
Bachelor thesis

Cluster Analysis for SAT Instances
Paul Ferdinand Heinen

Date: February 26, 2022

Supervisors: Dr. rer. nat. Markus Iser
M.Sc. Jakob Bach

Reviewer: Prof. Dr. Peter Sanders

Institute of Theoretical Informatics, Algorithm Engineering
Department of Informatics

Karlsruhe Institute of Technology

Abstract

The Boolean Satisfiability Problem (SAT) has been the focus of extensive research when it
comes to developing solvers that excel on solving its problem instances. Research shows
that selecting solvers based on features of the problem instance can improve the speed of
solving these instances. However, as of now, it has been unclear when specific features lead
to the selection of specific solvers. In this thesis, we use different clustering algorithms on
a given dataset of SAT-Instances and analyze how different clustering algorithms perform,
as well as look at selected single clusterings to find connections between the instances and
their best solvers.
We will show that K-Means and DBSCAN excel in comparison to other clustering algo-
rithms when it comes to grouping instances with similar solvers together. Next, we will
take a look how selected clusterings of K-Means and DBSCAN are structured. We will
observe, that many clusters only have one or two good solvers that are the fastest and most
stable solvers. Furthermore, we will see that many clusters are a subset of SAT-Instance
families.

Hiermit versichere ich, dass ich diese Arbeit selbständig verfasst und keine anderen,
als die angegebenen Quellen und Hilfsmittel benutzt, die wörtlich oder inhaltlich über-
nommenen Stellen als solche kenntlich gemacht und die Satzung des Karlsruher Instituts
für Technologie zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fas-
sung beachtet habe.

Karlsruhe, den 26.02.2022

Contents

Abstract 3

1 Introduction 9
1.1 Motivation . 9
1.2 Contribution . 10
1.3 Structure of thesis . 10

2 Preliminaries 11
2.1 Fundamentals . 11

2.1.1 Boolean satisfiability problem (SAT) 11
2.1.2 SAT-Solvers . 11
2.1.3 The algorithm selection problem 13
2.1.4 Clustering . 13

2.2 Related work . 16
2.2.1 SATzilla . 16
2.2.2 ISAC . 16
2.2.3 SNNAP . 17

3 Experimental design 19
3.1 Experimental pipeline . 19

3.1.1 Feature extraction . 20
3.1.2 Preprocessing of features . 20
3.1.3 Clustering . 21
3.1.4 Evaluation measures . 21

3.2 Experimental setup . 27
3.2.1 Environment . 27
3.2.2 Libraries . 28
3.2.3 Filter parameters . 28
3.2.4 Dataset characteristics . 29

4 Experimental evaluation 33
4.1 Preprocessing of the data . 33

4.1.1 Scaling . 33
4.1.2 Clusterings with single features 36

7

4.2 Comparing feature sets and clustering algorithms 38
4.2.1 Evaluating clustering algorithms 39
4.2.2 Analysis of selected clustering algorithms 41
4.2.3 Evaluation of selected clusterings 46

5 Discussion 61
5.1 Conclusion . 61
5.2 Future Work . 62

A Implementation Details 63
A.1 Project organization . 63
A.2 Default settings tables . 64

A.2.1 Scaling and feature selection . 64
A.2.2 Clustering . 64

A.3 Feature sets . 66
A.3.1 ’base’ . 66
A.3.2 ’gate’ . 67
A.3.3 ’runtimes’ . 67

A.4 Family distribution of selected clusters . 67
A.4.1 K-Means . 68
A.4.2 DBSCAN . 70

Bibliography 73

1 Introduction

1.1 Motivation

The Boolean Satisfiability Problem (SAT) is one of the fundamental problems when it
comes to the research of problems in the NP domain. The SAT-Problem has been the fo-
cus of extensive research, because it occurs in many fields such as cryptography, scheduling
or AI. Furthermore, other NP-Problems can be easily encoded as SAT.
To be able to solve the SAT-Problem, many SAT-Solvers were developed, such as conflict-
driven clause learning solvers, lookahead solvers and local search solvers. However, while
all solvers have instances of the SAT-Problem they excel at, each of them has instances
with very poor runtime behavior. We face the algorithm selection problem (Rice 1976),
where we want to choose the best solver for a new, previously unknown, instance of the
SAT-Problem. Because of this, the focus of solving SAT-Instances has shifted to construct
algorithm selectors and algorithm portfolios such as SATzilla (Xu et al. 2008), ISAC (Ka-
dioglu et al. 2010) and SNNAP (Collautti et al. 2013). The goal of an algorithm selector
is to use the features of the given SAT-Instance to identify a solver with fast runtime for
it. Both ISAC and SNAAP use clustering to group the instances based on their features
and identify fast solvers for each group. However, there has been a disconnect between
the clustering objective and the performance objective of the solvers (Collautti et al. 2013).
This means we cannot assume that a clustering algorithm sorts an instance, based on its
features, into a cluster with the optimal solver.
Central questions are:

• Q1: How do different sets of instance features influence the clustering quality of
different clustering algorithms?

• Q2: What clustering algorithms and parameter settings yield clusterings with high
quality?

• Q3: How are the instances in a clustering split into clusters?

• Q4: Do instances in a cluster share solvers, which shows homogeneous runtime
behavior?

9

CHAPTER 1. INTRODUCTION

1.2 Contribution

In this thesis, we want to examine the connection between SAT-Instance features and the
performance of different SAT-Solvers on them using a cluster analysis. We will look how
preprocessing and different sets of features influence the clusterings, as well as discuss how
different clustering algorithms perform. We will select clustering algorithms that perform
well and examine how their parameter settings influence the resulting clusterings.
After that, we will analyze selected clusterings of these clustering algorithms and look how
these clusterings are structured.

1.3 Structure of thesis

In chapter 2, we will introduce the SAT-Problem, the concept of SAT-Solvers, the algorithm
selection problem as well as different clustering algorithms. After that, we will present re-
lated work using these concepts in the form of the approaches SATzilla, ISAC and SNNAP.
Chapter 3 explains the experimental pipeline and setup we used to generate and evaluate
the clusterings. Chapter 4 is split into two parts:
In section 4.1 we will present the preprocessing experiments, where we decide what set-
tings we use for preprocessing. After that, section 4.2 evaluates the clusterings we created
using different filtering parameters. Using these filter parameters, we will select good clus-
tering algorithms and clusterings we will examine in more detail.
Lastly, we will discuss our findings in chapter 5 as well as give an outlook on possible
future work.
Appendix A shows an overview of the project organization, default settings for the cluster-
ing, all features of the instance database as well as more figures of the selected clusterings.

10

2 Preliminaries

This chapter introduces preliminaries for the later experiments. The chapter is split into
two parts. In section 2.1 we introduce the concepts of SAT-Problem, SAT-Solvers, the
algorithm selection problem and clustering. In section 2.2 we discuss related work using
these concepts.

2.1 Fundamentals

2.1.1 Boolean satisfiability problem (SAT)

One defines the Boolean satisfiability problem as follows:
Each problem instance consists of a set of boolean variables X = {x1, ..., xm}, where each
variable xi can be assigned the value of 0 or 1.
For each variable xi we can define the literals xi and xi so that ∀i ∈ {1, ...,m} : (xi = 1⇔
xi = 0) ∧ (xi = 0 ⇔ xi = 1). Using the literals, we can construct a clause of the form
(y1 ∨ ... ∨ ys) where ∀j ∈ {1, .., s} : yj ∈ {x1, .., xm} ∪ {x1, .., xm}
The Boolean satisfiability problem (SAT) asks if, for a given set of boolean variables X
and a set of clauses C over X , there exists an assignment of the variables X so that every
clause in C is satisfied. We call a clause satisfied if each clause in C contains a literal with
value 1. (D. Wagner, Sauer, and Brückner 2019).

2.1.2 SAT-Solvers

A SAT-Solver takes a set of clauses C (often the clauses are given as a conjunctive normal
form) as input and determines if there is an assignment of truth values {0, 1} that satisfy
the set of clauses C. We call a solver an incomplete SAT-Solver if it can find satisfying
assignments, but not prove unsatisfiability (Lindauer et al. 2017).

When running a SAT-Solver on a given problem instance, a variable can be either as-
signed with a boolean value of 0 or 1, or it may be unassigned.
A clause of a SAT-Problem instance can be unsatisfied, satisfied, unit, and unresolved. If
the algorithm assigns the value 0 to all literals of the clause, a clause is unsatisfied. If the
algorithm assigns the value 1 to at least one literal, the clause is satisfied. If the algorithm

11

2 Preliminaries

assigns the value 0 to all but one literal of the clause and leaves the remaining literal unas-
signed, the clause is unit. A clause is unresolved if it is neither satisfied, unsatisfied nor
unit.
A key procedure for SAT-Solvers is the unit clause rule, which states that if a clause is unit,
then the last unassigned literal must be assigned a value of 1 for the clause to be satisfied.
Using the unit clause rule iteratively is called unit propagation or Boolean constraint prop-
agation (BCP) (Silva, Lynce, and Malik 2009).

There have been different approaches for constructing SAT-Solvers. The three most
common solver types are conflict-driven clause learning (Silva, Lynce, and Malik 2009),
local search (Hoos and Stützle 2000) and look-ahead (Heule and Maaren 2009) solvers.

Conflict-Driven clause learning (CDCL) Solvers CDCL solvers use unit propaga-
tion to derive logical consequences. To do this, the solver applies unit propagation after
each branching step to identify variables that need to have specific boolean values (Silva,
Lynce, and Malik 2009).

The dataset used in this thesis contains the following CDCL Solvers:
• CaDiCal: Has the two configurations cadical_elimfalse (variable elimination deac-

tivated) and cadical (default configuration) as well as the two hacks cadical_pripro
(prioritized propagation) and cadical_sability (increases probability of solving crypto
instances)

• Glucose: Has the five configurations glucose (default configuration), candy (simpli-
fied, modular version of glucose), glucose_chanseok (has strengths on existing in-
stances), glucose_syrup (runs on four parallel threads), glucose_var_decay099 (glu-
cose configuration)

• Kissat: Best CDCL SAT-Solver in the main track of the SAT-Competition 20/21
(Heule, Jarvisalo, Suda, et al. 2021)

• Lingeling
• Minisat
• Relaxed Maple

Local Search Algorithms Local Search examines a search space given by the prob-
lem instance to solve, by initializing the problem at some point and then iteratively moving
from one search space position to a neighboring search space position. The decision of
what neighboring position to choose is only based on the information about the local neigh-
borhood. To score these neighbors, an objective function f : Sπ → R maps each search
space position to a value. In SAT, f often describes the number of unsatisfied clauses,
which we try to minimize. The 1-flip neighborhood typically determines the neighborhood,

12

2.1 Fundamentals

which describes the neighbors of a search space position, by considering two search space
positions neighbors if they differ in the truth value of exactly one variable. Local Search
Algorithms are typical incomplete, because they can not guarantee to find a solution for
unsatisfiable problem instances. (Hoos and Stützle 2000).

The dataset used in this thesis contains the Local Search Solver YalSat.

Look-ahead Solver Look-ahead Solvers have a similar approach to CDCL Solvers,
however they spend much more time on deciding which variable assignment they check
next. This is done by using the look-ahead, which checks the next neighboring state, evalu-
ating its effect and then backtracking and ending the look-ahead (Heule and Maaren 2009).

The dataset used in this thesis contains the Look-ahead Solver March.

2.1.3 The algorithm selection problem

The current research suggests, that different instances of SAT are best solved by different
SAT-Solvers (Xu et al. 2008, Collautti et al. 2013, Kadioglu et al. 2010). Therefore, no
single SAT-Solver describes the state-of-the-art when it comes to efficiently solve any SAT-
Instance. Instead, the focus has shifted to algorithm selection. In the case of SAT the goal
is to select the best SAT-Solver for a given instance. Specifically, given a set of instances
I = {pi, ..., pn} of the SAT-Problem, a set of SAT-Solvers A = {s1, ..., sm} and a metric
m : A × I → R that measures the performance of any solver sj ∈ A on the instances I ,
construct a selector S that maps any problem of instance pi ∈ I to a SAT-Solver S(pi) ∈ A
such that the overall performance of S on I is optimal according to the metric m (Rice
1976) (Kerschke et al. 2019).
We call a perfect algorithm selector that finds the best SAT-Solver for any given problem
instances a Virtual Best Solver (VBS). The VBS gives us a lower bound when constructing
an algorithm selector with the current state-of-the-art SAT-Solvers. However, we cannot
hope to achieve the construction of the VBS, instead the goal is to extract a set of easily
computable features F = {f1(pi), ..., fk(pi)} from a given instance pi and use them to
determine a solver with high performance for the instance (Kerschke et al. 2019).
The Single Best Solver (SBS) is the best performing solver over all solvers in S. It describes
the upper bound for an algorithm selector using state-of-the-art solvers. The gap between
SBS and VBS gives an indication of the performance gains that can be realized using an
algorithm selector (Kerschke et al. 2019).

2.1.4 Clustering

We will use clustering, utilizing the features F of an instance pi to determine the best solver.
This has been proven effective by Kadioglu et al. 2010 and achieved better performance
than using the SBS. However, it is not clear if the cluster objective is the same as the

13

2 Preliminaries

performance objective of selecting a fast solver for each instance. Ideally, instances with
similar feature sets can all be solved quickly with a common fast solver. However, we can
not assume that this is the case.
There are a multitude of different clustering algorithms that can be used to cluster the given
data. In the following, we introduce the clustering algorithms used in this thesis:

K-Means The K-Means algorithm clusters a set of N samples X into k disjoint clusters
C = {C1, ..., Ck} with equal variance. This is achieved by minimizing the inertia criterion.
The inertia (or within-cluster sum-of-squares criterion) is given as

n∑
i=0

min
µj∈C

(∥xi − µj∥2)

where µi is the means of the samples in the cluster Ci. The inertia can be seen as a way to
measure how internally coherent the clusters are. However, there are multiple drawbacks
with this approach:
Inertia makes the assumption that the clusters are convex and isotropic. This is not always
the case, and therefore K-Means can lead to bad results for irregular shapes.
Inertia is not a normalized metric. This can lead to problems in very high-dimensional
space (as is the case in our problem). This problem can be reduced by running dimensionality-
reduction algorithms. (scikit-learn 2021a)

Affinity Propagation Affinity Propagation creates its clusters by sending messages be-
tween pairs of samples until convergence. This enables Affinity Propagation to choose the
number of the clusters based on the data provided. The main drawback is its complexity.
The time complexity is O(N2T), where N is the number of samples and T the number of
iterations until convergence (scikit-learn 2021a).

Mean Shift The Mean Shift algorithm tries to discover so-called “blobs” in a smooth
density of samples. It works by updating the centroids to be the mean of the points in
a given region. Mean Shift automatically sets the number of clusters, depending on the
given samples. However, the algorithm is not highly scalable, because for each centroid
calculation the algorithm needs multiple nearest-neighbor searches. (scikit-learn 2021a).

Spectral clustering The Spectral Clustering algorithm uses other clustering algorithm
such as K-Means to cluster the components of the eigenvectors in a low dimensional space.
The algorithm creates these eigenvectors with a low-dimension embedding of the affinity
matrix of the samples. This can be very efficient if the affinity matrix of the samples is
sparse.
Spectral clustering requires the number of clusters to be specified in advanced. It works
well on a low number of clusters (scikit-learn 2021a).

14

2.1 Fundamentals

Agglomerative clustering Agglomerative clustering describes a family of multiple
clustering algorithms, which build nested clusters by successively merging and splitting
them. Commonly, we use a Dendrogram to describe the hierarchy of clusters.
There are multiple Hierarchical clustering techniques:

• Ward: Minimizes the squared difference within all clusters. This makes it similar to
the k-means algorithm, but is in this case used in combination with the hierarchical
approach.

• Maximum / Complete linkage: Minimizes the maximum distance between observa-
tions of a pair of clusters.

• Average linkage: Minimizes the average of the distances between observations of a
pair of clusters.

• Single linkage: Minimizes the distance between the closest observations of a pair of
clusters.

(scikit-learn 2021a)

DBSCAN DBSCAN tries to create clusters by viewing them as areas of high density
separated by areas with low density. This helps DBSCAN to identify clusters, that can have
any shape, in contrast to clustering techniques like K-Means.
A cluster in DBSCAN is composed of core samples and non-core samples, that are close to
the core samples. The two parameters min_samples and eps define the core samples.
A sample is a core sample, if there exist min_samples in a distance of eps around it
(scikit-learn 2021a).

Gaussian clustering Gaussian clustering uses a Gaussian mixture model which is a
probabilistic model, that assumes all the data points are generated from a mixture of a finite
number of Gaussian distributions. Based on these mixture models, we sort the data points
into clusters (scikit-learn 2021a).

OPTICS The OPTICS clustering algorithm is a relaxation of DBSCAN. Instead of a
fixed eps value, OPTICS uses a value range.
The main difference is, that the OPTICS algorithm builds a reachability graph, which as-
signs each sample a reachability distance and a spot within the cluster ordering attribute.
With these two attributes, it is decided to which cluster the sample belongs (scikit-learn
2021a).

BIRCH BIRCH builds a Clustering Feature Tree (CFT) for the given data. The given data
is then compressed into a set of CF (Clustering Feature) Nodes. These CF Nodes contain
multiple CF (Clustering Feature) subclusters, which in turn can contain CF Nodes as chil-
dren. The CF subclusters contain the information that is needed for clustering. (scikit-learn
2021a).

15

2 Preliminaries

2.2 Related work

There have been multiple different approaches to solving instances using a selection of
given SAT-Solvers. One prominent approach is the one of a parallel algorithm portfolio,
which runs multiple solvers in parallel on a problem instance. The parallel algorithm port-
folio terminates the solvers as soon as one of the solvers has solved the given instance. By
running a parallel algorithm portfolio on parallel hardware, one can achieve runtimes close
to the VBS. Current research uses the term algorithm portfolio for both parallel algorithms
and per-instance algorithm selectors. In this thesis, we will use the term algorithm portfolio
only to describe parallel algorithm portfolios (Kerschke et al. 2019).

2.2.1 SATzilla

SATzilla is an automated approach for constructing per-instance algorithm portfolios for
SAT that uses empirical hardness models to choose among their constituent solvers. It
takes a distribution of problem instances and a set of solvers and constructs a portfolio
optimizing a given objective function.
Important to note is, that SATzilla uses a mixture of a parallel algorithm portfolio and a
per-instance algorithm selector. It first runs a selection of solvers in parallel on an instance
until it reaches a fixed cutoff time, to solve easy instances. If the solver did not solve
the instance, SATzilla extracts the features of the instances. Using the empirical hardness
model, SATzilla predicts the best algorithm to run on the instance based on the features.
The effectiveness of SATzilla lies on the ability to learn empirical hardness models that can
predict a solver’s runtime on a given instance using effectively computable features.
Similar to SATzilla we aim to identify connections between instance features and the best
solver. While SATzilla uses an empirical hardness model to predict the best solver it uses,
as well as multiple pre-solvers run in parallel to determine the best solver, our goal is to use
clustering on the instance features to identify clusters with connections of runtime behavior
and instance features (Xu et al. 2008).

2.2.2 ISAC

Instance-Specific Algorithm Configuration (ISAC) has the approach to cluster the training
instances based on a representative feature set. The assumption of ISAC is that, by cluster-
ing with these features, instances with similar underlying clusters are in the same cluster
and can therefore be solved efficiently with the same solver. However, ISAC relies on a
pre-specified set of features and an objective-oblivious clustering.
ISAC uses G-Means for the clustering. G-Means iteratively applies 2-Means clustering, ac-
cepting the partition only if the two new clusters are more Gaussian than their predecessor.
After clustering the instances, an additional step merges all clusters smaller than a prede-
fined threshold into their neighboring clusters. Using G-Means enables ISAC to select fast

16

2.2 Related work

solvers for given instances. We want to expand on the number of the clustering algorithms,
to see if there are clustering algorithms that perform better.
ISAC uses the resulting clustering to run a parameter tuning algorithm, GGA, to generate
the best parameters for a SAT-Solver on the instances in the cluster. We will not use pa-
rameter tuning. Instead, we evaluate the performance of different SAT-Solvers based on
pre-calculated runtimes of the different solvers. Because of this, it is expected, that our
resulting clusterings will not have the same performance as ISAC (Kadioglu et al. 2010).

2.2.3 SNNAP

Solver-Based Nearest Neighbor for Algorithm Portfolios (SNNAP) extends the idea of ISAC
by using two observations.
The first observation is, that the addition of solver performance in the clustering in ISAC
can be helpful, but disruptive, in combination with the original features.
Secondly, it is enough to just know the best two or three solvers for an instance.
Therefore, SNNAPs approach is to use a list of training instances to generate a prediction
model for each solver that predicts the runtime of the solver on a given instance. These
models are hard to train, as a misclassification can result in selection of the wrong solver.
However, SNNAP does not aim to find the best solver, but just wants to know which solver
behaves well on an instance.
For a new instance SNNAP uses the previously trained prediction models to predict the
runtimes of the solvers on the new instance. SNNAP then uses these runtimes to calculate
the distance between the new instance and every training instance and selects the nearest
neighbor instances. Then the best solver for the new instances is chosen as the solver that
performs best on the neighbors (Collautti et al. 2013).

17

2 Preliminaries

18

3 Experimental design

This chapter is split into two sections. In section 3.1 we will introduce the steps of our
experimental pipeline. It describes how the features of the instances are structured, the
preprocessing done on them, as well as the methods used for clustering and evaluating the
instances.
In section 3.2, we will describe the experimental setup, including our steps to filtering the
resulting clusterings.

3.1 Experimental pipeline

Algorithm 1 shows the implementation of generating and evaluating the clusterings. The
algorithm gets a list of instances I , the features F used in the current experiment and the
solvers A. First, we scale the features F . After that, using the instances I and the scaled
features F̄ , we use a clustering algorithm to create k clusters C. We then evaluate the clus-
tering as a whole to get a performance score v of the clustering, as well as evaluating the
single clusters, to get their respective Scores B. The scoring of the clustering and clusters
aims to evaluate how good the clusters group instances together that have common fast and
stable solvers. In section 3.1.4 we will discuss in detail how we will score the clusterings
and clusters. We will use this algorithm to generate and evaluate multiple clustering al-
gorithms with different parameter settings. This will give us a set of clusterings and their
evaluations we can compare. In the following, we will discuss the important steps of the
algorithm in more detail.

Algorithm 1: Algorithm for generating and evaluating a clustering
1 function SelectBestSolver(I , F , A)
2 F̄ ← Scale(F)
3 (k, C)← GenerateClustering(I, F̄)
4 v← ScoreClustering(k, C,A)
5 for i = 1, ..., k do
6 Bi ←ScoreCluster(A,Ci)
7 end
8 return (k, C, v.B);
9 end

19

3 Experimental design

3.1.1 Feature extraction

For given instances I , we extract the features using cnftools. The feature extraction is not
part of the algorithm we presented. Instead, the feature extraction was performed in ad-
vanced by Iser, Springer, and Sinz 2020. cnftools creates the two feature sets: The ’base’
(56 features) feature set contains the feature cover degree distributions of well-known graph
representations of a given instance and many more (Iser 2022). The ’gate’ (57 features)
feature set contains the features cover gate distributions over levels of the (potentially re-
coverable) hierarchical gate structure of an instance (Iser 2022). Furthermore, we use the
feature set ’runtimes’ (15 features) that was created by running the selected SAT-Solvers
on the given instances I and contains the runtime for each solver on the instance. If the
solver takes more than 5000s to solve the instance, we stop the solver and store 5000s as
the runtime of the solver. We will therefore use 5000s as the timeout value. The features
of ’runtimes’ are named after the solver that was run on the instances.
A feature that is available for each instance, but not used in the clustering, is the discrete
feature of the family. It describes from which domain the problem originally stems. We
list the features of each feature set in section A.3.

3.1.2 Preprocessing of features

The SAT-Instance provided by Iser 2022 contains a total of 2527 instances. Some of these
instances have empty entries in ’base’, ’gate’ or ’runtimes’. We therefore aim to remove
all instances that contain empty entries from the dataset. However, for the solvers fea-
tures glucose_syrup and yalsat there are many missing runtimes entries for the instances,
which would decrease the number of instances in our dataset significantly. Based on that,
we decided to exclude the features glucose_syrup and yalsat from the clustering and eval-
uation, leaving 13 runtime features. Using the remaining 13 ’runtimes’ features and ’base’
and ’gate’, there are three instances remaining, that contain empty entries, resulting in a
dataset of 2524 instances.
Other than empty and numerical entries, there can be memout, timeout and failed
entries. For ’base’ and ’gate’ we replace these values with the minimum integer value of
the system. For ’runtimes’, we replace these entries with the timeout value (5000s).

For our experiments the feature sets ’base’, ’gate’ and ’runtimes’ have a total of 126
features. Because many clustering algorithms show deteriorated performance for high-
dimensional data, we select different combinations of features for the clustering. These
combinations were arbitrary, chosen based on the already given feature sets ’base’, ’gate’
and ’runtimes’. We will discuss the options of feature selection in section 4.1.2 and why
we decided against it.
The most common combinations we will use in the experiments are ’base’ (56 features),
’gate’ (57 features), ’runtimes’ (13 features), ’base gate’ (113 features), ’base runtimes’

20

3.1 Experimental pipeline

(69 features), ’gate runtimes’ (70 features), ’base gate runtimes’ (126 features).
Clustering algorithms that use distance metrics to calculate the clusters will give different
weight to different features. To avoid that, the features will be scaled before the clustering.
We discuss the selection of the used scaling technique in detail in section 4.1.1.

3.1.3 Clustering

Using scaled feature combinations of ’base’, ’gate’ and ’runtimes’, we apply different clus-
tering algorithms with different parameters.
In most experiments, we use the same range of parameter values for the algorithms on our
data. For the initial experiment to compare all presented clustering algorithms, we orien-
tated our parameter settings for each clustering algorithm on the sklearn documentation
(scikit-learn 2021a). We list the standard parameter ranges for each of the settings in sec-
tion A.2. If we change the parameters for the algorithm in an experiment, the section of the
experiment will describe these changes.

3.1.4 Evaluation measures

To evaluate the resulting clusterings, we will use two approaches of measuring. The first
measure uses the runtime of the solvers on the dataset and clustering. For this, we will
define the Par2 and SPar2 scores. The goal of the Par2 score will be to identify solvers
with fast runtime behavior on an instance set, while the SPar2 score will measure how
stable a solver is on an instance set. We will use these scores to define multiple solvers to
evaluate the dataset as well as clusterings and clusters based on the dataset.
The second measure compares the generated clusters with existing groupings of our data
and measures how similar they are.
Furthermore, we will add a method that determine solvers of similar performance on a
cluster.

Scores

Par2-Score The Par2-Score is a score used in SAT competitions (Heule, Jarvisalo, and
Balyo 2017).
Given a set of instances I = {p1, ..., pn}, a set of solvers A = {s1, ..., sm}, and a metric
m : A × I → R that measures the time it takes any solver sj ∈ A to solve the instance
pi ∈ I , we can define the helper function tpar2 as

tpar2(sj, pi) =

{
m(sj, pi) if m(sj, pi) < T

T · 2 otherwise

21

3 Experimental design

where T is the timeout value. Using tpar2, we define the Par2 score of a solver sj for a set
of instances I as

Par2(sj, I) =
1

|I|

n∑
i=1

tpar2(sj, pi)

Stability-adjusted Par2 (SPar2) The Par2 score only measures the performance of a
solver sj on a set of instances I . It makes no statement about the stability of a solver sj
when run on the instances I . When designing a score to evaluate the stability of a solver,
we need to consider the following:
For a solver to be considered stable, we want the runtimes for a set of instances I to be in
a similar range.
A problem we face is, that a solver that has timeouts on many or all instances of a set of
instances could be considered to have similar runtimes on all instance. But when a timeout
occurs, we do not know how long the solver would have taken to solve the instances. It
might have finished quickly after the timeout, but it could also have taken considerably
longer. Because we do not know this, we can not consider a solver that has timeouts on
many or all instances stable. Our proposed solution is to penalize timeouts in the stability
score.

Given the instances I = {p1, ..., pn}, we split I into the sets M and N , where M =
{pi|pi ∈ I ∧m(sj, pi) < T} and N = {pi|pi ∈ I ∧m(sj, pi) ≥ T}. T is the timeout value
and the metric m : A × I → R gives the time it takes the solver sj to solve the instance
pi ∈ I . This means M contains all instances that the solver sj can solve before a timeout
T occurs and N all instances where the solver sj has a timeout. It applies M ∪N = I . We
define the SPar2 score as

SPar2(sj, I) =
|M | ·mad(sj,M) + |N | · T · 2

|M |+ |N |

where mad is the mean absolute deviation of the instances in M given as

mad(sj,M) =
1

|M |
∑
pi∈M

|m(sj, pi)−mean(sj,M)|

with
mean(sj,M) =

1

|M |
∑
pi∈M

m(sj, pi)

Solvers

Using the Par2 score and SPar2 score, we can define multiple solvers with different char-
acteristics on our dataset and clusterings:

22

3.1 Experimental pipeline

Virtual Best Solver The Virtual Best Solver (VBS) chooses the best solver for each
instance in the set of instances I = {p1, ..., pn}. The VBS is calculated as

VBS(I) =
1

|I|
∑
pi∈I

min
j∈{1,...,m}

Par2(sj, {pi})

Single Best Solver The Single Best Solver (SBS) chooses the best solver over all in-
stances in the set of instances I = {p1, ..., pn}. The SBS is calculated as

SBS(I) = min
j∈{1,...,m}

Par2(sj, I)

Clustering Best Solver To evaluate a clustering, we introduce the Clustering Best
Solver (CBS) that uses the Par2 score. The CBS describes the Par2 score if we choose
the best solver in each cluster to solve the instances of I . This enables us to measure how
well a clustering algorithm created clusters, that group instances with common fast solvers
together.

The CBS is the solver induced by a clustering C = {C1, ..., Ck}, where ∀i ∈ {1, ..., k} :
Ci ⊆ I , I =

⋃k
i=1Ci and ∀i, j ∈ {1, ..., k} ∧ i ̸= j : Ci ∩ Cj = ∅. This means each

instances in I is in a cluster Ci.
The CBS of clustering C is calculated as

CBSC(I) =
1

|I|

k∑
i=1

|Ci| min
j∈{1,...,m}

Par2(sj, Ci)

where |Ci| is the number of instances in the cluster Ci.

Single Best Stability-adjusted Solver The Single Best Stability-adjusted Solver
(SBSS) is given by the solver sj , that has the lowest SPar2 score over all instances in I .
It is calculated as

SBSS(I) = min
j∈{1,...,m}

SPar2(sj, I)

Clustering Best Stability-adjusted Solver Analogous to the CBS, we can define a
Clustering Best Stability-adjusted Solver (CBSS) based on the SPar2 score. The CBSS of
clustering C is calculated as

CBSSC(I) =
1

|I|

k∑
i=1

|Ci| min
j∈{1,...,m}

SPar2(sj, Ci)

23

3 Experimental design

Naming Conventions VBS, SBS and SBSS can be calculated for an arbitrary subset
of our dataset instances. When referring to the VBS, SBS and SBSS in this thesis, we talk
about the scores of all instances in the dataset.
If we calculate the VBS, SBS or SBSS for the instances in a cluster Ci, we call it the Clus-
ter Virtual Best Solver (CVBS), Cluster Single Best Solver (CSBS) or Cluster Single Best
Stability Adjusted Solver (CSBSS) to differentiate between the VBS, SBS and SBSS of all
instances and individual clusters.
Please note that the Clustering Best Solver (CBS) and Clustering Best Stability-adjusted
Solver (CBSS) describe scores on the complete clustering, while the Cluster Single Best
Solver (CSBS) and Cluster Single Best Stability Adjusted Solver (CSBSS) describe scores
on single clusters.

Measuring the similarity of clusterings

Another way to evaluate clusterings is to compare them to other clusterings. We will use
this to evaluate the difference between the clusterings when using different parameters for
clustering algorithms, as well as similarity to the families of each instance.

Mutual Information Mutual information is based on entropy. The entropy of a cluster-
ing C = {C1, ..., Ck} is defined as

H(C) =
k∑

i=1

P (i) log2 P (i)

where P (i) describes the probability that an element is in the cluster Ci of C.

P (i) =
|Ci|
n

|Ci| is the number of instances in the cluster Ci and n =
∑k

i=1 |Ci|. It measures the
uncertainty of the cluster of a randomly picked element. We can extend this measure to
compare two clusterings based on the same set of elements. Mutual information describes
how much we can on average reduce the uncertainty about the cluster of a random ele-
ment when knowing its cluster in another clustering of the same set of elements. Mutual
information between two clusterings C and C ′ can be defined as

I(C, C ′) =
k∑

i=1

l∑
j=1

P (i, j) log2
P (i, j)

P (i)P (j)

where P (i, j) is the probability that an element belongs to cluster Ci in C and to cluster C ′
j

in C ′.
P (i, j) =

|Ci ∩ C ′
j|

n

24

3.1 Experimental pipeline

The mutual information in itself is hard to interpret, because it is bounded by the entropies
of the two clusters.

I(C, C ′) ≤ min{H(C),H(C ′)}

(S. Wagner and D. Wagner 2007)

Normalized mutual information To make the mutual information easier to interpret,
we normalize it using the arithmetic mean of the entropies (Fred and Jain 2003). There are
propositions using the geometric mean (Strehl and Ghosh 2002). However, we will use the
arithmetic mean.

NMI(C, C ′) = 2I(C, C ′)
H(C) +H(C ′)

This ensures that we have
0 ≤ NMI(C, C ′) ≤ 1

(S. Wagner and D. Wagner 2007)

Cluster Solver Strip So far, we only looked at a single best solver determined by the
SBS or SBSS for a set of instances. For a cluster, we are interested if there is a set of solvers
that perform well on the cluster. We will determine this set of solvers by using the Par2
score of the CSBS as a guiding value, which decided whether other solvers are in the set or
not. We determine the solver set S over the solvers A = {s1, ..., sm} and the cluster Ci as
follows

S = {sj|sj ∈ A ∧ Par2(sj, Ci) ≤ (SBS(sj, Ci) + offset) · gradient}

We choose a gradient = 11
10

and offset = 3 for our evaluations. In Figure 3.1, we can see
the linear function showing the runtime of the SBS as well as the upper bound for solvers in
the set S that is determined by the SBS with the formula (SBS(sj, Ci) + offset) · gradient.
Using this strip, we can determine sets of solvers that perform similar on the clusters, even
if their runtimes vary more for clusters with higher Par2 scores.
The goal of this measure is to consider the higher variance of runtimes when they increase.
A fixed difference makes it hard to evaluate if solvers behave similar on instances of dif-
ferent difficulty. The strip solves this, by increasing the difference with the increase of
runtime.

25

3 Experimental design

Figure 3.1: Strip determining which solvers are in the set M

Values of the scores

The SBS, SBSS, VBS and VBSS are measurements not influenced by the clustering. We can
therefore calculate these scores for our dataset. You can see the scores in Table 3.1.

Score Value (s) Solver

SBS 3947.35 kissat
SBSS 3973.85 kissat
VBS 2875.94 -

Table 3.1: Dataset scores

The SBSS shows us, that there is high standard deviation when it comes to the runtimes
of all instances using kissat. This is expected, as kissat’s runtimes range from 0s to 5000s.
We can also observe that SBS and VBS have a difference of more than 1100s. This shows
that creating a good algorithm selector can improve the performance significantly in com-
parison to the SBS.

Furthermore, we calculate the Par2 score and SPar2 score for each solver over all in-
stances (sorted by Par2). The values can be seen in Table 3.2.

26

3.2 Experimental setup

Solver Par2 (s) SPar2 (s)

kissat 3947.35 3973.85
relaxed 4542.67 4516.43
cadical-pripro 4625.24 4607.84
cadical 4822.18 4811.75
cadical-stability 4956.04 4936.42
cadical-elimfalse 5097.31 5088.55
lingeling 5600.46 5608.42
glucose 5828.79 5847.76
glucose-chanseok 5888.57 5911.71
glucose-var-decay099 6052.66 6067.90
candy 6195.15 6193.27
minisat 6800.75 6810.66
march-nh 8802.59 8814.13

Table 3.2: Par2 and SPar2 scores for each solver

While we sorted the solvers after the Par2 score, we can observe, that the SPar2 score
is sorted as well, indicating that the best performing solvers might also the most stable
solvers.

3.2 Experimental setup

This section gives an overview over the environment and libraries used for the experiments
as well as discusses filter parameters used to determine clustering algorithms and clusters
that show high performance with our evaluation measures. It further introduces multiple
dataset characteristics used in the following experiments.

3.2.1 Environment

We used different machines for each evaluation of the pipeline based on the computing
power needed. However, the only case in which the result should differ when using other
machines is the calculation of the feature sets for the instances. We split the pipeline
between machines as follows:
The feature extraction was done by Iser, Springer, and Sinz 2020. The preprocessing and
clustering was performed on a machine with 32 CPU Cores, 2.00 GHz, 128 GB RAM. The
Evaluation was performed on a machine with 12 CPU Cores, 3.80 GHz, 16 GB RAM, RTX
2070S.

27

3 Experimental design

3.2.2 Libraries

The pipeline uses multiple different libraries. For many math operations, we use numpy
(1.22.1). The gbd-tools (3.6.5) library (Iser, Springer, and Sinz 2020) is used to read the
feature sets from the given databases. For preprocessing, clustering and evaluation we use
scikit-learn (1.0). The elbow calculations in section 3.2.4 use the yellowbrick (1.3.post1)
library. Furthermore, we use matplotlib (3.4.3) and pandas (1.3.4) for generating the figures
of this document.
The codebase, written for data exploration, also enables the search for clusterings and
clusters using pareto-optimal points. For this we use OApackage (2.7.1). However, we do
not use pareto-optimal points in this thesis.

3.2.3 Filter parameters

We will start out using the 7 feature set combinations and multiple different cluster algo-
rithms with different parameter settings. This yields a high number of clusterings that we
can examine. To be able to find the answers to our research questions, we will use multiple
steps of filtering to reduce the number of clusterings. Each filter step will be justified in the
dedicated section.
To get an overview of the following filtering steps, we will explain them here. These can be
split into the two parts of preprocessing and the comparison of feature sets and clustering
algorithms:

Preprocessing Before running the cluster algorithms, we determine the scaling applied
to the selected features (section 4.1.1) and the feature set we cluster on (section 4.1.2).

Comparing feature sets and clustering algorithms In the next step we will eval-
uate the clusterings created by different combinations of feature sets, clustering algorithms
and their parameters. For this, we will use the following steps to filter out clusterings:
First, we filter out clusterings by number of clusters. While many clusters have settings for
the amount of clusters, others do not and therefore can produce any number of clusters. We
will therefore omit all clusterings with more clusters than a threshold we will determine in
section 3.2.4
Next, we filter by the combination of feature set used for the clustering. The remaining
clusterings will be used to determine clustering algorithms that perform well.
We will observe the behavior of the selected clustering algorithms, when changing pa-
rameter values, and determine parameter values for each cluster algorithm (section 4.2.2).
Lastly, using the clustering algorithms and the selected parameters, we select one clustering
for each clustering algorithm and examine the clusters they contain.

28

3.2 Experimental setup

Figure 3.2: Distribution of family occurrences

3.2.4 Dataset characteristics

To choose useful parameter ranges and compare the results, we introduce multiple mea-
surements derived from the dataset. We calculated these values on the remaining 2524
instances of the dataset, where we excluded the runtimes of yalsat and glucose_syrup and
subsequently removed all other instances with missing values.

Instance families The dataset contains instances of 83 different families. These fam-
ilies have very different sizes, as can be seen in Figure 3.2. The family with the most
occurrences is cryptography, with 483 instances. However, there are multiple families
with only one occurrence. It is therefore hard to determine what good cluster sizes could
be.

Number of clusters Another aspect we might want to use for selecting clusterings is
the number of clusters a clustering contains. Taking the number of families as a benchmark
value, we could say that using more than 83 clusters in a clustering unnecessarily splits
families. However, we do not know if instances from the same family share the same best
solver. We will use the elbow-method in combination with K-Means to get an estimation
for an optimal number of clusters. The elbow-method was performed on all combinations
of ’base’, ’gate’ and ’runtimes’, using standard scaling (section 4.1.1) for preprocessing
and a range of k ∈ {1, .., 100} for K-Means. The elbow method then measures the result-
ing K-Means clusterings based on the distortion score (the sum of squared distances from
each point to its assigned center). The resulting values can be seen in the Table 3.5.

Except ’runtimes’, all values are close to a value k ∈ {20, .., 30}. However, the ’run-
times’ elbow is the most pronounced when it comes to an elbow shape, as Figure 3.3 shows.
In comparison to that, the shapes of the other combinations, such as ’base gate’ (Figure 3.4)
are not as clear. Because of this, we need to consider, that the actual optimal number of

29

3 Experimental design

clusters might be higher. We will use a value of 35 for the maximum number of clusters in
a clustering. Unless stated otherwise, we will, filter clusterings with more than 35 clusters.

Figure 3.3: Distortion Score using ’runtimes’

Figure 3.4: Distortion Score using ’base gate’

30

3.2 Experimental setup

Elbow-Method

Combination Elbow at k Distortion Score

’base’ 16 37251.664
’gate’ 23 13086.134
’runtimes’ 8 6521.479
’base gate’ 30 54673.854
’base runtimes’ 16 55163.280
’gate runtimes’ 23 29442.259
’base gate runtimes’ 27 81360.347

Figure 3.5: Results of the elbow method for all feature set combinations

31

3 Experimental design

32

4 Experimental evaluation

This chapter is split into 2 sections. In the first section 4.1 we will present experiments to
explain our choice of preprocessing the data. In the second section 4.2, we will evaluate
clustering algorithms and selected clusterings.

4.1 Preprocessing of the data

In this section, we will discuss two important preprocessing steps before clustering. We
first give reason on the scaling method we use on the features in section 4.1.1. After that,
we will examine the single features to decide how we will select feature sets for clustering
in section 4.1.2.

4.1.1 Scaling

Scaling the data is an important step before applying clustering algorithms. In this section,
we compare two scaling methods to decide which one to use in further experiments.

Standard Scaling: Given a feature vector f = (x1, ..., xn)
⊤, we calculate the standard

score zi of a sample xi as

zi =
xi − µ

σ

where µ = 1
n

∑n
i=1 xi and σ =

√
1
n

∑n
i=1(xi − µ)2. (scikit-learn 2021b)

Linear Scaling to [-1,1]: Given a feature vector f = (x1, ..., xn)
⊤, we calculate the scaling

li to [-1, 1] of a sample xi as:

li =
xi − c

d
with

c =
maxi∈{1,...,n} f +mini∈{1,...,n} f

2

d =
maxi∈{1,...,n} f −mini∈{1,...,n} f

2

To test the performance of both scaling algorithms, we scaled the combinations of the
feature sets ’base’, ’gate’ and ’runtimes’ with both scaling algorithms and then applied the

33

4 Experimental evaluation

same clustering algorithms. The resulting clusterings were evaluated using the CBS.

Figure 4.1 shows the distribution of the CBS Scores over all combinations of feature
sets. Both linear scaling and standard scaling have a majority of clusters that are rated with
CBS scores above 3800s and are close to the SBS (3947.35s). In comparison to that, the
VBS (2875.94s) is far away from the best clusterings.

In Figure 4.2, we can see the distributions of the clusters for only ’base’, ’gate’ and
’base gate’. The best CBS score has decreased in comparison to Figure 4.1, but the general
distribution of the clusters stayed the same.

For both Figure 4.2 and Figure 4.1, linear scaling produces more clusters with lower
CBS scores than standard scaling, however, both have similar low outliers.

We decided to use standard scaling for the further experiments, because it behaves better
on features with outliers. For the linear scaling, outliers can have the effect of moving the
outliers close to -1, while it moves all other values very close to 1. This makes it hard when
clustering to determine whether instances with different values of this feature should be in
the same cluster or be split. Standard scaling does not experience this effect as strongly.
While linear scaling has more clusterings with lower CBS scores, both have outliers with
low CBS scores. The analysis of the single clustering outliers should therefore yield similar
results for both scaling techniques.

34

4.1 Preprocessing of the data

Figure 4.1: Histogram of the distribution of CBS scores for linear and standard scaling with all
feature sets

Figure 4.2: Histogram of the distribution of CBS scores for linear and standard scaling with ’base’,
’gate’ and ’base gate’

35

4 Experimental evaluation

4.1.2 Clusterings with single features

Another important step before applying clustering algorithms to the data is feature selec-
tion. In this step, we want to identify the useful feature vectors used in the clustering.
Excluding unnecessary feature vectors can lead to an improvement in the resulting cluster-
ings. One method is to create the feature set with a greedy approach, by iteratively adding
features to the feature set used for clustering and then evaluating the resulting clustering.
For this, we need a ranking of the performance of each feature when generating a cluster-
ing to select the next best feature. One way to get this ranking is by clustering each feature
separately.

In this experiment we clustered each feature from the three feature sets ’base’, ’gate’
and ’runtimes’ separately and evaluated their performance using the CBS score. To limit
the number of clusterings we only used DBSCAN, K-Means and Agglomerative clustering.
For clustering, we use the default settings. The result of each feature set can be seen in the
three Figures 4.3, 4.4 and 4.5. Features that did not have a clustering with CBS scores that
were at least 25s faster than the SBS were removed from the figures. The y-axis, display-
ing the CBS score, shows the same interval for each figure to make the values more easily
comparable.

In Figure 4.3, no clustering of ’base’ features, manages to lower the CBS score below
3800s. The best performing features for ’base’ are clause_size_1, clause_size_7,
positive_clauses, balance_clause_entropy and
vcg_vdegrees_entropy.
’gate’ (Figure 4.4) performs similar to ’base’. The only feature with clusterings close to
3800s is n_roots. Also ’gate’ experienced the removal of more features than ’base’,
because they showed no or very small improvement in comparison to the SBS.
’runtimes’ (Figure 4.5) performs better in comparison to ’base’ and ’gate’. Especially, the
SBS kissat performs well when used for clustering. However, we will see in the section
4.2.1 that using all ’runtimes’ features for clustering proves more effective.

In conclusion, we can see that a greedy approach based on the ’base’ and ’gate’ fea-
tures would be hard, because all features have very similar CBS scores for their resulting
clusterings. This makes it hard to select features in a greedy approach. Because of this, we
will use the seven combinations of the feature sets ’base’, ’gate’ and ’runtimes’ presented
in section 3.1.2.

36

4.1 Preprocessing of the data

Figure 4.3: CBS score of each ’base’ feature

Figure 4.4: CBS score of each ’gate’ feature

37

4 Experimental evaluation

Figure 4.5: CBS score of each ’runtimes’ feature

4.2 Comparing feature sets and clustering
algorithms

In the previous sections, we decided to use combinations of the ’base’, ’gate’ and ’run-
times’ feature sets in combination with standard scaling for clustering. We used these
combinations to run different clustering algorithms, with a parameter range for each. The
parameter ranges of each clustering algorithm can be found in section A.2. However, the
range of eps for DBSCAN was increased to [0.1, 3] for the following experiments, to allow
DBSCAN to create clusterings with a lower number of clusters. We decided in section 3.2.4
that clusterings with more than 35 clusters show no significant improvement. Therefore,
clusterings with more than 35 clusters will be filtered out of the following plots.
This chapter is split in three parts. First, we will look at all clusterings created with the
combinations of feature sets and cluster algorithms (section 4.2.1). Next, we will choose
a limited number of feature sets and clustering algorithms and determine the behavior of
the clustering algorithms when changing their parameters (section 4.2.2). Lastly, we will
select interesting clusterings and examine them in detail (section 4.2.3).

38

4.2 Comparing feature sets and clustering algorithms

Figure 4.6: Histogram of the distributions of the CBS scores for each combination of features

4.2.1 Evaluating clustering algorithms

In Figure 4.6, we can see the CBS scores for each combination of feature sets. The clus-
terings using only ’runtimes’ have the lowest CBS scores. In comparison to this, the other
combinations of feature sets perform worse, having their median always above 3800s. On
the other hand, while ’base’, ’gate’ and ’base gate’ have very high median CBS scores,
there are some outliers that manage lower CBS scores. Including ’runtimes’ with ’base’,
’gate’ or ’base gate’ seems to improve the median performance of the CBS scores of the
clusterings. However, the best CBS scores decrease (except for ’gate runtimes’). Overall
the inclusion of ’runtimes’ into these combinations does not have a big positive effect as
we may expect when looking at the clustering created when using only ’runtimes’.

The clusterings using the ’runtimes’ feature set, performs better because the clusterings
have access to the runtimes for each solver. Therefore, each cluster should contain problem
instances that have similar solver runtimes for the selection of solvers in ’runtimes’. This
leads to creation of clusters in which problem instances can be solved quickly by the same
solver. This effect gets eased when ’runtimes’ is used in combination with ’base’, and
’gate’ explaining the increase of CBS scores.
The features in ’base’ and ’gate’ do seem to contain much less information regarding the
formation of clusters with fast solvers. Most of their CBS scores are only slightly below
the SBS score.

39

4 Experimental evaluation

Figure 4.7: Histogram of the distributions of the CBS scores for clustering algorithms using ’base’,
’gate’ and ’base gate’

Next, we examine how the clusterings are distributed between the clustering algorithms
we used. We saw, that clustering with ’runtimes’ creates many of the clusterings with low
CBS. This would skew the results, because we are interested what clustering algorithms
perform well on features we can extract from a new instance quickly. Calculating runtimes
on a new instance, however, is time-consuming and would make the clustering unneces-
sary. Furthermore, we saw that the inclusion of ’runtimes’ to ’base’, ’gate’ or ’base gate’,
did not improve the clusterings by much. Therefore, we will continue by only using clus-
terings created with ’base’, ’gate’ or ’base gate’.
In Figure 4.7 we can see the distribution of the clusterings created with ’base’, ’gate’ or
’base gate’ split into the different clustering algorithms used. Furthermore, all clustering
algorithms that had no clusterings with CBS scores that differed more than 25s from the
SBS were removed. Figure 4.7 shows us, that K-Means and DBSCAN perform the best
regarding low CBS scores. Both Agglomerative clustering and BIRCH show outliers with
low CBS score, but in comparison to K-Means and DBSCAN their median is much higher.

In conclusion, ’runtimes’ manages to create the best clusters. However, this is not very
useful, as knowing the runtimes of the instances we want to sort into a cluster beforehand
makes the goal of the clustering unnecessary. The combinations ’base’, ’gate’ and ’base
gate’ all have high CBS scores and all perform very similar, with small differences in their

40

4.2 Comparing feature sets and clustering algorithms

outliers and median. The combinations ’base runtimes’, ’gate runtimes’ and ’base gate
runtimes’ show no significant advantage over their counterpart ’base’, ’gate’ and ’base
gate’ without runtimes.
When using ’base’, ’gate’ or ’base gate’ for clustering, both K-Means and DBSCAN create
the best clusterings in comparison to other clustering algorithms.

4.2.2 Analysis of selected clustering algorithms

In the previous section, we realized that K-Means and DBSCAN perform best when it
comes to creating clustering on ’base’, ’gate’ and ’base gate’. Now, we want to examine
how the clusterings of each algorithm behave based on different parameters and how the
generated clusters differ from each other.

K-Means For K-Means, we only have the parameter k we can change. k determines how
many clusters K-Means creates. To evaluate how an increase of k changes the clustering,
we calculate the Normalized Mutual Information (NMI), introduced in section 3.1.4. The
NMI for the clustering with a parameter value of k is calculated in comparison to the clus-
tering with a parameter value of k − 1.

In Figures 4.8, 4.9 and 4.10 the NMI and CBS for the combinations ’base’, ’gate’ and
’base gate’ is shown. We can see that the NMI behaves similar on all combinations and
is over 80% for k > 15 for almost all clusterings. This indicates that increasing k even
more only splits off small parts of other clusters, leaving the distribution of the instances
to the clusters relatively unchanged. As can be expected, the CBS score decreases in most
cases with the increase of k. This also suggests that in most cases, an existing cluster gets
split in two smaller clusters, either finding better solvers on the new clusters or staying the
same. Still, small increases of the CBS can occur, when the algorithm moves instances in
clusters that decide on solvers, that perform worse on them. However, it is observable that
a further increase of k, while leading to better CBS scores, would cause an approximation
of the VBS where each of the instances has its own cluster. The values of the NMI suggest,
that further increases only lead to small changes in the clusters for each increase, until a
VBS is reached. We can therefor conclude that a clustering with a k > 15 should give a
good representation on how K-Means clusters the instances.

41

4 Experimental evaluation

Figure 4.8: NMI and CBS for K-Means cluster-
ing using ’base’

Figure 4.9: NMI and CBS for K-Means cluster-
ing using ’gate’

Figure 4.10: NMI and CBS for K-Means clus-
tering using ’base gate’

42

4.2 Comparing feature sets and clustering algorithms

DBSCAN For DBSCAN we can change the epsilon value eps and the minimum sam-
ples min_sample_size. When exploring, we both iterated using eps and
min_sample_size value while keeping the other one fixed. Inside our chosen range
of values, the selection of either parameter to keep fixed or iterate do not seem to change
the resulting NMI. We will therefore show the result for min_sample_size= 5 while
iterating over eps. As expected with increasing eps values the CBS score increases, be-
cause we get bigger clusters, for which the CSBS is often worse, than for two separate
clusters with the same instances. The NMI is relatively constant for all eps values. The
only exception is a drop at eps= 2.2 for ’gate’. We will discuss this observation next
using reachability plots for each combination of feature sets.

Using OPTICS, we generated a reachability plot using min_sample_size= 5 for
the combinations ’base’, ’gate’ and ’base gate’. In Figures 4.14, 4.15 and 4.16 the reach-
ability plots for each combination can be seen. It is clear that picking a value of eps that
would result in bigger, tightly-packed clusters is hard. There are many “valleys” suggesting
we can either create a few big cluster or many very small clusters. Selecting the option of
small clusters, the eps value must lie below 1 for ’base’, ’gate’ and ’base gate’. However,
a problem with these values is that, this will also create many clusters with very few in-
stances. Bigger eps values cause the formation of a few very big clusters. This also is not
favorable as very big clusters will most likely have the SBS as their CSBS, resulting in no
improvement of performance when clustering.
The sharp drop for ’gate’ when choosing eps= 2.2 becomes apparent when looking at its
reachability plot (Figure 4.15). We can observe, that changing eps form 2.1 to 2.2 causes
two big clusters to be combined into one, causing a huge drop in the NMI. In comparison to
this, the reachability plots of ’base’ (Figure 4.14) and ’base gate’ (Figure 4.16) do not have
as strong “spikes” as ’gate’, causing them to only have small changes in the NMI when
changing eps.

43

4 Experimental evaluation

Figure 4.11: NMI and CBS for DBSCAN clus-
tering using ’base’

Figure 4.12: NMI and CBS for DBSCAN clus-
tering using ’gate’

Figure 4.13: NMI and CBS for DBSCAN clus-
tering using ’base gate’

44

4.2 Comparing feature sets and clustering algorithms

Figure 4.14: Reachability plot of ’base’

Figure 4.15: Reachability plot of ’gate’

Figure 4.16: Reachability plot of ’base gate’

45

4 Experimental evaluation

4.2.3 Evaluation of selected clusterings

In the previous section, we saw, that the variation of the parameters of K-Means and DB-
SCAN only cause small changes between clustering with similar parameter values. To get
a deeper understanding on how these clusterings are structured, we will select a clustering
for each algorithm to evaluate. For these clusterings, we will evaluate interesting clusters.

Filtering of clusters for selected clusterings For the following clusterings we will
filter out selected clusters from the figures. Clusters will be included if the size of the cluster
is bigger than the 0.25-Quantile of all cluster sizes of the selected clustering.

Clustering notation Next, we sorted the clusters in the selected clustering using the
size of each cluster. This gives us a total ordering of all clusters. We can therefore assign
each cluster an ID, beginning with 0 for the cluster with the most instances. We will use
these IDs to uniquely identify each cluster in the following plots and tables. For DBSCAN
the cluster with the ID 0 is the cluster that contains all outliers.

K-Means

Selection of the clustering When selecting a clustering for K-Means, we want to
include multiple criteria:

(i) The clustering should use either ’base’, ’gate’ or ’base gate’. We realized early on,
that only using ’runtimes’ for clustering yields the best results, but does not help us
when identifying common properties of the instances.

(ii) The clustering should have a low CBS score. We are interested in clusterings that
group instances with similar fast solvers into the same cluster, therefore the CBS
score should be low.

(iii) If possible, the k-parameter of K-Means should be similar to the one we estimated in
section 3.2.4.

We have 117 possible clusterings that use K-Means and combinations of ’base’, ’gate’ or
’base gate’. We selected the clustering that had the lowest CBS score. The settings of the
selected clustering can be seen in Table 4.17.

Parameter Value

Clustering Algorithm K-Means
Feature sets ’base’
Number of clusters 34

Figure 4.17: Parameter values for the selected K-Means clustering

46

4.2 Comparing feature sets and clustering algorithms

Clustering characteristics We calculated the scores for the complete clustering, with-
out omitting any clusters. The ’Best’ column shows the best value for the 117 clusterings
using K-Means clustering and ’base’, ’gate’ or ’base gate’. The NMI describes the normal-
ized mutual information between the clustering and the clustering induced by the families
of the instances. The score of the clustering can be seen in Table 4.18.

Score Value Best

CBS 3748.85s 3748.85s
CBSS 3676.23s 3667.59s
NMI with family 0.663 0.663
0.25-Quantile of cluster sizes 5 -

Figure 4.18: Scores of the selected K-means clustering

As we can see, the selected clustering performs best in the CBS and NMI score. It is
second in the CBSS score for the 117 clusterings. Furthermore, it has 34 clusters, which
is close to the estimated number in section 3.2.4. In section 4.2.2 we observed, that small
changes in k does not cause big changes in the clusterings. Therefore, the selected cluster-
ing should be representative of K-Means clustering.
As stated previously, we will omit all clusters, that have sizes lower than the 0.25-Quantile.
Therefore, clusters that do not have sizes larger than 5 are omitted, leaving 23 clusters. The
following evaluation will only include these filtered clusters.

Clustering evaluation

Cluster sizes and families: In Figure 4.19, we can see the size of each cluster, as well
as the shares of the families with more than 20% in the cluster. We can observe, that the
distribution of cluster sizes is not uniform. Instead, the cluster sizes vary greatly. K-Means
often sorts instances with the same family into the same clusters. This is especially the case
for small clusters. Clusters with more than 100 instances are not as homogeneous when
it comes to the families in them. In total, 7 of the 23 clusters (30.4%) contain only one
family.
In Figure 4.21, we can see the distribution of the biggest families (0.75-Quantile of families
by size) between multiple clusters. Please note that the same color, between two families,
does not represent the same cluster. Instead, we annotated the cluster ID on each bar. We
scaled all distributions to [0, 1] because of different family sizes.
We can observe that some families are completely part of a single clusters. However, K-
Means splits most families between multiple clusters. For the biggest families, most family
instances are in a maximum of three clusters.
An overview of the distributions of families between clusters, with no filtering of families

47

4 Experimental evaluation

and clusters, can be found in section A.4.

CSBS performance: In Figure 4.20, we can see the SBS and CSBS for each cluster.
The solver annotated in bold for each bar is the CSBS. The other solvers are the solvers
in the strip, sorted from best to worse by their Par2 score. If there were too many solvers
in the strip, we only showed CSBS and the other 5 best solvers in the strip. More solvers
can be seen in Table 4.1. The annotation says unsolvable if there was no solver that could
solve at least one instance in the cluster before the timeout.
We observe, in Figure 4.20, that 14 of 23 clusters (61%) use the SBS kissat as their CSBS.
The clusters that use the SBS kissat contain 2014 of the total 2524 instances (79.79%). Be-
cause most instances in the clustering use the SBS, the overall CBS scores of the clusterings
are always close to the SBS. 7 of the 23 clusters (30.4%) use CSBSs different from the SBS.
All 7 clusters have a speedup of more than 100s when using the CSBS compared to the SBS.
The highest absolute speedup can be observed in cluster 20 of approximately 2000s using
glucose_chanseok. However, this has relatively low significance for the overall CBS score
of the clustering, because cluster 20 only contains 9 of the 2524 instances. The remaining
2 of the 23 clusters (8.7%) contain only unsolvable instances.

48

4.2 Comparing feature sets and clustering algorithms

Figure 4.19: Size of each cluster showing, the shares of the biggest families

Figure 4.20: SBS and CSBS for each cluster

49

4 Experimental evaluation

Figure 4.21: Distribution of the biggest families between the clusters

CSBS strip: While kissat might be the best CSBS for most clusters, we want to ex-
amine, if a cluster has other solvers with similar performance as the CSBS. To do this, we
defined the strip of solvers with similar performance in section 3.1.4. The solver in the
strip with similar performance for each cluster can be seen in Figure 4.20 and Table 4.1.
We sorted the solvers in each strip from lowest to highest by their Par2 score on the in-
stances in the cluster.
We can observe that for most clusters, there is only one solver with high performance. The
exceptions are the clusters with very low and very high CSBS scores. For the clusters 21
with low CSBS scores, there are multiple fast solvers in the strip. This is most likely the
case because the instances in the cluster are easy and can therefore be solved by multiple
solvers quickly as well as being a cluster with only 7 instances. The other extreme are the
clusters with very high CSBS scores. Clusters 12 and 18 have CSBS scores over 8000s and
both have at least 8 solvers in the strip. kissat occurs in 16 of the 23 (69.57%) of all strips.

50

4.2 Comparing feature sets and clustering algorithms

Cluster Strip

0 kissat
1 kissat, cadical-pripro
2 kissat
3 kissat, relaxed
4 kissat, relaxed
5 kissat, lingeling
6 relaxed
7 relaxed
8 cadical-pripro, cadical, relaxed
9 kissat
10 kissat
11 kissat

12 cadical-stability, cadical-pripro, glucose, cadical, cadical-elimfalse, glucose-chanseok, relaxed,
kissat, lingeling, candy

13 kissat, relaxed
14 cadical-pripro, cadical, cadical-elimfalse
15 kissat
16 kissat
17 unsolvable

18 relaxed, cadical-elimfalse, cadical, cadical-pripro, cadical-stability, candy, glucose-chanseok, glu-
cose, glucose-var-decay099, kissat, lingeling, march-nh, minisat

19 unsolvable
20 glucose-chanseok
21 kissat, cadical-stability, cadical-elimfalse, cadical, cadical-pripro
22 kissat

Table 4.1: Solvers in strip for each cluster

Stability of solvers: So far, we only used the CSBS score to evaluate the clusters of the
clustering. Next, we want to compare the CSBS of each solver with the CSBSS. In Table
4.2, we can see the clusters where CSBS and CSBSS differ. If the CSBS and CSBSS are
identical, we omit the cluster from the table. We can observe, that only two clusters (13
and 15) have different solvers for CSBS and CSBSS.
We can see the distribution of the runtimes for the CSBS and CSBSS for both clusters
in Figures 4.22 and 4.23. For cluster 13 the overall distribution of the runtimes is much
smaller for the CSBSS than the CSBS. Furthermore, the CSBS and CSBSS Par2 scores are
very close. Therefore, the CSBSS is in the strip of the CSBS as can be seen in Table 4.1.
For cluster 15 the Par2 scores of CSBS and CSBSS are not as close. For both solvers, the
SPar2 score is very similar, because the runtime distributions of both solvers are similar.
Furthermore, clusters 13 and 15 are interesting, because they both have a high overlap
with a family. As can be seen in section 4.19, cluster 13 mostly contains hypertree-
decomposition instance and cluster 15 contains all strcmp-verification instances.

51

4 Experimental evaluation

Cluster CSBS CSBSS

13 kissat relaxed
15 kissat cadical-stability

Table 4.2: CSBS and CSBSS for each cluster

Figure 4.22: The distribution of CSBS and CS-
BSS runtimes with the Par2 and
SPar2 scores for Cluster 13

Figure 4.23: The distribution of CSBS and CS-
BSS runtimes with the Par2 and
SPar2 scores for Cluster 15

52

4.2 Comparing feature sets and clustering algorithms

DBSCAN

Selection of the clustering When selecting a cluster for DBSCAN, we want to include
similar criteria to K-Means:

(i) The clustering should use either ’base’, ’gate’ or ’base gate’ for clustering. We
realized early on, that only using ’runtimes’ for clustering yields the best results, but
does not help us when identifying common properties of the instances.

(ii) The clustering should have a low CBS score. Because we are interested in clusterings
that group the instances in clusters with similar fast solvers, the CBS score should be
low.

(iii) The number of clusters should be similar to the one we estimated in section 3.2.4.
While this estimation is better for K-Means the evaluation in section 4.2.2 shows that
it is hard to estimate a good value for eps.

We have 810 possible clusterings that use DBSCAN and combinations of ’base’, ’gate’ or
’base gate’. We then selected a clustering that had low scores for CBS, CBSS and NMI
score. The selected clustering can be seen in Table 4.24.

Parameter Value

Clustering Algorithm DBSCAN
Feature sets ’base gate’
Epsilon 2
Min sample size 9
Number of clusters 37

Figure 4.24: Settings of the selected DBSCAN clustering

We saw in section 4.2.2 that changing the values of eps had no significant effect on
the NMI. The reachability plot of ’base gate’ suggests that eps = 2 is a good value for
a clustering. Furthermore, the number of clusters is close to the number we estimated
in section 3.2.4. The chosen clustering should therefore be representative of the section
DBSCAN clusterings.

Clustering characteristics We calculated the scores for the complete clustering, with-
out omitting any clusters. The ’Best’ column shows the best value for the 810 clusterings.
Please note, that the missing limit of number of clusters when running DBSCAN causes
many clusterings with more than 1000 clusters, approximating the VBS. Therefore, there is
a bigger difference in the ’Best’ column to the values of the selected clustering. The NMI
describes the normalized mutual information between the clustering and the clustering that
is induced by the families of the instances. The scores of the clustering can be seen in Table
4.25.

53

4 Experimental evaluation

Score Value Best for all 810 clusterings

CBS 3725.20s 3140.44s
CBSS 3652.67s 2812.84s
NMI with family 0.655 0.804
0.25-Quantile of cluster sizes 16 -

Figure 4.25: Scores of the selected DBSCAN clustering

As stated previously, we will omit all clusters, that do not have sizes larger than the
0.25-Quantile. This omits all clusters not larger than 16, leaving 27 clusters (including the
cluster containing the outliers). The following will only include these filtered clusters.

Clustering evaluation

Cluster sizes and families: In Figure 4.26, we can see the size of each cluster, as well
as the shares of the families with more than 20% in the cluster. While DBSCAN does not
have a uniform distribution, its clusters are not as different in size when compared to the
clustering of K-Means (excluding the cluster 0 of outliers). Similar to K-Means, DBSCAN
often sorts instances with the same family into the same cluster. 15 of 27 clusters (55.56%)
only contain one family. This is an increase in comparison to the 30.4% of K-Means.
Instead, many family instances get sorted into the outlier cluster 0, leaving more homoge-
neous clusters.
The distribution of the biggest families in Figure 4.28 is similar to K-Means. Most families
get split between a maximum of three big clusters. For some families the split between
clusters is similar for DBSCAN and KMEANS e.g., cryptography, planning, tensor are split
similarly for both clusterings. However, that is not true for all families, e.g., antibandwidth
has almost all instances in one cluster using DBSCAN, while it is split between two big
clusters and one small cluster when using K-Means. An overview of the distributions of
families between clusters without filtering families and clusters can be found in section A.4.

CSBS performance: Figure 4.27 shows the SBS and CSBS for each cluster. The solver
annotated in bold for each bar is the CSBS. The other solvers are the solvers in the strip,
sorted from best to worse by their Par2 score. If there were too many solvers in the strip,
we only showed the 5 best solver in the strip. The other solvers can be seen in section 4.3.
If the annotation says unsolvable, there was no solver that could solve at least one instance
in the cluster before the timeout.
15 of 27 clusters (55.56%) use the SBS as their CSBS. The clusters that use kissat con-
tain 1732 of the total 2524 instances (68.62%). This is an improvement in comparison to
the clustering of K-Means. 11 of the 27 clusters (40.74%) use CSBSs different from the
SBS. 10 of these 11 clusters have a performance increase of more than 100s when using

54

4.2 Comparing feature sets and clustering algorithms

the CSBS instead of the SBS. The biggest absolute performance increase shows cluster 21,
using march_nh as its CSBS. However, cluster 21 only contains 23 instances. The cluster
20 is unsolvable.

55

4 Experimental evaluation

Figure 4.26: Size of each cluster showing, the shares of the biggest families

Figure 4.27: SBS and CSBS for each cluster

56

4.2 Comparing feature sets and clustering algorithms

Figure 4.28: Distribution of the biggest families between the clusters

CSBS strip: While kissat might be the best CSBS there might be other solvers with sim-
ilar performance. The solver in the previously defined strip can be seen in the Table 4.3 and
Figure 4.27. We can see that the number of solvers for most clusters is again 1. The num-
ber of solvers increases with the increase of the CSBS score of each cluster. Especially,
clusters using kissat as their CSBS often do not have a solver with similar performance.
kissat occurs in 17 of 27 (62.96%) of strips.

57

4 Experimental evaluation

Cluster Strip

0 kissat
1 kissat
2 kissat, cadical-pripro, relaxed
3 glucose-chanseok
4 kissat, cadical, relaxed, cadical-pripro, cadical-stability
5 relaxed
6 kissat, cadical-pripro
7 relaxed
8 kissat

9 kissat, relaxed, glucose, lingeling, cadical-pripro, cadical, glucose-chanseok, cadical-stability,
cadical-elimfalse, candy, glucose-var-decay099

10 kissat
11 relaxed, kissat
12 relaxed
13 kissat
14 cadical, cadical-pripro, kissat, relaxed, cadical-elimfalse
15 kissat
16 relaxed
17 kissat
18 candy, relaxed
19 relaxed, cadical-pripro
20 unsolvable
21 march-nh
22 kissat
23 kissat
24 kissat, lingeling, minisat, glucose-var-decay099, glucose, glucose-chanseok
25 kissat, lingeling
26 lingeling

Table 4.3: Solvers in strip for each solver

Stability of solvers: Next, we want to compare the CSBS and CSBSS of each cluster.
Table 4.3 shows the clusters that have different solvers for CSBS and CSBSS. If the solvers
are identical, we do not list the cluster. Only one cluster has different solvers. We can see
the distribution of the runtime features of the CSBS and CSBSS of this cluster in Figure
4.29. The CSBSS is in general slower in the instances than the CSBS. Therefore, its Par2
score is worse. However, the runtime distribution of the CSBSS is slightly smaller than the
one of the CSBS, therefore having a higher stability. Because the CSBS and CSBSS have a
similar Par2 score, the CSBSS appears in the strip of the CSBS in Table 4.3.

58

4.2 Comparing feature sets and clustering algorithms

Cluster CSBS CSBSS

4 kissat relaxed

Table 4.4: CSBS and CSBSS for each cluster

Figure 4.29: The distribution of CSBS and CS-
BSS runtimes with the Par2 and
SPar2 scores for Cluster 4

59

4 Experimental evaluation

60

5 Discussion

5.1 Conclusion

From our evaluations, we can take away multiple conclusions, which we want to reflect
using the research questions stated at the beginning:

How do different sets of instance features influence the clustering quality of
different clustering algorithms? When using the different combinations of ’base’,
’gate’ and ’runtimes’, ’runtimes’ generates the clusterings with the best CBS scores. Com-
binations of ’base’ and ’gate’ perform, CBS score wise, much worse than ’runtimes’. Com-
bining ’runtimes’ with ’base’ and ’gate’ also yields no improvement in the clusterings.

What clustering algorithms and parameter settings yield clusterings with
high quality? When using only ’base’, ’gate’ or ’base gate’ for clustering the two
best performing clustering algorithms, CBS score wise, are K-Means and DBSCAN. Closer
observation of the behavior under different parameter values suggest, that for K-Means the
optimal setting for the parameter k lies between 15 and 35. For DBSCAN the parameter
settings are not as clear. The reachability plot suggests, that there are no clear clusters for
DBSCAN in the dataset. Depending on our selection of eps, we will either create many
small clusters or a few big clusters.

How are the instances in a clustering split into clusters? When looking at se-
lected clusterings of DBSCAN and K-Means we noticed, that many clusters contain a ma-
jority of a single family. This is especially the case for DBSCAN, which moves instances, it
can not sort into any cluster, into an outlier cluster. However, K-Means and DBSCAN often
split families between multiple clusters. The instances are not in a uniform distribution of
the clusters. Especially K-Means has very big differences between the sizes of the clusters.

Do instances in a cluster share solvers, which shows homogeneous runtime
behavior? When examining selected clusterings under the aspect of CSBS we noticed
that many clusters use the original SBS kissat as their CSBS. For the selected clustering,
more than 30% of clusters show significant performance increases using the CSBS in com-
parison to the SBS. However, these are often relatively small clusters. This explains why

61

5 Discussion

the CBS only has a small performance increase in comparison to the SBS.
The strips of the clusters show, that 37 of the 50 clusters (87%), from the two selected clus-
terings, only have one or two solvers that show low CSBS scores. Furthermore, the CSBS
and CSBSS are the same solver for most clusters. This suggests that for all other clusters
the solver with the fastest runtime behavior and the solver with the most homogeneous
runtime behavior, on all instance in the cluster, are the same solver.

5.2 Future Work

In our different evaluations there are multiple interesting aspects not discussed here in-
depth but which might be interesting for further analysis.

Scaling We found that both the linear scaling and standard scaling both had outliers with
low CBS scores. However, the distribution of the CBS scores of both scaling techniques
are different. A further analysis of linear scaling in combination with clustering algorithm
might therefore be able to further support the results of this thesis.

Feature selection In our approach, we focused on clustering different combinations
of the feature sets ’base’, ’gate’ and ’runtimes’. However, in section 4.1.2 we noticed that
both ’base’ and ’gate’ have subsets of features that create better CBS scores than other
features. A clustering based on these subsets of features might therefore be interesting.
Especially the n_roots feature of ’gate’ is a significant outlier in comparison to the other
’gate’ features.

62

A Implementation Details

A.1 Project organization

The project used to generate the data of this paper can be found at https://github.
com/SimuIacron/cluster_analysis_for_sat_instances. The project is
written in python 3.8. All dependencies are in the requirements.txt.
The folder structure of the project is as follows:

cluster_analysis_for_sat_instances

DataAnalysis

Scoring

DataFormats

PlottingAndEvaluationFunctions

PlottingTex

ComparingClusterAlgorithms

AnalysisOfGoodClusterAlgorithms

SelectedSingleClusters

Preprocessing

UtilScripts

The two main scripts for the clustering (run_experiments.py) and evaluation
(run_evaluation.py) are placed in cluster_analysis_for_sat_instances.
run_experiments.py contains the identically named function run_experiements
which takes a set of clustering experiments to run and returns the clusterings as a text file.
An example of a call of the function can be found at the bottom of the file.
run_evaluation.py contains the identically named function run_evaluation.
For a text file of clusterings generated by run_experiements, it calculates the CBS
as well as CSBS for the clusterings and saves them as a text file.
Both run_experiments.py and run_evaluation.py use functions supplied by
scripts in DataAnalysis. DataAnalysis contains scripts for scaling, feature selec-

63

https://github.com/SimuIacron/cluster_analysis_for_sat_instances
https://github.com/SimuIacron/cluster_analysis_for_sat_instances

A Implementation Details

tion, clustering and scoring of clusterings.
The folder PlottingTex contains all scripts used to generate the plots in this thesis. The
folders are named similarly to the sections the plots appear in. Each script reads in the text
files generated by run_evaluation and run_experiements.
To generate the plots, the scripts in PlottingTex use plotting and evaluation functions
supplied by PlottingAndEvaluationFunctions. This folder contains functions
to both evaluate and plot clusterings. To differentiate, all files generating plots for the
thesis have the suffix plot_ and all files supplying functions for plotting have the suffix
func_plot_.
DataFormats contains the abstractions DBInstance.py from the Database and
DatabaseReader.py supplies methods for DbInstance to read out the gbd-Database.
The DbInstance is used as an abstraction of the database in many scripts to read data
about specific instances.

A.2 Default settings tables

The tables show the default values used in experiments, if not specified differently in the
experiment section. Step size describes how big the steps were that were done in the
given interval, e.g., if the interval is [1,10] and the step size is 1 the default values are
{1,2,3,4,5,6,7,8,9,10}.

A.2.1 Scaling and feature selection

General Settings

Parameter Variable Name of
Parameter

Interval/Value Step Size

Scaling Algorithm scaling_algorithm Standard Scaling (4.1.1) -
Feature Selection Algorithm selection_algorithm None -

A.2.2 Clustering

K-Means

Parameter
Variable Name of Pa-
rameter

Interval/Value Step Size

Seed seed 0 -
Number of Clusters n_cluster_k_means [1,39] 1

64

A.2 Default settings tables

Affinity Propagation

Parameter
Variable Name of Pa-
rameter

Interval/Value Step Size

Seed seed 0 -
Damping damping_aff [0.5, 0.9] 0.1
Preference preference_aff None -
Affinity affinity_aff euclidean -

Meanshift

Parameter
Variable Name of Pa-
rameter

Interval/Value Step Size

Bandwidth badwidth_mean [1, 9], None 1

Spectral Clustering

Parameter
Variable Name of Pa-
rameter

Interval/Value Step Size

Seed seed 0 -
Number of Clusters n_clusters_spectral [2, 3] 1

Agglomerative Cluster-
ing

Parameter
Variable Name of Pa-
rameter

Interval/Value Step Size

Number of Clusters n_clusters_agg [1, 39] 1
Affinity affinity_agg euclidean -

Linkage linkage_agg
[ward, complete,
average, single]

-

Distance Threshold distance_threshold None -

Optics

Parameter
Variable Name of Pa-
rameter

Interval/Value Step Size

Minimum Samples min_samples_opt [1, 9] 1
Minimum number of
clusters

min_cluster_opt [1, 9], None 1

65

A Implementation Details

Gaussian

Parameter
Variable Name of Pa-
rameter

Interval/Value Step Size

Seed seed 0 -
Number of Compo-
nents

n_components_gauss [1, 9], None 1

DBSCAN

Parameter
Variable Name of Pa-
rameter

Interval/Value Step Size

Eps eps_dbscan [0.1, 0.9] 0.1
Minimum Samples min_samples_dbscan [1,19], None 1

BIRCH

Parameter
Variable Name of Pa-
rameter

Interval/Value Step Size

Threshold threshold_birch [0.1, 0.9] 0.1
Branching factor branching_factor_birch [10, 99], None 10
Number of clusters n_clusters_birch [1, 39], None 1

A.3 Feature sets

This is a list of the features of each feature set. The dataset can be found at https://
git.scc.kit.edu/fv2117/gbd-data. For more information about the feature ex-
traction of ’base’ and ’gate’, see https://github.com/sat-clique/cnftools.

A.3.1 ’base’

clauses, variables, clause_size_1, clause_size_2, clause_size_3, clause_size_4,
clause_size_5, clause_size_6, clause_size_7, clause_size_8, clause_size_9,
horn_clauses, inv_horn_clauses, positive_clauses, negative_clauses, horn_vars_mean,
horn_vars_variance, horn_vars_min, horn_vars_max, horn_vars_entropy,
inv_horn_vars_mean, inv_horn_vars_variance, inv_horn_vars_min, inv_horn_vars_max,
inv_horn_vars_entropy, balance_clause_mean, balance_clause_variance, bal-
ance_clause_min, balance_clause_max, balance_clause_entropy, balance_vars_mean,
balance_vars_variance, balance_vars_min, balance_vars_max, balance_vars_entropy,
vcg_vdegrees_mean, vcg_vdegrees_variance, vcg_vdegrees_min, vcg_vdegrees_max,
vcg_vdegrees_entropy, vcg_cdegrees_mean, vcg_cdegrees_variance, vcg_cdegrees_min,

66

https://git.scc.kit.edu/fv2117/gbd-data
https://git.scc.kit.edu/fv2117/gbd-data
https://github.com/sat-clique/cnftools

A.4 Family distribution of selected clusters

vcg_cdegrees_max, vcg_cdegrees_entropy, vg_degrees_mean, vg_degrees_variance,
vg_degrees_min, vg_degrees_max, vg_degrees_entropy, cg_degrees_mean,
cg_degrees_variance, cg_degrees_min, cg_degrees_max, cg_degrees_entropy,
base_features_runtime

A.3.2 ’gate’

n_vars, n_gates, n_roots, n_none, n_generic, n_mono, n_and, n_or, n_triv, n_equiv, n_full,
levels_mean, levels_variance, levels_min, levels_max, levels_entropy, levels_none_mean,
levels_none_variance, levels_none_min, levels_none_max, levels_none_entropy, lev-
els_generic_mean, levels_generic_variance, levels_generic_min, levels_generic_max,
levels_generic_entropy, levels_mono_mean, levels_mono_variance, levels_mono_min,
levels_mono_max, levels_mono_entropy, levels_and_mean, levels_and_variance, lev-
els_and_min, levels_and_max, levels_and_entropy, levels_or_mean, levels_or_variance,
levels_or_min, levels_or_max, levels_or_entropy, levels_triv_mean, levels_triv_variance,
levels_triv_min, levels_triv_max, levels_triv_entropy, levels_equiv_mean, lev-
els_equiv_variance, levels_equiv_min, levels_equiv_max, levels_equiv_entropy, lev-
els_full_mean, levels_full_variance, levels_full_min, levels_full_max, levels_full_entropy,
gate_features_runtime

A.3.3 ’runtimes’

cadical_elimfalse, cadical, cadical_pripro, cadical_stability, candy, glucose_chanseok glu-
cose, glucose_syrup, glucose_var_decay099, kissat, lingeling, march_nh, minisat relaxed,
yalsat

A.4 Family distribution of selected clusters

This section contains figures showing the share of clusters in families and share of families
in clusters for the selected clusterings in section 4.2.3 and 4.2.3. In these figures, all fam-
ilies and clusters of the selected clusterings are included. We sorted the clusters by size,
therefor the cluster IDs of the figures in this section match the IDs in section 4.2.3 and
4.2.3.

67

A Implementation Details

A.4.1 K-Means

Figure A.1: Heatmap showing the share of each family in the cluster for the selected KMEANS
clustering

68

A.4 Family distribution of selected clusters

Figure A.2: Heatmap showing the share of each cluster for a family for the selected KMEANS
clustering

69

A Implementation Details

A.4.2 DBSCAN

Figure A.3: Heatmap showing the share of each family in the cluster for the selected DBSCAN
clustering

70

A.4 Family distribution of selected clusters

Figure A.4: Heatmap showing the share of each cluster for a family for the selected DBSCAN
clustering

71

A Implementation Details

72

Bibliography

Collautti, Marco et al. (Sept. 2013). SNNAP: Solver-based Nearest Neighbor for Algorithm
Portfolios. Vol. 8190. Springer-Verlag Berlin Heidelberg. DOI: 10.1007/978-3-
642-40994-3_28.

Fred, Ana and Arjun Jain (July 2003). “Robust data clustering”. In: vol. 2, pp. II–128.
ISBN: 0-7695-1900-8. DOI: 10.1109/CVPR.2003.1211462.

Heule, Marijn, Matti Jarvisalo, and Tomas Balyo (2017). SAT Competition 2017. URL:
https://baldur.iti.kit.edu/sat-competition-2017/ (visited on
12/03/2021).

Heule, Marijn, Matti Jarvisalo, Martin Suda, et al. (2021). SAT Competition 2021. URL:
https://satcompetition.github.io/2021/index.html (visited on
02/22/2022).

Heule, Marijn and Hans Maaren (Jan. 2009). “Look-ahead based SAT solvers”. In: Fron-
tiers in Artificial Intelligence and Applications 185. DOI: 10.3233/978-1-58603-
929-5-155.

Hoos, Holger and Thomas Stützle (Jan. 2000). “Local Search Algorithms for SAT: An
Empirical Evaluation”. In: Journal of Automated Reasoning 24, pp. 421–481.

Iser, Markus (2022). cnftools. URL: https://github.com/sat-clique/cnftoo
ls (visited on 01/10/2022).

Iser, Markus, Luca Springer, and Carsten Sinz (Sept. 2020). Collaborative Management of
Benchmark Instances and their Attributes.

Kadioglu, Serdar et al. (2010). ISAC - Instance-Specific Algorithm Configuration. The au-
thors and IOS Press. DOI: 10.3233/978-1-60750-606-5-751.

Kerschke, Pascal et al. (2019). “Automated Algorithm Selection: Survey and Perspectives”.
In: Evolutionary Computation 27.1, pp. 3–45. DOI: 10.1162/evco_a_00242.

Lindauer, Marius et al. (2017). “Automatic construction of parallel portfolios via algorithm
configuration”. In: Artificial Intelligence 244. Combining Constraint Solving with Min-
ing and Learning, pp. 272–290. ISSN: 0004-3702. DOI: https://doi.org/10.
1016/j.artint.2016.05.004. URL: https://www.sciencedirect.
com/science/article/pii/S0004370216300625.

Rice, John R. (1976). The algorithm selection problem. Ed. by Morris Rubinoff and Mar-
shall C. Yovits. Vol. 15. Advances in Computers. Elsevier, pp. 65–118. DOI: https:
//doi.org/10.1016/S0065-2458(08)60520-3. URL: https://www.
sciencedirect.com/science/article/pii/S0065245808605203.

73

https://doi.org/10.1007/978-3-642-40994-3_28
https://doi.org/10.1007/978-3-642-40994-3_28
https://doi.org/10.1109/CVPR.2003.1211462
https://baldur.iti.kit.edu/sat-competition-2017/
https://satcompetition.github.io/2021/index.html
https://doi.org/10.3233/978-1-58603-929-5-155
https://doi.org/10.3233/978-1-58603-929-5-155
https://github.com/sat-clique/cnftools
https://github.com/sat-clique/cnftools
https://doi.org/10.3233/978-1-60750-606-5-751
https://doi.org/10.1162/evco_a_00242
https://doi.org/https://doi.org/10.1016/j.artint.2016.05.004
https://doi.org/https://doi.org/10.1016/j.artint.2016.05.004
https://www.sciencedirect.com/science/article/pii/S0004370216300625
https://www.sciencedirect.com/science/article/pii/S0004370216300625
https://doi.org/https://doi.org/10.1016/S0065-2458(08)60520-3
https://doi.org/https://doi.org/10.1016/S0065-2458(08)60520-3
https://www.sciencedirect.com/science/article/pii/S0065245808605203
https://www.sciencedirect.com/science/article/pii/S0065245808605203

Bibliography

scikit-learn (2021a). 2.3 Clustering. URL: https://scikit-learn.org/stable/
modules/clustering.html (visited on 10/21/2021).

– (2021b). sklearn.preprocessing.StandardScaler. URL: https://scikit-learn.
org/stable/modules/generated/sklearn.preprocessing.Stand
ardScaler.html?highlight=standard#sklearn.preprocessing.
StandardScaler (visited on 12/08/2021).

Silva, João, Inês Lynce, and Sharad Malik (Jan. 2009). “Conflict-Driven Clause Learning
SAT Solvers”. In: Frontiers in Artificial Intelligence and Applications 185. DOI: 10.
3233/978-1-58603-929-5-131.

Strehl, Alexander and Joydeep Ghosh (2002). “Cluster Ensembles — A Knowledge Reuse
Framework for Combining Multiple Partitions”. In: J. Mach. Learn. Res. 3, pp. 583–617.

Wagner, Dorothea, Jonas Sauer, and Guido Brückner (2019). “Theoretische Grundlagen
der Informatik: Vorlesung am 19.11.2019”. In.

Wagner, Silke and Dorothea Wagner (Jan. 2007). “Comparing Clusterings - An Overview”.
In: Technical Report 2006-04.

Xu, Lin et al. (June 2008). “SATzilla: Portfolio-based Algorithm Selection for SAT”. In:
Journal of Artificial Intelligence Research 32, pp. 565–606. DOI: 10.1613/jair.
2490.

74

https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html?highlight=standard#sklearn.preprocessing.StandardScaler
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html?highlight=standard#sklearn.preprocessing.StandardScaler
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html?highlight=standard#sklearn.preprocessing.StandardScaler
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html?highlight=standard#sklearn.preprocessing.StandardScaler
https://doi.org/10.3233/978-1-58603-929-5-131
https://doi.org/10.3233/978-1-58603-929-5-131
https://doi.org/10.1613/jair.2490
https://doi.org/10.1613/jair.2490

	Abstract
	Introduction
	Motivation
	Contribution
	Structure of thesis

	Preliminaries
	Fundamentals
	Boolean satisfiability problem (SAT)
	SAT-Solvers
	The algorithm selection problem
	Clustering

	Related work
	SATzilla
	ISAC
	SNNAP

	Experimental design
	Experimental pipeline
	Feature extraction
	Preprocessing of features
	Clustering
	Evaluation measures

	Experimental setup
	Environment
	Libraries
	Filter parameters
	Dataset characteristics

	Experimental evaluation
	Preprocessing of the data
	Scaling
	Clusterings with single features

	Comparing feature sets and clustering algorithms
	Evaluating clustering algorithms
	Analysis of selected clustering algorithms
	Evaluation of selected clusterings

	Discussion
	Conclusion
	Future Work

	Implementation Details
	Project organization
	Default settings tables
	Scaling and feature selection
	Clustering

	Feature sets
	'base'
	'gate'
	'runtimes'

	Family distribution of selected clusters
	K-Means
	DBSCAN

	Bibliography

