
Engineering Block Trees

Master Thesis

of

Daniel Meyer

At the KIT Department of Informatics
Institute of Theoretical Informatics

Algorithm Engineering

Reviewer: Prof. Dr. Peter Sanders
Advisor: Dr. Florian Kurpicz

30. June 2022 – 30. December 2022

KIT – The Research University in the Helmholtz Association www.kit.edu

Institute of Theoretical Informatics
Algorithm Engineering
KIT Department of Informatics
Karlsruhe Institute of Technology
Am Fasanengarten 5
76131 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.
Karlsruhe, December 30, 2022

. .
(Daniel Meyer)

Abstract

Engineering Block Trees

Block trees are a data structure to store a string S of length n with z Lempel-Ziv factors in
O(z log (n/z)) space, while allowing direct symbol access in time O(log (n/z)). While
a Lempel-Ziv encoding of S only takes O(z) space, direct symbol access is not possible
without decoding the whole string. Furthermore, block tree also supports other queries
like rank and select, that are commonly used in e.g., full-text indexes. In this thesis, we
introduce a novel block tree construction algorithm based on a well-researched data struc-
ture, the longest previous factor array. Our algorithm constructs the block tree in O(n)
time, but requires O(n) log n space. This is more than the O(n) space of the previous
approaches. In our extensive experimental evaluation, we show that our novel approach
is 2.6 to 14.75 times faster than previous algorithms on highly repetitive texts.

v

Zusammenfassung

Engineering Block Trees

Block Trees sind eine Data Struktur, die eine Zeichenkette der Länge n mit z Lempel-Ziv
Faktoren inO(z log (n/z)) Platz speichern und direkten Zugriff auf beliebige Symbole in
O(log (n/z)) Zeit erlauben. Die bekannte Lempel-Ziv Codierung braucht zwar nur O(z)
Platz, erlaubt aber keinen Zugriff auf beliebige Symbole, ohne zuvor den gesamten Text
zu dekodieren. Zusätzlich können Block Trees auch weitere Anfragen, wie zum Beispiel
Rang- oder Auswahlanfragen, beantworten, die häufig in Volltextindexen verwendet wer-
den. In dieser Abschlussarbeit stellen wir einen neuen Block Tree Konstruktionsalgorith-
mus vor, der Block Trees in O(z) Zeit und O(n log n) Platz konstruiert. Der Algorithmus
baut auf dem längsten vorherigen Faktor Array auf. In unseren Experimenten zeigte sich,
dass unser Ansatz zwischen 2,6 und 14,75-mal schneller Block Trees für sich stark wie-
derholenden Texten aufbaut als die bisherigen Algorithmen.

vii

Contents

Abstract v

Zusammenfassung vii

1 Introduction 1
1.1 Problem Statement . 1
1.2 Contribution . 2
1.3 Structure of Thesis . 2

2 Fundamentals 3

3 Related Work 5
3.1 Lempel-Ziv Factorization . 5
3.2 LPF-Array . 5

3.2.1 Sequential Construction Using SA and LCP 6
3.2.2 Practical CRCW PRAM Parallel Construction 9

3.3 Block Tree . 10
3.3.1 Queries . 12
3.3.2 Construction . 13

4 Concept 17
4.1 Marking Blocks . 17

4.1.1 Marking Blocks using LZ77-phrases 17
4.1.2 Marking Blocks with LPF-Array 18

4.2 Identifying Leftmost Occurrences Using LPF- and PrevOcc-Array . . . 19
4.3 Block Tree Construction . 25

4.3.1 Complexity Analysis . 26
4.4 Pruning . 27
4.5 Greedy Heuristic . 27

5 Implementation 31
5.1 Data Structure for Block Trees . 31
5.2 Sequential Implementation . 33

5.2.1 Block Tree Variants . 33
5.3 Naive Parallelization . 34

6 Experiments 35
6.1 Setup . 35
6.2 Sequential Evaluation . 37

6.2.1 Construction Time and Tree Size 37
6.2.2 Query Times . 40

6.3 Parallel Evaluation . 55

ix

Contents

7 Conclusion 59
7.1 Future Work . 59

Bibliography 61

List of Figures 68

List of Tables 69

71

x

1 Introduction

The rise in the amount of data we aim to handle and the fact that most of the fastest-
growing data is highly repetitive [50], has motivated recent research on exploiting repeti-
tiveness to enable space reductions of two orders of magnitude [21]. In contrast to entropy
encoders, dictionary encoders like the Lempel-Ziv compression achieve high compression
rates by capturing this repetitiveness [34]. Given a string S[0..n), Lempel-Ziv compres-
sion parses S into a set of z factors and encodes S in O(z) space [46]. Although Lempel-
Ziv compression exploits repetitiveness the best in practice, it does not allow for random
access on S without decoding S from the beginning. Grammar-based compression [32]
is based on finding the smallest context-free grammar that generates S and only S. These
grammars allow random access in O(log n) time, but generating the smallest grammar is
NP-complete [47, 9]. Thus, several linear time approximation, which generate grammars
of a size O(z log (n/z)) were introduced [47, 9, 28]. In this thesis, we take a closer look
at the block tree data structure [7], that uses O(z log (n/z)) space and allows access to
any symbol of S inO(log (n/z)) time. Block trees also support the following two queries
with additional data structures:

• rankc(i, S): return the number of occurrences of the character c in S[0..i].

• selectc(j, S): return the position of the jth occurrence of c in S.

Block trees can be built in linear time and space and allow for time-space-tradeoffs [7].
In their experimental evaluation, Belazzougui et al. [7] showed that the block trees take
up about the same space as grammar-compressed representations but can answer queries
orders of magnitude faster and provide only a bit slower queries than entropy encoded
representation [11, 45, 23], which are several times larger.

1.1 Problem Statement

The current implementation of block trees by Belazzougui et al. [7] shows slow con-
struction times in practice. We want to improve these times by applying ideas taken
from LZ77-compression algorithms. Although block trees can be constructed in linear
time, given the slow construction time of current implementations, an approximation al-
gorithm could have practical value. Therefore, we want to approximate the block tree
data structure and compare it to canonical block trees. In addition, we want to research if
it is possible to parallelize the construction process of block trees and achieve a notable
speed-up.

1

1 Introduction

1.2 Contribution

We have the following main contributions: first, we present a novel block tree algorithm
that links two well-researched data structures, the longest previous factor array and pre-
vious occurrences array, to the block tree. Furthermore, we present a greedy heuristic
for block trees. We compare our algorithm on various texts with different degrees of
repetitiveness and alphabet sizes with the preexisting implementation [7] to show that
our algorithm constructs blocks trees without rank support between 2.6 and 14.75 times
faster when considering a highly repetitive corpus and between 6.2 and 22.8 times faster
on average when considering a standard corpus. Second, we compare our heuristic with
our canonical block tree implementation, showing that the heuristic is similar in size,
but could not determine any construction time improvements over the canonical version.
Finally, we ran an initial experiment on highly repetitive texts, observing the impact of us-
ing a known shared memory parallelization for LPF-arrays and simply parallelizing the σ
depth first searches required for enabling rank support after the canonical block tree con-
struction, here we observe a modest speedup of 3.6-14.4 on 64 cores (with simultaneous
multithreading) with respect to one core.

1.3 Structure of Thesis

The remaining content of this thesis is structured as follows. In Chapter 2, we introduce
fundamental definitions and data structures from the field of stringology and give a precise
formulation of rank, select and access queries. Chapter 3 follows with a broad overview
on the Lempel-Ziv factorization and longest previous factor array, as well as the block tree
itself. This is the work that we build upon when developing our block tree construction
approach. The main content of this thesis is described in Chapters 4, 5 and 6, where
we present our approach to constructing block trees, as well as introduce a heuristic to
the block tree and perform an experimental evaluation and comparison to previous work.
Finally, we conclude our work in Chapter 7.

2

2 Fundamentals

This chapter introduces some general definitions necessary to understand the previous
work and contributions in the context of this thesis.

Let S be a string of n characters over an alphabet Σ = [0..σ) stored in an array
S[0..n− 1]. We denote the substring S[i]S[i + 1]...S[j] in S as S[i..j]. Let sufi or S[i..]
be the suffix starting at S[i] and running to the end of S. The suffix array [38] of S,
denoted as SA, gives the suffixes of S sorted in ascending lexicographical order, that is
sufSA[0] < sufSA[1] < · · · < sufSA[n−1]. Another data structure, often used in combination
with the suffix array, is the longest common prefix array LCP [30], storing the length
of the longest common prefix between consecutive suffixes in SA. LCP[i] is the longest
common prefix of and sufSA[i−1] and sufSA[i]. To simplify edge cases, we set LCP[0] = 0.
An example for SA and LCP of abababbbbaba is shown in Figure 3.1.

Empirical Entropy

For a string S[0..n) over an alphabet [0..σ), the histogram Hist[0..σ) and the cumulative
histogram C[0..σ) are defined as: Hist[i] = |{j ∈ [0, n) : S[j] = i}| and C[i] = |{j ∈
[0, n) : S[j] < i}| [33]. The zero-order entropy

H0(S) =
1

n

σ∑
i=0

Hist[i] log (
n

Hist[i]
) (2.1)

is the minimum average number of bits needed to represent the symbols of S if we use
the same code to represent all occurrences of the same character c ∈ [0..σ) [33]. The
kth-order entropy

Hk(S) =
1

n

∑
T∈Σk

|ST | · H0(ST) (2.2)

is the minimum average number of bits needed to represent the symbols of S, but we chose
each code depending on the k preceding characters as context. Given a string S over an
alphabet Σ and T ∈ Σk, ST is the concatenation of all characters that occur in S after T
in text order [33]. Any entropy encoder using k-length contexts must use at least nHk(S)
bits to represent S. A well-researched entropy encoder is the Huffman Code [24], whose
encoding for S uses less than n⌈H0(S)⌉ bits and is therefore optimal [24, 48, 15].

Rank/Select/Access

In the field of Stringology, efficient algorithms often make use of rank, select, and access
queries to solve various problems, such as inverted indices [2, 3, 4], full text indices

3

2 Fundamentals

[17, 18] and document listing [40]. We define rank, select and access in the following
way:

• access(i) = S[i], the symbol at position i.

• rankc(i) = |{k|k ≤ i & S[k] = c}|, the number of cs up to position i in S.

• selectc(j) = min ({k | rankc(k) = j}), the position of the j-th occurrence of c in
S.

Bit Vectors

A bit vector B provides rank, select and access support over a bitmap {0, 1} of length n.
B supports rank(i) and select(i) queries in constant time using only o(n) bits extra space
[10, 25]. Bit vector are an underlying data structure in well-researched data structures like
wavelet trees [23] or succinct graph representations [26, 39].

Wavelet Trees

A wavelet tree is a data structure, that provides rank, select and access support and is used
in full-text indices (e.g., the FM-index [17] and r-index [18]). It uses n⌈log σ⌉(1 + o(1))
bits space [23]. Given a string S[0..n) over an alphabet [0, σ), a wavelet tree [23] is a
binary tree, where each node represents characters in sub-alphabet [l, r] ⊆ [0, σ). The root
partitions the alphabet into two roughly equal sizes sub-alphabets [0, σ/2) and [σ/2, σ],
and which are represented by its left and right child. We repeat this on each node until
the associated sub-alphabet reaches size 1. Characters are represented using a bit vector,
where an entry is 1 if the character is represented in the right child and 0 if it is represented
in the left child.

To solve access and rank queries, we traverse root to leaf, using access and rank
queries on the bit vectors to translate the query to the sub-alphabets. For select queries,
we traverse leaf to root, using select queries on the bit vectors to translate the index to the
current sub-alphabet. For a string S over an alphabet of size σ, the wavelet tree of the
string can answer access, rank and select queries in O(log σ) [23].

The wavelet matrix [12] is an adaption of the wavelet tree, where the bit vectors
in a level are permuted and concatenated. Wavelet trees and the wavelet matrix can be
compressed using entropy encoders. As wavelet trees cannot handle holes in the alphabet,
we use canonical Huffman codes. This reduces the required space for the Huffman-shaped
wavelet tree to n⌈H0(S)⌉(1 + o(1)) bits [37].

4

3 Related Work

3.1 Lempel-Ziv Factorization

Lempel-Ziv Factorization [36] of a string S[0..n) parses S into z phrases where S =
ω0ω1...ωz−1. Each phrase ωi is either a new symbol, that has not appeared in S before ωi

and |ωi| = 1, or it is the longest substring that occurs at lest twice in ω0..ωi. Consider
the following example: S = abababbbbaba has a factorization S = ω0ω1ω2ω3ω4, where
z = 5, ω0 = a, ω1 = b, ω2 = abab, ω3 = bbb and ω4 = aba. LZ77 [54] represents each
factor ωi as a tuple (ℓi, previ). If a factor is a single character c and |ωi| = 1 we set ℓi
to 0 and store c encoded in previ. Otherwise, we set ℓi to |ωi| and previ to the starting
position of a leftwards occurrence of ωi. A list of tuples for the string S = abababbbbaba
is [(0, a), (0, b), (4, 0), (3, 5), (3, 0)]. Note that for ω4 = aba we can choose between two
leftwards occurrences and can store either (3, 0) or (3, 2). To decode, each tuple i can
restore its factor by looking at previ and either restore the stored character for ℓi = 0
or otherwise copy the ℓi characters starting at position previ. Lempel-Ziv compression
has the problem that it cannot access an arbitrary substring of S from the decompressed
state. If we want to access any substring of S, it is necessary to decompress S from the
beginning. The Lempel-Ziv compression algorithm reduces S toO(z) space inO(n) time
and space [46].

Algorithm 1: LPF to LZ77 [13]
Data: LPF[0..n)
Result: LZ[0..z)

1 i← 0;
2 LZ[0]← 0;
3 while LZ[i] < n do
4 LZ[i+ 1]← LZ[i] + max(1, LPF[LZ[i]]);
5 i← i+ 1;

3.2 LPF -Array

We denote the Lempel-Ziv factorization as an array LZ of size z where LZ[i] stores the
starting position of ωi in S. The pair (ℓi, previ) can be computed with the previous
occurrence array introduced in Section 3.2 [49].

For a string S[0..n) and i ∈ [0..n − 1), Franěk et al. [20] introduced, the longest
previous factor array LPF. LPF[0..n) is defined by LPF[i] = max{k | S[i..i+ k) occurs
at a position j < i}. The previous occurence array PrevOcc [49] stores in PrevOcc[i]

5

3 Related Work

a starting location of the longest previous factor S[i..i + k) with k := LPF[i] of S[i..]
or −1 if S[i..] has no longest previous factor. We can consider this as an extension
of the Lempel-Ziv factorization where we determine the longest previous factor for all
suffix S[i..n), i ∈ [0..n) not just for the starting positions of the Lempel-Ziv phrases
ω0, ω1..ωz−1. Algorithm 1 by Crochemore and Ilie [13] computes the LZ77-factorization
with a single pass over the LPF-array.

3.2.1 Sequential Construction Using SA and LCP

Due to the lexicographic ordering of suffixes in SA the LCP-array has the following simple
property [14]:

Lemma 3.2.1. The length of the lcp value between two position at ranks r and t , (r < t)
lcp(r, t), is the minimal value in LCP[r + 1..t].

Therefore, we can calculate lcp(r, t) using range minima queries on LCP. Range minima
queries provide the minimal value in LCP[r+1..t] inO(1) time usingO(n) space and can
be computed in O(n) time [19].

Definition 1. (all nearest smaller values (ANSV) [49]) For each element in an array of
totally ordered objects, find the closest smaller element to the left and the closest smaller
element to the right of it (if there is no smaller element, then report it).

An algorithm for ANSV returns two arrays prev and next. Where prev[i] (next[i])
contains the index of the nearest smallest value to the left (right) of i-th value or −1 if
there is no smaller value to the left (right). Barbay et al. [5] propose a simple linear time
Algorithm 2 to calculate prev. To simplify edge cases, we assume an artificial minimum
at SA[−1]. The algorithm follows the already computed values, as nothing in between
can be the previous smallest value. Overall, we compare each element at most twice [5].
Calculating next works analogously. Crochemore et al. [14] introduced Lemma 3.2.2

Algorithm 2: Compute prev for SA [5]
Data: SA[0..n)
Result: prev[0..n)

1 for i← 0 to n− 1 do
2 j ← i− 1;
3 while SA[i] ≥ SA[i] do
4 j ← prev[j];

5 prev[i]← j;

stating that LPF[i] can be computed using ANSV and range minima queries on SA and
LCP. To simplify edge cases, we assume that S[SA[−1]..] evaluates to the empty string
and therefore LCP[0] = 0 and S[SA[−1]..] has a longest common prefix of 0 with any
string.

6

3.2 LPF-Array

Lemma 3.2.2. Let prev[i] and next[i] be the left and right nearest smaller neighbors of
element i in SA, then LPF[i] = max(lcp(sufSA[i], sufSA[prev[i]]), lcp(sufSA, sufSA[next[i]])),
with sufA[i] = S[A[i]..].

With, Lemma 3.2.1 we can now use range minima queries to compute the lcp-values and
therefore the LPF values [29]. PrevOcc[i] is set to prev[i], if sufSA[prev[i]] has a longer
lcp with sufSA[i], and next[i] otherwise [49]. The steps for LPF array construction are
summarized in Algorithm 3 below, we can compute the LZ77-factorization by applying
Algorithm 1 afterwards. Note that each step takes O(n) time, and therefore calculating
the LPF-array takes O(n) time.

Algorithm 3: Compute LPF
Data: S[0..n)
Result: LPF[0..n), PrevOcc[0..n)

1 Compute SA and LCP for S;
2 Compute prev and next using Algorithm 2;
3 Compute the LPF and PrevOcc using RMQs;

The previously shown Algorithm 3 is rather space consuming. At its peak the al-
gorithm needs to allocate six integer arrays (SA, LPF, prev, next, LPF and PrevOcc)
of size n, therefore Crochemore et al. [14] proposed Algorithm 4 where prev and next

are replaced by a stack, that requires at most O(
√
n) additional space. Chrochemore

Algorithm 4: Compute LPF of S with SA and LCP [14]
Data: SA[0..n) and LCP[0..n) of S
Result: LPF[0..n) of S

1 emptyStack(S);
2 for r ← 0 to n− 1 do
3 lcpr ← LCP[r];
4 while notEmpty(S) do
5 (t, lcpt)← top(S);
6 if SA[r] < SA[t] then
7 LPF[SA[t]]← max(lcpt, lcpr);
8 lcpt ← min(lcpt, lcpr);
9 pop(S);

10 else if (SA[r] > SA[t]) and (r − lcp ≤ t− lcp) then
11 LPF[SA[t]]← lcpt;
12 pop(S);
13 else
14 break ;

15 push(S, (r, lcpr));

et al. [14] introduced a graphical representation for the suffix array, to better explain the
computation of LPF from SA and LCP. Here the x-axis represents the ranks of suffixes in
the suffix array i and the y-axis represents their positions SA[i]. Suffixes are plotted in lex-
icographic order by their position (SA[i] for the i-th ranked suffix) and consecutive nodes

7

3 Related Work

rank

po
si
ti
on

11

9

0

2

4

10

8

1

3

7

6

5

1

3

4

2

0

2

4

3

1

2

3

0

i S[i] S[i..] LPF[i] PrevOcc[i] SA[i] LCP[i] prev[i] next[i]

0 a abababbbbaba 0 −1 11 0 −1 1
1 b bababbbbaba 0 −1 9 1 −1 2
2 a ababbbbaba 4 0 0 3 −1 −1
3 b babbbbaba 3 1 2 4 2 7
4 a abbbbaba 2 2 4 2 3 7
5 b bbbbaba 1 3 10 0 4 6
6 b bbbaba 3 5 8 2 4 7
7 b bbaba 2 6 1 4 2 −1
8 b baba 4 1 3 3 7 −1
9 a aba 3 0 7 1 8 10
10 b ba 2 8 6 2 8 11
11 a a 1 9 5 3 8 −1

Figure 3.1: Solid edges form the graph representing the SA and LCP for the string
abababbbbaba. The dotted edge between 4 and 8 hint at the conceptual trans-
formation that takes place after processing the peak 10. Afterward, SA, LCP,
LPF, PrevOcc, prev and next for abababbbbaba.

8

3.2 LPF-Array

with ranks i, j = i+1 are connected with a solid edge labeled with LCP[j]. The graphical
representation of S = abababbbbaba is shown in Figure 3.1. Algorithm 4 relies on the
observation that, if a position SA[r] at rank r is a “peak” in the graphical representation,
we get LPF[SA[r]] = max(LPF[r], LPF[r+ 1]) (similar to Lemma 3.2.2) and in the longest
common prefix between the position at rank r − 1 and r + 1 is min(LPF[r], LPF[r + 1])
[14]. These “peaks” are considered first.

For example, “peak” node 10 (rank r = 5) and the adjacent nodes 4 and 8 with
solid edges labeled 0 and 2 respectively. For “peaks” these adjacent nodes are also the
previous and next smallest values in SA. We apply the observation and set LPF[10] set
2 = max(0, 2). We can now also conclude that the longest common prefix between 4
and 8 is 0 = min(LPF[5], LPF[6] (dotted edge labeled 0 between 4 and 8 in the graphical
representation). In other words because the adjacent suffixes S[4..] and S[10..] have a
longest common prefix of length 0, all suffixes with a higher rank than S[10..] also have a
longest common prefix of length 0 with S[4..] and suffixes of lower rank than S[4..]. We
could now proceed and determine LPF[8] with 8 being a “peak” between 4 and 1.

Algorithm 4 considers the nodes by rank (left to right in the graph) and stores non-
peak nodes in the stack S. Whenever we encounter a node with a smaller position than
the top of S, we can process and pop the top of S. All nodes with a higher position to the
left of the top of S are already processed, and we can consider the top of S a “peak”. For
example, 4 has to wait until 10 and 8 are processed. We store a pair (t, lcpt) on the stack
S, containing the position t of a node and the longest common prefix between the S[t..]
and the suffix, corresponding to the element right below on the stack S. Algorithm 4 also
implements an optimization, where for a suffix of rank r with LCP[r] ≥ LCP[r + 1], no
position to right can provide a larger LCP value, and therefore we get LCP[SA[r]] = LCP[r].

We simplify the algorithm by extending SA to rank n and initialize SA[n] = −1
and LCP[n] = 0. To increase readability, we exclude calculating PrevOcc. This can
be done by adding another if-clause after assigning a new value to LPF[SA[t]] where set
PrevOcc[SA[t]] to −1 if LPF[SA[t]] is 0, PrevOcc[SA[t]] to t when lcpt > lcpr and too
SA[r] otherwise.

3.2.2 Practical CRCW PRAM Parallel Construction

Shun and Zhao [49] proposed a linear-work parallel algorithm for LZ-factorization on
the CRCW PRAM. The algorithm is based on the sequential algorithm Algorithm 1 by
Crochemore and Ilie [13], which requires the LPF array. To calculate the LPF-array
Shun and Zhao [49] parallelize Algorithm 3. With the algorithm by Kärkkäinen and
Sanders [29] both, the SA and LCP, can be calculated in parallel using O(n) work and
O(log 2n) time. Berkman et al. [8] show that ANSV can be computed in O(n) work and
O(log log n) time on the CRCW PRAM.

Afterwards, we apply Lemma 3.2.2 and compute the LPF values using range minima
queries. Range minima queries take O(1) time and O(1) work and need O(n) work and
O(log n) time for preprocessing. Shun and Zhao [49] show that performing the n queries
in parallel takes O(n) work and O(1) time. In conclusion, we can compute the LPF-array
in O(n) work and O(log 2n) time on the CRCW PRAM.

A parallelized Algorithm 1 can then compute the LZ-factorization in O(n) work and
O(log n) [16] using a parallel leaffix algorithm and a prefix sum [27]. In their experi-

9

3 Related Work

ments, Shun and Zhao [49] observed a speedup between 6.7 and 21.2 on 40 cores com-
pared to a single core.

3.3 Block Tree

Belazzougui et al. [7] introduced the block tree, a data structure, that represents a string
S[0..) inO(z log (n/z) log (n)) space with z being the number of Lempel-Ziv phrases (see
Section 3.1). Unlike a Lempel-Ziv factorization, block trees allow access to any symbol
of S in O(log (n/z)) time. Furthermore, block trees support rank and select queries.

Let S[0..n) be over the alphabet [0..σ), and τ and s be integers greater than 1. To
simplify edges cases, we assume n := s · τh for some integer h. For other strings with
a different length, we round their length up by appending dummy characters $ until the
string is of length s · τh for some integer h. Belazzougui et al. [7] define the block tree
as a perfectly balanced tree of height h, which may have leaves at higher levels. The root
has s children, and every other internal node has τ children.

Each node u represents a substring of S with a position in S, called a “block” Bu.
The root represents S and has s children representing s consecutive blocks, of length
ℓ := n/s, that concatenated make up S. We refer to all blocks with the same depth as a
block tree level. For example, B0, B1...Bs−1 is the block tree level of depth 0. Two nodes
are considered consecutive if they are in the same block tree level and if the substrings
they represent are consecutive in S. Let Bi · Bi+1 be the concatenated substrings of two
consecutive blocks. Non-root nodes that are not in the last level represent one of two block
types, either marked blocks: internal blocks with τ children in the next level or unmarked
blocks: a leaf with a leftwards pointer. Note that sometimes, we will refer indistinctly to
the node and the block represented by that node.

Definition 2. (marked blocks) For any i, two consecutive blocks Bi, Bi+1 are marked if
Bi ·Bi+1 contains the leftmost occurrence of any substring of S.

All marked blocks Bv are internal blocks, which have τ children. These children represent
the consecutive blocks of length |Bv|/τ that concatenated make up the content of Bv. On
the other hand, the unmarked blocks Bu are now leaves and instead of having children
in the next level, we store a pointer towards the pair of consecutive blocks Bi · Bi+1

containing the leftmost occurrence of Bu and the offset of that occurrence in Bi ·Bi+1.

If the block length becomes small enough that storing the content explicitly takes less
space than storing the leftwards pointer for an unmarked block, we reach the last level
and store each block explicitly. For example, we store blocks once |Bu| ∈ Θ(logσ n)
and hence Bu can be encoded in O(n) bits. The length decreases by a factor of τ each
level. Therefore, the block length of blocks Bu in level ℓu is |Bu| = n/(sτ ℓu−1). If we
take the constant 1 for simplicity, leaves store exactly log n bits and the height of the
block tree is h = logτ

n log σ
s logn

[7]. Note that, we can decrease the height h by increasing s

and thereby adding O(s) words of extra space. Decreasing the height h allows for time-
space-tradeoffs, because the time complexities of rank, select and access are proportional
to h (see Section 3.3.1). Figure 3.2 shows an example of a block tree introduced by
Belazzougui et al. [7].

10

3.3 Block Tree

N N B O B O T W N N B O B I O O T B S H T F N E B O B O T W N E B O B O T W N E B O B I O O T B S H T F N S B O B O T W

NNBO

NN BO

N N B O

BOTW

BO TW

B O T W

NNBO

NN BO

N N B O

BIOO

BI OO

B I O O

TBSH

TB SH

T B S H

TFNE

TF NE

T F N E

BOBO

BO BO

B O

TWNE

TW NE

T F N E

BOBO

BO BO

TWNE

TW NE

BOBI

BO BI

OOTB SHTF

SH TF

T F

NSBO

NS BO

N S B O

BOTW

BO TW

♢

♢

♢

♢

♢

Figure 3.2: Block tree for the example string S introduced by Belazzougui et al. [7] with
s = 15, τ = 2 and a last level leaf size of 1. Nodes/Blocks are represented
as boxes, solid edges are pointers from marked blocks towards their children.
Dashed edges are leftwards pointer from unmarked blocks towards the pair
of blocks containing its leftmost occurrence, which is highlighted by a thick
line above the pair. The process of an exemplary access query on S[46] is
illustrated by decorating the T symbols visited during the query with a ⋄.
Note that, the third block NNBO in the first level is marked although NNBO
already appears in S. This due to that both TWNN in B1 · B2 and BOBI in
B2 ·B3 do not have an earlier occurrence.

Belazzougui et al. [7] relate the size of the block tree to the Lempel-Ziv factorization
of S by proofing the following properties.

Lemma 3.3.1. The number of blocks in any level of the block tree (except the first) is at
most 3zτ .

Proof. To show this property, Belazzougui et al. [7] argued that for any level ℓ but the
first, a concatenation of three consecutive blocks Bi−1 ·Bi ·Bi+1 in level ℓ− 1, that does
not contain any Lempel-Ziv phrase boundary is part of a substring that occurs at least
twice rightwards in S (see Section 3.1). Thus, Bi−1 ·Bi ·Bi+1 has a leftwards occurrence
in S and none of Bi−1 · Bi and Bi · Bi+1 will be marked. Therefore, Bi is unmarked.
In conclusion, we only mark Bi−1 · Bi · Bi+1, whenever a phrase boundary falls into Bi.
Since the Lempel-Ziv factorization has z phrases, there are at most z such blocks. Hence,
we mark at most 3z blocks in level ℓ−1. Each marked block creates τ children in ℓ. Thus,
level ℓ has at most 3zτ blocks.

Theorem 3.3.2. Given a string S of length n over on alphabet of size σ and integers
s, τ > 1, a block tree of S requires O((s + zτ logτ

n log σ
s logn

) log n) bits of space, where z is
the number of phrases in the Lempel-Ziv factorization of S.

Proof. With Lemma 3.3.1, there areO(zτ) blocks per level. All unmarked blocks (leaves
not on the last level) require O(log n) bits of space per block for the leftwards pointer.
Marked blocks require O(τ log n) for the τ pointers towards their children, but we can
charge that to the children itself. The last level containsO(zτ) blocks each storing explicit
text that is, logσ n symbols of log σ each, totalingO(log n) bits per block. Hence, we need
O(s) pointers to the top-level blocks and O(zτ) pointers in each of the logτ

n log σ
s logn

other
levels. Note that, if zτ > n the block tree uses Ω(n log n) bits, and it is better to store S
in plain text as we know it will not compress.

11

3 Related Work

Bu

Bj Bj+1

Bu.rankc(d)

Bj.rankc(g)

Bu

Figure 3.3: To convert a rank query on an unmarked block Bu into a rank query on one of
the consecutive marked blocks Bj and Bj+1 that contain the first occurrence
of Bu in the string S at g + 1, we can store Bi.rankc(g) in Bu and use the
pre-computed samples pre(c) to infer Bu.rankc(d). Visualization taken from
Belazzougui et al. [7].

We retain the asymptotic space complexity for s = z, where the block tree is of
height logτ

n log σ
z logn

, leading to O(zτ logτ (n log σ
z logn

) log n) bits of space. Furthermore, us-
ing a constant value for τ yields minimum space O(z log (n log σ

z logn
)) ⊆ O(z log (n/z))

(measured in Θ(log n)-bit words) and a logarithmic number of levels O(log (n log σ
z logn

)) ⊆
O(log (n/z)) [7].

3.3.1 Queries

Belazzougui et al. [7] introduced the following efficient access, rank and select queries.
Block trees can answer access queries in O(log τ

n log σ
s logn

) time. To access S[i], we traverse
from root to bottom level, by descending into the child containing S[i]. If we reach a
leaf Bu that does not store its block explicitly, we follow the leftwards pointer towards
Bj ·Bj+1, while considering the offset of S[i] in Bu. In O(1) we can identify a character
in S[i′] in Bj · Bj+1 with S[i′] = S[i]. We then continue to descend into the child con-
taining S[i′]. When we reach a leaf that stores its contents explicitly, we can return S[i]
immediately. As we can traverse leftwards pointers only once per level, we return S[i] in
O(log τ

n log σ
s logn

) time, proportional to the height of the block tree.

To support efficient rank queries, it is necessary to store additional information. We
store, for each unique character c, the number Bv.pre(c) of occurrence of c in the prefix
of S preceding each block Bv. This requires O(σ(s + zτ logτ (

n log σ
s logn

)) log n) bits of
space. These samples allow us to translate a rank query S.rankc(i) into a rank query
on a corresponding block. If S[i] is contained at position j in Bu, then S.rankc(i) =
Bv.pre(c) + Bv.rankc(j). Therefore, we can turn a rank query on a marked block into a
rank query on one of its children inO(1) time. Similar to access queries, we can translate
a query on an unmarked Bu, with a leftwards pointer towards Bj ·Bj+1 and Bu starting at
position g+1 in Bj , into a rank query on one of Bj and Bj+1. To implement efficient rank
queries, it is necessary to store for each unmarked block Bu and each unique character c
Bj.rankc(g), the number of occurrences of c in the prefix of Bj preceding the occurrence
of Bu. As can be seen in Figure 3.3 [7].

Furthermore, let d = |Bj|−g be the length of the prefix of Bu overlapping with Bj . As
the number of cs in Bj is Bj+1.pre(c)−Bj.pre(c), the number of cs in Bu[0..d) = Bj[g+
1..] is Bu.rankc(d) = Bj+1.pre(c)− Bj.pre(c)− Bj+1.rankc(g). If we transform into a
query on Bj , i ≤ d holds and Bu.rankc(i) = Bu.rankc(d)+Bj+1.rankc(i−d), otherwise

12

3.3 Block Tree

we transform into a query on Bj+1 and Bu.rankc(i) = Bj.rankc(g + i) − Bj.rankc(g).
Finally, a binary rank data structure [11, 41], for the concatenation of the strings stored
explicitly in leaves, answers rank queries on these leaves in O(1) time and O(zτ logσ n)
bits space. Hence, rank queries on S take O(log τ

n log σ
s logn

) time [7].

Efficient select queries require additional predecessor data structures on the rank sam-
ples Bv.pre(c). We add predecessor data structures for all s top-level blocks, which yield
a top-level block Bv. This lets us translate the select query S.selectc(j) onto Bv with
S.selectc(j) = i − 1 + Bv.selectc(j − Bv.pre(c). Similar predecessor structures are
stored for the ranks sample {Bvi .pre(c) | i ∈ [0, τ)} of the τ children of each marked
block Bv. These predecessor structures translate select queries on Bv to the correct child
in the same way. Turning select queries on an unmarked block Bu into a select query on
Bi and Bi+1 can be done with the information stored for rank queries. If we want to select
a position in Bu that overlaps with Bi then j ≤ Bu.rankc(d) holds and Bu.selectc(j) =
Bi.selectc(j + Bi.rankc(g)) − g, else we select a position in Bu overlapping with Bi+1

and then j > Bu.rankc(d) holds and Bu.selectc(j) = Bi+1.selectc(j−Bu.rankc(d))−d.
For the last level a constant time select data structure [11, 42], for the concatenation of
explicitly in leaves stored strings, answers select queries on these leaves inO(1) time and
O(zτ logσ n) bits space. Predecessor structure allow for time-space-tradeoffs [6]. For
constant τ , predecessor queries on internal nodes take O(1) time, therefore for the struc-
ture usesO(σz log (n/z)) space and supports rank and select queries inO(log (n/z)) time
[7].

3.3.2 Construction

The core construction strategy proposed by Belazzougui et al. [7] is shown in Algorithm 5.
The first step is to partition S into s blocks of length n/s. Then, with a single pass over
S, all blocks are marked. Next, with a second pass, the leftwards pointers for unmarked
blocks are set. Afterwards, the next level is created by generating τ children for each
marked blocks. The successive passes for each further level decreases the block length by
a factor of τ . This reduces the number of string positions still contained inside of blocks,
geometrically, with each level. We terminate when the maximum string leaf size m is
reached, and we store the last level blocks explicitly. The text necessary to process in each
level geometrically decreases because per Lemma 3.3.1, there are at most 3zτ blocks per
level and the block size decreases by a factor of τ each level. Finally, Belazzougui et al.
[7] proposed a post-processing space optimization, where unnecessarily marked blocks
are removed.

Belazzougui et al. [7] proposed both a worst-case-time and an expected time construction
strategies that achieve O(n) construction time when s = Θ(z).

Worst-case-time construction using O(n) working space. We follow Algo-
rithm 5 and first partition S into s blocks B0, ..., Bs−1 of length n/s.

Identifying marked blocks is split into three parts. First, we create in O(n) time
and space an Aho-Corasick automaton [1] that recognizes all s − 1 consecutive pairs
B0 ·B1, B1 ·B2...Bs−2 ·Bs−1 in the first level. Aho-Corasick automata allow us to search
for all pairs at the same time in O(1) amortized time per scanned symbol [1]. Next,
we initialize a counter for each block Bi to zero. Afterwards, we traverse S with the

13

3 Related Work

Algorithm 5: Block Tree Construction Scheme [7]
Data: String: S[0..n− 1], inital level size: s, maximum string leaf size: m, arity: τ
Require: n = s · τh for some integer h, m = logσ n

1 ℓ← n/s;
2 L := {B0, B1...Bs−1} = partition(S, s);
3 while ℓ > m do
4 markLevel(L, S, ℓ);
5 setPointers(L);
6 ℓ← ℓ/τ ;
7 generateNextLevel(L, S);

8 storeStringLeaves(L, S);

automaton. If the automaton recognizes a pair Bi · Bi+1 for the first time, we increment
the counter for both Bi and Bi+1 by one. Finally, we iterate over B0, ..., Bs−1 once more
and all blocks Bi with a counter equal to 2 are unmarked, because both Bi−1 · Bi and
Bi · Bi+1 have an earlier occurrence in S. In addition, we mark Bs−1 if the associated
counter is set to one.

To set the leftwards pointer for unmarked blocks, we first destroy the first Aho-
Corasick automaton and create a new one that recognizes all unmarked blocks Bu. Next
we traverse S with the automaton again. If the automaton recognizes an unmarked block
in a block Bi for the first time, set the leftwards pointer for Bu towards Bi. In addition, we
store in Bu the offset g where the occurrence of Bu starts within Bi. If g > 0 we also set a
leftwards pointer for Bu towards Bi+1. Because Bi and Bi+1 contain the first occurrence
of the string Bu, they must also be the leftmost occurrence of Bi ·Bi+1. Therefore, Bi and
Bi+1 are both marked. Next, we delete the second Aho-Corasick automaton again and
move on to the second level.

Each marked block is split into τ children, all of size n/(sτ) and repeat the process
until we reach the last level, with blocks of length logσ(n), where we store the text cor-
responding to each block explicitly. In the following levels, we build the automaton only
considering the existing blocks in the level. Blocks Bi that are surrounded by two blocks
and therefore form two consecutive pairs Bi−1 ·Bi and Bi ·Bi+1, need to reach a counter
of 2 to be unmarked. Other blocks only require a counter value of one to be unmarked.

Theorem 3.3.3. Given any string S[0..n− 1] of a constant alphabet of size σ, the time to
build a block tree with integer parameters s and τ is O(n(1 + logτ (z/s))).

Proof. To analyze the construction time complexity, Belazzougui et al. [7] argued the
following. The top-level blocks are of length n/s. If s < 3zτ , then after level ℓ =
1 + ⌈logτ3z/s⌉ the block lengths are below n/(3zτ). Up to level ℓ, the lengths of the
existing blocks may add up to n per level, but after level ℓ, since there exist at most
3zτ blocks per level (Lemma 3.3.1) and their lengths decrease exponentially, the sum of
all the existing block lengths is O(n). Therefore, the total sum of all block lengths is
O(n(1 + log τ(z/s))). Because each symbol is processed in constant amortized time, the
total process requiresO(n(1+log τ(z/s))) time andO(n) working space. In addition, we
must take the time required to generate the block tree into account. This adds up toO(s+
zτ logτ

n log σ
s logn

) ⊆ O(n + zτ logτ (n/s)), being O(n(1 + logτ (zτ/s))) for compressing
block trees with zτ = O(n) (Theorem 3.3.2).

14

3.3 Block Tree

With, s = z we can build the block tree in O(n) by determining z by calculating the
Lempel-Ziv factorizaton for S. This take O(n) time and space [46].

Expected-time construction with O(s+ zτ) working space. The Aho-Corasick
automata require O(n) working space, which may be too much on very long strings.
Replacing the Aho-Corasick automata by searching with Rabin-Karp fingerprints [31] re-
duces the space required to O(s + zτ). Instead of building the automata, we store the
Rabin-Karp fingerprints of all consecutive pairs of blocks Bi · Bi+1 in a hash table. Af-
terwards, we traverse S with a sliding window Rabin-Karp scan with a window size of
|Bi · Bi+1|, computing the fingerprints of all the windows each in constant time. Further-
more, it is necessary to verify the strings with matching fingerprints are actually equal, but
with high probability (that is, with probability 1−O(n−c) for any constant c) the strings
match and a matching block is never verified again, because we have already found its
leftmost occurrence. Similarly, in the next step, we find the leftmost occurrences for un-
marked blocks using the Rabin-Karp fingerprints of all unmarked blocks. Thus, we spend
O(n) time scanning and O(n) expected time for hashing and verification at each level.
When using the right hashing scheme, the expected time becomes O(n) w.h.p [52].

In conclusion, the working space per level is now proportional to the number of blocks
in that level. Therefore, building the block tree requires O(s+ zτ).

Pruning. The structure we built meets the space requirements outlined in Lemma 3.3.1,
but it may contain more blocks than necessary. We mark the first instance of each pair
of consecutive blocks Bi · Bi+1 to ensure that any block Bu to their right in S within
them can point to them without having unmarked blocks pointing to unmarked blocks.
However, it is possible that no rightward block Bu points to these blocks and that either
or both of the blocks Bi · Bi+1 appear earlier in the sequence S. In this case, we could
replace them with leftward pointers, which would reduce the space needed. For example,
the last top-level block BOTW in Figure 3.2 meets the criteria and should be able to be set
as an unmarked block and have its children removed, with a leftward pointer set towards
the second top-level block instead.

To apply the pruning step, we make a modification to our construction and also per-
form a post-processing space optimization on the block tree once it has been built. Specif-
ically, when finding leftwards pointers, we include all blocks at the level, not just the
unmarked ones. We also record the leftmost occurrence of marked blocks found, even
though we have not yet replaced them. During post-processing, we traverse the block
tree in post-order, starting with the children in reverse order and ending with the parent.
All nodes have a counter value of zero at the beginning of the traversal. If we encounter
an unmarked block Bu that points leftward to blocks Bi · Bi+1, we increment the coun-
ters of Bi · Bi+1. If we reach a marked block with a zero counter and its children are
either unmarked or last-level leaves storing explicit strings, and its leftmost occurrence
in S does not overlap itself, we remove its children and make the block unmarked, cre-
ating a leftward pointer. The blocks pointed to by the removed children must then have
their counter incremented, and the counters of blocks pointed to by the removed children
must be decremented. The post-processing time is proportional to the block tree size
O(s+ zτ logτ

n log σ
s logn

) and therefore does not increase the asymptotic construction time.

To prune the last top-level block BOTW in Figure 3.2 we begin by initializing all
counters to zero and start with the last child of the root BOTW. We descend into its children

15

3 Related Work

N N B O B O T W N N B O B I O O T B S H T F N E B O B O T W N E B O B O T W N E B O B I O O T B S H T F N S B O B O T W

NNBO

NN BO

N N B O

BOTW

BO TW

T W

NNBO

NN BO

BIOO

BI OO

B I O O

TBSH

TB SH

T B S H

TFNE

TF NE

T F N E

BOBO TWNE

TW NE

BOBO TWNE BOBI OOTB SHTF NSBO

NS BO

N S

BOTW

Figure 3.4: Pruned block tree for the block tree in Figure 3.2

TW and BO in reverse order, as both children are leaves, we mark the blocks pointed to by
them. Afterwards we ascend back to BOTW. Here we notice that its counter is zero, both
of its children are unmarked, and the leftmost occurrence of BOTW is not overlapping.
Therefore, we can prune BOTW. We remove its children, decrease the pointers of the
blocks we just incremented again, unmark BOTW and set a leftwards pointer towards the
second block. Finally, we increase the counter of the second block to ensure that we later
do not prune the second block. The pruned block tree of Figure 3.2 is shown in Figure 3.4.

16

4 Concept

Recall that Belazzougui et al. [7] presented a level wise construction algorithm, that in
its core first identified all marked blocks and then identified the leftmost occurrence for
each unmarked blocks in a second pass. In this chapter, we first describe variants to
identify marked and unmarked blocks for each level. Then we present an approach to
calculate the leftmost occurrence for each block, and lastly we combine these approaches
to a complete block tree construction algorithm. For our approach to construct the block
tree for a string, S we rely on two well-researched data structures, the LPF-Array of S and
the corresponding PrevOcc-Array (see Section 3.2).

4.1 Marking Blocks

Recall that we mark two consecutive blocks Bi, Bi+1 if Bi · Bi+1 contains the leftmost
occurrence of any substring of S (Definition 2). Belazzougui et al. [7] showed that there
exists a link between marked blocks and LZ77-phrases, by proofing that there are at most
3z marked blocks in each level and three consecutive blocks Bi−1, Bi and Bi+1 are only
marked if a LZ77-phrase boundary falls into Bi.

4.1.1 Marking Blocks Using LZ77-phrases

The LPF-Array allows us to quickly calculate the LZ77-phrases of S, which leads to a

Algorithm 6: Mark blocks using LZ77-phrase boundaries
Data: LZ77-phrase boundaries of String S: P, blocks in level: B0, B1, ...Bs−1,

block length: ℓ.
Result: Marking for given block tree level

1 j ← 0;
2 for i← 0 to |P | do
3 while j < s− 1 and start(Bj+1) ≤ Pi do
4 j ← j + 1;

5 mark(Bj);
6 if consecutive(Bj−1, Bj) then
7 mark(Bj−1);

8 if consecutive(Bj , Bj+1) then
9 mark(Bj+1);

naive approach to calculate a set of markings that achieves the same theoretical space up-
per bound as the original block tree definition. Recall Lemma 3.3.1, stating that we only

17

4 Concept

mark the consecutive blocks Bi−1, Bi and Bi+1, if a LZ77-phrase boundary falls into the
sub-string of S represented by Bi. We can now simply calculate the LZ77-phrases bound-
aries once and apply this rule on all levels. We still only mark at most 3z blocks per level,
but we might mark more blocks than the marking algorithm presented by Belazzougui
et al. [7].

The algorithm to calculate the markings is shown in Algorithm 6. We assume that we
have stored the LZ77-phrase boundaries ordered by their position in S and also stored a
representation of the current block tree level ordered by the starting text position in S. In
an outer loop (lines 2 − 9) we iterate over all phrase boundaries and identify all blocks
that contain a phrase boundary. During each outer loop iteration, we first search for the
block Bj whose content contains the next phrase boundary (lines 3− 4). After that comes
the actual marking process (lines 5 − 9). We mark Bj and mark Bj−1 if Bj−1 · Bj are
consecutive and Bj+1 if Bj · Bj+1 are consecutive. As we mark at most 3z blocks per
level, each level, but the first, has at most 3τz blocks. Recall that the first level is split into
s blocks and hence for s < 3τz all levels have at most 3τz blocks.

Lemma 4.1.1. Algorithm 6 calculates a valid marking in O(zτ) time.

Proof. Although we now have two nested loops iterating both from 0 to z or up to 3τz
respectively, we increase each respective loop variable during each loop execution and
never decrease them. Therefore, we execute at most (3τ + 1)z loop iterations, with O(1)
work per iteration.

4.1.2 Marking Blocks With LPF-Array

Remember that for S, LPF[i] stores the longest previous factor of index i in S, in other
words the longest sub-string S[i..i + x) that already occurred in S starting before i has
length x := LPF[i] and especially all factors S[i..i+ ℓ) with ℓ > x have not occurred in S
before position i.

Algorithm 7: Mark blocks using LPF-Array
Data: LPF-Array of String S: LPF[0..n− 1], blocks in level: B0, B1, ...Bs−1, block

length: ℓ.
Result: Marking for given block tree level

1 mark(B0);
2 for i← 1 to s− 2 do
3 if consecutive(Bi−1, Bi, Bi+1) and (LPF[start(Bi−1)] < 2 · ℓ or

LPF[start(Bi)] < 2 · ℓ) then
4 mark(Bi);

5 if s > 0 and consecutive(Bs−2, Bs−1) and LPF[start(Bs−2)] < 2 · ℓ then
6 mark(Bs−1);

Lemma 4.1.2. (Marking with LPF-Array) Given the LPF-array we can mark a block tree
level faithful to the theoretical proposal inO(zτ) time. Recall that a block Bu is unmarked
exactly when the sub-strings in S related to both Bu−1 ·Bu and Bu ·Bu+1 have an earlier
occurrence in S [7].

18

4.2 Identifying Leftmost Occurrences Using LPF- and PrevOcc-Array

Proof. It is possible to express this condition by considering the related LPF values. As-
sume we have a partition of blocks B0, ..., Bs−1 representing the first level for a block tree
of S[0..n) with a block length of ℓ := n/s and each block Bi representing the sub-string
S[i · ℓ..i · (ℓ + 1)) (short SBi

). In addition, we have calculated the LPF array for S. The
algorithm to decide which blocks are marked is outlined in Algorithm 7. We iterate once
over all blocks but the first and last block (lines 2−4). A block Bi is marked exactly when
the sub-strings represented by Bi−1 ·Bi and Bi ·Bi+1 are consecutive in S (this is always
true in the first level) and at least one of the LPF values for (i − 1) · l and i · l is smaller
than the combined length of the consecutive sub-strings SBi−1

· SBi
or SBi

· SBi+1
(or the

doubled length of SBi
as all sub-strings have the same length). This holds true as LPF

values smaller than 2 · ℓ implies that there is no former occurrences of either SBi−1
· SBi

or SBi
· SBi+1

in S and therefore it has to be marked (line 3). We always mark the first
block as its content can not occur previously in S (the first block of each level B0 always
represents the sub-string S[0..ℓ)). Finally, we mark the last block Bs−1 if the second to
last block Bs−2 and Bs−1 are consecutive and the LPF[(s− 2) · ℓ] is smaller than 2 · ℓ (line
5 and 6). As we have O(1) work during each loop execution, the total running time for
each marking pass is O(zτ).

We can now proceed to determine the first occurrence of each unmarked block and
repeat the process for the next level. Note that in all levels, but the first one, a block’s Bi

index i doesn’t necessarily translate to the related sub-string’s SBi
starting position. We

don’t know how many blocks have been unmarked to its parents left in the previous level
and don’t spawn child blocks in the next level. Therefore, We need to store additional
information regarding a block’s contents starting position in S. For S := AABAAAAAAA
Figure 4.1 shows the block tree and the LPF-Array of S. Let us take the third child of the
root B2 and consider why it is marked and creates 2 children in the next level. First, all
blocks on the first level are consecutive, so the condition regarding B1, B2 and B3 being
consecutive is met. Next, we take a look at the LPF-values of the starting positions of B1

and B2. LPF[2] is 0 and LPF[4] is 6, with LPF[2] = 0 < 4 being smaller than the pair size 4.
Therefore, B2 has to be marked, as the pair B1 ·B2 contains the leftmost occurrence of at
least one sub-string in S, for example the leftmost occurrence of B or BA. The next block
B3 on the other hand, although it represents the same text AA, can be unmarked as both
LPF[4] = 6 ≥ 4 and LPF[6] = 4 ≥ 4 are not smaller than the pair size 4. Consequently,
all sub-strings contained in B2 · B3 = B3 · B4 := AAAA have an earlier occurrence, not
contained by B2 ·B3 in S. Note that the leftmost occurrence of AAAA overlaps into B2 ·B3,
but is not contained by, it.

4.2 Identifying Leftmost Occurrences Using LPF-
and PrevOcc-Array

After identifying which blocks in a given block tree level are unmarked, it is necessary to
find the leftmost occurrences of the content of each unmarked block in S. In the following
section, we first present the general idea behind our identification approach and then add
modifications, which allows us to give run-time guarantees. On a higher level, we will
first find the leftmost occurrences for each unmarked block as a text position in S, then
we will link these text positions to the marked block in the current block tree level.

19

4 Concept

A A B A A A A A A A

AA AAAAAA BA

A A B A A A

i S[i] S[i..] LPF[i] PrevOcc[i] FirstOcc2[i]

0 A AABAAAAAAA 0 -1 -1
1 A ABAAAAAAA 1 0 0
2 B BAAAAAAA 0 -1 -1
3 A AAAAAAA 2 0 0
4 A AAAAAA 6 3 0
5 A AAAAA 5 4 0
6 A AAAA 4 5 0
7 A AAA 3 6 0
8 A AA 2 7 0
9 A A 1 8 0

Figure 4.1: LPF, PrevOcc and FirstOcc2 and the block tree for the string
AABAAAAAAA, with s = 5, τ = 2 and leaves of size 1. LPF-values are
drawn as solid lines above text, pointers to previous occurrence are drawn as
a solid edge and pointers in FirstOcc2 are drawn as dashed edges above the
text.

20

4.2 Identifying Leftmost Occurrences Using LPF- and PrevOcc-Array

Leftmost Occurrence as Text Position

Recall that for S, LPF[i] stores the longest previous factor of index i in S and the corre-
sponding PrevOcc-Array stores a starting position of the longest previous factor in S. We
have the following observations on S, LPF and PrevOcc. Consider positions i, j in S with
j := PrevOcc[i]. If LPF[j] is at least LPF[i], then the longest previous factor of i is a prefix
of the longest previous factor of j and therefore said prefix is a previous occurrence of the
longest previous factor of i, which is also to the left of the initial previous occurrence
pointed to in PrevOcc[i].

Lemma 4.2.1. (transitive previous occurrence) Let i, p := PrevOcc[i] be positions in S,
if 0 < LPF[i] ≤ LPF[p]. Then: S[i..i+ LPF[i]) = S[p..p+ LPF[i]) = S[f..f + LPF[i]) with
f := PrevOcc[p].

Proof. LPF[i] is defined as max{k|S[i..i + k) occurs at a position j < i} and PrevOcc

gives a previous position j. Hence, from 0 < LPF[i]: S[i..i + LPF[i]) = S[p..p + LPF[i])
and from 0 < LPF[p]: S[p..p + LPF[p]) = S[f..f + LPF[p]) with LPF[i] ≤ LPF[p] follows
especially S[p..p+LPF[i]) = S[f..f+LPF[i]) and with S[i..i+LPF[i]) = S[p..p+LPF[i])
follows S[i..i+ LPF[i]) = S[p..p+ LPF[i]) = S[f..f + LPF[i]).

Consider the example string AABAAAAAAA shown in Figure 4.1. Above the block
tree, we visualized the lpf-values and the previous occurrences by drawing a solid black
line above the longest previous factor for each text positon and a solid black edge pointing
to the previous occurrence. For the indices 7, 8 and 9 we have LPF[7] = 3, LPF[8] = 2
and LPF[9] = 1 and PrevOcc[7] = 6, PrevOcc[8] = 8 and PrevOcc[9] = 8. We can now
follow the solid edges and find out that a previous occurrence of S[9..] has also a previous
occurrence starting at 7.

Given a fixed factor length ℓ, in our case the current block length, we can conclude that
if ℓ is smaller or equal to LPF[i] the factor S[i..i+ ℓ) also occurs at position PrevOcc[i].

Lemma 4.2.2. (prefixes of longest previous factor) Let i, p := PrevOcc[i] be positions in
S. If 0 < ℓ ≤ LPF[i] then, S[i..i+ ℓ) = S[p..p+ ℓ).

Proof. LPF[i] is defined as max{k|S[i..i + k) occurs at a position j < i} and PrevOcc

gives a previous position j.Therefore, follows from 0 < LPF[i]: S[i..i+LPF[i]) = S[p..p+
LPF[i]) with ℓ ≤ LPF[i] follows S[i..i+ ℓ]) = S[p..p+ ℓ).

The naive algorithm to find the leftmost occurrence of a given unmarked block Bu

with content Su := S[i..i + ℓ) is shown in Algorithm 8. At first, we select the previous
occurrence pointed to in PrevOcc[i] := p. If the value stored at LPF[p] is also larger than
ℓ, we can conclude with Lemma 4.2.2 that Su has at least one more occurrence to the left
of position p as the factors S[p..p+ l) and S[f..f+ l) with f := PrevOcc[p] are both equal
to Su. We set p := f and repeat this until LPF[p] is smaller ℓ and therefore the longest
previous factor for p doesn’t have S[i..i+ ℓ) as prefix. In other words, we follow a chain
of longest previous factors until the next longest previous factor is smaller than ℓ which
means that Su is not a prefix of it, and we reached the leftmost occurrence of Su.

21

4 Concept

Algorithm 8: Naive scan to find the left most occurrence of S[i..i+ l)

Data: LPF-Array of String S: LPF[0..n− 1], PrevOcc-Array of LPF:
PrevOcc[0..n− 1], block length: ℓ, position: i.

Result: Leftmost occurrence of factor S[i..i+ l]: p.
p← i ;
while LPF[p] ≥ l do

p← PrevOcc[p];

Consider now the example string AABAAAAAAA and its LPF- and PrevOcc-Array
shown in Figure 4.1. In Section 4.1.1 we argued that the fourth child B3 (content of B3

starts at position 6 in S) in the first level has to be unmarked. It is easy to see, that its con-
tent AA first appears right at the beginning of S as S[0..1]. LPF[6] = 4 and PrevOcc[6] = 5
as the longest previous factor of S[6..] is AAAA located at S[5..8]. LPF[5] = 5 and
PrevOcc[5] = 4 as AAAAA is the longest previous factor of S[5..] at, S[4..8] which also
has a prefix of length 4 = LPF[6] that is another longest previous factor of our initial
position 6 but located to the left of the longest previous factor referenced in PrevOcc[6].
We can now repeat that process as long as we find another longest previous factor. In our
example, this leads to the following chain: 6→ 5→ 4→ 3→ 0.

This approach may lead to numerous loop iterations in Algorithm 9. As a worst case,
consider the "all-a-text" aaa...a of size n and the related LPF and PrevOcc arrays. Here
for all but the first string position LPF[i] will store n− i. Furthermore, with canonical LPF
construction algorithms (see Section 3.2) PrevOcc[i] will point to the nearest previous
occurrence. For an "all-a-text" this is i− 1. Hence, a chain would follow along every pre-
vious occurrence i−1, i−2, i−3...0 until it terminates at index 0, the leftmost occurrence
for factors in an "all-a-text".

We now propose an approach to precompute all necessary information to find the
leftmost occurrence for each unmarked block in a given block tree level.

Definition 3. For ℓ > 0 we use ℓ-factori to denote the prefix S[i..i+ l) of S[i..]

Definition 4. We use FirstOccℓ to denote the first occurrence array. FirstOccℓ is an
adaption of previous occurrence array where, FirstOccℓ[i] stores the leftmost starting
location of either ℓ-factori for S[i..] or an occurrence of the longest previous factor of i,
when 0 < LPF[i] < ℓ or −1 if LPF[i] = 0.

The Algorithm to compute FirstOccℓ with LPF and PrevOcc is shown in Algorithm 9
and is based on dynamic programming. For string positions i, p := PrevOcc[i] we con-
sider the following to two cases when computing the leftmost occurrence of ℓ-factori:

• Case 1 (Lines 3 − 4): LPF[i] ≥ ℓ and LPF[p] ≥ ℓ. From LPF[p] ≥ ℓ follows that
ℓ-factorp has an earlier occurrence and with Lemma 4.2.2 and LPF[i] ≥ ℓ, we can
conclude that the previous occurrence of ℓ-factorp is also an occurrence of ℓ-factori.
As we already calculated FirstOccℓ[p] during the p-th loop iteration, we now set
FirstOccℓ[i] to FirstOccℓ[p].

• Case 2 (Lines 5− 6): LPF[i] < ℓ or LPF[p] < ℓ. In this case, FirstOccℓ[i] is set to
p. If LPF[i] = 0 no factor of S[i..] has a previous occurrence, and therefore we set

22

4.2 Identifying Leftmost Occurrences Using LPF- and PrevOcc-Array

FirstOccℓ[i] to p = −1. For 0 < LPF[i] < ℓ we set FirstOccℓ[i] to p as it points
to a previous occurrence of the longest previous factor of i. Note that we still need
the LPF-array to interpret FirstOccℓ[i]. For LPF[i] ≥ ℓ but LPF[p] < ℓ we conclude
that ℓ-factori has an earlier occurrence at p but no occurrence further left. Hence,
we set FirstOccℓ[i] to p.

Note that, we can’t use dynamic programming for a more general FirstOcc for the
longest previous factors, because for a series of string positions i, p := PrevOcc[i] and
f := PrevOcc[p], LPF[i] ≤ LPF[p] and LPF[p] > LPF[f] doesn’t imply LPF[i] < LPF[f].
Therefore, the longest previous factor of i can still have an occurrence to the left of p. In
other words, S[p..] and S[f..] might have a common prefix equal to the longest previous
factor of i. Even if the longest previous factor of p is not a prefix of S[f..].

Algorithm 9: Compute FirstOccℓ
Data: LPF-Array of String S: LPF[0..n− 1], PrevOcc for LPF: PrevOcc[0..n− 1],

current block length: ℓ.
Result: first occurrence array: FirstOccℓ[0..n− 1].

1 for i← 0 to n− 1 do
2 p← PrevOcc[i];
3 if LPF[i] ≥ ℓ and LPF[p] ≥ ℓ then
4 FirstOccℓ[i]← FirstOccℓ[p];

5 else
6 FirstOccℓ[i]← p;

Furthermore, it is possible to calculate FirstOccℓ0 with FirstOccℓ1 , for length ℓ1 ≥
ℓ0 as input instead of PrevOcc. Every occurrence of a ℓ1-factor contains the related
ℓ0-factor as a prefix, but still there might be an occurrence of ℓ0-factor further left, and the
necessary information is stored in FirstOccℓ1 . Recall that we also stored pointers to a
previous occurrence of the longest previous factor if the longest previous factor is shorter
than ℓ1. As it takes O(n) time to calculate, FirstOccℓ it is not feasible to calculate it for
each block tree level with block length ℓ.

But circling back to our problem of block tree construction, we can now use this
property to identify the leftmost occurrence for each block in a level wise approach. Recall
that by definition each pair of marked blocks contains the leftmost occurrence of at least
one sub-string of S and therefore also each leftmost occurrence of any sub-string with
length smaller or equal to the current level length ℓ is contained in a marked block. All
blocks in the current level (except for the first level), are the children of marked blocks
in the level before. Hence, all leftmost occurrence of each sub-string of a length equal to
the current block length falls into a block in our current level. The adapted algorithm to
calculate the leftmost occurrences for a block level is shown in Algorithm 10. Although
the leftmost occurrence of each sub-string falls into a block in our current level, we still
update all text positions contained int the previous block tree level. This is necessary
because we need to consider cases where the lpf-values are smaller than the last level
block size ℓ1 but bigger than the next level block size ℓ0 and ℓ0 ≤ LPF[i] < ℓ1 holds
for a string position i. Here FirstOccℓ1 [i] points to a previous occurrence of the longest
previous factor of i, this occurrence can be in an unmarked block as it is not necessary
the first occurrence of said longest previous factor. Hence, it is also necessary to update

23

4 Concept

FirstOcc∗ for string positions k in S that fall into an unmarked block in the previous
level (lines 1− 6). We will update FirstOcc∗[k] if one of two conditions is met (line 5).

• Condition 1: LPF[k] ≥ ℓ0 and LPF[p] ≥ ℓ0. With Lemma 4.2.2 we conclude that the
p := FirstOcc∗[k] and k share the same ℓ0-factor Therefore, the first occurrence
of ℓ0-factorp is also the first occurrence of ℓ0-factori, which we already calculated
in the p− th iteration.

• Condition 2: 0 < LPF[k] ≤ LPF[p]. If condition 2 is met but condition 1 is not,
we can differentiate between 2 cases. In any case, FirstOcc∗[k] stores a previous
occurrence of the longest previous factor of k.

1. LPF[k] < ℓ0 but LPF[p] ≥ ℓ0: With Lemma 4.2.1, Lemma 4.2.2 and condition
2 we can conclude that said longest previous factor is a prefix of ℓ0-factorp
and hence we can update the previous occurrence to FirstOcc∗[p], which,
with LPF[p] ≥ ℓ0, points to the leftmost occurrence of ℓ0-factorp and points
therefore into a marked block.

2. LPF[k] < ℓ0 and LPF[p] < ℓ0: With Lemma 4.2.1 and condition 2 we can
conclude that said longest previous factor has a previous occurrence at
FirstOcc∗[p] which still points into a marked block. Consider all previ-
ous occurrences of said longest previous factor of p0, p1, ..., p. FirstOcc∗[p]
then points to first occurrence p0, which is the first occurrence of a sub-string
smaller than ℓ0 and hence occurres in a marked block. Or for a previous oc-
currence pp, LPF[pp] ≥ ℓ0 and FirstOcc∗[p] points to the leftmost occurrence
of ℓ0-factorp and therefore also points into a marked block

If neither condition is met, k is either the leftmost occurrence for all factors smaller than
ℓ0 or FirstOcc∗[k] points to a first occurrence of a substring smaller than ℓ0 and hence
points into a marked block. Every level but the first level has at most 3zτ blocks, and for
each further level the block length decreases by a factor of τ . This reduces the number
of string positions still contained inside of blocks, geometrically, with each level (see
Section 4.3.1).

Again, consider the example string AABAAAAAAA and its FirstOcc2-array shown in
Figure 4.1. We draw the FirstOcc2 values above the block tree as dashed edges. Note
that, all suffixes starting with AA, now point directly to their first occurrence at 0.

Algorithm 10: Compute FirstOcc∗

Data: LPF-Array of String S: LPF[0..n− 1], FirstOcc∗ for LPF and ℓ1:
PrevOcc[0..n− 1], current level block length: ℓ0, previous level block
length: ℓ1 previous level number of blocks: s, previous block level :
B0, B1, ...Bs−1.

Result: updated first occurrence array for ℓ0: FirstOcc∗[0..n− 1].
1 for i← 0 to s− 1 do
2 for j ← 0 to ℓ1 − 1 do
3 k ←start(Bi)+ j;
4 p← FirstOcc∗[k];
5 if (LPF[k] ≥ ℓ and LPF[p] ≥ ℓ) or (p ̸= −1 and LPF[k] ≤ LPF[p]) then
6 FirstOcc∗[k]← FirstOcc∗[p];

24

4.3 Block Tree Construction

Leftmost Occurrence as Block

After updating FirstOcc∗ to store the leftmost occurrence for each string position in the
current block level B0, B−1..., it is still necessary to find the marked blocks covering the
leftmost occurrence of each unmarked block Bu.

Lemma 4.2.3. For compressing block trees with zτ = O(n), finding the blocks containing
the leftmost occurrences of unmarked blocks can be done with Algorithm 11 inO(zτ) time
and O(zτ(log (n) + log (zτ)) space.

Proof. Our algorithm to find the special pointers for unmarked blocks is shown in Algo-
rithm 11 and works as follows. The algorithm is split into three parts. We store for each
Bu a pair containing the left most occurrence of its content and its index in our block
level in a set U (lines 1 − 4). Then, we sort the set by each pair’s first element using
radix sort. This leads to a sorted list for all left most occurrences In (line 5). Finally,
we traverse both our block level and the ordered set U again, checking for a consecutive
pair of Blocks Bi · Bi+1 if the first undiscovered element in U (occj, j) is contained by
Bi · Bi+1 (lines 6 − 13). In case it is, we found the pair of marked blocks covering the
leftmost occurrence of the related unmarked block Bj and we store the special pointer to
the two consecutive blocks Bi · Bi+1 and the offset of the leftmost occurrence of inside
Bi ·Bi+1. The times/space complexities of radix sort areO(d(zτ + b)) time andO(n+ b)
space with d being the number of digits/passes and b being the possible values for a digit.
For compressing block trees, the with zτ = O(n), we set b = zτ and d = O(1) to get
a run/space complexity of O(zτ). Therefore, all steps can be done in O(zτ) time and
storing the set needs O(zτ(log (n) + log (zτ)) space.

Note that is also possible to determine the mapping between leftmost occurrence and
blocks for each unmarked block individually. For the first level, we can infer the block
directly by text position. For all other level, it is necessary to traverse the already built
block tree. In a sense, this mimics an access query, but we stop when we find a current
level block and an access query can be done in O(log τ

n log σ
s logn

) time (see Section 3.3.1).
This adds one additional factor in the height of the block tree for each unmarked block, and
calculating the mapping for all unmarked blocks in a level would take (zτ(log τ

n log σ
s logn

))
time.

4.3 Block Tree Construction

Now we can put all these building blocks together to form a block tree construction algo-
rithm for a string S, which is shown in Algorithm 12. We first calculate LPF-Array and
PrevOcc-Array for S. First we initialize FirstOcc∗ for ℓ = n/s using Algorithm 9 and
then partition S into s blocks of length ℓ (lines 1−3). Then, we then construct each block
tree level (lines 4−9). First, we identify all marked blocks (Algorithm 7). Then we set the
special pointers for all unmarked blocks (Algorithm 11). Finally, we update FirstOcc∗

for the next level and split all marked blocks into children blocks, all of size l/τ . We
repeat this process until we reach the final level, where the blocks are small enough to
store them explicitly.

25

4 Concept

Algorithm 11: Map occurrences in text to blocks
Data: FirstOcc∗-Array, current block length: ℓ, current number of blocks: s,

current block level : B0, B1, ...Bs−1.
Result: All unmarked blocks in our current block level are annotated with special

pointers towards their leftmost occurence.
1 U ← ∅ ;
2 for i← 0 to s− 1 do
3 if unmarked(Bi) then
4 U ∪ {(FirstOcc∗[start(Bi)], i)} ;

5 radixSort(U);
6 k ← 0;
7 for i← 0 to s− 1 do
8 (occj, j)← U [k] ;
9 while Bi.contains((occj, j)) do

10 Bj.f irstPointer ← Bi;
11 Bj.secondPointer ← Bi+1;
12 Bj.offset← occj−start(Bi);
13 k ← k + 1;

4.3.1 Complexity Analysis

Recall Theorem 3.3.3 where Belazzougui et al. [7] showed that for s = Θ(z) block trees
can be constructed in O(n) time and O(n) space. As our block tree construction algo-
rithm 12 follows the same principal procedure outlined in Algorithm 5 as the algorithms
proposed by Belazzougui et al. [7], we will show that it achieves the same time complexity
O(n) but has a worse asymptotic space complexity O(n log n).

Theorem 4.3.1. (Time/Space Complexities) Given any string S[0..n − 1] of a constant
alphabet of size σ, the time, and space complexities to build a block tree with integer
parameters s and τ with the algorithm shown in Algorithm 12 are O(n(1 + logτ (z/s)))
and O(n log n) bits, respectively.

Proof. Calculating LPF and PrevOcc take O(n) time and O(n log n) space. Initializing
FirstOcc∗ takes O(n) time. Recall that all but the first block tree level have at most 3zτ
blocks (Lemma 3.3.1) and that Belazzougui et al. [7] argued in Theorem 3.3.3, that with
s < 3zτ the sum of all the existing block lengths after level 1 + ⌊logτ 3z/s⌋ is O(n)
and therefore the total sum of all block lengths is O(n(1 + log τ(z/s)). As we update
FirstOcc∗ for each position included in a given block level in constant time, the process
requires O(n(1 + log τ(z/s)) time for all levels. Marking blocks, setting pointers for
unmarked blocks and generating the next level can be done in O(zτ) for each level. This
adds up toO(s+ zτ logτ

n log σ
s logn

) ⊆ O(n+ zτ logτ (n/s)), beingO(n(1+ logτ (zτ/s)) for
compressing block trees with zτ = O(n) (Theorem 3.3.2).

LPF, PrevOcc and FirstOcc∗ requireO(n log n) space. For compressing block trees
with zτ = O(n), the space to store the set during Algorithm 11 isO(zτ(log (n)+log (zτ))
and therefore subsumed by O(n log n).

26

4.4 Pruning

With the methods described in Algorithm 1 and Algorithm 3 we can determine z in
O(n) time and therefore build the block tree in O(n) time.

Algorithm 12: Block tree construction
Data: String: S[0..n− 1], LPF-Array for S: LPF[0..n− 1], PrevOcc-Array for S:

PrevOcc[0..n− 1], inital level size: s, maximum string leaf size: m, arity: τ
Require: n = s · τh for some integer h, m = logσ n

1 ℓ← n/s;
2 FirstOcc∗ =calculateFirstOcc(LPF, PrevOcc, ℓ);
3 L := {B0, B1...Bs−1} = partition(S, s);
4 while ℓ > m do
5 markLevel(L, LPF, ℓ);
6 setPointers(L, FirstOcc∗, LPF);
7 ℓ← ℓ/τ ;
8 updateFirstOcc(L, FirstOcc∗, LPF, ℓ);
9 generateNextLevel(L);

10 storeStringLeaves(L);

4.4 Pruning

We can modify our construction to carry out the post-processing space optimization de-
scribed in Section 3.3.2. Like, Belazzougui et al. [7] we will also collect leftmost occur-
rences for all blocks, not just unmarked ones. This can be achieved by simply removing
the if condition, where we only calculate leftmost occurrences for unmarked blocks (line
3), during the collection step (lines 2–4) in Algorithm 11. In addition, we need to ensure
that for each marked block that the leftmost occurrence doesn’t overlap itself. The actual
post-processing remains the same.

4.5 Greedy Heuristic

We present a greedy heuristic, that similar to the previous algorithms constructs a block
tree level wise. To identify leftmost occurrences, we utilize the concepts presented in
Section 4.2. In our greedy heuristic, we do without marking blocks. Instead, we will
create leaves as soon as possible. Blocks that don’t have a previous occurrence will be
considered as a marked block and generate children in the next level. The pseudocode
is shown in Algorithm 13. Similar to Algorithm 12, we begin by partitioning S into
s blocks of length ℓ := n/s and calculating FirstOccℓ to reduce the number of future
chain operations. For each level in the block tree for S we iterate over all blocks in reverse
order. For all unmarked blocks Bu, we try to find the leftmost occurrence of Bu’s content
with the idea presented in Algorithm 8 (line 9 - 22). Note that we need to ensure that the
leftmost occurrence doesn’t overlap with Bu (see Section 4.4). If the leftmost occurrence
doesn’t overlap with Bu, we look up the containing block Bb. This can be done with
Algorithm 11 for all blocks or with binary search on L, which reduces construction space,

27

4 Concept

but increases construction time to O(zτ log zτ). Different from all previous approaches,
we can’t assume that the leftmost occurrence is still represented in the current level L
and therefore have to check if the leftmost occurrence is contained by Bb · Bb+1 (line
15). If true, we can mark Bb, Bb+1 and set the special pointers for Bu. Note that we can
do without marking Bb+1 when the leftmost occurrence of Bu is at the start of Bb. If the
leftmost occurrence of an unmarked block doesn’t fulfill all conditions, we mark Bu (lines
21,23 and 24). Afterwards we generate the next level similar to all other approaches and
repeat until it takes less space to store the blocks as text.

Algorithm 13: Greedy Heuristic
Data: String: S[0..n− 1], LPF-Array for S: LPF[0..n− 1], PrevOcc-Array for S:

PrevOcc[0..n− 1], inital level size: s, maximum string leaf size: m, arity: τ
Require: n = s · τh for some integer h, m = logσ n

1 ℓ← n/s;
2 FirstOcc∗ =calculateFirstOcc(LPF, PrevOcc, ℓ);
3 L := {B0, B1...Bs−1} = partition(S, s);
4 while ℓ > m do
5 for i← |L| − 1 to 0 do
6 if unmarked(Bi) then
7 ind←start(Bi);
8 replaced← false;
9 while LPF[ind] ≥ ℓ do

10 p← FirstOcc∗[ind];
11 if overlaps(p, ind, ℓ) or p← LPF[p] ≥ ℓ then
12 ind← p;

13 else
14 b← binarySearch(p, L);
15 if consecutive(Bb, Bb+1) and Bb.contains(p) then
16 mark(Bb);
17 mark(Bb+1);
18 Bi.f irstPointer ← Bb;
19 Bi.secondPointer ← Bb+1;
20 Bi.offset← p−start(Bi);
21 replaced← true;
22 break;

23 if not replaced then
24 mark(Bi);

25 ℓ← ℓ/τ ;
26 generateNextLevel(L);

27 storeStringLeaves(L);

We show in Figure 4.2 an example block tree for S = ABCD1234ABCDEFDEDE12
where the greedy heuristic cannot link a block to its leftmost occurrence of a sample string
S = ABCD1234ABCDEFDEDE12. First we can view the third block ABCD in the first
level as an unmarked block. In the second level the leftmost occurrence of the seventh

28

4.5 Greedy Heuristic

A B C D 1 2 3 4 A B C D E F G H D E 1 2

ABCD 1234 ABCD

AB CD

EFGH DE12

A B C D

12 34

1 2 3 4

EF GH

E F G H

DE 12

D E

Figure 4.2: Block tree of ABCD1234ABCDEFDEDE12 constructed with the greedy
heuristic. Red underlined blocks highlight a leftmost occurrences, that is con-
tained an already replaced block.

block DE is found in the first level pair B2 ·B3 but B2 has no children in the second level
and hence we cannot consider DE as unmarked.

29

5 Implementation

In this chapter, we provide a quick overview for our implementation used in the experi-
mental evaluation. To allow comparisons between our implementation and the implemen-
tation provided by Belazzougui et al. [7] our implementation also has two parameters.
τ determining the number of children for each unmarked block and b, setting the block
size where we stop storing leftwards pointer and just store the content as text. First, we
explain how we represent the block tree in memory. Next, we show how to traverse the
block tree for rank, select and access queries. Then, we describe the depth first searches
we use to prune and add the additional fields required for rank/select queries. Afterwards,
we describe our block tree construction process. We also discuss the block tree variants
we implemented. Finally, we introduce a simple parallelization in sharded memory.

5.1 Data Structure for Block Trees

In their public implementation1, Belazzougui et al. [7] first constructed the block tree as
an object-oriented tree structure and later compressed it into a data structure consisting of
the following:

• A bit vector with rank support representing each block tree level. The i-th bit is set
if the i-th block in a block tree level is marked, and not set for unmarked blocks.
rank0-queries are used to find the leftmost occurrence for unmarked blocks, and
rank1-queries to traverse the block tree.

• The pointers towards the leftmost occurrences for unmarked blocks are stored in an
array.

• After reducing the alphabet, the last-level blocks are stored in an array.

• To answer rank and select queries for each unique symbol a in S additional infor-
mation is required. For all top-level blocks, Belazzougui et al. [7] create an array
storing the rank of a just before the block starts. For all other blocks B the number
of a-s in B’s parent before B starts is stored in level-wise arrays. In addition, for
unmarked blocks Bu Belazzougui et al. [7], store Bu.ranka(d) (see Section 3.3.1)
in level-wise arrays.

All arrays of integers use the minimum number of bits needed to store their maximum
value. We adapt this data structure in the following way. For unmarked blocks Bu with
a leftmost occurrence starting in Bi, we store two separate values, i and the starting po-
sition of the leftmost occurrence in Bi, instead of encoding them into one value. Initial
experiments indicated that reading two values is faster than reading one and performing

1https://github.com/elarielcl/BlockTrees

31

https://github.com/elarielcl/BlockTrees

5 Implementation

an expensive decoding step, including an integer division instruction. To support rank/s-
elect queries, we store for each block B the number of occurrences for each character in
the parent of B up to the end of B.

Traversing

To answer queries, it is necessary to traverse the block tree top to bottom, as well as find
the leftwards pointers for unmarked blocks. Let bvi be the bit vector representing the cur-
rent block tree level i, p a marked block in i and q an unmarked block in i.
To traverse into the children of p, we can perform a bvi.rank1(p) query on bvi and de-
termine the number of marked blocks before p. Each of this marked blocks creates τ
children in the next level. Therefore, there are τ · bvi.rank1(p) blocks in level i+1 before
the children of p. To load the leftwards pointer for the unmarked block q, we can perform
a bvi.rank0(p) query and determine the number of unmarked blocks before q. Afterwards,
we simply load the bvi.rank0(p)-th pointer and offset stored for i.

To add the information required for rank/select queries, we perform a post order depth
first search for each unique character a. Here, we count the occurrences of a in each string
leaf. For marked blocks Bm the amount of occurrences of a is the sum of the occurrences
of a for each child of Bm. As we traverse the block tree in post order unmarked blocks Bu

always point to blocks where we already determined the occurrences of a. Therefore, we
can calculate Bu.ranka(d), Bj.ranka(g) and Bj+1.ranka(g) with Bu pointing to Bj ·Bj+1

and Bu starting at offset g + 1. We do this by traversing downwards from Bj and Bj+1

again and adding up the number of a up to index g.

Although we do not build on top of a general succinct tree data structure (e.g., LOUDS
[26] or Balanced Parentheses [39]), we can still traverse through the block tree in the
required (reverse) post order. Recall that the block tree is a balanced tree where the root
has s children and all other internal nodes have τ children. To visit all nodes in post
order, we can iterate over the first level bit vector bv0 and visit each node. If bv0[p] = 1
indicates a marked block, we can determine the index of each child in bv1 with the rank1
query method outlined above and visit them recursively. When bv0[p] = 0 indicates
an unmarked block, we can follow the leftwards pointer to an already visited block and
calculate all required information.

For the reverse post order depth first search required for the pruning step, we simply
iterate in reverse over the top level. We also visit all children in reverse order.

Queries

We provide query implementations similar to Belazzougui et al. [7]. Therefore, access
queries take O(logτ (n/b) time. For ranka queries, we can answer all traversing steps
in constant time but store no rank/select information for leaves containing explicit text,
hence we have to count occurrence of a in such leaves. This results in ranka taking
O(logτ (n/b) + b) time. Like Belazzougui et al. [7] we implement select queries by
performing a binary search on the rank values of the top level, and performing sequential
search on the children. Therefore, select takes O(log s+ τ logτ (n/b) + b) time.

32

5.2 Sequential Implementation

5.2 Sequential Implementation

We construct the LPF- and PrevOcc-array based on Algorithm 4 by Crochemore and Ilie
[13]. The libsais2 library by Ilya Grebnov was used to construct the required suffix
array and longest common prefix array. Suffix array construction is based on the induced
sorting algorithm proposed by Nong et al. [43] and implements further optimizations [51]
and a sharded memory parallelization [53]. Longest common prefix array construction is
based on the ϕ-algorithm by Kärkkäinen et al. [30].

Different from Belazzougui et al. [7], we directly create the block tree data structure in
the compact data structure described in Section 5.1 and do not require an additional com-
pressing step. This is crucial as for less repetitive strings the temporary uncompressed
block tree becomes too large to fit in memory, even if the final compressed block tree is
small (See Section 6.1). We use the bit vector implementation3 by Kurpicz [35] (class
pasta::bit_vector with rank support pasta::RankSelect) and the compress-
ible integer vectors 4 by Gog et al. [22] (class sdsl::int_vector). Our block tree
implementation is publicly available at https://github.com/uqdwq/block_tree.

5.2.1 Block Tree Variants

For our experimental evaluation, we implemented the following block tree variants:

• LPF s = z DP: We set s to z, the number of LZ77-phrases, and perform the block
tree construction outlined in Algorithm 12 but use binary search instead of sorting
to map between text positions and blocks.

• LPF s = z: Similar to LPF s = z DP but instead of using the dynamic programming
approach outlined in Section 4.2, we update PrevOcc one time at start to precalcu-
late all universal chaining steps and then use the naive approach (Algorithm 8) to
find the leftmost occurrences.

• LPF s = 1: Like LPF s = z, but similar to the implementation by Belazzougui et al.
[7] we set s to 1.

• LPF pruned s = 1: LPF s = 1, but we apply the pruning step outlined in Sec-
tion 3.3.2.

• LPF pruned s = z: LPF s = z, but we apply the pruning step outlined in Sec-
tion 3.3.2.

• LPF pruned s = z DP: LPF s = z DP, but we apply the pruning step outlined in
Section 3.3.2.

• LPF heuristic s = z: The greedy heuristic outlined in Section 4.5 with s set to z.

• FP s = 1: Reimplementation of the Rabin-Karp fingerprint based approach pro-
posed by Belazzougui et al. [7] with s set to 1.

• FP s = z: Reimplementation of the Rabin-Karp fingerprint based approach proposed
by Belazzougui et al. [7] with s set to z.

2https://github.com/IlyaGrebnov/libsais
3https://github.com/pasta-toolbox/bit_vector
4https://github.com/simongog/sdsl-lite

33

https://github.com/uqdwq/block_tree
https://github.com/IlyaGrebnov/libsais
https://github.com/pasta-toolbox/bit_vector
https://github.com/simongog/sdsl-lite

5 Implementation

• FP pruned s = 1: FP s = 1, but we apply the pruning step outlined in Section 3.3.2.

• FP pruned s = z: FP s = z, but we apply the pruning step outlined in Section 3.3.2.

For all variants with s set to z we calculate z from the LPF array (See Algorithm 1).
In addition, we cut all top levels not containing an unmarked blocked. For strings with
length n ̸= s · τh for some integer h, we extend the string as described in the definition
(Section 3.3), but omit blocks that are made up only by dummy symbols, as they will
never be accessed.

5.3 Naive Parallelization

Initial experiments (see Figure 6.20) indicated that a significant portion of the time spent
constructing the block tree is dedicated to construct the LPF array and add the necessary
fields to support rank and select queries. Only a small amount of time is needed to actually
construct the block tree itself. This suggests that parallelizing the LPF array construction
as well as adding the fields required for rank/select queries can already speed up the block
tree construction significantly.

Therefore, we provided a simple sharded memory parallelization for both steps. We
parallelize LPF array construction based on the O(n) work and O(log 2n) time LZ77 fac-
torization algorithm5 by Shun and Zhao [49]. Here we use the sharded memory parallel
suffix array and longest common prefix array construction provided by libsais. To
provide rank/select support, we use a naive parallelization approach where we run a depth
first search for each unique character in parallel. This approach has a limited effect on
inputs with a small alphabet (e.g., DNA texts with up to 15 unique characters) or on ma-
chines with a high number of cores.

5Their implementation is available at https://github.com/zfy0701/Parallel-LZ77

34

https://github.com/zfy0701/Parallel-LZ77

6 Experiments

We experimentally compare the performance of our different block construction methods
with the known implementation by Belazzougui et al. [7], considering construction times,
block tree sizes and the answer times for rank, select and access queries. Finally, we
ran an initial experiment evaluation a naive parallelization for our block tree construction
attempt.

6.1 Setup

We conducted our experiments on an AMD EPYC Rome 7702P (64 cores/128 threads
with frequencies up to 3.35GHz and 256 MiB L3 Cache) and 1024 GiB DDR4 ECC
RAM running Ubuntu 20.04.2 LTS. We compiled the code with GCC 12.1 with the -O3
and -march=native flags enabled. As the Code evaluated in Section 6.2.1 is sequential,
only one core was used at a time. For the evaluation of the simple parallelization, the
programs were compiled with GCC 12.1 with the -O3, -march=native and -fopenmp flags
enabled.

During our evaluation, we collect the following data for each variant and parame-
ter configuration (τ , b): Block tree construction time (with/without rank/select support),
block tree size (with/without rank/select support) as well as the average answer time for
access, rank and select queries. To achieve this, we generate a 1.000.000 random text po-
sition. For access queries, we report the average answer time on these text positions. For
rank and select queries, we translate these text positions into a meaningful query based on
the relative frequency for each character. We first calculate the cumulative histogram C
for S. Afterward, we choose the character c associated with the bucket that contains each
random text position i. For rank queries, we use i and c as parameters. For select queries,
we use i−C[c−1] and c to create a valid select query. We calculate the block tree size by
adding up the size of all underlying data structures required for the respective query. The
reported times are the average of three runs (each with new queries, but we test the same
queries on all variants during each run).

Belazzougui et al. [7] evaluated their block tree implementation1 on the Repetitive
Corpus of the Pizza&Chili platform2. We reproduce the experiment on eight real texts
from the Repetitive Corpus and additionally evaluate block trees on four texts from the
standard (and less repetitive) Corpus of the Pizza&Chili platform3. Table 6.1 lists the texts
with basic statistics, including values measuring the Lempel-Ziv compressibility. A the-
oretical value, the Lempel-Ziv compression factor z logn

n log σ
[7] and a practical measurement

by measuring the compressibility using p7zip4.
1https://github.com/elarielcl/BlockTrees
2http://pizzachili.dcc.uchile.cl/repcorpus
3http://pizzachili.dcc.uchile.cl/texts.html
4https://p7zip.sourceforge.net/

35

https://github.com/elarielcl/BlockTrees
http://pizzachili.dcc.uchile.cl/repcorpus
http://pizzachili.dcc.uchile.cl/texts.html
https://p7zip.sourceforge.net/

6 Experiments

Collection n σ z z logn
n log σ

p7zip

cere 461286644 5 1700630 0.044 5.35%
para 429265758 5 2332657 0.064 6.05%
einstein.en.txt 467626544 139 89467 0.0007 0.10%
kernel 257961616 160 1446468 0.021 2.53%
coreutils 205281778 236 793915 0.013 11.75%
influenza 154808555 15 769286 0.033 1.69%
escherichia coli 112689515 15 2078512 0.121 7.76%
world leaders 46968181 89 175740 0.014 1.39%

sources 210866607 230 11598459 0.194 15.84%
pitches 55832855 133 5994276 0.391 25.89%
proteins 1184051855 27 80408252 0.430 31.30%
dna 403927746 16 25628189 0.453 22.79%
english 1610612736 239 97047354 0.233 26.11%
xml 296135874 97 9576081 0.138 12.74%

Table 6.1: The sequences we use, with their size n symbols (we use one byte per symbol),
their alphabet size σ, the number of Lempel-Ziv factors z (calculated with Al-
gorithm 1), a measure of compressibility z logn

n log σ
and the compression achieved

with p7zip (Version 16.02). Note that we do not use the whole english text,
but only a prefix.

We present graphs comparing the effects of different approaches and configurations.
To keep the graphs clear, we split the approaches in different categories and compare by
category:

1. Block trees, faithful to the theoretical proposal, therefore not including the pruning
step. This includes the following variants from Section 5.2.1:
LPF s = z, LPF s = z DP, LPF s = 1, FP s = 1 and FP s = z.

2. Pruned block trees. This includes the following variants from Section 5.2.1:
LPF pruned s = z, LPF pruned s = z DP, LPF pruned s = 1, FP s = 1, FP s = z,
LPF heuristic s = z and implementation by Belazzougui et al. [7].

We include the implementation by Belazzougui et al. [7] as a baseline into the graphs
of the first category, but we only discuss the performance in relation to our pruned block
tree implementations.

During our initial experiments, we noticed that the implementation by Belazzougui
et al. [7] uses large amount of memory when constructing the block tree for the less
repetitive sequences from the standard Pizza&Chili Corpus. We believe this is due to
their approach of first constructing the block tree as an object-oriented pointer-based graph
and later parsing into a compact data structure. This becomes especially apparent, when
we add rank support to the data structure for large alphabets. Here, even on a machine
with 1 TiB of main memory, it is only possible to construct the block tree for prefixes of
the english text smaller than 200 MiB and constructing the block tree for the 100 MiB
prefix took nearly 4 hours. Therefore, we also report the results for the 32 MiB prefixes
of the standard Pizza&Chili Corpus to allow for some comparisons. Furthermore, the
implementation by Belazzougui et al. [7] does not terminate successfully for the two larger

36

6.2 Sequential Evaluation

texts protein and english (> 1 GiB) in the standard Pizza&Chili Corpus even when we do
not add rank support. As constructing the block tree for the english text with rank support
takes also at least 3 hours for a single run for all of our configurations and block tree
variants, we decided to remove the english text dataset from our benchmark dataset as
proper benchmarks would exceed our allocated time budget and only provide data on the
32 MiB prefix.

6.2 Sequential Evaluation

The results of our experiment are presented in 2D grids, split by text input. Each point on
the graph represents the results of a possible configuration (variant, (τ, b)) for construction
size, construction time, and average query time for a given text input. The x-axis of the
graph represents construction size in bits per symbol input text, while the y-axis represents
construction time in seconds on a logarithmic scale or average query time in nanoseconds
on a linear scale. All graphs in a figure share the same y-axis, but we use different scales
on the x-axis due to the larger variance in block tree size. Note that, our implementation
produces same sized block trees for different parameter pair (τ, b) (e.g, a block trees with
τ = 16 and τ = 8 are identically in structure if the first level size is smaller than 8b). Here,
the figures show the average over similar data points instead of 3 different data points.
Furthermore, we consider the repetitive and standard corpus separately. When we set
s = z for some configuration, the reported construction time includes the time to calculate
LPF and count the number of LZ77-phrases. As the implementation by Belazzougui et al.
[7] creates multiple compact block tree representations during the final step, we only
report time spent calculating the initial block tree presentation, performing the pruning
step and if enabled the time spent adding rank support.

For the texts included in the repetitive Pizza&Chili Corpus, we run benchmarks for
the following configurations τ ∈ {2, 4, 8, 16} and the max length of last level leaves
b ∈ {2, 4, 8, 16}. For the texts included in the standard Pizza&Chili Corpus, we ran our
expriments with τ ∈ {2, 4, 8} and the max length of last level leaves b ∈ {2, 4, 8}.

6.2.1 Construction Time and Tree Size

Block Trees Without Pruning. We begin our evaluation by comparing our Rabin-
Karp fingerprint based approaches to the LPF based approaches without applying the prun-
ing step. Figure 6.1 shows the relationship between construction time and final block tree
size for the block tree faithful to the theoretical proposal on repetitive texts without adding
rank support. Comparing our implementations for LPF and Rabin-Karp fingerprint based
approaches, the approaches based on the LPF array are clearly in the Pareto-front in terms
of construction time, but the speed-up increases further for smaller block tree configura-
tions.

For repetitive texts, LPF s = 1 constructs the smallest configurations 7.3–11.5 times
faster than FP s = 1, overall the speed-up varies between 1.9–11.5 depending on configu-
ration and input text. The average speed-up is 5.53. For s = z the speed-up for the smallest

37

6 Experiments

block trees varies between 3.2–5, while in general the speed-up varies between 1.8–5 with
an average speed-up of 3.04. On average, configurations for s = z are 2.2% larger than
their s = 1 counterpart, but the construction time speeds up on average by 81.2% for FP s
= z, but we cannot determine a significant speed-up for LPF s = z.

Note that, the block tree size decreases for smaller values of τ , s and b, but the height
of the block tree increases, which leads to more symbols being processed during con-
struction. This indicates that LPF based approaches may have smaller constant factors.
Furthermore, it becomes clear when we consider that spending extra time to calculate z
to increase s leads to an 81.2% faster on average construction for FP s = z, while it does
not decrease construction time for LPF s = z. We believe this is due to LPF construction
dominating the construction time for repetitive texts without rank support for LPF s = z
and LPF s = 1 (see Figure 6.20). Recall that block trees allow for time-space-tradeoffs,
where we can increase the size and therefore decrease the query time. Therefore, it is not
necessarily wanted to construct the smallest block tree.

Figure 6.2 shows the relationship between construction time and final block tree size
for the block tree faithful to the theoretical proposal on repetitive texts adding rank sup-
port. Here an interesting observation is that not for all texts the smallest configuration is
the configuration with the longest construction time. We believe this is due to the fact that
we implemented a less efficient rank query, where we forgo constructing a binary rank
data structure for all last level leaves, and instead just scan over the leaves and count the
number of c for a rankc query. Therefore, having fewer levels in the block tree seems
to be beneficial for sequences with a large alphabet, as it not only decreases query times
but also decreases block tree size, when rank support is enabled. Note that, we observe
similar behavior for the implementation from Belazzougui et al. [7] as they implemented
a similar rank query. The last level leaf sizes b used in our experiments are rather small
and are focused on reducing the size of the block tree structure without considering the
rank support.

With enabled rank support on repetitive texts, we observe that LPF s = 1 constructs
block trees 3.75 times faster on average in comparison to FP s = 1, depending on con-
figuration and input text. LPF s = z is 2.23 times faster in comparison to FP s = z. We
observe overall a smaller speed-up for all LPF-based variants over their fingerprint-based
counterpart, as adding the rank support should take the same time for both. When con-
sidering the size differences between s = z and s = 1 variants, we can see in Figure 6.2,
s = z variants have significantly larger block trees compared to s = 1. With otherwise
the same parameters, the block trees with s = z are 43.9% larger on average.

Figures 6.3 and 6.4 show the relationship between construction time and block tree
size for the less repetitive text in the standard Pizza&Chilli Corpus. Overall, we see sim-
ilar behavior when not adding rank support. LPF s=1 is 8.8 times faster on average than
FP s=1 (between 3.6–15.3 times faster), while LPF s=z is 3.5 times faster on average
than FP s=z (between 2.1-5.9 times faster). Further, indicating that the LPF-based takes
less time per processed symbol as the speed-up increases when compared to more repet-
itive texts. When adding rank support, this decreases to 3.54 and 1.59 times on average,
respectively.

Pruned Block Trees Figures 6.5 and 6.6 show the relation between construction time
and block tree size on repetitive text. Figures 6.6 and 6.7 show the relation between con-
struction time and block tree size on the less repetitive text in the standard Pizza&Chilli

38

6.2 Sequential Evaluation

Corpus. Notice that, for both, LPF pruned s=z and LPF pruned s=1 construct the block
tree faster than their FP pruned s=z and FP pruned s=1 counterparts. This is particularly
evident for s = 1 on the less repetitive texts in Figures 6.6 and 6.7. Hence, we believe
that not updating FirstOcc∗ after every level and instead using the naive scan outlined in
Algorithm 8 might also be efficient, but we cannot provide any runtime guarantees at the
time. During our following evaluation, we will therefore only compare LPF pruned s=z
and LPF pruned s=1 to other approaches.

The heuristic LPF heuristic s = z did not speed up the construction times, when com-
pared to LPF pruned s = z. Overall, for repetitive texts the construction time for LPF
pruned s = z was actually 1% faster on average, while the block trees were of similar
size and only slightly larger for the heuristic. When including adding rank support, con-
struction with LPF pruned s = z was 2% faster on average. For the less repetitive texts,
LPF heuristic s = z was slightly faster (4% on average) without rank support, but there
is no speed-up when adding rank support. Note that, for both approaches, the LPF con-
struction time and the σ depth first searches calculate the samples used for rank and select
queries dominate the overall run and therefore the runtime effects of this approximation.
Therefore, we conclude that our heuristic did not show any practical value.

Finally, we compare LPF pruned s=z and LPF pruned s=1 against the fingerprint
based approaches FP pruned s=z and FP pruned s=1 and the implementation by Belaz-
zougui et al. [7]. We first compare LPF pruned s=1 to the implementation by Belazzougui
et al. [7], as it has the s set to 1 and therefore should create structural similar block trees.
On the repetitive texts in Figures 6.5 and 6.6 we observe that our approach to construct
block tree is 6.99 times faster on average (between 2.66–14.75 times based on input text
and configuration), while for the smallest block tree construction on each text, it is 11.88
faster on average (between 8.21–14.75 times). When taking rank and select support into
consideration, construction is 7.13 times faster on average. Again, speed-up increases for
smaller block tree configurations. Note that, our implementations create larger block trees
for texts with a small alphabet size. This is due to a missing space optimization in our
implementations, where we do not reduce the alphabet before storing the last level leaves
explicitly. The issue becomes more apparent for configurations that store large parts of the
string explicitly (e.g., when using a larger value for b). On average, our pruned block trees
for s = 1 are 14% larger than the block trees by Belazzougui et al. [7] on the repetitive
texts. With rank support enabled, this reduces to 11% as we store similar extra data.

As for the less repetitive texts in Figures 6.6 and 6.7, the implementation by Belaz-
zougui et al. [7] ran out of memory (see Section 6.1) for larger texts or when adding rank
support, therefore we can only compare it with our implementation for the available data
in Figure 6.7. Here, LPF pruned s=1 constructs the block trees 14 times faster on average
(between 8.19–23 times faster) and 19 times faster on average for the smallest configura-
tions of each text. Figures 6.9 and 6.10 show the results for the 32 MiB prefixes of the
standard Pizza&Chilli Corpus, where LPF pruned s=1 is still 11.66 times faster on aver-
age, showing that the issue also implementation by Belazzougui et al. [7] effects runtime.
When also considering the time needed to add rank support (Figure 6.10) LPF pruned
s=1 is 9.65 times faster on average. But for most texts all block tree configurations are
significantly larger than the input text (1Byte per symbol), the only exception are texts
with a small alphabet size (e.g., dna32MB and proteins32Mb). If we consider the block
tree size while only supporting access operations, all configurations tested, take less space
than the original text.

39

6 Experiments

When using the same configurations, FP pruned s=1 is 1.24 times faster on aver-
age compared to the implementation by Belazzougui et al. [7] on repetitive texts and
1.81 times faster on less repetitive texts. Therefore, in a last comparison, we analyze the
construction time differences between and FP pruned s=z and FP pruned s=1, showing
similar behavior to their not pruned counterparts. Without rank support, FP pruned s=z is
1.81 times faster on average than FP pruned s=1 on repetitive texts and 2.52 times faster
on less repetitive texts.

Overall, the pruned block trees without rank support and s = z are 5% larger on
average for repetitive texts than their s = 1 counterpart and 4% larger on average for less
repetitive texts. When also considering the extra space required for rank support, setting
s = z creates 38% and 60% larger block trees on average. This can be explained by
considering that block trees with s = z (i) store additional larger rank samples for the first
level, (ii) have more blocks and therefore store more samples.

We would also like to point out that our LPF based implementations have a large
memory footprint, as we require two integer values per symbol input text during the block
tree steps (and up to 6n integer cells during LPF construction). This is significantly more
than the hash tables for fingerprint based approaches require, but predeterminable.

6.2.2 Query Times

We report the query times for our block tree variations LPF heuristic s = z, LPF s = z,
LPF pruned s = z, LPF s = 1, LPF pruned s = 1 and the implementation by Belazzougui
et al. [7]. Note that, all block tree variations but the heuristic LPF heuristic s = z construct
the same block tree for parameters s, τ, b. Hence, we will simplify the evaluation by only
considering the variations mentioned above.

Access. Figures 6.11, 6.12 and 6.13 show the average access time in relation to the
block tree size. Generally, we observe a clear time-space-tradeoff, where smaller config-
urations report longer access times, for all variants. When comparing the implementation
by Belazzougui et al. [7] to LPF pruned s = 1, we notice that for texts with a small al-
phabet (e.g., para and cere in Figure 6.11) their implementation constructs smaller block
trees.

Analyzing this issue, we found that our implementations do not reduce the alphabet,
when storing the last level leaves, and use a flat 1Byte per symbol instead. Comparing the
access time, the implementation by Belazzougui et al. [7] is, on the texts in Figure 6.11, on
average 5.1% faster. Overall, the average access queries are between 0.83 and 1.37 times
faster based on the input text. As we implement the same query algorithm, one explanation
for this difference in performance could be the internal bit vector implementation used.
Although bit vectors can answer rank and select queries in constant time, there are time-
space-tradeoffs in different implementations. Kurpicz [35] compared several bit vector
implementations, showing that the implementation we use has a smaller memory footprint
of just 3.51% extra space while the implementation, sdsl_v contained in the SDSL [22],
used by Belazzougui et al. [7] uses 25% extra space, but answers rank queries on small
bit vectors significantly faster [35]. We believe this is a valid tradeoff, as bit vectors and
their rank data structure make up only a small part of the block tree. For completeness, we

40

6.2 Sequential Evaluation

measure that the competitor answer on average 27% faster access queries on the standard
Corpus in Figure 6.12.

Furthermore, LPF pruned s = z performs access queries on average 44.2% faster
than LPF pruned s = 1 on repetitive texts, while the block tree is on average 5% larger.
Highlighting furthermore the impact of reducing block tree height on query times. For
the standard Corpus in Figure 6.12 we report access queries being on average 2.17 times
faster, while the block tree is on average 4% larger.

Finally, the heuristic LPF heuristic s = z performs access queries in roughly the same
time as the canonical LPF pruned s = z, while being only slightly larger. This is expected
as both variations have the same height and also roughly the bit vector lengths on all
levels.

Rank and Select. Figures 6.14, 6.15 and 6.16 show the average rank time in relation
to the block tree size. Note that, other than in the previous paragraph for access queries,
we can observe the space-time-tradeoffs only for highly repetitive texts or repetitive texts
with a small alphabet (e.g., einstein, para and cere in Figure 6.14). We believe this is due
to the inefficient rank implementation, and counting the cs in a longer string leaf is faster
than traversing extra block tree levels and then count the cs in a shorter string leaf.

When comparing rank query times for LPF pruned s=1 and the implementation of
Belazzougui et al. [7], there is no speed-up on average for the repetitive texts, but LPF
pruned s=1 answers 26% faster on average for the 32 MiB prefixes of less repetitive
texts. Note that LPF pruned s=z answer rank queries faster than LPF pruned s=1 as
fewer block tree levels reduces the necessary work. Although this comes at the cost of
significantly larger block trees. For repetitive texts in Figure 6.14, LPF pruned s=z is 35%
faster on average, but require 24% more space on average. For the less repetitive texts in
Figure 6.15, LPF pruned s=z answers 2.1 faster on average, but require, 46% more space
on average.

Figures 6.17, 6.18 and 6.19 show the average select time in relation to the block
tree size. Similar to rank queries, we can observe the space-time-tradeoffs only for highly
repetitive texts like or repetitive texts with a small alphabet (e.g., einstein, para and cere in
Figure 6.17). We believe this is due to the inefficient select implementation, and counting
the cs in a longer string leaf is faster than traversing extra block tree levels and then count
the cs in a shorter string leaf. When comparing select query times for LPF pruned s=1 and
the implementation of Belazzougui et al. [7], similar to rank queries there is no speed-up
on average for the repetitive texts, but LPF pruned s=1 answers 10% faster on average
for the 32 MiB prefixes of less repetitive texts. Block trees with s = z perform select
queries significantly slower than their s = 1 counterparts. This is due to the inefficient
select query performing a binary search on the first level, which takes longer for larger
s. LPF pruned s=1 answer select queries 20% faster than LPF pruned s=1 on repetitive
texts, while in the block tree with s = z are 24% larger on average. For the less repetitive
texts in Figure 6.15, LPF pruned s=z answers 54% faster on average and LPF pruned s=1
requires 46% more space on average.

Overall, we come to the conclusion, that our query implementation answers roughly
similar times as the implementation of Belazzougui et al. [7]. Furthermore, the additional
space-time-tradeoff we implemented was beneficial for access queries, but leads to unin-
spiring results on rank and select queries. Next step, is to implement rank and select

41

6 Experiments

queries faithful to their theoretical proposal. As these improvements require additional
data structures, and we already create large block trees for less repetitive texts, block trees
might be impractical for less repetitive texts. A next step could be to compare the block
trees to well-researched rank/select/access data structures like the wavelet tree [23] and
wavelet matrix [12]. These can be compressed using entropy encoders [37]. Initial ex-
periments indicated that wavelet trees can be constructed at least an order of magnitude
faster than our block trees implementations.

1 2 3 4 5

10
4

10
5

10
6

co
ns

tru
ct

io
n

tim
e

(s
)

Escherichia_Coli

0.5 1.0 1.5 2.0 2.5

cere

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25

coreutils

0.02 0.04 0.06 0.08 0.10 0.12

10
4

10
5

10
6

co
ns

tru
ct

io
n

tim
e

(s
)

einstein.en.txt

1 2 3 4 5

influenza

0.2 0.3 0.4 0.5 0.6
Bits per Symbol

kernel

0.5 1.0 1.5 2.0 2.5
Bits per Symbol

10
4

10
5

10
6

co
ns

tru
ct

io
n

tim
e

(s
)

para

0.5 1.0 1.5 2.0 2.5 3.0
Bits per Symbol

world_leaders

Variant
Belazzougui et al.
LPF s=z
LPF s=1
FP s=z
FP s=1

Figure 6.1: Block tree construction time in relation to the block tree size without pruning
on repetitive texts. The x-axis shows the block tree size in bits used per
symbol input text, while the y-axis shows the block tree construction time in
seconds on a log-scale. Note that each graph has an individual scale for the
x-axis.

42

6.2 Sequential Evaluation

4 5 6 7 8 9 10

10
1

10
2

10
3

co
ns

tru
ct

io
n

tim
e

(s
)

Escherichia_Coli

1.0 1.5 2.0 2.5

cere

10 20 30 40 50

coreutils

0.6 0.8 1.0 1.2 1.4 1.6 1.8

10
1

10
2

10
3

co
ns

tru
ct

io
n

tim
e

(s
)

einstein.en.txt

2 3 4 5 6

influenza

2 4 6 8 10 12
Bits per Symbol

kernel

1.0 1.5 2.0 2.5 3.0
Bits per Symbol

10
1

10
2

10
3

co
ns

tru
ct

io
n

tim
e

(s
)

para

6 8 10 12 14 16
Bits per Symbol

world_leaders

Variant
Belazzougui et al.
LPF s=z
LPF s=1
FP s=z
FP s=1

Figure 6.2: Block tree construction time (with rank/select support) in relation to the block
tree size without pruning on repetitive texts.

43

6 Experiments

2 3 4 5 6 7 8

104

105

106

co
ns

tru
ct

io
n

tim
e

(s
)

dblp.xml

3 4 5 6 7 8

dna

5.0 5.5 6.0 6.5
Bits per Symbol

pitches

4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0
Bits per Symbol

104

105

106

co
ns

tru
ct

io
n

tim
e

(s
)

proteins

4 5 6 7
Bits per Symbol

sources

Variant
LPF s=1
LPF s=z
Belazzougui et al.
FP s=1
FP s=z

Figure 6.3: Block tree construction time in relation to the block tree size without pruning
on less repetitive texts.

40 60 80 100

102

103

co
ns

tru
ct

io
n

tim
e

(s
)

dblp.xml

10.0 12.5 15.0 17.5 20.0 22.5 25.0

dna

25 50 75 100 125 150 175 200
Bits per Symbol

pitches

10 20 30 40 50
Bits per Symbol

102

103

co
ns

tru
ct

io
n

tim
e

(s
)

proteins

25 50 75 100 125 150 175
Bits per Symbol

sources

Variant
LPF s=1
LPF s=z
FP s=1
FP s=z

Figure 6.4: Block tree construction time (with rank/select support) in relation to the block
tree size without pruning on less repetitive texts.

44

6.2 Sequential Evaluation

1.0 1.5 2.0 2.5 3.0 3.5 4.0

104

105

106

co
ns

tru
ct

io
n

tim
e

(s
)

Escherichia_Coli

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

cere

0.50 0.75 1.00 1.25 1.50 1.75 2.00

coreutils

0.02 0.03 0.04 0.05 0.06 0.07 0.08

104

105

106

co
ns

tru
ct

io
n

tim
e

(s
)

einstein.en.txt

0.5 1.0 1.5 2.0 2.5 3.0 3.5

influenza

0.2 0.3 0.4 0.5
Bits per Symbol

kernel

0.25 0.50 0.75 1.00 1.25 1.50 1.75
Bits per Symbol

104

105

106

co
ns

tru
ct

io
n

tim
e

(s
)

para

0.25 0.50 0.75 1.00 1.25 1.50 1.75
Bits per Symbol

world_leaders

Variant
Belazzougui et al.
LPF pruned s=1 DP
LPF pruned s=1
LPF pruned s=z DP
LPF pruned s=z
LPF heuristic s=z
FP pruned s=1
FP pruned s=z

Figure 6.5: Block tree construction time in relation to the block tree size, with pruning
enabled on repetitive texts.

45

6 Experiments

3 4 5 6 7 8

101

102

103
co

ns
tru

ct
io

n
tim

e
(s

)

Escherichia_Coli

0.6 0.8 1.0 1.2 1.4 1.6 1.8

cere

10 20 30 40

coreutils

0.6 0.8 1.0 1.2

101

102

103

co
ns

tru
ct

io
n

tim
e

(s
)

einstein.en.txt

2.0 2.5 3.0 3.5 4.0

influenza

2 4 6 8 10
Bits per Symbol

kernel

0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
Bits per Symbol

101

102

103

co
ns

tru
ct

io
n

tim
e

(s
)

para

6 8 10 12
Bits per Symbol

world_leaders

Variant
Belazzougui et al.
LPF pruned s=1 DP
LPF pruned s=1
LPF pruned s=z DP
LPF pruned s=z
LPF heuristic s=z
FP pruned s=1
FP pruned s=z

Figure 6.6: Block tree construction time (with rank/select support) in relation to the block
tree size, with pruning enabled on repetitive texts.

46

6.2 Sequential Evaluation

2 3 4 5 6

104

105

106

co
ns

tru
ct

io
n

tim
e

(s
)

dblp.xml

3 4 5 6 7 8

dna

4.75 5.00 5.25 5.50 5.75 6.00 6.25
Bits per Symbol

pitches

3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2
Bits per Symbol

104

105

106

co
ns

tru
ct

io
n

tim
e

(s
)

proteins

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
Bits per Symbol

sources

Variant
LPF heuristic s=z
LPF pruned s=1 DP
LPF pruned s=1
LPF pruned s=z DP
LPF pruned s=z
Belazzougui et al.
FP pruned s=1
FP pruned s=z

Figure 6.7: Block tree construction time in relation to the block tree size, with pruning
enabled on less repetitive texts.

20 40 60 80

102

103

co
ns

tru
ct

io
n

tim
e

(s
)

dblp.xml

10 12 14 16 18 20 22

dna

25 50 75 100 125 150 175 200
Bits per Symbol

pitches

10 20 30 40 50
Bits per Symbol

102

103

co
ns

tru
ct

io
n

tim
e

(s
)

proteins

20 40 60 80 100 120 140 160
Bits per Symbol

sources

Variant
LPF heuristic s=z
LPF pruned s=1 DP
LPF pruned s=1
LPF pruned s=z DP
LPF pruned s=z
FP pruned s=1
FP pruned s=z

Figure 6.8: Block tree construction time in relation to the block tree size, with pruning
enabled on less repetitive texts.

47

6 Experiments

3 4 5 6

104

105

co
ns

tru
ct

io
n

tim
e

(s
)

dblp.xml32MB

3 4 5 6 7 8

dna32MB

5.00 5.25 5.50 5.75 6.00 6.25 6.50

pitches32MB

3.5 4.0 4.5 5.0 5.5 6.0
Bits per Symbol

104

105

co
ns

tru
ct

io
n

tim
e

(s
)

proteins32MB

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
Bits per Symbol

sources32MB

3.5 4.0 4.5 5.0 5.5
Bits per Symbol

english32MB

Variant
LPF heuristic s=z
LPF pruned s=1 DP
LPF pruned s=1
LPF pruned s=z DP
LPF pruned s=z
Belazzougui et al.
FP pruned s=1
FP pruned s=z

Figure 6.9: Block tree construction time in relation to the block tree size, with prun-
ing enabled on the 32 MiB prefixes of less repetitive texts from the standard
Pizza&Chilli Corpus.

20 30 40 50 60 70 80

101

102

103

co
ns

tru
ct

io
n

tim
e

(s
)

dblp.xml32MB

6 8 10 12 14 16 18 20

dna32MB

25 50 75 100 125 150 175

pitches32MB

10 20 30 40
Bits per Symbol

101

102

103

co
ns

tru
ct

io
n

tim
e

(s
)

proteins32MB

20 40 60 80 100 120 140 160
Bits per Symbol

sources32MB

25 50 75 100 125 150
Bits per Symbol

english32MB

Variant
LPF heuristic s=z
LPF pruned s=1 DP
LPF pruned s=1
LPF pruned s=z DP
LPF pruned s=z
Belazzougui et al.
FP pruned s=1
FP pruned s=z

Figure 6.10: Block tree construction time (with rank/select support) in relation to the
block tree size, with pruning enabled on the 32 MiB prefixes of less repeti-
tive texts from the standard Pizza&Chilli Corpus.

48

6.2 Sequential Evaluation

1 2 3 4 5

100

200

300

400

500

600
ac

ce
ss

 ti
m

e
(n

s)

Escherichia_Coli

0.5 1.0 1.5 2.0 2.5

cere

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25

coreutils

0.02 0.04 0.06 0.08 0.10 0.12

100

200

300

400

500

600

ac
ce

ss
 ti

m
e

(n
s)

einstein.en.txt

1 2 3 4 5

influenza

0.2 0.3 0.4 0.5 0.6
Bits per Symbol

kernel

0.5 1.0 1.5 2.0 2.5
Bits per Symbol

100

200

300

400

500

600

ac
ce

ss
 ti

m
e

(n
s)

para

0.5 1.0 1.5 2.0 2.5 3.0
Bits per Symbol

world_leaders

Variant
Belazzougui et al.
LPF pruned s=1
LPF pruned s=z
LPF s=z
LPF s=1
LPF heuristic s=z

Figure 6.11: Average access time in relation to the block tree size for repetitive texts. The
x-axis shows the block tree size in bits used per symbol input text, while the
y-axis shows the average access time in nanoseconds on a linear scale. Note
that each graph has an individual scale for the x-axis.

49

6 Experiments

2 3 4 5 6 7 8

200

400

600

800

1000
ac

ce
ss

 ti
m

e
(n

s)

dblp.xml

3 4 5 6 7 8

dna

4.5 5.0 5.5 6.0 6.5
Bits per Symbol

pitches

4.0 4.5 5.0 5.5 6.0
Bits per Symbol

200

400

600

800

1000

ac
ce

ss
 ti

m
e

(n
s)

proteins

4 5 6 7
Bits per Symbol

sources

Variant
LPF heuristic s=z
LPF pruned s=1
LPF pruned s=z
LPF s=1
LPF s=z
Belazzougui et al.

Figure 6.12: Average access time in relation to the block tree size for the less repetitive
standard Pizza&Chilli Corpus.

3 4 5 6 7 8
50

100

150

200

250

300

350

400

ac
ce

ss
 ti

m
e

(n
s)

dblp.xml32MB

3 4 5 6 7 8

dna32MB

5.0 5.5 6.0 6.5 7.0

pitches32MB

3.5 4.0 4.5 5.0 5.5 6.0 6.5
Bits per Symbol

50

100

150

200

250

300

350

400

ac
ce

ss
 ti

m
e

(n
s)

proteins32MB

4 5 6 7
Bits per Symbol

sources32MB

3.5 4.0 4.5 5.0 5.5 6.0
Bits per Symbol

english32MB

Variant
LPF heuristic s=z
LPF pruned s=1
LPF pruned s=z
LPF s=1
LPF s=z
Belazzougui et al.

Figure 6.13: Average access time in relation to the block tree size for the 32 MiB prefixes
for texts in standard Pizza&Chili Corpus.

50

6.2 Sequential Evaluation

4 6 8 10

200

400

600

800

1000

1200
ra

nk
 ti

m
e

(n
s)

Escherichia_Coli

1.0 1.5 2.0 2.5

cere

10 20 30 40 50

coreutils

0.6 0.8 1.0 1.2 1.4 1.6 1.8

200

400

600

800

1000

1200

ra
nk

 ti
m

e
(n

s)

einstein.en.txt

2 3 4 5 6

influenza

2 4 6 8 10 12
Bits per Symbol

kernel

1.0 1.5 2.0 2.5 3.0
Bits per Symbol

200

400

600

800

1000

1200

ra
nk

 ti
m

e
(n

s)

para

4 6 8 10 12 14 16
Bits per Symbol

world_leaders

Variant
Belazzougui et al.
LPF pruned s=1
LPF pruned s=z
LPF s=z
LPF s=1
LPF heuristic s=z

Figure 6.14: Average rank time in relation to the block tree size for repetitive texts. The
x-axis shows the block tree size in bits used per symbol input text, while the
y-axis shows the average rank time in nanoseconds on a linear scale. Note
that each graph has an individual scale for the x-axis.

51

6 Experiments

20 40 60 80 100

200

400

600

800

1000

1200
ra

nk
 ti

m
e

(n
s)

dblp.xml

10.0 12.5 15.0 17.5 20.0 22.5 25.0

dna

25 50 75 100 125 150 175 200
Bits per Symbol

pitches

10 20 30 40 50
Bits per Symbol

200

400

600

800

1000

1200

ra
nk

 ti
m

e
(n

s)

proteins

25 50 75 100 125 150 175
Bits per Symbol

sources

Variant
LPF heuristic s=z
LPF pruned s=1
LPF pruned s=z
LPF s=1
LPF s=z

Figure 6.15: Average rank time in relation to the block tree size for texts in the standard
Pizza&Chili Corpus.

20 40 60 80 100

100

200

300

400

500

600

ra
nk

 ti
m

e
(n

s)

dblp.xml32MB

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5

dna32MB

25 50 75 100 125 150 175

pitches32MB

10 20 30 40
Bits per Symbol

100

200

300

400

500

600

ra
nk

 ti
m

e
(n

s)

proteins32MB

20 40 60 80 100 120 140 160
Bits per Symbol

sources32MB

25 50 75 100 125 150
Bits per Symbol

english32MB

Variant
LPF heuristic s=z
LPF pruned s=1
LPF pruned s=z
LPF s=1
LPF s=z
Belazzougui et al.

Figure 6.16: Average rank time in relation to the block tree size for the 32 MiB prefixes
for texts in standard Pizza&Chili Corpus.

52

6.2 Sequential Evaluation

4 6 8 10
500

750

1000

1250

1500

1750

2000

2250
se

le
ct

 ti
m

e
(n

s)

Escherichia_Coli

1.0 1.5 2.0 2.5

cere

10 20 30 40 50

coreutils

0.6 0.8 1.0 1.2 1.4 1.6 1.8
500

750

1000

1250

1500

1750

2000

2250

se
le

ct
 ti

m
e

(n
s)

einstein.en.txt

2 3 4 5 6

influenza

2 4 6 8 10 12
Bits per Symbol

kernel

1.0 1.5 2.0 2.5 3.0
Bits per Symbol

500

750

1000

1250

1500

1750

2000

2250

se
le

ct
 ti

m
e

(n
s)

para

4 6 8 10 12 14 16
Bits per Symbol

world_leaders

Variant
Belazzougui et al.
LPF pruned s=1
LPF pruned s=z
LPF s=z
LPF s=1
LPF heuristic s=z

Figure 6.17: Average select time in relation to the block tree size for repetitive texts. The
x-axis shows the block tree size in bits used per symbol input text, while the
y-axis shows the average select time in nanoseconds on a linear scale. Note
that each graph has an individual scale for the x-axis.

53

6 Experiments

20 40 60 80 100

1000

1500

2000

2500

3000
se

le
ct

 ti
m

e
(n

s)

dblp.xml

10.0 12.5 15.0 17.5 20.0 22.5 25.0

dna

25 50 75 100 125 150 175 200
Bits per Symbol

pitches

10 20 30 40 50
Bits per Symbol

1000

1500

2000

2500

3000

se
le

ct
 ti

m
e

(n
s)

proteins

25 50 75 100 125 150 175
Bits per Symbol

sources

Variant
LPF heuristic s=z
LPF pruned s=1
LPF pruned s=z
LPF s=1
LPF s=z

Figure 6.18: Average select time in relation to the block tree size for texts in the standard
Pizza&Chili Corpus.

20 40 60 80 100

600

800

1000

1200

1400

1600

se
le

ct
 ti

m
e

(n
s)

dblp.xml32MB

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5

dna32MB

25 50 75 100 125 150 175

pitches32MB

10 20 30 40
Bits per Symbol

600

800

1000

1200

1400

1600

se
le

ct
 ti

m
e

(n
s)

proteins32MB

20 40 60 80 100 120 140 160
Bits per Symbol

sources32MB

25 50 75 100 125 150
Bits per Symbol

english32MB

Variant
LPF heuristic s=z
LPF pruned s=1
LPF pruned s=z
LPF s=1
LPF s=z
Belazzougui et al.

Figure 6.19: Average select time in relation to the block tree size for the 32 MiB prefixes
for texts in standard Pizza&Chili Corpus.

54

6.3 Parallel Evaluation

6.3 Parallel Evaluation

We experimentally compare the performance of the naive sharded memory parallelization
outlined in Section 5.3 with our sequential implementation. Due to unavailable hardware
and an impending deadline, we can only provide the results for a single run over the
highly repetitive Pizza&Chilli Corpus. Recall that our parallelization does not parallelize
the actual block tree construction step, but instead relies on parallel LPF-array construc-
tion and running the σ depth first searches required for rank support. We believe these
results are still useful, as they not only indicate the viability of block tree construction
parallelization, but also that advances in sequential LPF-array construction could heavily
impact the block tree construction time. For the actual block tree construction, we use
LPF pruned s=z and the run benches for the following parameter configurations (τ, b):
(2, 4), (4, 4), (8, 4). Setting b to 4 produced the smallest block trees when not considering
rank support. We performed the experiment on the same 64-core machine (128 threads
with simultaneous multithreading enabled) and 1024 TiB RAM described in Section 6.1.

The time to construct the LPF-array parallel LPF, the block tree without rank support
BT par and the block tree with rank support BT par rs as a function of the number of
processors for all texts in the repetitive Pizza&Chilli Corpus are shown in Figure 6.20. In
addition, we plot performance of the sequential implementation tested in Section 6.2 as
baselines BT seq and BT seq rs. We plot the average over all three configurations tested for
each text and number of processors. Parallelizing LPF achieves good speed-up between 2
and 8 cores, but scales no further for higher clock counts. Naively parallelizing the σ depth
first searches provides significant speed-up on texts with a large alphabet (e.g., coreutils
with σ = 236) but shows barely any speed up on texts with small alphabets (e.g., para,
cere with σ = 5). LPF achieves, on eight cores, a 3.6–4.3 times speed-up with respect
to one core and on 64 cores (with simultaneous multithreading) a 4.4–4.9 times speed-up
with respect to one core. Note that these results are worse than the results reported by
Shun and Zhao [49], but both use different underlying suffix array implementations and
algorithms. BT par achieves, on eight cores, a 2.2–3.7 times speed-up with respect to
one core and on 64 cores (with simultaneous multithreading) a 2.4–4.75 times speed-up
with respect to one core. Although, our current implementation does not scale, it shows
that our current block tree construction time without rank support is heavily dominated
by the LPF construction time. Therefore, to improve the sequential construction time in
praxis, we suggest optimizing the current LPF construction method first. Finally, BT par
rs achieves on eight cores, a 3.1–5.5 times speed-up with respect to one core and on 64
cores (with simultaneous multithreading) a 3.6–14.4 times speed-up with respect to one
core. Showing that for this naive parallelization, the speed-up is heavily dependent on
alphabet size.

In conclusion, this small initial experiment gives a few pointers towards next steps:
(i) for our current approaches the construction is dominated by constructing the LPF-array
and for larger alphabets adding the rank samples (for repetitive texts and running BT par
on single core, constructing the LPF-array takes up 77% – 94% of construction time) and
therefore optimizing these steps should take priority, (ii) as our current naive approach
does not scale, the next step could be to integrate adding rank support to block tree into
the block tree construction step itself. This would increase the work done during the ac-
tual construction step and therefore increases the potential speed-up of a parallelization
attempt for the block tree construction. Although this come with the potential issue, that

55

6 Experiments

1

10

100

Ru
nn

in
g

tim
e

(s
)

Escherichia_Coli cere coreutils

1

10

100

Ru
nn

in
g

tim
e

(s
)

einstein.en.txt influenza

2 4 8 16 32 64 128
Number of processors

kernel

2 4 8 16 32 64 128
Number of processors

1

10

100

Ru
nn

in
g

tim
e

(s
)

para

2 4 8 16 32 64 128
Number of processors

world_leaders

LPF
BT par rs
BT seq
BT seq rs
BT par

Figure 6.20: Log-log plots of constructing times on a 64-core machine (with simultane-
ous multithreading enabled).

56

6.3 Parallel Evaluation

we have to deal with larger temporary rank samples like the implementation by Belaz-
zougui et al. [7].

57

7 Conclusion

Motivated by slow construction times in practice for the current implementation of block
trees [7], we present a novel block tree construction algorithm, that relies on the longest
previous factor array and previous occurrence array to identify leaves and find their left-
most occurrences. After constructing the longest previous factor array once, it can answer
whether a block in a given level is a leaf in constant time without having to update its
content regularly. This offers a significant benefit over the previous approaches, where it
was necessary to rely on string matching techniques [1, 31] for every level individually.
The previous occurrence array helps to find the leftmost occurrences of leaf blocks, but
has to be updated after each level. On the other hand, our approach comes with a factor
O(log n) space penalty. Compared to the previous implementation, our implementation
constructed block trees between 2.66 and 14.75 times faster on a highly repetitive text
data set and between 8.19 and 23 times faster on a standard corpus. However, it should
be noted that our implementation creates larger block trees for the same input parameters
and due to a missing space optimization. We believe this optimization can be executed
quickly and therefore should not affect run-time too much.

Our work introduces a series of improvements over the previous implementations
of block tree. We implemented the block tree faithful to its theoretical proposal, while
performing all construction steps, including the pruning step and the depth first searches
necessary to add rank and select support on the compact bit vector based representation
proposed by [7]. This eliminates cases, where for less repetitive texts with larger alphabets
the temporary, uncompressed block tree became extremely large and would not fit into
memory even if the final block tree is significantly smaller. We also implemented a greedy
heuristic for the block tree, where we would replace a block with a leftwards pointer when
ever possible, that behaved very similar in practice to our canonical block tree implemen-
tation and offered no construction time speed-up, while creating only slightly larger block
trees.

Finally, we ran an initial experiment to parallelize block tree construction by using
a known algorithm to parallelize the LPF-array construction in sharded memory and also
added a naive parallelization to the σ depth first searches, used to add rank support, by
running them in parallel. This parallelization provides a modest speed-up of 3.1–5.5 times
with eight cores in respect to one core used, but only scales further for texts with a large
alphabet (speed-up of 3.6–14.4 times with 64 cores in respect to one core used).

7.1 Future Work

Our block tree construction approaches based on the LPF-array decrease the practical con-
struction time significantly when compared to the previous approaches, but come with a
worse asymptotic space complexity ofO(n log n). LPF-arrays can be encoded in 2n+o(n)

59

7 Conclusion

bits while supporting access to any position in O(log n/ log log n) time [44], but to the
best of our knowledge, there is no linear time algorithm that constructs the encoded LPF-
array in O(n) working space. Prezza and Rosone [44] present an online algorithm that
constructs the encoded LPF-array in O(n log 2n) time and nHk + o(n log σ) + O(n) +
σ log n+ o(σ log n) bits of working space. Furthermore, we require another integer array
to store the updated first occurrences. Not updating these positions every level, but in-
stead performing the naive scan outlined in Algorithm 8 showed no practical performance
impact and even performed better for small values of s. Hence, it might be possible to
amortize the number of “chains” taken during the construction process and present an al-
gorithm, that does not update the first occurrence every level and still has the same runtime
guarantees.

Our current approaches follow the general top-down construction method proposed
by Belazzougui et al. [7] (Algorithm 5). We believe it might be possible to efficiently
construct blocks trees bottom-up using the LPF-array. The first leaf in a block tree is
always a last level leaf, as at least the first symbol of S has no previous occurrence in S.
Thus, the next τ − 1 sibling leaves are also last level leaves. Therefore, we can simply
store them and jump to the next text position i after the last sibling, where we check if
a block starting at i matches the condition to be a second to last level leaf. If this is the
case, we ascend up the tree and repeat the check for the next higher level and so on. When
we finally reach a level, where a block starting at i is a marked leaf, we back track and
calculate the leftwards pointer. We move on to its next sibling and check if it is a leaf
on the same level or if it is necessary to descend into a lower level. Note that for every
descending step on the same text position, we took a previous ascending step that skips
τ − 1 potential leaves. Therefore, we believe that the approach would be efficient. Open
questions are: How can we efficiently determine the leftwards pointers? How do we store
the tree structure above the leaves? How can we determine the leftmost occurrences for
marked blocks, which are required for the pruning step?

We suspect that the LPF-array might allow for another potential improvement. While
marking blocks, we currently only mimic the conservative condition proposed by Be-
lazzougui et al. [7], where initially the only unmarked blocks Bi are blocks, where both
Bi+1 ·Bi and Bi ·Bi+1 have an earlier occurrence in S. Thus, requiring the pruning step as
a post-processing space optimization. As the LPF-array stores the longest previous factor
for all text positions, not just the starting positions of potential blocks. Therefore, it might
be possible to formulate a stricter condition with range minima queries on the LPF-array,
where we consider earlier occurrence for all substring of length |Bi| in Bi−1 · Bi · Bi+1

at once. Ideally, this makes the whole pruning step obsolete and is compatible with the
previously mentioned bottom-up approach.

60

Bibliography

[1] Alfred V. Aho and Margaret J. Corasick. Efficient string matching: An aid to bib-
liographic search. Commun. ACM, 18(6):333–340, jun 1975. ISSN 0001-0782.
doi:10.1145/360825.360855.

[2] Diego Arroyuelo, Veronica Gil-Costa, Senén González, Mauricio Marin, and Mauri-
cio Oyarzún. Distributed search based on self-indexed compressed text. In-
formation Processing Management, 48(5):819–827, 2012. ISSN 0306-4573.
doi:https://doi.org/10.1016/j.ipm.2011.01.008. Large-Scale and Distributed Systems
for Information Retrieval.

[3] Diego Arroyuelo, Senén González, Mauricio Marin, Mauricio Oyarzún, and Torsten
Suel. To index or not to index: Time-space trade-offs in search engines with posi-
tional ranking functions. In Proceedings of the 35th International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, SIGIR ’12, page
255–264, New York, NY, USA, 2012. Association for Computing Machinery. ISBN
9781450314725. doi:10.1145/2348283.2348320.

[4] Jérémy Barbay and Gonzalo Navarro. On compressing permutations and adap-
tive sorting. Theoretical Computer Science, 513:109–123, 2013. ISSN 0304-3975.
doi:https://doi.org/10.1016/j.tcs.2013.10.019.

[5] Jérémy Barbay, Johannes Fischer, and Gonzalo Navarro. Lrm-trees:
Compressed indices, adaptive sorting, and compressed permutations.
Theoretical Computer Science, 459:26–41, 2012. ISSN 0304-3975.
doi:https://doi.org/10.1016/j.tcs.2012.08.010.

[6] Djamal Belazzougui and Gonzalo Navarro. Optimal lower and upper bounds for
representing sequences. ACM Trans. Algorithms, 11(4), apr 2015. ISSN 1549-6325.
doi:10.1145/2629339.

[7] Djamal Belazzougui, Manuel Cáceres, Travis Gagie, Paweł Gawrychowski, Juha
Kärkkäinen, Gonzalo Navarro, Alberto Ordóñez, Simon J. Puglisi, and Yasuo Tabei.
Block trees. Journal of Computer and System Sciences, 117:1–22, 2021. ISSN
0022-0000. doi:https://doi.org/10.1016/j.jcss.2020.11.002.

[8] O. Berkman, B. Schieber, and U. Vishkin. Optimal doubly logarithmic parallel
algorithms based on finding all nearest smaller values. Journal of Algorithms, 14
(3):344–370, 1993. ISSN 0196-6774. doi:https://doi.org/10.1006/jagm.1993.1018.

[9] M. Charikar, E. Lehman, Ding Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and
A. Shelat. The smallest grammar problem. IEEE Transactions on Information The-
ory, 51(7):2554–2576, 2005. doi:10.1109/TIT.2005.850116.

61

https://doi.org/10.1145/360825.360855
https://doi.org/https://doi.org/10.1016/j.ipm.2011.01.008
https://doi.org/10.1145/2348283.2348320
https://doi.org/https://doi.org/10.1016/j.tcs.2013.10.019
https://doi.org/https://doi.org/10.1016/j.tcs.2012.08.010
https://doi.org/10.1145/2629339
https://doi.org/https://doi.org/10.1016/j.jcss.2020.11.002
https://doi.org/https://doi.org/10.1006/jagm.1993.1018
https://doi.org/10.1109/TIT.2005.850116

Bibliography

[10] David R. Clark and J. Ian Munro. Efficient suffix trees on secondary storage. In
Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’96, page 383–391, USA, 1996. Society for Industrial and Applied Mathe-
matics. ISBN 0898713668.

[11] David Richard Clark. Compact Pat Trees. PhD thesis, University of Waterloo, CAN,
1998. UMI Order No. GAXNQ-21335.

[12] Francisco Claude, Gonzalo Navarro, and Alberto Ordóñez. The wavelet matrix:
An efficient wavelet tree for large alphabets. Information Systems, 47:15–32, 2015.
ISSN 0306-4379. doi:https://doi.org/10.1016/j.is.2014.06.002.

[13] Maxime Crochemore and Lucian Ilie. Computing longest previous factor in lin-
ear time and applications. Information Processing Letters, 106:75–80, 04 2008.
doi:10.1016/j.ipl.2007.10.006.

[14] Maxime Crochemore, Lucian Ilie, Costas S. Iliopoulos, Marcin Kubica, Wojciech
Rytter, and Tomasz Waleń. Lpf computation revisited. In Jiří Fiala, Jan Kratochvíl,
and Mirka Miller, editors, Combinatorial Algorithms, pages 158–169, Berlin, Hei-
delberg, 2009. Springer Berlin Heidelberg. ISBN 978-3-642-10217-2.

[15] Robert M. Fano. Transmission of information: A statistical theory of communica-
tions. The M.I.T. Press, 1968.

[16] Martin Farach and S. Muthukrishnan. Optimal parallel dictionary matching and
compression (extended abstract). In Proceedings of the Seventh Annual ACM Sym-
posium on Parallel Algorithms and Architectures, SPAA ’95, page 244–253, New
York, NY, USA, 1995. Association for Computing Machinery. ISBN 0897917170.
doi:10.1145/215399.215451.

[17] P. Ferragina and G. Manzini. Opportunistic data structures with applications. In
Proceedings 41st Annual Symposium on Foundations of Computer Science, pages
390–398, 2000. doi:10.1109/SFCS.2000.892127.

[18] P. Ferragina and G. Manzini. Opportunistic data structures with applications. In
Proceedings 41st Annual Symposium on Foundations of Computer Science, pages
390–398, 2000. doi:10.1109/SFCS.2000.892127.

[19] Johannes Fischer and Volker Heun. Space-efficient preprocessing schemes for range
minimum queries on static arrays. SIAM Journal on Computing, 40(2):465–492,
2011. doi:10.1137/090779759.

[20] František Franěk, Jan Holub, William F. Smyth, and Xiangdong Xiao. Computing
quasi suffix arrays. J. Autom. Lang. Comb., 8(4):593–606, jul 2003. ISSN 1430-
189X.

[21] Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Fully-functional suffix trees and
optimal text searching in bwt-runs bounded space. CoRR, abs/1809.02792, 2018.

[22] Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From theory to prac-
tice: Plug and play with succinct data structures. In 13th International Symposium
on Experimental Algorithms, (SEA 2014), pages 326–337, 2014.

62

https://doi.org/https://doi.org/10.1016/j.is.2014.06.002
https://doi.org/10.1016/j.ipl.2007.10.006
https://doi.org/10.1145/215399.215451
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1137/090779759

Bibliography

[23] Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order entropy-
compressed text indexes. In Proceedings of the Fourteenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA ’03, page 841–850, USA, 2003. Society for
Industrial and Applied Mathematics. ISBN 0898715385.

[24] David A. Huffman. A method for the construction of minimum-
redundancy codes. Proceedings of the IRE, 40(9):1098–1101, 1952.
doi:10.1109/JRPROC.1952.273898.

[25] G. Jacobson. Space-efficient static trees and graphs. In 30th Annual
Symposium on Foundations of Computer Science, pages 549–554, 1989.
doi:10.1109/SFCS.1989.63533.

[26] Guy Joseph Jacobson. Succinct Static Data Structures. PhD thesis, Carnegie Mellon
University, USA, 1988. AAI8918056.

[27] Joseph JáJá. An Introduction to Parallel Algorithms. Addison Wesley Longman
Publishing Co., Inc., USA, 1992. ISBN 0201548569.

[28] Artur Jeż. A really simple approximation of smallest grammar. The-
oretical Computer Science, 616:141–150, 2016. ISSN 0304-3975.
doi:https://doi.org/10.1016/j.tcs.2015.12.032.

[29] Juha Kärkkäinen and Peter Sanders. Simple linear work suffix array construction. In
Jos C. M. Baeten, Jan Karel Lenstra, Joachim Parrow, and Gerhard J. Woeginger, ed-
itors, Automata, Languages and Programming, pages 943–955, Berlin, Heidelberg,
2003. Springer Berlin Heidelberg. ISBN 978-3-540-45061-0.

[30] Juha Kärkkäinen, Giovanni Manzini, and Simon J. Puglisi. Permuted longest-
common-prefix array. In Gregory Kucherov and Esko Ukkonen, editors, Combina-
torial Pattern Matching, pages 181–192, Berlin, Heidelberg, 2009. Springer Berlin
Heidelberg. ISBN 978-3-642-02441-2.

[31] Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-matching
algorithms. IBM Journal of Research and Development, 31(2):249–260, 1987.
doi:10.1147/rd.312.0249.

[32] J.C. Kieffer and En-Hui Yang. Grammar-based codes: a new class of universal
lossless source codes. IEEE Transactions on Information Theory, 46(3):737–754,
2000. doi:10.1109/18.841160.

[33] S.R. Kosaraju and G. Manzini. Compression of low entropy strings with lempel-ziv
algorithms. In Proceedings. Compression and Complexity of SEQUENCES 1997
(Cat. No.97TB100171), pages 107–121, 1997. doi:10.1109/SEQUEN.1997.666907.

[34] Sebastian Kreft and Gonzalo Navarro. On compressing and indexing repetitive se-
quences. Theoretical Computer Science, 483:115–133, 2013. ISSN 0304-3975.
doi:https://doi.org/10.1016/j.tcs.2012.02.006. Special Issue Combinatorial Pattern
Matching 2011.

[35] Florian Kurpicz. Engineering compact data structures for rank and select queries on
bit vectors. CoRR, abs/2206.01149, 2022. doi:10.48550/arXiv.2206.01149.

63

https://doi.org/10.1109/JRPROC.1952.273898
https://doi.org/10.1109/SFCS.1989.63533
https://doi.org/https://doi.org/10.1016/j.tcs.2015.12.032
https://doi.org/10.1147/rd.312.0249
https://doi.org/10.1109/18.841160
https://doi.org/10.1109/SEQUEN.1997.666907
https://doi.org/https://doi.org/10.1016/j.tcs.2012.02.006
https://doi.org/10.48550/arXiv.2206.01149

Bibliography

[36] A. Lempel and J. Ziv. On the complexity of finite sequences. IEEE Transactions on
Information Theory, 22(1):75–81, 1976. doi:10.1109/TIT.1976.1055501.

[37] Veli Mäkinen and Gonzalo Navarro. Succinct suffix arrays based on run-length
encoding. Nordic J. of Computing, 12(1):40–66, mar 2005. ISSN 1236-6064.

[38] Udi Manber and Gene Myers. Suffix arrays: A new method for on-line string
searches. SIAM Journal on Computing, 22(5):935–948, 1993. doi:10.1137/0222058.

[39] J. Ian Munro and Venkatesh Raman. Succinct representation of balanced paren-
theses and static trees. SIAM Journal on Computing, 31(3):762–776, 2001.
doi:10.1137/S0097539799364092.

[40] Gonzalo Navarro. Spaces, trees, and colors: The algorithmic landscape of document
retrieval on sequences. ACM Comput. Surv., 46(4), mar 2014. ISSN 0360-0300.
doi:10.1145/2535933.

[41] Gonzalo Navarro. Compact Data Structures: A Practical Approach. Cambridge
University Press, 2016. doi:10.1017/CBO9781316588284.

[42] Gonzalo Navarro. A self-index on block trees. In Gabriele Fici, Marinella Sciortino,
and Rossano Venturini, editors, String Processing and Information Retrieval, pages
278–289, Cham, 2017. Springer International Publishing. ISBN 978-3-319-67428-
5.

[43] Ge Nong, Sen Zhang, and Wai Hong Chan. Two efficient algorithms for linear time
suffix array construction. IEEE Transactions on Computers, 60:1471–1484, 2011.

[44] Nicola Prezza and Giovanna Rosone. Faster online computation of the succinct
longest previous factor array. In Marcella Anselmo, Gianluca Della Vedova, Florin
Manea, and Arno Pauly, editors, Beyond the Horizon of Computability, pages 339–
352, Cham, 2020. Springer International Publishing. ISBN 978-3-030-51466-2.

[45] Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct in-
dexable dictionaries with applications to encoding ik/i -ary trees, prefix
sums and multisets. ACM Transactions on Algorithms, 3(4):43, nov 2007.
doi:10.1145/1290672.1290680.

[46] Michael Rodeh, Vaughan R. Pratt, and Shimon Even. Linear algorithm for data
compression via string matching. J. ACM, 28(1):16–24, jan 1981. ISSN 0004-5411.
doi:10.1145/322234.322237.

[47] Wojciech Rytter. Application of lempel–ziv factorization to the approximation
of grammar-based compression. Theoretical Computer Science, 302(1):211–222,
2003. ISSN 0304-3975. doi:https://doi.org/10.1016/S0304-3975(02)00777-6.

[48] C. E. Shannon. A mathematical theory of communication. The Bell System Technical
Journal, 27(3):379–423, 1948. doi:10.1002/j.1538-7305.1948.tb01338.x.

[49] Julian Shun and Fuyao Zhao. Practical parallel lempel-ziv factorization. In 2013
Data Compression Conference, pages 123–132, 2013. doi:10.1109/DCC.2013.20.

64

https://doi.org/10.1109/TIT.1976.1055501
https://doi.org/10.1137/0222058
https://doi.org/10.1137/S0097539799364092
https://doi.org/10.1145/2535933
https://doi.org/10.1017/CBO9781316588284
https://doi.org/10.1145/1290672.1290680
https://doi.org/10.1145/322234.322237
https://doi.org/https://doi.org/10.1016/S0304-3975(02)00777-6
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1109/DCC.2013.20

Bibliography

[50] Zachary D. Stephens, Skylar Y. Lee, Faraz Faghri, Roy H. Campbell, Chengxi-
ang Zhai, Miles J. Efron, Ravishankar Iyer, Michael C. Schatz, Saurabh Sinha, and
Gene E. Robinson. Big data: Astronomical or genomical? PLOS Biology, 13(7):
1–11, 07 2015. doi:10.1371/journal.pbio.1002195.

[51] Nataliya Timoshevskaya and Wu-chun Feng. Sais-opt: On the characterization and
optimization of the sa-is algorithm for suffix array construction. In 2014 IEEE 4th
International Conference on Computational Advances in Bio and Medical Sciences
(ICCABS), pages 1–6, 2014. doi:10.1109/ICCABS.2014.6863917.

[52] Dan Willard. Examining computational geometry, van emde boas trees, and hashing
from the perspective of the fusion tree. SIAM J. Comput., 29:1030–1049, 01 2000.
doi:10.1137/S0097539797322425.

[53] Jing Yi Xie, Ge Nong, Bin Lao, and Wentao Xu. Scalable suffix sorting on a
multicore machine. IEEE Transactions on Computers, 69(9):1364–1375, 2020.
doi:10.1109/TC.2020.2972546.

[54] J. Ziv and A. Lempel. A universal algorithm for sequential data com-
pression. IEEE Transactions on Information Theory, 23(3):337–343, 1977.
doi:10.1109/TIT.1977.1055714.

65

https://doi.org/10.1371/journal.pbio.1002195
https://doi.org/10.1109/ICCABS.2014.6863917
https://doi.org/10.1137/S0097539797322425
https://doi.org/10.1109/TC.2020.2972546
https://doi.org/10.1109/TIT.1977.1055714

List of Figures

3.1 Solid edges form the graph representing the SA and LCP for the string
abababbbbaba. The dotted edge between 4 and 8 hint at the conceptual
transformation that takes place after processing the peak 10. Afterward,
SA, LCP, LPF, PrevOcc, prev and next for abababbbbaba. 8

3.2 Block tree for the example string S introduced by Belazzougui et al. [7]
with s = 15, τ = 2 and a last level leaf size of 1. Nodes/Blocks are
represented as boxes, solid edges are pointers from marked blocks towards
their children. Dashed edges are leftwards pointer from unmarked blocks
towards the pair of blocks containing its leftmost occurrence, which is
highlighted by a thick line above the pair. The process of an exemplary
access query on S[46] is illustrated by decorating the T symbols visited
during the query with a ⋄. Note that, the third block NNBO in the first
level is marked although NNBO already appears in S. This due to that
both TWNN in B1 ·B2 and BOBI in B2 ·B3 do not have an earlier occurrence. 11

3.3 To convert a rank query on an unmarked block Bu into a rank query on
one of the consecutive marked blocks Bj and Bj+1 that contain the first
occurrence of Bu in the string S at g+1, we can store Bi.rankc(g) in Bu

and use the pre-computed samples pre(c) to infer Bu.rankc(d). Visual-
ization taken from Belazzougui et al. [7]. 12

3.4 Pruned block tree for the block tree in Figure 3.2 16

4.1 LPF, PrevOcc and FirstOcc2 and the block tree for the string AABAAAAAAA,
with s = 5, τ = 2 and leaves of size 1. LPF-values are drawn as solid lines
above text, pointers to previous occurrence are drawn as a solid edge and
pointers in FirstOcc2 are drawn as dashed edges above the text. 20

4.2 Block tree of ABCD1234ABCDEFDEDE12 constructed with the greedy
heuristic. Red underlined blocks highlight a leftmost occurrences, that is
contained an already replaced block. 29

6.1 Block tree construction time in relation to the block tree size without prun-
ing on repetitive texts. The x-axis shows the block tree size in bits used
per symbol input text, while the y-axis shows the block tree construction
time in seconds on a log-scale. Note that each graph has an individual
scale for the x-axis. 42

6.2 Block tree construction time (with rank/select support) in relation to the
block tree size without pruning on repetitive texts. 43

6.3 Block tree construction time in relation to the block tree size without prun-
ing on less repetitive texts. 44

6.4 Block tree construction time (with rank/select support) in relation to the
block tree size without pruning on less repetitive texts. 44

6.5 Block tree construction time in relation to the block tree size, with pruning
enabled on repetitive texts. 45

67

List of Figures

6.6 Block tree construction time (with rank/select support) in relation to the
block tree size, with pruning enabled on repetitive texts. 46

6.7 Block tree construction time in relation to the block tree size, with pruning
enabled on less repetitive texts. 47

6.8 Block tree construction time in relation to the block tree size, with pruning
enabled on less repetitive texts. 47

6.9 Block tree construction time in relation to the block tree size, with pruning
enabled on the 32 MiB prefixes of less repetitive texts from the standard
Pizza&Chilli Corpus. 48

6.10 Block tree construction time (with rank/select support) in relation to the
block tree size, with pruning enabled on the 32 MiB prefixes of less repet-
itive texts from the standard Pizza&Chilli Corpus. 48

6.11 Average access time in relation to the block tree size for repetitive texts.
The x-axis shows the block tree size in bits used per symbol input text,
while the y-axis shows the average access time in nanoseconds on a linear
scale. Note that each graph has an individual scale for the x-axis. 49

6.12 Average access time in relation to the block tree size for the less repetitive
standard Pizza&Chilli Corpus. 50

6.13 Average access time in relation to the block tree size for the 32 MiB pre-
fixes for texts in standard Pizza&Chili Corpus. 50

6.14 Average rank time in relation to the block tree size for repetitive texts.
The x-axis shows the block tree size in bits used per symbol input text,
while the y-axis shows the average rank time in nanoseconds on a linear
scale. Note that each graph has an individual scale for the x-axis. 51

6.15 Average rank time in relation to the block tree size for texts in the standard
Pizza&Chili Corpus. 52

6.16 Average rank time in relation to the block tree size for the 32 MiB prefixes
for texts in standard Pizza&Chili Corpus. 52

6.17 Average select time in relation to the block tree size for repetitive texts.
The x-axis shows the block tree size in bits used per symbol input text,
while the y-axis shows the average select time in nanoseconds on a linear
scale. Note that each graph has an individual scale for the x-axis. 53

6.18 Average select time in relation to the block tree size for texts in the stan-
dard Pizza&Chili Corpus. 54

6.19 Average select time in relation to the block tree size for the 32 MiB pre-
fixes for texts in standard Pizza&Chili Corpus. 54

6.20 Log-log plots of constructing times on a 64-core machine (with simulta-
neous multithreading enabled). 56

68

List of Tables

6.1 The sequences we use, with their size n symbols (we use one byte per
symbol), their alphabet size σ, the number of Lempel-Ziv factors z (cal-
culated with Algorithm 1), a measure of compressibility z logn

n log σ
and the

compression achieved with p7zip (Version 16.02). Note that we do not
use the whole english text, but only a prefix. 36

69

List of Algorithms

1 LPF to LZ77 [13] . 5

2 Compute prev for SA [5] . 6

3 Compute LPF . 7

4 Compute LPF of S with SA and LCP [14] 7

5 Block Tree Construction Scheme [7] . 14

6 Mark blocks using LZ77-phrase boundaries 17

7 Mark blocks using LPF-Array . 18

8 Naive scan to find the left most occurrence of S[i..i+ l) 22

9 Compute FirstOccℓ . 23

10 Compute FirstOcc∗ . 24

11 Map occurrences in text to blocks . 26

12 Block tree construction . 27

13 Greedy Heuristic . 28

71

	Abstract
	Zusammenfassung
	Introduction
	Problem Statement
	Contribution
	Structure of Thesis

	Fundamentals
	Related Work
	Lempel-Ziv Factorization
	LPF-Array
	Sequential Construction Using SA and LCP
	Practical CRCW PRAM Parallel Construction

	Block Tree
	Queries
	Construction

	Concept
	Marking Blocks
	Marking Blocks using LZ77-phrases
	Marking Blocks with LPF-Array

	Identifying Leftmost Occurrences Using LPF- and PrevOcc-Array
	Block Tree Construction
	Complexity Analysis

	Pruning
	Greedy Heuristic

	Implementation
	Data Structure for Block Trees
	Sequential Implementation
	Block Tree Variants

	Naive Parallelization

	Experiments
	Setup
	Sequential Evaluation
	Construction Time and Tree Size
	Query Times

	Parallel Evaluation

	Conclusion
	Future Work

	Bibliography
	List of Figures
	List of Tables
	

