause as success and a useless clause as failure. The expected reward for neighbor i

15

3 Gossiping SAT Clause Communicator

is the parameter pi of the Bernoulli distribution, i.e., E[Ri] = pi. The maximum likelihood
estimator for the parameter pi of a Bernoulli distribution Ri is the sampled mean [24,
Chapter 5.1.2]:

pi =
1PT

t=1 δxti

TX

t=1

rtδxti

In our case we do not get only one clause per action, but ≤ k many clauses. Due to the
requirement of a reward r ∈ [0, 1], we choose the following reward function. Let Ai be
the set of accepted clauses and Di the set of immediately deleted clauses in observation yi.
Our reward for action xi is:

ri = r(yi) =
|Ai|− |Di|

max
0≤j≤i

(|Aj|− |Dj|)
(3.4.1)

Additionally, we adapt this rating function to incorporate the Literal Block Distance (LBD)
metric. Let mi,j be the LBD of clause ci,j in observation yi.

f(yi) =
X

ci,j∈Ai

2

mi,j

−
X

ci,j∈Di

2

mi,j

(3.4.2)

ri = r̂(yi) =
f(yi)

max
0≤j≤i

f(yj)
(3.4.3)

3.4.3 Uniform

In the simplest strategy, we choose the neighbor at random with uniform probability in
each epoch. One advantage of not using any past information is that a drift in the reward
distribution has no consequences. This leads to optimal exploration. In addition, in the
malleable setting newly added nodes eventually receive request messages. The drawback
is that gained information about neighbors do not get exploited. This leads to inefficient
clause exchanges where a high proportion of received clauses is immediately discarded.
Furthermore, the sum of regrets is potentially high, since we keep asking useless neighbors.
Therefore, we waste epochs where we could have requested clauses from useful neighbors.

3.4.4 Greedy

The greedy strategy uses information about the expected reward described in subsection 3.4.2.
At each time the greedy strategy chooses the action with the current maximum expected
reward argmax

i
pi. Without any adaptations, this is problematic, as the following exam-

ple illustrates: Assume the real expected reward does not change and the real expected
reward for neighbor one is p̂i = 0.8 and the observed expected reward for neighbor one is

16

3.4 Neighbor Selection

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

Figure 3.3: Beta distribution with parameters
α = 1 and β = 1.

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

Figure 3.4: Beta distribution with parameters
α = 6 and β = 12.

pi = 0.4. If the real and observed expected reward of neighbor two is p = 0.5, the greedy
strategy will never query neighbor one again and does not get the higher reward. One so-
lution for this behavior is to introduce an exploration round and an exploration parameter
ϵ ∈ [0, 1]. The parameter ϵ indicates the probability that the uniform strategy described in
subsection 3.4.3 chooses the neighbor instead of the greedy strategy.

3.4.5 Thompson Sampling

The problem of large differences between the observed and the real expected reward can be
tackled by introducing uncertainty. The goal is to have a high uncertainty for a small sample
size. We use Thompson sampling [30] to tackle this problem. Thompson sampling draws
rewards from a beta distribution and chooses the action with the maximum drawn reward.
This is in contrast to the greedy strategy, where the action with maximum expected reward
is chosen. The beta distribution is defined on the interval [0, 1] and is parameterized by two
positive shape parameters α and β. The expected value and variance of X ∼ Beta(α, β) is:

E[X] =
α

α + β

V[X] =
αβ

(α + β)2(α + β + 1)

The variance can be interpreted as the uncertainty. Since the denominator grows faster than
the numerator it follows that V[X] → 0 as α, β → ∞. We use the same update rule as used
by Russo et al. [26]:

(αi, βi) =

(
(αi, βi) xt ̸= i

(αi + rt, βi + 1− rt) xt = i

17

3 Gossiping SAT Clause Communicator

As the parameters are monotonically increasing, our uncertainty is monotonically decreas-
ing. For α = β = 1 the distribution is uniform and therefore represents maximum un-
certainty as illustrated in Figure 3.3. As α + β increase, the distribution becomes more
concentrated as illustrated in Figure 3.4. Thus, at the beginning, the strategy focuses on
exploration and shifts to exploitation with an increasing number of samples.

In our setting the real reward is likely to be non-stationary [4]. A useful neighbor can
become a useless neighbor. The search space of both can diverge and the search direction
from one node no longer complement the other. On the other hand, a useless neighbor can
become a useful neighbor. In order to adapt to a drift in the real reward, we discount the
reward over time. A discount factor is commonly used for this [23, 6]:

(αi, βi) =

(
(dαi, dβi) xt ̸= i

(dαi + rt, dβi + 1− rt) xt = i

This leads to decreasing importance of observed rewards in the past.

18

4 Experimental Evaluation

We first describe implementation details of our gossiping clause exchange framework and
present our hardware and software setup. Next, we explain how we tune the parameters we
introduced in chapter 3. Following, we present our selection of Boolean Satisfiability (SAT)
instances for testing and comparing our implementation. Finally, we show our results and
make a profound analysis of our hypothesis about expert clusters.

4.1 Implementation

We integrated our algorithm into Mallob [28]. Mallob and our gossiping framework are
implemented in C++17. The interprocess communication is done via an open Message
Passing Interface (MPI) implementation [11]. MPI is a message-passing standard com-
monly used in high performance computing for communication between nodes. We use
the beta distribution implementation of Mansfield [19] for the Thompson sampling strat-
egy. Other components, such as clause filters, are reused from Mallob. The hash function
introduced in [3] is used in the clause filter. The internal bitset of this clause filter resides
in memory shared between the MPI process and the SAT solving process. This allows for
immediate checking of deleted clauses without further interaction between communica-
tor and SAT solver. In addition, this ensures the least possible overhead when registering
deleted clauses and passing this information on to the communicator for the SAT solver. In
addition to internal support for a hexagonal grid communication graph, our implementation
supports parsing of custom communication graphs in Pajek NET Format.

4.2 Experimental Setup

Due to availability, we conducted our experiments on two computers. On computer A,
equipped with one AMD EPYC™ 7702 running at 2.0GHz and 1TB DDR4 RAM and on
computer B, equipped with two AMD EPYC™ 7713 running at 2.0GHz and 1TB DDR4
RAM. The operation system is Ubuntu 20.04 LTS using version 5.4.0-generic of the Linux
kernel. The code was compiled using GCC version 9.3.0 with OpenMPI version 4.0.3.

19

4 Experimental Evaluation

4.2.1 Tuning Parameters

Our framework consists of many components, which results in a large configuration space.
For this reason, we are committing ourselves to a hexagonal grid communication graph
and two neighbor selection strategies, namely an uninformed uniform selection strategy
and an informed Thompson sampling strategy. Furthermore, we use the CaDiCaL SAT
solver for all our experiments. Our baseline is a pure portfolio approach, i.e., 64 CaDiCaL
SAT solvers without any communication and clause exchange. We use as many nodes as
physical cores are available. We noticed that the amount of shared clauses is relatively
small in our setup. This is probably due to the requirements for a clause to be sent, as
described in subsection 3.2.3 and the limited buffer size of 4000 clauses per neighbor.
Therefore, we conduct all experiments without a limit on the number of clauses to be sent.
The informed strategy uses the rating function described in Equation 3.4.1. The usage of
the reward function described in Equation 3.4.3 did not lead to a significant improvement
in our setting. We compare our approaches to the default settings of Mallob.

4.2.2 Instances

We choose 80 instances [28] of the SAT2020 competition [10] for testing and comparing.

4.3 Results

Before evaluating and comparing our approach with the default settings of Mallob, we
need to find an appropriate reward function and parameters. We first evaluate the unin-
formed neighbor selection approach described in subsection 3.4.3. Using this selection
strategy, we observed a significant speedup by adjusting the exchange rate. Continuing, we
discuss some reward functions and justify our choice of the reward function described in
Equation 3.4.1. We then compare our best run with informed strategy, our best run with
uninformed strategy, the baseline without sharing, and the synchronous clause exchange of
Mallob.

After that, we perform an in-depth analysis of the formation of expert clusters in our
hexagonal grid communication graph. We compare the informed neighbor selection strat-
egy with Thompson sampling with the uninformed one. We show indicators for the forma-
tion of expert clusters when using the informed strategy.

Finally, we test the support of our gossiping framework for malleability of jobs.

4.3.1 Comparison

One parameter from which the gossiping communication strongly benefits is the exchange
rate. The exchange rate indicates the time interval at which clauses are exchanged. For

20

4.3 Results

0 50 100 150 200 250 300

Elapsed time t/s

0

10

20

30

40

50

#
so
lv
ed

in
st
an

ce
s
in

≤
t/
s

Configuration
Exchange rate: 500ms

Exchange rate: 1s

Configuration #Solved PAR-2 Score
Exchange rate 500ms 51 22160.07
Exchange rate 1s 45 25468.16

Figure 4.1: Comparsion of two exchange rate parameters using uniform neighbor selection strat-
egy. The experiment was conducted on computer A.

example, at an exchange rate of 1 second, every second clauses are requested from a single
neighbor. This has a major impact on the time required to distribute clauses, especially in
the case of massive parallelization, as the communications graph and thus the maximum
distance between 2 nodes increases. Furthermore, the time a node needs to distinguish
useful from useless neighbors,i.e., the time of the exploration phase, also depends on the
exchange rate. We show the results of two choices for the exchange rate in Figure 4.1
using the uninformed neighbor selection strategy. Doubling the exchange rate from once
per second to twice per second results in significant improvement. We observe similar
results when using Thompson sampling for neighbor selection. A further increase of the
exchange rate did not lead to significant improvements.

We use the reward function described in Equation 3.4.1. The incorporating of the Literal
Block Distance (LBD) metric in Equation 3.4.3 and the greedy neighbor selection strategy
do not lead to a significant improvement. Figure 4.2 shows our best runs against syn-

21

4 Experimental Evaluation

0 50 100 150 200 250 300

Elapsed time t/s

0

10

20

30

40

50

#
so
lv
ed

in
st
an

ce
s
in

≤
t/
s

Configuration
Synchronous clause exchange

Gossiping: Thompson sampling

Gossiping: Uniform

No sharing

Configuration #Solved PAR-2 Score
Synchronous clause exchange 54 19488.17
Gossiping: Thompson sampling 51 21721.83
Gossiping: Uniform 51 22160.07
No sharing 31 32539.28

Figure 4.2: SotA Mallob, baseline without communication and best runs of two different neighbor
selection strategies. The experiment was conducted on computer A.

chronous clause exchange and our pure portfolio baseline. It also shows that the informed
neighbor selection strategy outperforms the uninformed strategy.

4.3.2 Expert Clusters

Received clauses are rejected if the clause is registered in the deleted clause filter or in the
duplicate clause filter. As described in section 3.2 our clause filter has a potential increasing
rate of false positives as the number of registered clauses increases. However, as Figure 4.3
illustrates, the number of imported clauses per node does not decrease significantly over
time. This indicates that a periodic clearing of the clause filter is unnecessary.

To verify our hypothesis of formations of expert clusters, we start by analyzing whether

22

4.3 Results

0 50 100 150 200 250 300

Elapsed time t/s

0.5

0.6

0.7

0.8

0.9

1.0

A
cc
ep
ta
n
ce

ra
te

p
er

n
o
d
e

Configuration
Uniform

Thompson sampling

Figure 4.3: Acceptance rate, i.e., # accepted clauses
rejected clauses .

nodes tend to prefer requesting clauses from some neighbors over the others. Due to the
high dimensionality of our data, that is 64 nodes working on 80 Boolean Satisfiability (SAT)
instances and selecting one from up to 6 neighbors in each epoch, we need a metric to
reduce the dimensionality down to two dimensions. For this we reformulate our original
question to the question of how ordered our system is or how predictable the requests are.
The order of a system can be measured using the Shannon entropy [29]. To be able to assess
how much the nodes explore, we count the occurrences of each neighbor ID within a certain
time interval, i.e., the frequency of neighbor IDs. We interpret the counted occurrences as
probability p(xi) that the respective neighbor xi will be requested. The entropy of this
probability distribution is:

H(X) = −
nX

i=1

p(xi) log p(xi)

Intuitively, uniform probability yields maximum entropy, thus maximum exploration. Con-
trary, if only one neighbor will be requested, the entropy is zero, thus no exploration. We
refer to this entropy as exploration rate.

Since the border nodes do not have as many neighbors as the inner nodes, i.e., six neigh-
bors, we only consider the inner nodes. For easier interpretation, we divide the calculated

23

4 Experimental Evaluation

50 100 150 200 250 300

i

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

H
(x

i−
Δ
:i
)/
lo
g
(6
)

Configuration
Uniform

Thompson sampling

Figure 4.4: Exploration rate aggregated over all instances and nodes. i is the number of request
messages send so far and ∆ = 18.

entropy by the maximum possible entropy. In our case the maximum entropy is the uniform
probability distribution over six neighbors X ∼ U{1, 6}:

H(X) = −
6X

i=1

p(xi) log p(xi) = −
6X

i=1

1

6
log

1

6
= 6

1

6
log 6 = log 6

Figure 4.4 illustrates the exploration rate of an uniformed and an informed neighbor
selection strategy. The exploration rate of the uniform strategy represents maximal explo-
ration. The median and minimum exploration rate of Thompson sampling is lower than
the exploration rate of the uniform strategy. However the maximum exploration of both
strategies is maximal. This indicates that there are nodes which tend to prefer some neigh-
bors, but also nodes that do not prefer any neighbor. There are several explanations, such
as (a) insufficient diversification of SAT solvers, (b) multiple neighbors are equally useful
or useless, or (c) many instances do not benefit from gossiping communication.

Figure 4.5 shows the exploration rate, while solving one specific instance. This instance
was solved much faster by the Thompson sampling strategy than by the uninformed strat-
egy, with an speedup of 2.8, indicating that this instance strongly benefits from informed
gossiping communication. Furthermore, the graph shows an oscillating exploration factor,

24

4.3 Results

50 100 150 200 250 300 350

i

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

H
(x

i−
Δ
:i
)/
lo
g
(6
)

Configuration
Thompson sampling

Figure 4.5: Exploration rate aggregated over all nodes, solving the gto p50c314 instance. i is
the number of request messages send so far and ∆ = 18.

indicating that useful neighbors can become useless, which supports the assumption of a
non-stationary reward.

The second indicator for expert clusters is the increasing acceptance rate per node as il-
lustrated in Figure 4.3. We calculate the acceptance rate by dividing the number of accepted
clauses, i.e., the clauses that are passed to the solver, by the number of rejected clauses, i.e.,
the clauses that are assumed to be in the duplicated or deleted clause filter. Although the
rating function used does not include the number of rejected clauses, the acceptance rate
improves.

Finally, in Figure 4.6 and Figure 4.7 we visualize the popularity of neighbors relative
to other neighbors and the popularity of nodes relative to all other nodes for one specific
instance.

In Figure 4.6 the color of the edge arrows represents how frequent the source node re-
quested clauses from the destination node. For example, node 4 requested node 0 relatively
often, whereas node 3 almost never requested node 0. In Figure 4.7 the color of the nodes
represents how frequent the respective node was requested, normalized over all nodes.

Figure 4.6 shows several clusters. For example, Node 2 and 9 seem to benefit strongly
from each other, whereas there is relative few communication between node 2 and node 0.

25

4 Experimental Evaluation

0

12

3

4 5

6

8

7

9
10

11

12

13

14
15

16

17

18

19

20

21
2223

24

25

26

27

28

29

30
31 32

33

34

35

36

37

38

39

40
414243

44

45

46

47

48

49

50

51

52
53 54 55

56

57

58

59

60

61

62

Figure 4.6: Probability of neighbors getting requested. The darker the color of the edge, the higher
the probability.

26

4.3 Results

0

12

3

4 5

6

8

7

9
10

11

12

13

14
15

16

17

18

19

20

21
2223

24

25

26

27

28

29

30
31 32

33

34

35

36

37

38

39

40
414243

44

45

46

47

48

49

50

51

52
53 54 55

56

57

58

59

60

61

62

Figure 4.7: Node popularity, i,e, how frequent a node gets requested from its neighbors. The
darker the color of the node the higher the popularity.

27

4 Experimental Evaluation

0 50 100 150 200 250 300

Elapsed time t/s

0

10

20

30

40

50

#
so
lv
ed

in
st
an

ce
s
in

≤
t/
s

Configuration
32 nodes

64 nodes

Oscillating (32-64 nodes)

Figure 4.8: Test of support for malleability of jobs. This experiment was conducted on computer
B

However, this could also be an indicator that node 0 produces relatively few useful clauses.
This is contradicted by the high communication volume between node 0, 1, and 4, which
indicates another cluster.

Moreover, both Figures reveal a strong emergence of queries from the border nodes
inward to the core of the graph. This makes sense, since the clause production is much
higher in the core than on the border of the graph, due to a larger number of workers and
stronger connectivity.

4.3.3 Malleable Setup

In this subsection we analyze the performance of our gossiping communication framework
in the malleable setting. For this, we run an experiment with an oscillating number of
available nodes. To accomplish this, we introduce one demanding job every 30 seconds
with a timeout of 15 seconds, in addition to the main job. In our setup, the number of
available nodes oscillates between 32 and 64 nodes. Furthermore, we run an experiment
with 32 nodes and an experiment with 64 nodes. All three experiments use the uniform
selection strategy. The oscillating experiment should perform worse than the experiment

28

4.3 Results

with 64 nodes and should perform better than the experiment with 32 nodes. However, as
seen in Figure 4.8, the oscillating experiment performed as good as the experiment with
32 nodes, thus indicating poor support for malleability of jobs. One explanation could be
that the former border nodes start requesting the new nodes as soon as they get available.
However, since the new nodes have not been around long enough to have produced useful
clauses, the previous edge nodes do not benefit from a request. A solution could be to
penalize new neighbors and thus delay the first request.

29

4 Experimental Evaluation

30

5 Discussion

5.1 Conclusion

In this thesis we motivated parallel SAT solving and presented parallel SAT solvers we
have built upon. We motivated our approach of gossiping communication and the choice
of our communication graph and derived formulas for calculation of neighbor IDs given a
node ID.

Following, we explained which signals we use to distinguish between useful and useless
clauses. We showed a formal definition of our sub problem of neighbor selection and
presented different approaches to solve this problem. The problem of neighbor selection
was addressed with an uninformed and informed strategy. The uninformed strategy consists
of selecting a neighbor with uniform probability. The informed strategy is called Thompson
sampling and uses the signals about usefulness of clauses to identify useful neighbors.

We compared our approach with a pure portfolio approach and the default synchronous
clause exchange in Mallob. After that we analyzed our hypothesis of formation of expert
clusters. Finally we showed results for solving SAT instances in the malleable setting,
where we observed and discussed a decline in performance.

While we cannot match the performance of the synchronous clause exchange of Mallob,
we observed interesting behavior in the neighbor selection. We showed that a informed
neighbor selection strategy outperforms the uninformed one. This is an encouraging result
for further research in this direction and indicates potential of dynamic clause exchange.

5.2 Future Work

Due to the large number of possible directions, such as the choice of communication graph,
neighbor selection strategies, or signals for the usefulness of clauses, we had to limit our-
selves to a small subset. However, it might be worthwhile to make broader investigations.
The most promising directions from the author’s perspective are listed below:

Communication Graph
Our observations showed that even if some nodes have committed themselves to
specific neighbors, other nodes do not do so. This could be solved through better
diversification of SAT solvers. Furthermore, in the selected communication graph,

31

5 Discussion

clauses require several epochs to be fully propagated throughout the graph. A com-
munication graph in which nodes have both local and global distributed neighbors
could lead to a faster distribution.

Neighbor Selection
There are many possible informed neighbor selection strategies. We have only pre-
sented two and have not done any intensive parameter tuning. Further research in
this direction could be worthwhile. Additionally, it might be worthwhile to include
more signals as an indicator of the usefulness of clauses, such as how often a clause
was used by the respective SAT solver.

Asynchronous Clause Exchange
We observed an increase in performance with an increased exchange rate. This indi-
cates that the gossiping communication benefits of early and fast clause distribution.
Therefore, an asynchronous clause exchange, in which clauses are sent immediately,
could lead to a further increase in performance.

32

Bibliography

[1] Biere A., Heule M., and Maaren H. van. Handbook of Satisfiability : Second
Edition. Number v.336 in Frontiers in Artificial Intelligence and Applications Ser.
IOS Press, 2021. ISBN 978-1-64368-160-3. URL http://www.redi-bw.de/
db/ebsco.php/search.ebscohost.com/login.aspx%3fdirect%
3dtrue%26db%3dnlebk%26AN%3d2934688%26site%3dehost-live.

[2] Gilles Audemard and Laurent Simon. Predicting Learnt Clauses Quality in Modern
SAT Solvers. In Proceedings of the 21st International Joint Conference on Artifi-
cial Intelligence, IJCAI’09, pages 399–404, San Francisco, CA, USA, 2009. Morgan
Kaufmann Publishers Inc. event-place: Pasadena, California, USA.

[3] Tomáš Balyo, Peter Sanders, and Carsten Sinz. HordeSat: A Massively Parallel Port-
folio SAT Solver. In Marijn Heule and Sean Weaver, editors, Theory and Applica-
tions of Satisfiability Testing – SAT 2015, volume 9340, pages 156–172. Springer
International Publishing, Cham, 2015. ISBN 978-3-319-24317-7 978-3-319-24318-
4. doi: 10.1007/978-3-319-24318-4_12. URL http://link.springer.com/
10.1007/978-3-319-24318-4_12. Series Title: Lecture Notes in Computer
Science.

[4] Omar Besbes, Yonatan Gur, and Assaf Zeevi. Stochastic Multi-Armed-
Bandit Problem with Non-stationary Rewards. In Z. Ghahramani, M. Welling,
C. Cortes, N. Lawrence, and K. Q. Weinberger, editors, Advances in Neu-
ral Information Processing Systems, volume 27. Curran Associates, Inc.,
2014. URL https://proceedings.neurips.cc/paper/2014/file/
903ce9225fca3e988c2af215d4e544d3-Paper.pdf.

[5] Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian Heisinger. CaDi-
CaL, Kissat, Paracooba, Plingeling and Treengeling Entering the SAT Competition
2020. In Tomas Balyo, Nils Froleyks, Marijn Heule, Markus Iser, Matti Järvisalo,
and Martin Suda, editors, Proc. of SAT Competition 2020 – Solver and Benchmark
Descriptions, volume B-2020-1 of Department of Computer Science Report Series B,
pages 51–53. University of Helsinki, 2020.

[6] Emanuele Cavenaghi, Gabriele Sottocornola, Fabio Stella, and Markus Zanker.
Non Stationary Multi-Armed Bandit: Empirical Evaluation of a New Concept
Drift-Aware Algorithm. Entropy, 23(3):380, March 2021. ISSN 1099-4300.
doi: 10.3390/e23030380. URL https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC8004723/.

33

Bibliography

[7] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker,
Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemic Algorithms for Repli-
cated Database Maintenance. In Proceedings of the Sixth Annual ACM Symposium
on Principles of Distributed Computing, PODC ’87, pages 1–12, New York, NY,
USA, 1987. Association for Computing Machinery. ISBN 0-89791-239-X. doi:
10.1145/41840.41841. URL https://doi.org/10.1145/41840.41841.
event-place: Vancouver, British Columbia, Canada.

[8] Thorsten Ehlers and Dirk Nowotka. Tuning Parallel SAT Solvers. EasyChair
Preprints, 2018.

[9] Thorsten Ehlers, Dirk Nowotka, and Philipp Sieweck. Communication in Massively-
Parallel SAT Solving. In 2014 IEEE 26th International Conference on Tools with Ar-
tificial Intelligence, pages 709–716, Limassol, Cyprus, November 2014. IEEE. ISBN
978-1-4799-6572-4. doi: 10.1109/ICTAI.2014.111. URL http://ieeexplore.
ieee.org/document/6984547/.

[10] Nils Froleyks, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda.
SAT Competition 2020. Artificial Intelligence, 301:103572, 2021. ISSN 0004-
3702. doi: https://doi.org/10.1016/j.artint.2021.103572. URL https://www.
sciencedirect.com/science/article/pii/S0004370221001235.

[11] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Dongarra,
Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew
Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L. Graham, and Timothy S.
Woodall. Open MPI: Goals, Concept, and Design of a Next Generation MPI Imple-
mentation. In Proceedings, 11th European PVM/MPI Users’ Group Meeting, pages
97–104, Budapest, Hungary, September 2004.

[12] Youssef Hamadi and Lakhdar Sais. ManySAT: a parallel SAT solver. JOURNAL ON
SATISFIABILITY, BOOLEAN MODELING AND COMPUTATION (JSAT), 6, 2009.

[13] Marijn Heule, Matti Jarvisalo, Martin Suda, Markus Iser, Tomáš Balyo, and Nils
Froleyks. SAT Competition 2020, 2020. URL https://satcompetition.
github.io/2020/results.html.

[14] Marijn Heule, Matti Jarvisalo, Martin Suda, Markus Iser, Tomáš Balyo, and Nils
Froleyks. SAT Competition 2021, 2021. URL https://satcompetition.
github.io/2021/results.html.

[15] Marijn J. H. Heule, Oliver Kullmann, Siert Wieringa, and Armin Biere. Cube
and Conquer: Guiding CDCL SAT Solvers by Lookaheads. In Kerstin Eder, João
Lourenço, and Onn Shehory, editors, Hardware and Software: Verification and Test-
ing, Lecture Notes in Computer Science, pages 50–65, Berlin, Heidelberg, 2012.
Springer. ISBN 978-3-642-34188-5. doi: 10.1007/978-3-642-34188-5_8.

[16] Matti Järvisalo, Marijn J. H. Heule, and Armin Biere. Inprocessing Rules. In Bern-
hard Gramlich, Dale Miller, and Uli Sattler, editors, Automated Reasoning, pages

34

Bibliography

355–370, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. ISBN 978-3-642-
31365-3.

[17] Marko Kleine Büning, Tomáš Balyo, and Carsten Sinz. Using DimSpec for Bounded
and Unbounded Software Model Checking. In Yamine Ait-Ameur and Shengchao
Qin, editors, Formal Methods and Software Engineering, pages 19–35, Cham, 2019.
Springer International Publishing. ISBN 978-3-030-32409-4.

[18] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured storage
system. ACM SIGOPS Operating Systems Review, 44(2):35–40, April 2010. ISSN
0163-5980. doi: 10.1145/1773912.1773922. URL https://dl.acm.org/doi/
10.1145/1773912.1773922.

[19] Joseph Mansfield. A beta distribution random number distribution for C++11., March
2013. URL https://gist.github.com/sftrabbit/5068941.

[20] Norbert Manthey. The MergeSat Solver. In Chu-Min Li and Felip Manyà, editors,
Theory and Applications of Satisfiability Testing – SAT 2021, pages 387–398, Cham,
2021. Springer International Publishing. ISBN 978-3-030-80223-3.

[21] Fabio Massacci and Laura Marraro. Logical Cryptanalysis as a SAT Problem.
Journal of Automated Reasoning, 24(1):165–203, February 2000. ISSN 1573-
0670. doi: 10.1023/A:1006326723002. URL https://doi.org/10.1023/A:
1006326723002.

[22] Amit Patel. Red Blob Games: Hexagonal Grids, October 2021. URL https://
www.redblobgames.com/grids/hexagons/.

[23] Vishnu Raj and Sheetal Kalyani. Taming Non-stationary Bandits: A Bayesian Ap-
proach. ArXiv, abs/1707.09727, 2017.

[24] Rossi Richard J. Mathematical Statistics : An Introduction to Likelihood Based
Inference., volume 1st edition. Wiley, 2018. ISBN 978-1-118-77104-4. URL
http://www.redi-bw.de/db/ebsco.php/search.ebscohost.com/
login.aspx%3fdirect%3dtrue%26db%3dnlebk%26AN%3d1828554%
26site%3dehost-live.

[25] Herbert Robbins. Some aspects of the sequential design of experiments. Bulletin
of the American Mathematical Society, 58(5):527–535, 1952. Publisher: American
Mathematical Society.

[26] Daniel Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. A
Tutorial on Thompson Sampling. arXiv:1707.02038 [cs], July 2020. URL http:
//arxiv.org/abs/1707.02038. arXiv: 1707.02038.

[27] Dominik Schreiber. Lilotane : A Lifted SAT-based Approach to Hierarchical Plan-
ning. Journal of artificial intelligence research, 70:1117–1181, 2021. ISSN 1076-
9757. doi: 10.1613/jair.1.12520. Publisher: AI Access Foundation.

[28] Dominik Schreiber and Peter Sanders. Scalable SAT Solving in the Cloud. In Chu-
Min Li and Felip Manyà, editors, Theory and Applications of Satisfiability Test-
ing – SAT 2021, volume 12831, pages 518–534. Springer International Publish-

35

Bibliography

ing, Cham, 2021. ISBN 978-3-030-80222-6 978-3-030-80223-3. doi: 10.1007/
978-3-030-80223-3_35. URL https://link.springer.com/10.1007/
978-3-030-80223-3_35. Series Title: Lecture Notes in Computer Science.

[29] C. E. Shannon. A mathematical theory of communication. The Bell System Technical
Journal, 27(3):379–423, 1948. doi: 10.1002/j.1538-7305.1948.tb01338.x.

[30] William R. Thompson. On the Likelihood that One Unknown Probability Exceeds
Another in View of the Evidence of Two Samples. Biometrika, 25(3/4):285, Decem-
ber 1933. ISSN 00063444. doi: 10.2307/2332286. URL https://www.jstor.
org/stable/2332286?origin=crossref.

36

