
Master’s Thesis

Malleable Distributed Hierarchical
Planning

Niko Wilhelm

Date of submission: November 1, 2022

Betreuer: Prof. Dr. Peter Sanders
M.Sc. Dominik Schreiber

Institut für Theoretische Informatik, Algorithmik
Fakultät für Informatik

Karlsruher Institut für Technologie

Hiermit versichere ich, dass ich diese Arbeit selbständig verfasst und keine anderen, als die
angegebenen Quellen und Hilfsmittel benutzt, die wörtlich oder inhaltlich übernommenen
Stellen als solche kenntlich gemacht und die Satzung des Karlsruher Instituts für Technolo-
gie zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet habe.

Karlsruhe, den 01. November 2022

Zusammenfassung
Totally Ordered Hierarchical Task Network (TOHTN) planning ist ein Teilgebiet

der künstlichen Intelligenz und gehört zum Bereich des domänenunabhängigen Pla-
nens. Beim TOHTN planning werden offene Tasks rekursiv aufgelöst und verfeinert
bis wir einen ausführbaren Plan aus primitiven Aktionen erhalten. TOHTN plan-
ning ist von hoher Komplexität gekennzeichnet. Es gehört zur Komplexitätsklasse
D-EXPTIME und ist EXPSPACE-hart.
Malleability bezeichnet die Fähigkeit eines Programms, mit einer sich verändernden
Menge zugewiesener Ressourcen zurecht zu kommen. Sie erlaubt den effizienten Ein-
satz von Ressourcen, da sie erlaubt Ressourcen zu jedem Zeitpunkt vollständig zu
nutzen anstatt einen Kompromiss aus Durchsatz und Latenz anstreben zu müssen.
Programme zu schreiben die dies erfüllen ist jedoch eine Herausforderung, weswegen
es nur wenige Beispiele gibt.
Um die Möglichkeiten des parallelen Planens auszuloten und zudem die Möglich-
keiten des Load Balancers und Schedulers Mallob aufzuzeigen haben wir unseren
parallelen Planner CrowdHTN in Mallob integriert. Zudem haben wir die Perfor-
mance von CrowdHTN mithilfe eines verteilten Schemas zur Schleifenerkennung
basierend auf Bloom Filtern verbessert und Neustarts genutzt, um die Vollständig-
keit unseres Algorithmus’ zu garantieren.
In unserer Evaluation zeigen wir, dass sowohl die verteilte Schleifenerkennung als
auch die Neustarts die Performanz und die Menge gelöster Instanzen erhöhen. Zu-
dem zeigen wir, dass wir auch in einem veränderlichen Umfeld die Fähigkeit beibe-
halten, Instanzen zu lösen.

Abstract
Totally Ordered Hierarchical Task Network (TOHTN) planning is a sub-field

of artificial intelligence and belongs to the area of domain-independent planning.
In TOHTN planning we recursively resolve open tasks, refining them, until we
obtain an executable plan consisting of primitive actions. TOHTN planning is
computationally intensive and it belongs to the class of D-EXPTIME while being
EXPSPACE-hard.
Malleability is the ability of a program to handle a changing amount of assigned
resources at run time. It allows for a more efficient use of resources as it frees sched-
ulers to utilize all resources at all times instead of striking a compromise between
throughput and latency. At the same time, it is a challenge to implementers and
few malleable programs exist.
To further explore parallel TOHTN planning and to demonstrate the capabilities
of malleable scheduler and load balancer Mallob we perform an integration of our
parallel planner CrowdHTN with the aforementioned Mallob. Additionally, to in-
crease the performance of CrowdHTN, we introduce a new distributed loop detection
scheme based on bloom filters and utilizing restarts for correctness.
In our evaluation we find that both distributed loop detection and restarts positively
impact performance and coverage of our planner while showing that we retain the
capability to solve problems in a malleable environment.

Contents

Contents

1 Introduction 7

2 Preliminaries 9
2.1 (TO)HTN Formalism . 9

2.1.1 Defining (TO)HTN Planning Problems 9
2.1.2 Complexity of (TO)HTN planning . 11
2.1.3 Differences from other Kinds of Planning 11
2.1.4 Graphically Representing TOHTN Problems 11

2.2 Techniques to solve HTN planning problems . 12
2.2.1 Translation-based . 12
2.2.2 Search-based . 13
2.2.3 Lifted and Ground HTN Planning . 14
2.2.4 Comparing the Techniques . 14

2.3 Malleability . 15
2.4 Parallel and Distributed Computing Techniques 15

2.4.1 Parallel Graph Search . 16
2.4.2 Parallel Hierarchical Planning . 16

2.5 The CrowdHTN Planner . 17
2.6 The Mallob Load Balancer and SAT Solver . 18

3 Theoretical Improvements of the CrowdHTN Planner 20
3.1 Search Algorithms Used in CrowdHTN . 20

3.1.1 Random Depth-First Search . 20
3.1.2 Random Breadth-First Search . 20
3.1.3 Heuristic Search . 21
3.1.4 Completeness of different Search Algorithms 24

3.2 Loop Detection . 25
3.2.1 Loop Detection in Other HTN Planners 25
3.2.2 Assumptions in Loop Detection for CrowdHTN 26
3.2.3 Hash Set Based Loop Detection . 26
3.2.4 Approximate and Distributed Loop Detection 27

3.3 Discussion of Planner Completeness . 30

4 A Malleable TOHTN Planner 33
4.1 Distributing Jobs . 33
4.2 Integrating New PEs Into Malleable CrowdHTN 33
4.3 Handling PEs Leaving at Run Time . 34

4.3.1 Handling the Local Fringe . 34
4.3.2 Handling Lost Messages . 35

5 Implementation 37
5.1 Mallob Integration . 37
5.2 Efficiently Handling Version Increases . 39
5.3 Global Loop Detection . 40
5.4 Improving the Search Node Exploration Algorithm 41
5.5 Efficiently Hashing Nodes of the Search Graph 41

4

Contents

6 Experimental Evaluation 43
6.1 Experimental Setup . 43
6.2 Comparing New to Old CrowdHTN and Sequential Planners 44
6.3 Optimizations in CrowdHTN . 44
6.4 Search Algorithms . 45
6.5 Bloom Filters in Loop Detection . 47
6.6 Probabilistic Restarts . 48
6.7 Global Loop Detection . 48
6.8 Scalability of CrowdHTN . 49
6.9 Malleable CrowdHTN . 50
6.10 Discussion . 52

7 Conclusion 56
7.1 Recap . 56
7.2 Future Work . 56

5

List of Algorithms

List of Figures
1 An example TOHTN domain . 12
2 Example TOHTN domain to demonstrate our heuristic 23
3 A pathological case in our new HTN heuristic 25
4 Pathological instance for our proposed heuristic that is not caught by loop detection 32
5 Life cycle of a Mallob worker . 38
6 Instances solved per time for old and new CrowdHTN 45
7 Instances solved per time for CrowdHTN using DFS, heuristic DFS, A*-like

search and BFS . 47
8 Instances solved per time with hash set and bloom filter based loop detection . . 48
9 Instances solved per time with a local bloom filter with and without restarts . . 49
10 Instances solved per time with a local bloom filter and restarts with global loop

detection . 49
11 Instances solved per time for CrowdHTN using DFS and a local bloom filter on

4, 16 and 64 PEs . 50
12 Distribution of solving times on Monroe-Fully-Observable instance 11 51
13 Distribution of solving times for malleable and moldable CrowdHTN 52

List of Tables
1 Example computation of our TOHTN heuristic for the domain in figure 2.

Changing values are bold. 23
2 Completeness of the different search algorithms in CrowdHTN 25
3 List of parameters identifying a CrowdHTN configuration 44
4 Metadata about progression search on our benchmark 46
5 Coverage and IPC score of our search algorithms using 4 PEs and a local bloom

filter . 47
6 Evalutating CrowdHTN on 20 instances of the Monroe-Fully-Observable domain 51
7 Success rate and average, minimum and maximum run times of CrowdHTN on

Monroe-Fully-Observable instance 11 . 51
8 Coverage and average run time of malleable and moldable CrowdHTN 52
9 Domain-wise comparison of sequential planners PANDA, HyperTensioN and par-

allel planner Crowd in its standalone version . 54
10 Domain-wise comparison of parallel planner CrowdHTN in various configurations 55

List of Algorithms
1 Classical Progression Search for HTN as introduced in [35] 13
2 The parallel CrowdHTN algorithm . 18
3 GBFS heuristic calculation . 22
4 The Mallob job interface . 37

6

1 Introduction

1 Introduction

Planning via Hierarchical Task Networks (HTN) is a popular approach to automated AI plan-
ning. HTN planning works by repeatedly decomposing a set of initial tasks until they have
been decomposed to the level of simple actions [26, 9]. These actions form a plan which can be
executed to achieve the goal set out by the initial tasks. Totally Ordered (TO) HTN planning
is an important sub-problem of HTN planning where all tasks are constrained by a total order.
Hierarchical planners are easy to use as the hierarchy allows the user to insert a structure into
the problem description and to provide the planner with advice to guide the planning proce-
dure. As a result, HTN planning has been used in a number of fields. [46] have used HTN
planning for AI in real-time strategy games. Similarly, [49] have improved their minimax game
tree search in real-time strategy games via HTN, which allowed them to reduce the branching
factor of their problem. This approach was further extended by [41] to also take the opponent’s
strategy into account. Further applications of HTN planning include automated web service
composition [59] as well as the composition of cloud applications [27], socially assistive robotics
[28], storyline visualizations [50] and automated machine learning [45].
While popular with users, HTN planning does present challenges for implementers as instances
can be very CPU and memory intensive to solve. It was shown that HTN planning itself is only
semi-decidable and that TOHTN planning is still in D-EXPTIME while being EXPSPACE-
hard [19, 20]. Regarding the expressive power of TOHTN problems they correspond to the
class of context-free languages [32]. Part of the complexity in HTN planning stems from its
recursive nature. As a result of this, the detection of duplicate states plays an important role
in the performance of planners [31].

Malleability is the ability of a parallel job to efficiently integrate new processing elements (PEs)
into a parallel job at run time as well as handle a reduction of the available PEs [23]. Malleable
programs are well-liked by administrators of supercomputers, as they allow the utilization of
all compute resources, maintaining both high throughput and keeping latencies for new jobs
low [23, 37]. The malleable model does pose additional challenges for application program-
mers, though, and malleable jobs are only easy to implement if we restrict our problems to
those which split into small, independent work packages [23, 61]. As a result, few malleable
applications exist.
However, in recent years a number of malleable SAT solvers have emerged. Among those Mal-
lob [54] and Paracooba [29]. This is of special importance as SAT solvers serve as a building
block in many other applications such as hierarchical planning. Having malleable SAT solvers
available may allow for other applications to profit from this paradigm while being presented a
simple to use interface.

In this thesis, we present three main advances in parallel and malleable TOHTN planning.
Firstly, we present a number of improvements for the parallel search-based planner CrowdHTN.
Both HyperTensioN [43] and PANDA [31] have shown the importance of detecting duplicate
search nodes to improve the performance of hierarchical planners. PANDA specifically uses an
approach based on hashing which may fall back to full node comparisons to avoid false posi-
tives. Parallel planner CrowdHTN already includes a loop detection mechanism based on the
ideas of PANDA [14]. We take the idea of PANDA to only compare hashes and not full nodes
and generalize it to bloom filters which may use any number k of hash functions to reduce false
positive rates. Bloom filters then allow us to present a design for a distributed loop detection
mechanism. Additionally, PANDA has shown that heuristics can greatly increase the perfor-
mance of search-based planner [35]. We try to adapt heuristic search for CrowdHTN while

7

1 Introduction

under the added constraints of malleability. Doing so, we implement BFS, heuristic DFS and
A* in CrowdHTN. Last, we take inspiration from SAT where restarts have been used since the
90’s [18] to design a restarting scheme for CrowdHTN which allows it to be complete even as
bloom filter based detection of duplicate nodes may lead to false positives.
Second, we provide a general overview of the completeness of different TOHTN planning ap-
proaches. We show that both search-based planners using BFS, A* and current SAT-based
planners are complete. In addition we argue that heuristic best-first search may always be
incomplete and that, while current loop detection mechanisms are helpful for planner perfor-
mance, there are cases of recursion in hierarchical planning problems which they are unable
to detect. Lastly, we show that our restart mechanism brings random DFS into the list of
algorithms which are complete on all problems.
Third, we present our design of a malleable TOHTN planner. In this we integrate our planner
CrowdHTN with the malleable job scheduler Mallob. We offer an overview of our design and
show how work stealing in general can be adapted to a malleable framework while preserving
completeness of the search. Doing so we also show Mallob’s capabilities as a general purpose
job scheduler and load balancer.
In our evaluation we find that our implementation suffers from some overhead due to the in-
tegration into Mallob. However, we also see that bloom filters in general outperform hash sets
when it comes to detecting duplicate states in TOHTN planning and that this performance
gain extends to our distributed loop detection scheme. We further find that restarts not only
serve to ensure the completeness of our planner while using bloom filters but have an additional
positive impact on overall performance. Regarding malleability, we see that our proposed mal-
leable work stealing scheme can suffer from some loss of performance when a large number of
PEs is frequently reshuffled but that this can be mitigated with frequent restarts.

The rest of this work follows the following structure: in section 2 we introduce a TOHTN
planning formalism as well as planning techniques, followed by an intro to malleability and an
overview of parallel and distributed computing techniques that inform the design of Crowd-
HTN. It ends with a short introduction to CrowdHTN and Mallob. Section 3 presents us two
potential theoretical improvements to CrowdHTN and the design of a distributed loop detec-
tion scheme. It concludes with us showing how current loop detection schemes are unequipped
to ensure completeness of hierarchical planners and argue for the use of restarts as an alterna-
tive technique. Section 4 presents our design of a malleable parallel TOHTN planner based on
work stealing. This is followed by section 5 which contains implementation details of both our
improvements and the malleable design. Finally, section 6 evaluates and compares our planner
to it’s old standalone version, presents the performance impact of our various improvements
and provides an overview of the behavior of CrowdHTN as the number of PEs scales as well as
under malleable conditions. Section 7 concludes this work.

8

2 Preliminaries

2 Preliminaries

In this section we introduce the TOHTN formalism and discuss its complexity and differences to
classical planning in 2.1. This is followed by an overview and comparison of TOHTN planning
techniques in 2.2, and a classification of parallel programs and discussion of malleability in 2.3.
In 2.4 we introduce the parallel techniques underlying our planner. We conclude by introducing
our parallel planner CrowdHTN in 2.5 and the malleable load balancer and scheduler Mallob
in 2.6.

2.1 (TO)HTN Formalism

In this section we first define what HTN and TOHTN problems are from a formal perspective
2.1.1. Afterwards we take a short look at the algorithmic worst case complexity of HTN and
TOHTN planning 2.1.2. We conclude by taking a short look at how hierarchical and classical
planning compare in 2.1.3 and present the way in which we visualize hierarchical problems in
this work in 2.1.4.

2.1.1 Defining (TO)HTN Planning Problems

Both HTN and TOHTN planning are based on decomposing a list of initial tasks down into
smaller subtasks until those subtasks can be achieved by simple actions. A number of formalisms
for HTN plannings exist [26, 6, 56]. These formalisms are similar but differ slightly to suit
specific planning approaches. In this work, we will reuse the formalism we introduced in [14]
which is built on the definition by [26].

Definition 1. A predicate consists of two parts. Firstly a predicate symbol p ∈ P where P
is the finite set of predicate symbols. Secondly of a list of terms τ1, . . . , τk where each term τi

is either a constant symbol c ∈ C, with C being the finite set of constant symbols, or a variable
symbol v ∈ V, where V is the infinite set of variable symbols.
The set of all predicates is called Q.

With the definition of a predicate in place, we can then define a grounding as well as our world
state.

Definition 2. A ground predicate is a predicate where the terms contain no variable symbols
or, in other words, a predicate that contains only constant symbols.

Definition 3. A state s ∈ 2Q is a set of ground predicates for which we make the closed-
world-assumption. Under the closed-world-assumption, only positive predicates are explicitly
represented in s. All predicates not in s are implicitly negative.

Definition 4. With Tp the set of primitive task symbols, a primitive task tp is defined as a
triple tp(t̃p(a1, . . . , ak), pre(tp), eff(tp)). p̃ ∈ Tp is the task symbol, a1, . . . , ak ∈ C ∪ V are the
task arguments, pre(tp) ∈ 2P the preconditions and eff(tp) ∈ 2P the effects of the primitive
task tp. We further define the positive and negative preconditions of tp as pre+(tp) := {p ∈
pre(tp) : p is positive} and pre−(tp) := {p ∈ pre(tp) : p is negative}. We define eff+(tp) and
eff−(tp) analogously.
We call a fully ground primitive task an action.

9

2 Preliminaries

As preconditions and effects may not be concerned with the whole world state the closed-world
assumption does not apply to them. To any HTN instance we could create an equivalent one
where each precondition and effect cares about the whole world state. This would be achieved
by instantiating all the "don’t care" terms in preconditions and effects with all possible combi-
nations of predicates. Doing this would, however, come at the price of a huge blowup of our
planning problem.

Definition 5. An action tp is applicable in state s if pre+(tp) ⊆ s and pre−(tp)∩ s = ∅. The
application of tp in state s results in the new state s′ = (s \ eff−(tp)) ∪ eff+(tp).

Definition 6. We define a compound task as tc = t̃c(a1, . . . , ak), where t̃c ∈ Tc is the task
symbol from the finite set of compound task symbols Tc and a1, . . . , ak are the task arguments.

Primitive and compound tasks together form task networks. In places where both can be used,
we will refer to them simply as tasks t ∈ T .

Definition 7. Let T = Tp
⋃
Tc be a set of primitive and compound tasks. A task network is a

tuple τ = (T, ψ) consisting of tasks T and constraints ψ between those tasks.

Definition 8. Let M be a finite set of method symbols and T = Tp
⋃
Tc a set of primitive

and compound tasks. A method m = (m̃(a1, . . . , ak), tc, pre(m), subtasks(m), constraints(m))
is a tuple consisting of the method symbol m̃, the method arguments a1, . . . , ak, the associated
compound task tc ∈ Tc the method refers to, a set of preconditions pre(m) ∈ 2P , a set of
tasks subtasks(m) = {t1, . . . , tl}, ti ∈ T and a set of ordering constraints c1, . . . , cm defining
relationships between the subtasks. Any arguments appearing in tc, pre(m), subtasks(m) must
also appear in a1, . . . , ak.
In TOHTN planning, constraints(m) is implicitly set s.t. the subtasks t1, . . . , tl are totally
ordered.
We call a fully ground method a reduction.

Each method m has exactly one associated compound task tc. However, multiple methods
m1, . . . ,mk may be associated with a single compound task tc. Additionally, while any argu-
ments of tc must be present in m, the contrary is not true and m may have arguments not
present in tc, i.e., m is not fully determined by tc. As a result, methods represent choice points
both in the choice of method itself as well as through the argument instantiation.

Definition 9. Let τ = (T, ψ) be a task network, s a state, m = ((̃m)(a1, . . . , ak), tc, pre(m),
subtasks(m), constraints(m)) be a method. m resolves τ iff tc ∈ T , the constraints in ψ allow
for tc to be resolved, pre+(m) ∈ s and pre−(m) ∩ s = ∅.
Resolving a compound task t ∈ T results in a new task network τ ′ = ((T \ t) ∪ {t : t ∈
subtasks(m)}, ψ ∪ constraints(m)) and unchanged state s.
Applying a primitive task results in a new task network τ ′ = (T \ t, ψ) in state s′ where the
effects of t have been applied to s.

Definition 10. An HTN domain is a tuple D = (V,C, P, T,M) consisting of finite sets
variables V , constants C, predicates P , tasks T and methods M . An HTN problem Π =
(D, s0, τ0) consists of a domain D, an initial state s0 and an initial task network τ0.
If subtasks(m) has a total order for all m ∈M and the tasks in τ0 are totally ordered, we speak
of a TOHTN domain and TOHTN problem.

10

2.1 (TO)HTN Formalism

It is possible to simplify the model s.t. τ0 always consists of only a single task with no con-
straints. We do this by inserting a new initial task t0 and method m0 with no arguments s.t.
resolving t0 via m0 results in τ0.
Another way of viewing HTN problems is as AND/OR trees [34] where tasks form OR-nodes
where one of may methods is chosen and methods form AND-nodes, as all subtasks need to be
resolved.

2.1.2 Complexity of (TO)HTN planning

The complexity of HTN and TOHTN planning has been studied in many papers. Here the
problem PLANEXIST describes, whether for any given (TO)HTN instance a plan exists at all.
It is not concerned with optimality.
Early on it was shown by [19] and [20] that the complexity of hierarchical planning formalisms
depends on things such as the existence and ordering of non-primitive tasks, whether a total
order between tasks is imposed and whether variables are allowed. The combination of arbitrary
non-primitive tasks, no total order imposed and allowing variables is what we talk about with
HTN planning, the same combination but with a total order is what we mean with TOHTN
planning. They showed that HTN planning is semi-decidable whereas TOHTN planning is
decidable in D-EXPTIME while being EXPSPACE-hard.
We can see what D-EXPTIME means in practise when we consider the maximum size of a
task network we need to consider. From [5] we know that if a solution to an HTN instance
exists, it can be found within a maximum depth of |Tc| · (2|Q|)2. Similarly, we see that a task
network can have exponential width in it’s depth. Consider for this an instance constructed
such that each compound task has exactly two children and where primitive tasks are only
occuring at the bottom most layer. Now each layer will be twice as wide as the one before,
giving us exponential width.
Regarding the general relationship of hierarchical planning to complexity theory, [19] and [20]
showed early on that HTN instances can be used to simulate context-free languages. This
was extended by [32] who showed that TOHTN instances correspond exactly to context-free
grammars.
In addition to planning itself, the problem of plan verification was studied. Here, [4] showed
that plan verification is NP-complete, even under the assumption that not only the plan but
also the decompositions leading to it are provided.

2.1.3 Differences from other Kinds of Planning

[48] creates a classification of planners into domain-specific, domain-independent and domain-
configurable planners. They argue that HTN planning falls under domain-configurable with
the decompositions providing advice to the planner to gain efficiency. [35] argue that HTN-
planning is not simply a domain-configurable version of classical planning on the basis that
[19, 20] showed that HTN-planning is strictly more powerful compared to classical planning
which is PSPACE-complete.
While we agree with [35], one can still use HTN planning without using the full complexity of
the model, using it instead to provide more efficient and guided versions of classical planning
problems.

2.1.4 Graphically Representing TOHTN Problems

In the rest of this work we will sometimes represent the structure of TOHTN domains graph-
ically. We will always use the same scheme which we explain here. In our visualization, we

11

2 Preliminaries

Figure 1: An example TOHTN domain

represent the structure of a domain as a series of methods. To the left we show the compound
task, followed by the method itself on its right and followed again by the method subtasks in
their fixed order. Compound tasks are always represented by green rounded squares and their
name, methods by an arrow with the method name above and actions by blue rounded squares
and their name.
A short example is shown in figure 1. It consists of one method, m1 which resolves task t1. The
subtasks of m1 are t2, a1 and a2. t1 and t2 are compound tasks, a1 and a2 are actions.

2.2 Techniques to solve HTN planning problems

In this section, we will give an overview over the different techniques with which HTN problems
can be solved. The HTN planners produced by researchers can be classified along two main
axes:

• the planning algorithm
• lifted vs grounded approaches

For the algorithms, the two main variations are translation-based algorithms that take an HTN
instance and translate it into a problem in a simpler complexity class such as classical planning
or propositional logic (SAT) and search-based algorithms that utilize techniques such as plan-
space search and progression search. We will focus on progression search here, as it is the
technique employed in our own planner, CrowdHTN.
After that we will have a short discussion on lifted versus grounded approaches which is largely
independent of the search algorithm.

2.2.1 Translation-based

One of the main techniques employed in HTN planning is to find an efficient encoding into
a simpler problem. Two such problems are classical planning [1] and SAT. While translation
to SAT was already proposed in 1998 [44], the first complete encoding without assumptions
about the instance was publicized in 2018 [5]. In recent years, SAT seems to be the most
popular problem to translate an HTN instance into, utilized by planners such as totSAT [5, 6],
Tree-REX [57] and Lilotane [56].
As we have seen in the previous section 2.1.2 on (TO)HTN complexity, (TO)HTN problems
are in D-EXPTIME and undecidable respectively. Both classical planning and SAT are less
powerful. As a result, HTN problems cannot be encoded and even for TOHTN problems
we would suffer a blowup in the size of the instance. Instead, as noted in [57], SAT-based
planners tend to explore subproblems by encoding the set of potential hierarchies layer by
layer, increasing the encoding size as they go. As a result, those SAT-based planners tend to
have a BFS-like characteristic to their search.

12

2.2 Techniques to solve HTN planning problems

2.2.2 Search-based

The second main category of techniques to solve HTN planning problems are search-based al-
gorithms, such as plan space search and progression search.
Plan space search searches the space of partial plans, where search nodes represent partial plans
and edges represent plan refinements [62].
As progression search is both more prominent in current planners and our own planner, Crowd-
HTN, also utilizes it we will now focus on this paradigm according to [35]. Progression search
generates plans in a forward way. Search nodes are represented as tuples (tn, s) of open tasks
tn and world state s. It always chooses an open task that is currently unconstrained, i.e. has no
unresolved predecessors under the ordering constraints, and resolves it. This allows the planner
to update the world state as it goes along, as the sequence of actions from the start to the
current point is known at each step of the search. In case of TOHTN planning, the choice of
the next unconstrained task becomes trivial, as there is always exactly one such task. Knowing
the full world state gives progression search two main advantages over plan space search. First,
it allows the planner to prune parts of the search space by immediately validating action and
reduction preconditions against this world state. Second, it gives us maximum information to
be used in heuristics that guide our search.
The progression search algorithm is given in pseudocode in algorithm 1. As mentioned, line
6 becomes trivial for TOHTN planning and the loop from lines 7 to 16 is no loop, as there is
always exactly one unconstrained task. Additionally, the location of our goal test can be moved
around, depending on need. Performing the goal test upon popping a node is useful if we want
to find optimal plans and our fringe data structure - and thus popping order - have a notion of
node cost. Performing the goal test upon node creation allows us to terminate earlier.
Notable search-based planners are SHOP ([47]), HyperTensioN ([43]), PANDA ([35]) and our
own planner CrowdHTN which will be presented in a later section 2.5.

Algorithm 1: Classical Progression Search for HTN as introduced in [35]
1 fringe← {(s0, tnI , ε)}
2 while fringe 6= ∅ do
3 n← fringe.pop()
4 if n.isgoal then
5 return n

6 U ← n.unconstrainedNodes
7 for t ∈ U do
8 if isPrimitive(t) then
9 if isApplicable(t) then

10 n′ ← n.apply(t)
11 fringe.add(n′)
12 else
13 for m ∈ t.methods do
14 n′ ← n.decompose(t,m)
15 fringe.add(n′)

13

2 Preliminaries

2.2.3 Lifted and Ground HTN Planning

As mentioned in section 2.1.1, HTN instances are normally given in a lifted representation and
can be ground, i.e. all variables are filled with all possible parameter combinations. Specifying
the instance in a lifted fashion is done for ease of use, as it is a more compact representation
and allows domains to be reused for different problems [7].
The efficient grounding and pruning of HTN instances is an active field of research [51, 7].
While it is an easier problem than HTN planning itself, it can take exponential time and the
ground instance may be exponential in size compared to the lifted instance [7].
Planners may choose to operate on either lifted or ground instances. A discussion on the trade-
offs involved is found in [56]. We will reiterate the main advantage of each approach here.
Grounded representations have more information available for pruning. As an example, while
some parameter combinations in reductions may lead to a contradiction later on and can thus
be pruned, not all such combinations may be invalid and thus the corresponding lifted method
may not be prunable. Lifted representations on the other hand may be a lot more compact
in practice. For example, our TOHTN instance may want us to choose any of N trucks to
transport a package from A to B where in practice the choice might not matter. Whereas a
grounded representation will have to instantiate all operators concerning a truck N times, a
lifted operation will avoid this and only choose a truck ad-hoc.
The choice of grounded vs lifted representation is independent of the choice of planning algo-
rithm. We have examples of grounded translation-based planners (totSat [5], Tree-REX [57]),
lifted translation-based planners (Lilotane [56]) and also search-based planners that work on
both lifted (HyperTensioN [43]) and ground representations (PANDA [35]).
Our own planner, CrowdHTN, walks a middle ground. It performs its search on a ground
representation to allow detailed run time pruning according to the world state. However, it
does not front-load the cost of a grounding procedure and instead grounds tasks and methods
as needed.

2.2.4 Comparing the Techniques

Current SAT-based planners tend to explore the space of potential task networks in a layer-
by-layer fashion, lending a BFS-like characteristic to their search. Progression search on the
other hand is often implemented as DFS which may be further guided by heuristics. In the
International Planning Competition (IPC) 2020, we saw a demonstration of these different
characteristics [3]. HyperTensioN, the overall winner, is a search based planner. Its performance
is hit-or-miss, i.e., plans are either found extremely quick or not at all. On four out of 24 domains
HyperTensioN failed to find any plan at all. Lilotane, the runner up, is a SAT-based planner.
While reaching a lower overall rating, it managed to find plans on a wider selection of domains.
Within the IPC, planners were rated with the so-called agile metric. If a plan is found in less
than one second, a score of 1 is awarded. If no plan is found within the time limit T , then a score
of 0 is awarded. For run times 0 < t < T , the score is set as 1− log t

log T
. The agile metric focuses

on fast run times over the overall number of problems solved. A different metric which can be
used is the coverage. Here the run times are ignored and only the overall number of solved
problems is measured. According to [56], Lilotane outperforms HyperTensioN in coverage. In
addition, it excels at finding short plans.
In our previous research on parallel hierarchical planning we have shown that a portfolio of
search-based and SAT-based planners can lead to improved run times and coverage overall,
combining the strengths of both approaches [14].

14

2.3 Malleability

2.3 Malleability

In this work, we follow the classification of [23] regarding parallel jobs. A job is rigid if it has
a fixed number of required PEs which is hard-coded in the application. This number stays the
same between runs. We call a job moldable if the number of PEs is variable and can be set
at application start but remains fixed within any one run. An evolving job is one where the
required number of PEs changes during execution and where these changes are initiated by
the user. If the number of PEs changes during execution with the changes initiated externally,
we call a job malleable. Malleability can be defined more generally as the ability to deal
with changing resources, not only PEs [60]. In practise, we see that most jobs running on
supercomputers follow the moldable model [17]. The moldable model is also supported by
programming environments such as MPI [37].
Systems that utilize malleable jobs have been shown to be highly efficient [23]. They achieve this
in multiple ways. First, they allow for efficient scheduling, as the scheduler can reevaluate and
change previously made decisions [60]. This allows to resolve the conflict in scheduling between
throughput and response latency, where low latencies come with the need to keep spare resources
on hand instead of fully utilizing them [23], [37]. Second, they allow applications to utilize
additional resources as they become available, leading to improved performance [37]. Lastly,
[16] make the case that malleable applications are more fault-tolerant which is of increasing
importance as applications become more parallel.
While malleable jobs are desirable from a scheduling and administration perspective, they
are not popular with the user side, as they impose additional complications [23]. The effort
required to make any one application malleable varies depending on the problem. In case the
problem at hand is easily split into independent small subtasks, we can use a central work
queue from which other PEs can receive new tasks as needed [23], [61]. This approach allows
us to redistribute PEs to other jobs in between tasks. It is however limited by the central work
queue which tends to be a bottleneck and makes strong assumptions about the structure of our
problem. Alternatively, in data driven applications, we may have distributed data structures
that are redistributed as the number of available PEs changes [23]. This is more complicated,
though, and is an expensive operation which should not be performed too often. Lastly, [58]
showed for SAT that a portfolio approach is easy to adapt to a malleable environment. Loosing
single workers may slow down progress but completeness is preserved. Additionally, a periodic
exchange of knowledge can benefit the remaining workers even as some solvers terminate. To
sum it up, making an application malleable is highly dependent on the specific problem and
only easy in cases that are trivial to parallelize.
Due to the inherent complexities, in practice there are only few malleable applications. This
may change with the introduction of malleable SAT solvers such as Mallob [58] and Paracooba
[29]. SAT forms an important building block in many applications. By presenting an easy
to use interface while using malleability internally, a SAT solver may unlock the benefits of
malleability for at least part of an application’s work.

2.4 Parallel and Distributed Computing Techniques

Parallel and distributed computing techniques have been investigated for many years. While
there has been little work on parallel hierarchical planning, fields adjacent to it have long been
studied. In this section we will revisit our discussion on parallel graph search from [14] before
extending it with a short summary of our previous work in parallel hierarchical planning.

15

2 Preliminaries

2.4.1 Parallel Graph Search

Many hierarchical planners such as HyperTensioN [43], PANDA [35] and our own planner
CrowdHTN [14] are based on some form of DFS. Parallel DFS has been a target for researchers
for over 35 years [52, 39]. In hierarchical planning specifically, our graph is often so large as
to be only implicitly defined. Load balancing under these conditions has been investigated by
[53]. Load balancing is important, as parallelizing search may introduce new overheads. These
overheads can be classified according to [25].

• Search overhead
• Synchronization overhead
• Communication overhead

Search overhead happens if a parallel search algorithm has to explore more nodes than it’s
sequential counterpart to find a goal. Synchronization overhead is what occurs when processors
are idling, waiting for others to catch up and reach a synchronization point. Communication
overhead is characterized by the time spent on communication. There are two main approaches
to load balancing in parallel search. These are work sharing and work stealing. During work
sharing, a PE with work actively distributes it to other PEs. A popular implementation of
this is the hash-distributed A* algorithm [38]. When using work stealing, the responsibility
instead lies with those PEs which do not have any work available. They subsequently search
out PEs with work available and "steal" some of it. It was shown that work stealing has less
communication overhead than work sharing [13].
In graph search a work package can be identified as a graph node as well as the attached
subgraph. In hierarchical planning, a search node is identified by the set of open tasks and the
world state. While the world state is bound in size, the set of open tasks may be arbitrarily
large. As a result, avoiding communication overhead is a priority and CrowdHTN utilizes a
work stealing approach.
In addition to this, [25] have shown that work stealing performance may degrade when duplicate
search nodes may be encountered. This is important, as [31] have shown that duplicates play
an important role in search-based hierarchical planning.

2.4.2 Parallel Hierarchical Planning

We already investigated parallel, moldable hierarchical planning before [14]. In our previous
work, we created and evaluated three different planners:

• Selection of Hierarchical Planners (SHiP), a portfolio planner
• Mallotane, an integration of Lilotane and Mallob
• CrowdHTN, a search-based planner

Out of these three, SHiP performed overall best. As a portfolio planner, it is however limited by
the available number of sequential planners with sufficiently different performance characteris-
tics. It’s performance only scales meaningfully for up to four cores. Second, we have Mallotane.
Here we took the sequential SAT-based planner Lilotane and integrated it with Mallob as a SAT
backend. This allowed us to parallelize the SAT solving part of Lilotane’s planning. Mallotane,
too, has limited scalability as instantiating the task network and pruning unreachable tasks
are still sequential. Third, we created the new progression search planner CrowdHTN. It uses
randomized work stealing for load balancing and performs random DFS to find a plan. While
it performed overall worse than SHiP and Mallotane it has the highest theoretical potential for
scalability, as it is fully parallel. A more detailed overview of CrowdHTN will be given later in
2.5.

16

2.5 The CrowdHTN Planner

In our work on parallel TOHTN planners, we found that the typical characteristics of sequential
planners extended to the parallel case. That is, CrowdHTN retained the hit-or-miss charac-
teristic of search based planners where Mallotane proved to have more consistency in between
runs. SHiP, which successfully emulates a virtual best solver of state of the art hierarchical
planners may be considered state of the art in parallel hierarchical planning.
We are not aware of any work on malleable TOHTN planning. However, with the presence of
malleable SAT solvers such as Mallob [54] and Paracooba [29] one could argue that Mallotane
and any other SAT-based hierarchical planner can be made malleable. This is however limited
by the fact that SAT-solving is only part of the work those planners perform which would limit
scalability.

2.5 The CrowdHTN Planner

The CrowdHTN (Cooperative randomized work stealing for Distributed HTN) planner was
introduced in our previous work on parallel and distributed TOHTN planning [14]. It is im-
plemented as a parallel state machine that uses work stealing for load balancing. According to
the definition of [23] we introduced in section 2.3, CrowdHTN is a moldable program, as the
number of workers is arbitrary but fixed during execution.
Each local worker of CrowdHTN owns it’s own queue of search nodes and performs progression
search on these nodes as explained in 2.2.2. Search nodes are enhanced with information about
the reductions that were applied to reach them, allowing for plan reconstruction once a goal
has been found. The basic CrowdHTN parallel search algorithm is shown in algorithm 2. The
work step in line 2 corresponds to the local progression search.
In the initial state, only the root worker has any search nodes. All other workers start empty.
To perform load balancing, randomized work stealing is used. The work package exchange is
implemented as a three step protocol

(i) work request

(ii) response

(iii) ack (if response was positive)

Upon sending a positive response, a worker increments it’s local tracker of outgoing work
packages. When receiving an ack, the local tracker of outgoing work packages is decremented.
This ensures that there is always at least one node that acknowledges the existence of any one
search node. This enables CrowdHTN to determine a global UNPLAN. To do this each worker
reports whether it has any work left. A worker reports true if it has a non-empty fringe or at
least one outgoing work package.
This capability is especially helpful for small instances where it is plausible to explore the whole
search space. As we saw in the earlier section on complexity (2.1.2), TOHTN planning is in
D-EXPTIME making it infeasible to explore the whole search space on bigger instances.
To extract a work package, a CrowdHTN worker always takes the search node at the back end
of the queue while the local search is performed at the front end. This serves as a heuristic to
send off a work package that is as large as possible. Nodes at the back end will be higher up
in the hierarchy with more left to explore. Additionally, this reduces overall communication
volume, as nodes close to the initial search node will have fewer open tasks and a shorter
sequence of preceding reductions, reducing their memory footprint.

17

2 Preliminaries

Algorithm 2: The parallel CrowdHTN algorithm
1 while true do
2 work_step()
3 if fringe.empty and not has_active_work_request then
4 r ← random worker id
5 send work request(r)
6 has_active_work_request ← true
7 for (message, source) ∈ incoming messages do
8 if message is work request then
9 if fringe.has_work() then

10 send positive work response(fringe.get_work(), source)
11 outgoing work messages += 1
12 else
13 send negative work response(source)

14 if message is work response then
15 if response is positive then
16 fringe.add(work response)
17 send work ack(source)
18 has_active_work_request ← false
19 if message is work ack then
20 outgoing work messages -= 1

2.6 The Mallob Load Balancer and SAT Solver

Mallob stands for bothMalleable LoadBalancer andMulti-taskingAgile LogicBlackbox [58].
It provides both a malleable scheduler which focuses on hard jobs with unknown processing
times, where the jobs themselves can be small while still being hard [54] and a parallel SAT
solving engine which is based on the massively parallel SAT solver HordeSat [2]. Mallob is able
to solve jobs using a high degree of parallelism and also allows for the processing of many jobs
in parallel. In 2020, the international SAT competition featured a cloud track for the first time,
which Mallob has dominated in both 2020 and 2021 [24, 30].
What sets Mallob apart from other malleable schedulers is its flexibility and decentralized
nature. Many other malleable schedulers rely on being able to predict run times in general and
dependent on the number of assigned PEs specifically [11, 55], whereas Mallob does not need
such information [54]. The decentralized nature of Mallob further avoids bottlenecks.
While Mallob is an excellent malleable SAT solver, it is not limited to this problem. Mallob
also forms a general job scheduler and load balancer, having a simple programming interface
which allows for the integration of other problems 1. The following overview of how Mallob
functions as a job scheduler is taken from [58].
As a scheduler Mallob is able to solve multiple jobs in parallel and adjusts the resources available
per job on a dynamic basis. New jobs j can be introduced to Mallob at any time and are
described by a number of attributes. Among those, each job has a fixed priority pj ∈ (0, 1).
Additionally, each job has a variable resource demand dj ∈ N, describing the maximum number
of PEs that job j is able to utilize efficiently. In the trivial case, assuming jobs only happen

1https://github.com/domschrei/mallob/

18

2.6 The Mallob Load Balancer and SAT Solver

one after the other, each job can simply set dj to the total number of available PEs. When it
comes to the total number of active jobs at any one time, Mallob assumes that their number is
lower than the total number of PEs. This allows Mallob to assign each PE to only a single job
at a time while still making progress on all active jobs and also guarantees that each job will
have at least one PE assigned at all times. The total number of PEs assigned to a job is also
called the job’s volume vj. The volume of each job is set proportional to djpj/

∑
j′ dj′pj′ , i.e.,

proportional to the product of a job’s demand and priority.
Mallob follows the message passing paradigm which is realized through the MPI programming
interface.

19

3 Theoretical Improvements of the CrowdHTN Planner

3 Theoretical Improvements of the CrowdHTN Planner
In this section we will introduce two improvements to CrowdHTN. First we changed the under-
lying implementation of our planner, which allows us to easily switch out the search algorithm
we use. We introduce four search algorithms in 3.1 and discuss their expected performance
characteristics. Afterwards we start a discussion about loop detection in TOHTN planning,
the data structures which may help us and how we design our new distributed loop detection
scheme in 3.2. We conclude with an extended discussion on planner completeness in 3.3, taking
search algorithms, loop detection and restarts into account.

3.1 Search Algorithms Used in CrowdHTN

As we have seen in our overview of different TOHTN planning techniques, the choice of algo-
rithm and their behavior can have a big impact on performance. We see this in the varying
behavior of planners relying on SAT-solving, DFS and heuristic search respectively. For this
reason we wanted to explore the behavior of different search algorithms when applied to Crowd-
HTN. As part of the re-engineering of CrowdHTN, we changed the implementation of the search
algorithms to be based on a fringe. As mentioned in [35] we can simply switch out the under-
lying fringe data structure to emulate different search algorithms without making any changes
to our core planner. Enabled by this change, we have implemented four search algorithms and
will discuss them in the following section:

• Random DFS
• Random BFS
• Heuristic DFS
• A*-like search

3.1.1 Random Depth-First Search

Random DFS is the only search algorithm that was already present in the previous implementa-
tion of CrowdHTN. It is implemented using a Last-In-First-Out queue as our fringe. Resolving
an abstract task may create multiple new search nodes. If multiple nodes are created, we
randomize their order before insertion into the fringe. This is done to avoid any pathological
cases a fixed order may induce. We do not expect any differences in behavior or performance
compared to the previous implementation.

3.1.2 Random Breadth-First Search

Random BFS is the first new search algorithm that we implemented. It is done by using a
First-In-First-Out queue, allowing us to explore all the potential task hierarchies layer by layer.
The insertion order of new nodes is randomized as in the DFS. We do this as the number of
search nodes per layer can be exponential in the depth. As such, the last layer may dominate
the overall work and the order in which we explore it can have a large impact on performance.
In general, we expect a higher memory footprint compared to DFS and assume that the planner
will struggle with domains where plans are only found in deep layers or where the branching
factor is very high as both will lead to a blowup in the size of our fringe and in the number of
nodes we need to explore to find a plan. At the same time, we expect the performance of BFS
to be more consistent than DFS, as the layer at which we find a plan stays fixed for any single
instance.

20

3.1 Search Algorithms Used in CrowdHTN

Overall, we do not expect high performance of our BFS. It may however prove useful on some
domains and help us understand and validate assumptions about the behavior of TOHTN
problems.

3.1.3 Heuristic Search

Both random DFS and BFS are unguided and do not adapt the order of search node exploration
to information contained in those nodes. Other planners, such as PANDA, use heuristics to
guide their search. We will describe search heuristics and their use in PANDA according to
[35] and then go over how we try and adapt the use of heuristics with the added constraints of
malleability.

Heuristics in hierarchical planning in general and PANDA specifically The general idea
of heuristic search is to explore our search space more intelligently. Heuristics achieve this by
guiding the search to the most promising search nodes first. In TOHTN planning, our choices
during search are restricted by both the hierarchy of tasks as well as the world state. As a
result, the best heuristics should make use of both pieces of information for the best results.
One avenue to deriving heuristics for HTN planning is to adapt classical planning heuristics.
This proves difficult as these heuristics do not know about the hierarchy and may assume a
state-based goal which HTN planning often does not have. To avoid these issues, PANDA
instead adapts the hierarchical problem to match the heuristics. PANDA computes a classical
planning problem which is a relaxation of the HTN problem at hand. Then a solution to this
relaxed model is approximated with the help of classical planning heuristics and the result is
used to guide the initial HTN planning procedure. The computation of the classical model is
possible in polynomial time and only done fully in the beginning, afterwards the model is only
updated for the current state of planning. As a result, the heuristic takes into account both
hierarchy and world state with little overhead during search.

Problems with the PANDA heuristic for malleable HTN planning While PANDA has
managed to make great use of heuristics in HTN planning, we cannot simply adopt the same
heuristics for malleable CrowdHTN. The reason for this lies in the assumption of PANDA that
a ground problem instance is already available. Grounding is an expensive operation, though,
as discussed in [7]. A full grounding may be exponential in size compared to the input and run
times of grounding procedures are accordingly high.
While a grounding is already available in PANDA, CrowdHTN does not perform explicit
grounding before planning. In a malleable environment without shared memory we can ex-
pect this grounding to take place every time a PE is added to a job, adding a high startup
cost. A short-lived worker may be interrupted while still grounding, never starting the actual
search. This would interfere with the efficient usage of available resources. For this reason we
have decided against using the PANDA heuristics in CrowdHTN and instead tried to design a
simpler heuristic to be used in malleable TOHTN planning.

A heuristic for malleable HTN planning To counter the startup cost of the PANDA heuris-
tic, we have devised a simpler heuristic which is cheap to precompute and can easy to use in
malleable planning. The goals are to have little startup overhead and to retain the efficient
evaluation at each search step. As discussed in the previous paragraphs, this limits any pre-
computation to the lifted instance. We hope to still find performance gains on at least some
problem instances.

21

3 Theoretical Improvements of the CrowdHTN Planner

As heuristic value, we use a lower bound on the number of reductions we still need to perform to
fully resolve our list of open tasks. When computing this lower bound we ignore preconditions
and effects, searching the shortest possible way through the hierarchy. We precompute this
value for each task as described in algorithm 3. The heuristic value for each action is initialized
to zero. The heuristic value for each abstract task is initially unknown. In each step we loop
over all tasks t. For each method m of task t we check the heuristic value of all subtasks. The
heuristic value of a method is set to the sum of the heuristic over all subtasks plus one. For
each task we choose the minimum value over all corresponding methods.
Once there are no more changes in the mapping of tasks to heuristic values, we stop. Any task
which at this point does not have an assigned value is not resolvable at all and can be pruned.
To visualize the computation of our heuristic, we provide an example TOHTN domain in figure
2 and table 1 shows how the heuristic is computed on this domain.
Computing the final heuristic will take at most as many iterations as there are compound tasks.
To show this we look at our hierarchical planning problem as graph. The tasks and methods
form the vertices. We get edges from abstract tasks to all applicable methods and from methods
to all their subtasks. Actions do not have any outgoing edges. During computation, the heuris-
tic values are initialized at the actions and propagated and update throughout the graph. As
tasks and methods alternate, any cycle contains at least one method and as such propagating
the heuristic through a cycle would strictly increase it.
To evaluate our heuristic while planning, we now need to look at the whole sequence of open
tasks and calculate the sum of our heuristic over those tasks. While the naive approach gives
us linear run time in the number of open tasks, we can stretch the computation over task
instantiation and reuse parts of it to perform heuristic evaluation in

O (max {#subtasks of m|m ∈ methods})

at run time. Details can be found in 5.5 on efficient hashing of the open tasks, the technique
also applies to the heuristic computation. Additionally, while we only use this heuristic to guide
TOHTN planning, it ignores any orderings between open tasks. As such, it can be applied to
HTN planning as well.

Algorithm 3: GBFS heuristic calculation
1 task depths ← {(tc, 0)|tc ∈ concrete tasks}
2 while task depths changed do
3 for tc ∈ compound tasks do
4 reduction depths = ∅
5 for r ∈ reductions for tc do
6 if depths of all subtasks are known then
7 reduction depths = reduction depths ∪1 +∑{d|d is depth of a subtask of r}

8 if reduction depths 6= ∅ then
9 task depths = task depths ∪{(tc,min(reduction depths))}

Using the new heuristic in TOHTN planning With the new heuristic presented in the
previous paragraph, we implemented two new search algorithms for CrowdHTN, those being a
heuristic DFS and an A*-like search.
The implementation of DFS used so far performs the search in a uniformly random order.

22

3.1 Search Algorithms Used in CrowdHTN

Figure 2: Example TOHTN domain to demonstrate our heuristic

Table 1: Example computation of our TOHTN heuristic for the domain in figure 2. Changing
values are bold.

Iteration
task 0 1 2 3
a1 0 0 0 0
a2 0 0 0 0
a3 0 0 0 0
t1 3 3
t2 1 1 1
t3 1 1 1
t4 1 1 1

23

3 Theoretical Improvements of the CrowdHTN Planner

Without knowing anything about the domain, this is a reasonable choice. While it is far
from optimal search, it also avoids any pathological cases that may arise from a fixed order of
exploration. As an alternative to this random order, we used the heuristic to guide our DFS.
We have to note that this is not necessarily fully deterministic. Randomness comes into play
both when two reductions lead to search nodes with the same heuristic score - which happens
e.g. for different instantiations of the same method - and when performing work stealing in a
parallel setting.
In addition to the guided DFS, we also implemented an A*-like search where a node’s value is
the sum of the heuristic value and the number reductions applied to reach the node. We differ
from A* in that we terminate the search as soon as a plan has been found instead of continuing
on the search for an optimal plan. Our goal is for the heuristic to guide us towards a plan while
giving weight to the number of applied reductions forces us to turn back and explore other
parts of the search space without getting lost in endless loops due to pathological cases in our
heuristic.

3.1.4 Completeness of different Search Algorithms

In the previous paragraphs we discussed a number of different search algorithms that we im-
plemented for CrowdHTN and how we expect them to affect the performance characteristics
of our planner. The search algorithm has a more fundamental impact than that, however, and
may affect the completeness as well. In this section we want to give a short overview over the
completeness of each of the algorithms. A summary is found in table 2. Note that this dis-
cussion is only about the algorithms without any modifications. In section 3.2 we discuss both
loop detection and a restart mechanism and in section 3.3 we have a more detailed discussion
about the completeness of different planners as well as the completeness of progression search
with these additions.
DFS is not complete as it may enter an endless loop and, even if it still explores side-tracks
from this loop, will never be able to backtrack out of the loop, cutting of parts of the search
space. There is however always a chance to find a plan if it exists. I.e., there is a non-zero
chance that the random choices all happen to be done correctly, the loop is never entered and
a plan is found.
BFS on the other hand is trivially complete. While the exploration order within each layer is
random we can provide an upper bound on the number of search steps required to explore a
given search node n on layer i. One such bound is the sum of all layer sizes from 0 up to and
including i.
Next in our list is heuristic DFS. Similar to random DFS it may run into an endless loop.
Compared to DFS, however, heuristic DFS may do so in a deterministic fashion if the domain
triggers a pathological case in the heuristic. One example domain which would trigger such a
case in our heuristic is visualized in figure 3. In this instance our heuristic assigns the value 1
to m1, 2 to m2 and 3 to m3. If the preconditions of m1 are not fulfilled, heuristic DFS will first
try to resolve t1 via m1, fail, then use m2 with the goal to try m1 again afterwards. This will
fail again and the loop is repeated indefinitely. While m3,m4,m5 may provide a path out, they
will never be used.
Lastly, we implemented A*-like search. While it does reuse the same heuristic, this algorithm
achieves completeness by also valuing the number of applied methods so far. Let n be a node
with heuristic value h and r previously applied reductions to reach n. Then n is guaranteed to
be explored once all nodes with at most h+r previously applied reductions have been explored.
All of this discussion so far has assumed sequential planners. The implications do hold for par-
allel search, too. For a planner using at most n PEs we may always provide an instance with

24

3.2 Loop Detection

Table 2: Completeness of the different search algorithms in CrowdHTN
Algorithm Completeness
Random DFS Not complete. Positive probability to find a plan if it exists
Random BFS Complete
Heuristic DFS Incomplete
A*-like Complete

Figure 3: A pathological case in our new HTN heuristic

n ways to enter an infinite recursion.

3.2 Loop Detection

In recent years it has become clear that the recursive nature of HTN instances poses its own
set of challenges to planners. As a result, mechanisms to perform loop detection have become
an active area of research with both HyperTensioN [43] and PANDA [31] exploring it. In this
section we will discuss loop detection specifically in the context of parallel and distributed
hierarchical planning. We want to address this, as research indicates that the performance of
randomized work stealing may suffer on problems where the detection of duplicate states is
important. [25] and [31] have shown that duplicate search nodes play an important role in
hierarchical planning.
We start out with a discussion of loop detection techniques in other planners such as PANDA
and HyperTensioN in section 3.2.1. This is followed by a short overview of how CrowdHTN
specifically differs and how this changes our base assumptions in section 3.2.2. Afterwards we
first explore loop detection based on hash sets in section 3.2.3. We conclude by exploring how
approximate-membership-query (AMQ) data structures can be used in loop detection, how this
affects completeness of the progression search algorithm and present our design for a distributed
and global loop detection mechanism in section 3.2.4.

3.2.1 Loop Detection in Other HTN Planners

Loop detection in HTN planning is a recent phenomenon and was introduced in 2020 by the
HyperTensioN planner with the so-called ’Dejavu’ technique [43]. Dejavu works by extending
the planning problem, introducing primitive tasks and predicates that track and identify when
a particular recursive compound task is decomposed. These new primitive tasks are invisible to
the user. Information about recursive tasks is stored externally to the search as to not loose it

25

3 Theoretical Improvements of the CrowdHTN Planner

during backtracking. Dejavu comes with performance advantages and protects against infinite
loops. However, as Dejavu only concerns itself with information about the task network but
ignores the world state it may have false positives. This was also noted by [31] and means that
HyperTensioN is not complete. [31] further nodes that the loop detection is limited in that it
only finds loops in a single search path but cannot detect if multiple paths lead to equivalent
states.
In response to HyperTensioN, the PANDA planner introduced its own loop detection in [31].
Similar to HyperTensioN, PANDA keeps the loop detection information in a separate list of
visited states, V . Search nodes (s, tn) of world state s and task network tn, are only added
to the fringe if they are not contained in V . To reduce the number of comparisons required
to determine whether (tn, s) ∈ V , V is separated into buckets according to a hash of s. In
the sub-case of TOHTN planning, both an exact comparison of the sequence of open tasks
as well as an order-independent hash of the open tasks called taskhash are used. Similar to
HyperTensioN, using a hash to identify equal task networks can lead to false positives and an
incomplete planner. The loop detection in PANDA improves upon the one in HyperTensioN
insofar as it is not just able to detect loops but also recognizes when equivalent search nodes
are reached on independent paths.

3.2.2 Assumptions in Loop Detection for CrowdHTN

To design the loop detection in CrowdHTN, we have both simplifying and complicating as-
sumptions that we will discuss here.
While both PANDA and HyperTensioN are HTN planners, CrowdHTN concerns itself only
with TOHTN planning. As a result, the remaining task network can be represented as a se-
quence of open tasks with the ordering constraints implicit in how the sequence is stored.
As tasks of equivalent task networks are always in the same order, we can incorporate that order
into our hash of tn to reduce the number of collisions compared to PANDA’s taskhash. This
will increase performance where we fall back to comparisons in case of collisions and reduce our
false positive rate in case we forgo comparisons for performance reasons.
Both PANDA and HyperTensioN are sequential planners whereas CrowdHTN is highly paral-
lel. This adds an additional design constraint to our loop detection. If we want to efficiently
share information about visited states, directly sharing search nodes would be infeasible due
to their size. If we perform loop detection only locally, we expect to suffer from decreased
performance as the degree of parallelism increases. I.e., if a search node exists multiple times
we may encounter it on different PEs, not realizing that it is a duplicate.

3.2.3 Hash Set Based Loop Detection

One simple way to perform loop detection which is also used in PANDA ([31]) is to use a hash
set of visited states. The implementation in Crowd is slightly different from PANDA in that we
use one combined hash for both world state and open tasks. Other than PANDA, CrowdHTN
does incorporate the order of tasks into the hash, which should reduce collisions and makes the
two levels of hashing less needed.
Using hashes combined with a full comparison provides us a perfect loop detection, i.e., neither
false positives nor false negatives exist. This makes it a useful technique to benchmark other
loop detection methods. However, both in the sequential and in the distributed case this
technique suffers from performance problems.
In case of hash collisions, we have to fall back to a full comparison of world state s and open
tasks tn. While s is bound in size by the total number of predicates, the size of tn is effectively

26

3.2 Loop Detection

unbound, making this an expensive operation. Additionally, we have to keep both s and tn
around for all nodes ever encountered, increasing the memory footprint of our planner.
The hash function we do use is a combination of the hashes for the task network and the world
state. The sequence of open tasks can be hashed as-is in a deterministic fashion by iterating
over it from beginning to end. For the world state as a set of predicates we do not have a
fixed order. We solve this by combining hash values of predicates by adding their squares, a
commutative operation.

3.2.4 Approximate and Distributed Loop Detection

In the preceding sections we have always made the assumption that our loop detection mecha-
nism needs to be perfect, i.e., it needs to avoid both false positives and false negatives. Some
hierarchical planners do not share this assumption and both HyperTensioN and PANDA have
configurations that allow for false positives. In the following paragraphs, we will also permit
false positives to occur and explore the implications.
We start out by introducing the concept of AMQ data structures with a specific focus on bloom
filters and how to use the scalable bloom filter in loop detection. Once this is done, we turn to
the problem of false positives and introduce a restart mechanism that guarantees that, given
enough time, we are able to reach any search node. The section is concluded by us using
the special properties of bloom filters to design a distributed loop detection mechanism which
allows for efficient information sharing between PEs.

Approximate membership queries AMQ data structures are used as a memory efficient
representation of sets that allow for a false positive rate during membership queries to be able
to gain memory efficiency [8]. They were introduced with the bloom filter in 1970 [12]. Since
then both variations of bloom filters, such as counting bloom filters [22], and other AMQ data
structures have been introduced, among them quotient filters [8] and cuckoo filters [21].
As the guarantees of the bloom filter are sufficient for us, we will now focus on this specific data
structure using the definition of [12]. A bloom filter is defined by three numbers, the number
of bits in the filter m, initially all set to zero, the number of hash functions k, each producing
hashes in the range 0, . . . ,m−1, and the number of elements already present in the filter n. To
insert a new element, we use the hash functions to compute k hashes and use them as indices
into our bit vector, setting the corresponding bits to 1. Similarly, to query for membership
we check whether the corresponding k locations all contain a 1. This leads to highly efficient
insertion and membership queries in time O(k · h) where h is the time required to hash an
element.
One limitation of bloom filters is the fact that they do not support element deletion. We cannot
simply set a bit to zero, as there may be more than one element requiring it to be 1. To deal
with this limitation the concept of a counting bloom filter was proposed [22]. Instead of a
single bit per element, multiple bits are used per index to store a counter tracking the number
of elements belonging to the index.
Given m, n and k we can compute the probability of encountering a false positive. A detailed
discussion of this can be found in [15]. The main result is that the probability for any bit to
contain a 1 is

p′ = 1−
(

1− 1
m

)kn

≈ 1− e− kn
m

This gives us an overall probability of false positives of

p = p′k =
(
1− e− kn

m

)k

27

3 Theoretical Improvements of the CrowdHTN Planner

We see that the probability of encountering false positives steadily rises as the number of
elements in the filter grows, reaching 1 as all bits are set to 1. As a result, bloom filters in
their original form are best suited for static sets of known size and may necessitate setting m
conservatively high to guarantee a low rate of false positives. To fix this and guarantee an upper
bound on p even in dynamic sets, the concept of scalable bloom filters was introduced [63]. A
scalable bloom filter builds a hierarchy of bloom filters, each new bloom filter being twice the
size of the previously largest one. To insert an element into a scalable bloom filter, we first
check the false positive probability of its largest sub-filter. If it is still under our decided bound,
we simply insert the element into the largest filter. If inserting the new element would raise
the false positive rate beyond the limit, we add a new filter, twice as large as the previously
largest, and insert the element there. Membership queries now have to check all levels of the
filter. While there is a performance overhead, only a linear number levels is required to store
an exponential number of elements.
Given bloom filters and their variations we have decided on the use of a scalable bloom filter
for loop detection in CrowdHTN. While our set of search nodes is theoretically limited in size,
in practice the search space is prohibitively large and unlikely to be fully explored. Using a
single bloom filter of fixed size would lead to a high size requirement to ensure low false positive
rates. At the same time, once inserted we want to forever keep an element in our set of known
nodes and do not require deletion, allowing us to forgo mechanisms like the counting bloom
filter. To get k hash functions, we reuse the hash function we already use in the hash set based
loop detection, varying the seed to generate different hashes.

Completeness in the face of false positives While using approximate membership queries
as described in the previous paragraph gives us a number of advantages, it also introduces a
new set of challenges. Among these is are false positives. As a result, we can expect to loose
parts of our search space. More specifically, if we perform progression search using bloom filters
and n = n1, . . . , nl is a path of length l from our initial search node to a goal search node, then
for any ni in n, the search nodes n1, . . . , ni−1 may collectively set the k hashes associated with
ni, filtering it out. This may end up turning a TOHTN problem unsolvable for us even though
a plan exists. As a result our planner, if otherwise unchanged, will no longer be complete.
We will now take a closer look at the probabilities involved. Assuming we use a scalable bloom
filter with maximum false positive rate 0 ≤ p < 1 and hash functions which map search nodes
to uniformly independent values and n is a shortest path. Then

q = 1− (1− p)l < 1

is an upper bound on the probability that we are unable to solve the problem even though a
solution exists.
It follows that

lim
u→∞

qu → 0

That is, if we keep re-running our search with new, independent hash functions we regain
completeness. It is critical to use independent hash functions between runs to ensure that false
positives in different runs are not correlated with each other. In the next step we need to
determine when to re-run our planner. There are three main constraints.
(i) As the TOHTN instance may be recursive, the search space may be infinite
(ii) The number of restarts needs to be unbounded as run time goes to infinity
(iii) As a plan may be arbitrarily long, the number of runs with run time at least u needs to

be infinite

28

3.2 Loop Detection

Constraint one implies that we cannot simply wait until we explore the whole search space before
restarting. Instead we will base our restarts on total run time so far. To fulfill constraints two
and three, we perform a check every second where after t seconds we perform a restart with
probability 1

t
.

For the expected number of restarts we get ∑∞t=1
1
t
. This is the harmonic series and diverges,

giving us the required unbounded number of restarts. As t grows, the probability of restarting
decreases, allowing for increasingly long runs, fulfilling the third constraint.
This mechanism allows us to restore completeness to our planner while utilizing AMQs. Restarts
may prove to have additional benefits to planner performance, as DFS-based planners tend to
be hit-or-miss and restarts increase the number of opportunities for a hit. We do note that
approximate loop detection does come at the cost of no longer being able to detect UNPLAN,
as we can never guarantee that we explored the full search space. In practice, we do not expect
this to matter as the search space of TOHTN problems tends to be too big to feasibly fully
explore.

Global Loop Detection In the section 3.2.2 we already mentioned that loop detection in dis-
tributed hierarchical planning comes with unique problems. Specifically, current loop detection
techniques do not include ways to efficiently share the visited states between PEs. As a result,
a search node is only fully filtered out once each PE has encountered it at least once. This leads
to a degradation in performance as the degree of parallelism increases. To address this issue,
we will start with a short discussion on how previous loop detection mechanisms are hard to
adapt for the distributed case and then show how we implement distributed loop detection on
the basis of bloom filters.
As mentioned in section 3.2.3 on hash set based loop detection, it suffers from a high memory
footprint as we keep whole search nodes around. This problem extends to the distributed case,
as we would now have to communicate whole search nodes leading to a large overhead for
encoding, sending and decoding. Even if we assume the communication overhead to be low
enough, we run into additional problems. Inserting n elements into a hashset takes O(n) time
even without hash collisions. The higher the number of PEs, the more time would be spent on
inserting search nodes received from other PEs which would either block us from performing
search for large amounts of time or introduce synchronization problems. As a result, we have
decided that it is infeasible to extend hash set based loop detection to the distributed case.
Compared to hash sets, bloom filters offer a number of advantages for distributed loop detec-
tion. First, bloom filters offer a more compact representation of the already encountered nodes
which leads to a lower communication overhead. Second, as the filter itself is stored as a simple
bit vector, we have negligible overhead regarding encoding and decoding for communication.
Thirdly, we can efficiently merge two bloom filters by performing a simple bitwise or operation
of the bit vectors. In a combined filter, we get a conservative upper bound for the total number
of contained elements by summing the number of elements of both filters. This guarantees that
our maximum rate of false positives is not exceeded.
To integrate bloom filters into our distributed loop detection, we also need to address the ques-
tion of what to do in case the global filter gets filled up, i.e. it’s false positive rate reaches
our set limit. For local loop detection we introduced scalable bloom filters. This is a problem
as we now communicate whole sets of search nodes whereas locally we introduce new search
nodes into the filter one by one, increasing the size at exactly the right moment. As a result,
we face the choice of increasing the size early, throwing away some information or loosing our
guarantees regarding false positives. Similarly, we face the problem where different PEs may
disagree about the current maximum size of the scalable bloom filter, putting more information
in a smaller filter that will be thrown away by other PEs.

29

3 Theoretical Improvements of the CrowdHTN Planner

To deal with this problem, we induce a restart in our search once the global filter is full. As
the restart mechanism is already present due to the need to deal with false positives this is an
easy adaption. To limit the number of needed restarts and once again allow arbitrarily long
runs, we double the size of our global filter with each restart. Additionally, we limit the amount
of information present in our filter to further reduce the number of restarts we need. We do
this by only putting ’important’ search nodes into our filter. Our heuristic to determine search
node importance is to put a node into our global filter if it is present in our local filter and
encountered again. Other heuristics are possible but beyond the scope of this thesis.

3.3 Discussion of Planner Completeness

In section 3.1 we already did a short discussion on the impact of different search algorithms
on the overall completeness of progression search. The current section will start with a short
recap of our findings, expand them to other planners and will then do an expanded discussion
that takes factors like loop detection and restarts into account.
Before we dive into the more detailed discussion we want to note that we have seen in section
2.1.2 that there is an upper bound to task network depth where, if a plan exists at all, it can
be found before that depth. By limiting our planning to task network expansions with lower
depth, we can trivially achieve completeness. This is however of little practical use as this depth
bound is exponential in the problem size. As a result, we can expect to run out of memory
before hitting this bound. For this reason we do not make use of this bound and as far as
we know no other planner does. We will now resume a more practical discussion of planner
completeness.
As previously noted, we can split our search algorithms into three main groups:

• Algorithms that are complete (BFS, A*-like search)
• Algorithms with a chance but no guarantee to find a plan (DFS)
• Algorithms which for some domains will never find a plan (heuristic DFS with pathological

cases)

Completeness in other planners So far we have only classified the different search algorithms
present in CrowdHTN. For now we will take a look at other planners, starting with translation-
based planners totSAT ([5]), Tree-REX ([57]) and Lilotane ([56]). As we have noted in the
discussion on planning algorithms in section 2.2.1, all three of these planners are based on
SAT. Additionally, they all explore the set of potential expansions of the task hierarchy in a
layer-by-layer fashion, leading to a BFS-like characteristic in their behavior. As a result, these
planners are complete.
In contrast to this, we have the space of search-based planners, starting with HyperTensioN [43].
For HyperTensioN, the authors themselves note that their inbuilt loop detection mechanism
suffers from false positives with no mechanism to mitigate them [43]. It follows that their
planner is not complete. If we disabled the loop detection in HyperTensioN we would be left
with a planner performing DFS, which would put it in the category of planners which are not
complete but still have a chance to solve any instance.
PANDA on the other hand is a planner based on heuristic progression search that offers a
number of configuration options for both search and loop detection. Regarding search, PANDA
offers both a pure heuristic DFS and a weighted A* search taking into account the previous
path [35]. For loop detection PANDA offers hashing based mechanisms both with and without
a fallback to full search node comparison [31]. Completeness of the planner varies depending on
the chosen configuration. If loop detection is configured to allow for false positives, we expect

30

3.3 Discussion of Planner Completeness

PANDA to not be complete regardless of search algorithm, as there is no mechanism in place
to mitigate their effect. If a loop detection mechanism is chosen which does not have false
positives, we expect PANDA to be complete if weighted A* with a weight w > 0 is used, as this
introduces a BFS-like behavior into the search. This leaves pure heuristic DFS combined with
loop detection without false positives. Due to the complex nature of the PANDA heuristic we
were unable to construct any pathological case which leads PANDA into an infinite recursion.
As heuristics are inherently limited we do assume that such cases exist. We will explore this
case and the similar case in CrowdHTN in the following paragraph.

Loop detection and completeness As we have seen, heuristic search on its own may increase
planner performance but comes at the cost of completeness. Random DFS is able to find any
plan but may still get stuck in endless loops. We will now explore the implications of combining
heuristic search with loop detection but without restarts to see how this changes the overall
situation. In this paragraph we are only interested in loop detection mechanisms that do not
suffer from false positives as, without restarts, this automatically disqualifies a planner from
being complete.
In general, loops are only a problem in hierarchical planning if there exists at least one recursive
task. If no such task exists, there exist only a finite and usually small number of possible task
network expansions such that we can easily search the full search space. If we do have a
recursive task, we can further classify our instances according to how hard it is to deal with.
We identify three categories:

• Tasks which recurse into themselves with no change in the world state
• Tasks which recurse into themselves with changes in the world state
• Tasks which recurse into themselves while adding more tasks afterwards

For general HTN planning, a task recursing into itself also implies that the ordering constraints
of the new open tasks are a superset of the old ordering constraints.
The first case is the easiest to detect and fix. If a task recurses into only itself we do not get
any changes to the open tasks. As a result, search nodes before and after this recursion are
equivalent. They will be detected by loop detection as it is used in PANDA and CrowdHTN
and the search will be guided into another direction.
In the second case we have to perform additional work before a loop can be detected. As
the set of open tasks stays the same and the world state changes, we do not immediately get
equivalent search nodes. However, in an HTN instance with predicates Q, there are only 2|Q|
possible world states. We can easily see that we will recurse at most 2|Q| times before our loop
detection activates and we backtrack. In practice we can often obtain a smaller upper bound
on the possible number of recursions by looking only at the predicates which occur as effects in
the resolution of any tasks present in the recursion. We see that, while less efficient, our known
loop detection mechanisms correctly deal with this case.
This leaves us with the third case, where a task does not directly recurse into itself but where
the resolution of task t gives rise to a new instance of t as well as additional tasks t1, . . . , tk
which are restricted to be resolved after t. As a result, once we re-encounter t our open task
set has changed. While we were able to limit the number of possible world states in previous
case, this is not possible here, as the number of open tasks is unbounded. More specifically,
loop detection as used in PANDA and CrowdHTN is unable to handle this case.
Figure 4 provides an example of an instance which would guide our proposed heuristic into a
recursion while not creating loops. Our heuristic would assign the values 1 to m1, 2 to m2 and
3 to m3. If the preconditions for m1 are not fulfilled we would then apply m2, creating a unique
set of open tasks and then repeat application of m2 indefinitely.

31

3 Theoretical Improvements of the CrowdHTN Planner

Figure 4: Pathological instance for our proposed heuristic that is not caught by loop detection

Restarts and completeness Together with AMQ based loop detection, we introduced a
restart mechanism in 3.3. We will now go over the use of restarts to achieve completeness
for random DFS.
To show that restarts help us to achieve completeness for random DFS we can use a similar
argument as we did for the loop detection. For any path in our search graph, random DFS
gives us a probability p > 0 to take this path. As the number of restarts we perform goes to
infinity, the probability to take any fixed path at least once goes to 1. We are under the same
constraints as previously, needing both an unbounded number of restarts and an unbounded
number of runs of at least length u for any u. The second constraint is needed so that we
do have the time to fully explore a path once we take it. Our restart mechanism fulfills both
constraints, restarting with probability 1

t
at second t. It follows that random DFS with restarts

is complete.

Conclusion In this section we have taken a look at completeness in hierarchical planners and
how loop detection and restarts can help us to achieve it. We have shown that completeness is
highly dependent on the specific search behavior with BFS-like behavior being trivially com-
plete. In addition we show that loop detection, while helpful, is not able to solve the problem
for some instances. Introducing our restart mechanism, we show that it can turn random
DFS into a complete algorithm. This does not extend to heuristic DFS if the heuristic exhibits
pathological behavior as the heuristic will always guide the search back into the same recursion.

32

4 A Malleable TOHTN Planner

4 A Malleable TOHTN Planner
The goal of this section is to describe how we adapt it to be a malleable TOHTN planner by
integrating it with Mallob, preserving both the completeness and scalability of CrowdHTN in
the process. Before we get into the details, let’s recall that CrowdHTN is already a moldable
program according to the definition introduced in section 2.3, i.e., it may utilize any number
of PEs as long as that number stays fixed during the run. We will now introduce a design that
extends the parallel capabilities to achieve malleability. For this we need to address three main
concerns.

• Distributing the job information
• Integrating new PEs into a running job
• Dealing with PEs leaving the job while it runs

In the following sections we will address these problems in this order. Both distributing the
job information and integrating new workers do not pose significant problems. Most time will
be spent on the handling of disappearing PEs.
Due to the fact that we specifically integrate CrowdHTN with Mallob, we will in some parts
refer to implementation details of Mallob. Namely that the vj workers currently assigned to a
job are internally organized as a binary tree, s.t. all levels except the last one of the tree are
always full and the last level is filled from left to right. If a PE is taken away from a job, the
associated data is not immediately deleted. Instead, a small and constant number of previous
jobs is kept around. When the volume vj grows again, PEs containing a suspended worker of
the same job are preferred to increase efficiency.

4.1 Distributing Jobs
When a PE is assigned to a job, it needs to obtain a description of this job. In case of TOHTN
planning, the choice is mostly between a lifted or ground TOHTN instance. As we have seen,
a ground instance may be up to exponential in size [7]. Encoding and communicating such
a ground instance would take up much time, which is why we decided to communicate our
problem as a lifted instance.
With the lifted instance, we choose to simply take the textual hddl input [33] and send it as-is.
While this does incur the overhead of locally parsing the instance on each PE, communicating
the parsed instance would involve re-encoding and effectively re-parsing it locally, too.
In malleable TOHTN planning there is a more general trade-off involved when it comes to
precomputation. While parsing the instance is unavoidable, we can choose whether we want to
spend time grounding and pruning our instance. It has been shown that grounding and pruning
improve the planning performance [7] and allow for the computation of complex and good
heuristics [35], but grounding, pruning and other precomputations are expensive operations
themselves. As a result, a PE which is only assigned to our job for a short time may never
perform any actual planning work before it is reassigned to the next job. For this reason,
CrowdHTN takes an alternative path. The TOHTN instance is kept in lifted form. Instantiation
is only performed as needed to explore the current search node. This allows CrowdHTN to
start working immediately to utilize even short-lived PEs in a highly malleable environment.

4.2 Integrating New PEs Into Malleable CrowdHTN
To integrate a new PE into a running TOHTN job, it needs both the general job description and
part of the actual work to handle. In the previous section we explained how the job description

33

4 A Malleable TOHTN Planner

is obtained, now we will focus on the work itself.
The efficient integration of new PEs into a running job is where work stealing shows it’s strength.
For work stealing, there is no functional difference between a PE which has locally run out of
work and a new PE which has the job description but no work yet. Both will message other
PEs at random to receive a new work package with no special handling required. As a result, a
new PE can perform at full efficiency almost immediately, allowing our job to utilize resources
as soon as they become available.

4.3 Handling PEs Leaving at Run Time

The last challenge in designing a malleable CrowdHTN is the fact that PEs may disappear at
any time. This represents a potential loss of information. The information loss presents itself
in two ways. First, the loss of the local search fringe, if we do not communicate it to another
PE, and second messages which may be lost in transit as their receiver no longer belongs to
the same job. To deal with this, Mallob does allow us to detect locally when a PE is taken
away from a job and additionally provides a message return mechanism. We will present our
solutions to both cases with a focus on preserving the completeness property of CrowdHTN.

4.3.1 Handling the Local Fringe

When a local PE is unassigned from a job, we will loose the local search fringe. As Mallob
signals a PE when it is unassigned from a job, we are however free to encode parts or all of the
fringe and communicate them to another PE. This leaves us with a number of choices where
we may trade-off data loss versus efficiency and communication. On this axis we discuss three
choices

• Encode and redistribute the whole local fringe
• Communicate the root of the local search space
• Communicate nothing, loose the local fringe

Encoding and redistributing the whole fringe Encoding and sending off the local fringe to
another PE is, in a way, the easiest operation. No information is lost, preserving completeness
in our planner. It does, however, come with two disadvantages. First, the local fringe may be
arbitrarily large, especially considering that TOHTN planning is EXPSPACE-hard as seen in
section 2.1.2. Encoding and communicating a large fringe is a very expensive operation which
would increase the time from Mallob telling a PE to suspend itself until the PE actually is free
for the next job. Second, receiving a large fringe would strain the memory of the receiving PE
which may lead to dropping parts of it anyways to avoid crashes.

Communicating the root of the local search space Instead of communicating the whole
local fringe, we can simply encode the root node the local fringe emerged from. In a way, this
search node represents a very efficient encoding of the local search space. As we would only
communicate a single search node, this would be more efficient and could reuse the facilities we
already have in place for work stealing. Similar to encoding the whole fringe, communicating
only the root search node would lead to no information loss, preserving completeness.
While this approach is very efficient and avoids loss of information, it does suffer from duplicate
work. As we loose the local fringe, we will have to re-explore it again. Additionally, other nodes
may have received parts of the local search space via work stealing. These nodes will be re-
encountered leading to further duplication. In this way, we would trade-off local performance

34

4.3 Handling PEs Leaving at Run Time

for encoding and communication against global performance through duplicating parts of our
search.
Implementing global loop detection as we propose in section 3.2 further complicates matters.
Upon suspension of a PE, we can leave the global loop detection unaffected. This might lead
to some losses in our search space as nodes will not be re-explored but may also help the search
on our other workers which can still profit from being aware of common loops and prominent
duplicate search nodes. Alternatively, we could remove the global loop detection data of our
suspended PE from all other PEs. As more than one PE may have committed the same
search node to global loop detection and due to the way bloom filters work, this brings its own
problems. Namely, it would degrade global loop detection performance as we may delete more
search nodes from our filter than strictly necessary.

Communicate nothing Our third option in dealing with disappearing workers is to accept
the loss of information and communicate nothing to the remaining PEs. This comes at the cost
of loosing information while being easy to implement and allowing for immediate reassignment
of PEs and avoiding any duplication of work.
This leaves us with the problem of information loss. To deal with this, we can revisit the
restart mechanism we introduced to deal with a similar problem in probabilistic loop detection.
There we argued that correctly designed restarts would allow our planner to be complete even
when using a loop detection mechanism suffering from false positives. For this we made no
assumptions besides the false positive rate being less than 1. As Mallob guarantees that we will
always have at least one PE, never loosing all information, we can model the loss of PEs and
their local fringes as an extremely high false positive rate. From this it follows that restarts
allow us to loose this local information while maintaining overall completeness.

Conclusion As we have seen, there are multiple approaches on how to handle a reduction in
the number of available PEs while maintaining planner completeness. In our design, we decided
to communicate the root node of our local search space to a random other PE, inserting it at the
back end of the fringe. The other PE is chosen at random to avoid turning any single PE into a
bottleneck. We choose this design, as it allows us to avoid the large overhead of communicating
the whole fringe while not being overly reliant on restarts to achieve completeness. While
restarts do offer us completeness from a theoretical perspective, times between restarts increase
rapidly as run time increases. As such we are unwilling to loose large parts of our search space
and instead allow for the risk of performing duplicate work.
In addition to this, we keep the global loop detection information unchanged. As we have seen
in 3.3, loops in progression search may get very long. By keeping this information around we
hope to save other PEs from re-exploring the same loop such that they can still profit from the
work even after a PE has been taken away.

4.3.2 Handling Lost Messages

In the moldable version of CrowdHTN, we could make a fundamental assumption about all
messages, namely that they were guaranteed to be delivered. In malleable CrowdHTN this is
no longer possible. If PEs p1, p2 are both assigned to the same job, then p1 may send a message
to p2 with p2 being reassigned to a different job before the message arrives. Mallob deals with
this by recognizing the message can no longer be handled and returning it to the sender. We
go over the way we handle such return messages in our implementation chapter.
However, the changing assignments of PEs to jobs imply an additional problem. The return
message may be lost as well, if the original sender gets assigned to a different job before the

35

4 A Malleable TOHTN Planner

return message can be received. This may happen if two PEs try to communicate during a
large reassignment operation. Mallob provides no further handling mechanism for this case.
One way to solve this problem would be to extend Mallob to forward such a message to the
job’s root PE. In our design we instead chose to not handle this case for two reasons.
First, by not handling this any further we simplify our design and implementation as we avoid
special-casing the root PE. Second, as we choose to handle unassigned PEs by preserving the
root of their local search space, information is preserved even if any of it’s transitive children is
lost in the moment. Due to this, the lost message does not represent a lost part of our search
space.

36

5 Implementation

5 Implementation

In this section we will give an overview of the implementation work we performed. We start
out with an overview of the integration of CrowdHTN into Mallob in 5.1 where we present
the Mallob interface, explain how we implemented it while adhering to Mallob’s performance
guarantees, mention how we improved the reliability of CrowdHTN in low memory conditions
and end with a detailed overview of how we handle messages addressed to PEs that no longer
belong to the same job. This is followed by our mechanism for efficiently handling restarts in
5.2 and an explanation of how we perform an all-reduction in a malleable environment to allow
for global loop detection in 5.3. We conclude with CrowdHTN’s improved algorithm for the
expansion of search nodes in 5.4 and our presentation of an efficient way to hash search nodes
in 5.5.

5.1 Mallob Integration

In this section we will give an overview over how we integrated CrowdHTN with Mallob. More
information about how to do this for general problems can be found in the Mallob GitHub
repository 2. There are three steps we need to perform:

• Implement a way to read and encode a TOHTN instance
• Implement the Mallob job interface seen at 4
• Implement a way to encode a result for writing to file

As we discussed in section 4 on how we designed malleable CrowdHTN, we choose to commu-
nicate an instance by simply transferring the string contents of the instance file, making the
first step easy. The third step, encoding a result for writing, is similarly easy as CrowdHTN
already contained a mechanism to write a plan to the terminal. Most of the work was done in
the second step which we will now discuss in more detail. As a general principle, CrowdHTN
was kept as a separate library which is linked into Mallob. The implementation of the TOHTN
job within Mallob is a wrapper around this library. This allowed for a clearer separation of
concerns where our job implementation does not need to know anything about the specifics of
TOHTN planning while CrowdHTN is agnostic of implementation details of its environment,
e.g. how messages are transmitted.
Both CrowdHTN and Mallob are implemented using the C++ programming language.

Algorithm 4: The Mallob job interface
1 void appl_start()
2 void appl_suspend()
3 void appl_resume()
4 void appl_terminate()
5 void appl_solved()
6 JobResult appl_getResult()
7 void appl_communicate()
8 void appl_communicate(source, mpi_tag, message)
9 void appl_memoryPanic()

2https://github.com/domschrei/mallob

37

5 Implementation

Figure 5: Life cycle of a Mallob worker

Implementing the Job Interface In this paragraph we explain how we implemented the
Mallob job interface for CrowdHTN while upholding the guarantees demanded by Mallob. For
ease of reading we will leave out the appl prefix shared by all functions.
The Mallob job interface can be split into four parts. First, a worker in Mallob is implemented as
a state machine with start, suspend, resume and terminate responsible for the transitions. The
corresponding state diagram can be seen in figure 5. Second, the two communicate calls allow
for communication. For general communication we note that Mallob requires all communication
calls to take place in the main thread, i.e. we may not send any messages in any threads we
started to perform internal work. For ease of separation we further restrict ourselves to only
send messages in the communicate calls. Third, we have the functions solved and getResult for
general bookkeeping regarding solutions. Last, we have memoryPanic which signals the job
that memory usage is critically high. We discuss its use in the next paragraph.
As [58] writes, Mallob aims to achieve millisecond latencies. To enable this goal, we may not
block the main thread calling the job interface functions any longer than a few milliseconds at
most and must keep work performed directly in any of the job interface functions to a minimum.
We achieve this by delegating all planning and handling of the CrowdHTN library to a separate
work thread which is initialized in the start function. This work thread is the only thread ever
directly interacting with CrowdHTN. Due to this, we avoid locking on CrowdHTN which also
allows us to keep working at all times. State transitions are communicated to the work thread
via a number of atomic variables, suspend and resume additionally use a condition variable to
suspend and wake up the work thread.
To be able to keep communication to the communicate functions, the job and the work thread
exchange messages via separate buffers. While these buffers do necessitate locking, we restrict
the critical section to be at most a copy of a few bytes.
The last problem is the start call during which we need to parse our TOHTN instance, setup
the CrowdHTN data structures and start our worker thread. Here both the parsing of the
instance and, within CrowdHTN, computing the heuristic values may take longer than Mallob
allows. For this reason, we have decided to place the initialization itself into a separate thread
and return immediately.

Increasing the reliability of CrowdHTN As a scheduler, within a single execution Mallob may
work on any number of jobs making it necessary that jobs do not crash. This imposes additional
challenges for TOHTN planning, as we have seen in section 2.1.2 that TOHTN planning is
EXPSPACE-hard, meaning we may often run out of memory and will be subsequently shut
down by the operating system. Luckily, the Mallob job interface we see in algorithm 4 does
provide a function for this case. Mallob does periodically check available memory and if it

38

5.2 Efficiently Handling Version Increases

threatens to run out triggers the memoryPanic function. In our case we have implemented
it as clearing out half of our local fringe of search nodes and the loop detection information.
While this does mean we loose parts of the search space, the alternative would be to immediately
return without a plan. Additionally, with the restarting mechanism we introduced in section
3.2.4 CrowdHTN retains completeness even in this case.

Messages and dying workers In 4.3.2 we explained why we can no longer assume that mes-
sages will always be delivered and how Mallob implements a return message mechanism to catch
this. Now we will cover in detail how we respond to each kind of return message. Afterwards
we will look at more complicated cases of workers dying and reappearing and show how they
do not affect correctness of our planner
In malleable CrowdHTN, workers directly exchange three kinds of messages. These are work
requests, work packages, i.e. a positive answer to a work request, and negative answers, i.e. the
worker receiving the work request does not have any work to share. Getting a returned work
request is equivalent to receiving a negative answer. We treat it the same way and the worker
sends out another work request to a random other worker. When we receive a returned work
package, we re-add it to the back of our local fringe. This ensures that no information is lost.
If multiple work packages are returned to a worker, their order at the back of the fringe may
change. We do not expect any significant impact from this, as the number of work packages
which are in flight is limited by the number of PEs overall which is extremely low compared to
the number of search nodes in a hierarchical planning problem. This leaves a returned negative
answer as the last type to handle. We can simply ignore this type of return message.
Return messages are only one case of dying workers affecting our communication. In addition
to this, a worker may die, be terminated and the PE is then, through rebalancing, reassigned to
the same job. Any messages meant for the original worker will be received by the new worker,
as it belongs to the same job. For work requests this is not a problem, the new worker will
respond like any other. Receiving work packages and negative answers will change our behavior.
If the worker sent out a work request before receiving the work package meant for the previous
worker, it may end up receiving two work packages. Similarly, receiving a negative answer while
the worker has a work request on the way prompts the worker to send out an additional work
request. In both cases, we integrate any additional work packages into the local fringe to not
cut off parts of the search space and keep working.

5.2 Efficiently Handling Version Increases

In our malleable CrowdHTN implementation, version increases show up in a number of ways.
They are necessitated by the global loop detection introduced in section 3.2 and further allow
our DFS based planner to achieve completeness as explained in section 3.3. Due to the dis-
tributed fashion in which CrowdHTN operates, version updates are not perfectly synchronized
and workers may be at different versions. We will now outline how correctness is ensured and
how versions are propagated efficiently.
While versions between workers may differ, we must ensure that especially work packages of
different versions are not mixed as to not duplicate parts of the search space. This is ensured
by attaching the worker version to any outgoing messages. Upon receiving a message, a worker
first decodes the version. If this incoming version is higher than the internal version, the internal
version is updated, the local fringe and loop detection cleared and the message is then handled
according to this new internal state. If the incoming version is lower, depending on message
type it is ignored (e.g. for work packages) or responded to normally (e.g. for work requests).
Including the version with all messages has an additional use when integrating new PEs. As

39

5 Implementation

they start out empty and without a way to know the current version, they will immediately
send out a work request to a random other worker and receive both the current version and
potentially their first work package, requiring no special handling.
Including the version in each message is already sufficient to propagate the version to all work-
ers. However, if we disable global loop detection there are no regular broadcasts from the root
to the other PEs. Additionally, the work represented by a search node and it’s children may be
arbitrarily large. While this reduces the amount of messages sent and is one of the strengths
of work stealing in parallel TOHTN planning, it also results in a potentially slow propagation
of version increases, having many workers perform outdated work. To counter this problem,
whenever a version increase happens at the root PE we start a version broadcast along the
binary tree structure of PEs. This ensures that all PEs adopt the new version in a timely
manner.

5.3 Global Loop Detection

In section 3.2.4 we introduced a distributed loop detection mechanism based on regularly shared
bloom filters. This leaves us with two problems, first performing the associated allreduction
while the PEs assigned to the job may change at any time and secondly performing the restarts
which are required if the bloom filter fills up.
In both cases we will make use of the specific way in which Mallob organizes the PEs assigned to
a job which we have already explained in section 4. The two properties we rely on are the fact
that PEs are internally structured as a binary tree with parent and child information available
to us and the fact that the root PE will remain assigned to a job during the job’s full duration.

Performing the Reduction The all-reduction of our loop detection data is initiated by the
root PE and performed in three phases.

• Initiating the reduction
• Aggregating information upwards
• Broadcasting the aggregated information

The root PE is responsible for initializing the all-reduction. It does so by starting a broadcast,
sending an initialization message to all it’s children. Upon receiving a reduction initialization
message, a PE both forwards the message to its own children and prepares the local loop
detection data. At the leaves, this data can immediately be sent upwards whereas inner nodes
wait until they have received data from all children before performing their local aggregation
and forwarding the result upwards. As we combine the bloom filters via a bitwise or operation
the message size stays constant throughout. Once the root has received data from all children
it once again starts a broadcast, this time containing the aggregated data.
Starting the reduction with the initial broadcast allows us to easily coordinate all PEs even
as PEs may assigned to our job may change at any moment. Similarly, we have to deal with
PEs leaving at any time. This may be communicated to us either through getting our initial
broadcast returned as no receiver is available or by having the appl_suspend() function called
on us by Mallob. In both cases we simply substitute the message of the missing PE with a
response that simulates empty data. We note that, due to changing PEs, the sets of PEs which
broadcast their data and which receive the aggregated data may be different. Furthermore,
neither of these two sets needs to correspond to the actual tree of PEs assigned to the job at
any given time, as this set may change during the broadcast.

40

5.4 Improving the Search Node Exploration Algorithm

Loop Detection Induced Restarts In section 3.2.4 we introduced a global loop detection
mechanism based on regularly shared bloom filters. One of the problems this induces is that we
need to induce restarts to increase the size of the bloom filter in order to avoid increasing false
positive rates. The main problem here is that for different PEs the global bloom filter will fill
up at different times. This is due to the fact that different PEs may be assigned to our job for
different spans in time which may be further disjointed as PEs are suspended and subsequently
reassigned to a job. However, to uphold our guarantees we want to restart all our PEs as soon
as a single PE needs to do so.
To solve this, we rely on the fact that the root PE is guaranteed to remain assigned to a job
during the job’s full lifetime. Due to this, the root PE takes part in every single loop detection
data exchange and it’s global filter will contain at least as much data as any other PE’s filter.
This fact allows us to only ever check on the root PE whether the global bloom filter is full
and institute a restart if needed. Doing so lets us avoid any problems that would stem from all
PEs performing such checks, such as multiple PEs instituting restarts at the same time.

5.4 Improving the Search Node Exploration Algorithm

One of the main improvements we made to the internal workings of CrowdHTN is to reduce the
number of search nodes ever explicitly represented. The main idea behind this optimization is
that if the next task we need to resolve is an action, then our search node has only one possible
child. As such, this search node does not represent a choice point in our search and we do not
need to ever explicitly instantiate it.
More formally speaking, let t = t1, . . . , tn be our sequence of open tasks. Then let t′ = t1, . . . , tk
be the longest prefix of t which consists of only actions. If k = n, we create the next search
node by applying all actions, checking preconditions and applying effects as we go. If k < n,
we create the next search node by applying all actions in t′ and then additionally resolving
abstract task tk+1.
In addition to reducing the size of our fringe by reducing the overall number of search nodes
we create, we specifically hope to save both memory and run time by reducing the number
of created and represented world states. This is due to the fact that in our old algorithm
resolving tasks t1, . . . , tk would have necessitated the creation of k world states which would
also not be shared as in our previously introduced scheme. Reducing the number of search
nodes has additional benefits regarding loop detection. Using hash sets we reduce the memory
footprint as there are fewer nodes inserted in the visited nodes set and using bloom filters the
inherent probability for false positives is less of a problem the fewer nodes we check against the
filter.
Lastly, we have used the definition of reductions to further reduce our memory footprint.
Remember that each search node is identified by both world state s and open tasks tn. If the
first open task in tn is compound, then any child nodes will share the same world state as
applying a reduction only ever changes the open tasks. We replicate this in our program by
having both search nodes use the same world state instance.

5.5 Efficiently Hashing Nodes of the Search Graph

As we described in section 3.2.3, we hash a search node by hashing all of it’s open tasks as
well as the full world state. While the size of the world state and thus the time required to
hash a world state is bound by the number of ground predicates no such limit exists regarding
the open tasks. In other words, hashing both world state and open tasks has an unbounded
run time which limits the effectiveness of all hash based loop detection mechanisms. In this

41

5 Implementation

section we will describe how we manage to reduce the time required to hash the open tasks to
O(h ·max {# subtasks of r|r ∈ reductions}) where a single predicate can be hashed in O(h).
Let n1, n2 be search nodes with n2 a child of n1. Let t1, t2 be their respective sequences of open
tasks with t1 containing at least 1 abstract task which can be resolved by a reduction r with
m subtasks tr1 , . . . , trm . Furthermore, let t1 = t11 , . . . , t1k

with t11 , . . . , t1l
the longest prefix of

only actions. Then t2 = tr1 , . . . , trm , t1l+2 , . . . , t1k
, i.e. the subtasks of r concatenated with all

of t1 except the prefixed actions and the first abstract task. Assuming we compute our order
dependent hash over a task network t by going from back to front, for hashing t2 we can reuse
the hash of t1l+2 , . . . , t1k

, only computing the hash of tr1 , . . . , trm .
Storing the hash with each open task does increase our memory footprint. We do consider the
trade-off worth it as the hash is small and it allows us to transform our hash function from an
unbound to a bound run time.

42

6 Experimental Evaluation

6 Experimental Evaluation
In this section we will perform an evaluation of our new CrowdHTN implementation as it is
integrated into Mallob, the new features we added into CrowdHTN and how it behaves in a
malleable environment.
We start out by presenting our experimental setup in 6.1, including the naming scheme we use to
identify different versions and configurations of CrowdHTN. After, we first offer a comparison of
the performance of CrowdHTN as a standalone program and improved CrowdHTN integrated
into Mallob. A short comparison of CrowdHTN with state of the art sequential search-based
planners is also included.
This is followed by more detailed discussions of the different improvements and features we
added. We will review the effect of the improvements on the implementation level and discuss
the behavior of different search algorithms in CrowdHTN. Then we see how the performance
changes as we enable bloom filters for loop detection, probabilistic restarts and distributed loop
detection one after the other. We conclude with a discussion on the scaling behavior and the
performance of CrowdHTN in a malleable environment, followed by an overall recap.
The overall results can also be seen in tables 9 for the sequential planners and standalone
CrowdHTN and 10 for CrowdHTN integrated into Mallob.

6.1 Experimental Setup
In our evaluation we reuse the reduced IPC benchmark set we introduced in [14]. We use them,
as they remain the de-facto standard for evaluating hierarchical planners [56, 35, 34, 14]. The
selection consists of 120 out of the 892 instances used in the IPC 2020, using 5 instances per
domain and using 900 seconds per run instead of the 30 minutes in the IPC to make evaluation
of many different planner configurations more feasible.
We define the run time of a planner as follows:

• From start until a plan is printed for standalone planners. This includes time spent
parsing and grounding

• The wallclock time measured by Mallob for our malleable CrowdHTN, again including
parsing

Planners are scored according to both the IPC score and coverage. The IPC score is defined as
1 if a plan was found in less than 1 second, 0 if no plan was found and for 0 < t < T = 900 as

1− log(t)
log(T)

Our tests were done on two machines. The first is a server with an Intel Xeon Gold 6138 pro-
cessor with 4 sockets, 20 cores per socket and 2 threads per core clocked 2.00G Hz with around
750GB of RAM and running Ubuntu 20.04. We will call it PC1. The second is a server with
an AMD EPYC 7702 processor with 1 socket with 64 cores and 2 threads per core clocked 2.00
GHz with around 1TB of RAM and running Ubuntu 20.04. We will call it PC2. The numbers
shown in tables 9 and 10 were all obtained on PC1.

Naming Scheme As our CrowdHTN planner contains multiple configuration options, we use
a succinct naming scheme to identify them in the evaluation. The name for a CrowdHTN
configuration has the following structure:

Cr 〈CrowdHTN version〉 〈#of PEs〉 〈loop detection method〉 〈presence of restarts〉

43

6 Experimental Evaluation

A list of possible values for each category as well as their meaning is shown in table 3. The use
of a global bloom filter always implies the use of probabilistic restarts. Unless noted otherwise,
all configurations of CrowdHTN use randomized DFS.

Table 3: List of parameters identifying a CrowdHTN configuration
Parameter Value Meaning
CrowdHTN Version O Old CrowdHTN, standalone

N New CrowdHTN, integrated with Mallob
Loop Detection Method Hs Hash Set

Bl Local Bloom Filter
Bg Global Bloom Filter
No No loop detection

Presence of Restarts R Time dependent restarts are used
/ No time dependent restarts are used

6.2 Comparing New to Old CrowdHTN and Sequential Planners
When comparing our new implementation of CrowdHTN with the old CrowdHTN, we do see
an overall higher IPC score while retaining coverage for our best version where all new features
are active. However, when comparing old CrowdHTN with the new implementation using hash
sets for loop detection, we note a loss in both coverage and IPC score. A plot of their respective
performances is shown in figure 6.
We suspect that the performance degradation comes from our integration into Mallob. Crowd-
HTN as a work stealing planner sends a high number of messages. As we have seen in the
implementation section, to uphold the guarantees of Mallob we do not directly communicate
and instead write messages into separate buffers for Mallob to receive and send on which we
suspect as one area of lost performance. Additional small overhead may be due to the fact that
Mallob performs additional scheduling and rebalancing work in the background.
However, the improvements we added to CrowdHTN do make up for these losses. Additionally,
our new implementation of CrowdHTN generally achieves a higher IPC score per coverage, i.e.,
if a plan is found it is found fast. If this only happened in badly performing configurations,
we would suspect that only easy problems with a high score are solved anymore. However,
this correlation holds for all configurations of new CrowdHTN, even those exceeding the per-
formance of the old version.
Compared to sequential planners PANDA and HyperTensioN, results are mixed. Looking at
PANDA, compared to old CrowdHTN we manage to catch up in domains Hiking, Monroe-
Fully-Observable and Snake while staying ahead on Blocksworld-HPDDL, Minecraft-Player
and Rover-GTOHP. However, overall CrowdHTN still looses out to the more informed PANDA
planner.
When looking at HyperTensioN, CrowdHTN retains the advantage of higher coverage as its
parallel nature which can be said to correspond to trying the same search multiple times makes
it less hit-or-miss than HyperTensioN itself. At the same time, improvements in time to plan
mean that CrowdHTN almost catches up to HyperTensioN regarding IPC score.

6.3 Optimizations in CrowdHTN
In 5.4 we described an improvement to our progression search which let us reduce the number
of search nodes and world states we instantiate. To evaluate the impact of this improvement

44

6.4 Search Algorithms

we created an instrumented version of CrowdHTN which let us track this information during
planning. We ran this version of CrowdHTN on our benchmark on PC2, using 1 PE, DFS
and hash set based loop detection while giving it 300 seconds per instance. We tracked the
metadata for all instances, whether a plan was found or not. In addition to the information on
actions and world states, we tracked the number of search nodes which were duplicates. The
results are shown in table 4.
Compared to the other measures, the ratio of tasks which are actions is relatively consistent
between domains. It varies from about one third to about two thirds of all tasks. The ratio is
lowest for the Logistics-Learned-ECAI-16 domain at 28.2% and highest for Rover-GTOHP at
66.83%.
When it comes to shared world states, results vary more. On 11 out of the 24 test domains,
a world state is on average shared by less than 10 search nodes. This is lowest for the Snake
domain with only 1.4 search nodes per world state. On the other hand for 6 out of our 24
domains more than 1000 search nodes share one world state, going as far as ∼ 3.5× 108 search
nodes per world state for the Transport domain.
To sum these improvements up, our improved search node exploration is a clear benefit on all
domains, reducing the number of search nodes we need to represent by at least 28%. Sharing
world states is more mixed. While sharing is extreme on some domains, it does come at the
cost of an additional pointer indirection which may be especially harmful on domains with little
sharing as there is no benefit to offset this cost.
Regarding loop detection, the results are similarly varied as with state sharing. On 7 out of
24 domains no duplicate nodes were encountered at all and on another 5 domains less than
1% of nodes were duplicates. At the other end of the spectrum we have Minecraft-Player and
Logistics-Learned-ECAI-16 with ∼ 30% and Factories-simple with ∼ 44% of duplicate nodes.
We will return to these numbers in the evaluation of different loop detection techniques in 6.5.

6.4 Search Algorithms

In section 3.1 we presented four search algorithms that we implemented for CrowdHTN. Those
algorithms are random DFS, heuristic DFS, A*-like and BFS. We have tested all four algorithms
on PC1 using our test instance set using 4 PEs and a local bloom filter without restarts for
loop detection. The results of this test are visualized in figure 7, a summary of coverage and

Figure 6: Instances solved per time for old and new CrowdHTN

45

6 Experimental Evaluation

Table 4: Metadata about progression search on our benchmark
Domain Action% Nodes per World State Loop%
AssemblyHierarchical 49.71 4793.8 0.006
Barman-BDI 33.56 10.4 4.866
Blocksworld-GTOHP 50.80 6.1 0.000
Blocksworld-HPDDL 49.34 83.4 1.690
Childsnack 53.94 28800.6 0.000
Depots 45.11 7.3 2.790
Elevator-Learned-ECAI-16 47.89 44.9 1.663
Entertainment 49.49 7.2 0.095
Factories-simple 31.09 2.3 43.815
Freecell-Learned-ECAI-16 44.42 2.5 0.000
Hiking 65.24 2.6 12.508
Logistics-Learned-ECAI-16 28.20 4.7 30.348
Minecraft-Player 32.21 4.4 29.896
Minecraft-Regular 31.34 3.4 0.000
Monroe-Fully-Observable 48.65 114.0 1.457
Monroe-Partially-Observable 48.29 106.6 3.418
Multiarm-Blocksworld 47.06 28.9 8.240
Robot 50.00 46207.3 0.002
Rover-GTOHP 66.83 3.5 0.000
Satellite-GTOHP 34.66 52.5 0.013
Snake 47.16 1.4 6.948
Towers 49.99 5409.3 0.000
Transport 36.98 347788104.5 0.000
Woodworking 49.83 21708.8 0.442

46

6.5 Bloom Filters in Loop Detection

IPC score is presented in table 5.
Overall, random DFS performed best, followed by heuristic DFS, A*-like search and finally
BFS. The best performing algorithm, random DFS, solved almost twice as many instances and
has twice the IPC score of the worst performing algorithm, BFS. Additionally, we observe a
hit-or-miss behavior in both our DFS implementations where plans are either found almost
immediately or not at all. Out of the 50 instances solved by random DFS, only 18 were solved
in more than 1 and out of these 18 only 9 were solved in more than 10 seconds. BFS on the
other hand solves 14 out of 30 instances in more than a second and 11 of these 14 in over 10
seconds. As such, while overall worse performing it does seem to scale better with runtime.
Overall, BFS seems unsuited for TOHTN planning due to the extremely high branching factor
of the problems involved.
Comparing our two DFS-based approaches, we see that random DFS performs better than
heuristic DFS guided by our heuristic from section 3.1.3. We attribute this to the fact that
we consciously limited our heuristic to information on the hierarchy available from the lifted
instance to reduce the time spent on precomputation. Others, such as [35] argue that heuristics
must utilize both hierarchy and world state information. Our findings corroborate this theory.

Figure 7: Instances solved per time for CrowdHTN using DFS, heuristic DFS, A*-like search
and BFS

Table 5: Coverage and IPC score of our search algorithms using 4 PEs and a local bloom filter
Algorithm Coverage IPC Score
Random DFS 41.7% 43.09
Heuristic DFS 33.3% 35.60
A*-like 38.3% 27.13
BFS 25.0% 21.87

6.5 Bloom Filters in Loop Detection

The next feature we tested was the new loop detection based on bloom filters. For our tests
we set k = 4 and limited our false positive probability to 0.001. The results of this test are
shown in figure 8. We see that our bloom filter outperforms the hash set on 32 and 64 PEs,
increasing the IPC score by ∼ 5.5 and coverage by about 6% when switching from hash set to
bloom filter. The gains are so large that 32 PEs using a bloom filter outperform 64 PEs using

47

6 Experimental Evaluation

a hash set.
The gains are strongest on the domain Monroe-Fully-Observable and also visible on Snake.
However, we also note that our hash set based loop detection achieves good performance on
the Logistics-Learned-ECAI-16 domain while no configuration using bloom filters was able to
solve a single instance on this domain. A similar but weaker effect happens in Factories-simple.
Looking at the data in table 4 we see that Logistics-Learned-ECAI-16 and Factories-simple are
two of the domains with the highest rate of duplicate nodes. While domains on which hash sets
clearly outperform bloom filters all have a very high rate of duplicate nodes, not all domains
with many duplicate nodes benefit hash set based loop detection. Minecraft-Player contains
almost 30% duplicate nodes and CrowdHTN performs equal in both modes.

Figure 8: Instances solved per time with hash set and bloom filter based loop detection

6.6 Probabilistic Restarts

In our next test, we enabled the probabilistic restarts we introduced to guarantee completeness
for our bloom filter based loop detection. With runs lasting 900 seconds, we expect ∑899

t=1
1
t
≈

7.38 restarts per run with 5 of these restarts happening within the first 90 seconds.
First, we compare CrowdHTN using local bloom filters with and without restarts. The result is
shown in figure 9. Overall, probabilistic restarts seem to have a positive effect on coverage and
IPC score which is more pronounced on a lower number of PEs. In this way they somewhat
mitigate the hit-or-miss nature of our planner.
While we see a big difference on 32 PEs, there is little difference on 64 PEs where restarts come
with a slight benefit to coverage and a small loss in IPC score. We suspect that, while restarts
may increase our chances of finding a plan, they do decrease the chance of finding a plan fast,
as they interrupt our search and are especially common right at the beginning. Additionally,
there is little difference between restarts on 32 and 64 PEs. We will go further into the specific
scaling behavior of CrowdHTN in the benchmark on scalability in 6.8.

6.7 Global Loop Detection

The last new feature we introduced into CrowdHTN is the ability to perform distributed loop
detection. A plot of CrowdHTN with distributed loop detection and CrowdHTN using local
loop detection with probabilistic restarts is shown in figure 10. With distributed loop detection

48

6.8 Scalability of CrowdHTN

enabled we get a further small increase in both coverage and IPC score. Among all configura-
tions using bloom filters, CrowdHTN on 64PEs and using global loop detection has the highest
coverage and the overall highest IPC score. Similarly, the configuration on 32 PEs is the second
best overall, slightly outperforming the 64 PE versions with and without restarts.

6.8 Scalability of CrowdHTN

As CrowdHTN is a search-based planner, it has a hit-or-miss characteristic to its performance.
This can make it hard to see how its overall performance scales. Many instances are already
efficiently solved on a low number of PEs while other instances will remain out of reach even on
a high number of PEs. However, over our full benchmark we can still see an increase in overall
performance as seen in figure 11, even if the effect is relatively weak.
To better visualize the scaling behavior of CrowdHTN we will now focus on the Monroe-Fully-
Observable domain. It has instances which are somewhat reliably solved for any number of PEs
while not being trivial. We ran a separate benchmark of all 20 instances that come with this
domain on PC2, testing various configurations of CrowdHTN with local loop detection and no
restarts versus global loop detection with restarts. The results are listed in table 6.

Figure 9: Instances solved per time with a local bloom filter with and without restarts

Figure 10: Instances solved per time with a local bloom filter and restarts with global loop
detection

49

6 Experimental Evaluation

Overall we note the clearly increasing IPC score as the number of PEs is increased. Increasing
the number of PEs from 4 to 16 has a bigger effect than quadrupling it again to 64. We assume
that on this test benchmark the chance of encountering a plan is sufficiently high that we run
into diminishing returns as the number of PEs is increased further. Interestingly, CrowdHTN
without restarts seems to scale more strongly than CrowdHTN with restarts, as far as the IPC
score is concerned. We attribute this to the fact that the IPC score values short run times
especially high. Restarts are most frequent during the early phase of planning and may stop
CrowdHTN from finding plans very fast.
To reduce the impact of randomness, we launched on additional test using instance 11 of the
Monroe-Fully-Observable domain. We used CrowdHTN with global loop detection and restarts
active, running it 100 times with a time limit of 90 seconds. The distribution of run times is
shown in figure 12 while success rate and average run times are listed in table 7. All three
configurations have high success rate, at 93%, 97% and 98% respectively. The addition of
8 more PEs correlates with an approximately 10 second decrease in average run time. This
corresponds to a percentage decrease in run times of 20% when going from 16 to 24 PEs and
of another 30% when going from 24 to 32 PEs, increases in PEs of 50% and 33% respectively.
In reality, gains are even higher as these average run times ignore the cases were the 16 PE
configuration failed to find a plan at all.

Figure 11: Instances solved per time for CrowdHTN using DFS and a local bloom filter on 4,
16 and 64 PEs

6.9 Malleable CrowdHTN

To test the behavior of CrowdHTN under malleable conditions, we extended our previous test
on scalability. We ran another test on Monroe-Fully-Observable instance 11 using 32 PEs.
However, every 20 seconds we injected a second unsolvable job with a time limit of 10 seconds.
This means that our normal test oscillates between 32 and 16 PEs every 10 seconds, having
an average of 24 PEs available. We compare success rate, average time to plan and the overall
distribution of run times with moldable CrowdHTN on 24 PEs. The results are listed in table
8. Figure 13 shows a box plot of run times per solver.
Moldable CrowdHTN on 24 PEs reliably solves this problem in 90 seconds with a success rate of
97% and an average time to plan of 36.62 seconds. In the ideal case, our malleable CrowdHTN
would replicate this behavior. However, we see that malleable CrowdHTN achieves only 69%
success rate with an average time to plan of 31.84 seconds. Looking at the box plot visualizing

50

6.9 Malleable CrowdHTN

Table 6: Evalutating CrowdHTN on 20 instances of the Monroe-Fully-Observable domain
CrN4Bl CrN16Bl CrN64Bl CrN4Bg CrN16Bg CrN64Bg

Time IPC Time IPC Time IPC Time IPC Time IPC Time IPC
01 0.2 1.00 0.1 1.00 0.4 1.00 0.1 1.00 0.7 1.00 0.1 1.00
02 161.5 0.25 30.7 0.50 1.3 0.96 115.6 0.30 10.5 0.65 22.6 0.54
03 / 0.00 5.7 0.74 8.4 0.69 250.5 0.19 4.0 0.80 30.5 0.50
04 0.4 1.00 0.3 1.00 0.2 1.00 0.3 1.00 0.3 1.00 0.4 1.00
05 49.9 0.43 55.6 0.41 22.6 0.54 23.7 0.53 30.2 0.50 26.6 0.52
06 183.9 0.23 60.1 0.40 3.5 0.82 129.0 0.29 61.7 0.39 18.2 0.57
07 18.5 0.57 7.2 0.71 3.2 0.83 5.3 0.75 2.0 0.90 4.0 0.80
08 98.1 0.33 48.0 0.43 4.4 0.78 108.0 0.31 101.7 0.32 12.5 0.63
09 62.3 0.39 17.7 0.58 26.0 0.52 70.8 0.37 13.5 0.62 14.3 0.61
10 122.1 0.29 33.9 0.48 23.8 0.53 80.4 0.35 61.9 0.39 11.0 0.65
11 148.9 0.26 60.5 0.40 15.7 0.60 148.6 0.26 62.8 0.39 15.0 0.60
12 137.5 0.28 47.9 0.43 19.4 0.56 223.4 0.20 34.7 0.48 25.6 0.52
13 19.4 0.56 2.7 0.85 1.5 0.94 7.9 0.70 0.6 1.00 1.7 0.92
14 171.3 0.24 61.1 0.40 36.1 0.47 279.5 0.17 36.2 0.47 42.1 0.45
15 / 0.00 6.5 0.73 4.3 0.79 / 0.00 5.0 0.76 0.8 1.00
16 / 0.00 6.3 0.73 2.0 0.90 7.1 0.71 6.2 0.73 4.8 0.77
17 / 0.00 1.6 0.93 11.2 0.64 / 0.00 / 0.00 1.8 0.91
18 16.7 0.59 40.0 0.46 10.3 0.66 47.2 0.43 9.0 0.68 37.7 0.47
19 1.9 0.90 5.1 0.76 1.8 0.91 15.7 0.60 15.0 0.60 5.7 0.74
20 21.7 0.55 2.9 0.84 2.5 0.86 12.5 0.63 6.0 0.74 4.6 0.78

7.88 12.78 15.01 8.81 12.43 13.98

Figure 12: Distribution of solving times on Monroe-Fully-Observable instance 11

Table 7: Success rate and average, minimum and maximum run times of CrowdHTN on
Monroe-Fully-Observable instance 11

Configuration Success Rate Average time to plan
CrN16Bg 93% 45.73
CrN24Bg 97% 36.62
CrN32Bg 98% 25.98

51

6 Experimental Evaluation

the distribution of run times, we see that malleable CrowdHTN and moldable CrowdHTN on
24 PEs share the distribution of run times of up to about 50 seconds. Malleable CrowdHTN is
missing tail end of the distribution, though, finding no plans beyond the 60 second mark.
We suspect that this behavior is due to the way restarts are implemented in CrowdHTN and
with how disappearing workers are handled. As we restart with probability 1

t
at second t, we

expect about 5 restarts during a 90 second run with 4 of these restarts taking place in the first
30 seconds. Additionally, we handle disappearing PEs by sending the root of their local search
space to a random other PE. As in our experiment half of PEs are lost each time another job is
introduced, a high number of those messages may be sent to other disappearing PEs, leading
to an unexpectedly high loss of information. Restarts seem to mitigate this at the beginning of
the search as they are still frequent.
Overall, while loosing performance we still managed to solve a large share of instances.

Figure 13: Distribution of solving times for malleable and moldable CrowdHTN

Table 8: Coverage and average run time of malleable and moldable CrowdHTN
Configuration Success rate Average time to plan
Malleable, average 24 PEs 69% 31.84
CrN24Bg 97% 36.62

6.10 Discussion

In this section, we compare our parallel TOHTN planner CrowdHTN as it is integrated into
Mallob to the old standalone version of CrowdHTN as well as sequential planners PANDA and
HyperTensioN. As shown in the previous sections, the integration of CrowdHTN into Mallob
comes with some amount of overhead. We show that CrowdHTN has it’s own specific strengths
and manages to outperform HyperTensioN in coverage while coming close in overall score.
We see the following main results

• Our improved node exploration algorithm manages to reduce the number of instantiated
nodes from around one to two thirds total.

• Bloom filters in loop detection improve both coverage and IPC score overall with the
bigger impact on IPC score.

52

6.10 Discussion

• Distributed loop detection and restarts improve coverage and IPC score for smaller num-
bers of PEs while increasing coverage but potentially decreasing IPC score for a large
number of PEs. This may be due to the fact that very fast times to plan are lost in early
restarts.

Regarding our upgrades to CrowdHTN, we see that the improved node exploration algorithm
leads to a big reduction in overall search nodes encountered. Furthermore, bloom filters and
distributed loop detection along with restarts both manage to improve the performance of
CrowdHTN, with the bigger gain in IPC score coming from the introduction of bloom filters
and distributed loop detection with restarts having a bigger impact on overall coverage.
In addition to this, we see that overall scaling in CrowdHTN is hard to demonstrate due to
the hit-or-miss nature of the planner. However, on well-suited domains such as Monroe-Fully-
Observable we demonstrate good scaling behavior of CrowdHTN.
Regarding malleability, we see that performance is partially preserved but that loss of infor-
mation due to frequent reshuffling of a large fraction of PEs can present a problem that the
current restarting technique is unequipped to handle.

53

6 Experimental Evaluation

Table 9: Domain-wise comparison of sequential planners PANDA, HyperTensioN and parallel
planner Crowd in its standalone version

PANDA HyTN CrO4Hs CrO64Hs
Domain IPC Cov IPC Cov IPC Cov IPC Cov
AssemblyHierarchical 1.0 20% 1.0 20% 1.0 20% 0.98 20%
Barman-BDI 2.34 60% 4.0 80% 1.79 40% 1.74 40%
Blocksworld-GTOHP 4.49 100% 2.01 60% 2.0 40% 2.49 60%
Blocksworld-HPDDL 1.27 40% 3.98 80% 3.21 80% 3.01 80%
Childsnack 2.64 80% 4.0 80% 2.6 80% 2.37 80%
Depots 3.0 60% 4.0 80% 3.63 80% 3.6 80%
Elevator-Learned-ECAI-16 3.07 100% 3.0 60% 4.06 100% 3.86 100%
Entertainment 4.0 100% 0.0 0% 0.0 0% 0.0 0%
Factories-simple 2.0 40% 1.0 20% 1.91 40% 1.86 40%
Freecell-Learned-ECAI-16 0.0 0% 0.0 0% 0.0 0% 0.0 0%
Hiking 3.55 80% 4.0 80% 2.0 40% 1.7 60%
Logistics-Learned-ECAI-16 2.08 60% 2.0 40% 2.57 60% 2.79 80%
Minecraft-Player 0.88 40% 2.0 40% 1.73 40% 1.62 40%
Minecraft-Regular 3.6 80% 4.0 80% 3.14 80% 2.99 80%
Monroe-Fully-Observable 2.69 100% 0.0 0% 1.68 100% 2.07 100%
Monroe-Partially-Observable 1.53 80% 0.0 0% 0.93 20% 0.82 20%
Multiarm-Blocksworld 1.0 20% 1.0 20% 1.0 20% 0.98 20%
Robot 2.0 40% 2.0 40% 2.0 40% 2.0 40%
Rover-GTOHP 2.75 60% 4.45 100% 3.7 100% 3.26 80%
Satellite-GTOHP 3.62 100% 0.0 0% 0.0 0% 0.0 0%
Snake 4.45 100% 5.0 100% 3.07 80% 2.84 80%
Towers 2.6 60% 2.0 40% 2.2 60% 2.15 60%
Transport 2.86 80% 1.85 40% 0.0 0% 0.0 0%
Woodworking 2.0 40% 0.35 20% 0.0 0% 0.0 0%
Instances: 120 59.4 64% 51.6 45% 44.2 47% 43.1 48%

54

6.10 Discussion

Table 10: Domain-wise comparison of parallel planner CrowdHTN in various configurations

C
rN

32
H
s

C
rN

64
H
s

C
rN

4B
l

C
rN

16
B
l

C
rN

32
B
L

C
rN

64
B
l

C
rN

32
B
lR

C
rN

64
B
lR

C
rN

32
B
g

C
rN

64
B
g

D
om

ai
n

IP
C

C
ov

IP
C

C
ov

IP
C

C
ov

IP
C

C
ov

IP
C

C
ov

IP
C

C
ov

IP
C

C
ov

IP
C

C
ov

IP
C

C
ov

IP
C

C
ov

A
ss
em

bl
yH

ie
ra
rc
hi
ca
l

1.
0

20
%

1.
0

20
%

1.
0

20
%

1.
0

20
%

1.
0

20
%

1.
0

20
%

1.
0

20
%

1.
0

20
%

1.
0

20
%

1.
22

40
%

Ba
rm

an
-B

D
I

1.
0

20
%

1.
97

40
%

2.
0

40
%

2.
0

40
%

1.
98

40
%

1.
97

40
%

1.
83

40
%

1.
97

40
%

1.
89

40
%

1.
97

40
%

Bl
oc
ks
wo

rld
-G

T
O
H
P

2.
0

40
%

2.
0

40
%

2.
0

40
%

2.
0

40
%

2.
0

40
%

2.
39

60
%

2.
32

60
%

2.
2

60
%

2.
77

60
%

2.
39

60
%

Bl
oc
ks
wo

rld
-H

PD
D
L

3.
05

80
%

3.
0

80
%

3.
03

80
%

3.
02

80
%

3.
0

80
%

2.
98

80
%

2.
82

80
%

2.
88

80
%

2.
88

80
%

2.
83

80
%

C
hi
ld
sn
ac
k

2.
86

80
%

2.
83

80
%

2.
96

80
%

2.
93

80
%

2.
87

80
%

2.
82

80
%

2.
57

80
%

2.
64

80
%

2.
56

80
%

2.
77

80
%

D
ep

ot
s

3.
83

80
%

3.
95

80
%

3.
92

80
%

3.
86

80
%

3.
86

80
%

3.
85

80
%

3.
77

80
%

3.
82

80
%

3.
79

80
%

3.
87

80
%

El
ev
at
or
-L
ea
rn
ed

-E
C
A
I-1

6
4.
24

10
0%

4.
14

10
0%

4.
33

10
0%

4.
36

10
0%

4.
31

10
0%

4.
29

10
0%

4.
02

10
0%

4.
11

10
0%

4.
1

10
0%

4.
22

10
0%

En
te
rt
ai
nm

en
t

0.
0

0%
0.
0

0%
0.
0

0%
0.
0

0%
0.
0

0%
0.
0

0%
0.
0

0%
0.
0

0%
0.
0

0%
0.
0

0%
Fa

ct
or
ie
s-
sim

pl
e

2.
0

40
%

2.
0

40
%

1.
0

20
%

1.
0

20
%

1.
0

20
%

1.
0

20
%

1.
0

20
%

1.
0

20
%

1.
0

20
%

1.
0

20
%

Fr
ee
ce
ll-
Le

ar
ne

d-
EC

A
I-1

6
0.
0

0%
0.
0

0%
0.
0

0%
0.
0

0%
0.
0

0%
0.
0

0%
0.
0

0%
0.
0

0%
0.
0

0%
0.
0

0%
H
ik
in
g

1.
0

20
%

2.
0

40
%

2.
0

40
%

2.
0

40
%

2.
0

40
%

2.
0

40
%

2.
0

40
%

2.
89

60
%

2.
76

60
%

3.
0

60
%

Lo
gi
st
ic
s-
Le

ar
ne

d-
EC

A
I-1

6
2.
0

40
%

3.
01

80
%

0.
0

0%
0.
0

0%
0.
0

0%
0.
0

0%
0.
0

0%
0.
0

0%
0.
0

0%
0.
0

0%
M
in
ec
ra
ft-

Pl
ay
er

2.
0

40
%

2.
0

40
%

2.
0

40
%

2.
0

40
%

2.
0

40
%

2.
0

40
%

2.
0

40
%

2.
0

40
%

2.
0

40
%

2.
0

40
%

M
in
ec
ra
ft-

R
eg
ul
ar

1.
0

20
%

1.
98

40
%

3.
6

80
%

3.
58

80
%

3.
54

80
%

3.
5

80
%

3.
29

80
%

3.
47

80
%

3.
38

80
%

3.
47

80
%

M
on

ro
e-
Fu

lly
-O

bs
er
va
bl
e

0.
72

20
%

0.
0

0%
1.
92

60
%

3.
3

10
0%

2.
69

80
%

4.
08

10
0%

3.
68

10
0%

3.
72

10
0%

3.
34

10
0%

3.
6

10
0%

M
on

ro
e-
Pa

rt
ia
lly

-O
bs
er
va
bl
e

0.
0

0%
0.
0

0%
1.
0

20
%

0.
0

0%
1.
0

20
%

1.
0

20
%

1.
0

20
%

1.
0

20
%

1.
0

20
%

1.
0

20
%

M
ul
tia

rm
-B

lo
ck
sw

or
ld

1.
0

20
%

1.
0

20
%

0.
0

0%
1.
0

20
%

1.
0

20
%

1.
0

20
%

0.
99

20
%

1.
0

20
%

1.
0

20
%

1.
0

20
%

R
ob

ot
2.
0

40
%

2.
0

40
%

2.
0

40
%

2.
0

40
%

2.
0

40
%

2.
0

40
%

2.
0

40
%

2.
0

40
%

2.
0

40
%

2.
0

40
%

R
ov
er
-G

T
O
H
P

4.
43

10
0%

4.
4

10
0%

4.
56

10
0%

4.
55

10
0%

4.
51

10
0%

4.
47

10
0%

4.
39

10
0%

4.
35

10
0%

4.
46

10
0%

4.
38

10
0%

Sa
te
lli
te
-G

T
O
H
P

0.
0

0%
0.
0

0%
0.
0

0%
1.
0

20
%

0.
0

0%
0.
0

0%
0.
97

20
%

0.
0

0%
0.
97

20
%

1.
0

20
%

Sn
ak

e
2.
0

40
%

2.
0

40
%

3.
1

80
%

3.
89

10
0%

2.
85

80
%

3.
4

80
%

3.
94

10
0%

3.
98

10
0%

4.
02

10
0%

4.
33

10
0%

To
we

rs
2.
57

60
%

2.
56

60
%

2.
66

60
%

2.
65

60
%

2.
62

60
%

2.
61

60
%

2.
61

60
%

2.
56

60
%

2.
52

60
%

2.
6

60
%

Tr
an

sp
or
t

0.
0

0%
0.
0

0%
0.
0

0%
0.
0

0%
0.
0

0%
1.
0

20
%

0.
0

0%
0.
0

0%
0.
0

0%
0.
0

0%
W
oo

dw
or
ki
ng

0.
0

0%
0.
0

0%
0.
0

0%
0.
0

0%
0.
0

0%
0.
0

0%
0.
0

0%
0.
0

0%
0.
0

0%
0.
0

0%
In
st
an

ce
s:

12
0

38
.7

36
%

41
.8

39
%

43
.1

41
%

46
.1

44
%

44
.2

42
%

47
.4

45
%

46
.2

46
%

46
.6

46
%

47
.4

47
%

48
.6

48
%

55

7 Conclusion

7 Conclusion
In this work, we have investigated and improved methods of parallel TOHTN planning and
designed a malleable TOHTN planner based on work stealing. We will summarize our work in
7.1 and provide a short outlook in 7.2.

7.1 Recap

In hierarchical planning we repeatedly decompose a set of initial tasks until we have obtained
a sequence of actions we can directly apply to achieve our initial goal. Malleability is the abil-
ity of a program to handle a varying amount of available resources during execution. We set
out to improve the performance and scalability of our parallel planner CrowdHTN by experi-
menting with different search algorithms and designing a distributed loop detection scheme. In
addition to this, we showed that current loop detection schemes are insufficient to guarantee
completeness for our planner and argue for restarts to ensure correctness. To adapt our parallel
planner into a malleable environment, we present our design of CrowdHTN integrated into the
malleable scheduler and load balancer Mallob.

We evaluate our improved planner on a subset of the benchmark used in the IPC 2020. There
we find that both bloom filters and distributed loop detection improve the overall performance
and see that our planner shows clear scaling. In addition, we find that our restart scheme has
positive performance implications beyond guaranteeing completeness.
While our planner guarantees completeness and work stealing makes it easy to efficiently use
new PEs in a malleable environment, we see performance degradation due to information loss
when a large number of available PEs is frequently reshuffled.

Overall, scalable and performant TOHTN planning seems possible but will need more work to
improve the search itself as the high branching factor of TOHTN problems limits the potential
of a brute force approach as used in CrowdHTN. Similarly, malleable applications based on
work stealing in general and malleable TOHTN planning specifically seem worthwhile as the
problems with information loss get addressed.

7.2 Future Work

In this work we have shown how current loop detection mechanisms are insufficient to ensure
planner completeness and how our own global loop detection scheme with restarts can improve
overall performance. We will now give a short overview of ideas we encountered that may im-
prove the capabilities of loop detection and further increase the performance of our distributed
loop detection and restarting scheme. This is followed by ideas as to how information loss in a
malleable environment may be better addressed.

Advanced dynamic pruning In section 3.3 we show that the current state of the art in loop
detection can detect some but not all cases of recursion as it is present in hierarchical planning
problems. We further show that this not only negatively affects the performance of our planners
but may make planners based on heuristic DFS incomplete.
To deal with such cases, we could take the idea of detecting duplicate search nodes and generalize
it into a notion of dynamic pruning of uninteresting nodes. Uninteresting here means that
exploring this node will give us no new information about our planning problem. A duplicate

56

7.2 Future Work

search node is uninteresting as we have explored it before, obtaining all information that is
available. However, a search node may also be uninteresting if it’s open tasks is built such that
we are guaranteed to perform unnecessary work when exploring it. Such a set of open tasks
may contain a sequence of k times task t, where the resolution of t may only create actions and
more instances of t and affect at most l predicates. If k > 2l, then extending this sequence by
more instances of t is of no benefit. We could only create more instances of t and resolving all
open t via actions would lead us through duplicate world states, performing unnecessary work.
More research would need to be put into detecting such cases to perform more intelligent pruning
of search nodes. If done successfully, heuristic DFS may regain completeness if combined with
this new scheme.

Global loop detection We show that a global loop detection scheme positively impacts the
performance of our parallel TOHTN planner. So far we have only used a simple heuristic to
determine when a search node is entered into the global filter, namely if it was twice encountered
locally. Better informed heuristics to determine when a node is likely interesting for other PEs
could further improve the performance of our distributed loop detection scheme. Additionally,
we could track search nodes whose subgraph has been fully explored and keep them in an
additional global filter. This would increase the memory footprint as nodes would have to
be kept around until we backtrack past them but such information could even be kept across
restarts to further improve performance over time.

Intelligent restarts In both 3.2.4 and 3.3 we argue for the use of probabilistic restarts to
guarantee the completeness of CrowdHTN. We perform restarts with probability 1

t
at second

t. This is only one of the possible ways to use restarts.
Restarts and restarting strategies to increase solver performance have played a role in SAT
solving since the 1990s. [40] suggested the use of iterative sampling in AI planning systems,
repeatedly exploring random paths up to a depth limit and restarting if no solution was found.
Their work was adapted by [18] who employed the iterative sampling strategy for SAT solving.
As a general restart strategy for increased performance, the Luby sequence was developed [42]
and has by now been adapted by SAT solvers [36]. By now a wide array of different restart
strategies have been tried in SAT solvers. There are both static restart strategies, such as
uniform intervals and based Luby schemes and dynamic strategies which incorporate run time
information into their decision [10].
We are eager to see how incorporating such restart schemes may affect the performance of
hierarchical planners.

Malleable communication schemes As we have seen in our evaluation, our malleable TO-
HTN planner struggles with the frequent reshuffling of PEs. This could be addressed either by
changing Mallob s.t. message loss can be avoided completely or by designing new communica-
tion schemes that ensure no information is lost. This may be done by limiting communication
to use the edges of the binary tree in which Mallob organizes the worker of a job and hav-
ing parents guarantee that no information of their children is lost. Additional work would
be needed to ensure that the guarantees of randomized work stealing still hold up in such an
environment.

57

References

References

[1] Alford, Ron, Gregor Behnke, Daniel Höller, Pascal Bercher, Susanne Bi-
undo and David W Aha: Bound to plan: Exploiting classical heuristics via automatic
translations of tail-recursive HTN problems. In Twenty-Sixth International Conference on
Automated Planning and Scheduling, 2016.

[2] Balyo, Tomáš, Peter Sanders and Carsten Sinz: Hordesat: A massively parallel
portfolio SAT solver. In International Conference on Theory and Applications of Satisfia-
bility Testing, pages 156–172. Springer, 2015.

[3] Behnke, Gregor, Daniel Höller and Pascals Bercher: International Plan-
ning Competition 2020 On Hierarchical Task Network (HTN) Planning. http://gki.
informatik.uni-freiburg.de/competition/results.pdf, 2020.

[4] Behnke, Gregor, Daniel Höller and Susanne Biundo: On the complexity of HTN
plan verification and its implications for plan recognition. In Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling, volume 25, pages 25–33, 2015.

[5] Behnke, Gregor, Daniel Höller and Susanne Biundo: totSAT-Totally-ordered
hierarchical planning through SAT. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

[6] Behnke, Gregor, Daniel Höller and Susanne Biundo: Tracking branches in trees-
A propositional encoding for solving partially-ordered HTN planning problems. In 2018
IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI), pages
73–80. IEEE, 2018.

[7] Behnke, Gregor, Daniel Höller, Alexander Schmid, Pascal Bercher and
Susanne Biundo: On succinct groundings of HTN planning problems. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 34, pages 9775–9784, 2020.

[8] Bender, Michael A, Martin Farach-Colton, Rob Johnson, Bradley C Kusz-
maul, Dzejla Medjedovic, Pablo Montes, Pradeep Shetty, Richard P
Spillane and Erez Zadok: Don’t thrash: how to cache your hash on flash. In 3rd
Workshop on Hot Topics in Storage and File Systems (HotStorage 11), 2011.

[9] Bercher, Pascal, Ron Alford and Daniel Höller: A Survey on Hierarchical
Planning-One Abstract Idea, Many Concrete Realizations. In IJCAI, pages 6267–6275,
2019.

[10] Biere, Armin and Andreas Fröhlich: Evaluating CDCL restart schemes. Proceedings
of Pragmatics of SAT, pages 1–17, 2015.

[11] Blazewicz, Jacek, Mikhail Y Kovalyov, Maciej Machowiak, Denis Trystram
and Jan Weglarz: Preemptable malleable task scheduling problem. IEEE Transactions
on Computers, 55(4):486–490, 2006.

[12] Bloom, Burton H: Space/time trade-offs in hash coding with allowable errors. Commu-
nications of the ACM, 13(7):422–426, 1970.

[13] Blumofe, Robert D and Charles E Leiserson: Scheduling multithreaded computa-
tions by work stealing. Journal of the ACM (JACM), 46(5):720–748, 1999.

[14] Bretl, Colin, Niko Wilhelm Dominik Schreiber and Peter Sanders: Parallel
and Distributed TOHTN Planning.

[15] Broder, Andrei and Michael Mitzenmacher: Network applications of bloom filters:
A survey. Internet mathematics, 1(4):485–509, 2004.

58

http://gki.informatik.uni-freiburg.de/competition/results.pdf
http://gki.informatik.uni-freiburg.de/competition/results.pdf

References

[16] Buisson, Jérémy, Françoise André and Jean-Louis Pazat: A framework for dy-
namic adaptation of parallel components. In International Conference ParCo, volume 33,
page 65, 2005.

[17] Cirne, Walfredo and Francine Berman: A model for moldable supercomputer jobs.
In Proceedings 15th International Parallel and Distributed Processing Symposium. IPDPS
2001, pages 8–pp. IEEE, 2001.

[18] Crawford, James M and Andrew B Baker: Experimental results on the application
of satisfiability algorithms to scheduling problems. In AAAI, volume 2, pages 1092–1097,
1994.

[19] Erol, Kutluhan, James Hendler and Dana S Nau: HTN planning: Complexity and
expressivity. In AAAI, volume 94, pages 1123–1128, 1994.

[20] Erol, Kutluhan, James Hendler and Dana S Nau: Complexity results for HTN
planning. Annals of Mathematics and Artificial Intelligence, 18(1):69–93, 1996.

[21] Fan, Bin, Dave G Andersen, Michael Kaminsky and Michael D Mitzenmacher:
Cuckoo filter: Practically better than bloom. In Proceedings of the 10th ACM International
on Conference on emerging Networking Experiments and Technologies, pages 75–88, 2014.

[22] Fan, Li, Pei Cao, Jussara Almeida and Andrei Z Broder: Summary cache: a
scalable wide-area web cache sharing protocol. IEEE/ACM transactions on networking,
8(3):281–293, 2000.

[23] Feitelson, Dror G: Job scheduling in multiprogrammed parallel systems. 1997.
[24] Froleyks, Nils, Marijn Heule, Markus Iser, Matti Järvisalo and Martin

Suda: SAT competition 2020. Artificial Intelligence, 301:103572, 2021.
[25] Fukunaga, Alex, Adi Botea, Yuu Jinnai and Akihiro Kishimoto: Parallel A*

for State-Space Search. In Handbook of Parallel Constraint Reasoning, pages 419–455.
Springer, 2018.

[26] Georgievski, Ilche and Marco Aiello: HTN planning: Overview, comparison, and
beyond. Artificial Intelligence, 222:124–156, 2015.

[27] Georgievski, Ilche, Faris Nizamic, Alexander Lazovik and Marco Aiello:
Cloud ready applications composed via HTN planning. In 2017 IEEE 10th Conference on
Service-Oriented Computing and Applications (SOCA), pages 81–89. IEEE, 2017.

[28] González, José Carlos, José Carlos Pulido and Fernando Fernández: A
three-layer planning architecture for the autonomous control of rehabilitation therapies
based on social robots. Cognitive Systems Research, 43:232–249, 2017.

[29] Heisinger, Maximilian, Mathias Fleury and Armin Biere: Distributed cube and
conquer with paracooba. In International Conference on Theory and Applications of Satis-
fiability Testing, pages 114–122. Springer, 2020.

[30] Heule, Marijn, Matti Järvisalo, Martin Suda, Markus Iser, Tomáš Balyo and
Nils Froleyks: International SAT competitoin 2021 results. https://satcompetition.
github.io/2021/results.html, 2021.

[31] Höller, Daniel and Gregor Behnke: Loop Detection in the PANDA Planning Sys-
tem. In Proceedings of the International Conference on Automated Planning and Schedul-
ing, volume 31, pages 168–173, 2021.

[32] Höller, Daniel, Gregor Behnke, Pascal Bercher and Susanne Biundo: Lan-
guage Classification of Hierarchical Planning Problems. In ECAI, pages 447–452, 2014.

[33] Höller, Daniel, Gregor Behnke, Pascal Bercher, Susanne Biundo, Hum-
bert Fiorino, Damien Pellier and Ron Alford: HDDL: An extension to PDDL

59

https://satcompetition.github.io/2021/results.html
https://satcompetition.github.io/2021/results.html

References

for expressing hierarchical planning problems. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 9883–9891, 2020.

[34] Höller, Daniel and Pascal Bercher: Landmark generation in HTN planning. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 11826–
11834, 2021.

[35] Höller, Daniel, Pascal Bercher, Gregor Behnke and Susanne Biundo: HTN
planning as heuristic progression search. Journal of Artificial Intelligence Research, 67:835–
880, 2020.

[36] Huang, Jinbo et al.: The Effect of Restarts on the Efficiency of Clause Learning. In
IJCAI, volume 7, pages 2318–2323, 2007.

[37] Hungershofer, Jan: On the combined scheduling of malleable and rigid jobs. In 16th
Symposium on Computer Architecture and High Performance Computing, pages 206–213.
IEEE, 2004.

[38] Kishimoto, Akihiro, Alex Fukunaga and Adi Botea: Scalable, parallel best-first
search for optimal sequential planning. In Proceedings of the International Conference on
Automated Planning and Scheduling, volume 19, pages 201–208, 2009.

[39] Kumar, Vipin and V Nageshwara Rao: Parallel depth first search. part ii. analysis.
International Journal of Parallel Programming, 16(6):501–519, 1987.

[40] Langley, Pat: Systematic and nonsystematic search strategies. In Artificial Intelligence
Planning Systems, pages 145–152. Elsevier, 1992.

[41] Lin, Sun, Zhu Anshi, Li Bo and Fan Xiaoshi: HTN Guided Adversarial Planning for
RTS Games. In 2020 IEEE International Conference on Mechatronics and Automation
(ICMA), pages 1326–1331. IEEE, 2020.

[42] Luby, Michael, Alistair Sinclair and David Zuckerman: Optimal speedup of Las
Vegas algorithms. Information Processing Letters, 47(4):173–180, 1993.

[43] Magnaguagno, Maurício C, Felipe Rech Meneguzzi and LAVINDRA
DE SILVA: HyperTensioN: A three-stage compiler for planning. In Proceedings of the
30th International Conference on Automated Planning and Scheduling (ICAPS), 2020,
França., 2020.

[44] Mali, Amol Dattatraya and Subbarao Kambhampati: Encoding HTN Planning in
Propositional Logic. In AIPS, pages 190–198, 1998.

[45] Mohr, Felix, Marcel Wever and Eyke Hüllermeier: ML-Plan: Automated ma-
chine learning via hierarchical planning. Machine Learning, 107(8):1495–1515, 2018.

[46] Muñoz-Avila, Hector and David Aha: On the role of explanation for hierarchical
case-based planning in real-time strategy games. In Proceedings of ECCBR-04 Workshop
on Explanations in CBR, pages 1–10. Citeseer, 2004.

[47] Nau, Dana, Yue Cao, Amnon Lotem and Hector Munoz-Avila: SHOP: Simple
hierarchical ordered planner. In Proceedings of the 16th international joint conference on
Artificial intelligence-Volume 2, pages 968–973, 1999.

[48] Nau, Dana S: Current trends in automated planning. AI magazine, 28(4):43–43, 2007.
[49] Ontanón, Santiago and Michael Buro: Adversarial hierarchical-task network plan-

ning for complex real-time games. In Twenty-Fourth International Joint Conference on
Artificial Intelligence, 2015.

[50] Padia, Kalpesh, Kaveen Herath Bandara and Christopher G Healey: Yarn:
Generating Storyline Visualizations Using HTN Planning. In Graphics Interface, pages
26–33, 2018.

60

References

[51] Ramoul, Abdeldjalil, Damien Pellier, Humbert Fiorino and Sylvie Pesty:
Grounding of HTN planning domain. International Journal on Artificial Intelligence Tools,
26(05):1760021, 2017.

[52] Rao, V Nageshwara and Vipin Kumar: Parallel depth first search. part i. implemen-
tation. International Journal of Parallel Programming, 16(6):479–499, 1987.

[53] Sanders, Peter: Lastverteilungsalgorithmen fur parallele tiefensuche. PhD thesis, Dis-
sertation, Karlsruhe, Universität, 1996, 1997.

[54] Sanders, Peter and Dominik Schreiber: Decentralized online scheduling of malleable
NP-hard jobs. In European Conference on Parallel Processing, pages 119–135. Springer,
2022.

[55] Sanders, Peter and Jochen Speck: Efficient parallel scheduling of malleable tasks. In
2011 IEEE International Parallel & Distributed Processing Symposium, pages 1156–1166.
IEEE, 2011.

[56] Schreiber, Dominik: Lilotane: A lifted SAT-based approach to hierarchical planning.
Journal of Artificial Intelligence Research, 70:1117–1181, 2021.

[57] Schreiber, Dominik, Damien Pellier, Humbert Fiorino et al.: Tree-REX: SAT-
based tree exploration for efficient and high-quality HTN planning. In Proceedings of the
International Conference on Automated Planning and Scheduling, volume 29, pages 382–
390, 2019.

[58] Schreiber, Dominik and Peter Sanders: Scalable SAT solving in the cloud. In
International Conference on Theory and Applications of Satisfiability Testing, pages 518–
534. Springer, 2021.

[59] Sirin, Evren, Bijan Parsia, Dan Wu, James Hendler and Dana Nau: HTN
planning for web service composition using SHOP2. Journal of Web Semantics, 1(4):377–
396, 2004.

[60] Sonmez, Ozan, Hashim Mohamed, Wouter Lammers, Dick Epema et al.: Schedul-
ing malleable applications in multicluster systems. In 2007 IEEE International Conference
on Cluster Computing, pages 372–381. IEEE, 2007.

[61] Tucker, Andrew and Anoop Gupta: Process control and scheduling issues for multi-
programmed shared-memory multiprocessors. In Proceedings of the twelfth ACM symposium
on Operating systems principles, pages 159–166, 1989.

[62] Weld, Daniel S: An introduction to least commitment planning. AI magazine, 15(4):27–
27, 1994.

[63] Xie, Kun, Yinghua Min, Dafang Zhang, Jigang Wen and Gaogang Xie: A
scalable bloom filter for membership queries. In IEEE GLOBECOM 2007-IEEE Global
Telecommunications Conference, pages 543–547. IEEE, 2007.

61

	1 Introduction
	2 Preliminaries
	2.1 (TO)HTN Formalism
	2.1.1 Defining (TO)HTN Planning Problems
	2.1.2 Complexity of (TO)HTN planning
	2.1.3 Differences from other Kinds of Planning
	2.1.4 Graphically Representing TOHTN Problems

	2.2 Techniques to solve HTN planning problems
	2.2.1 Translation-based
	2.2.2 Search-based
	2.2.3 Lifted and Ground HTN Planning
	2.2.4 Comparing the Techniques

	2.3 Malleability
	2.4 Parallel and Distributed Computing Techniques
	2.4.1 Parallel Graph Search
	2.4.2 Parallel Hierarchical Planning

	2.5 The CrowdHTN Planner
	2.6 The Mallob Load Balancer and SAT Solver

	3 Theoretical Improvements of the CrowdHTN Planner
	3.1 Search Algorithms Used in CrowdHTN
	3.1.1 Random Depth-First Search
	3.1.2 Random Breadth-First Search
	3.1.3 Heuristic Search
	3.1.4 Completeness of different Search Algorithms

	3.2 Loop Detection
	3.2.1 Loop Detection in Other HTN Planners
	3.2.2 Assumptions in Loop Detection for CrowdHTN
	3.2.3 Hash Set Based Loop Detection
	3.2.4 Approximate and Distributed Loop Detection

	3.3 Discussion of Planner Completeness

	4 A Malleable TOHTN Planner
	4.1 Distributing Jobs
	4.2 Integrating New PEs Into Malleable CrowdHTN
	4.3 Handling PEs Leaving at Run Time
	4.3.1 Handling the Local Fringe
	4.3.2 Handling Lost Messages

	5 Implementation
	5.1 Mallob Integration
	5.2 Efficiently Handling Version Increases
	5.3 Global Loop Detection
	5.4 Improving the Search Node Exploration Algorithm
	5.5 Efficiently Hashing Nodes of the Search Graph

	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Comparing New to Old CrowdHTN and Sequential Planners
	6.3 Optimizations in CrowdHTN
	6.4 Search Algorithms
	6.5 Bloom Filters in Loop Detection
	6.6 Probabilistic Restarts
	6.7 Global Loop Detection
	6.8 Scalability of CrowdHTN
	6.9 Malleable CrowdHTN
	6.10 Discussion

	7 Conclusion
	7.1 Recap
	7.2 Future Work

