
Core-Count Independent Reproducible
Reduce

Bachelor’s Thesis of

Christoph Stelz

at the Department of Informatics
Institute of Theoretical Informatics

Reviewer: Prof. Dr. Alexandros Stamatakis
Second reviewer: Prof. Dr. Peter Sanders
Advisor: M.Sc. Lukas Hübner

01. December 2021 – 01. April 2022

Karlsruher Institut für Technologie
Fakultät für Informatik
Postfach 6980
76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

Karlsruhe, 01.04.2022

. .
(Christoph Stelz)

Abstract

Because of rounding errors, parallel floating-point summation can produce different results
on different core-counts. For some algorithms like hill climbing, RAxML-NG [7] or greedy
algorithms, this implies that results may be irreproducible with different core-counts.
We present the Binary Tree Reduction algorithm, which follows a distributed binary tree
scheme that keeps the calculation order fixed and independent of the core-count ? . A naive
implementation requires up to (? − 1) ∗ (log2

(
#−1
?

)
+ 1) messages to sum # floating-point

numbers. To reduce the message count, we introduce a message buffer and optimize data
distribution across the cores, the latter results in a runtime decrease of 18%. We find
that for ? = 256, Binary Tree Reduction has a slowdown of less than 2 compared to a
naive, irreproducible solution. It is able to compute the sum of # ≈ 21 ∗ 106 summands
on ? = 256 cores in about 248 µs.

i

Zusammenfassung

Die Addition von Gleitkommazahlen kann aufgrund von Rundungsfehlern bei unter-
schiedlicher Prozessorenanzahl zu unterschiedlichen Ergebnissen führen. Für manche
Algorithmen wie RAxML-NG [7] oder Greedy-Algorithmen kann dies den Verlust der
Reproduzierbarkeit bei unterschiedlicher Prozessorenanzahl bedeuten. Wir stellen einen
Reduktionsalgorithmus vor, der nach dem Schema eines verteilten Binärbaums vorgeht,
wodurch die Ausführungsreihenfolge unabhängig von der Prozessorenanzahl ? bleibt.
Eine naive Implementierung muss bis zu (? − 1) ∗ (log2(#−1?) + 1) Nachrichten senden,
um # Gleitkommazahlen zu addieren. Um die Nachrichtenanzahl zu senken führen wir
einen Nachrichtenpuffer ein und optimieren die Datenverteilung über die Prozessoren,
wobei letzteres zur einer Verringerung der Laufzeit um 18% führt. Wir stellen fest, dass für
? = 256 Prozessoren die Laufzeit des Binärbaum-Reduktionsalgorithmus weniger als 200%
der eines naiven, unreproduzierbaren Algorithmus entspricht. Die Binärbaum-Reduktion
ist imstande # ≈ 21 ∗ 106 Summanden auf ? = 256 Prozessoren in 248 µs aufzusummieren.

iii

I would like to thank Prof. Dr. Stamatakis and Lukas Hübner for
their enlightening advice and guidance, my parents for their continued
support throughout my studies, and Katrin Anne Mertes and Max
Lennart Steiert for proofreading this thesis.

iv

Contents

Abstract i

Zusammenfassung iii

1. Introduction 1
1.1. Motivation . 1
1.2. Preliminaries . 2
1.3. Related Work . 2

1.3.1. Sequential Left-to-right Reduction 2
1.3.2. Reproducible Accumulators . 3
1.3.3. Reduction Tree . 3

2. Binary Tree Reduction 5
2.1. Message Counts . 7

3. Implementation 9
3.1. Applied Optimizations . 12

3.1.1. Message Buffering . 12
3.1.2. Data Distribution . 13
3.1.3. Index-lookup Hashmap . 16
3.1.4. Vectorization . 19

4. Experiments 21
4.1. Experimental Setup . 21
4.2. Results . 24
4.3. Reproducibility of Results . 24

5. Conclusion 27

Bibliography 29

A. Acknowledgements 31

B. Appendix 35
B.1. Buffer Subtree-Flushing Criterion Comparison 35
B.2. Detailed Benchmark Results . 35
B.3. Message Count Maxima . 41
B.4. Source Code . 41

v

List of Figures

1.1. General reduction tree . 3

2.1. Example reduction tree for # = 3. 5
2.2. Distributed binary tree with # = 9 leaf nodes and ? = 3 Processing

Elements (PEs). 6
2.3. Simulated message counts for different dataset sizes on a cluster with

? = 256 PEs. 8

3.1. Example path for index 6 with # = 9. 9
3.2. The three distinctions in the inner loop of Algorithm 1. 12
3.3. Distributed tree with # = 6 nodes and ? = 2 PEs. 13
3.4. Runtime comparison of even vs. optimized data distribution. 17
3.5. Boxplot of the assigned number of elements per PE for the even and

optimized data distribution. 17
3.6. Microbenchmark comparison of unoptimized and optimized rankFromIndex

function. 18
3.7. Register content during AVX-2 subtree summation. 19
3.8. Microbenchmark comparing sequential summation to AVX-2 binary tree

reduction for ? = 1. 20

4.1. Median accumulation time after 100 repetitions for different datasets. . . 22
4.2. Relative slowdown of Binary Tree Summation compared to ReproBLAS

for ? = 256 PEs. 22
4.3. Runtime distribution for all three summation modes on the dataset rokasD7. 23
4.4. Speedup and median accumulation time of # = 21 410 970 elements over ? . 23

B.1. Accumulation runtime with different subtree sizes used as flushing criterion. 35
B.2. Runtime distribution for all datasets with ? = 256 PEs. 39
B.3. Slowdown of ReproBLAS compared to Allreduce (? = 256). 39
B.4. Slowdown of Binary Tree Summation compared to Allreduce (? = 256). . 40
B.5. Illustration of the shifting behaviour in the=lower8 -distribution that produces

maximal message counts. 41

vii

List of Tables

3.1. Scores for the even data distribution (# = 504 850, ? = 256). 14
3.2. Score of the =power2

8
data distribution (# = 504 850, ? = 256). 15

3.3. Score of the =optimized
8

data distribution (# = 504 850, ? = 256). 16

4.1. Overview of benchmark datasets. 21
4.2. Difference between smallest and largest obtained sum from runs with

varying PE-count. 25

ix

1. Introduction

1.1. Motivation

A common problem in massively parallel computations is the reduction (for example
summation) of results over the entire cluster. Widespread implementations do not ac-
count for cluster-size-independent reproducibility and will deliver different results even
if the only variable element is the number of participating Processing Elements (PEs).
Irreproducibility of reduction operations propagates upwards into the results of high-level
scientific software packages, impeding researchers abilities to understand and exchange
these results.
RAxML-NG [7] for example is a software package that searches for the most likely

phylogenetic trees based on biological input sequences. Given the exponentially large
number of possible trees (for 100 taxa there exist over 10182 distinct phylogenies [9])
and proven NP-hardness of the problem [8], an exhaustive tree search is infeasible.
Instead, RAxML-NG uses stochastic evolutionary models to determine the likelihood of a
given tree and performs a tree search to find a maximum likelihood estimate. Because of
their small magnitude, programs usually deal with likelihood values logarithmically. To
increase execution speed, RAxML-NG assumes that different sites evolve independently
and computes per-site likelihoods in parallel on different threads. The overall likelihood
of a tree is the product of all per-site likelihoods, therefore the tree log-likelihood is the
sum of all Per-Site Log-Likelihoods (PSLLHs):

!tree =
∏
B∈sites

!B (1.1)

log !tree = log

(∏
B∈sites

!B

)
=

∑
B∈sites

log !B (1.2)

The search path is chosen based on the log-likelihood of the current candidate tree. There-
fore, the correctness of sum (1.2) is critically important for the resulting trees. RAxML-NG
uses IEEE 754 floating-point numbers [6] to represent PSLLHs values, but floating-point
arithmetic is not necessarily associative due to rounding errors [5].
Darriba et al. [2] have shown that because of different summation orders, executing

the same version of RAxML-NG with the same input data and same random seed can
still produce different trees if the number of threads varies. Diethelm [3] reports on
the irreproducibility of a software used to simulate sheet metal forming and identifies
two common causes: sums whose order is determined by the time in which PEs finish
intermediate results and different propagation of rounding errors for a varied number of
PEs. Wiesenberger et al. [11] study the irreproducibility of the FELTOR software package

1

1. Introduction

used for fluid simulations due to floating-point non-associativity and counter the problem
by deriving bitwise-reproducible subroutines.

1.2. Preliminaries

Let F be the set of floating-point numbers. Given

• a cluster of ? PEs indexed with a rank 8 ∈ {0, . . . , ? − 1} and interconnected by a
Message Passing Interface (MPI)

• =8 floating-point numbers (elements) on the PE with index 8 (# :=
∑?−1
8=0 =8 in total)

• a not necessarily associative binary operation ◦ : F × F→ F

we want to reduce all numbers by means of ◦ so that the end result is bitwise-reproducible.
A reduction algorithm is bitwise-reproducible if multiple executions over the same set of
numbers with a variable number of PEs produce bit-per-bit identical results.
In order to correctly distribute the # elements over ? PEs, we need to deal with cases

where # is not divisible by ? . Let 0 := b#
?
c be the rounded number of elements per PE.

We can assign the remaining # mod ? elements to the upper or lower processes:

=lower8 =

{
0 + 1 if 8 < # mod ?

0 otherwise
(1.3)

=
upper
8

=

{
0 if 8 < # − (# mod ?)
0 + 1 otherwise

(1.4)

1.3. RelatedWork

Because of the abundance of reduction operations in modern high-performance-computing
applications, there already exist multiple reproducible reduction algorithms.

1.3.1. Sequential Left-to-right Reduction

A naive approach to solving above problem is to gather all elements on a single PE and
then apply the reduction operation strictly from left to right:

G0 ◦ G1 ◦ G2 ◦ . . . ◦ G#−1 = ((G0 ◦ G1) ◦ G2) ◦ . . . (1.5)

While simple in implementation, this approach does not benefit from parallelization.
It requires $ ()Gather + #) time. Because of the communication overhead, performance
decreases with an increasing number of PEs.

2

1.3. Related Work

1.3.2. Reproducible Accumulators

For floating-point summation in particular, Ahrens et al. [1] have developed an algorithm
that uses a 48 Byte reproducible accumulator to avoid unpredictable rounding errors. After
reading all the input data, the summation can occur in parallel in no particular order and still
produces bitwise identical results. This requires around 9# floating-point operations and
3# bitwise operations. The Reproducible Basic Linear Algebra Subprograms (ReproBLAS)
software package implements this algorithm and exposes it via a user-friendly API.
This approach is not suitable for general reduction operations, since it depends on

specific properties of floating-point numbers as specified in the IEEE 754 standard [6] and
is specific to summation.

1.3.3. Reduction Tree

���� ���� ���� ���� ���� ��	� ��
� ���

��
������������������������������	����
������

�

���������

�������������������

��������� �������	�

�������	����
������

��
������

�����������������

��������� !�"��#

$
�
%
"
��
&
#

Figure 1.1.: General reduction tree (figure from Villa et al. [10]).

Villa et al. [10] utilize a -ary tree structure on a Cray XMT system to sum floating-point
numbers reproducibly (Figure 1.1). Using parallel-prefix accumulation, they compute the
sum of # summands in log (#) steps, where determines the amount of numbers the
algorithm accumulates sequentially in each step. The reproducibility stems from the fact
that the reduction tree depends only on the total number of summands # and the constant
 , therefore the algorithm uses the same calculation order if the core-count differs.

The original source code is not available even after contacting the authors, therefore
implementation details are unknown and runtime comparisons hardly possible.

3

2. Binary Tree Reduction

(3 ◦ 2) ◦ 7

3 ◦ 2

3 2 7

7

(a) Reduction of the elements 3, 2, and 7

G

~

(0,2)

(0,1)

(0,0) (1,0) (2,0)

(2,1)

(b) Corresponding coordinate system

Figure 2.1.: Example reduction tree for # = 3.

In this chapter we present a special case (where = 2) of the reduction tree from Sec-
tion 1.3.3. To reduce # elements, we construct a binary tree with # leaf nodes, each
corresponding to a single element. By iteratively connecting adjacent nodes, we produce
inner nodes that represent the intermediate result obtained by reducing their children.
After dlog2 # e levels, the reduction of all elements into a single root node is complete.
Figure 2.1a demonstrates this reduction scheme. In the first level, we construct an inner
node that represents the reduction of the numbers 3 and 2. Since 7 has no adjacent ele-
ment, the next inner node has only one child node and propagates the value along the tree
unchanged. In the second and final layer, the root node represents the reduction of the
two remaining elements 3 ◦ 2 and 7, producing the final result (3 ◦ 2) ◦ 7.

We can uniquely identify nodes by using two-dimensional coordinates (G,~). The leaf
nodes have the coordinates (0, 0) through (# − 1, 0). To obtain the coordinates of inner
nodes, we simply take over the G-coordinate of their left child node and increment the
~-coordinate by 1. Figure 2.1b shows coordinates for all nodes in a binary tree with # = 3
leaf nodes. An element has index 8 if its corresponding leaf node has the coordinates (8, 0).

The absolute difference of G-coordinates of the child nodes of inner nodes doubles with
each level, thus for an inner node with ~-coordinate ~ the absolute difference is equal to
2~−1. By differentiating three cases, we define a recursive reduction function that adheres
to the above tree reduction scheme:

reduce(G,~) =


element with index G, for ~ = 0 (2.1)
reduce(G,~ − 1), for G + 2~−1 ≥ # (2.2)
reduce(G,~ − 1)︸ ︷︷ ︸

left child

◦ reduce(G + 2~−1, ~ − 1)︸ ︷︷ ︸
right child

, otherwise (2.3)

5

2. Binary Tree Reduction

Equation (2.1) defines the base case for leaf nodes, where no further reductions are
necessary. If # is not a power of 2, there will not always be an adjacent element (as in
Figure 2.1a). In this case, the inner node has only one child node whose value we can
directly return (Equation (2.1)). Finally, Equation (2.1) defines the recursive reduction
strategy for inner nodes with two child nodes.
We can express the entire reduction by applying the reduce-function to the root node
(0, dlog2 # e). Consider the example in Figure 2.1a:

reduce(0, dlog2 # e) = reduce(0, 2) Apply (2.3)

= reduce(0, 1) ◦ reduce(2, 1) Apply (2.3)

= (reduce(0, 0) ◦ reduce(1, 0)) ◦ reduce(2, 1) Apply (2.2)

= (reduce(0, 0) ◦ reduce(1, 0)) ◦ reduce(2, 0) Apply (2.1)

= (3 ◦ 2) ◦ 7

Binary Tree Reduction and the sequential left-to-right reduction from Section 1.3.1
require an equal amount of reduction operations. Binary Tree Reduction requires more
memory for out-of-place operations where the input data can not be overwritten, since
a single accumulator does not suffice to store all intermediate results. We expand our
model to account for PE-boundaries. We split up our binary tree across multiple PEs by
distributing the elements. A node with coordinates (G,~) belongs to the PE which holds
the element with index G . Figure 2.2 shows the distribution of nine elements across three
PEs.

0 1 2 3 4 5 6 7 8

A

B

PE 0 PE 1 PE 2

Figure 2.2.: Distributed binary tree with # = 9 leaf nodes and ? = 3 PEs. The red dots
indicate two PE-intersecting nodes.

Unlike sequential left-to-right reduction, Binary Tree Reduction can execute the reduc-
tions (0) ◦(1), (4) ◦(5) and (6) ◦(7) in parallel, since there exist no data dependencies
between them. Some calculations require communication between the PEs: a node is
PE-intersecting if its child nodes belong to distinct PEs. We define an outbound subtree
root as the right child node of a PE-intersecting node, since the algorithm must send
its value over the MPI. In Figure 2.2, node A with coordinates (2, 1) and node B with
coordinates (4, 2) are examples of PE-intersecting nodes. In this case, nodes (3, 0) and
(6, 1) are outbound subtree roots.

6

2.1. Message Counts

2.1. Message Counts

Themain barrier to efficient parallelization as outlined in the previous section is the need for
synchronization between PEs because of data dependencies in the form of PE-intersecting
nodes. The target implementation utilizes the MPI to communicate between different PEs
and since the messages are small (one double precision floating-point value occupies 8
bytes, or 64 bits), the number of messages between PEs dominates the communication
overhead. Under the assumption that messages are not bundled together by means of a
message buffer, the message count is equal to the number of PE-intersecting nodes.

Figure 2.3 shows the number of messages depending on the dataset size for the two types
of distributions introduced in Equation (1.3) and Equation (1.4). The functions display large
differences in message counts for small differences in dataset sizes, but follow a trend akin
to a logarithmic function. For # > ? , the lower bound of the message count is ? − 1, since
all PEs with a rank larger than 0 must have at least one outbound subtree root in order for
its elements to be included in the final result. For the =lower8 -distribution (Equation (1.3)),
the message count attains the global minima at # = 28 ∗ ? , where 8 ∈ N. In this case, each
PE holds an independent subtree of size 28 whose root node is part of a PE-intersecting
node. If we increase our dataset size to # + 1, applying the =lower8 distribution will shift all
PE-boundaries one step in G-direction because of the additional element on the PE with
rank 0. The subtree root nodes are now on different PEs than their children, producing 8 +1
PE-intersecting nodes on all PEs except the first one, as illustrated in Figure B.5. Therefore,
the message count for # = 28 ∗ ? + 1 is

(? − 1) ∗ (8 + 1) (2.4)

Furthermore,

= 28 ∗ ? + 1
⇔ # − 1 = 28 ∗ ?

⇔ # − 1
?

= 28

⇔ 8 = log2
(# − 1

?

)
If we substitute 8 in Equation (2.4), we get the following closed-form upper bound on the
message count for the =lower8 distribution:

" (#) = (? − 1) ∗ (log2
(# − 1

?

)
+ 1) (2.5)

Figure 2.3a displays a plot of Equation (2.5) in orange color. Under the assumption that the
number of PEs is constant, the message count" is in $ (log(#)). Note that for the =upper

8

distribution in Figure 2.3b, the corresponding spikes are much less pronounced since the
subtree shifting described above does not occur when adding only one element. Because
of the lower upper bound, implementations should therefore prefer the =upper

8
distribution

over the =lower8 distribution.

7

2. Binary Tree Reduction

0 25000 50000 75000 100000 125000 150000 175000 200000
Number of elements

0

500

1000

1500

2000

2500

Nu
m

be
r o

f m
es

sa
ge

s

Actual message count
Upper bound

(a) Remaining elements assigned to the lower
ranks (=lower8)

0 25000 50000 75000 100000 125000 150000 175000 200000
Number of elements

0

500

1000

1500

2000

2500

Nu
m

be
r o

f m
es

sa
ge

s

(b) Remaining elements assigned to the higher
ranks (=upper

8
)

Figure 2.3.: Simulated message counts for different dataset sizes on a cluster with ? = 256
PEs.

8

3. Implementation

In this chapter, we deduce the necessary equations to implement the reduction algorithm
and present multiple optimizations. We focus on summation, the reduction operator ◦ will
be floating-point addition. While the recursive formula given in Equation (2.1) already
defines a reduction algorithm, its implementation in imperative languages would heavily
rely on the call stack to store intermediate results. In practice, reducing iteratively from
leaf nodes to the root yields faster runtimes.1

The binary representation of element indices has dlog2 # e bits. If we order them from
most- to least-significant and interpret them as a series of decisions, where 0 means “go
up” and 1 means “go right and up”, each index encodes a path from the tree root to the
corresponding leaf node:

0 1 2 3 4 5 6 7 8

0

1

1

0

610 = 01102

Figure 3.1.: Example path for index 6 with # = 9.

For any given G-coordinate G > 0, themaximum ~-coordinate max~ (G) is equal to
the number of trailing zeros of G , i.e. the zero-indexed position of the least-significant bit
set in G . We denote this expression as ffs(G) − 1, where ffs is short for “find first bit set”.
The path representation offers intuition on why the equality holds: the least-significant
bit set is the last time the G-coordinate changes along the path from the root, since all
following bits are zero and encode the decision “go up”.

To find the G-coordinate of the parent node of an inner node (G,max~ (G)), we replace
the last (least-significant) “go right and up” decision with “go up”. Numerically, this is
equivalent to cancelling the least-significant bit of G , which can be efficiently calculated
using the bitwise AND-operation ′&′:

parent(G) := G & (G − 1) (3.1)

1For# = 227 elements on ? = 1 PE, we observe a 4.9 speedup over the recursive reduction (Microbenchmark
ID 5).

9

3. Implementation

Each PE with rank 8 (where 8 ∈ [0, ? − 1]) stores =8 consecutive elements. The global
index of the first element assigned to a PE is the so-called start index, and it is equal to the
prefix sum of the assigned number of elements:

startIndex(0) = 0 (3.2)

startIndex(8) =
8−1∑
9=0

= 9 (3.3)

This allows us to define the function rankFromIndex, which computes the rank of the
PE that stores the given element:

rankFromIndex(G) = max {8 ∈ [0, ? − 1] | startIndex(8) ≤ G} (3.4)

For any given set - of G-coordinates, we can use the rankFromIndex-function to deter-
mine the G-coordinates of outbound subtree roots, i.e. nodes whose parent node lies on a
different PE:

�PE-intersecting(-) = {G ∈ - | rankFromIndex(G) ≠ rankFromIndex(parent(G))} (3.5)

largestSubtreeChildIndex returns the largest G-coordinate of all child nodes of the given
subtree root, which is equal to setting all trailing zeros of the given index to 1. Our
implementation calculates this using the bitwise OR-operation “|”:

largestSubtreeChildIndex(8=34G) = 8=34G | (8=34G − 1) (3.6)

10

Algorithm 1: Summation procedure
Data: PE-rank A0=: , =A0=: summands with coordinates (BC0AC�=34G, 0) through

(BC0AC�=34G + =A0=: − 1, 0)
Result: Reduction result on the PE with rank 0

1 BC0AC�=34G ← BC0AC�=3824B (A0=:)
2 4=3�=34G ← BC0AC�=34G + =rank
3 if A0=: = 0 then
4 >DC1>D=3(D1CA44'>>CB ← {0}
5 else
6 >DC1>D=3(D1CA44'>>CB ← �PE-intersecting([startIndex, endIndex))
7 end
8 for 8 ← >DC1>D=3(D1CA44'>>CB do

// Reduce subtree level-by-level
9 for ~ ← [1,max~ (G)] do
10 G ← 8

11 while G ≤ largestSubtreeChildIndex(G) do
12 G0 ← G // G-coordinate of left child node
13 G1 ← G + 2~−1 // G-coordinate of right child node
14 0 ← (G0, ~ − 1) // value of left child node
15 if G1 ≥ # then

// No adjacent node, passthrough
16 (G,~) ← 0

17 else if rankFromIndex(G1) ≠ A0=: then
// PE-intersecting node, fetch over MPI

18 1 ← receive (G1,max~ (G1)) from rankFromIndex(G1)
19 (G,~) ← 0 + 1
20 else
21 1 ← (G1, ~ − 1) // value of right child node
22 (G,~) ← 0 + 1
23 end
24 G ← G + 2~−1
25 end
26 end
27 if A0=: ≠ 0 then
28 send (8,max~ (8)) to rankFromIndex(?0A4=C (8))
29 end
30 end

11

3. Implementation

0 1 2 3

G0 G1

(a) Line 21: simple summation
of inner nodes

0 1 2 3

G0 G1

(b) Line 16: G1 exceeds the num-
ber of elements # = 3

0 1 2 3

G0 G1

(c) Line 18: G0 and G1 point to
elements located on different
PEs

Figure 3.2.: The three distinctions in the inner loop of Algorithm 1.

Algorithm 1 shows the procedure that each PE follows. It consists of three nested loops.
The most outer loop iterates over all PE-intersecting indices in ascending order; its body
is responsible for the reduction of the subtree rooted at the corresponding PE-intersecting
node. Because our reduction scheme is a left-leaning binary tree, nodes with lower indices
occur earlier in the reduction equation, therefore processing PE-intersecting indices in
ascending order minimizes wait-times for other PEs.
The inner loops in Line 9 and Line 11 implement the leaf-to-root scheme that reduces

adjacent nodes level-by-level. The distinctions made in Equations (2.1)–(2.3) give rise to a
series of conditional expressions: Line 16 deals with inner nodes that have no adjacent node
(Figure 3.2b), Line 18 distinguishes between PE-intersecting nodes and local inner nodes
(Figure 3.2c) and Line 21 performs the local reduction of adjacent elements (Figure 3.2a).

3.1. Applied Optimizations

The implementation used in Chapter 4 follows Algorithm 1 with the following optimiza-
tions. Message Buffering (Section 3.1.1) allows to reduce the number of messages sent
across the network and therefore reduces the communication overhead. The number of
messages further decreases with a data distribution optimized for the reduction algorithm
(Section 3.1.2). Vectorizing the additions (Section 3.1.4) yields the largest performance
gain of all optimizations presented in this section.

3.1.1. Message Buffering

Typically, Algorithm 1 sends multiple consecutive messages to the same target PE. Fig-
ure 3.3 is a minimal example for this observation: nodes (3, 0) and (4, 1) are outbound
subtree roots that PE 1 sends to PE 0. PE 1 can avoid the additional message latency if
it does not send (3, 0) directly, but stores it in a buffer instead. Then, after finishing the
computation of (4, 1), PE 1 can send both results to PE 0 in a single message. As long as
the communication overhead for sending a message sufficiently exceeds the time needed
to sum two floating-point numbers, the delayed transmission of (3, 0) does not impact the
runtime negatively.

12

3.1. Applied Optimizations

0 1 2 3 4 5

PE 0 PE 1

tim
e

Figure 3.3.: Distributed tree with # = 6 nodes and ? = 2 PEs.

The current implementation utilizes a buffer with a maximum of 4 elements per message.
After the summation routine has computed an outbound subtree root, it places the result in
the outbound message buffer. Flushing of the buffer occurs in either one of the following
cases:

• The summation procedure inserts another outbound subtree root into the buffer
which has a different target PE.

• The summation procedure begins work on an outbound subtree root whose subtree
size is greater than 64 summands. This guarantees an upper limit on the time a
finished result spends inside the buffer.

The buffer utilization averages about 1.2 summands per message. Figure B.1 shows that
relaxing above flushing criteria does not yield a runtime benefit, presumably because of
the induced latency.

3.1.2. Data Distribution

If the user can arbitrarily assign elements to PEs, multiple optimization techniques arise.
To quantify them, we propose the following model:

Score = CMPI_Send ∗ =PE-intersecting nodes +max{8 ∈ [0, ? − 1] | =8 ∗ Cadd} (3.7)

CMPI_Send is an estimate of the time needed to send a single element between two PEs,
Cadd estimates the time needed to add two floating-point values with double precision
(64 bit). On a shared-memory machine,2 these estimates were empirically measured
to be CMPI_Send ≈ 281=B and Cadd ≈ 4.15=B . While this model does not take any data
dependencies between PEs into account, it balances the performance gain achieved by
parallelization (represented by a low maximum on the right side of Equation (3.7)) against
the communication overhead caused by binary tree fragmentation.

In this section we evaluate multiple approaches to the optimization of the data distribu-
tion with an example dataset with # = 504 850 summands and ? = 256 PEs.

2Refer to Chapter 4 for hardware specifications.

13

3. Implementation

3.1.2.1. Efficient message count determination

To calculate the score in Equation (3.7), an algorithmmust efficiently determine the number
of PE-intersecting nodes. A naive approachwould be to checkwhether rankFromIndex(?0A4=C (8)) ≠
rankFromIndex(8) for each element 8 ∈ {0, . . . , # − 1}, requiring $ (#) time.

Algorithm 2 represents a faster alternative requiring $ (? + log2 #) time.

Algorithm 2: Message count solver
Data: Distribution =8 , where 8 ∈ {0, . . . , ? − 1}
Result: Number of PE-intersecting nodes

1 BC0AC�=3824B ← {∑ 9

8=0 =8
�� 9 ∈ [1, ? − 1]}

2 <4BB064�>D=C ← 0
3 8 ← 0
4 while 8 + 1 < A0=:B do
5 BC0AC�=34G ← BC0AC�=3824B [8]
6 4=3�=34G ← BC0AC�=3824B [8 + 1]
7 8=34G ← BC0AC�=34G

8 while 8=34G < 4=3�=34G do
9 <4BB064�>D=C ←<4BB064�>D=C + 1

10 8=34G ← largestSubtreeChildIndex(8=34G) + 1
11 end
12 8 ← 8 + 1
13 end
14 return<4BB064�>D=C

3.1.2.2. Even distribution

Distributing the data evenly across the PEs ensures maximum parallelization of the com-
putational effort, since the maximum difference in the workload of PEs is 1 element. As
shown in Table 3.1, distributing the elements evenly yields a score of around 400 µs. The
lower expected worst-case message count of the =upper

8
-distribution compared to the =lower8

distribution described in Section 2.1 expresses itself in both a lower score and a lower
message count.

3.1.2.3. Round down to power of 2

The even distribution does not take the binary tree structure into account and may place
PE-boundaries at places which produce numerous PE-intersecting nodes. By rounding

Table 3.1.: Scores for the even data distribution (# = 504 850, ? = 256).
Distribution Score Message count
=lower8 469.0 µs 1640
=
upper
8

401.9 µs 1401

14

3.1. Applied Optimizations

Table 3.2.: Score of the =power2
8

data distribution (# = 504 850, ? = 256).
Distribution Score Message count
=
power2
8

1083.4 µs 256

down the number of assigned elements to the nearest power of 2, we obtain start indices
with a lot of trailing zeros, which is desirable since they produce larger PE-local subtrees
and reduce the number of PE-intersecting nodes. Equation (3.8) describes this approach
formally. The element count on the first ?−1 PEs is a power of 2. By placing the remaining
elements on the last PE, we ensure that an uneven number of remaining elements does
not reduce the trailing zeros of the start indices of the other PEs.

=
power2
8

=

{
2blog2

#
?
c

8 < ? − 1
−∑?−2

8=0 =
power2
8

8 = ? − 1
(3.8)

The rounding decreases the amount of messages considerably (Table 3.2). With our test
dataset, the message count is in the vicinity of the lower bound of ? − 1, an 80% reduction
compared to the even distribution. This comes at the cost of an imbalanced element
distribution, the PE with the highest rank, which stores the remaining elements, contains
about half the elements. The score function penalizes the inefficient parallelization with
the second term, causing the score to be 2.7× higher compared to the even distribution.

3.1.2.4. Optimized-Index Distribution

As seen in Section 3.1.2.3, unbounded distribution optimization yields small message counts
at the expense of computational imbalance. In this section we will present a method to
optimize the data distribution within certain bounds, to balance communication costs
against computational costs.
Let fairShare := #

?
be the approximate number of elements per PE in an equivalent

even distribution. We want to optimize each startIndex(8) to produce the least amount
of PE-intersecting nodes while keeping the differences in the computational workload
between PEs small. We express this requirement as follows:

∀8 ∈ {1, . . . , ? − 1} : startIndex(8) − startIndex′(8) ≤ U ∗ fairShare (3.9)

where startIndex′(8) is the optimized start index and U is the maximum deviation relative
to the even distribution. In Algorithm 3, we iteratively improve our start index by applying
the parent-function (Equation (3.1)) until the proposed index violates Equation (3.9). We
obtain the complete data distribution =optimized

8
by executing Algorithm 3 on each start

index of the =upper
8

-distribution.
Figure 3.5 shows the difference in assigned elements of the even distribution and the

optimized distribution with a maximum deviation of U = 0.2. The even distribution always
assigns an equal number of elements to PEs, while the optimized distribution varies the
number of elements according to the maximum deviation parameter U . Figure 3.4 shows a
histogram of the summation duration for the two distributions. The runtime benefit of an

15

3. Implementation

Algorithm 3: Index optimization procedure
Data: PE-rank 8 , start index 9 , maximum deviation parameter U
Result: Optimized start index for the PE with rank 8

1 2DAA4=C�=34G = 9

2 ?A>?>B43�=34G = 2DAA4=C�=34G

3 while initialIndex − proposedIndex ≤ U ∗ #
?
do

4 2DAA4=C�=34G = ?A>?>B43�=34G

5 ?A>?>B43�=34G = ?0A4=C (8=8C80;�=34G)
6 end
7 return 2DAA4=C�=34G

Table 3.3.: Score of the =optimized
8

data distribution (# = 504 850, ? = 256).
Distribution Score Message count
=
optimized
8

184.5 µs 621

optimized data distribution is visible, with optimized distribution the algorithm calculates
results about 4 µs faster than with an even distribution.

3.1.2.5. Drawbacks of the Scoring Function

The scoring function (3.7) has twomajor drawbacks: it does not consider the critical path of
calculations and also assumes that the time CMPI_Send is constant. This causes a discrepancy
between predicted score times and measured benchmark times. Nonetheless, it provides a
runtime model accurate enough so that distributions with a better score perform better
under benchmark conditions.

3.1.3. Index-lookup Hashmap

Algorithm 1 uses the rankFromIndex function to lookup the PE-rank for a given element
index. This function maps the binary tree structure to the underlying computing topology
and its execution speed is performance-critical due to its position inside a frequently
executed loop.
The initial implementation used a loop to find the first entry in the startIndices array

which numerically exceeds the input index. The runtime of this algorithm is $ (?). Mi-
crobenchmarks revealed the linearly increasing runtime and the need for optimization
(see Figure 3.6). The currently implemented version uses a red-black tree (std::map) to
scan for the start index, which yields a runtime in $ (log(?)).

16

3.1. Applied Optimizations

16.0 µs 18.0 µs 20.0 µs 22.0 µs 24.0 µs 26.0 µs 28.0 µs
0

50

100

150

200

250

Co
un

t

Runtime Histogram N = 504 850, p = 256
even distribution
optimized distribution (= 0.2)

Figure 3.4.: Runtime comparison of even vs. optimized data distribution.

1600 1800 2000 2200 2400 2600
Number of assigned elements

Optimized

Even

Figure 3.5.: Boxplot of the assigned number of elements per PE for the even and optimized
data distribution.

17

3. Implementation

0 1000 2000 3000 4000

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

p (ranks)

ru
n
ti
m

e
 i
n
 n

a
n
o
s
e
c
o
n
d
s

Naive O(p)
Map O(log(p))

Figure 3.6.: Microbenchmark comparison of unoptimized and optimized rankFromIndex
function.

18

3.1. Applied Optimizations

���� � � � �

� + � � + � � + � � + �

_<<256_ℎ033_?3

� + � � + � � + � � + �

_<<256_4GCA02C 5 128_?3 _<<256_20BC?3256_?3128

(� + �) + (� + �) (� + �) + (� + �)

_<<_033_?3

((� + �) + (� + �)) + ((� + �) + (� + �)) ((� + �) + (� + �)) + ((� + �) + (� + �))

_<<_ℎ033_?3

Figure 3.7.: Register content during AVX-2 subtree summation.

3.1.4. Vectorization

The theoretical per-node peak of Floating-Point Operations per Second (FLOPS) increases
dramatically under the utilization of Single Instruction Multiple Data (SIMD) capabili-
ties [4]. While modern compilers like the GNU C-Compiler try to automatically vectorize
existing code,3 optimization by hand can yield better results.

Compared to the simple left-to-right reduction presented in Section 1.3.1, a reduction tree
lends itself better to parallelization, since an algorithm can reduce subtrees independently.
Our implementation uses x86 Advanced Vector Extensions (AVX), specifically AVX-2. AVX-
2 registers are 256 bits wide and can therefore store four double precision floating-point
numbers. Algorithm 4 uses two registers to accumulate a subtree of eight elements at
once. Because AVX-2 instructions manipulate data within 128-bit lanes, it is necessary
to extract the upper 128-bit after the first horizontal add in order to follow the correct
summation order. Figure 3.7 displays the register contents over time.

Our implementation uses Algorithm 4 as a subroutine inside Algorithm 1 to advance the
iterative reduction three levels per iteration. If the remaining number of elements in the
current iteration is not divisible by eight, the algorithm processes the remaining elements
using non-vectorized instructions. Figure 3.8 compares the runtime of three accumulation
algorithms: the initial recursive implementation of Binary Tree Reduction, the vectorized
AVX-2 implementation and the std::accumulate routine from the C++ standard library.

3We confirmed manually that the relevant code sections compile to AVX machine instructions after passing
the -mavx flag

19

3. Implementation

Algorithm 4: 8-tree summation with AVX-2 instructions.
Data: Buffer buffer with at least 8 entries at offset 8
Result: Subtree sum of 8 elements

1 0 ←<<256_;>03_?3 (1D5 5 4A [8])
2 1 ←<<256_;>03_?3 (1D5 5 4A [8 + 4])
3 ;4E4;1(D< ←<<256_ℎ033_?3 (0,1)
4 2 ←<<256_4GCA02C 5 128_?3 (;4E4;1(D<1)
5 3 ←<<256_20BC?3256_?3128(;4E4;1(D<)
6 ;4E4;2(D< ←<<_033_?3 (2, 3)
7 ;4E4;3(D< ←<<_ℎ033_?3 (;4E4;2(D<, ;4E4;2(D<)
8 return<<_2ECB3_5 64(;4E4;3(D<)

Since only one PE executes this microbenchmark, no communication takes place and all
runtime costs are purely computational. std::accumulate guarantees the summation order
to be left-to-right and therefore can not be vectorized. For smaller workloads (# < 64),
the overhead introduced by vectorization is larger than the performance gains, but for
larger workloads the AVX-2 implementation outperforms std::accumulate by a factor of
more than 2. For small inputs, it can be beneficial to switch to std::accumulate.

20 23 26 29 212 215 218 221 224 227

Number of summands

100 ns

1 µs

10 µs

100 µs

1 ms

10 ms

100 ms

Ti
m

e

std::accumulate
AVX-2 implementation
Recursive implementation

Figure 3.8.: Microbenchmark comparing sequential summation to AVX-2 binary tree re-
duction for ? = 1.

20

4. Experiments

In this chapter, we compare the runtimes of three summation modes: The Binary Tree
Summation algorithm as presented in Chapter 2 and Chapter 3, the ReproBLAS reduce
operation and additionally, a bitwise-irreproducible implementation which uses std::accu-
mulate to sum values locally and MPI_Allreduce for global reduction as baseline.

4.1. Experimental Setup

We run shared-memory benchmarks on a machine with two AMD EPYC 7713 CPUs with
64 cores each for a total of ? = 256 PEs with hyper-threading. We execute distributed-
memory benchmarks with more than 256 PEs on multiple thin nodes of the bwUniCluster
2.0 which have two Intel Xeon Gold 6230 with 40 cores (80 threads) per node.
Input data stems from RAxML-NG runs in the form of an array of double-precision

floating point numbers representing PSLLH values. Dataset sizes range from 460 to
21 410 970 summands, as listed by Table 4.1.
The benchmark execution performs the following steps for each summation mode

(reproblas, allreduce, tree) and each dataset: First, it loads the input data from a file and
distributes it among the PEs. Next, it performs the summation 100 times and measures
the duration for each iteration. Finally, it discards the first and last eight measurements
and outputs both the summation result and the remaining measurements.

Table 4.1.: Overview of benchmark datasets.
dataset name number of summands #

354 460
multi100 767

prim 898
fusob 1 602

dna_rokasD4 239 763
aa_rokasA8 504 850

dna_rokasD1 1 327 505
aa_rokasA4 1 806 035
dna_PeteD8 3 011 099
dna_rokasD7 21 410 970

21

4. Experiments

211 214 217 220 223

number of summands

1 µs

10 µs

100 µs

Ac
cu

m
ul

at
e

Ti
m

e

Allreduce
Binary Tree Summation
ReproBLAS

(a) Shared memory, ? = 256

211 214 217 220 223

number of summands

1 µs

10 µs

100 µs

Ac
cu

m
ul

at
e

Ti
m

e

Allreduce
Binary Tree Summation
ReproBLAS

(b) Distributed memory, ? = 1280

Figure 4.1.: Median accumulation time after 100 repetitions for different datasets. Error
bars depict 1st and 99th percentile.

210 212 214 216 218 220 222 224

Number of summands

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Sl
ow

do
wn

Figure 4.2.: Relative slowdown of Binary Tree Summation compared to ReproBLAS for
? = 256 PEs.

22

4.1. Experimental Setup

200 µs 225 µs 250 µs 275 µs 300 µs 325 µs 350 µs 375 µs
Accumulation Time

Binary Tree
Summation

Allreduce

ReproBLAS

Figure 4.3.: Runtime distribution for all three summation modes on the dataset rokasD7
(# = 21 410 970, ? = 256). We removed the lowest and highest outlier for each
accumulation mode.

1 80 16
0
24

0
32

0
40

0
48

0
56

0
64

0
72

0
80

0
88

0
96

0
10

40
11

20
12

00
12

80

PEs

0

200

400

600

800

1000

1200

Sp
ee

du
p

ReproBLAS
Binary Tree Summation

1 80 16
0
24

0
32

0
40

0
48

0
56

0
64

0
72

0
80

0
88

0
96

0
10

40
11

20
12

00
12

80

PEs

1 µs

10 µs

100 µs

1 ms

M
ed

ia
n

ac
cu

m
ul

at
io

n
tim

e

ReproBLAS
Binary Tree Summation

Figure 4.4.: Speedup and median accumulation time of # = 21 410 970 elements over ? .
Error bars depict 1st and 99th percentile.

23

4. Experiments

4.2. Results

Figure 4.1 shows the runtime measurements across all datasets. We measure that all sum-
mation algorithms have a runtime that is linear in the number of summands (Figure 4.1).
On the shared-memory machine, we measure a slowdown of less than 2 of Binary Tree
Summation compared to ReproBLAS (Figure 4.2). On the largest dataset, Binary Tree
Summation is only 2% slower than ReproBLAS (Figure 4.3). The runtime of the irrepro-
ducible std::accumulate + Allreduce variant differs less than 15% from the ReproBLAS
runtime, possibly due to the missing vectorization of std::accumulate (Figure B.3). The
performance of all three accumulation modes suffers from the increased number of PEs
on the distributed-memory machine for small- and medium-sized datasets, as we observe
no speedup for # < 222. Additionally, the logarithmically increasing message count of
Binary Tree Summation further increases the gap to ReproBLAS for increasing PE-counts.
Figure 4.4 shows the result of a strong-scaling benchmark on a distributed-memory ma-
chine. The speedup relative to the sequential computation levels off for ? ≥ 640 (about
33 000 elements per PE) for both ReproBLAS and Binary Tree Summation. Between 320
and 880 PEs the median accumulation time of Binary Tree Summation is smaller compared
to ReproBLAS, but has a higher variance of runtimes.

4.3. Reproducibility of Results

To verify the reproducibility of the results, we ran all three summation algorithms with
different core-counts in steps of 16 (? ∈ {1, 17, . . . , 241}). With ReproBLAS and Binary
Tree Summation, we detected no deviation between results for all test datasets, while values
produced by Allreduce were already irreproducible between runs with ? = 1 and ? = 17
PEs. Table 4.2 shows the difference between the largest and smallest result collected over
all values of ? . For ReproBLAS and Binary Tree Summation, this value is zero,1 indicating
that the result is independent from the number of PEs. For Allreduce, the largest observed
relative error was 3.9 ∗ 10−13 (dataset rokasD1), which could potentially cause tools like
RAxML-NG to dismiss certain trees during likelihood maximization leading to diverging
tree searches. Results from ReproBLAS and Binary Tree Summation were also reproducible
across different machines and compiler versions.2

1Or at least smaller than the machine epsilon for IEEE 754 double precision floating-point numbers.
2Linux 5.4.0-89-generic with GCC 9.4.0 on i10pc138, Linux 4.18.0-193.65.2.el8_2.x86_64 with GCC 11.2 on
bwUniCluster 2.0

24

4.3. Reproducibility of Results

Table 4.2.: Difference between smallest and largest obtained sum from runs with varying
PE-count.

Dataset ReproBLAS Binary Tree Summation std::accumulate + AllReduce
multi100 0.0 0.0 3.6 ∗ 10−12
rokasD1 0.0 0.0 4.5 ∗ 10−6
rokasA8 0.0 0.0 4.5 ∗ 10−8
fusob 0.0 0.0 4.5 ∗ 10−11
PeteD8 0.0 0.0 6.1 ∗ 10−6
rokasD4 0.0 0.0 1.9 ∗ 10−7
rokasA8 0.0 0.0 2.8 ∗ 10−6
354 0.0 0.0 6.4 ∗ 10−12
prim 0.0 0.0 7.3 ∗ 10−12

25

5. Conclusion

Binary Tree Reduction offers reproducible results independent of the core-count. It is not
limited to floating-point operations and can be extended to the general set of reduction
operations. Its message count per PE is bounded logarithmically by the number of elements
per PE (Equation 2.5). If the Binary Tree Reduction takes up the majority of the runtime,
optimizing the data distribution for the reduction can yield better results (Section 3.1.2).

For floating-point summation in particular, solutions like ReproBLAS [1] outperform Bi-
nary Tree Reduction and have a negligible runtime penalty compared to naive MPI_Allre-
duce implementations. The slowdown of Binary Tree Reduction compared to ReproBLAS
is typically less than 2.
Future work could explore additional optimizations of the Binary Tree Reduction al-

gorithm. Under the assumption of a specific data distribution, rankFromIndex-lookups
could be replaced with a constant time algorithm. Furthermore, critical path analysis could
provide better-performing calculation orders for outbound subtree roots. While Chapter 4
provides insight in the runtime of isolated reduction operations, additional examinations
must be made to determine the runtimes of reductions which are a small part of larger
workloads.

27

Bibliography

[1] Peter Ahrens, James Demmel, and Hong Diep Nguyen. “Algorithms for Efficient
Reproducible Floating Point Summation”. In: ACM Transactions on Mathematical
Software 46.3 (Sept. 25, 2020), pp. 1–49. issn: 0098-3500, 1557-7295. doi: 10.1145/
3389360. url: https://dl.acm.org/doi/10.1145/3389360.

[2] Diego Darriba, Tomáš Flouri, and Alexandros Stamatakis. “The State of Software
for Evolutionary Biology”. In: Molecular Biology and Evolution 35.5 (May 1, 2018),
pp. 1037–1046. issn: 0737-4038. doi: 10.1093/molbev/msy014. url: https://doi.
org/10.1093/molbev/msy014.

[3] Kai Diethelm. “The Limits of Reproducibility in Numerical Simulation”. In:Computing
in Science Engineering 14.1 (Jan. 2012). Conference Name: Computing in Science
Engineering, pp. 64–72. issn: 1558-366X. doi: 10.1109/MCSE.2011.21.

[4] Romain Dolbeau. “Theoretical peak FLOPS per instruction set: a tutorial”. In: The
Journal of Supercomputing 74.3 (Mar. 2018), pp. 1341–1377. issn: 0920-8542, 1573-0484.
doi: 10.1007/s11227-017-2177-5. url: http://link.springer.com/10.1007/s11227-
017-2177-5.

[5] David Goldberg. “What every computer scientist should know about floating-point
arithmetic”. In: ACM Computing Surveys 23.1 (Mar. 1991), pp. 5–48. issn: 0360-0300,
1557-7341. doi: 10.1145/103162.103163. url: https://dl.acm.org/doi/10.1145/
103162.103163.

[6] IEEE Standard for Floating-Point Arithmetic. ISBN: 9780738157528. IEEE. doi: 10.
1109/ IEEESTD.2008 .4610935. url: http :// ieeexplore . ieee . org/document/
4610935/ (visited on 10/01/2021).

[7] Alexey M Kozlov et al. “RAxML-NG: a fast, scalable and user-friendly tool for
maximum likelihood phylogenetic inference”. In: Bioinformatics 35.21 (Nov. 1, 2019),
pp. 4453–4455. issn: 1367-4803. doi: 10.1093/bioinformatics/btz305. url: https:
//doi.org/10.1093/bioinformatics/btz305.

[8] S. Roch. “A short proof that phylogenetic tree reconstruction bymaximum likelihood
is hard”. In: IEEE/ACM Transactions on Computational Biology and Bioinformatics 3.1
(Jan. 2006). Conference Name: IEEE/ACM Transactions on Computational Biology
and Bioinformatics, pp. 92–94. issn: 1557-9964. doi: 10.1109/TCBB.2006.4.

[9] Alexandros Stamatakis and Alexey M Kozlov. “Efficient maximum likelihood tree
building methods”. In: Phylogenetics in the Genomic Era. 2020, 1.2:1–1.2:18.

29

https://doi.org/10.1145/3389360
https://doi.org/10.1145/3389360
https://dl.acm.org/doi/10.1145/3389360
https://doi.org/10.1093/molbev/msy014
https://doi.org/10.1093/molbev/msy014
https://doi.org/10.1093/molbev/msy014
https://doi.org/10.1109/MCSE.2011.21
https://doi.org/10.1007/s11227-017-2177-5
http://link.springer.com/10.1007/s11227-017-2177-5
http://link.springer.com/10.1007/s11227-017-2177-5
https://doi.org/10.1145/103162.103163
https://dl.acm.org/doi/10.1145/103162.103163
https://dl.acm.org/doi/10.1145/103162.103163
https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1109/IEEESTD.2008.4610935
http://ieeexplore.ieee.org/document/4610935/
http://ieeexplore.ieee.org/document/4610935/
https://doi.org/10.1093/bioinformatics/btz305
https://doi.org/10.1093/bioinformatics/btz305
https://doi.org/10.1093/bioinformatics/btz305
https://doi.org/10.1109/TCBB.2006.4

Bibliography

[10] Oreste Villa et al. “Effects of floating-point non-associativity on numerical compu-
tations on massively multithreaded systems”. In: Proceedings of Cray User Group
Meeting (CUG). Vol. 3. 2009. url: http://www.sci.utah.edu/~beiwang/teaching/
cs6210-fall-2016/nonassociativity.pdf.

[11] Matthias Wiesenberger et al. “Reproducibility, accuracy and performance of the
Feltor code and library on parallel computer architectures”. In: Computer Physics
Communications 238 (May 2019), pp. 145–156. issn: 00104655. doi: 10.1016/j.cpc.
2018.12.006. arXiv: 1807.01971. url: http://arxiv.org/abs/1807.01971.

30

http://www.sci.utah.edu/~beiwang/teaching/cs6210-fall-2016/nonassociativity.pdf
http://www.sci.utah.edu/~beiwang/teaching/cs6210-fall-2016/nonassociativity.pdf
https://doi.org/10.1016/j.cpc.2018.12.006
https://doi.org/10.1016/j.cpc.2018.12.006
https://arxiv.org/abs/1807.01971
http://arxiv.org/abs/1807.01971

A. Acknowledgements

This work was performed on the computational resource bwUniCluster funded by the
Ministry of Science, Research and the Arts Baden-Württemberg and the Universities
of the State of Baden-Württemberg, Germany, within the framework program bwHPC.
This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation program (grant agreement No.
882500).

31

Acronyms

AVX Advanced Vector Extensions. 19

FLOPS Floating-Point Operations per Second. 19

MPI Message Passing Interface. 2, 6, 7, 11

PE Processing Element. vii, ix, 1, 2, 6–17, 20–25, 37, 39

PSLLH Per-Site Log-Likelihood. 1, 21

SIMD Single Instruction Multiple Data. 19

33

B. Appendix

B.1. Buffer Subtree-Flushing Criterion Comparison

210 212 214 216 218 220 222 224

number of summands

10 µs

100 µs

Ac
cu

m
ul

at
e

Ti
m

e

16
32
64
128

Figure B.1.: Accumulation runtime with different subtree sizes used as flushing criterion.

B.2. Detailed Benchmark Results

35

B. Appendix

allreduce (11.20 µs) reproblas (11.90 µs) tree (12.67 µs)
0.00 s

20.00 µs

40.00 µs

60.00 µs

80.00 µs

100.00 µs

120.00 µs

140.00 µs
Ti

m
e

354.binpsllh, N=460, p=256

allreduce (10.23 µs) reproblas (10.88 µs) tree (16.97 µs)
0.00 s

20.00 µs

40.00 µs

60.00 µs

80.00 µs

100.00 µs

120.00 µs

Ti
m

e

multi100.binpsllh, N=767, p=256

allreduce (12.64 µs) reproblas (11.58 µs) tree (16.66 µs)
0.00 s

20.00 µs

40.00 µs

60.00 µs

80.00 µs

100.00 µs

120.00 µs

140.00 µs

Ti
m

e

prim.binpsllh, N=898, p=256

36

B.2. Detailed Benchmark Results

allreduce (11.37 µs) reproblas (10.66 µs) tree (15.99 µs)
0.00 s

25.00 µs

50.00 µs

75.00 µs

100.00 µs

125.00 µs

150.00 µs

175.00 µs

200.00 µs
Ti

m
e

fusob.binpsllh, N=1 602, p=256

allreduce (13.13 µs) reproblas (12.64 µs) tree (22.39 µs)

20.00 µs

40.00 µs

60.00 µs

80.00 µs

100.00 µs

120.00 µs

140.00 µs

Ti
m

e

dna_rokasD4.binpsllh, N=239 763, p=256

allreduce (13.89 µs) reproblas (13.85 µs) tree (23.99 µs)
0.00 s

25.00 µs

50.00 µs

75.00 µs

100.00 µs

125.00 µs

150.00 µs

175.00 µs

200.00 µs

Ti
m

e

aa_rokasA8.binpsllh, N=504 850, p=256

37

B. Appendix

allreduce (17.40 µs) reproblas (16.67 µs) tree (26.96 µs)

20.00 µs

40.00 µs

60.00 µs

80.00 µs

100.00 µs

120.00 µs

140.00 µs

160.00 µs

Ti
m

e
dna_rokasD1.binpsllh, N=1 327 505, p=256

allreduce (20.07 µs) reproblas (18.98 µs) tree (28.04 µs)

20.00 µs

40.00 µs

60.00 µs

80.00 µs

100.00 µs

120.00 µs

140.00 µs

160.00 µs

180.00 µs

Ti
m

e

aa_rokasA4.binpsllh, N=1 806 035, p=256

allreduce (25.41 µs) reproblas (23.63 µs) tree (32.70 µs)
20.00 µs

40.00 µs

60.00 µs

80.00 µs

100.00 µs

120.00 µs

140.00 µs

Ti
m

e

dna_PeteD8.binpsllh, N=3 011 099, p=256

38

B.2. Detailed Benchmark Results

allreduce (213.04 µs) reproblas (237.85 µs) tree (244.01 µs)

500.00 µs

1.00 ms

1.50 ms

2.00 ms

2.50 ms

3.00 ms

3.50 ms

4.00 ms

Ti
m

e
dna_rokasD7.binpsllh, N=21 410 970, p=256

Figure B.2.: Runtime distribution for all datasets with ? = 256 PEs.

210 212 214 216 218 220 222 224

Number of summands

0.925

0.950

0.975

1.000

1.025

1.050

1.075

1.100

1.125

Sl
ow

do
wn

Figure B.3.: Slowdown of ReproBLAS compared to Allreduce (? = 256).

39

B. Appendix

210 212 214 216 218 220 222 224

Number of summands

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Sl
ow

do
wn

Figure B.4.: Slowdown of Binary Tree Summation compared to Allreduce (? = 256).

40

B.3. Message Count Maxima

B.3. Message Count Maxima

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PE 0 PE 1 PE 2 PE 3

(a) Optimal distribution of # = 22 ∗ ? elements over ? = 4 PEs.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

PE 0 PE 1 PE 2 PE 3

(b) Worst-case distribution of # = 22 ∗ ? + 1 elements over ? = 4 PEs.

Figure B.5.: Illustration of the shifting behaviour in the =lower8 -distribution that produces
maximal message counts.

B.4. Source Code

The complete source code, a database of benchmarks and exploratory Jupyter notebooks
can be found inside the Git repository hosted at https://github.com/stelzch/allreduce.
The LATEX source code for this document with accompanying scripts to render the figures
can be found at https://github.com/stelzch/bachelor-thesis.

41

https://github.com/stelzch/allreduce
https://github.com/stelzch/bachelor-thesis

	Abstract
	Zusammenfassung
	Introduction
	Motivation
	Preliminaries
	Related Work
	Sequential Left-to-right Reduction
	Reproducible Accumulators
	Reduction Tree

	Binary Tree Reduction
	Message Counts

	Implementation
	Applied Optimizations
	Message Buffering
	Data Distribution
	Index-lookup Hashmap
	Vectorization

	Experiments
	Experimental Setup
	Results
	Reproducibility of Results

	Conclusion
	Bibliography
	Acknowledgements
	Appendix
	Buffer Subtree-Flushing Criterion Comparison
	Detailed Benchmark Results
	Message Count Maxima
	Source Code

