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Abstract

The work on efficiently solving the Boolean Satisfiability Problem (SAT) has progressed in
great strides within the last decades. With the rise of multi-core processors the parallel Port-
folio architecture has been dominant for designing a successful parallel SAT solver. Such
parallel solvers run multiple single threaded SAT solvers simultaneously and exchange
learned clauses between them to improve their performance. In this thesis, we define lit-
eral stability as a statistical aggregation of the assignment values of a literal by sampling
the trail in regular intervals. We define heuristics using literal stability which assign fuzzy
weights to each foreign clause as a measure of usefulness and only import the best. Finally,
we empirically evaluate these heuristics inside the clause exchange procedure. Unfortu-
nately, our approach was unable to show any improvement over the default.



Die Arbeit an der effizienten Lösung des booleschen Erfüllbarkeitsproblems (SAT) hat
in den letzten Jahrzehnten große Fortschritte gemacht. Mit dem Aufkommen von Mehrk-
ernprozessoren hat sich die parallele Portfolio Architektur als dominant für das Design
einenes erfolgreichen parallelen SAT-Lösers herausgestellt. Solche parallelen Löser führen
mehrere sequentielle SAT-Löser gleichzeitig aus und tauschen die gelernte Klauseln zwis-
chen ihnen aus, um ihre Leistung zu verbessern. In dieser Arbeit definieren wir die Lit-
eralstabilität als eine statistische Aggregation der Zuweisungswerte von Literalen durch
regelmäßiges Abtasten. Wir definieren Heuristiken welche Literalstabilität verwenden um
Gewichte als Maß für deren Nützlichkeit zu jeder fremden Klausel zuweisen. Die besten
Klauseln werden jeweils importiert. Schließlich bewerten wir diese Heuristiken empirisch
im Rahmen des Klauselaustauschverfahrens. Leider konnten wir mit unserem Ansatz keine
Verbesserung nachweisen.



Acknowledgments

Many thanks to my supervisor Dr. Markus Iser for his guidance during this thesis. I
also want to thank Dominik Schreiber for any assistance when working with Mallob and
patience with any issues I encountered. Finally, I want to express my gratitude to the Gauss
Centre for Supercomputing e.V. (www.gauss-centre.eu) for providing computing
time on the Supercomputer SuperMUC NG at Leibniz Supercomputing Centre, as well as
Prof. Peter Sanders and his institute for the provided computing resources.

Hiermit versichere ich, dass ich diese Arbeit selbständig verfasst und keine anderen,
als die angegebenen Quellen und Hilfsmittel benutzt, die wörtlich oder inhaltlich über-
nommenen Stellen als solche kenntlich gemacht und die Satzung des Karlsruher Instituts
für Technologie zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fas-
sung beachtet habe.

Ort, den Datum

www.gauss-centre.eu




Contents

Abstract iii

1 Introduction 1

2 Fundamentals 3
2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 SAT Solving Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 DPLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.3 CDCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Parallel SAT Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.1 Search Space Splitting . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.2 Parallel Portfolio . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.3 Clause Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.4 HordeSAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.5 Mallob . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Related Work 11
3.1 GPUShareSAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Progress Saving Based Quality Measure . . . . . . . . . . . . . . . . . . . 12
3.3 Lazy Clause Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Control-based Clause Sharing . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Stability-based Clause Weights 15
4.1 Literal Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Trail Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2.1 Exponential Moving Average with Cumulative Correction . . . . . 18
4.2.2 Efficient Trail Sampling . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.3 Optimized Implementation . . . . . . . . . . . . . . . . . . . . . . 22

4.3 Clause Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4 Clause Weight Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Evaluation 29
5.1 Trail Sampling Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

vii



5.2 Parameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 Evaluation of Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.4 Cloud Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Conclusion 39

Bibliography 41



1 Introduction

The boolean Satisfiability Problem (SAT) is a famous algorithmic problem in computer
science. It asks whether there exists a variable assignment for some boolean formula in
conjunctive normal form, so that the formula evaluates to true. Both theoretical research
and practical applications have explored this problem in depth within the last half cen-
tury. On the theoretical side it is at the core of the famous P vs NP question as it was the
first problem proven to be NP-complete [8]. Every subsequent proof for the NP-hardness
of a problem was performed using a (transitive) polynomial transformation from the SAT
problem. As computer hardware performance increased and more advanced SAT solving
algorithms were developed it became feasible to use SAT solvers in practical application.
For example, modern constraint solvers use SAT solvers internally as part of their solv-
ing procedures [11]. Microchip manufacturers can encode their circuits into propositional
formulas and use SAT solvers to formally verify the correctness before starting the ex-
pensive production process [23]. Other uses are found in bioinformatics [24], automated
planning [21] and cryptography [26]. On a fundamental level, a SAT solver performs an
exhaustive search on all possible solutions. With the use of clause learning, restart policies
and search heuristics enhanced by highly optimized data structures, it has become feasible
to solve problems containing millions of variables and clauses. As the performance of a
single processor core plateaued, the next natural step was to explore SAT solving in a multi-
core setting. A common approach is to run multiple sequential SAT solvers in parallel and
coordinate their solving procedures. Each sequential solver is running a unique configu-
ration to diversify the exploration of the search space. Parallel SAT solvers will often use
multiple distinct SAT solver implementations. In order to further benefit from multi-core
systems, the clauses learned by each sequential solver are shared, so every solver can ben-
efit by the work of its siblings. However, importing clauses too eagerly carries a significant
performance cost [4]. Therefore, it is very important to be selective when importing foreign
clauses.

In this thesis we develop a new approach for clause sharing using the notion of literal
stability. Literal stability summarizes the recent assignment behavior of each variable. This
information is gathered during solver execution by sampling the current trail. We develop
an efficient implementation to perform trail sampling. A solver can use literal stability
information to predict the usefulness of a clause to determine if it should be imported. We
explore and analyze seven different heuristics which integrate stability to optimize clause
selection.
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1 Introduction

Structure of Thesis

We start by providing an explanation of the fundamentals needed to understand the rest of
this thesis in Chapter 2. We cover basic definitions and provide background on the current
state-of-the-art SAT solving technologies. In Chapter 3 we summarize related work that
explores different strategies for effective clause sharing. We continue describing our own
approach in Chapter 4. To analyze the effectiveness of our strategy and evaluate the results
we perform a variety of benchmarks in Chapter 5. Finally, in Chapter 6 we give our final
thoughts and give suggestions for future work.
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2 Fundamentals

This chapter summarizes important concepts used in this thesis, as well as other relevant
background information.

2.1 Definitions

Let V be the set of boolean variables1. Each variable v ∈ V can only be assigned one
of three values of the set S = {T, F, U}. Where T stands for true, F for false and U
represents unassigned. The negation of all elements in S is defined as ¬T = F , ¬F = T
and ¬U = U . Literals L = V ∪ {¬v|v ∈ V } are the set of all variables and their logical
negations. Their complement operator · : L→ L is defined as

l =

{
¬l if l ∈ V

v if l = ¬v, v ∈ V

We define a clause c to be a set of literals {l0, l1 . . . lk} which are implicitly connected by
disjunction. A SAT formula f is the conjunction of a set of clauses {c0, c1 . . . cn}.

A variable assignment is a function σ : V → S. If all variables in an assignment are
either T or F we call it a complete assignment. We define the semantics of a SAT formula
using an interpretation function I which determines the truth value of a formula given a
variable assignment. I is defined as:

I(l, σ) =

{
σ(v) if l ∈ V

¬σ(v) if l ∈ V

I(c, σ) =


T if T ∈ Wc := {I(l, σ) | l ∈ c}
U if T /∈ Wc, U ∈ Wc

F else

I(f, σ) =


F if F ∈ Wf := {I(c, σ) | c ∈ f}
U if F /∈ Wf , U ∈ Wf

T else

1The variables are not strictly boolean as they can be assigned three values. The third value U is an artifact
of the solving algorithm with partial solutions. The core intuition for boolean variables remains the same.
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2 Fundamentals

Given an assignment σ, a literal l is satisfied iff I(l, σ) = T . Likewise, a clause c is
satisfied iff I(c, σ) = T and formula f is satisfied, iff I(f, σ) = T . Otherwise, they are
unsatisfied. We call a formula f satisfiable iff there exists a σ such that I(f, σ) = T .
Otherwise, if there does not exist such an assignment, the formula is unsatisfiable. The
SAT problem asks if a given SAT formula is satisfiable.

Example 2.1.1. Satisfiable
Let f = {{x1, x2}, {x1, x2}}. In order for f to be satisfied x1 and x2 can not be both

false, as this would make the first clause unsatisfied. Likewise, if they are both true then the
second clause is unsatisfied. If they are assigned different truth values, both literals will
each satisfy one of the clauses each, thereby, satisfying the formula.

Example 2.1.2. Unsatisfiable
Let f = {{x1, x2}, {x1, x2}, {x2}}. This formula is unsatisfiable. To prove unsatisfia-

bility, one can try each combination of variable assignments. However, in this particular
example we can infer that x2 has to be false, in order to satisfy the third clause. Using
this information we can effectively remove x2 from the first and second clause because x2

can not aid in satisfying these two clauses. Literals like x2 which are the last remaining
unassigned literals within an unsatisfied clause are called unit literals. This propagation
of information is a core part of a modern SAT solver and further explained in Subsec-
tion 2.2.1. After propagating x2, we are left with {{x1}, {x1}}. Either assignment for x1

will invalidate one remaining clause which proves the unsatisfiability of f .

We adopt the notion of triggering as is defined in [32]. If the unit propagation of a
sequential SAT solver finishes without causing a conflict, a triggering clause c would have
allowed the unit propagation engine to make further progress by either causing a conflict
or allow for a new literal to be propagated. Based on this motivation, a triggering clause is
defined as follows: Given an assignment σ and a clause c of size s. We say that c triggers
σ iff:

(i) For each literal l ∈ c, I(l, σ) ̸= T .
(ii) For at least s− 1 literals l ∈ c, I(l, σ) = F .

The first case excludes clauses that contain a satisfied literal, as such clauses are ignored
during unit propagation. The second case specifies that at most one literal can be unas-
signed. Together both rules define a clause to trigger an assignment, iff the clause would
cause unit propagation to result in a conflict or turn into a unit clause for further propaga-
tion.

2.2 SAT Solving Algorithms

Because this thesis explores details of parallel SAT solving using clause learning, we pro-
vide a short overview and explanation of the relevant SAT solving algorithms building up
to state-of-the-art CDCL solvers.
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2.2 SAT Solving Algorithms

2.2.1 DPLL

The DPLL algorithm [10], named after its inventors: Davis, Putnam, Logemann and Love-
land is a complete algorithm which searches the space of all variable assignments trying to
find a satisfying assignment.

On a high abstraction level, the DPLL algorithm eagerly assigns unit literals in a process
called unit propagation and then recursively splits the search space by trying both truth
values for a currently unassigned variable, called the decision variable. Unit propagation
detects clauses that contain a single unassigned literal l where all other literals within the
cause are unsatisfied. Such a clause has to assign l to be true, in order to satisfy this clause.

Every decision the current decision level increases by one starting with zero at the start
of the solving procedure. A conflict occurs when all literals in a clause are false. In this
case the current partial assignment cannot be part of a satisfiable assignment as is proven by
the conflicting clause. If it ever encounters a satisfying assignment, it has shown the input
formula to be satisfiable. Otherwise, if the search procedure finishes and never encountered
a satisfying assignment, the input formula has to be unsatisfiable. The original paper [10]
additionally uses pure literals, another mechanism similar to unit literals, to reduce the
search space. However, subsequent iterations on the DPLL algorithm like CDCL ignore
pure literals. Therefore, we have chosen to omit pure literals in the explanation of the
DPLL algorithm.

2.2.2 Resolution

The Resolution algorithm is based on the resolution rule in logic which states that given two
hypothesis clauses {x0, . . . , xn, z} and {y1, . . . , ym, . . . z} then {x0, . . . , xn, y1, . . . , ym},
the resolvent, has to be true as well. To informally justify the correctness of the resolution
rule, consider both cases of z. If z is true, then there has to exist a yi which is satisfied, oth-
erwise the second hypothesis would be not satisfied. Since yi is contained in the resolvent
it is also satisfied. On the other hand, if z is false, there has to exist an xi which is satisfied.
By the same reasoning as before xi is part of the resolvent and thereby satisfies it.

The resolution algorithm repeatedly tries to find two clauses in its input formula where
the resolution rule applies. The resolvent is added to the formula. This operation preserves
the satisfiability of the original formula. Because the empty clause is always unsatisfiable,
if the resolution rule ever generates the empty clause, the entire formula has to be unsat-
isfiable. Otherwise, the algorithm will reach a fixed-point since there exists only a finite
number of clauses on a finite number of variables. If the fixed-point is reached, then the
formula is satisfiable.

5



2 Fundamentals

2.2.3 CDCL

The CDCL algorithm [7], short for conflict driven clause learning, combines the DPLL
algorithm with resolution. Resolution is used to learn a new clause at every conflict, which
motivates the name CDCL. These new clauses allow unit propagation to assign more liter-
als, thereby pruning entire subtrees of the search space.

The clause learning procedure works as follows: Every newly assigned literal, either by
unit propagation or decision, is placed in order on the trail. The trail is a stack of literals
which defines the literals that are assigned true under the current partial assignment. There
is never a need to assign a literal to be false on the trail, as its complement can be assigned
true instead.

If a literal on the trail was assigned due to unit propagation, it remembers which clause
forced this literal to be assigned. The so-called reason clause of the assigned literal. Once
a conflict occurs during the search, all literals in the conflicting clause are false by defi-
nition. There exists at least one literal in the conflicting clause which is false because its
complement was assigned true due to unit propagation. This complement has an associated
reason clause. Since the conflicting clause contains the original literal and the reason clause
contains its literal complement, the resolution rule can be applied to create the resolvent
of those two clauses. Continuing with the resolvent, we can iteratively apply resolution as
long as there is still a literal assigned false due to unit propagation. The clause created in
this process is added to the set of clauses maintained by the solver.

The addition of clause learning has dramatically improved the performance of SAT
solvers. Whereas DPLL solvers would repeatedly solve the same subproblem, CDCL
solvers can summarize its solution in the form of learned clauses. By propagating liter-
als in the learned clauses the solver can skip the subproblem. Additionally, a newly learned
clause defines which decision variable needs to be flipped in order for the clause to become
satisfied. Backtracking to this decision level is called non-chronological backtracking.

2.3 Parallel SAT Solving

The frequency of single cores has been stagnant for at least a decade and it is unlikely it
will increase exponentially ever again without a major breakthrough in microchip design.
Modern CPU architectures, in response, have shifted to increasing the number of parallel
cores on a CPU instead. With the rise of CPUs containing up to several hundred cores, SAT
solving algorithms need to adjust if they want to utilize this extra computational power.

State-of-the-art parallel SAT solver use multiple instances of a single threaded (sequen-
tial) solver to explore and solve different subproblems in parallel. The main differentiator
between different parallel solver is how their single threaded solver are configured, what
information they get to share and how they share this information.

First, this section will explore the main techniques for parallel SAT solving. Finally,
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2.3 Parallel SAT Solving

we take a closer look at two specific parallel SAT solving engines HordeSAT [4] and Mal-
lob [33].

2.3.1 Search Space Splitting

Search Space Splitting is the classical approach to parallel SAT solving and uses a divide-
and-conquer approach strategy. It divides the search space of a propositional formula into
multiple disjoint parts and distributes them among multiple workers. If a worker finishes
with a satisfiable solution, we know the entire input formula must be satisfiable. To prove
unsatisfiability we need to wait for all workers to finish with an unsatisfied result.

On the surface, this partitioning of the search space into n parts, one might expect a
speedup of n. However, the difficulty of the different subproblems varies drastically and
it is hard to predict how long a single subproblem will take to be solved. To ameliorate
this issue dynamic work stealing is used to supply workers with additional work if they are
idle. The most common technique utilizes a guiding path which was first introduced in the
parallel DPLL solver PSATO [35]. A master-slave architecture is used, where the slaves
are running a sequential SAT solver on a given part of the search space, while the master
organizes the search space splitting and load balancing between slaves.

The master process maintains a binary search tree where the nodes represent a subprob-
lem of the original formula. Each node splits the subproblem it represents by selecting an
unassigned variable v. Both assignments of v define two new smaller subproblems as its
children where v is assigned true or false respectively. Therefore, each leaf is defined by
a partial assignment which can be derived from the path beginning at the root node to the
leaf. This path is called the guiding path and is passed to the slave which starts solving this
particular subproblem. If a slave is idle, but no remaining subproblems are left unassigned
the master process can split an unsolved subproblem to generate new work for the idle slave
and reducing the subproblem for the slave whose subproblem was split.

Besides using guiding paths, alternatives to split up the search space use scattering
functions [19] and xor scattering [31]. A more modern variant of search space splitting is
called cube-and-conquer which uses a lookahead solver [7] to generate partial assignments
which are solved by CDCL solvers. Lookahead solvers have been shown to be effective at
solving certain problem classes but do not generalize well to large industrial instances. The
cube-and-conquer approach aims to combine the strengths of both lookahead and CDCL
solvers. Using a specialized lookahead heuristic a cube-and-conquer solver was able to
disprove the Pythagorean triples problem [18].

2.3.2 Parallel Portfolio

The parallel portfolio approach to parallel SAT solving also uses multiple sequential SAT
solvers running in parallel. Each solver is configured with different parameters. The per-
formance of a SAT solver on a given problem can change drastically based on the specific

7



2 Fundamentals

configuration on parameters. Therefore, if multiple solver configurations represent a set
of orthogonal strategies they can search different parts of the search space in parallel. As
an example consider that fast restarts generally benefit the solving of unsatisfiable formu-
las but penalize satisfiable instances [28]. A very simple portfolio solver with two cores
therefore might run two sequential solvers, one with a fast restart mechanism and the other
with few restarts in order two optimize both of these cases. All the configuration options
and how they are selected is called the diversification strategy. ManySAT [15] selects, as
part of its diversification strategy, between different restart policies, decision heuristics and
clause learning schemes. It is possible to simulate the search space splitting approach in a
portfolio solver by specifying its guiding path as a phase. The selection heuristics of the
SAT solver will then select the assignments in the guiding path and lead the solver to this
specific subproblem. Thus, portfolio can be viewed as a generalization of search space
splitting. Even without any strategy to ensure disjointedness of search spaces, the overlap
between solvers in a pure portfolio setting appears to be small [4].

2.3.3 Clause Sharing

Sequential SAT solver learn clauses to prune parts of their search tree. In a parallel setting,
the different sequential solvers can share their learned clauses with each other so that they
can benefit from each others work. Clause sharing between different solvers, therefore,
allows a parallel SAT solver to solve a formula faster than any of its sequential solvers
could solve alone. However, to avoid exponential blow-up and overwhelming the unit
propagation procedures it is important to limit the amount of shared clauses.

A common heuristic is the size of a learned clause in order to decide if the clause is
learned. Mallob [33], for instance, shares the smallest clauses up to a certain amount that
contain 8 or fewer literals by default. Alternative heuristics use the literal blocks distance
(LBD) [34] instead. LBD have proven effective at predicting the usefulness of a clause
within a single threaded solver. The benefits of LBD in parallel SAT solving are less clear.
This is further complicated by the fact that the concrete LBD value depends on the solver
state and can not always be determined for other solvers.

When a solver imports a clause learned by a different solver, it needs to incorporate
this clause into its own clause database. Depending on the complexity of its internal data
structures this can be non-trivial. Solvers using the common two-watched-literal data struc-
ture [27] for efficient unit propagation and backtracking need to take care not to invalidate
their invariants when adding a foreign clause to their database. Alternatively, they can only
import clauses when the current decision level is zero. For example, immediately after a
restart. Most parallel solvers with clause sharing, batch the learned clauses in a shared
buffer and only import after a certain time period has passed to avoid excessive overhead
from communication between different cores.

8



2.3 Parallel SAT Solving

2.3.4 HordeSAT

HordeSAT[4] is a massively parallel portfolio SAT solver, scalable up to thousands of cores.
Its architecture treats each solver as a black box that satisfies a minimal interface. This in-
terface is split into three parts: (i) starting and interrupting, (ii) diversification and (iii)
clause sharing. State-of-the-art solvers are well suited to implement this interface, which
makes it easy to add new solvers. The exact details on what settings and behavior diversi-
fication affects is left up to the individual solvers.

Multiple MPI [13] processes each manage several solver instances. Following the ini-
tialization of each solver they are diversified. Each MPI process maintains a buffer which
collects the learned clauses by its solvers. Periodically, this buffer is exchanged with all
other MPI processes using the allgather MPI operation and the received clauses are
passed to each solver. In order to reduce shared duplicate clauses, HordeSAT utilizes sev-
eral Bloom filters. In addition to a global Bloom filter, every MPI process also maintains a
Bloom filter for each solver. The solver specific Bloom filter remember which clauses have
been learned by their solver. The global Bloom filter maintains the set of clauses shared.
Every newly learned clause is first added to the solvers Bloom filter. If it is neither too large
for it to be shared nor a duplicate, it is added to the global Bloom filter and clause buffer.

The decentralized nature of HordeSAT without a central node managing the search or
communication, simplifies the implementation and allows for easy scalability over up to
thousands of nodes.

2.3.5 Mallob

Mallob [33] builds upon HordeSAT principles. Besides having a performant parallel SAT
solving engine, Mallob in general is a work scheduling system with sophisticated load
balancing mechanisms. As part of this thesis we will focus on Mallob as a parallel SAT
solver and describe its difference compared to HordeSAT. Mallob structures its processing
elements as a binary tree, called jobtree. Each processing element can execute one or more
SAT solvers depending on the configuration and hardware capabilities. Whereas HordeSAT
used an allgather operation to share learned clauses between all participating solvers,
Mallob utilizes its jobtree for communication. Each node in the jobtree maintains a buffer
of clauses learned by its solvers.

In regular intervals, the learned clause buffers are aggregated along the jobtree. Each
non-leaf node performs a three- or two-way merge on the (aggregated) buffers of its chil-
dren based on the size of the clauses. This strategy does not leave any gaps in the clause
aggregation buffer that usually occur during the concatenation of buffers in HordeSATs
implementation. Additionally, all literals within a clause are sorted, thereby allowing the
filtering of duplicate clauses immediately by comparing the current with the previous clause
during the merge. This strategy significantly reduces the memory sent between different
nodes since it does not send any unused memory. The aggregation buffer size for a node

9
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does not need to grow linearly to the number of participating solvers. Furthermore, within
a processing element a dynamic data structure is used to collect learned clauses before they
are aggregated and shared with other solvers. This data structure keeps smaller clauses
and, if necessary, discards larger clauses when the available memory runs low. The same
data structure is used for imported clauses so that the best clauses are kept if a solver takes
a long time before importing again. Finally, Mallob modifies the clause filtering strategy
used by HordeSAT. It omits the global clause filter per processing element as it already per-
forms deduplication as part of the clause aggregation process. However, they complement
the solver specific filter by adding an exact set in order to filter unit clauses.

Mallob has proven its effectiveness by winning every the cloud track of every SAT
competition it participated [12, 16, 17].
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3 Related Work

In this chapter we will explore alternative approaches to clause sharing in a parallel SAT
solver.

3.1 GPUShareSAT

Like HordeSAT and Mallob, GPUShareSAT [32] is also a parallel portfolio SAT solver. Its
main feature is utilization of a GPU to improve clause sharing as its name implies. It is diffi-
cult to exploit the massive parallel computational capacities of GPUs effectively for solving
the Satisfiability problem. Current CPU based implementations for SAT solvers can not be
easily translated to run on a GPU. Not only is the available memory and cache for an indi-
vidual core much lower, for maximal efficiency the different cores of a GPU need to execute
the same execution path. This is problematic for DPLL/CDCL style solvers with bespoke
data structures which usually perform highly non-uniform computations. Previously, GPUs
were used to aid in unit propagation [9], pre-processing [29] and survey propagation [25]
which, individually, are more suited to the architecture of a GPU. GPUShareSAT uses the
GPU to detects clauses that might be useful for a solver S based on an analysis of previous
trails of S that were sent to the GPU.

The architecture of GPUShareSAT consists of several solver threads which send their
trail and learned clauses to a single shared master thread. The trail is the variable assign-
ment of a solver at its current state. The master thread communicates with the GPU in order
to quickly determine which clauses might be useful for a solver based on its sent trails. To
determine which clauses are useful the GPU finds the clauses that trigger an assignment.
GPUShareSAT operates under the common assumption that clauses which would have
been useful in the recent past are likely to be useful in the near future. Therefore, a clause
triggering an assignment implies that this clause would have been useful to the solver who
sent the assignment. Once it receives this clause, we expect an above average probability
that this clause will cause a conflict or unit propagation as the solver progresses.

The amount of data generated by the individual solver instances is sufficiently large to
overwhelm the GPU. Consequently, only the trails after propagations which did not result
in a conflict are shared. For all other trails more clauses would not have helped the solver
in making more progress since the solver would have triggered just the same. Additionally,
the GPU makes sophisticated use of bit-instructions and pooling of assignments to speedup
the detection of triggering clauses on the GPU.
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3.2 Progress Saving Based Quality Measure

Progress Saving [30], also often referred to as Phase Saving, describes the technique where
the last true/false assignment of each variable is remembered as P . The value of P does
not change after unassigning a variable. Originally [30], its intended use was within the de-
cision procedure to select the assignment for the new decision variable v as P (v). Progress
saving speeds up solvers using non-chronological backtracking and restarts. Such solvers
often encounter the same subproblem repeatedly and therefore will often find its solution
within P if the same subproblem was solved previously. While progress saving has been
widely adopted by popular SAT solver within their decision procedure, its proven useful
for other areas as well.

The authors of [2] use P to determine how useful a learned clause is likely to be. They
define a progress saving based quality measure as psmP (c) = |P ∩ c|. psmP (c) counts the
number of literals in c that are true in the memorized polarities of P . A low psmP (c) value
indicates that c is likely to be useful, considering that triggering clauses have a psm of one
or zero. psm is used in [2] as part of a dynamic clause management policy where clauses
with a high psm are frozen and temporarily removed from the active clause database used
in unit propagation. If the psm of a frozen clause decreases below a certain threshold it
is added again. Finally, the idea is extended for use in a parallel SAT solver [1], where
imported clauses are evaluated based on their psm and frozen for future use if it is too
high. Note however, that the exporting solver still use a global measure like size or LBD to
decide which clauses to export in the first place to keep the total communication volume at
a manageable rate.

3.3 Lazy Clause Exchange

Lazy Clause Exchange is a clause sharing technique proposed in [3]. Contrary to our and
GPUShareSATs approach it does not rely on the trail of a sequential solver to determine
usefulness. Instead, they make the following observation: For an unsatisfiable formula,
only around half of all learned clauses are used in the final proof for unsatisfiability. Natu-
rally, this value varies between different clause database reduction strategies but appears to
remain around 50%. In this sense only around half of all learned clauses are useful. More-
over, only around a third of all learned clauses are seen multiple times during all conflict
analyses and even less during conflict analyses that do not follow immediately. The paper
suggests that these clauses are interesting enough to be shared with other solvers. This
observation motivates the name „Lazy Clause Exchange“ as clauses are only shared lazily
once they have been seen multiple times. In addition, imported clauses are not used within
the search immediately. Instead, imported clauses are placed in a separate clause database
where only conflicts are detected which reduces overhead. Only once an imported clause
is falsified does it get promoted to where it is watched for unit literals.
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3.4 Control-based Clause Sharing

Variable State Independent Decaying Sum (VSIDS) is a popular branching heuristic for
modern SAT solver that measures the activity of every variable. During every conflict
resolution, the activity of every encountered variable is increased. In regular intervals, the
activity of all variables is decreased by a factor. VSIDS has proven itself to be an effective
heuristic to decide the next decision variable. Naturally, its viability for branching has
inspired other uses of this heuristic.

In [14] the authors use VSIDS to evaluate the relevancy of clauses imported from other
solvers. However, instead of only filtering for relevant clauses, they choose to increase the
throughput of clauses from solvers that, on average, have sent relevant clauses. Likewise,
the throughput is reduced for solvers that have not been sending relevant clauses.
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In this chapter we describe our approach to clause sharing in parallel SAT solving. We
begin by introducing the concept of literal stability and how this information can be ef-
ficiently gathered by a SAT solver using trail sampling. The second part of this chapter
focuses on how literal stability is used by a range of clause weighing heuristics to deter-
mine the usefulness of a clause for a sequential solver participating in the parallel solving
process.

4.1 Literal Stability

During the solving procedure for a SAT problem, variables are assigned one of three values:
true, false and unassigned. Depending on the assignment distribution of a variable, we can
draw conclusion about its behavior in the future.

The notion of literal stability was first introduced in [20], where it was used to select
better blocking literals. The authors were able to show improved performance on crypto-
graphic problem instances. While very similar, our definition of stability differs in that we
do not count the number of times a variable has been true, false and unassigned since start-
ing the solving procedure. Instead, we determine the statistical probability that a variable
is assigned a certain value in recent history and thereby predict that in the near future it will
have a very similar probability distribution. Contrary to [20], we choose the exponential
moving average (EMA) when accumulating the assignment values for a variable, in order
to gain an understanding how the variable behaved in recent assignment history.

To naively measure the stability values of each literal, the assignment of each variable is
sampled in regular intervals. This requires the notion of time within a SAT solver. A naive
choice for time measuring uses the real time and therefore samples every few milliseconds.
This definition of time is difficult to justify as it is unnecessarily non-deterministic and
therefore can hurt reproducibility. Instead, it is better to choose a regular event, called
epoch, within the CDCL solver loop. We choose the conflict as the unit of time. We will
further justify this choice in Section 4.2.

Given this notion of an epoch, we define Ti to be the set of all literals on the assignment
trail during the i-th epoch. Since a variable can only ever be assigned the value true or false,
either the positive or negative literal can appear in Ti and never both. Using Ti we define
three stability values mirroring the three assignment states. St

i (v) describes the probability
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that the variable v ∈ V is true in recent sampling history. In analogy, Sf
i (v) and Su

i (v)
behave the same and correspond to the probability that v is false or unassigned.

St
i , S

f
i and Su

i are defined as follows:

St
i (v) = α σ(v ∈ Ti) + (1− α)St

i−1(v) (4.1.1)

Sf
i (v) = α σ(¬v ∈ Ti) + (1− α)Sf

i−1(v) (4.1.2)
Su
i (v) = α σ(v /∈ Ti ∧ ¬v /∈ Ti) + (1− α)Su

i−1(v) (4.1.3)

This definition incorporates the usual definition of the exponential moving average. α
is the EMA smoothing coefficient and σ an indicator function defined over a predicate. If
the provided predicate is true, σ is 1, otherwise it is 0. The base case S

{t,f,u}
0 and biasing

of the EMA is ignored for now as an implementation detail. As would be expected: St +
Sf +Su = 1 and 0 ≤ St

i , S
f
i , S

u
i ≤ 1. This implies that it suffices to only collect two of the

three stability values. S{t,f,u}
i (v) is the function of stability values for each variable which

we extend over all literals.

St
i (l) =

{
St
i (l) l ∈ V

Sf
i (l) l ∈ V

Sf
i (l) is defined analogously, while Su

i (l) = Su
i (|l|). Where applicable, we will omit

the epoch i and literal l if it is not needed or implicit in the current context.
We use the exponential moving average to aggregate the stability information for each

variable because we are interested in the local behavior of a variable. As the solver ex-
plores different subproblems (communities) we expect the stability of variables to change.
The assignment distribution of different subproblems does not remain relevant and should
be forgotten to avoid unnecessary noise in the stability information. Moreover, the expo-
nential moving average can approximate the cumulative average by selecting an arbitrarily
small smoothing coefficient in case this assumption turns out to be incorrect. In addition,
by multiplying our definition of stability with the total number of epochs we arrive at ap-
proximately the same notion of stability as defined in [20].

As an example how stability can inform us about the behavior of variables let us con-
sider a hypothetical solver execution. Figure 4.1 shows the trail length over time for a
solver. Because the trail behaves like a stack, every entry on the trail length axis represents
an assigned literal. Literals on the trail are always assigned to be true, otherwise their com-
plement would be used instead. Only if the trail shrinks to below the entry of a literal can
this entry change to store a different, newly assigned literal. It follows, that a literal l which
is assigned earlier and is therefore lower in the trail will gradually increase its St(l) as it
gets repeatedly sampled. Whereas literals that are higher in the trail will be unassigned
and changed more often which results in a less stable St. The colored areas in Figure 4.1
indicate literals that are assigned at the end of the plot. The literals within the lowest (blue)
area are continuously assigned for the longest time which will be reflected in their St value.
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Figure 4.1: Plot of the trail length over time for a hypothetical solver execution. The colored bars
indicate assigned literals that have not changed since their assignment.

As we move up the different colored areas, their contained literals generally will have de-
creasing St values. Naturally, due to the unpredictable nature of SAT solving, it is possible
that certain literals are often repeatedly assigned and unassigned in a short timeframe. Such
literals will have a higher St value even though they are recently assigned on the trail. This
simple analysis of stability based on trail position is further complicated in state-of-the-art
solvers which use restarts and phase saving to improve their performance.

4.2 Trail Sampling

Conceptually, the stability information is collected by inspecting the assignment value of
each variable in regular intervals. We choose every conflict to perform trail sampling.
Inbetween two conflicts the trail is only appended with new literals. These literals are either
inferred by unit propagation or they are decision literals. Blocks of propagated literals are
separated by a single decision literal. After each decision, the unit propagation engine finds
all literals, that are implied by the new decision in addition to all previous literals on the
trail, and appends them to the trail. Within such a block of propagated literals the order is
mostly arbitrary and an implementation detail of the solver. Sampling multiple times while
such a block is in the process of being appended would bias the stability of literals that
appended earlier. Additionally, there is a difference of several magnitudes in the number
propagations compared to the number of conflicts. Sampling every propagation would
hurt performance significantly. Sampling less frequently than every conflict can miss the
assignment a variable entirely reducing the accuracy of the gathered data. Only after a
conflict occurs does backtracking remove literals from the trail. We therefore decide to
sample the trail during every conflict, before any literals are removed so that they sampled
at least once.

A naive implementation of trail sampling might iterate every variable on every conflict.
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For each variable it updates its stability value. We must not only observe the literals on
the trail because unassigned literals affect the stability value as well by decreasing both Sf

and St. As described in Section 4.1 we are interested in three values St, Sf and Su. We
need to sample at least two of these three values to calculate the third. In order to correctly
calculate these values, unassigned variables (i.e. variables that do not appear on the trail)
need to be updated as well.

The performance of this naive implementation can be surprisingly good, which can
be explained by beneficial cache behavior where the assignment value of each variable is
stored in a compact array. However, it still is linear in the number of variables. In Sub-
section 4.2.3 we will present an implementation that runs significantly faster. This faster
implementation requires that we can update an exponential moving average repeatedly with
the same value efficiently. Therefore, before we can explain the faster implementation we
need to derive an unbiased exponential moving average with this capability.

4.2.1 Exponential Moving Average with Cumulative Correction

In this section we derive an unbiased exponential moving average which supports updating
the current EMA with the same value k times in O(log k).

The common formula for the exponential moving average is

En = α · Yn + (1− α) · En−1 (4.2.1)

Y is the series of values we are averaging and α the smoothing factor with 0 < α < 1.
Note that this formula is missing its base case.

Substituting En in the body of the formula we can determine the series of weights for
each value.

En = α · Yn + (1− α) · En−1 (4.2.2)
= α · Yn + (1− α)(α · Yn−1 + (1− α)(. . . )) (4.2.3)

= α · Yn + α(1− α)Yn−1 + α(1− α)2Yn−2 + (. . . ) (4.2.4)

Given n values, their individual weights W n
i are

W n
i = α · (1− α)n−i

Based on W n
i , we derive the recursive formula for bulk updates, where we update with
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the value y repeatedly, k times.

En+k =
n+k∑
i=1

W n+k
i Yi (4.2.5)

=
n+k∑
i=1

α(1− α)n+k−iYi (4.2.6)

=
n+k∑

i=n+1

α(1− α)n+k−iy +
n∑

i=1

α(1− α)n+k−iYi (4.2.7)

= αy

k−1∑
i=0

(1− α)i + (1− α)kEn (4.2.8)

= (1− (1− α)k)y + (1− α)kEn (4.2.9)

= y + (1− α)k(En − y) (4.2.10)

Since 0 < α < 1 we can use the closed form of the finite geometric series to get rid of the
summation.

Unbiased Exponential Moving Average

In its current state, E0 remains an issue to calculate the EMA. Simply choosing an initial
value x would have the same effect as adding infinitely many x initially before beginning
to update with values in Y . The EMA for the first values would be distorted by this initial-
ization bias. Instead, we would prefer that the EMA of few early values is representative
of their true average. This is referred to as an unbiased exponential moving average.

For example, CaDiCal uses the unbiased EMA presented in the ADAM method [22].
While this method is more accurate than CaDiCals previous implementation it is unsuit-
able for us because of our bulk update requirement. Therefore, we derive our own bias
correction in the following paragraphs.

The exponential moving average assigns a non-zero weight for each value in an infinite
sequence of values. Since we are only given a finite amount of values there is a sum of
residual weights left. We distribute these residual weights evenly between all values. This
uniform distribution is equivalent to the cumulative moving average. Given a sufficiently
small smoothing coefficient α for the exponential moving average, we will mostly observe
the cumulative averaging between all values to begin with. As the number of values in-
creases the residual weight converges to zero and the weights of the exponential moving
average begin to dominate. If we were to ignore the residual weights we would end up with
a biased exponential moving average where the early values are distorted. We refer to this
cumulative corrected exponential moving average as CEMA.
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In order to determine the residual weight Rn given n values we subtract the sum of W n
i

from 1.

Rn = 1−
n∑

i=1

W n
i (4.2.11)

= 1−
n∑

i=1

α · (1− α)n−i (4.2.12)

= 1− α
n−1∑
i=0

(1− α)i (4.2.13)

= 1− α
1− (1− α)n

α
(4.2.14)

= (1− α)n (4.2.15)

Finally, we can write the formula for the exponential moving average which corrects its
bias using cumulative averaging:

E ′
n =

n∑
i=1

(
W n

i Yi +
Rn

n
Yi

)
(4.2.16)

=
n∑

i=1

W n
i Yi +

n∑
i=1

Rn

n
Yi (4.2.17)

This formula consists of the sum of the exponential part En = W n
i Yi and the cumulative

part Cn = Rn

n
Yi.

To efficiently calculate E ′
n as new values Yn become available we need to convert this

formula back into a recursive formula. Additionally, we want to be able to add the same
value y multiple times efficiently.

We already derived the recursive formula for the exponential part in Equation 4.2.5.
Likewise, for the cumulative part, we can also derive a recursive formula for bulk updates:
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Cn+k =
n+k∑
i=1

Rn+k

n+ k
Yi (4.2.18)

=
Rn+k

n+ k

(
k · y +

n∑
i=1

Yi

)
(4.2.19)

=
Rn+k

n+ k

(
k · y + n

Rn

Cn

)
(4.2.20)

=
(1− α)n+k

n+ k

(
k · y + n

(1− α)n
Cn

)
(4.2.21)

=
(1− α)n+k

n+ k

(
k · y + n+ k

(1− α)n
Cn −

k

(1− α)n
Cn

)
(4.2.22)

= (1− α)k
(
(1− α)n

n+ k
k · y + Cn −

k

n+ k
Cn

)
(4.2.23)

= (1− α)k
(
Cn + k

(1− α)ny − Cn

n+ k

)
(4.2.24)

As formulated in Equation 4.2.16, the sum of the exponential En and cumulative part Cn

result in the final value. An implementation of this unbiased exponential moving average
needs to store at least three values. The time n which remembers how many values were
already aggregated, the exponential and cumulative part.

Because Equation 4.2.5 and Equation 4.2.18 are recursive formulas, we need to define
the initial values for Cn and En. We define C0 = 0 and E0 = 0. To justify this decision,
consider the expected result of C1 and E1. When only adding a single value x, we expect
the EMA value to equal x: E ′

1 = C1 + E1 = x. In the exponential part, x is weighted by
α as is implied by formula for W 1

1 . Therefore, the cumulative part needs to apply 1− α as
weight to x in order for the sum of both result in x. This is only the case if Cn = 0. Finally,
it can be shown that for every n the sum of all weights of Cn and En add up to one.

4.2.2 Efficient Trail Sampling

In Section 4.2 we described how a naive trail sampling implementation looks like. While
simple, this method requires an O(n) operation every conflict. This subsection describes
how we can improve upon that implementation to reduce the performance costs.

The core idea is to only update the stability values of a variable when its assignment is
modified. If a variable v changes its assignment from a to b, where a, b ∈ S, we repeatedly
update the stability values for v with a repeatedly k times, where k is the number epochs
(i.e. conflicts) that occurred between when v was assigned with a and the current time.
For the most part, assignments of variables change only during propagation, decision and
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backtracking. To facilitate such an update, every variable remembers the epoch of when
it was last changed. Once the assignment changes again we can calculate the difference
in epochs and update the stability values accordingly. To efficiently update the EMA of a
variables stability value we use the CEMA implementation described in Subsection 4.2.1.
Algorithm 1 defines the function UPDATEVARIABLE which shows the corresponding pseu-
docode.

The type StabilityData stores the last epoch a variable was changed previously together
with the CEMA data to store Sf and St. After updating the last epoch of the input variable
v and calculating the number of elapsed epochs, both CEMA for true and false are updated.
In the algorithm, we once again use σ as the indicator function.

The correct use UPDATEVARIABLE requires it to be called every time before the assign-
ment of a variable changes, as it needs the original assignment. Finally, every time the
gathered stability information is used in order to calculate clause heuristics (Section 4.4),
we need to synchronize the epochs of all variables by calling UPDATEVARIABLE before-
hand. Otherwise, variables that have not changed for a significant amount of time, will not
reflect their current assignment in their stability value.

Algorithm 1: UPDATEVARIABLE(v : V )
1 Type: StabilityData = (lastEpoch: N, trueStability: CEMA, falseStability: CEMA)
Data: stability: V → StabilityData
Data: assignment: V → S

2

3 oldEpoch← stability[v].lastEpoch
4 currentEpoch← GETCURRENTEPOCH()
5 stability[v].lastEpoch← currentEpoch
6 epochDiff← currentEpoch− oldEpoch
7

8 stability[v].trueStability.UPDATEBULK(v, σ(assignment[v] = T ), epochDiff)
9 stability[v].falseStability.UPDATEBULK(v, σ(assignment[v] = F ), epochDiff)

The authors of [20] use a similar strategy to efficiently collect stability information. The
main difference is that they are collecting the sum of epochs where a literal is true. This
is equivalent to aggregating the cumulative moving average and significantly simplifies the
formula.

4.2.3 Optimized Implementation

The straightforward implementation of these formulas leaves room for performance im-
provements which are described in this subsection. The first three tips focus on the imple-
mentation of CEMA, while the last two are tips to improve the efficiency of the entire trail
sampling algorithm.
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The cumulative part requires the value (1 − α)n where n is the total number of values
added to the CEMA. Calculating this value each time is undesirable since it becomes in-
creasingly expensive over time. The implementation should instead store this value, so it
only needs to multiply it by (1− α)k each time k new values are added.

The cached (1 − α)n monotonically decreases and will eventually reach and remain
zero due to floating point imprecision. Once it and Cn are zero, the cumulative part will
remain zero forever. Therefore, we can skip the cumulative formula avoiding the expensive
division and multiplications. The branch predictor on modern CPUs can almost entirely
eliminate the costs for the cumulative part at this point. It is important to check both the
cumulative part and (1 − α)n. If either one is larger than zero it will influence the new
Cn+k.

The α parameter is the same for each CEMA of each variable. Therefore, it need not be
stored inside the CEMA implementation. It can be passed to the corresponding procedure
every time a CEMA is updated. Removing α reduces the size of the CEMA structure and
therefore improves cache efficiency.

We can reduce cache misses further by placing the time, true- and false-stability values
next to each other in memory for each variable (array-of-structs). If these three values are
stored in separate arrays for each variable (struct-of-arrays) they incur up to three cache
misses if their variable changes. On the other hand, when placed next to each other they
are likely placed on the same cache line.

Both the cumulative and exponential part require the factor (1 − α)k where k is the
number of epochs since the last update. We observe that the order of variables on the trail
coincides with their respective assignment epoch. We can make use of this behavior dur-
ing backtracking, by starting with the most recently assigned variable v1 with an epoch
difference of k1 and calculating (1 − α)k1 . The next variable v2 on the trail has an epoch
difference of k2 where k1 ≤ k2. Therefore, we can calculate (1−α)k2 by reusing (1−α)k1

by multiplying it with (1− α)k2−k1 . We can continue this trick for the entire backtracking
process. In the actual implementation we always cache the most recent (1− α)k result in-
dependent of whether the solver is currently backtracking. Any subsequent updates where
the new epoch difference is larger the k use the same cheaper calculation. Backtracking
causes around half of all assignments. Even besides backtracking on assignments to true or
false the probability that a new epoch difference is larger than the previous is around 50%
and can, therefore, make use of this optimization.

4.3 Clause Weights

A clause sharing parallel SAT solver will instruct its children to share their learned clauses
with each other. Not every received clause is useful for a sequential solver and accurately
determining whether a specific clause will help a different solver make progress is difficult.
Therefore, we rely on heuristics that approximate the usefulness of a clause.
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Usually, parallel SAT solvers are careful with the total amount clauses shared as it can
have detrimental effects unit propagation performance. For our approach we increase the
number of shared clauses, but the individual sequential solvers do not import all of them.
Instead, they evaluate each clause weight and only import a fraction of the clauses with the
best clause weight. In this thesis we focus on heuristics that use literal stability.

A good clause weight heuristic is expected to improve the performance of the parallel
SAT solver by selecting clauses that are more likely to cause a conflict or trigger unit
propagation, thereby furthering the progress of the entire solving process. The justification
of each of the presented heuristics will involve some reason why this particular heuristic
might improve the rate at which conflicts or unit propagations occur.

A heuristic is a function h : C → R which maps a clause to a real number. Whether
a higher or lower evaluation of a clause by a heuristic indicates usefulness is left to the
definition of the heuristic.

Regarding evaluation of clauses our approach is similar to GPUShareSAT [32] which
was introduced in Section 3.1. Whereas GPUShareSAT collects and maintains a discrete
set of recent assignments from a solver, we statistically aggregate recent assignments. The
GPUShareSAT approach is more precise as it can always accurately determine if a clause
would have triggered under a recent assignment. Our approach instead can only make an
approximate guess based on if the literal stability lines up. As multiple assignments are
merged, details can get lost.

Consider an example with two variables v1 and v2. Clauses encode that both variables
have to be equal: {v1, v2}, {v1, v2}. During the CDCL loop, they switch between the true
and false assignments. Therefore, the Sf value for each variable might be around 0.5.
Note that the both variables have the same stability as unit propagation ensures the same
assignment before the next conflict where their assignments are sampled. GPUShareSAT
remembers some exact trails where the variables are both true and other trails where they
are both false. Now, let us consider what happens when the clause {v1, v2} is learned. This
is a very useful clause as it proves that both v1 and v2 have to be true.

Our approach can only see that both variables have changed their assignment recently. It
does not matter whether v1 and v2 are always equal or always different their stability infor-
mation looks the same. Whether the clause would be imported is up to the exact heuristic,
but more fundamentally no heuristic can make a distinction here. GPUShareSAT, on the
other hand, can detect the conflict with a trail where both variables are false and import
it. The core issue is that stability does not retain any information about the relationship
between different variables. Here, it can not realize that the new clause is effectively a
unit clause. In GPUShareSAT such relationships are implicitly encoded inside the discrete
trails. This example is very small and, in practice, both methods are almost guaranteed to
import this clause. Yet we consider it sufficient to illustrate a core difference in approach.

The benefit of our approach is simplicity in implementation, not requiring additional
hardware. We incur performance overhead as each sequential solver needs to maintain its
own stability and perform clause evaluation, which is outsourced to the GPU by GPUShare-
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SAT. We do not require a master thread for coordination, which allows this approach to
scale more easily to an arbitrary number of sequential solvers, a property we inherit from
Mallob.

4.4 Clause Weight Heuristics

In this section we present the heuristics that were explored as part of this thesis and why
they were chosen. This section does not claim that these heuristics do improve solver
performance. Their evaluation is discussed later in Section 5.3.

Size

The size heuristic is the default heuristic used by most parallel SAT solver.

hsize(c) = |c|

It is easy to determine and independent of the solver that learned the clause. Additionally,
it is easy to justify why smaller clauses are more useful than larger clauses. Smaller clauses
cover larger parts of the entire search space. They are in general more likely to trigger as,
per definition, fewer literals need to be assigned false. Since the size heuristic is also the
default for the Mallob parallel SAT solving engine we use this heuristic as the baseline for
the experiments in this thesis.

Product

The product heuristic is the product of all Sf values of each literal:

hproduct(c) =
∏
l∈c

Sf (l)

The Sf (l) can be viewed as the probability that l is false in the recent history. In order to
determine the probability that a given clause would trigger we multiply the probability that
each literal is false. For this heuristic a higher value represents a clause that is more likely
to trigger. However, this assumes that each Sf (l) is pairwise independent which is not
true. For example, consider the following three clauses {¬x, y}, {x,¬y}, {x, y, z}. The
first two clauses guarantee that x and y are always assigned to the same value due to unit
propagation. Therefore, if z is independent of x and y, the product heuristic would result in
Sf (x) ·Sf (y) ·Sf (z) while the correct probability is Sf (x) ·Sf (z). Despite this limitation,
it may have turned out that the actual error introduced by this false assumption is not super
relevant in practice, which is why we added it to the set of heuristics to explore.
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Mean

The mean heuristic calculates the average of the Sf of each literal:

hmean(c) =

∑
l∈c S

f (l)

|c|

The mean heuristic averages out the likelihood for each literal to be false. Naturally, a
higher rating implies a that the given clause is more likely to trigger under the current
assignment.

A notable feature of the mean is heuristic that its evaluation is independent of the clause
size. For example, unlike the product heuristic, where each additional Sf (l) almost always
decreases its overall rating because Sf (l) ∈ [0, 1].

Lukasiewiecz

This heuristic is based on the equally named T-norm used in fuzzy logic.

hlukas(c) = max

(∑
l∈c

Sf (l)− |c|+ 1, 0

)

Usually a T-norm is defined as a binary operator. We can generalize it to an n-ary
function because T-norms are required to be commutative and associative. In order for the
Lukasiewiecz norm to be larger than zero, the sum of all Sf values must be larger than
|c| − 1. This is a strong requirement and there is little doubt that such clauses are likely to
trigger. However, all clauses that do not meet this bar are considered equally bad with an
evaluation of zero.

Minimum

This heuristic evaluates to the lowest false stability value of all literals in a clause.

hmin(c) = min
l∈c

(Sf (l))

The lowest Sf (l) serves as an upper bound on the probability for the actual probability of
the clause to cause a conflict. l is the literal that is most likely to not be false. Therefore, we
can use it to filter clauses that have a literal that is very unlikely to be false. Like the mean
heuristic, the minimum heuristic discards the size information entirely when assessing a
clause.
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4.4 Clause Weight Heuristics

Second Minimum

The second minimum is the second-lowest value of a set. Similar to the minimum heuristic
we define this heuristic to be the second minimum of the false stability values of each literal
in the clause.

h2min(c) = min
l0 ̸=l1

(max(Sf (l0), S
f (l1)))

Instead of optimizing for conflicts like the minimum heuristic, the second minimum
additionally allows unit propagations. If all but one literal l are likely to become false
in the near future, this will cause unit propagation to assign l. Such clauses might be
completely disregarded by the minimum heuristic. On the other hand, if l is consistently
true, the usefulness of this clause drops without changing its weight under second minimum
heuristic. Per definition, the second minimum heuristic will evaluate all clauses better than
the minimum heuristic.

Weighted Literal Score

The Weighted Literal Score (WLS) heuristic is a generalization of the size heuristic incor-
porating stability information.

hWLS(c) =
∑
l∈c

(
Su(l) + St(l) · ω + Sf (l) · 0

)
Each literal is evaluated and given a score in isolation. The sum of all literal scores is

the resulting clause weight. To motivate the heuristic consider the three extreme cases of
stability for a literal. If a literal has never been assigned, we lack any knowledge about
its behavior. In this case we score it with a value of one. Indeed, if all literals have never
been assigned, for example, at the very beginning, this heuristic evaluates to exactly the
size. If a literal is always false we can pretend the clause does not even contain this literal
and its size is therefore reduced by one. On the other hand, if a literal is always true, we
can not expect the clause to trigger. We therefore discourage this clause by penalizing the
entire clause weight by multiplying St with ω where ω ≥ 1. We refer to ω as the true
literal penalty. This heuristic has an immediate correlation with the size heuristics, since it
is monotonically growing with the number of literals in a clause.

Discrete Weighted Literal Score

The Discrete Weighted Literal Score (DWLS) is similar to WLS.

hDWLS(c) =
∑
l∈c

(
δτt(S

t(l)) · ω + δτf (S
f (l)) · 0 + (1− δτt(S

t(l)))(1− δτf (S
f (l)))

)
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4 Stability-based Clause Weights

δα is the indicator function whether the argument is greater than α. The justification for
the Weighted Literal Score and Discrete Weighted Literal Score are similar. The difference
is that the Discrete Weighted Literal Score makes a binary choice on the role a literal
serves. Instead of continuously interpolating between the three stability values for each
literal, DWLS categorizes each literal and then applies its respective score. To understand
the definition of the Discrete Weighted Literal Score consider three cases.

(i) St(l) > τt: The literal has been mostly true in recent history, therefore we weight
this literal with the true literal penalty ω.

(ii) Sf (l) > τf : The literal has been mostly false in recent history, therefore we act like
the clause doesn’t contain this literal and give it weight of zero.

(iii) else: Finally, if the literal is neither mostly true nor mostly false, it acts as a literal
without a clear behavior. Mostly unassigned literals fall into this category. These
literals get weight a of one.

Each of the summand in the formula correspond to one of the cases in order. We refer to τt
(τf ) as the true stability threshold (false stability threshold).
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5 Evaluation

We now turn to evaluating our work. We pose three question which we will try to answer
empirically in the subsequent sections.

(i) What are the performance implications of trail sampling?

(ii) What are the best parameters for the heuristics?

(iii) How well do the heuristics perform?

The last question will be split into a preliminary benchmark which compares all heuris-
tics on a weaker machine and a benchmark on the SuperMUC NG supercomputer which
explores the best heuristics using higher parallelization.

Trail sampling has been implemented inside the CaDiCal [5] SAT solver.1 We use
Mallob [33] as the parallel SAT solver. For this thesis, very few modifications were required
to get Mallob to work for our purposes. Indeed, we only added a pass-through mechanism
to be able to define configuration flags for CaDiCal which is linked as a static library inside
Mallob.

Before we discuss any results, however, we elaborate on our benchmark methodology.

Our benchmark selection consists of 349 SAT problem instances from a total of 400
SAT problems used in the 2022 SAT Competition. The 51 removed instances were re-
moved because no participating solver in the 2022 competition was able to solve them.
This reduction significantly reduces the execution time for the benchmarks in this chapter.
With a timeout of five minutes, we save more than four hours on each configuration per
benchmark run.

We use the PAR-2 score as our performance measure for all benchmarks. The PAR-2
score is calculated as the sum of runtimes for all solved instances plus two times the timeout
for every unsolved instance. It follows that for the PAR-2 score a lower score is better. In
addition to the PAR-2 score we also show the number of solved instances which is divided
into the number of solved SAT instances and UNSAT instances. Based on the definition of
the PAR-2 score, there is a strong correlation between the PAR-2 score and the number of
solved instances.

Where needed, we distinguish between the heuristics hsize and hsize∗ . hsize represents the
size heuristic with trail sampling disabled, while h∗

size has it enabled.

1The code can be found at https://github.com/neuring/cadical.
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5 Evaluation

strategy PAR-2 score # solved
NAIVE 30996.32 69

OPTIMIZED 14318.99 104
NO-SAMPLING 10867.66 109

Table 5.1: Benchmark results for trail sampling performance. NAIVE is the strategy which sam-
ples every variable on every conflict. The OPTIMIZED strategy incorporates all opti-
mizations described in Subsection 4.2.2

.

Evaluation Challenges

The variance of results has proven itself to be a major challenge during evaluation. Without
care, results prove to be unreproducible and therefore unreliable. Parallel SAT solving can
be highly chaotic in runtime performance. Even the runtime of a single sequential SAT
solver can differ drastically, given slightly different starting conditions or small random
disturbances during execution, like small differences in the selection of decision variables.
This is exacerbated by the non-deterministic nature of a parallel programs, where small
differences in scheduling can have a multitude of effects.

In order to counteract this problem, we have chosen several strategies. First and fore-
most we have increased the benchmark set multiple times until we ended up with the current
set. Additionally, we randomize the order of configuration and instances. Concretely, for a
benchmark with a set of configurations we want to test, we generate a list of all pairs of con-
figurations and instances and shuffle it. We traverse this list and execute the instance with
its configuration in order. This randomization helps to average out any temporal effects on
the computer like temperature. Finally, we did not use hyperthreading as it can introduce
additional disturbances during execution. However, even with these countermeasures one
needs to remain prudent when drawing conclusions from any gathered data.

The issue with variance can be observed in the tuning benchmarks for ϵ (Section 5.2)
and τ (Section 5.2). They both include two distinct benchmark runs and their average score
is noticeably different.

5.1 Trail Sampling Efficiency

The performance analysis of the optimized trail sampling was executed on an Intel(R)
Xeon(R) CPU E5-4640 0 @ 2.40GHz running Ubuntu 20.04 LTS using Linux 5.4.0. For
this benchmark we are only interested in the performance overhead of trail sampling.
Therefore, we run each instance entirely independent of each other and there is no parallel
solver coordinating multiple CaDiCal instances. Indeed, a large benefit over the remaining
benchmarks is that a single threaded CaDiCal is deterministic when executed with the same
seed.
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Figure 5.1: Performance of trail sampling approaches.

The results are shown in Table 5.1 and Figure 5.1. We compare three categories. The
baseline NO-SAMPLING uses default CaDiCal without any modification on our part.
NAIVE is the naive implementation of trail sampling where we sample every variable on
every conflict. Finally, OPTIMIZED is the improved trail sampling implementation includ-
ing all tricks described in Subsection 4.2.2. As is expected, NO-SAMPLING is the fastest
category. OPTIMIZED is fairly close with a score that is a third larger, while NAIVE trails
behind with a score that is a three times worse than NO-SAMPLING. When we restrict us
to the instances that were both solved by OPTIMIZED and NAIVE, OPTIMIZED shows a
speedup of 1.51. While NO-SAMPLING only has a speedup of 1.2 over OPTIMIZED.

5.2 Parameter Tuning

In this section we optimize the parameters for the heuristics WLS and DWLS as defined in
Section 4.4 and present the results.

Preliminary results have shown that hWLS and hDLWS to be the best performing heuris-
tics. Therefore, we focus on them when tuning parameters. We optimize the following
parameters for these heuristics in their presented order: EMA window size ϵ, true literal
penalty ω, stability threshold τ and buffer size β.

After a parameter is optimized, the subsequent tuning benchmarks adopt the optimized
parameter where applicable. Whenever we are tuning for a parameter with an open-ended
domain, we increase the value exponentially. If the parameter domain is bounded we lin-
early interpolate its domain.

The tuning benchmarks were executed on computer a with two CPU sockets with each
containing AMD EPYC 7713 64-Core Processor running Ubuntu 20.04 LTS using Linux
5.4.0. This results in a total of 128 physical cores. Mallob was run with 32 processing
units, each running four threads.
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WLS DWLS
ϵ PAR-2 score # solved (SAT + UNSAT) PAR-2 score # solved (SAT + UNSAT)
103 84753.70 232 (131 + 101) 83349.67 234 (133 + 101)
104 83416.13 235 (132 + 103) 82218.05 236 (133 + 103)
105 83968.98 235 (130 + 105) 82664.05 234 (134 + 100)
106 82534.23 236 (134 + 102) 82397.68 237 (132 + 105)
106 79123.02 242 (134 + 108) 79870.80 241 (133 + 108)
107 79583.44 240 (133 + 107) 80703.70 239 (132 + 107)

Table 5.2: The parameter tuning results for the EMA coefficient. The ema column specifies the
tested window size. The results of lower two rows were generated by a seperate bench-
mark run. Other parameters are: ω = 4, β = 4500, τ = 0.9

WLS DWLS
ω PAR-2 score # solved (SAT + UNSAT) PAR-2 score # solved (SAT + UNSAT)
1 80220.38 239 (132 + 107) 81643.63 238 (131 + 107)
2 79217.68 242 (133 + 109) 82294.03 235 (129 + 106)
4 78461.89 244 (136 + 108) 79373.19 242 (132 + 110)
8 79872.21 241 (130 + 111) 80419.94 238 (132 + 106)

16 80811.13 238 (132 + 106) 81127.14 238 (132 + 106)

Table 5.3: The parameter turning results of the true literal penalty parameter. Other parameters
are: ϵ = 106, τ = 0.9, β = 4500

Tuning EMA

We begin by tuning the EMA parameter ϵ. The values in the EMA column are comparable
to the window size in the simple moving average. The EMA coefficient α is calculated
using the formula α = 2

ϵ+1
[6]. In the first benchmark run we only tried values from 103 to

106. The results are shown in the first four rows of Table 5.2. For the most part, the best
results occur when ϵ = 106. Naturally, the question arises if larger values for ϵ improve the
results further. In order to answer this question we ran an additional tuning benchmark for
the EMA parameter. This time only with the value 106 and 107. These results are shown in
the two lower rows, separated by a horizontal line. Again, ϵ = 106 shows the best result.
However, it is worth pointing out that all results of the second run are better than all results
of first run. This discrepancy highlights the importance to shuffle all individual runs which
ameliorate such temporal artifacts and allows for comparison within the same benchmark
run.

Tuning True Literal Penalty

We now turn to the true literal penalty ω. As a reminder, the true literal penalty is the
factor by which literals that have been true in the recent past are penalized and, thereby,
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DWLS
τ PAR-2 score # solved (SAT + UNSAT)

0.5 81910.86 236 (129 + 107)
0.6 79606.30 241 (134 + 107)
0.7 81385.81 237 (132 + 105)
0.8 80900.41 238 (131 + 107)
0.9 81140.19 239 (132 + 107)

0.99 80099.90 240 (133 + 107)

Table 5.4: The parameter tuning results of the stability threshold. This parameter is only relevant
for the DWLS heuristic. Other parameters are: ϵ = 106, ω = 4, β = 4500

DWLS
τt τf PAR-2 score # solved (SAT + UNSAT)

0.6 0.6 52397.77 287 (143 + 144)
0.6 0.95 50776.60 291 (147 + 144)

0.95 0.6 50298.02 292 (145 + 147)
0.95 0.95 51353.11 290 (146 + 144)

Table 5.5: Benchmark results for the experiment where the stability threshold is split. Other pa-
rameters are: ϵ = 106, ω = 4, β = 4500

discouraging clauses that contain such literals. The results are shown in Table 5.3. Here,
the results clearly indicate that a true literal penalty of 4 is the best choice, both for hWLS

and hDWLS.

Tuning Stability Threshold

The next parameter is the stability threshold τ . This parameter is only used in hDWLS.
The definition of this heuristic in subsubsection 4.4 uses two parameters: true stability
threshold τt and false stability threshold τf . During the initial conception of hDWLS, both of
these parameters were merged as a single stability threshold parameter where τt = τf = τ .
Indeed, the split into the two parameters τt and τf was motivated by the results of this
benchmark.

The timings are shown in Table 5.4. The best performing stability threshold is 0.6.
However, it is closely followed by 0.99. These two values for the stability threshold are the
two peaks of these results. The question that arises is if 0.6 is simply an outlier or if there
is a more fundamental reason for these two peaks.

One hypothesis we have formulated is that the different thresholds optimize the behavior
for different literals. Since true literals make clauses useless to further solver progress, as
they can never trigger under the current assignment, such clauses are penalized by the
true literal penalty. Likewise, literals that are mostly false reduce the effective size of the
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WLS DWLS
β PAR-2 score # solved (SAT + UNSAT) PAR-2 score # solved (SAT + UNSAT)

750 85607.04 230 (132 + 98) 86519.16 230 (131 + 99)
1500 84461.12 232 (129 + 103) 83424.89 235 (131 + 104)
3000 80802.06 239 (134 + 105) 83413.01 234 (128 + 106)
6000 79881.18 240 (132 + 108) 80212.89 241 (131 + 110)

12000 79293.60 241 (134 + 107) 81014.10 237 (131 + 106)
24000 80438.19 237 (132 + 105) 79087.70 241 (133 + 108)

Table 5.6: The parameter tuning results of the buffer size. Other parameters are: ϵ = 106, ω = 4,
τ = 0.6

clause and are therefore are rewarded with a cost of zero. Based on the results of Table 5.4
we hypothesized that the two peaks indicate the optimal threshold for each of these two
thresholds respectively.

To test this hypothesis we ran a new experiment which splits the stability threshold and
tests every combination of the two peak values 0.6 and 0.95. The results for experiments
are presented in Table 5.1. The best results were achieved with a true threshold of 0.95
and a false threshold of 0.6. While this fact in isolation might confirm our hypothesis, the
second-best results swap the two values. We can not justify this fact and therefore disregard
our hypothesis. Additionally, it is troubling to see that in the cases where the true threshold
and false threshold are equal, both being 0.95 performs slightly better than 0.6. This is in
contradiction to the initial stability threshold tuning results and casts doubt on the overall
validity of this and the previous benchmarks.

Tuning Buffer Size

The final parameter we analyzed is the buffer size β. This parameter represents the number
of literals that are aggregated by Mallob and shared between all CaDiCal instances. Each
CaDiCal instance selects the best clauses using its heuristic until a third of all literals are
imported. The results are shown in Table 5.6. There is no clear value that appears to
perform best. All best results appear in the buffer sizes that are equal or larger than 6000.
Indeed, this result confirms preexisting knowledge about the optimal buffer size. Mallob
inherits its default buffer size of 1500 from HordeSAT. When multiplying the import ratio
with the buffer size, we arrive at approximately the same conclusion, that there is little to
gain by surpassing this default.

5.3 Evaluation of Heuristics

We evaluate every proposed heuristic in Section 4.4 by running it on the same machine
used for parameter tuning in the previous section. Again we use all 128 physical cores to
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heuristic PAR-2 score # solved (SAT + UNSAT)
hsize∗ 49864.17 292 (146 + 146)
hWLS 51748.62 288 (145 + 143)
hDWLS 52447.99 286 (148 + 138)
hproduct 52639.58 286 (146 + 140)
hmean 54406.01 285 (148 + 137)
h2min 56315.82 279 (143 + 136)
hmin 58318.98 276 (144 + 132)
hlukas 62730.68 270 (145 + 125)

Table 5.7: The benchmark results of every proposed heuristics, ordered by PAR-2 score. Parame-
ters are ϵ = 106, ω = 4, τ = 0.6, β = 6000

run Mallob.
For this benchmark all runs perform trail sampling. This includes the size heuristics

which does not require literal stability to be computed. However, including trail sampling
allows us to focus on the effects of the import heuristics since the trail sampling overhead
should cancel out when comparing their relative performance.

The results for this benchmark are presented in Table 5.7. The default hsize∗ heuristic is
best performing, followed by hWLS, hDWLS, hproduct and hmean. hlukas is the worst performing
heuristic.

5.4 Cloud Evaluation

As Mallob scales its shared clause buffer size with the number of used solvers, more solvers
imply more potentially useful clauses to select from. Indeed, it is possible that more cores
will allow our heuristics to select more effectively.

To explore if increased parallelism magnifies strengths of literal stability based heuris-
tics, we will run a final benchmark on the powerful SuperMUC-NG computer using six
times the number of cores. The SuperMUC-NG is a supercomputer which features a total
6336 compute nodes, each a 24-core Xeon Platinum 8174 processor with 96 GB of RAM
and an OmniPath network interconnection.

As the usage of a supercomputer is costly in terms of energy and money we only bench-
mark the best performing heuristics from Section 5.3. The resulting PAR-2 score is pre-
sented in Table 5.8. Figure 5.2 shows the corresponding performance plot.

The resulting order is mostly the same as in Table 5.7. As hsize is clearly the best
performing heuristic we need to conclude that our stability heuristics do not result in a
performance benefit. Furthermore, hsize∗ which unnecessarily performs trail sampling, is
still slightly better than the second-best best heuristic hwls. Therefore, it is not just the
overhead introduced by trail sampling that prevents hwls from surpassing hsize. Neither
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heuristic PAR-2 score # solved (SAT + UNSAT)
hsize 29741.76 319 (158 + 161)
hsize∗ 32903.85 316 (156 + 160)
hwls 33227.80 315 (156 + 159)
hproduct 35191.09 311 (155 + 156)
hdwls 36183.01 309 (154 + 155)
hmean 38003.49 308 (156 + 152)

Table 5.8: The SuperMUC-NG benchmark results of the best heuristics, ordered by PAR-2 score.
Parameters are ϵ = 106, ω = 4, τ = 0.6, β = 6000
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Figure 5.2: Performance of the best heuristics on 764 cores.
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were we able to find classes of problems where stability based heuristics showed a clear
advantage over the default size heuristic.

We observe that heuristics that correlate with the size of the clause appear to perform
most strongly. Whereas the heuristics which discard information like hmean, hmin and hlukas

perform the worst overall. This supports the efficacy of the hsize heuristic further.
In conclusion, we recognize that our presented clause sharing heuristics do not benefit

a parallel SAT solver.
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6 Conclusion

In this thesis we explored the use of literal stability to improve clause sharing. First, we
provided an overview starting from SAT solving first principles up to modern parallel SAT
solvers. We introduced the notion of literal stability which can be calculated by sampling
the trail in regular intervals. Using a custom derived unbiased exponential moving average
with support for efficient repeated updates we were able to optimize trail sampling signif-
icantly. We also discussed additional techniques to improve its performance further. Con-
tinuing with literal stability, we constructed multiple heuristics for clause sharing which
reprioritize foreign clauses to import. Finally, we optimized the needed parameters and
empirically evaluated all heuristics. Unfortunately, we were unable to show any benefit
over the default size heuristic.

Future Work

Although we were unable to improve the performance of a parallel SAT solver by integrat-
ing literal stability into the clause import procedures, there are potentially other areas that
could benefit from literal stability information. Stability has already shown to improve the
performance of cryptographic instances when it is applied to select blocking literals [20].
Likewise, there might be other areas that where literal stability could aid. For example,
when selecting a decision literal, literals with a certain stability profile might perform bet-
ter.
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