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Abstract

The �eld of automated planning is concerned with the automatic generation of plans for
general problem formulations. Given an initial state and a goal, the objective is to �nd a plan
– a sequence of operators – which translates the initial state into the goal. Often, not only a
single plan is desired but a collection of multiple plans, for example when some constraints
are di�cult to formulate mathematically or when looking for particularly robust plans. Since
the solution set can grow exponentially, it is infeasible to construct every plan explicitly.

Our aim is to represent the set of solutions as Binary Decision Diagrams (BDDs) or Sentential
Decision Diagrams (SDDs). Both Decision Diagrams (DDs) have the advantage that they can
represent formulas of propositional logic in a space e�cient manner while still supporting
many e�cient queries. We propose di�erent methods to encode the planning problem as a
logic formula and explore which methods are best suited to build a DD from it. Our approach
is able to answer queries on solution spaces that are too big for other currently existing
planners; this includes counting the number of plans with certain properties and sampling
uniform distributed plans. Our approach dominates for particularly large solutions sets of
easier problems, while existing planners perform better on small to moderate ones.

Zusammenfassung

Das Forschungsfeld Automated Planning befasst sich mit dem automatischen Generieren
von Plänen zur Lösung allgemeiner Probleme. Gegeben einen Startzustand und ein Ziel, wird
nach einem Plan – einer Abfolge von Operatoren – gesucht, der den Startzustand in das Ziel
übersetzt. Häu�g ist es hilfreich, nicht nur einen einzigen Plan, sondern eine Sammlung von
mehreren Plänen zu �nden. Dies ist zum Beispiel der Fall, wenn einige Randbedingungen
mathematisch schwer zu formulieren sind oder wenn nach besonders robusten Plänen gesucht
wird. Da die Lösungsmenge exponentiell anwachsen kann, ist es nicht immer möglich, jeden
Plan explizit zu konstruieren.

Unser Ziel ist es daher, die Lösungsmenge als Binary Decision Diagrams (BDDs) oder
Sentential Decision Diagrams (SDDs) darzustellen. Beide Entscheidungsdiagramme (DD)
haben den Vorteil, dass sie aussagenlogische Formeln platzsparend darstellen können und
gleichzeitig viele e�ziente Anfragen unterstützen. Wir stellen verschiedene Methoden zur
Kodierung von Planungsproblemen durch eine logische Formel vor und untersuchen, welche
dieser Methoden zur Konstruktion eines DD am besten geeignet sind. Unser Ansatz ist in der
Lage, Anfragen auf Lösungsräumen zu beantworten, die kein anderer der derzeit existierende
Planer beantworten kann; dazu gehören das Zählen von Plänen mit bestimmten Eigenschaften
oder das Ziehen von Plänen mit gleichverteilter Wahrscheinlichkeit. Unser Ansatz dominiert
auf besonders großen Lösungsräumen von einfacheren Problemen, während bestehende
Planer auf kleinen und mittleren Lösungsmengen e�zienter sind.
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1 Introduction

This chapter introduces the key concept of using Decision Diagrams (DDs) to represent sets
of plans. In Section 1.1 we motivate our approach and show how other research areas can
bene�t from it. In Section 1.2 our contributions are summarized. Section 1.3 gives an overview
of the structure of the thesis.

1.1 Motivation

Planning problems are solved by a plan – a sequence of operators – that translate an initial
state into a desired goal. In most cases, multiple di�erent plans exist. To �nd these plans, we
use Binary Decision Diagrams (BDDs) or Sentential Decision Diagrams (SDDs). Su�ce it to
say that DDs are data structures that represent formulas of propositional logic and all their
solutions. A more extensive explanation of DDs is given in Section 2.2 and Section 2.3. By
encoding a planning problem as a logic formula and using a DD to represent it, all solutions
to the planning problem can be retrieved.

Finding a complete representation of the solution space is often better than obtaining a
single plan. While some problems only require a single plan for a valid solution, there are
many cases where multiple plans are desired. One major bene�t of having access to multiple
solutions is the possibility to choose between alternative plans. Some constraints are hard to
formulate in the language of computers. For example, it is easy to formulate the placement of
power poles as a planning problem, where the total distance of cables has to be minimized
and some connectivity property has to be achieved. But it is hard to calculate the populations
approval of this placement. In order to circumvent this problem, multiple optimal power
pole placements can be generated and the residents are able to choose the most desireable
placement. This popular application is mentioned by multiple researchers regarding the
:-shortest path problem, including [Epp98].

Another advantage of this approach is that it provides a powerful tool for analyzing planning
domains. Having a DD that represents all plans, makes it possible to identify operators and
conditions that are always necessary to reach the goal of a planning problem. This can help
identify structures that make a planning problem hard. It is also possible to analyze how
sensitive a problem is to variations. By adding or lifting di�erent restrictions on planning
problems, DDs can be used to compare the change in the solution spaces and determine which
parts of plans are robust to variations. In biological sequence alignment such solutions are
more desired [Epp98].

While having a better understanding of planning domains is interesting in its own way, it
can also help to construct heuristics. Planning pattern databases [Ede14] construct heuristics
for planning problems by �rst abstracting to a simpler problem with less states and solving it
completely. Knowledge on optimal solutions in the simpli�ed problem is used to guide the
search solving the original problem. In a similar way a DD can be constructed for a simpler
planning problem and queries to the DD can be used as a basis for a heuristic to the original
problem.

1



1 Introduction

DDs o�er the possibility to choose uniformly distributed solutions without the need to
explicitly generate them all. This is especially useful if the solution set is too large to store
explicitly. An interesting application of this is to randomly generate instances for puzzles,
like Sudoku, Nurikabe or Sokoban. By formulating a planning problem, such that valid
plans correspond to solvable puzzle instances, a DD can be used to generate random puzzles.
Selecting random solutions sets are also interesting for machine learning approaches. These
random set can be used as training sets for machine learning approaches to planning [TTTX18].

Multiple research areas, like Top-: planning [RSU14], Top-@ planning [KSU20] and diverse
planning [KS20] aim to �nd sets of plans and exploit their more complete description of the
solution space.

1.2 Contributions

This thesis analyzes the potential and boundaries of DDs to represent all solutions of planning
problems. To the best of our knowledge, there are no prior attempts to use DDs in this way.
Although other works have explored BDDs to represent sets of planning states, their approach
does not o�er the same possibilities of queries.

We discuss di�erent ways to encode the planning problem as a logic formula and show
how these encodings a�ect the performance of DDs. A particular focus is placed on how an
e�cient construction of DDs is achieved with knowledge of the underlying planning problem.
We identi�ed the most appropriate encodings and orders for the construction of planning
DDs and show that they are a signi�cant improvement over general DD compilers.

We implemented all the algorithms in a planner called planDD which is also able to solve
the Top-: or Top-@ planning problem. Our planner is able to successfully generate a DD for up
to 176 optimal unit-cost planning problems from the benchmarks of the International Planning
Competition, making it possible to represent solution spaces with billions of plans and more
with a small amount of memory needed. No other planner is able to �nd solutions of this size.
Even state of the art Top-: planners have di�culties to compute solution spaces containing
more than a million plans. Especially in the area of Top-@ planning, we can represent several
domains particularly well compared to existing planners. Nevertheless, it is di�cult for our
approach to scale to harder problems. Our approach is unable to create DDs for most harder
planning problems and the existing Top- planners outperform our approach on smaller
solution spaces.

To complement the construction of DDs, we have implemented several proofs of concept
that show how information about planning problems can be queried from a DD, once it has
been created. This includes counting the number of plans, choosing uniformly distributed
plans and �nding the most common operators. These queries take almost no time, once the
actual DD is constructed.

1.3 Structure of the Thesis

This thesis is structured as follows. In Chapter 2 the basics of Binary Decision Diagrams,
Sentential Decision Diagrams and automated planning are explained. Chapter 3 presents two
areas of automated planning that are most closely related to the approach of using DDs to
represent sets of plans. We describe the algorithms and heuristic we developed in Chapter 4.
This consists of encoding the planning problem in Section 4.1, ordering the encoding in
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Section 4.2 and actually building the DD in Section 4.3. The performance of these algorithms
is evaluated in Chapter 5. At last, we conclude the results of the thesis in Chapter 6 and point
out possibilities for future work.
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2 Preliminaries

In this chapter, we introduce some important concepts that we use throughout the work. We
start with a brief overview of propositional logic. This is necessary to de�ne BDDs and SDDs.
We explain the main di�erences between BDDs and SDDs and point out their important
algorithmic properties. At the end of this chapter we give a short introduction to automated
planning.

2.1 Propositional Logic

A formula of propositional logic consist of variables G1, G2 . . . , to which the values True
or False can be assigned. Variables can be combined by the conjunction ∧, disjunction ∨,
implication⇒, equivalence⇔ or negation ¬ operators, which are interpreted in their usual
sense. We write 5G=v ,v ∈ {True, False} for the formula that is obtained from a formula 5 by
assigning G the value v and partially evaluating 5 . The value of a formula can be evaluated
by assigning True or False to every variable. Variables in a formula 5 can be existentially
quanti�ed by the following equation ∃G .5 = 5G=True ∨ 5G=False. A formula is satis�able if an
assignment of truth values exists, such that the formula evaluates to True.

The problem of determining whether a given formula of propositional logic is satis�able is
known as the SAT problem. Formulas of propositional logic are often presented in conjunctive
normal form (CNF). CNFs consist of a set of clauses that are conjoined with each other. Each
clause consists of variables and negated variables that build a disjunction. An example for
a CNF would be (G1 ∨ ¬G2 ∨ G3) ∧ (¬G1 ∨ G3). Every logic formula can be converted into a
CNF (with possibly more variables) that is satis�able i� the original formula is satis�able. Of
course SAT is one of the well known NP-complete problems [Coo71].

2.2 Binary Decision Diagrams

First described in [Bry86], Binary Decision diagrams (BDDs) are directed acyclic graphs (DAGs)
that can be used to represent formulas of propositional logic. The graph structure allows to
reuse parts the formula in an e�cient manner, making BDDs a compact description of logic
formulas in some cases.

Definition 2.1 (Binary Decision Diagram):
A BDD is a rooted directed acyclic graph with the following properties.

The graph contains exactly two nodes with no outgoing edge, labeled with 1 and 0.
These nodes are called terminal nodes and represent True and False.
Every other node has an assigned variable and exactly two outgoing edges. These edges
are labeled with 1 and 0, which means assigning the value True or False to the variable.
Nodes with outgoing edges are called internal nodes.
On every path from the root to a terminal node, a variable may appear at most once.
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An example of such a graph is given in Figure 2.1. Given an assignment of variables, a
formula that is represented by the graph can be evaluated by the following method: A path is
followed in the BDD starting from the root node and ending at a terminal node. At an internal
node for variable v the edge with the value of v in the assignment is followed. If the terminal
node 1 or 0 is reached, the assignment evaluates to True or False respectively.

A formula � can be converted into a BDD denoted by� (� ) with a recursive procedure. A
random variable G from � is picked and the two formulas �G=True and �G=False are calculated.
The BDD is then build from a new internal node, labeled with G , where the 1 edge points to
� (�G=True) and the 0 edge points to� (�G=False). If � is constant True or False,� (� ) becomes
the respective terminal node.

Ordered BDDs De�nition 2.1 does not guarantee that a BDD is unique. It is possible for
two di�erent BDDs to represent the same propositional formula. This is mainly due to the
arbitrary order in which the variables can occur in the DAG. The following de�nition ensures
this uniqueness property.
Definition 2.2 (Orderd BDD and Reduced Ordered BDD):
A binary decision diagram is called ordered (OBDD) if a total order of the variables exists that
the DAG respects. This means if G is ordered before ~, then all nodes labeled with G occur
before nodes labeled with ~ in paths from the root to a terminal node. An OBDD is called
reduced (ROBDD) if

for every pair of internal nodes, the subgraphs rooted at these nodes are not isomorphic.
for every internal node, the outgoing edges do not point to the same node.

If two ROBDDs represent the same logic formula and use the same ordering of variables,
then their Graphs will be isomorphic [Bry86].

An OBDD can be converted to a ROBDD by identifying pairs of internal nodes D,v with
D ≠ v , where both 1 edges point to the same node and both 0 egdes point to the same node or
both edges of D point to v . If these nodes are merged in the OBDD until no other pairs with
this property can be found, the resulting OBDD satis�es De�nition 2.2 for an ROBDD. In most
cases however, ROBDDs are constructed directly, without creating OBDDs as an intermediate
product. Because this thesis only deals with ROBDD we will just call them BDDs from now
on.

De�nition 2.1 requires a BDD to have a single root node but BDDs with multiple root nodes
are also possible. In this case each root node represents a logic formula. The di�erent BDDs
have to share the same variable order and by doing so they are also able to share their internal
nodes.

Variable Ordering De�nition 2.2 introduces an ordering of variables for BDDs. This
ordering is not only important for the uniqueness property, but also for the size of the BDD.
Figure 2.1 gives an example of a good and a bad variable ordering for a BDD. There exists
families of BDDs over = variables with O(=) nodes for some ordering and O(2=) nodes for
another ordering [Bry86]. Finding a good ordering is not easy and in some cases not achievable
[Bry86]. It is a known NP-hard problem to determine a variable order that results in a BDD
with minimal size [BW96] and for certain formulas there exist no ordering where the BDD
has polynomial size [Bry86].

In practice, BDDs are very sensitive to variable orders. There exist many algorithms that
try to approximate good variable orderings. We propose some own ideas on how to formulate
variable orders for BDDs in Section 4.2.
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Figure 2.1: Example of a BDD with a good (left) and a bad (right) variable ordering for the
formula (0 ⇔ 1) ∧ (2 ⇔ 3). Left variable order is [0, 1, 2, 3], right variable order
is [0, 2, 1, 3]. Edges with 0 label use a continuous line and edges with a 1 label use
a dashed line. Edges to the 0 terminal node are omitted for clarity.

Algorithms BDDs are built bottom up, using procedures that combine two BDDs under
a given logic operator. Such procedures exist for every possible logic operator (∧,∨,¬, . . . )
and their runtime is bounded by the product of the size of the two participating BDDs. For
example, the runtime to conjoin a BDD with =1 and a BDD with =2 nodes takes O(=1 · =2)
time. Although all combine procedures have polynomial runtime, the construction time can
still blow up exponentially if multiple procedures are executed consecutively.

A BDD allows many queries on the underlying logic formula to be answered in polynomial
time. This includes determining if the formula is satis�able in constant time. Finding a
satisfying assignment is possible in linear time in the number of variables. Other possible
queries include counting the number of satisfying assignments or picking at random one
satisfying assignment in time linear in the number of BDD nodes. This does not contradict
the NP-completeness of SAT, since the construction of a BDD from a given logic formula may
take exponential time. We discuss these queries and their applications to automated planning
in Section 4.4.

2.3 Sentential Decision Diagrams

Sentential decision diagrams (SDDs) [Dar11] are a recent generalization of BDDs. They retain
most properties of BDDs but can have exponentially less nodes in some cases [Bov16].

They key di�erence between BDDs and SDDs is, that SDDs can branch other multiple logic
cases, while BDDs always branch over two cases. In each layer of a BDD a variable is selected,
and the children nodes are determined by branching over this variable. For SDDs multiple
variable can be selected over which the branching occurs. This results in more than two
children nodes. The set of variables used for the branching is formally known as a compressed
partition.
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2 Preliminaries

Definition 2.3 (Compressed Partition):
Let 5 be a function of propositional logic. The partition of variables over 5 into sets - and .
is compressed, if 5 can be decomposed as

5 = [p1(- ) ∧ B1(. )] ∨ · · · ∨ [p= (- ) ∧ B= (. )],
where the p8 ’s are logic formulas over - , called primes, and the B8 ’s are logic formulas over . ,
called subs, and

for every assignment over - exactly one prime is True and every prime is satis�able,
all subs represent a di�erent logic formula.

For every partition this decomposition exists and is unique. Such a partition can be found
by reducing 5 with every possible assignment of the variables in - , each assignment corre-
sponding to a prime. This results in 2 |- | formulas over the variables of . , these are the subs.
By grouping subs that are equivalent and disjoining their primes, a compressed partition
is obtained. For example, the formula 5 = (0 ∧ 1) ∨ (1 ∧ 2) ∨ (2 ∧ 3) can be split over the
variables {0, 1} and {2, 3}, resulting in

5 = (0 ∧ 1) ∨ (1 ∧ 2) ∨ (2 ∧ 3)
= [(0 ∧ 1) ∧ True] ∨ [(¬0 ∧ 1) ∧ 2] ∨ [(0 ∧ ¬1) ∧ (2 ∧ 3)] ∨ [(¬0 ∧ ¬1) ∧ (2 ∧ 3)]
= [(0 ∧ 1)︸  ︷︷  ︸

prime

∧ True︸︷︷︸
sub

] ∨ [(¬0 ∧ 1)︸    ︷︷    ︸
prime

∧ 2︸︷︷︸
sub

] ∨ [ ¬1︸︷︷︸
prime

∧ (2 ∧ 3)︸ ︷︷ ︸
sub

]

BDDs only select a single variable for the set - , resulting in two branches but SDDs can
branch over all primes for a given compressed partition. Instead of a variable order, SDDs use
a v-Tree. A v-Tree is a rooted binary tree, where every leaf is labeled with a variable from the
logic formula. The v-Tree determines the order of partitions of variables that is used during
construction. Every internal node corresponds to a partition, where - contains all leafs in
the left subtree and . contains all leafs in the right subtree. A v-Tree can be obtained from
a variable order $ = [v,$ ′] denoted by ) ($) by constructing a new root note with the left
child being the leaf v and the right child being the root node of ) ($ ′). The other direction is
not possible, since v-Trees o�er more degrees of freedom.

To represent a SDD as a graph, the nodes are distinguished between decision nodes and
pairs. Decision nodes correspond to compressed partitions and have one outgoing edge for
each pair of prime and sub. The pairs have one pointer for the prime and one for the sub, they
point to a SDD that represents the logic formula of the prime or sub. A graphical depiction of
such an SDD and its v-Tree is given in Figure 2.2.

Most of the algorithms discussed in Chapter 4 can be applied to both BDDs and SDDs. Both
DDs have a similar interface and support the same set of relevant queries. There are a few
exceptions regarding the variable order and v-Trees, that we will mention if they become
relevant.

2.4 Automated Planning

We follow the de�nition of [BN95] for planning problems as Extended Simpli�ed Action
Structures (SAS+).

Definition 2.4 (SAS+ planning problem):
A SAS+ planning problem is a tuple Π = (+ ,$, �,�). The components are de�ned as follows:

8
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False

¬1¬0 10 ¬3¬2 32 ¬10 1¬0

0 1 2 3

Figure 2.2: Left is an example of a SDD for the formula (0 ⇔ 1) ∧ (2 ⇔ 3). The formula can
be rewritten as [(0 ∧1) ∨ (¬0 ∧¬1)] ∧ [(2 ∧3) ∨ (¬2 ∧¬3)]. Decision nodes are
represented by gray circles and pairs are depicted by two boxes. On the righthand
side, the v-tree partitions �rst {0, 1, 2, 3} into {0, 1} and {2, 3} then {0, 1} into {0}
and {1} and {2, 3} into {2} and {3}

+ = {v1,v2, . . . ,v=} is a set of state variables. Each variable v ∈ + has its own domain
size 3v and domain �v = {1, 2, . . . , 3v }. An Assignment B that assigns every variable in
v ∈ + a value B (v) is called a state, where B (v) is the value of the variable v in B . The set
of all possible states is denoted as ( .
$ = {>1, >2, . . . , ><} is a set of operators. An Operator > ∈ $ consist of preconditions and
effects > = (pre> , e�> ). Both preconditions and e�ects are partial assignments over + .
� ∈ ( is the initial state of the planning problem.
� is a partial variable assignment that represents a goal.

For a partial variable assignment A we write A∗ for the preimage of A , that means the set of
variables that A is de�ned on. Like the goal, a partial variable assignment represents a set of
states {B | B ∈ ( : ∀v ∈ A∗ : B (v) = A (v)} and we use these two interchangeably.

An operator > is applicable in state B if ∀v ∈ pre>∗ : B (v) = pre> (v). The operator > can be
applied in B to obtain a new state B ′ = > (B), with B ′(v) = e�> (v) for every variable in e�>∗ and
B ′(v) = B (v) else. For a given planning problem, a plan consists of a sequence of operators
p = (>1, >2, . . . , >A ), such that >8 is applicable in B8 , with B8 = > (B8−1), B0 = � and B= ∈ � . This
thesis only deals with unis cost problems, where every operator has a cost of one. Therefore,
the length A of the plan is also called the cost of the plan. If p is a plan such that no other plan
with a lower cost exists, then p is called optimal. In this thesis we are particularly interested
in �nding the set of all optimal plans.

The planning problem is known to be PSPACE-hard [Byl94]. Optimal plans can have an
exponential size in the number of state variables. However, in practice this is rarely the case.
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3 Related Work

Two areas of automatic planning are closely related to the approach of using DDs to represent
sets of plans. In this chapter we explain how these �elds relate to our approach and what
important di�erences are.

3.1 Symbolic Planning

The general idea of symbolic planning is to represent sets of states implicitly through BDDs.
This was �rst proposed by [EH01]. Operators are described by a transition relation which is
used to transform one set of states into another. Applying the transition relation to a BDD is
essentially the same as applying an operator on a state, except that the transition relation can
apply multiple operators on multiple states at once.

States are de�ned by their characteristic function B : - → {True, False} which maps a set
of variables - to True or False values. A state can be interpreted as a BDD by building a
conjunction out of the characteristic function, further a set of states ( can be constructed by
disjoining multiple conjunctions. A transition relation ) represents all possible operators of
the planning problem. It is de�ned over two sets of variables -,- ′, where the variables in -
represent state variables from the previous states and - ′ represents state variables after the
application of the operators from ) . Basically, it de�nes the set of state tuples

) = {(B1, B2) | B1, B2 are plannig states and ∃> : > (B1) = B2}
where B2 can be reached by applying an operator > on B1. By conjoining ) with ( a BDD
over the variables - ∪ - ′ is obtained. Trough existential quanti�cation a BDD ( ′ over - ′ is
constructed. It represents all states that can be reached by applying an operator from ) on a
state in ( . By repeatedly applying) , a sequence of state sets (1, (2, . . . , (@ can be obtained, they
correspond to layers of a breadth �rst search. The (8 are conjoined with a BDD representing
the Goal of the planning problem. If one of these conjunctions is satis�able the planning
problem has a valid plan and a solution can be obtained by backtracking through the (8 Layers.

During the International Planning Competition 2014 symbolic planning outperformed
many other competitors on the optimal planning track [EKT15]. One of the best competitors
was SymBA* [Tor+14], which is a symbolic bidirectional A* planner.

Because symbolic planning and our approach both used DDs to represent structures of
the planning problems, we want to highlight the key di�erences between the usage of DDs.
The DDs of symbolic planning only represent sets of states and not sets of plans. They only
contain variables for planning states but not for planning operators. This makes the DDs of
symbolic planning much smaller and easier to compute but they lack the ability to perform
many queries that are easy on DDs representing plans. Informally speaking, the operator
variables in our approach glue together the di�erent layers of symbolic planning together.
Therefore, information about how to reach states in di�erent layers is stored. In symbolic
planning, this knowledge is lost, because it is not stored in a DD representing only a set of
states. This makes our DDs more complex but also able to answer more sophisticated queries,
like counting the number of states.
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3 Related Work

3.2 Top-: Planning

Interest in the complete solution space of planning problems was �rst shown by [RSU14].
They introduced the de�nition of the Top-: planning problem, which is solved by a set of :
optimal plans.

Problem 3.1 (Top-: planning problem):
Given a planning Problem Π and a parameter : , �nd a set % of : plans such that for all plans
p ∈ % and all other plans p ′ ∉ % the cost of p is smaller or equal than the cost of p ′, i.e.
|p | ≤ |p ′ |.

Three Algorithms were proposed by [RSU14] to solve Top-: planning:

Iterative Replanning: a regular planner is used to �nd a single plan to the planning
problem. Afterwards, new problems are created that are similar to the original problem
but forbid previously found plans. This way, the best optimal planners can be used to
solve the Top-: problem, but the main disadvantage is, that the optimal planner has to
be invoked a large number of times, which results in a long runtime.
Branch and Bound: The state search space is explored by the branch and bound frame-
work, where the cost of the :th most expansive plan can be used as an upper bound for
the search. Once an additional plan has been found, the search for plans does not have
to start from the beginning.
K* Search: This is an adaptation of the  -shortest path algorithm by [AL11]. It is similar
to A* in the sense that is can use a heuristic to guide the search. As soon as the algorithm
has created a large enough portion of the state space graph, it can �nd many plans in a
short time.

From these three algorithms, the K* algorithm performs best.
A modi�cation of the iterative replanning approach called Forbid-K was introduced by

[KSUW18]. Multiple plans are derived from a single plan, by reordering operators and using
structural symmetries [Shl+15]. They also propose a new encoding that allows multiple plans
to be forbidden at once. These modi�cation are a signi�cant improvement over the previous
iterative replanning procedure because the optimal planner has to be invoked a much smaller
amount of times. It was shown to solve more problems than  ∗ for values of : ≤ 10000, while
K* outperforms replanning for larger : .

The latest addition to Top-: planning is the symbolic Top-: planner Sym-K [SMN20b]. It
works very similar to a usual optimal symbolic planner. The main di�erence it that the Top-:
version does not stop once a single plan is found. Plans are reconstructed by performing a
greedy backward search on the obtained state layers (0, (1, (2 . . . (@ . Sym-K starts by picking a
goal state B from (@ and iterating over all possible operators. The procedure searches for a
state B ′ ∈ (@−1, which is reached by un-applying an operator on B . By recursively continuing
from B ′ until a state in (0 is found, Sym-K can enumerate all possible plans. Sym-K was shown
to solve more Top-: planning problems than all other planners for : ≤ 10000

Top-@ planning and diverse planning Other closely related research areas are Top-@
planning and diverse planning. In contrast to Top-: planning, Top-@ bounds the set of plans
not by the amount but by solution quality.

Problem 3.2 (Top-@ planning problem):
Given a planning Problem Π and a parameter @, �nd all valid plans p for Π with cost smaller
or equal to @, |p | ≤ @.
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3.2 Top-: Planning

The work of [KSU20] also introduces a variation to this problem de�nition that does not
require an explicit listing of all valid plans, but a set of representatives of equivalence classes.
They de�ne the equivalence class of a plan as all valid reorderings of the operators in the
plan. Not all reorderings solve the planning problem, these are not considered to be in the
equivalence class. This allows the planner to represent a much larger set of solutions with less
space and is similar to our symbolic representation of plans with DDs. Nevertheless, working
with these equivalence classes is much harder than working with DDs. For example, it is not
always possible to determine the actual size of an equivalence class or retrieve other valid
plans from it.

Diverse Planning [KS20] is focused on �nding multiple su�ciently di�erent plans, and not
multiple optimal plans. The use cases overlap with the ones for Top-: or Top-& planning.
Multiple implementations use di�erent metrics for the diversity of plans and there is no clear
consensus on which metric is the best. Because the goal of diverse planning is too di�erent
from our aims, we do not compare to diverse planners in this thesis.
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4 Algorithms

The process of constructing a DD from a planning problem can be divided into three major
steps. An overview of these steps can be seen in Algorithm 1 and is explained in the following
sections.

First, the planning problem has to be encoded into a formula of propositional logic. Di�erent
encodings are discussed in Section 4.1. In the next step, variables and clauses of the encoding
have to be ordered according to a heuristic. Since the construction of a DD can be very
sensitive to the used ordering, this step is crucial. A key contribution of this thesis is to
determine how information about the planning problem can be used to derive a good ordering
for the encoding. This step is described in Section 4.2. In the last step the DD is built according
to the ordering calculated in the previous step. This is done by combining smaller DDs until
they represent the whole encoding. Section 4.3 describes di�erent possibilities in more detail.

In Section 4.4 we present possible queries on DDs for planning problems and show how
Top-: and Top-@ planning can be solved with our approach.

Algorithm 1: Build a DD from a planning problem
Data: % , planning problem
Result: A , root node of a DD

1 + ,� ← Encode(%) // encode the planning problem, Section 4.1

2 + ← OrderVariables(V) // determine variable order, Section 4.2

3 � ← OrderClauses(C) // determine clause order, Section 4.2

4 A ← NewDD()

5 A ← SetVariableOrder(A,+ )
6 A ← BuildDDFromClauses(r, C) // Build the DD, Section 4.3

7 return A

4.1 Encoding

The speci�c encoding that is used for the DD construction is of great importance. In this
section we de�ne and explain di�erent encodings that translate a planning problem into
a formula of propositional logic. We start with the most naive possibility and introduce
improvements that build upon each other. Since not only the encoding but also the order of
its clauses and variables is important for building a DD, we categorize the di�erent parts of
the encoding so that they can be ordered in the second step.

Since SAT is NP-complete and classical planning is PSPACE-complete, it is unlikely that an
encoding of polynomial size exists. Therefore, planning problems are encoded incrementally.
This means, that given a planning problem Π and a parameter @ ∈ N, a CNF instance Enc(Π, @)
is created, that is solvable exactly when a plan of length @ exists for Π. We call @ the amount
of steps that a SAT instance represents.

15



4 Algorithms

Most of this thesis will focus on the case where @ is known when creating the encoding.
This can be achieved by letting a conventional optimal planner determine the length of an
optimal plan and setting @ relative to this optimal length. If @ is not known, it is also possible
to extend the formula during the construction of the DD. But this has several disadvantages:
Most importantly, it is harder to order the clauses and variables if the total number of them is
not know beforehand. We go into more detail on this topic in Section 4.4.

The �rst SAT encoding of planning problems was proposed by [KMS96]. We made small
modi�cation to their encoding, so that it works with the SAS+ formalism, which allows for
variables with multiple values.

Definition 4.1 (Naive encoding):
For a planning Problem Π = (+ ,$, �,�) and a parameter @, the number of steps, the instance
Enc(Π, @) consists of the following logic variables:

Planning variables: For every step C = 0, 1, . . . , @ and every planning variable v ∈ + , 3v
new logic variables are introduced. These are denoted as Gvar,C,v,v0; (v0; ∈ {1, 2, . . . 3v }).
The interpretation is that Gvar,C,v,v0; is True i� the value of the variable v in the state at
step C is v0; .
Planning operators: For every step C = 1, . . . , @ and every planning operator > ∈ $ one
new logic variable is introduced. They are denoted as Gop,C,> and are interpreted as True
i� the plan uses operator > to reach the state in step C .

The following clauses are included in the encoding:

Initial state: To ensure that the initial state holds in step 0, the following unit clauses
are added to the encoding. ∀v ∈ + :

Gvar,0,v,� (v)

Goal: Similar unit clauses are added to ensure that the goal holds at the last step.
∀v ∈ �∗ :

Gvar,@,v,� (v)

Exact one value: At every step a variable should have exactly one value. This is achieved
by adding clauses that ensure at least one and at most one value is set for a variable.
∀C = 1, 2, . . . , @,∀v ∈ + :∨

3∈�v

Gvar,C,v,3 and ∀31, 32 ∈ �v , 31 ≠ 32 : ¬Gvar,C,v,31 ∨ ¬Gvar,C,v,32

Exact one operator: In the same way as above, in every step exactly one operator should
be applied. ∀C = 1, 2, . . . , @ :∨

>∈$
Gop,C,> and ∀>1, >2 ∈ $,>1 ≠ >2 : ¬Gop,C,>1 ∨ ¬Gop,C,>2

Precondition: If an operator is applied in step C , all preconditions have to be met in the
state at step C − 1. ∀C = 1, 2, . . . , @,∀> ∈ $ :

Gop,C,> ⇒
∧

v∈pre> ∗

Gvar,C−1,v,pre> (v)
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4.1 Encoding

Effect: If an operator is applied in step C , all its e�ects are visible in the resulting state at
step C . ∀C = 1, 2, . . . , @,∀> ∈ $ :

Gop,C,> ⇒
∧

v∈e�> ∗

Gvar,C−1,v,e�> (v)

Frame: No variable gets assigned a new value without an operator supporting the
change. The set of operators that support the change of variablev to value3 is de�ned as
support(v ← 3) B {> ∈ $ | v ∈ e�>∗ ∧ e�> [v] = 3}. ∀C = 1, 2, . . . , @,∀v ∈ + ,∀3 ∈ �v :

(Gvar,C,v,3 ∧ ¬Gvar,C+1,v,3 ) ⇒
∨

>∈support(v←3)
Gop,C,>

It is to note that the variables for the planning variables span @ + 1 steps, including the
zeroth step, while the variables for operators only span @ steps. The clauses for the initial
state or the goal only e�ect the �rst or last step and all other clauses e�ect multiple steps. A
simple visualization of the variables and clauses is given by Figure 4.1.

Not all of the logic expressions above are clauses but they can be transformed into pure
disjunctions using the following identity:∧

G ∈-
G ⇒

∨
~∈.

~ �
∨
G ∈-
¬G ∨

∨
~∈.

~

A smaller number of variables and clauses is bene�cial for the creation of DDs, but the
naive encoding needs a lot of variables and clauses. Let � B max{3v | v ∈ + } be the size
of the biggest domain and � B max{|pre>∗ | | > ∈ $} ∪ {|e�>∗ | | > ∈ $} be the size of the
biggest precondition or e�ect. For the planning variables at most (@ + 1) ·� · |+ | new variables
are created and for the operators @ · |$ | new variables are created. For the initial state and
goal clauses at most |+ | unit clauses are added. The clauses that guarantee exact one value or
operator to be true need @ · �2 · |+ | and @ · |$ |2 new clauses. Preconditions and effects both
need at most @ · � · |$ | clauses. There are @ · � · |+ | frame clauses.

In total there are O(@(� · |+ | + |$ |)) variables and O(@ · (�2 · |+ | + |$ |2 + � · |$ |)) clauses.
For most planning problems � and � will be relatively low. The biggest in�uence on the
encoding size comes from the quadratic growth of the operators. This poses a problem for
bigger problems with more operators.

Ladder encoding In the naive encoding, constraints of the form at most one variable/oper-
ator is true introduce a quadratic blowup in the number of clauses. This can be circumvented
by using a more advanced encoding. A common way to encode at most one constraints is the
ladder encoding. We follow the description of the ladder encoding from [HN13]

var0 var1 var2 varq−1 varqop1 op2 opqopq−1

︸ ︷︷ ︸

step 1

︸ ︷︷ ︸

step 2

︸ ︷︷ ︸

step q−1

︸ ︷︷ ︸

step q

︸ ︷︷ ︸

step 0

. . .

exact one variable/operator,
precondition, effect , frameinitial state goal

Figure 4.1: Visualization of variables and clauses of the naive encoding. Variables are repre-
sented by a box, each step contains planning variables and planning operators.
Clauses and the variables they contain are represented by the dashed regions.

17



4 Algorithms

Definition 4.2 (Ladder Encoding):
Given the variables G1, G2, . . . , G= , the ladder encoding consists of = − 1 new ladder variables
~1, ~2, . . . , ~=−1 and two sets of clauses are added:

∀8 = 1, 2, . . . = − 2 : ~8 ∨ ¬~8+1,
∀8 = 1, 2, . . . = : (~8 ∧ ¬~8−1) ⇔ G8 .

The idea is that the �rst set of clauses forbids two consecutive ladder variables to be False
and then True. Because of this, the sequence of ladder variables will be True up to an index
: and then stay False. The second set of clauses ensures that only the variable G: will be set
to true, where the switch from True to False of the ladder variables occurs. This encoding
reduces the number of needed clauses from O(=2) to O(=) but also introduces O(=) new
variables.

Direct exact one encoding Another possibility to realize at most one constraints is by
constructing the corresponding BDD directly. One way to achieve such a construction is
explained by [FBAH20]. A BDD on the variables G1, G2, . . . G= representing an exact one
constraint will always look the same under a given variable order. Figure 4.2 gives an example
of such a BDD, it uses 2=+1 nodes (including the 0 terminal node). This BDD can be constructed
directly by Algorithm 2 without the detour of constructing any clauses. We only implemented
this procedure for BDDs and not SDDs.

0

1 1

2 2

3 3

1

Figure 4.2: Example of a BDD that ensures that exactly one variable in {0, 1, 2, 3} is True.
Edges to the 0 terminal node are omitted for clarity.

The algorithm constructs the BDD bottom-up, starting with the variables closest to the
terminal nodes. To prevent reordering, the variables have to be handled in the order given by
the BDD. Two sets of internal nodes are created, corresponding to the left and right column
in Figure 4.2. Internal nodes are created by a call to BDDIfThenElse(0, A1, A2) which returns a
node for variable 0 whose 1 edge points to the node A1 and the 0 edge points to A2. The �rst
set of nodes represent BDDs where one variable has already been set to True and the second
set represents BDDs where no variable has been set to True.

The direct construction is an improvement over the naive and the ladder encoding. It does
not introduce a quadratic blowup and needs no additional variables.
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4.1 Encoding

Algorithm 2: Construct exact one constraint directly as BDD
Data: G1, G2, . . . G= , variables in a BDD
Result: A , root node of a BDD

1 sort variables G1, G2, . . . G= according to the BDD variable order;
2 >=4 ← BDDTrue(); // constant true node

3 I4A> ← BDDFalse(); // constant false node

4 for 8 ← = to 2 do
5 I4A> ← BDDIfThenElse(G8 , >=4, I4A>); // zero variables true

6 >=4 ← BDDIfThenElse(G8 , BDDFalse(), >=4); // one variable true

7 end
8 return BDDIfThenElse(G1, >=4, I4A>);

Binary Encoding In the previous paragraphs we proposed methods that reduce the number
of clauses. The binary encoding reduces the number of variables, while the complexity of the
clauses increases. Instead of encoding planning variables and operators unary, they can be
represented with a logarithmic amount of bits. Only one operator variable can be True in a
single step therefore it is unnecessary to use a variable for every operator. Instead, log( |$ |)
variables can be used, to represent the bits of a binary number, selecting exactly one operator.
The same is true for the di�erent values of the planning variables.

For = values, 6(=) B dlog2(=)e is the minimum number of necessary bits to represent every
value. Given a set, of |, | = = values and a step C , let -,,C be a set of 6( |, |) logic variables
that represent the values in, at step C . , can either be the set of operators $ or variable
values �v for some v ∈ + . The variable sets -,,C are pairwise disjunct.

A conjunction using every variable in such a set -,,C can be constructed by either adding
the variable itself or its negation to the conjunction. Every conjunction will contain exactly
6(=) variables. ForF ∈, , we call -,,C [F] the conjunction which is true i� the valueF is
selected from, in step C . This mapping from value to conjunction can be arbitrary as long
as it is injective. In general, it will not be bijective, since 26 (=) > = if = is no power of two.
A simple mapping is obtained by interpreting a value F as an integer and the variables in
-,,C [F] as the bits of F in base of two. Let - ∗

,,C
be set of conjunctions that represent no

value.

Definition 4.3 (Binary Encoding):
For a planning Problem Π = (+ ,$, �,�) and parameter @, the logic variables of Enc(Π, @)
consists of the set ⋃

v∈+ ,C=0,1,...,@
-�v ,C ∪

⋃
C=1,2,...,@

-$,C

The following clauses are included in the encoding:

Initial state and Goal: To ensure that the initial state and goal holds, unit clauses are
added, similar to the naive encoding.

∀v ∈ + : -�v ,0 [� (v)] and ∀v ∈ �∗ : -�v ,@ [� (v)]

Forbid impossible values: Some conjunctions represent no values. These are prevented
by the following clauses.

∀C = 1, 2, . . . , @,∀v ∈ + ,∀. ∈ - ∗�v ,C
: ¬. and ∀C = 1, 2, . . . , @,∀. ∈ - ∗$,C : ¬.
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Precondition: If an operator is applied in step C , all preconditions have to be met in the
state at step C − 1. ∀C = 1, 2, . . . @,∀> ∈ $ :

-$,C [>] ⇒
∧

v∈pre> ∗

-�v ,C−1 [pre> (v)]

Effect: If an operator is applied in step C , all its e�ects are visible in the resulting state at
step C . ∀C = 1, 2, . . . @,∀> ∈ $ :

-$,C [>] ⇒
∧

v∈e�> ∗

-�v ,C [e�> (v)]

Frame: No variable gets assigned a new value without an operator supporting the
change. ∀C = 1, 2, . . . @,∀v ∈ + ,∀3 ∈ �v :

(-�v ,C [3] ∧ ¬-�v ,C+1 [3]) ⇒
∨

>∈support(v←3)
-$,C [>]

The initial state and goal clauses are similar to the naive encoding, although multiple unit
clauses are added for every value instead of just one. No exact one is true clauses are needed,
since this is implicitly guaranteed by the binary encoding. Instead clauses that forbid impossible
values are added. These are necessary because the clauses in - ∗

,,C
represent no existing value.

For correctness, it is mandatory to add these clauses for the operator values. Otherwise
a solver could pick impossible operators which have no restrictions through precondition
and e�ect clauses. The forbid clauses for the variable values are not mandatory, since the
preconditions and effects guarantee that no impossible value is ever reached. Because the right
side of the implication in the preconditions, effects and frame clauses contains a conjunction,
they can not be translated into clauses directly. Instead, they formulate a DNF but this poses
no problem for the construction of a DD.

In total, the number of variables is in O(@ · (log(�) · |+ | + log( |$ |))). The total number
of clauses + DNFs is O(@ · (� · |$ |) + � |+ |). This number is less representative, since the
logic primitives are more complex, compared to the naive encoding. Additionally, multiple
unit clauses could be interpreted as a single DNF, which further reduces the number of logic
primitives. The important thing is that the number of operator variables and state variables
has been reduced to a logarithmic factor. Furthermore, the quadratic increase in exact one
clauses is eliminated.

Parallel Encoding The prior encodings only allow a single operator to be selected per step.
If this restriction is dropped it is possible to construct a DD with less than @ steps, that still
represents all plans of length @. Allowing multiple operators to be taken in a single step is
known as a Parallel Plan. In each step of a parallel plan, not a single but multiple operators
can be selected. It is important that every parallel plan corresponds to at least one actual plan.
Therefore, the operators in a step of a parallel plan must not con�ict with each other. Multiple
notions of con�icting operators exist and they are more or less restrictive. For this thesis, we
choose a more restrictive but simpler de�nition which was proposed by [KMS96].

Definition 4.4 (Parallel Plan):
Two partial assignments of state variables B1, B2 are consistent if there is no variable v ∈
B1∗ ∩ B2∗, such that B1(v) ≠ B2(v). Two Operators >1, >2 are non-conflicting if all pairs of partial
assignments in {pre>1, e�>1} × {pre>2, e�>2} are consistent.

A parallel plan is a sequence of sets of operators [$1,$2, . . . ,$A ], such that in every set $8
no two operators are con�icting. The sets $8 are called parallel steps.
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If one speci�c ordering of operators from $8 transforms the state B8 into B8+1 by applying
the operators in order, then all possible orderings will result in the same transformation from
B8 to B8+1. Therefore, if [$1,$2, . . . $A ] results in an actual plan for a planning problem for
some ordering in every parallel step, then every other ordering will also result in valid plan.
This way, at most ΠA8=1 |$8 | plans can be constructed from a single parallel plan.

The concept of parallel plans can be easily used with the naive encoding. Instead of the
prior exact one operator clauses that disallow all pairs of operators, only pairs of con�icting
operators are disallowed

∀C = 1, 2, . . . , A ,∀>1, >2 ∈ $, such that >1 and >2 are con�icting : ¬Gop,C,>1 ∨ ¬Gop,C,>2

The size of the parallel encoding and the naive encoding it the same for a single step but the
parallel encoding will use less steps in most cases. If a DD is constructed from this encoding,
it will not represent the set of all possible plans but the set of all possible parallel plans. In
most cases this is not a big problem because plans can be reconstructed from parallel plans,
but certain operations on the DD (e.g. counting the number of plans) become more di�cult.

It is to note that parallel plans cannot be used with the binary encoding. This is because
the binary encoding implicitly only allows a single operator per step but parallel plans need
multiple operators per step. The binary encoding reduces the number of variables and the
parallel encoding reduces the amount of steps. While it seems di�cult to use the advantages
of both encodings at the same time, a compromise can be found. We call this compromise
colored encoding.

Colored Encoding This encoding aims to interpolate between the bene�ts of the binary
and the parallel encoding. The key idea is to partition the set of operators into blocks
�1, �2 . . . , �B . Per step at most one operator can be selected from each block. Because of this,
a binary encoding can be used inside each �8 . The maximum size of a parallel step is bounded
by B , the number of blocks in the partition. Multiple criteria can be optimized to obtain a
small encoding. The most important factors are:

The number of blocks should be kept small. Fewer blocks allow for a more e�cient
binary encoding and results in less variables.
A small amount of operators from di�erent blocks should con�ict. Every con�icting
pair of operators from di�erent blocks has to be prohibited by an additional clause in
the encoding. Having few con�icts between blocks results in a smaller and simpler
encoding.
Most operators inside a block should con�ict with each other. Each non-con�icting pair
of operators inside a block restricts the degree of parallelism of the parallel plan. In the
optimal case, all operators inside a block con�ict with each other. This way, no parallel
plans are prohibited.

It is helpful to represent the operators as a graph in order to think about the con�icts. Each
operator is represented by a node and edges are drawn between non-con�icting operators.
Partitioning the graph into a small amount of blocks with few edges inside each block and
many edges between blocks will result in a good encoding. An example of such a graph is
given in Figure 4.3.

Optimizing di�erent criteria will result in di�erent encodings. In most cases it is not possible
to optimize all aspects at the same time. For example, the binary encoding only uses one
block but the degree of parallelism is restricted by having a lot of non-con�icting operators
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Figure 4.3: Con�ict graph of the �rst problem from the gripper Domain. The problem
contains 34 operators, each represented by the nodes. Non-con�icting operators
are connected with an edge. The graph can be colored with two color classes,
green and blue. The two large connected components correspond to gripper
operations in two di�erent rooms. Operations from di�erent rooms always
con�ict with each other. The two isolated nodes correspond to switching rooms.

in the block. The opposite is true for the parallel encoding: Each operator is assigned to its
own block, so this allows the highest degree of parallelism but |$ | variables are needed for
this. It is also possible to minimize the number of edges between blocks plus the number of
non-edges inside each block. This problem is known as correlation clustering [BBC04].

In the approach we call colored encoding, we disallow all edges inside the blocks and then
try to minimize the number of blocks. This is a strict improvement over the parallel encoding
because in both cases the edges inside the blocks are minimized but the colored encoding
will have less blocks in general. They can be determined by �nding a coloring of the graph
of con�icting operators. Each color class becomes one block. Because no two nodes of the
same color share an edge in a proper coloring, no block will contain con�icting operators.
And if the number of colors is minimal, then the number of blocks is also minimal. Finding a
minimal coloring for a graph is a well known NP-hard problem [Kar72], therefore, we used a
greedy approximation to determine a small coloring.

A known greedy approach for graph coloring is the DSature Algorithm [Bré79]. An outline
of the algorithm is given in Algorithm 3. The key concept of this algorithm is the saturation
degree. For a not necessarily complete coloring, the saturation degree saturation(v) of node
v is the smallest color number not occurring in the neighborhood of v . At every step the node
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with the highest saturation degree is chosen and gets colored with its saturation degree. If
multiple nodes have the same saturation degree, the degree of these nodes in� is used as a
tiebreak.

For an e�cient runtime, a priority queue is used to store saturation degrees. Additionally,
each node stores a sorted list of the colors in its neighborhood. Let = be the number of nodes
and< be the number of edges in the graph. In total O(= +<) insert and update operations
are executed on the priority queue. The saturation degree of a node has to be reevaluated
O(<) times. Using the sorted list, the new saturation can be calculated in O(log(=)) time.
Putting everything together, a runtime of O(log(=) (= +<)) can be achieved.

Algorithm 3: DSature
Data: � = (+ , �), graph
Result: � , array of colors

1 & ← PriorityQueue() // orders nodes by saturation degree (decreasing) and

then degree in � (decreasing)

2 for each v ∈ + do
3 &.insert(v) // priority queue contains all uncolored nodes

4 while & is not empty do
5 v ← &.pop() // node with most colors in its neighborhood

6 2 ← saturation(v) // saturation degree

7 � [v] ← 2
8 update neighbors of v in &
9 end

10 return �

4.2 Clause and Variable Ordering

The ordering of clauses and variables is of great importance to the construction of a DD.
Ordering heuristics for DDs can be divided into static and dynamic approaches. Static ordering
analyses the encoding and derives an ordering before the construction of the DD starts.
Dynamic ordering also takes into account the current state of the DD during construction and
can change multiple times during this phase. A comprehensive overview of existing static
variable ordering techniques for BDDs is given in [RK08].

Dynamic strategies are more powerful because they have more information to operate on.
It is possible that an ordering is optimal for the �nal DD but suboptimal for intermediate
products. While a static strategy would not be able to �nd an ordering that is good for all
intermediate DDs, a dynamic approach can achieve this.

Despite all this, we decided to focus on static ordering heuristics for this Thesis. Since
dynamic heuristics are executed multiple times during the construction of a DD, they have to
be fast. The most prominent heuristics achieve this by having a very local view on the ordering.
Static ordering is only executed once and can take longer, which allows for a more global
view on the problem. Therefore, a static approach is more suited to incorporate knowledge of
the planning problem into the ordering. Also, it is straight forward to apply static ordering
for SDDs, because a linear order can be converted to a v-Tree. Dynamic reordering algorithms
cannot be applied on a variable order and a v-tree and have to be tailored to BDDs or SDDs.
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4 Algorithms

Custom Ordering The logic formulas that are created in Section 4.1 are no ordinary logic
formulas. They represent a planning problem an therefore contain a lot of structure. The
custom ordering aims to use knowledge about the underlying planning problem to come up with
a better ordering than a heuristic for general logic formulas. It provides a �exible framework
that de�nes multiple orderings on clauses. The encoding of a planning problem consists
of di�erent types of clauses reappearing in every step. We use the following abbreviations,
when working with these types: Initial State = i, Goal = g, Exact one variable = v, Exact one
operator = o, Precondition = p, Effect = e, Frame = f. The parts of a planning encoding can be
categorized by two di�erent characteristics:

The planning step C ∈ {0, 1, 2, . . . , @} = & , described by the clause,
The type of constraint D ∈ {i, g, v, o, p, e, f} = * , represented by this clause.

All clauses except for the i and g type clauses appear in every planning step. The i clauses
only e�ect the 0th step and the g clauses only a�ect the @th step.

An order on the tuples & × * implicitly de�nes an ordering on all clauses. Instead of
de�ning an order on all the clauses, the custom order only sorts these tuples. Multiple clauses
can correspond to a single tuple (C,D), in this cases the ordering between those clauses is
arbitrary. The number of possible orderings on & ×* is still too large and some orderings
seem unintuitive. Sorting the tuples either by the step, the type or both seems to encapsulate
the structure of the planning problem more than an arbitrary ordering. Therefore, we decided
to restrict the possible orderings by two main constraints:

The steps of tuples for the same type have to be increasing. If C1 < C2, then (C1, D) <
(C2, D),∀D ∈ *
The types * are partitioned into sets *1,*2. Tuples with a type from *1 are ordered
lexicographic �rst by type and then by step, tuples with a type in *2 are ordered
lexicographic �rst by step and then by type

Using these two restrictions it is su�cient to �rst de�ne an order on* and then partitioning
it into *1,*2, to get a total order on all tuples. An example for this would be to choose the
ordering* = [o, v, i, g, p, e, f] and the partition*1 = {o, v, i, g, f},*2 = {p, e}, which results
in the order

(o, 0), . . . , (o, @), (v, 0), . . . , (v, @), (i, 0), (g, @), (p, 0), (e, 0), . . . , (p, @), (e, @) (f, 0), . . . , (f, @) .
The amount of possible orderings is still large but manageable. A comprehensive overview on
which ordering produces the best results is given in Section 5.2.

This framework can also be used to order the variables of an encoding, since they can also
be assigned a step and a type. For this thesis we only di�erentiated between two types of
variables: variables that describe the value of a planning variables, and variables that describe
operators. Because variables only have two di�erent types, the total number of orderings on
variables is much less. In the case of the ladder encoding the third type of ladder variables is
added.

Force Ordering In addition to the custom heuristic which is speci�cally designed for
planning problems, we also implemented di�erent generic heuristics. The Force algorithm
[AMS03] is a general ordering heuristic that does not rely on the logic formula to be a planning
problem. It is described as a fast, simple and competitive in the survey [RK08]. We decided
to use the Force heuristic, because it is easy to implement and does not depend on other
external software.
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4.2 Clause and Variable Ordering

The main usage of Force is to order variables, but it can also be used to order clauses.
Clauses can be ordered by reversing the roles of variables and clauses. Force tries to move
variables close together that occur in common clauses. This is supposed to keep the in�uence
of variables local in the DD Graph and reduce the total number of edges. Variables are ordered
by a one dimensional simulation that applies repulsing and attracting forces on the variables.
Variables with common clauses are attracted to each other, while variables with no common
clauses are repelled. Doing so, Force tries to minimize the average span of the clauses.

Definition 4.5 (Span):
Given a set of clauses � , a variable order $v0A and clause order $2;B . Let �v be the subset of �
that contains all clauses that contain v . The span ( of a clause 2 under$v0A is the di�erence of
positions in the ordering between the �rst and last variable of the 2 . The span ( of a variable v
under$2;B is the di�erence of positions in the ordering between the �rst and last clause in�v :

( (2) B max{$v0A ( |v |) | v ∈ 2} −min{$v0A ( |v |) | v ∈ 2}
( (v) B max{$2;B (2) | 2 ∈ �v } −min{$2;B (2) | 2 ∈ �v }

Pseudocode of Force is given by Algorithm 4; it assigns each variable in + a position
$ (v), based on clauses in � . It starts by assigning each variable a random integer position
by choosing a random permutation over |+ |. This random assignment is improved during
multiple iterations. In each iteration the position of a clause 2 is calculated by averaging the
position of all variables in the clause

% (2) B
(∑
v∈�

$ ( |v |)
)
/|� |.

No distinction is made between positive or negative variables inside the clauses. The attracting
forces between variables are simulated by determining the average position of all clauses that
contain variable v .

$ (v) B
(∑
2∈�v

% (2)
)
/|�v |.

After the previous step, the coordinates in $ are not necessarily integers. To obtain new
integer coordinates, the variables are sorted by their coordinates, the new integer coordinate is
determined by the position in the sorted order. If multiple variables have the same coordinate
during sorting, they are shu�ed randomly.

The initial ordering of variables can have a great in�uence on the quality of the resulting
order. Instead of choosing a random initial permutation it is also possible to provide Force
with the custom ordering of the previous step. In this case, Force would try to improve on
the custom ordering by further reducing the average span of all clauses.

Bo�om up The bottom up heuristic is another generic ordering algorithm that can only be
used for clauses. It was proposed by [AMS04] in combination with the Mince variable order.
The Mince order is similar to Force and both produce comparable results, but Mince uses
more complex hypergraph partitioning and is slower.

The bottom up algorithm depends on the current variable ordering. It selects clauses that
only a�ect variables in lower levels of the ordering $ �rst. More formally, the position of a
clause 2 is de�ned by % (2) B min{$ ( |v |) | v ∈ 2} and the clauses are sorted by decreasing
positions. The DD is built from the lowest levels to the highest, with the idea that adding
clauses this way, has a more local in�uence on the DD and its ordering.
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Algorithm 4: Force
Data: + , set of variables, � , set of clauses over +
Result: $ , ordering of the clauses

1 $ ← RandomPermutation() // random or custom order

2 % ← EmptyArray() // holds average position of clauses

3 while 8 < maxIterations do
4 for each 2 ∈ � do
5 % [2] ← AveragePositionOfVariables(2)
6 for each v ∈ + do
7 $ [v] ← AveragePositionOfClauses(v)
8 $ ← UniqueIntegerCoordinates($) // make coordinates integer

9 end
10 return $

Variable Grouping A common feature of BDD libraries is the grouping of variables. Group-
ing variables forces the dynamic reordering procedure to keep them together in the order. It
is important, that variables are grouped in such a way as they appear in a good variable order.
This can speed up the dynamic reordering, because the dynamic reordering procedure has
to make less decisions. For SDDs the v-trees have a more complicated structure and we did
not explore the possibilities of restricting it. We propose three di�erent methods to group
variables for BDDs:

Operators: Grouping all logic for the operators of a step together,
Variables: Grouping the logic variables for all planning variables of a step together,
Values: Grouping the logic variables for all values of a single planning variable in a
single step together.

4.3 DD Construction

The third step in building a DD from a planning problem is the actual construction. Starting
from DDs that represent single variables, smaller DDs are combined into bigger ones by a
sequence on Conjoin or Disjoin operations until a DD is reached that represents the whole
planning problem. This section will present di�erent strategies to group combine operations.
We also investigate, how the structure of the planning problem encoding can be used for a
more e�cient construction.

The algorithms in this section expect an ordered CNF in most cases. Some of the encodings
in Section 4.1 do not only produce clauses but also DNFs and other logic primitives, resulting
in a logic formula that consist of a conjunction of di�erent logic primitives. By minor
modi�cations, the algorithms can be adapted to handle logic formulas that are not pure CNFs.
For the sake of simplicity we keep calling these logic formulas CNFs.

Clause by Clause The most simple way to construct a DD from a set of clauses, is to build
a DD for every clause and conjoin these DDs together one by one. This is also known as
bottom-up construction. The procedure is outlined in Algorithm 5. It uses the Disjoin and
Conjoin routines of the DD. An important characteristic of this algorithm is that the DDs
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which represent the clauses are relatively small, compared to the main DD with which they
get conjoined. The conjoin operation usually conjoins a small DD B with a large DD A . The
clauses are processed in the order obtained from Section 4.2.

Algorithm 5: Build a DD clause by clause
Data: � , ordered set of clauses
Result: A , root node of a DD

1 A ← DDTrue() // represents whole planning problem at the end

2 for each 2 ∈ � do // according to clause order

3 B ← DDFalse() // represents a single clause

4 for each v ∈ 2 do
5 if v > 0 then // if the variable is positive

6 B ← DDDisjoin(s, DDVar(v)) // disjunction with variable

7 else
8 B ← DDDisjoin(s, DDNot(DDVar(v))) // disjunction with negation

9 end
10 A ← DDConjoin(r, s)

11 return A

Step by Step The encoding of a planning problem shows a lot of structure. Most importantly,
all clauses except for the initial state and goal clauses repeat every step. The other clauses are
structurally identical but use di�erent variables. This repeating structure is used by the step
by step construction, sketched in Algorithm 6. At the start, a DD is build from the subset of
� which only contains initial state and goal clauses. After that, a DD for every step in the
encoding is constructed by the DDForStep procedure. There are two possibilities to create the
DD ABC4p,C for a single step:

Clause by Clause: The respective clauses for step C are collected and conjoined in the
same way as the clause by clause construction.
Copy and Rename: Since each step has structurally identical clauses, the DDs will also
be structurally identical if they use the same variable order. The DD for step C can be
constructed by using the DD for step C − 1, copying it and then renaming the variables.

If ABC4p,C is constructed with the clause by clause option, the step by step construction is
similar to the clause by clause construction. The only di�erence is that the step by step
construction conjoins bigger DDs with the main DD. The copy and rename approach is less
similar. Although renaming the variables seems simple in theory, it can be a rather expansive
procedure. If the the variable order of the renamed variables is the same as the ordering
of the original variables, renaming the variables is as simple as copying the DD graph and
remapping all the variables. But if the order of the variables do not match, the structure of the
graph changes and the operation becomes more complex. The variable order of di�erent steps
can change, due to dynamic reordering. Consecutive steps in the encoding share variables,
because of the precondition, effect and frame clauses, see Figure 4.1. For example in the naive
Encoding from De�nition 4.1 the variable Gvar,C−1,v,v0; is used in the effect clauses for step C − 1
and the precondition clauses for step C . If the order of some variables in step C − 1 is changed,
it is likely that the order will no longer match with step C . This can result in a more expansive
copy and rename operation.
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Algorithm 6: Build a DD step by step
Data: � , ordered set of clauses
Result: A8=8 , root node of a DD

1 �8=8 ← initial state and goal clauses from � // possibly more clauses

2 A8=8 ← DDFromClauses(�8=8)
3 for each C ∈ {1, 2, . . . , @} do // for each step

4 ABC4p,C ← DDForStep(C) // clause by clause or copy and rename

5 A8=8 ← DDConjoin(A8=8 , ABC4p,C )
6 return A8=8

The step by step construction is less �exible regarding the clause order. Yet, the framework
of the custom order can still be applied. Types in*1 are conjoined together with A8=8 and types
in*2 are conjoined in their respective order during the construction of ABC4p,C .

Bidirectional A technique from symbolic planning [SMN20a] inspired this bidirectional
approach. Instead of just starting from step 0 and incrementing it, the construction is also
started from step @. This can be done by using two DDs and adding increasing steps to the
�rst DD and decreasing steps to the second DD.

The motivation is that a DD becomes exponentially more complex with the number of
steps that are added to it. By having two DDs representing @/2 steps, rather than one DD
representing @ steps the total size could be signi�cantly reduced. In addition, this approach
can make more use of the restricting goal unit clauses. Adding unit clauses to a DD makes its
size smaller in most cases. But an unidirectional approach can only use the restricting nature
of goal unit clauses when the last step is added.

An outline of this construction is given in Algorithm 7. Two separate root nodes are
constructed, one for the forward construction and one for the backward construction. In
the end, both root nodes are conjoined. It is possible to use the same root node for both
directions. In this case, there is more interference between both construction directions but
the last DDConjoin can be saved. This can be signi�cant because it conjoins two large DDs
with each other, which can be costly.

Algorithm 7: Build DD Bidirectional
Data: � , ordered set of clauses
Result: A8=8,0, root node of a DD

1 �8=8 ← initial state and goal clauses from �
2 A8=8,0 ← DDFromClauses(�8=8)
3 A8=8,@ ← DDFromClauses(�8=8) // possibly same as A8=8,0
4 for each C ∈ {1, 2, . . . , b@/2c} do // forward steps

5 ABC4p,C ← DDForStep(C) // clause by clause or copy and rename

6 A8=8,0 ← DDConjoin(A8=8,0, ABC4p,C )
7 for each C ∈ {@, @ − 1, . . . , b@/2c + 1} do // backward steps

8 ABC4p,C ← DDForStep(C) // clause by clause or copy and rename

9 A8=8,@ ← DDConjoin(A8=8,@, ABC4p,C )
10 A8=8,0 ← DDConjoin(A8=8,0, A8=8,@) // can be saved if A8=8,0 = A8=8,@
11 return A8=8,0
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Exponential The exponential construction tries to make more use of the copy and rename
option. Instead of building DDs that represent a single step of the planning problem, it creates
DDs that span multiple steps. In this way a sequence of DDs is constructed that represent
an exponentially growing amount of. Algorithm 8 outlines this construction. The DD with
root node ABC4p,2: will represent the steps 1, 2, . . . , 2: . This DD is copied and the variables
are renamed to represent the steps 2: + 1, 2: + 2, . . . , 2:+1. Conjoining both DDs results in a
DD that represents twice as much steps. In total blog2(@)c DDs are. To construct a DD that
captures the whole planning problem, the smallest set of DDs is selected whose total sum
of represented steps does not exceed @. By renaming these DDs accordingly and conjoining
them, the �nal DD is obtained.

Algorithm 8: Build DD Exponential
Data: � , ordered set of clauses
Result: A8=8 , root node of a DD

1 �8=8 ← initial state and goal clauses from �
2 A8=8 ← DDFromClauses(�8=8) // represents whole planning problem at the end

3 ABC4p,20 ← DDForStep(1) // represents the clauses of step 1

4 : ← 1
5 while 2: ≤ @ do // build DDs spanning multiple steps

6 C4<p ← RenameVariables(ABC4p,2: , 2: )
7 ABC4p,2:+1 ← DDConjoin(ABC4p,2: , C4<p) // twice as big

8 : ← : + 1
9 end

10 B8I4 ← 0 // counts number of steps that are currently represented by A8=8
11 while B8I4 < @ do // conjoin DDs together

12 if B8I4 + 2: < @ then // If DD still fits

13 ABC4p,2: ← RenameVariables(ABC4p,2: , B8I4)
14 A8=8 ← DDConjoin(A8=8 , ABC4p,2: )
15 B8I4 ← B8I4 + 2:
16 end
17 : ← : − 1
18 end
19 return A8=8

Under the assumption that the copy and rename operation is comparatively cheap, a lot
of work can be saved since this algorithm needs less DDConjoin operations than in the other
construction algorithms. A disadvantage of this approach is that the DDConjoin operations
have to conjoin relatively big DDs multiple times.

4.4 �eries on DDs

Most Queries on DDs can be performed in polynomial time. Querying a DD often only takes
a fraction of the time that is necessary to create it. This section proposes possible queries on
DDs and their implication for the underlying planning problem.
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Plan Counting and Plan Enumeration: Except for the parallel encodings, there is a one
to one correspondence between plans of the planning problem and solutions to the
logic formula. Therefore, counting the number of models for a given DD also counts
the number of possible plans for a planning problem. Enumerating plans is as easy as
enumerating solutions of the DD.
Selecting Plans Uniformly at Random: Instead of enumerating all plans, it is also possible
to select a plan uniformly at random. This is a powerful operation, since the number of
plans can grow exponentially and selecting plans at random can give an approximation
of the solution space, without the need to construct all plans.
Cost Optimal Plans: It is possible to �nd an optimal solution for a DD, given a cost
function. The function determines the cost of setting a variable to True or False. These
costs are assigned to the edges in a DD graph. An optimal solution corresponds to a
shortest path in the graph. Although only unit-cost problems have been considered in
this thesis, this makes it possible to �nd optimal solutions to planning problems with
operator costs. Even state variables can be assigned a cost value, allowing it to �nd
plans that avoid or prefer certain states.
Restricting the Solution Space: The solution space of a planning problem can be reduced
by adding clauses to the encoding. If we conjoin the DD with a clause that is True i�
a speci�c operator was chosen, the number of represented plans shrinks. This allows
us to count the number of plans that uses this operator. The most or least common
operator can be determined this way.

Our planner can be used to solve the Top-: and Top-@ planning problem. Both problems are
closely related to plan enumeration. In this case, our planner will keep constructing a DD for
an encoding that represents more and more steps, until enough plans are found. The problem
is, that the total size of the encoding is not known until enough plans are found. We propose
two con�gurations for this problem. Both methods use the length of an optimal solution from
Fast Downward @′ to obtain a lower bound on the number of steps.

Restart: This method restarts the planner with an increased number of steps until
enough solutions are found. The advantage of this approach is that the planner always
knows the size of the encoding and can make the best use out of the ordering and
grouping heuristics.
Incremental: The incremental approach constructs the DD for @′ steps and counts the
number of solutions. If not enough solutions are found, it removes the goal clauses
from the DD and extends the encoding by one step. This way, the planner does less
redundant work, since it does not create the DD from scratch every time the number of
steps is increased. A disadvantage of this approach is that adding and removing the
goal clauses can disturb the variable order.

The performance of Top-: an Top-@ planning, selecting several uniformly distributed plans
and �nding the most frequent operator by which the goal is reached is evaluated at the end of
Section 5.2.
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5 Evaluation

In this chapter, we evaluate our contributions from Chapter 4. We explain our implementation
and test setup in Section 5.1. Afterwards, the di�erent con�gurations of our algorithms are
evaluated in Section 5.2.

5.1 Implementation and Experimental Setup

All algorithms are implemented in C++ and are available as the planner planDD1 on GitHub.
In order to translate planning problems from the .pddl into SAS+ format, the translation part
of the planning framework Fast Downward 2 is used. Fast Downward is also used to retrieve
the length of optimal plans, using A* search and the lmcut heuristic. BDDs are constructed
through the well known CUDD3 library and SDDs are constructed by the SDD package4.

Experiments were performed on two di�erent test sets. The �rst set is larger and was used
in most cases, while the second set was used when testing a particularly large number of
con�gurations.

The �rst set contains every optimal strips unit-cost problem from the Fast Downward
benchmark collection5. This set contains 1190 problems from 37 di�erent domains. A
timeout of 300 sec was used on problems from this test set.
The second set is a subset of the �rst and contains easy problems. From the �rst set 200
problems have been sampled without replacement with a probability proportional to
1/C , where C is the time it took Fast downward to solve the problem. For the easy test
set, a timeout of 30 sec was used.

We used two di�erent machines for our experiments. The �rst, containing two Intel Xeon
E5-2683 processors with two times 16 cores, 2.1 GHz and 512 GiB of RAM and the second with
an AMD EPYC Rome 7702P processor, 64 cores, 2.0 GHz and 1024 GB of RAM. Experiments
that we compare against each other were executed on the same machine. As many tests as
cores were run concurrently, with four cores reserved for the operating system and Runwatch6.
Runwatch schedules the problems and enforces memory and time constraints.

1https://github.com/Vraier/planDD
2https://www.fast-downward.org/
3https://github.com/ivmai/cudd
4http://reasoning.cs.ucla.edu/sdd/
5https://github.com/aibasel/downward-benchmarks
6https://github.com/domschrei/runwatch
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5 Evaluation

5.2 Experimental Results

In this section we discuss the experimental evaluation of our algorithms. We start with the
parameters that have the most signi�cant impact on the performance of our planner. After
determining the best con�guration of our planner we make a comparison with the standard
DD compilers. At the end, a comparison is made against state of the art Top- and Top-&
planners.

Naive BDD and SDD implementation This approach is intended to provide a baseline
for further comparison with more advanced techniques. It uses a standard CNF to DD compiler,
to construct the DD for the planning problem. Only the SDD package comes with a default
compiler, so we implemented our own BDD compiler. Our BDD compiler uses Force to
compute the variable order and the bottom up heuristic to compute the clause order. For
dynamic reordering we use the shifting procedure [Rud93] which comes with the CUDD
library. The default SDD compiler does not perform static variable ordering but also uses
the bottom up heuristic for clause ordering. A procedure called local v-tree search [CD13] is
used for dynamic reordering of SDDs. Both compilers use the clause by clause construction
of Algorithm 5. Fast Downward is used to obtain the length of an optimal plan @. A CNF,
representing @ steps, is calculated with the naive encoding.

We tested both compilers on the large test set with a timeout of 300 seconds. Out of the
1190 problems, Fast Downward only solved 538 within the timeout. This is a practical upper
bound for our planner, since it requires the solution of Fast Downward to determine the size of
the encoding. Of the 538 problems solved by Fast Downward, the encoder creates a valid CNF
for 423 problems. Both compilers solve a similar number of problems, with the BDD compiler
constructing 66 BDDs and the SDD compiler completing 71 SDDs before the timeout. This
can be seen in the left plot of Figure 5.1. The ~-axis shows how many DDs were constructed
within the given time limit on the G-axis.

The right plot of Figure 5.1 compares the performance of the two compilers on every
individual test instance. One point is drawn for every test instance, where the G coordinate
is the time taken by the BDD compiler and the ~ coordinate is the time taken by the SDD
compiler to �nish building the DD. If one of the compilers timed out, the point is drawn on
the vertical or horizontal gray line. We can see that the SDD compiler is able to solve some
problems signi�cantly faster the the BDD compiler and vice versa. More speci�cally, the BDD
compiler seems to perform better on the movie domain and the SDD compiler performs better
on the psrsmall, gripper and visitall domains. A more detailed analysis of the performance
of our planner per domain is given at the end in Table 5.5 and Table 5.6. In total, the DD for
76 problems can be created by either using the BDD or SDD compiler.

The divergence in performance suggests that both DD approaches can complement each
other. However, it should be noted that the signi�cance of these results is limited because
both compilers react very sensitively to the variable and clause order. Changing the way
the CNF is constructed will have a signi�cant impact on both compilers. To decouple the
encoding of the planning problem from the DD construction, we will determine good variable
and clause orders in the next paragraph.

Variable and clause orders The clause and variable order has the most signi�cant in�u-
ence on how e�ciently a DD can be constructed. In Section 4.2 we proposed using knowledge
on the planning problem to order the encoding. The number of possible orders of clauses
is too large and we have limited ourselves to 540 di�erent orders from the custom ordering.
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Figure 5.1: Comparing the performance of the BDD and SDD compiler.

These were tested on the smaller test set with a timeout of 30 seconds and dynamic variable
reordering. We also tested four di�erent variable orders on the large test set with a timeout of
300 seconds. Both con�gurations use the clause by clause construction for BDDs with the
naive encoding.

The results for the clause orders can be seen in Figure 5.2. The worst orders solve only 7
problems and the best orders solve up to 70 problems, which is 4 problems more than the
default SDD compiler with a ten times smaller timeout. One of the best orders sorts the types
of clauses by* = [i, g, v, o, p, e, f] with the partition*1 = {i, g},*2 = {v, o, p, e, f}.

A gap can be seen in the histogram in Figure 5.2 between con�gurations that solve more than
50 problems and con�gurations that solve less than 36. Two properties appear to signi�cantly
reduce the performance of an order:

sorting clauses of type v and o after clauses of type p, e and f,
choosing p, e, f ∈ *1 and not sorting them by step but by type.

Some general insights about clause ordering for planning problems can be obtained from
these results. Clauses of type i, g, v, o should be added as early as possible. They restrict the
solution space the most and are likely to reduce the size of the BDD. All clauses except for the
i and g type clauses should be sorted by the step and then by type. This way clauses a�ecting
the same variables are closer together in the order, reducing their average span. This is in
consistent with the rules of thumb of other ordering heuristics such as Force and Mince.

We also evaluated four di�erent static variable orders:
Order �: Sort all variables for values by step, then sort all operator variables by step,
Order �: Sort all operator variables by step, then all variables for values by step,
Order �: Sort everything by step and put value in front of operator variables,
Order � : Sort everything by step and put operator in front of value variables.

Each order can be combined with the dynamic reordering techniques from the BDD and SDD
libraries. The results of these experiments are listed in Table 5.1. It lists the number of solved
problems and the average peak size of the BDD DAG (counted in number of internal nodes).
For dynamic reordering, the average age of time spent on reordering is measured.

Order � and � perform comparatively well, with � performing the best and solving 99
problems, which is slightly more than the dynamic reordering approaches. Order � and �
perform worse, solving only 46 and 49 problems without dynamic reordering. There is a
large gap between the number of solved problems for � and � with and without dynamic
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Figure 5.2: Performance of 540 di�erent clause orders from Section 4.2 on the easy test set of

200 test cases. On the left side, one line is drawn for every clause order. On the
right, a histogram showing how many con�gurations solved exactly G number of
problems.

order � order � order � order �

no reordering solved problems 46 49 99 88
average peak DAG size 627712 638436 104304 137764

dynamic
reordering

solved problems 97 97 94 95
average % of time reordering 70.3 72.2 67.8 69.4
average peak DAG size 55818 54445 52043 53392

Table 5.1: Results for four di�erent static variable orderings, with and without dynamic
reordering for Section 4.2.

reordering. This can be explained by the fact that � and � are bad orders and the dynamic
reordering corrects the errors of the static order. Overall, the dynamic reordering approaches
have smaller maximum DAGs, which is an indicator of a good variable order. The fact that
order� performs better without reordering can be explained by the fact that reordering takes
a lot of time. Up to 72% of the total construction time for the BDD is consumed by dynamic
reordering in some cases. The number of solved problems for order � and the dynamic
reordering approaches seem to converge, indicating that it is di�cult to improve order � .

Overall, the results suggest that ordering variables by their step is better than ordering
them by their type. This makes intuitive sense since variables of the same step appear in
common clauses. If two variables are more than one step apart, they do not appear in common
clauses. This is consistent with the rule of thumb of general static variable orders like Force
which tries to reduce the average variable span.

Construction Algorithms In Section 4.3 we proposed di�erent methods to build a DD
from a set of clauses. They di�er in the way they structure the conjoin operations and whether
they copy the DD for a step or create it clause by clause. We tested each construction method
using the best variable and clause order obtained from the previous paragraph and dynamic
reordering on the large test set. The naive encoding was used to construct the CNF formula.
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Figure 5.3 shows a selection of the best con�gurations from these experiments. No con-
struction method was able to outperform the clause by clause construction from Algorithm 5,
which solved 94 problems. The step by step construction of Algorithm 6 solved the same
amount of problems when no copy and rename was used. This is not surprisings, since the
construction only di�ers slightly when the step DDs are constructed clause by clause. If the
DD for the next step was created by copying the previous step, the step by step construction
solves only 91 problems. This can be explained by the costly copy and rename operation. On
average 41% of the construction time is spent on copying and renaming the step DD and 32%
of the time is spent conjoining the step DDs with the main DD.

The results for the bidirectional construction are similar. The bidirectional construction
solves 90 problems with the best con�guration. When the step DDs are constructed with
copying, it solves only 80 problems and if both directions use the same DD root node, it solves
75 problems.

The exponential construction performs the worst. It solves 68 problems, which is the lowest
of all construction con�gurations. The �rst phase, constructing the DDs that span multiple
steps, was completed for 74 problems. The poor performance can be explained by the fact
that this construction method has to copy and conjoin the biggest DDs, with both operations
being costly. The exponential construction also has the largest average peak DAG size of
181182, despite dynamic reordering. This seems to indicate that the complicated construction
of DDs spanning multiple steps disturbs up the variable order.
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Figure 5.3: Performance of di�erent construction algorithms from Section 4.3.

All in all, the clause by clause construction performs the best. It is the simplest construction
method. The other construction procedures seem to conjoin DDs that are too large or add too
much complexity and disturb the variable order.

Encoding The encoding of the planning problem has a great in�uence on the time it takes
to construct the DD. In Section 4.1 we proposed di�erent encodings, that aim to reduce the size
either by reducing the number of clauses, variables or steps. We evaluated these encodings
with the best clause and variable order together with the clause by clause construction on the
large test set.
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Using the binary encoding from De�nition 4.3 instead of the naive unary encoding has the
greatest bene�t on the performance of our planner. It is possible to encode either the planning
variables, operators or both binary. Since the addition of clauses that prohibit impossible
variable values is optional, we tested con�gurations with and without these extra clauses.
Figure 5.4 shows a selection of these con�gurations. If only the variable or the operators
are encoded binary, the planner solves 108 or 127 problems respectively. If both are encoded
binary, a total of 152 problems are solved, and if impossible variables are also forbidden, the
planner constructs the DD for 167 problems. The main reason for these improvements is
the reduced number of variables. Although the clauses for the binary encoding are more
complicated, a reduction in variables leads to a smaller graph size and faster DD operations.
This reduction in encoding size can be seen in Table 5.2. The average encoding has 45 times
less clauses and 8 times less variables. The encoder is also able to construct the CNF for
more problems than the naive encoding. It constructs the CNF for 538 problems, which is 33
problems less than the practical maximum of 538 problems solved by Fast Downward.
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Figure 5.4: Comparing performance of di�erent binary encodings.

Encoding exact one constraints with the ladder encoding of De�nition 4.2 or directly as a
BDD by Algorithm 2 reduces the size of the encoding but does not manage to signi�cantly
outperform the naive encoding. As expected, the direct encoding has a similar amount of
clauses as the binary encodings but as many variables as the unary encoding, see Table 5.2. It
solves slightly more problems than the unary encoding which can be explained by the fact
that it needs less time to construct the CNF. The direct encoding manages to create the CNF
for the most problems out of all encodings. The ladder encoding has twice as many clauses
and variables as the direct encoding which is the most variables out of all the encodings. It
solves 44 problems, which is the lowest amount for all encodings. The poor performance is
due to the fact that all the added ladder variables have to be integrated into the variable order.
We tried di�erent ways to order them but none of them performed well. With more e�ort the
variable order of the ladder encoding could be improved but it is unlikely to perform better
than the direct way to construct exact one constraints.
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solved
problems

#constructed
CNFs

average
#clauses

average
#variablescon�guration

naive unary 94 427 5976958 13604
ladder encoding 44 517 335355 27049
direct exact one 100 517 155976 13604
variables binary 108 426 5759469 11647
operators binary 127 505 146997 4083

both binary 152 505 117645 1745
forbid impossible variables 167 505 130804 1745

Table 5.2: Number of solved problems and size of the encoding for di�erent encoding con�g-
urations. The table contains three unary encodings and four binary encodings

We also proposed two encodings that try to reduce the number of steps, the parallel
encoding and the colored encoding. In the previous experiments we used Fast Downward
to compute the length of an optimal plan @ but the length of an optimal parallel plan @′ is
usually less than @. Therefore, we used our own planner to determine @′. This comes with two
disadvantages: First, the planner executes more conjoin operations, because it has to check at
each step whether the goal is achieved, and second, it is harder to determine a good ordering
of clauses and variables if the full encoding is not known at the beginning. The parallel
encoding manages to solve 106 problems and the colored encoding solved 131 problems, see
the left plot of Figure 5.5.

In most cases, the number of color classes found by Algorithm 3 is relatively small. On
average 11.8 color classes are needed, with the median number of color classes being 4 and
the most needed classes being 171. This can be seen in the right histogram in Figure 5.5. A
smaller number of color classes results in an encoding with fewer variables, this supports
the better performance of the colored encoding compared to the parallel one. We believe
that using a SAT-based planner to determine @′ can further improve the performance of both
parallel encodings.

Across all encodings, reducing the number of variables has the greatest impact on the
amount of solved problems. The number of clauses and their complexity are of secondary
importance.

Generic ordering algorithms Multiple static ordering heuristics already exist for BDDs.
In this paragraph we want to evaluate how well they work for encodings of planning problems.
All experiments use the clause by clause construction with the best binary encoding and
dynamic reordering.

A key concept of the Force algorithm is the span of a clause or a variable. The attracting
forces of the heuristic aim to minimize this metric. We evaluated four di�erent con�gurations
of the ordering procedure. Force starts with a random permutation to improve the ordering,
we also propose to use our own custom order for this initial permutation. We distinguish
between applying Force on the variable and the clause order. Table 5.3 shows the results
of the experiments together with the median clause and variable span. Force managed to
improve the clause/variable span of the custom order when they were used together. However,
if Force starts from a random permutation, the average span is larger than just using the
custom ordering alone. Interestingly, Force with an initial random permutation and not the
custom order performs worse for clause ordering but better for the variable order, although
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Figure 5.5: Comparing performance of di�erent parallel encodings (left). Number of color

classes for di�erent problems (right).

the average span increases in both cases. The good performance in the case of the variable
order, could be explained by the dynamic reordering, which �xes suboptimal initial orders.
This seems to indicate that the clause/variable span is not su�cient to determine a good
ordering. The best Force con�guration solves 170 problems, which is slightly more than the
custom ordering. Overall, Force is a competitive alternative for ordering the variables of
planning problems. The clause ordering of Force can bene�t greatly from using the custom
order during initialization.

solved
problems

median
clause span

median
variable spancon�guration

custom ordering 167 2556 46
Force random variable ordering 170 2556 94
Force random clause ordering 84 3977 46
Force custom variable ordering 170 2556 24
Force custom clause ordering 168 1455 46

Table 5.3: Number of solved problems for the custom ordering and four di�erent Force
con�gurations. The table also shows the median of the average clause/variable
span of the orderings.

Figure 5.6 visualizes two Force variable orders on the �rst Gripper problem with four steps.
The �rst order uses the custom order as a starting point for Force, the second one uses a
random permutation. The variables are drawn as dots on a horizontal line with G-coordinates
according to the ordering. For each clause, a dot is drawn above the horizontal line with the
G-coordinate being the average of its variables and ~-coordinate proportional to its span. Each
clause is connected to its variables by a line. In the �rst image, the four steps of the planning
encoding are easily visible but in the second image this structure is broken up. The �gure
also shows the greater average span of clauses when a random initial permutation is used.
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Figure 5.6: Visualization of two di�erent variable orders on a planning problem encoding
with four steps. On the left side, Force with custom order. On the right side,
Force with an initial random permutation.

Using the bottom up heuristic to order the clauses of the encoding is not feasible at all. In
our experiments, the planner was only able to solve 101 problems, using the bottom up order.
Similar to the Force order with a random permutation, it is not able to capture the structure
of the planning problem.

Overall, Force is a competitive alternative for ordering the variables of planning problems.
The clause order of Force can bene�t greatly from using the custom order during initialization.
No variable order solves signi�cantly more problems than our custom approach. And no
other clause ordering heuristic is able to produce a good order without our custom order.

Variable Grouping We experimented with all suggested possibilities to group variables.
The SDD package does not support a similar feature and thus only our BDD planner can make
use of variable grouping. CUDD uses the shift algorithm to reorder the groups and also uses
it within each group. The clause by clause construction, binary encoding and custom order is
used in these experiments, the results can be seen in Table 5.4.

con�guration solved problems
no grouping 167
operator grouping 168
variable grouping 137
value grouping 173

Table 5.4: Number of solved problems for di�erent variable groupings.

Grouping the logic variables for the values of a planning variables together has the best
e�ect on the number of solved problems. It uses the smallest variable groups and solves 173
problems, which is the most of all previous con�gurations. Grouping all logic variables for
the planning variables of a step together has a negative impact on the performance. This
con�guration solves only 137 problems. The results provide insights into good variable
orderings of planning problems. Grouping all logic variables for planning variables together
is worse than grouping the logic variables for the planning values and grouping operators
has no signi�cant e�ect. This seems to indicate that in a good ordering the operator variables
form a consecutive block. However, the logic variables for individual planning variables have
to be split up and either be placed before or after the operator block.
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Improvements over naive implementation We started this section with an evaluation
of the standard compilers for the construction of DDs and went on to present several im-
provements. Using the binary encoding and the custom order to sort the variables and clauses
o�ers the biggest improvements on the number of solved problems. If Force is used to
order the variables and some logic variables are grouped, the performance can be increased
slightly more. Figure 5.7 compares our best BDD and SDD con�guration against the naive
implementation. The BDD con�guration solves 173 which is 107 problems more than the
naive implementation. On problems solved by both planners, the best BDD con�guration
achieves an a speedup of 43.6. The best SDD con�guration solves 158 problems, which is
87 problems more than the default SDD compiler. Our SDD con�guration has an average
speedup of 76.7.

This is a signi�cant improvement over the standard compilers. In particular, the improve-
ments for clause orderings show that we can successfully exploit the structure of planning
problems to improve the performance of DD generation.
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Figure 5.7: Performance of the best BDD and SDD con�gurations against the standard com-
pilers.

We can construct a theoretical portfolio solver that always selects the best con�guration
for a given planning problem. In this scenario all our proposed con�gurations can solve a
total of 176 di�erent planning problems from the large test set, which is 32.7% of the problems
solved by Fast Downward.

Top-: and Top-@ comparison As mentioned in Section 3.2, two areas of automated plan-
ning are closely related to the types of queries our planner can answer: Top-: and Top-@
planning. Since no existing planner can answer exactly the same queries as our approach, we
compare planDD with planners from these two areas.

We selected the Sym-K [SMN20a] and the  ∗ planner [KSUW18] as Top-: competitors.
Sym-K is the best existing Top-: planner and  ∗ performs well for large values of : . We tested
them against our planner planDD on the large test set. Both competitors write every plan
they �nd to disk, for large values of : this takes up a signi�cant amount of search time. Since
our planner represents the solution space as a DD, it does not need to write every plan to
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disk. To make the comparison as fair as possible, we have modi�ed the source code of both
competitors, so that they skip writing the plan to disk. They still have to enumerate each plan
in memory but this can save a large amount of time. We tested the competitors against two
di�erent con�gurations of planDD, the restarting and the incremental con�guration from
Section 4.4.

A common metric for evaluating Top-: planners is the :-coverage. For a given timeout and
: it counts for how many problems the planner was able to �nd at least : plans. Each planner
was given a timeout of 300 seconds and was tasked to �nd : = 109 plans. The :-coverage of
the two competitors and two of our con�gurations can be seen in Figure 5.8. The restarting
con�guration scales better to larger :s than the incremental one, with the likely reason being,
that the restarting approach can use better variable orders than the incremental con�guration.

We can also see that the existing planners signi�cantly outperform our approach for small
values of : . When the planner is tasked to �nd a single plan, our con�guration �nds a plan for
170 problems,  ∗ �nds a plan for 329 problems and Sym-K solves 445 problems. For : = 2 · 104
plans,  ∗ overtakes Sym-K and �nds enough plans for 325 problems. Sym-K outperforms our
approach up to a value of : = 5 ·105 and ∗ outperforms planDD up to : = 107. An evaluation
per domain is given in Table 5.5, 5 domains were omitted because no planner solved a single
problem in this domain. Our planner is outperformed on almost all domains for : ≤ 106.
However, no competitor is able to �nd solution sets containing more than 5 · 107 plans.
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Figure 5.8:  -Coverage for di�erent Top- planner. A timeout of 300 seconds was used
together with : = 109.

We also wanted to compare the performance of our solver on the Top-@ planning problem.
Unfortunately, we were unable to run the competitor Forbid-Q [KSU20]. We had problems
with Forbid-Q exhausting the /tmp directory and crashing as a result. Therefore, we only
performed the experiments for our planner and will use the results from the paper [KSU20]
(Table 1, column tq) to compare the two planners. The test set-up is slightly di�erent in the
paper: It also tested Forbid-Q on non unit-cost problems and used a larger timeout of 3000
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seconds. This planner solves the unordered version of the Top-@ planning problem problem,
were only a single plan is needed to represent all reorders. This is similar to our symbolic
representation of solution sets. We tested our planner on four di�erent relative quality bounds
@ ∈ {1.1, 1.2, 1.3, 1.4} with the restarting con�guration, the results can be seen in Table 5.6.

A precise comparison between both planners is not possible due to of the di�erent test setups.
Nevertheless, a signi�cant di�erence in the performance on some domains can be identi�ed. In
fact, the domains where the planners perform well are somewhat complementary. Forbid-Q
solves signi�cantly more problems of the airport, logistics00, mprime and mystery domain,
while planDD solves more problems on miconic, movie, openstacks and psr-small. A
large proportion of the problems solved by our planner come from relatively easy domains
with a large solution space, like the movie domain. These have a large number of solutions
that use di�erent operators, which can not be represented by the reorders of Forbid-Q. We
would like to note that the output of planDD is more powerful than that of Forbid-Q. A
DD representing all plans can be used more easily to perform queries than the equivalence
classes of Forbid-Q. The results suggest that planDD is a competitive alternative for Top-@
planning on some domains.

Depending on the length, storing an average plan explicitly needs about 1KB of memory.
To evaluate the needed size to represent the solution sets with DDs, we let planDD output
the �nal DD for every problem as a .dot �le in the graph description language7. For the
parameter @ = 1.1 the average size of these �les is 409KB, for @ = 1.4 the average size is 1.6MB.
For solution sets containing millions of plans this is a signi�cant improvement.

Other queries on DDs Our DDs can answer more queries than just solving Top-: and Top-
@ planning. In Section 4.4 we proposed di�erent queries on DDs that have useful applications
for the planning problem. As a proof of concept, we have implemented two of these queries.
The �rst one, randomly selects up to 1000 uniformly distributed plans. The second one,
�nds the most common last operators in all plans, by conjoining the DD with unit clauses
representing an operator and counting the number of remaining solutions.

Both implementations construct a DD representing all optimal plans to perform the queries
on. These DDs represent solution sets of a size between 1 and 1011. We kept the time limit
of 300 seconds to construct the DD and perform the query. Out of the 170 problems where
our planner �nished the construction of the DD, it was able to sample the random plans
for 166 problems. On average it took 3.3 seconds to sample the set. Our planner was able
to determine the most common operator for all 170 problems and it took 0.07 seconds on
average. This shows that most queries can be performed in a short amount of time once the
DD is constructed.

7https://graphviz.org/doc/info/lang.html
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Planner Sym-K  ∗ planDD
Domain \ : 103 106 109 103 106 109 103 106 109
airport 14 9 0 12 0 0 1 0 0
blocks 18 18 0 18 2 0 6 5 3
depot 4 3 0 4 0 0 1 1 1
driverlog 6 6 0 11 0 0 1 1 0
freecell 14 14 0 8 0 0 0 0 0
grid 1 0 0 0 0 0 0 0 0
gripper 7 7 0 20 1 0 2 1 1
hiking14 8 8 0 13 1 0 2 1 1
logistics00 10 10 0 16 2 0 2 1 0
logistics98 2 2 0 3 0 0 0 0 0
miconic 45 40 0 81 15 0 24 20 20
movie 30 30 0 30 30 0 30 30 30
mprime 7 2 0 8 0 0 1 0 0
mystery 17 14 0 17 0 0 4 0 0
nomystery11 8 8 0 8 0 0 2 0 0
openstacks 7 6 0 7 0 0 5 5 5
pathways 4 4 0 5 0 0 1 1 0
pipesworld-nt 13 13 0 8 0 0 2 0 0
pipesworld-t 7 7 0 6 0 0 2 1 0
psr-small 47 44 0 49 15 0 36 29 24
rovers 4 4 0 14 3 0 4 3 2
satellite 4 4 0 7 1 0 2 2 1
snake18 1 0 0 0 0 0 0 0 0
storage 14 13 0 13 2 0 7 5 4
termes18 6 6 0 7 0 0 0 0 0
tidybot11 10 6 0 3 0 0 1 0 0
tidybot14 2 0 0 0 0 0 0 0 0
tpp 5 5 0 8 4 0 4 4 3
trucks 4 4 0 5 0 0 0 0 0
visitall11 9 9 0 11 5 0 5 5 5
visitall14 3 3 0 6 0 0 0 0 0
zenotravel 7 7 0 8 0 0 2 2 2
Σ(1190) 406 81 0 338 336 0 147 117 102

Table 5.5:  -coverage for di�erent planners and values of : . Best performing planner for a
given domain and : is highlighted. Domains where no planner solved a problem
are omitted.

43



5 Evaluation

Planner planDD
Domain \ @ 1.1 1.2 1.3 1.4
airport 6 6 6 6
blocks 8 7 6 6
depot 1 1 1 1
driverlog 1 1 1 1
gripper 2 1 1 1
hiking 1 1 1 1
logistics00 2 1 1 1
miconic 20 20 20 17
movie 30 30 30 30
mprime 1 1 1 1
mystery 9 8 6 6
nomystery 2 2 2 2
openstacks 4 0 0 0
organic-synthesis 7 7 7 7
pathways 1 1 1 1
pipesworld-notank 1 1 1 1
pipesworld-tank 2 2 2 2
psr-small 31 29 28 27
rovers 4 3 3 3
satellite 2 2 2 2
storage 7 7 6 5
tidybot 1 1 1 1
tpp 4 4 4 4
visitall 5 5 5 5
zenotravel 4 2 2 2
Σ(1190) 156 143 138 133

Table 5.6: Evaluating the performance of planDD for Top-@ planning. Domains where no
con�guration solved a problem are omitted.
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In this thesis we have presented new ways of representing sets of plans as Decision Diagrams.
This compact representation of the solution set opens up many possibilities for queries. We
have implemented our planner planDD to investigate di�erent strategies for generating DDs.
By improving the encoding and its ordering, we were able to achieve signi�cant improvements
over general DD compilers. We were able to successfully use knowledge of the planning
problem to �nd a good ordering of its encoding. This shows that the structure of a planning
problem can be used to speed up the construction of DDs. We also investigated the e�ects
of general heuristics on DD construction. Existing generic variable orders have a slight
advantage over our own order, but no clause ordering compares to our ordering tailored to
the planning problem.

A signi�cant contribution is made by planDD for solving simple problems with large
solution spaces. This can be seen in the Top-@ planning problem. In some domains planDD
performs particularly well, managing to generate solution sets for problems that the existing
planners cannot solve.

Nevertheless, the construction of DDs for planning problems remains a challenging problem.
In particular, the large number of variables in many encodings of larger planning problems
makes the generation of DDs challenging. Existing Top-: approaches can solve much harder
problems while allowing for a similar set of queries. This makes it di�cult to use planDD as a
competitive planner for such problems. Our planner dominates only for simpler problems
with very large solution spaces of sizes larger than 106 plans.

We believe that with further work our approach can be made competitive for at least
moderately large solution spaces. In particular, the use of parallel plans and a better ordering
of the encodings leave room for improvement.

6.1 Future Work

Our planner already contributes to Top-@ planning for some domains, but does not scale
well on harder problems. Even our best con�gurations have di�culties solving problems
of practical size. Our main goal is to make planDD competitive enough to solve problems
of moderate size and to make practical use of the wide range of queries it provides. In this
section we would like to present possibilities for future improvements and applications of our
planner.

Further improve the clause and variable order Our custom order is already producing
good orders but the results of the Force and variable grouping experiments show that there
is still room for improvement. The use of causal graphs, which show dependencies between
planning variables, could help to order logical variables even better. We have also not yet tried
to apply techniques of symbolic planning to our problem. Symbolic planning does not need to
order operators, but the variable ordering can be used for our approach. It may also be helpful
to use encoding techniques of symbolic planning for the state variables of our approach.

45



6 Conclusion

Improving the parallel encoding Our coloued encoding has proven to be a signi�cant
improvement over the naive encoding, but it solves fewer problems than the binary encoding.
A major reason for this is that the length of an optimal parallel plan is not known in advance.
This problem could be easily solved by using a SAT-based planner in the preprocessing phase
to �nd out the length. It also seems fruitful to use a stronger version of parallel plans. This
can further reduce the number of necessary steps and variables. With enough e�ort, it may
be possible for the parallel encoding to outperform the binary encoding.

Ge�ing more use out of the features of SDDs In some of our approaches, we have not
fully exploited the possibilities of SDDs and have focused more on BDDs. This is partly
because the BDD library o�ers a more sophisticated interface for DD manipulation than the
SDD package. Nevertheless, we have left out some opportunities to adapt the structure of
v-trees to planning problems. Manipulating the v-tree allows for more freedom when trying
to model the structure of a planning problem. It may also allow us to simulate the grouping
of variables for SDDs. If we can make better use of the strengths of SDDs, they could be more
e�cient than our BDD con�guration.

Solving non unit-cost problems Throughout the work, we have limited ourselves to
unit-cost problems. One way of solving non unit-cost problems with DDs has already been
presented in Section 4.4. We have not yet implemented this feature, but using a cost function
for the edges of the DD opens up new possibilities for solving non unit-cost problems. There
are some considerations to be made on how to determine the size of the DD, since it no longer
depends on the length of a plan but on its cost. Implementing this idea would allow us to
identify non unit-cost domains where our planner works particularly well.

Using DDs as a heuristic for planning In section Section 1.1, we suggested that our
approach could help to develop heuristics for automated planning. We would build on the
idea of planning pattern databases. Reducing a planning problem to a simpler one and solving
it completely �ts well into the scheme of our approach. However, it remains to be seen
whether planDD is able to represent problems hard enough to make meaningful decisions
for heuristics.
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