
A Practical Evaluation of Modular
Decomposition Algorithms

Master’s Thesis of

Jonas Spinner

At the Department of Informatics
Institute of Theoretical Informatics (ITI)

Reviewer: T.T.-Prof. Dr. Thomas Bläsius
Second reviewer: PD Dr. Torsten Ueckerdt
Advisors: Dr. Maximilian Katzmann

Dr. Christopher Weyand

August 23rd 2023 – February 23rd 2024

KIT – The Research University in the Helmholtz Association www.kit.edu

https://www.kit.edu

Karlsruher Institut für Technologie
Fakultät für Informatik
Postfach 6980
76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself. I have not
used any other than the aids that I have mentioned. I have marked all parts of the thesis that
I have included from referenced literature, either in their original wording or paraphrasing
their contents. I have followed the by-laws to implement scientific integrity at KIT.

Karlsruhe, February 23rd 2024

. .
(Jonas Spinner)

Abstract

Modular decomposition is an essential preprocessing step for many algorithmic problems,
like recognizing graph classes, parameterized graph problems and optimization problems.
The modular decomposition tree hierarchically decomposes the graph into modules, sets of
vertices with the same neighborhood outside the set. There are linear time algorithms to find
the modular decomposition of a graph.
Although several implementations exist, it is not easy to compare their performance.

The implementations are in different programming languages, hard to use or implemented
inefficiently.
This thesis presents three established algorithms with linear or almost linear running

time and discusses similarities in a common framework. Moreover, we provide efficient and
comparable implementations for these algorithms, improve upon existing implementations,
and share important implementation details.
Finally, we evaluate the algorithms on real-world and generated graphs. We find that an

algorithm with a non-optimal𝑂 (𝑛+𝑚 log𝑛) running time performs best in practice, because it
avoids large constant factors and practical instances are rarely the worst-case. This algorithm
computes a factorizing permutation and converts it to a modular decomposition via a fracture
tree. Surprisingly, the implementations of the theoretical optimal linear algorithm are often
the slowest and sometimes do not follow the expected linear scaling behavior.

Zusammenfassung

Die Modular Decomposition ist ein wichtiger Bestandteil vieler Algorithmen, beispielsweise
für das Erkennen von Graph-Klassen, parametrisierte Graph-Algorithmen und Optimierungs-
probleme. Der Modular Decomposition Baum teilt den Graphen hierarchisch in sogenannte
Module auf. Das sind Knotenmengen, für die jeder Knoten die gleiche Nachbarschaft außer-
halb der Menge hat. Mittlerweile existieren Linearzeitalgorithmen für die Berechnung der
Modular Decomposition.
Zwar gibt es auch praktische Implementierungen, aber es ist schwierig ihre Laufzeit mit-

einander zu vergleichen. Das liegt unter anderem daran, dass sie in unterschiedlichen Pro-
grammiersprachen geschrieben und ineffizient implementiert wurden, oder es kompliziert ist,
sie zu nutzen.
In dieser Abschlussarbeit werden drei etablierte Algorithmen vorgestellt und in einem

gemeinsamen Kontext miteinander verglichen. Wir stellen effiziente und vergleichbare Imple-
mentierungen dieser Algorithmen bereit, diskutieren wichtige Implementierungsdetails und
verbessern existierende Implementierungen.

Die Algorithmen wurden auf Echtwelt und generierten Graphen evaluiert. Eine Erkenntnis
ist, dass ein Algorithmusmit einer nicht-optimalen𝑂 (𝑛+𝑚 log𝑛) Zeitkomplexität in der Praxis
am besten abschneidet. Das liegt unter anderem an der Vermeidung von großen konstanten
Faktoren und daran, dass es sich bei der Laufzeitanalyse um eine obere Schranke handelt und
dass der Logfaktor kaum zum tragen kommt. Der besagte Algorithmus berechnet erst eine
Factorizing Permutation undmit der Hilfe eines Fracture Trees wird mit dieser dann die Modular
Decomposition berechnet. Ein weiterer interessanter Aspekt ist, dass die Implementierungen
eines Linearzeit-Algorithmus, meistens am schlechtesten abschneiden. Außerdem zeigen sich
in den Experimenten Verhaltensmuster, die nicht mit der Erwartungen einer linearen Laufzeit
übereinstimmen.

i

Contents

1 Introduction 1
1.1 Contributions . 2
1.2 Outline . 2

2 Preliminaries 3
2.1 Modules . 3
2.2 An Ordered Partition Data Structure . 5

3 Algorithms 7
3.1 Fracture Algorithm . 7

3.1.1 Computing a Factorizing Permutation 7
3.1.2 Invariants . 9
3.1.3 Running time . 11
3.1.4 From Factorizing Permutation to Modular Decomposition 11
3.1.5 Implementation Details . 15

3.2 Skeleton Algorithm . 16
3.2.1 Computing M(𝐺,𝜈) . 18
3.2.2 Computing spine(𝐺,𝜈) . 20
3.2.3 Implementation Details . 22

3.3 Linear Algorithm . 23
3.3.1 Implementation Details . 24

3.4 Comparison of the Algorithms . 24

4 Evaluation 27
4.1 Experimental Setup . 27
4.2 Instances . 28
4.3 Algorithms for Practical Data . 29
4.4 Influence of Graph Structure on Runtimes 31

4.4.1 Simple Graphs . 31
4.4.2 Cographs . 32
4.4.3 Prime Graphs . 33

4.5 Scaling Experiments . 34

5 Conclusion 37

Bibliography 39

iii

1 Introduction

The modular decomposition hierarchically decomposes a graph from very coarse, the whole
graph, to very fine, a single vertex. Gallai has first introduced the concept [Gal67]. Informally,
modules are sets of vertices with the same neighborhood outside the set. Modules are a
generalization of connected components, co-components, and twins.

Modular decompositions have been studied in a variety of different settings, like undirected
and directed graphs [CHM02 |MdM05], 2-structures [EGMS94] or permutations[BCdMR05].
In the past, there have been several names for modules, e.g., autonomous sets, closed sets, or
clans. We refer to a survey paper for a more exhaustive list [HP10]. In this thesis, we focus on
efficient algorithms for the case of undirected graphs.
There is a wide variety of combinatorial problems where modular decomposition is an

important preprocessing step [Möh85]. It has been used for adaptive parameterized algo-
rithms for maximum matching, triangle counting, edge-disjoint 𝑠 − 𝑡 paths, minimum cut,
maximum flow, and more [KN18]. Many graph classes can be recognized with the help
of modular decompositions [Gol80], for example, interval graphs [Möh85], permutation
graphs [PLE71], or cographs [CPS85]. Algorithms for transitive orientation are closely re-
lated as well [MS99 | Ted15]. The modular decomposition has also been used in fields like
bioinformatics to study the structure of protein-protein interaction networks [GKBC04]. Addi-
tionally, there are applications in pattern matching, computational biology, and parameterized
complexity [HP10].

Due to its broad applicability, efficient and practical algorithms for modular decomposition
are essential. Moreover, high-performing implementations are crucial for profiting from the
usefulness of modular decompositions in practice. The first polynomial algorithm by James,
Stanton, and Cowan, in 1972, achieved a worst-case running time of 𝑂 (𝑛4). The running
time was later improved to 𝑂 (𝑛3) by Habib and Maurer [HM79] and 𝑂 (𝑛2) by Muller and
Spinrad [MS89]. The first two linear-time algorithms have been independently proposed
by McConnell and Spinrad [MS94] and Cournier and Habib [CH94]. Later, efforts went
into creating simplified algorithms which achieved linear-time [MS99 | DGM01 | TCHP08], or
almost linear time𝑂 (𝑛+𝑚𝛼 (𝑚,𝑛)) [DGM01] and𝑂 (𝑛+𝑚 log𝑛) [MS00 | HPV99], with 𝛼 (𝑚,𝑛)
being the inverse Ackermann function. For an overview of some additional algorithmic ideas
not covered in this thesis, we refer to the survey paper by Habib and Paul [HP10].

Practical implementation efforts and a desire for simplicity accompanied the steady theoret-
ical progress. However, most efficient algorithms are difficult to understand and implement.

The authors of a more recent linear-time algorithm [TCHP08 | Ted11] provided a preliminary
Java implementation, which was accessible until recently1. In order to analyze protein-
protein interaction networks, another algorithm [MS00] has been implemented, but the
implementation is no longer available [GKBC04]. There are implementations in Perl2 [Sal04],
C++3 [FL15], Julia4 [Kar19], and also a Java implementation used in software for structuring
1
https://web.archive.org/web/20231117180242/http://www.cs.toronto.edu/~mtedder/

2
https://metacpan.org/release/AZS/Graph-ModularDecomposition-0.15

3
https://github.com/LyteFM/modular-decomposition

4
https://github.com/StefanKarpinski/GraphModularDecomposition.jl

1

https://web.archive.org/web/20231117180242/http://www.cs.toronto.edu/~mtedder/
https://metacpan.org/release/AZS/Graph-ModularDecomposition-0.15
https://github.com/LyteFM/modular-decomposition
https://github.com/StefanKarpinski/GraphModularDecomposition.jl

1 Introduction

process models5 [Art11]. Unfortunately, they are either not easily usable or need to be
implemented more efficiently. More recently, a usable C++ implementation6 [Miz23] was
made available.

Although there has been much theoretical work to produce simple and efficient algorithms
and several implementations are available, it has been challenging to compare “efficient and
practical” modular decomposition algorithms on actual real-world data from practical contexts.
We aim to bridge that gap and provide comparable implementations of multiple algorithms to
evaluate their performance.

1.1 Contributions

This thesis presents the theoretical background of three popular modular decomposition algo-
rithms, discusses similarities, and provides details on their implementation. More specifically,
we implement the fracture [HPV99 | CHM02], skeleton [MS00], and linear [TCHP08]
algorithms. We improved the performances by several orders of magnitude compared to naive
and reference implementations. The code is freely available online7. Furthermore, we evaluate
the algorithms on a wide variety of real-world and generated data and their scaling behavior
for instances with growing size. Overall, the theoretical non-optimal fracture algorithm
consistently performs best in practice.

1.2 Outline

In Chapter 2, we introduce notation and concepts and present some of the theoretical back-
ground. Then, in Chapter 3, we present three modular decomposition algorithms, fracture,
skeleton, and linear, in Section 3.1, Section 3.2, and Section 3.3, respectively. At the end of
each section, we discuss their efficient implementation. The fracture and skeleton algo-
rithms have a worst-case running time of 𝑂 (𝑛 +𝑚 log𝑛) and are based on [HPV99 | CHM02]
and [MS00], respectively. The linear algorithm is based on [TCHP08]. Next, we evaluate
our implementations of the algorithms in Chapter 4. Finally, we conclude our findings in
Chapter 5.

5
https://code.google.com/archive/p/bpstruct/

6
https://github.com/mogproject/modular-decomposition

7
https://github.com/jonasspinner/modular-decomposition

2

https://code.google.com/archive/p/bpstruct/
https://github.com/mogproject/modular-decomposition
https://github.com/jonasspinner/modular-decomposition

2 Preliminaries

We consider undirected graphs𝐺 = (𝑉 , 𝐸) with no self-loops and multi-edges unless otherwise
noted. We use 𝑉 and 𝐸 to denote the vertex set and edge set, respectively, and use 𝑉 (𝐺) and
𝐸 (𝐺), when we want to be explicit about which graph these sets belong to. We use 𝑢𝜈 to
denote an edge between 𝑢, 𝜈 ∈ 𝑉 . An induced subgraph on the vertex set 𝑋 ⊆ 𝑉 is denoted
with 𝐺 [𝑋], with 𝑉 (𝐺 [𝑋]) = 𝑋 and edges 𝐸 (𝐺 [𝑋]) = {𝑢𝜈 ∈ 𝐸 (𝐺) | 𝑢, 𝜈 ∈ 𝑋 }. For a graph 𝐺
and a partition P of 𝑉 (𝐺), we use 𝐺/P to denote the quotient graph with vertex set P and
edges {𝑋𝑌 | 𝑋,𝑌 ∈ P, 𝑥 ∈ 𝑋,𝑦 ∈ 𝑌, 𝑥𝑦 ∈ 𝐸 (𝐺)}. We use 𝐺 to denote the complement of a
graph 𝐺 , with 𝑉 (𝐺) = 𝑉 (𝐺) and 𝐸 (𝐺) = {𝑢𝜈 | 𝑢, 𝜈 ∈ 𝑉 (𝐺), 𝑢𝜈 ∉ 𝐸 (𝐺)}. We say that two sets
𝐴 and 𝐵 overlap, if 𝐴 ∩ 𝐵 ≠ ∅, 𝐴 \ 𝐵 ≠ ∅ and 𝐵 \𝐴 ≠ ∅. We use 𝐴△𝐵 to denote the symmetric
difference between sets 𝐴 and 𝐵.

2.1 Modules

Definition 2.1: Let 𝐺 = (𝑉 , 𝐸) be a graph. A vertex set𝑀 ⊆ 𝑉 is called a module if for every
vertex 𝑥 ∈ 𝑉 \𝑀 either𝑀 ⊆ 𝑁 (𝑥) or𝑀 ∩ 𝑁 (𝑥) = ∅.

An equivalent definition of a module𝑀 is that all vertices in𝑀 have the same neighborhood
in 𝑉 \𝑀 . The sets ∅,𝑉 and {𝑥}, for 𝑥 ∈ 𝑉 are modules of 𝐺 . These are called trivial modules.
If a graph consists of only trivial modules, it is called prime. The family of modules of a graph
is partitive. This means that any two overlapping modules𝑀 and𝑀 ′, the sets𝑀 \𝑀 ′,𝑀 ′ \𝑀 ,
𝑀 ∩𝑀 ′,𝑀 ∪𝑀 ′ and𝑀△𝑀 ′ are also modules.

Definition 2.2: Let 𝐺 = (𝑉 , 𝐸) be a graph and 𝑋 ⊆ 𝑉 be a vertex set. A vertex 𝑧 ∈ 𝑉 \ 𝑋 is

called a splitter of 𝑋 if there exist vertices 𝑥 and 𝑦, such that 𝑥𝑧 ∈ 𝐸 and 𝑦𝑧 ∉ 𝐸.

If a set 𝑋 has a splitter 𝑧, then any module containing 𝑋 also contains 𝑧. This leads to the
following additional characterization of modules. A vertex set𝑀 is a module if and only if it
has no splitters.
Note that there might be an exponential number of modules in a graph. For example, in

the complete graph, any vertex set is a module. Fortunately, because the family of modules is
partitive, that the set of all modules can be completely described by a 𝑂 (𝑛) set of modules. A
module is called strong if it does not overlap any other modules. Strong modules either do not
share any vertices, or are subsets of each other. This subset relation results in a hierarchical
structure on the set of strong modules: a tree with the set𝑉 at its root, {𝜈}, 𝜈 ∈ 𝑉 as the leaves
and size 𝑂 (𝑛). The tree defined by the strong modules of 𝐺 and their inclusion relation is
called the modular decomposition tree 𝑀𝐷 (𝐺) of 𝐺 . We use the term modular decomposition

to refer to that tree and use the term nodes for the vertices of the tree, i.e. the strong modules.
We use the term children for outgoing neighbors of a node. An example for the modular
decomposition can be seen in Figure 2.1.

A module is maximal with respect to some other set 𝑆 , if it is the largest subset of 𝑆 that is
a module.

3

2 Preliminaries

0

1

3

4

5

6

7

2

8 9

(a) A graph 𝐺 .

0 1

𝑆𝑒𝑟𝑖𝑒𝑠 2

𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 3 4

6 7

𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 5

𝑆𝑒𝑟𝑖𝑒𝑠

𝑃𝑟𝑖𝑚𝑒

9 8

𝑆𝑒𝑟𝑖𝑒𝑠

𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙

(b) The modular decomposition𝑀𝐷 (𝐺) of graph 𝐺 .

Figure 2.1: An example of a graph, on the left, and its modular decomposition to its right.
The root node is “parallel” and its children correspond to the connected components of the
graph.

Definition 2.3: Let P be a partition of the vertex set of a graph 𝐺 . Then, P is called a modular

partition if every part is a module of 𝐺 .

A useful modular partition is the following.

Definition 2.4: A 𝜈-modular partition M(𝐺,𝜈) is the set {𝜈} and all maximal modules not

containing 𝜈 .

The non-trivial modular partition that consists of maximal modules of 𝐺 is called the
maximal modular partition. Next, we formulate the following theorem.

Theorem 2.5 (Modular Decomposition Theorem [Gal67]): Let𝐺 = (𝑉 , 𝐸) be a graph. One of
the following holds:

1. 𝐺 is connected (series),

2. 𝐺 is connected (parallel), or

3. 𝐺 and𝐺 are disconnected and the graph 𝐺/P , with the maximal modular partition P , is
prime (prime).

This classification can also be applied to strong modules by classifying the induced subgraph
of the strong module.
To reiterate, the family of modules of a graph is fully defined by its strong modules.

The strong modules are structured in a modular decomposition tree𝑀𝐷 (𝐺) and the nodes,
corresponding to the strong modules, are either series, parallel or prime.
The following results are crucial for algorithms computing the modular decomposition.

Theorem 2.6 ([Möh85]): Let P be a modular partition of 𝐺 , then X ⊆ P is a module of 𝐺/P if

and only if

⋃
𝑀∈X 𝑀 is a module of 𝐺 .

Theorem 2.7 ([Möh85]): Let 𝑋 be a module of 𝐺 . The modules of 𝐺 that are a subset of 𝑋 are

the modules of 𝐺 [𝑋].

4

2.2 An Ordered Partition Data Structure

v1 v2 v3 v4 v5 v6

2 3 1 4 5 6

v1 v2v3 v4 v5 v6

1 12 3 3 3

1 1 2 2 4 3

X Y Z

v1 v2 v3 v4 v5 v6

1 56

v3

12 3 3

1 1

X

P = [{v3}, {v1, v2}, {v4, v5, v6}]

Yb

2

Ya Za

2

Zb

v2 v1 v6

1

4 5

v5 v4

23 4

53 1

14

P ′ = [{v3}, {v2}, {v1}, {v6}, {v4, v5}]

S = {v2, v6}

σ = v3v1v2v4v5v6 σ
′ = v3v2v1v6v5v4

σ σ

σ
−1

σ
−1

Figure 2.2: The ordered partition data structures. Parts are stored as (index, length) pairs. The
permutation and its inverse are stored explicitly. The right side is the resultP ′ = Refine(P, 𝑆),
with the choice to place 𝑋 ∩ 𝑆 to the left of 𝑋 \ 𝑆 .

Definition 2.8: Let 𝜎 be a permutation of the vertex set 𝑉 . A set 𝑋 ⊆ 𝑉 is called a factor if all
vertices appear consecutively in 𝜎 . The permutation 𝜎 is a factorizing permutation of 𝐺 if every

strong module𝑀 of𝑀𝐷 (𝐺) is a factor of 𝜎 .

The concept of factorizing permutation is closely related to modular decomposition [Cap97].
More precisely, one can compute a factorizing permutation in linear time, by doing a preorder
traversal of the modular decomposition tree. The reverse is also possible in linear time
[CHM02]. Note, that a factorizing permutation might not be unique for a given graph𝐺 . For
example, any permutation is factorizing for a prime graph.

2.2 An Ordered Partition Data Structure

A central technique is partition refinement, which originated from algorithms related to
state minimization in a finite automaton [Hop71]. For an overview of applications of this
technique, we refer to [HPV99]. In this section we describe the data structure we use in our
implementations.

Definition 2.9: An ordered partition P = [𝑃1, . . . , 𝑃𝑘] is a partition with parts 𝑃1, . . . , 𝑃𝑘 and

an order ≤P , i.e. 𝑃𝑖 ≤P 𝑃 𝑗 iff 𝑖 ≤ 𝑗 .

Let P be a partition of the set 𝑉 . A refinement of P with a pivot set 𝑆 ⊆ 𝑉 is the partition
P ′ such that each part 𝑋 ′ ∈ P ′ is a subset of some part 𝑋 ∈ P and either 𝑋 ′ = 𝑋 ∩ 𝑆 or
𝑋 ′ = 𝑋 \ 𝑆 . We equip the partition with additional structure by ordering the parts. We use
P = [𝑋1 . . . 𝑋𝑘] to denote an ordered partition with parts 𝑋1, . . . , 𝑋𝑘 and the ordering 𝑋𝑖 ≤ 𝑋 𝑗

iff 𝑖 ≤ 𝑗 . To refine a partition P ′ = Refine(P, 𝑆), we replace a part 𝑋 with 𝐴 := 𝑋 ∩ 𝑆 and
𝐵 := 𝑋 \𝑆 , such that𝐴 and 𝐵 are ordered the same as𝑋 and make a choice whether𝐴 ≤P ′ 𝐵 or
𝐵 ≤P ′ 𝐴. We use the ability to choose the order of the new parts for the algorithms discussed
in Section 3.1 and Section 3.2.

5

2 Preliminaries

We implement this data structure by storing a permutation 𝜎 of the vertex set 𝑉 and its
inverse 𝜎−1. Additionally, we store the parts 𝑋𝑖 ∈ P and the corresponding part for each
vertex. An example can be seen in Figure 2.2.

The following Lemma is crucial for the time complexity of the algorithms using partition
refinement.

Lemma 2.10: (Lemma 1 [HPV99]) Computing Refine(P, 𝑆) can be done in 𝑂 (|𝑆 |) time.

We implement the Refine operation by swapping nodes in the permutation, updating the
inverse permutation and the parts. In short, the vertices of the pivot set are moved from the
part 𝑋 to 𝑋 ∩ 𝑆 in 𝑂 (1) time each.
In the next chapter, we describe we modular decomposition algorithms implemented in

this thesis using the concepts and data structures we just discussed.

6

3 Algorithms

In this chapter, we present three modular decomposition algorithms. The choice of algo-
rithms is based on existing work and a preliminary study. The fracture algorithm already
has an usable implementation [Kar19] and the algorithm description of the skeleton algo-
rithm is not overly complicated. The more complex parts of the algorithm are conceptually
quite simple and more accessible to debugging methods, for example, the ordered partition
data structure discussed in Section 2.2. The authors of the linear algorithm claim that
it positively answers the search for a “simple” linear algorithm formulated in earlier litera-
ture [Spi03 | HP10], and its implementation only uses one data structure, an ordered list of trees.
We considered additional algorithms and attempted to implement them but ultimately did not
proceed because we deemed them too inefficient or they require complicated implementation
details [JSC72 |MS89 | DGM01].
The fracture and skeleton algorithms have a 𝑂 (𝑛 + 𝑚 log𝑛) running time and are

discussed in Sections 3.1 and 3.2, respectively. Then, we present an algorithm with linear
running time in Section 3.3. For each algorithm, we describe implementation details and
improvements at the end of their respective sections. Finally, we provide a short comparison
of the algorithms and discuss common concepts in Section 3.4

3.1 Fracture Algorithm

The algorithm described in this section works in two steps. First, a factorizing permutation is
computed in 𝑂 (𝑛 +𝑚 log𝑛) (Section 3.1.1, [HPV99]) and then the modular decomposition is
computed from it in 𝑂 (𝑛 +𝑚) [CHM02].

3.1.1 Computing a Factorizing Permutation

Here, we discuss the first step of the algorithm, computing a factorizing permutation. Recall
Definition 2.8: a permutation on the vertex set is factorizing if all strong modules appear
consecutively. The algorithm for computing the factorizing permutation repeatedly refines
an ordered partition while maintaining an ordering on the parts. Specifically, we extend the
meaning of factor to ordered partitions.

Definition 3.1: A set is a factor of an ordered partition P if all parts it overlaps with are

consecutive in P .

Subsequently, in a factorizing permutation, the strong modules containing a vertex 𝑥 are
factors and are nested around 𝑥 . Motivated by this, we start by ordering the vertices such that
the strong modules containing 𝑥 are a factor. The strategy is illustrated in Figure 3.1. The
vertices are ordered such that all neighbors of 𝑥 are to its right and all non-neighbors are to its
left. This results in the strong modules containing 𝑥 to be factors. Additionally, every strong
module not containing 𝑥 remains as a part. They are ordered with respect to 𝑥 and each other,
but the order of the vertices within the parts is not specified. The algorithm can be applied to
the remaining parts until only singletons remain, resulting in a permutation of the vertices.

7

3 Algorithms

Algorithm 3.1: Factorizing Permutation [HPV99]
Input: A graph 𝐺 = (𝑉 , 𝐸)
Output: A factorizing permutation
begin

P ← [𝑉], Center← ⊥, 𝐾 ← [], 𝐿 ← {}
while Init(P) do

while ∃𝑌 ∈ 𝐿 do
remove 𝑌 from 𝐿

for each 𝑦 ∈ 𝑌 do
Refine(P, 𝑆 = 𝑁 (𝑦) \ 𝑌)

return [𝜈 | {𝜈} ∈ P]
Function Init(P)

// 𝐿 is empty when Init is called

if ∀𝑋 ∈ P : |𝑋 | = 1 then return false
if 𝐾 is empty then

// all parts 𝑋 ∈ P are modules

// choose 𝑥 ∈ 𝑋 and start to compute M(𝐺 [𝑋], 𝑥)
𝑋 ← any 𝑋 ∈ P with |𝑋 | > 1

13 𝑥 ← FirstPivot(𝑋) if defined or else any 𝑥 ∈ 𝑋
14 Center← 𝑥

15 𝑋𝑎, 𝑋𝑏 ← 𝑋 ∩ 𝑁 (𝑥), 𝑋 \ (𝑁 (𝑥) ∪ {𝑥})
16 replace 𝑋 with [𝑋𝑏, {𝑥}, 𝑋𝑎]
17 𝑍, 𝑍 ′ ← OrderBySize(𝑋𝑎, 𝑋𝑏)

add 𝑍 to 𝐿 and add 𝑍 ′ to 𝐾
else

20 remove 𝑋 from the front of 𝐾 // 𝑋 is a module of 𝐺

𝑥 ← any 𝑥 ∈ 𝑋 and add {𝑥} to 𝐿
FirstPivot(𝑋) ← 𝑥

return true
Function Refine(P, 𝑆 = 𝑁 (𝑦) \ 𝑌)

for each part 𝑋 ∈ P , such that 𝑋 ∩ 𝑆 ≠ ∅ and 𝑋 \ 𝑆 ≠ ∅ do
𝑋𝑎, 𝑋𝑏 ← 𝑋 ∩ 𝑆, 𝑋 \ 𝑆

27 if 𝑋 is between Center and 𝑌 then
replace 𝑋 by [𝑋𝑎, 𝑋𝑏] in P

else replace 𝑋 by [𝑋𝑏, 𝑋𝑎] in P
if 𝑋 ∈ 𝐿 then replace 𝑋 by {𝑋𝑎, 𝑋𝑏} in 𝐿
else

32 𝑍, 𝑍 ′ ← OrderBySize(𝑋𝑎, 𝑋𝑏)
add 𝑍 to 𝐿 // smallest half rule

if 𝑋 ∈ 𝐾 then replace 𝑋 by 𝑍 ′ in 𝐾
else add 𝑍 ′ to the end of 𝐾

8

3.1 Fracture Algorithm

Series

Parallel

Prime

Series

x
N(x)N(x)

Figure 3.1: It is possible to order the leaves of𝑀𝐷 (𝐺), such that 𝑁 (𝑥) and 𝑁 (𝑥) are to the
left and right oft 𝑥 respectively. The parts are {𝑥} and the modules not containing 𝑥 , i.e.
M(𝐺, 𝑥). Adapted from [HPV99].

Algorithm 3.1 keeps two disjoint sets of parts, 𝐿 and𝐾 . We use the neighborhood of vertices
of the parts in 𝐿 to refine the ordered partition P . Both 𝐿 and 𝐾 are initially empty, and we
treat the set 𝐾 as a FIFO queue. When 𝐿 and 𝐾 are empty and non-singleton parts remain,
we choose a vertex as the center. When the center vertex is chosen, the algorithm refines the
ordered partition until the parts equal the 𝜈-modular partition M(𝐺, 𝑥). Then, a new center
vertex 𝑥 ′ is chosen from a non-singleton part 𝑋 , and the algorithm refines the part 𝑋 into the
parts of M(𝐺 [𝑋], 𝑥 ′).

3.1.2 Invariants

For the algorithm to work, we maintain the strong modules of 𝐺 as factors of the ordered
partition. Additionally, the algorithm refines the partition until all parts are singletons. The
following invariants are used to prove the algorithm’s correctness.

1. Let 𝑥 ∈ 𝑉 be the latest vertex chosen as the center in Line 13 and 𝑋𝑎, 𝑋𝑏 the sets in
Line 15. If a module𝑀 is a subset of a part in [𝑋𝑏, {𝑥}, 𝑋𝑎], then there exists a part in
the current partition containing𝑀 .

2. If 𝐿 = ∅, then the first part of 𝐾 is a module.

3. If the current partition contains a part 𝑋 ∈ P that is not a module, then there exists a
part 𝑌 ∈ 𝐿 ∪ 𝐾 , such that 𝑌 ≠ 𝑋 and 𝑌 contains a splitter 𝑦 for 𝑋 (see Definition 2.2).

4. Every strong module is a factor of the current ordered partition P .

Invariant 1 implies that modules are preserved during refinement, and only choosing a
center vertex and partitioning its part can split a module (Line 16). Invariant 3 implies that
when 𝐿 = 𝐾 = ∅, then every part is a module. We do not prove invariants 1, 2, 3, but we use
them to prove 4. We refer to [HP10 | HPV99] for proof of the other invariants.

The essence of proving invariant 4 is that the invariant holds for strong modules containing
the center vertex 𝑥 . The algorithm computes M(𝐺, 𝑥). Every module not containing 𝑥 is
a subset of some module in M(𝐺, 𝑥). The proof for a single vertex can then be applied to
the remaining parts, for which a new center vertex is chosen. We show that the following
invariant holds.

9

3 Algorithms

. . . , {x}, , {. . . , y, . . .}, , X1

b
, X1

a
, , X3

b
, X3

a
, , X2

a
, X2

b
, . . .

. . . , {x}, , {. . . , y, . . .}, , X1

b
, X1

a
, , X3

b
, X3

a
, , X2

a
, X2

b
, . . .

Figure 3.2: This shows P ′ = Refine(P, 𝑆), with 𝑆 = 𝑁 (𝑦) \ 𝑌 for some part 𝑌 , vertex 𝑦 ∈ 𝑌
and 𝑥 as the center vertex. The parts 𝑋 𝑖 ∈ P , 𝑖 = {1, 2, 3}, are split into 𝑋 𝑖

𝑎 = 𝑋 𝑖 ∩ 𝑆 and
𝑋 𝑖
𝑏
= 𝑋 𝑖 \ 𝑆 , 𝑋 𝑖

𝑎, 𝑋
𝑖
𝑏
∈ P ′, and ordered according to the rule in Line 27. Edges are lines and

non-edges are dotted. Both upper and lower illustrations show the same ordered partition,
but highlight the parts closer to 𝑥 and further from 𝑥 , respectively. At the top, elements of 𝑋 1

𝑎

and 𝑋 3
𝑏
are splitters of {𝑥,𝑦}. At the bottom, 𝑦 is a splitter of {𝑥} ∪ 𝑋 1

𝑏
and {𝑥} ∪ 𝑋 2

𝑏
.

Lemma 3.2: Every strong module containing the center vertex 𝑥 is a factor of the current ordered

partition.

Proof. We need to show that the strong modules containing 𝑥 are a factor of the first non-
trivial ordered partition and that any changes maintain that invariant. Only calls to Refine
modify the ordered partition until a new center is chosen. When that happens, the set of parts
is M(𝐺, 𝑥), and any module containing 𝑥 is a disjoint union of parts, and further refinement
cannot change the fact that it is a factor of the ordered partition.

For the first non-trivial ordered partition, [𝑁 (𝑥), {𝑥}, 𝑁 (𝑥)], all strong modules containing
𝑥 overlap {𝑥} and either 𝑁 (𝑥), 𝑁 (𝑥), or both. Therefore, the modules are a factor of that
partition.

Now assume that the invariant holds for the current partition before a call to Refine. Let 𝑌
be a part, 𝑦 ∈ 𝑌 a vertex, and 𝑆 = 𝑁 (𝑦) \ 𝑌 the pivot set for a call to Refine. Let P and P ′ be
the partition before and after the refinement. Let 𝑀 be a strong module containing 𝑥 , and
𝑋 ∈ P be a part that is split into 𝑋𝑎, 𝑋𝑏 ∈ P ′, with 𝑋𝑎 = 𝑋 ∩ 𝑆 ≠ ∅ and 𝑋𝑏 = 𝑋 \ 𝑆 ≠ ∅.
We now do a case analysis to show that the invariant is maintained by the ordering of the

new parts, 𝑋𝑎 and 𝑋𝑏 , chosen in Line 27. The cases are illustrated in Figure 3.2. Assume that
𝑦 ∈ 𝑁 (𝑥), i.e. 𝑦 is to the right of 𝑥 . The case 𝑦 ∈ 𝑁 (𝑥) is symmetrical.

Assume both 𝑥 and 𝑦 are a member of a strong module𝑀 . We show that the part 𝑋𝑎 or 𝑋𝑏

that is closer to 𝑥 , is a subset of𝑀 . This corresponds to the upper part of Figure 3.2.

• If 𝑋 is to the left of 𝑥 and 𝑦, then every vertex 𝑧 in 𝑋𝑎 = 𝑋 ∩ 𝑆 belongs to𝑀 , otherwise
𝑧 is a splitter for 𝑥 and 𝑦.

• If 𝑋 is between 𝑥 and 𝑦, then 𝑋 ⊆ 𝑀 , because𝑀 was a factor of P .

• If 𝑋 is to the right of 𝑥 and 𝑦, then every vertex 𝑧 in 𝑋𝑏 = 𝑋 \ 𝑆 belongs to𝑀 , otherwise
𝑧 is a splitter for 𝑥 and 𝑦.

Now assume 𝑦 is not a member of𝑀 . We show that the part 𝑋𝑎 or 𝑋𝑏 that is further from 𝑥 ,
is not a subset of𝑀 . This corresponds to the lower part of Figure 3.2.

10

3.1 Fracture Algorithm

• If 𝑋 is to the left of 𝑥 and 𝑦, then no vertex 𝑧 of 𝑋𝑎 = 𝑋 ∩ 𝑆 belongs to𝑀 , otherwise 𝑦
would be a splitter for 𝑥 and 𝑧.

• If 𝑋 is between 𝑥 and 𝑦, then no vertex 𝑧 of 𝑋𝑏 = 𝑋 ∩ 𝑆 belongs to 𝑀 . Otherwise, 𝑦
would be a splitter for 𝑥 and 𝑧.

• If 𝑋 is to the right of 𝑥 and 𝑦, then 𝑋 ∩𝑀 = ∅, because𝑀 was a factor of P .

We have shown that any module containing 𝑥 and 𝑦 contains the split half that is nearer to
𝑥 . And, any module containing 𝑥 but not 𝑦 does not contain the split half that is further from
𝑥 . Let𝑀 be a strong module containing 𝑥 . If it was a factor before the call to Refine, then it
still is a factor of the ordered partition.
Therefore, every strong module containing the center vertex 𝑥 is a factor of the current

ordered partition.

3.1.3 Running time

The algorithm’s total running time depends on how many times an element is used in a pivot
set. The authors of [CHM02] use “Hopcroft’s rule” to bound the total runtime. This rule is also
known as “process the smallest half rule” [Hop71]. More formally, the rule is the following.
Let 𝑋 be a part that is split into 𝑋𝑎 and 𝑋𝑏 . If the ordered partition P is stable with respect to
refinement with the neighbors of the elements in 𝑋 , then choose the smaller part of 𝑋𝑎 and
𝑋𝑏 to refine P .

Theorem 3.3: Algorithm 3.1 has a running time of 𝑂 (𝑛 +𝑚 log𝑛).

Proof Sketch. Let 𝑌 be a part, and 𝑦 ∈ 𝑌 be a vertex such that the pivot set 𝑆 = 𝑁 (𝑦) \ 𝑌 is
used to refine the ordered partition. The call to Refine takes 𝑂 (|𝑆 |) time. Lines 17 and 32
ensure that when 𝑌 is split, only the smaller part is added to 𝐿. When a part 𝑋 is removed
from 𝐾 , then a vertex 𝑥 ∈ 𝑋 is chosen, and only {𝑥} is added to 𝐿. The vertex 𝑥 and every
other vertex in 𝑋 are only ever used again when 𝑋 is split by choosing a new center. By
keeping track of FirstPivot, when 𝑥 is chosen from a module from 𝐾 , it is used as a center
and then never again. Therefore, every neighborhood is used at most 𝑂 (log𝑛) times as a
pivot set. We obtain a total running time of 𝑂 (𝑛 +∑𝑦 log𝑛 |𝑁 (𝑦) |) = 𝑂 (𝑛 +𝑚 log𝑛).

3.1.4 From Factorizing Permutation to Modular Decomposition

The next step is to use the factorizing permutation to compute the modular decomposition.
We present the algorithm from Capelle, Habib, and Montgolfier [CHM02].

Recall Definition 2.2 of a splitter. Let 𝐺 = (𝑉 , 𝐸) be a graph and𝑀 ⊆ 𝑉 be a vertex set. A
vertex 𝑥 ∈ 𝑉 \𝑀 is called a splitter of𝑀 , if there exists 𝑦, 𝑧 ∈ 𝑀 such that 𝑥𝑦 ∈ 𝐸, but 𝑥𝑧 ∉ 𝐸.
Then, 𝑀 is a module of 𝐺 exactly if it has no splitter. By starting with any pair of vertices
{𝑥,𝑦} ∈

(
𝑉
2
)
and iteratively adding splitters, we find the minimal strong module containing 𝑥

and 𝑦. This leads to a naive algorithm for computing the modular decomposition by finding a
non-trivial module𝑀 and computing the modular decomposition of the induced subgraph
𝐺 [𝑀] and of the graph where𝑀 is contracted to a single vertex [HP10].

Given the factorizing permutation 𝜎 , only the splitters of consecutive pairs of vertices
𝑥,𝑦, 𝑥 = 𝜎 (𝑖) and 𝑦 = 𝜎 (𝑖 + 1), 𝑖 ∈ [1 . . . 𝑛 − 1], are needed. The algorithm described
in [CHM02] computes the leftmost and rightmost splitter of 𝑥 and 𝑦. Let 𝐿[(𝑥,𝑦)] be the
leftmost splitter of 𝑥 and 𝑦 in [𝜎 (1) . . . 𝑥] if it exists and 𝑥 otherwise. Similarly, let 𝑅 [(𝑥,𝑦)]

11

3 Algorithms

Algorithm 3.2: Modular Decomposition ([CHM02])
1 𝜎 ← factorizing permutation of 𝐺 // Algorithm 3.1

�̂� ← (𝜎 (1) . . . 𝜎 (𝑛)) // a parenthesized 𝜎 with initial ‘(’ ‘)’ pair.

for each 𝑥,𝑦 adjacent in 𝜎 do
𝐿[(𝑥,𝑦)] ← left most splitter of {𝑥,𝑦} in [𝜎 (1) . . . 𝑥] or 𝑥 if it does not exists
𝑅 [(𝑥,𝑦)] ← right most splitter of {𝑥,𝑦} in [𝑦 . . . 𝜎 (𝑛)] or 𝑦 if it does not exists
if 𝐿[(𝑥,𝑦)] ≠ 𝑥 then insert ‘(’ ‘)’ around [𝐿[(𝑥,𝑦)] . . . 𝑥]
if 𝑅 [(𝑥,𝑦)] ≠ 𝑦 then insert ‘(’ ‘)’ around [𝑦 . . . 𝑅 [(𝑥,𝑦)]]

𝑇 ← FractureTree(�̂�)
𝑇 ← remove non-module nodes from 𝑇 using 𝐿[·] and 𝑅 [·]
𝑇 ← recover merged modules from 𝑇 using 𝐿[·] and 𝑅 [·]
𝑇 ← remove repeated nodes from 𝑇

𝑇 ← add node types to nodes from 𝑇

return 𝑇

1

3

45

26
7

(a) A graph 𝐺 with
𝜎 = 1234567 as factoriz-
ing permutation.

𝑥,𝑦 𝑆 (𝑥,𝑦) [𝐿[(𝑥,𝑦)] . . . 𝑥] [𝑦 . . . 𝑅 [(𝑥,𝑦)]]
1,2 ∅ - -
2,3 {1} [1 . . . 2] -
3,4 ∅ - -
4,5 {6} - [5 . . . 6]
5,6 {1, 2, 3, 4, 7} [1 . . . 5] [6 . . . 7]
6,7 {5} [5 . . . 6] -

(b) The consecutive pairs of vertices in 𝜎 , the set of splitters 𝑆 (𝑥,𝑦)
and their left and right fractures, [𝐿[(𝑥,𝑦)] . . . 𝑥] and [𝑦 . . . 𝑅 [(𝑥,𝑦)]],
if 𝐿[(𝑥,𝑦)] ≠ 𝑥 and 𝑅 [(𝑥,𝑦)] ≠ 𝑦.

�̂� = (
5
(
2
(12

2
)34

6
(
4
(5

5
)
5
(6

4
)
6
)7

5
))

(c) The factorizing permutation 𝜎 is parenthesized by the left and right fractures. The numbers on top
are the vertex 𝑥 of the 𝑥,𝑦 pair responsible for the parenthesis.

Figure 3.3: A small example graph, its left and right fractures and the resulting parenthesized
factorizing permutation.

12

3.1 Fracture Algorithm

be the rightmost splitter of 𝑥 and 𝑦 in [𝑦 . . . 𝜎 (𝑛)] if it exists and 𝑦 otherwise. If 𝐿[(𝑥,𝑦)] ≠ 𝑥 ,
then [𝐿[(𝑥,𝑦)] . . . 𝑥] is the left fracture of (𝑥,𝑦) and if 𝑅 [(𝑥,𝑦)] ≠ 𝑦, then [𝑦 . . . 𝑅 [(𝑥,𝑦)]] is
the right fracture of (𝑥,𝑦). An example can be seen in Figure 3.3. Note that vertices that are
twins, i.e. 𝑁 (𝑥) \ {𝑦} = 𝑁 (𝑦) \ {𝑥} do not have any splitters.

The permutation with an initial pair of outer parenthesis and additional parenthesis inserted
around the intervals defined by the left and right fractures define a parenthesis system.
This parenthesized factorizing permutation �̂� is balanced, i.e. every prefix contains more
opening than closing parenthesis. Figure 3.3 shows an example. The parenthesized factorizing
permutation can be transformed into a tree called fracture tree 𝐹𝑇 (𝐺). The leaves correspond
to the vertices of the original graph, and every node corresponds to a matching pair of
parenthesis. This tree is a good approximation for the modular decomposition𝑀𝐷 (𝐺). This
can be formalized with the following theorem.

Theorem 3.4: (Theorem 2 in [CHM02]). Let 𝜎 be a factorizing permutation of a graph 𝐺 . Let

𝑀 be a node of 𝑀𝐷 (𝐺) representing a strong module. If 𝑀 is a prime node or 𝑀 has series or

parallel node as a parent, then there exists a node 𝑁 in the fracture tree of 𝜎 that represents𝑀 .

Note that each pair adds at most 4 parenthesis to �̂� . Therefore, 𝐹𝑇 (𝐺) has 𝑛 leaves and at
most 2(𝑛 − 1) + 1 inner nodes. The tree can be computed in linear time from the factorizing
permutation. The fractures can be computed by using radix sort to order the neighborhoods of
the vertices by the location of the vertex in the permutation and traversing the neighborhoods
once from both directions until the left- or rightmost splitter is found. The tree can be built in
linear time by starting with a root node for the outer pair of vertices, adding a new child to
the current node, and moving down to that child for each ‘(’, adding a leaf when a vertex is
encountered and moving up the tree for each ‘)’.
As a step to compute𝑀𝐷 (𝐺) we remove all nodes in 𝐹𝑇 (𝐺) that do not correspond to a

strong module. This can be done by traversing 𝐹𝑇 (𝐺) with a postorder DFS. Let 𝑁 be a node
in 𝐹𝑇 (𝐺) with children nodes 𝐶1 . . .𝐶𝑘 ordered by 𝜎 . We utilize the following property.

Lemma 3.5: (Property 4 in [CHM02]) If all splitters of consecutive pairs of 𝑁 belong to 𝑁 , then

𝑁 represents a module.

We use the arrays 𝐿 and 𝑅 as defined earlier. We denote a node’s first and last vertex
with first(𝑁) and last(𝑁), respectively. Additionally, we use 𝑓 𝑠 and 𝑙𝑠 to define the first
and last splitter for the nodes of the tree. The leave nodes {𝜈}, 𝜈 ∈ 𝑉 are initialized with
𝑓 𝑠 ({𝜈}) = first({𝜈}) = 𝜈 = last({𝜈}) = 𝑙𝑠 ({𝜈}). The values for 𝑓 𝑠 (𝐶𝑖), first(𝐶𝑖), last(𝐶𝑖), and
𝑙𝑠 (𝐶𝑖) are already computed as we traverse the tree with a postorder DFS.

We combine the results of the child nodes by additionally considering the adjacent vertex
pairs between children. We use the following recursive definition.

first splitter 𝑓 𝑠 (𝑁) = min
(
first(𝑁), min

𝑖∈1...𝑘−1
{𝐿[(last(𝐶𝑖), first(𝐶𝑖+1))]} , min

𝑖∈1...𝑘
𝑓 𝑠 (𝐶𝑖)

)
last splitter 𝑙𝑠 (𝑁) = max

(
last(𝑁), max

𝑖∈1...𝑘−1
{𝑅 [(last(𝐶𝑖), first(𝐶𝑖+1))]} , max

𝑖∈1...𝑘
𝑙𝑠 (𝐶𝑖)

)
Because of Lemma 3.5 we can determine if a node we encounter in the tree represents

a module. A non-leaf node 𝑁 represents a module exactly if first(𝑁) ≤ 𝑓 𝑠 (𝑁) < 𝑙𝑠 (𝑁) ≤
last(𝑁). All non-module nodes are removed, and all children are assigned to the parent of the
removed node. Figure 3.4 shows an example tree.

13

3 Algorithms

1, 7

1, 7

1, 2 3 4 1, 7 7

1 2 5, 5 6, 6

5 6

(a) Before removal of non-module nodes.

1, 7

1, 2 3 4 5 6 7

1 2

(b) The fracture tree with only strong-module
nodes an non-repeating nodes.

Figure 3.4: An example example continuing from the graph in Figure 3.3. The fracture tree
corresponding to �̂� is shown on the left side. Inner nodes are marked with 𝑓 𝑠 (𝑁), 𝑙𝑠 (𝑁) and
underlined, if they correspond to a strong module. For example, the least common ancestor of
5 and 6 has 𝑓 𝑠 (𝑁) = 1 and 𝑙𝑠 (𝑁) = 7 and therefore does not correspond to a module. Notice
that the strong module {1, 2, 3, 4} is missing, and its children {1, 2}, 3, 4 appear consecutively.

𝑃𝑟𝑖𝑚𝑒

𝑆𝑒𝑟𝑖𝑒𝑠 5 6 7

𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 3 4

1 2

Figure 3.5: The final modular decomposition tree for the example in Figure 3.3 and Figure 3.4.

Note that the fracture tree might not represent series and parallel nodes with a prime node
as a parent. This is true for the module {1, 2, 3, 4} of the example in Figure 3.4. Such nodes are
called merged strong modules, which must be recovered to appear in the tree. The children of
a merged strong module appear consecutively as the children of a node in the fracture tree.
The merged modules can be recovered by inserting nodes for consecutive pairs that are twins.
After determining the module types, the result is the modular decomposition tree. The result
of examples in this section is shown in Figure 3.5.

14

3.1 Fracture Algorithm

3.1.5 Implementation Details

The combination of the algorithm for the factorizing permutation and the modular decomposi-
tion algorithms has been previously implemented in Julia1 [Kar19] and C++2 [FL15]. Initially,
we ported the Julia implementation to Rust. Then, we added several improvements to the
code and achieved a speedup of several orders of magnitude. Still, we use some of the ideas of
the reference implementation. Next, we list some of the implementation details.

Using an Ordered Partition Data Structure. Certainly, an important step was to replace a
vector of vector representation of an ordered partition with the data structure discussed in
Section 2.2. The data structure allows a𝑂 (|𝑆 |) refine operation instead of an𝑂 (𝑛2) worst-case.
Additionally, this allows the efficient representation of parts and consecutive parts as intervals
of the underlying permutation.
Working on Parenthesized Permutation Directly. One useful idea from the Julia imple-

mentation [Kar19] is to avoid explicitly building the fracture tree 𝐹𝑇 (𝐺) but instead, work
on the parenthesized factorizing permutation directly. The parenthesized factorizing per-
mutation is represented with a vector of vertices, representing the permutation, and two
vectors counting the number of opening and closing parenthesis directly before and after a
vertex. A postorder traversal of the fracture tree is simulated by iterating over those arrays: i)
initializing a new child node for each opening parenthesis, ii) handling the leaf vertex and iii)
leaving a node and going up the tree for each closing parenthesis.

Algorithm 3.3: Simulated postorder traversal of a tree
Input: A factorizing permutation 𝜎 , number of opening and closing brackets, 𝑜𝑝 and

𝑐𝑙 , describing a tree 𝑇 .
Output: A postorder traversal of 𝑇 calling leaf_node and inner_node.
𝑆 ← empty stack <>

for each 𝑗 ∈ {1, . . . , 𝑛} do
for 𝑖 ∈ {1, . . . , 𝑜𝑝 [𝑗]} do 𝑆.push(∅)
last(𝑆) .push(leaf_node(𝜎 (𝑗), 𝑗))
for 𝑖 ∈ {1, . . . , 𝑐𝑙 [𝑗]} do

𝑆−1 ← 𝑆.pop()
last(𝑆) .push(inner_node(𝑆−1))

We use a segmented stack 𝑆 = 𝑆0, . . . , 𝑆𝑘 , where 𝑆𝑖 is a stack corresponding to the depth 𝑖
in the tree, to store information during such a postorder traversal. We append an empty stack
when entering a subtree. A leaf node appends some data to 𝑆𝑘 and leaving a subtree removes
the last stack 𝑆𝑘 and appends data to 𝑆𝑘−1. Algorithm 3.3 illustrates the postorder traversal in
pseudo code. For example, to remove the non-module nodes of the tree, we maintain the first
and last vertex and the first and last splitter for a node. Any parenthesis before the current one
is not visited again during this postorder traversal. A node can be deleted by decrementing
the number of opening and closing parenthesis by one at the first and last vertex, respectively.

1
https://github.com/StefanKarpinski/GraphModularDecomposition.jl

2
https://github.com/LyteFM/modular-decomposition

15

https://github.com/StefanKarpinski/GraphModularDecomposition.jl
https://github.com/LyteFM/modular-decomposition

3 Algorithms

Determining Module Types. Let𝑀 be a module and 𝐶1, . . . ,𝐶𝑘 its children in the modular
decomposition tree. The original algorithm description and the reference implementation
compute the quotient graph 𝐺𝑀 = 𝐺 [𝑀]/{𝐶1, . . . ,𝐶𝑘 } either explicitly or implicitly and
determine the module type by counting its edges. We avoid that and use the neighborhood of
one vertex, the vertex in each subtree with minimum degree in 𝐺 .
For each 𝐶𝑖 , let 𝑥𝑖 ∈ 𝐶𝑖 be the vertex with minimal degree in 𝐺 and 𝑗 such that 𝑥 𝑗 has

minimal degree among the 𝑥𝑖 . We use 𝑂 (𝑛) extra space to be able to mark vertices. We mark
all 𝑥𝑖 and iterate over 𝑁 (𝑥 𝑗) to determine 𝑑𝐺𝑀

(𝐶 𝑗) = |{𝑥1, . . . , 𝑥𝑘 } ∩𝑁 (𝑥 𝑗) |, the degree of the
vertex𝐶 𝑗 in the quotient graph𝐺𝑀 = 𝐺 [𝑀]/{𝐶1, . . . ,𝐶𝑘 }. This takes𝑂 (𝑘 + |𝑁 (𝑥 𝑗) |) time. We
know that the tree only contains strong modules. If the quotient has only two vertices, it is
either series or parallel and we can distinguish these cases by whether or not 𝑑𝐺𝑀

(𝐶 𝑗) = 0.
Now assume there are at least three vertices. If 0 < 𝑑𝐺𝑀

(𝐶 𝑗) < 𝑘 − 1, the graph cannot be
series or parallel and is prime. If 𝑑𝐺𝑀

(𝐶 𝑗) = 0, then 𝐶 𝑗 is the child of a parallel node, and if
𝑑𝐺𝑀
(𝐶 𝑗) = 𝑘 − 1, then it is the child of a series node, determining the module type of𝑀 .

The total time can be bounded by𝑂 (𝑚+𝑛) by using the fact that there are𝑂 (𝑛) inner nodes,
charging the children 𝑂 (1) when their representative vertex is marked and noticing that the
total cost of iterating over each 𝑁 (𝑥 𝑗) to compute 𝑑𝐺𝑀

(𝐶 𝑗) is bounded by𝑂 (∑𝜈 (𝑑 (𝜈) + 1)) =
𝑂 (𝑚 + 𝑛).

Putting it all together, we used useful existing ideas and added further improvements
to implement the algorithm described in this section efficiently. Next, we cover another
𝑂 (𝑛 +𝑚 log𝑛) algorithm.

3.2 Skeleton Algorithm

Previously, an 𝑂 (𝑛2) algorithm for modular decomposition introduced a divide-and-conquer
strategy [EGMS94]. It is referred to as the skeleton algorithm [HP10] and is the basis for
several algorithms that achieve running times 𝑂 (𝑛 +𝑚) or 𝑂 (𝑛 +𝑚𝛼 (𝑛,𝑚)) [DGM01], with
𝛼 (𝑛,𝑚) being the inverse Ackermann function. We describe a comparatively simple variant
with running time 𝑂 (𝑛 +𝑚 log𝑛) [MS00].

Recall Theorem 2.6 and Theorem 2.7 from Section 2.1. Theorem 2.6 relates the modular
decomposition of the graph𝑀𝐷 (𝐺), with the modular decomposition of the quotient graph
𝑀𝐷 (𝐺/P) for a modular partition P . Theorem 2.7 states that whether or not a set 𝑌 ⊆ 𝑋 is a
module is “local” to the subgraph 𝐺 [𝑋].
The skeleton algorithms use the 𝜈-modular partition M(𝐺,𝜈) to divide 𝐺 . Recall that

M(𝐺,𝜈) consists of {𝜈} and all maximal modules not containing 𝜈 . Figure 3.6 shows an
example. The modular decomposition tree𝑀𝐷 (𝐺/M(𝐺,𝜈)) is called spine(𝐺,𝜈), giving the
algorithm its name. As every part 𝑋 ∈M(𝐺,𝜈) is a module of 𝐺 , Theorem 2.6 is applicable.

We give a high-level description of the skeleton algorithm using Algorithm 3.4. Afterward,
we present Algorithms 3.5, 3.6, and 3.7, which compute the 𝜈-modular partition M(𝐺,𝜈), the
quotient 𝐺/P , and𝑀𝐷 (𝑄), respectively.

Before continuing with the algorithm details, we look at the spine(𝐺,𝜈). Figure 3.7 shows
the modular decomposition tree of a small example graph. The following properties hold
[HP10 | EGMS94]:

16

3.2 Skeleton Algorithm

1

2
3 4 5

6

7
8

9

10

(a) A graph 𝐺 .

{1}

{2}

{3} {4, 5}

{6}

{7, 8, 9, 10}

(b) The quotient graph 𝐺/M(𝐺, 3).

Figure 3.6: An example graph and its quotient in respect to the 3-modular partition.

Algorithm 3.4: Skeleton Algorithm [EGMS94 |MS00]
Input: A graph 𝐺 = (𝑉 , 𝐸)
Output: The modular decomposition tree𝑀𝐷 (𝐺)
𝜈 ← any vertex of 𝐺
if 𝐺 has only one vertex then return {{𝜈}}
else

P ←M(𝐺,𝜈) // Algorithm 3.5

𝑄 ← 𝐺/P // Algorithm 3.6

𝑇 ← 𝑀𝐷 (𝑄) // = 𝑠𝑝𝑖𝑛𝑒 (𝐺,𝜈), Algorithm 3.7

for each 𝑌 ∈M(𝐺,𝜈) do
𝑇𝑌 ← 𝑀𝐷 (𝐺 [𝑌]) // recurse, Algorithm 3.4

replace 𝑌 with 𝑇𝑌 in 𝑇
merge 𝑇𝑌 with its parent in 𝑇 if they are both series or parallel

return 𝑇

17

3 Algorithms

Prime

1 Parallel 6 Parallel

Series 4 5 Series 10

2 3 7 8 9

(a) The modular decomposition tree 𝑀𝐷 (𝐺) of
graph 𝐺 from Figure 3.6.

Prime

{1} Parallel {6} {7, 8, 9, 10}

Series {4, 5}

{2} {3}

(b) The tree spine(𝐺, 3). We have M(𝐺, 3)
= {{3}} ∪ {{1}, {2}, {4, 5}, {6}, {7, 8, 9, 10}}.

Figure 3.7: An example modular decomposition

• The inner modules of 𝐺/M(𝐺,𝜈) correspond to ancestors of 𝜈 in 𝑀𝐷 (𝐺). More pre-
cisely, a set X ⊆M(𝐺,𝜈) is a module of𝐺/M(𝐺,𝜈) if and only if

⋃
𝑀∈X is an ancestor

of 𝜈 in𝑀𝐷 (𝐺).

• Every inner module of 𝐺/M(𝐺,𝜈) contains 𝜈 .

• Every module of 𝐺 that does not contain 𝜈 is a subset of some part𝑀 ∈M(𝐺,𝜈) .

To complete Algorithm 3.4, we need to know how to compute M(𝐺,𝜈), 𝐺/M(𝐺,𝜈), and
𝑀𝐷 (𝐺/M(𝐺,𝜈)). The algorithms are described in the following sections

3.2.1 Computing M(𝐺,𝜈)

Algorithm 3.5, called ordered vertex partition (OVP), takes an ordered partition P of the vertex
set and produces an ordered partition P ′ such that every part𝑋 ∈ P ′ is a maximal module and
a subset of some part in P . Calling the algorithm with the initial parameter P = [{𝜈},𝑉 \ {𝜈}]
results in the parts {𝜈} and the maximal modules not containing 𝜈 . Therefore, we have
M(𝐺,𝜈) = OVP(𝐺, [{𝜈},𝑉 \ {𝜈}]).
The edges crossing from 𝑋 to 𝑉 \ 𝑋 can be used to compute the pivot sets 𝑁 (𝑥) \ 𝑋 for

each 𝑥 ∈ 𝑋 and 𝑁 (𝑦) ∩𝑋 for each 𝑦 ∈ 𝑉 \𝑋 . This is done by grouping the edges first by their
endpoint in 𝑋 and then by their endpoint in 𝑉 \ 𝑋 . After removing the crossing edges, the
recursive calls are independent of each other, and one can keep using the graph 𝐺 instead of
explicitly building 𝐺 [𝑋] and 𝐺 [𝑉 \ 𝑋]. This is an important detail when implementing the
algorithm. Note that after the call to Split, for every vertex 𝑥 ∈ 𝑋 and every part 𝑌 that is a
subset of𝑉 \𝑋 , either 𝑌 ⊆ 𝑁 (𝑥) or 𝑌 ∩𝑁 (𝑥) = ∅. The same holds for every vertex 𝑦 ∈ 𝑉 \𝑋
and every part 𝑍 that is a subset of 𝑋 . This fact is useful for proof of correctness. In order to
facilitate understanding of the algorithm, we reproduce this proof.

Theorem 3.6: ([MS00]) Let 𝐺 = (𝑉 , 𝐸) be a graph, and P be an ordered partition of 𝑉 . Algo-

rithm 3.5 computes an ordered partition of𝐺 such that every part is a maximal module of𝐺 that

is a subset of some part of P in 𝑂 (𝑛 +𝑚 log𝑛).

Proof. We show that every part𝑋 of the resulting ordered partition is a module. The algorithm
only splits parts that are not a module, as no pivot can split a module.
In the base case |P | = 1, the only member of P is 𝑉 , which is a trivial module of 𝐺 .

18

3.2 Skeleton Algorithm

Algorithm 3.5: Ordered Vertex Partition [MS00]
Input: A graph 𝐺 = (𝑉 , 𝐸) and an ordered partition P of 𝑉
Output: An ordered partition such that every part is a maximal module that is a

subset of some part in P
if |P | = 1 then return P
else

𝑋 ← any 𝑋 ∈ P such that |𝑋 | ≤ |𝑉 |/2
𝐸′ ← {𝑥𝑦 ∈ 𝐸 | 𝑥 ∈ 𝑋 and𝑦 ∈ 𝑁 (𝑥) \ 𝑋 }
P ′ ← Split(𝑋,P)
𝐺 ← (𝑉 , 𝐸 \ 𝐸′) // remove edges between 𝑋 and 𝑉 \ 𝑋
𝑄1 ← [𝑌 ∈ P ′ | 𝑌 ⊆ 𝑋]
𝑄2 ← [𝑌 ∈ P ′ | 𝑌 ⊆ 𝑉 \ 𝑋]
P1 ← OVP(𝐺 [𝑋], 𝑄1) // first recursive call

P2 ← OVP(𝐺 [𝑉 \ 𝑋], 𝑄2) // second recursive call

return P1 ∪ P2
Function Split(𝑋,P)

13 When 𝑝 ∈ 𝑌 ∈ P splits 𝑋 into adjacent and non-adjacent vertices (𝑋𝑎 and 𝑋𝑛),
place 𝑋𝑛 nearer to 𝑌 in the order
foreach 𝑥 ∈ 𝑋 do P ← Refine(P, 𝑁 (𝑥) \ 𝑋)
foreach 𝑦 ∈ 𝑉 \ 𝑋 do P ← Refine(P, 𝑁 (𝑦) ∩ 𝑋)
return P

For a non-trivial partition, we 𝑄1 and 𝑄1 to denote the partitions that will be used in the
subsequent recursive calls with the graphs 𝐺 [𝑋] and 𝐺 [𝑉 \ 𝑋], respectively. The results of
these calls are denoted with P1 and P2.
Assume that the parts of P1 are modules of𝐺 [𝑋] and subsets of parts of𝑄1. Let 𝑌 be a part

of P1. Recall that 𝑌 is a module if and only if every vertex in 𝑉 \ 𝑌 is either adjacent to every
vertex in 𝑌 or non-adjacent to every vertex in 𝑌 . As 𝑌 is a module of 𝐺 [𝑋], the statement
holds for all vertices in 𝑋 \𝑌 . We now prove the same for𝑉 \𝑋 . Let 𝑍 be the part of𝑄1, such
that 𝑌 ⊆ 𝑍 . Because of the call to Split, every vertex of 𝑉 \ 𝑋 is either a neighbor to every
element of 𝑍 or a non-neighbor to every element of 𝑍 . As 𝑌 is a subset of 𝑍 , the same is true
for 𝑌 . Therefore, 𝑌 is a module of 𝐺 . The case for each part of P2 is symmetric.

Subsequently, only the time bound is left to prove. The call to Split takes𝑂 (|𝑋 |+∑𝑥∈𝑋 𝑑 (𝑥))
to compute the crossing edges from 𝑋 to𝑉 \𝑋 . The cost is charged with𝑂 (1) to every vertex
in 𝑋 and every edge incident to 𝑋 . As we guaranteed that |𝑋 | ≤ |𝑉 |/2, a vertex and its edges
are only charged if its part is at most half of the vertices. The next time a vertex 𝑥 ∈ 𝑋 is
charged, its part has size at most |𝑋 |/2. Therefore, every vertex (and its incident edges) is
charged at most log𝑛 times. This results in a 𝑂 ((𝑛 +𝑚) log𝑛) time bound.
The running time can be improved to 𝑂 (𝑛 +𝑚 log𝑛) by running the algorithm on each

connected component, which can be computed in linear time, and combining their results.

Note that we did not use the ordering of the partition and the ordering rule in Line 13. This
only becomes relevant in later parts of the algorithm. We now have covered the computation
of M(𝐺,𝜈). The missing pieces of Algorithm 3.4 are the computation of 𝐺/M(𝐺,𝜈) and its
modular decomposition𝑀𝐷 (𝐺/M(𝐺,𝜈)).

19

3 Algorithms

3.2.2 Computing spine(𝐺,𝜈)

Computing the quotient graph 𝐺/M(𝐺,𝜈) is relatively straightforward, as described in
Algorithm 3.6.

Algorithm 3.6: Quotient [MS00]
1 Algorithm 3.5 removes all edges between the parts of M(𝐺,𝜈). We keep track of

those edges and map the vertices of the edges to their part in M(𝐺,𝜈). We
de-duplicate the edge set using radix sort and build the quotient graph.

The most complicated part of the skeleton algorithm is the computation of spine(𝐺,𝜈),
the modular decomposition of 𝐺/M(𝐺,𝜈). Recall that spine(𝐺,𝜈) has a special structure.
All graphs for which there exists a vertex 𝜈 such that all non-trivial modules contain 𝜈 are
called nested, and 𝜈 is called an innermost vertex. The graph 𝐺/M(𝐺,𝜈) is nested, and 𝜈 is an
innermost vertex, and Algorithm 3.7 computes the modular decomposition for such graphs.

Algorithm 3.7: Chain [MS00]
Input: A nested graph 𝐺 = (𝑉 , 𝐸) and an innermost vertex 𝜈 of 𝐺
Output: The modular decomposition tree𝑀𝐷 (𝐺)

1 P ← OVP(𝐺, [{𝜈},𝑉 \ {𝜈}])
Number the vertices 𝑉 in order of their appearance in P
return ROP(𝐺)
// Recursive OVP

Function ROP(𝐺 = (𝑉 , 𝐸))
𝑤 ← an isolated vertex if it exists or the highest numbered vertex
if |𝑉 | = 1 then return {𝑤}
else

8 P ← OVP(𝐺, [{𝑤},𝑉 \ {𝑤}])
𝑇 ← tree with one node 𝑉 // determine module type from P
// There is at most one 𝑋 ∈ P with |𝑋 | > 1
foreach 𝑋 ∈ P do Add ROP(𝐺 [𝑋]) as child to 𝑉 in 𝑇
return 𝑇

The core idea of this variant of the skeleton algorithm lies in Algorithm 3.7 [MS00]. The
algorithm computes the children of the root node and then works recursively. The children
are determined by two calls to ordered vertex partition, using the resulting ordering of the
vertices from the first one to initialize the input for the second one. The following lemma
states that in the context of the algorithm, instead of computing the vertex ordering for every
recursive call, the vertex ordering of the first call can be used.

Lemma 3.7: (Lemma 6.4 [MS00]) If 𝜈 is in all non-trivial modules of 𝐺 , 𝑋 is a module such that

𝜈 ∈ 𝑋 and 𝜎 is the ordering of the vertices resulting from OVP(𝐺, [{𝜈},𝑉 \ {𝜈}]), then there

exists a sequence of pivot choices such that 𝜎 [𝑋] is the result of OVP(𝐺 [𝑋], [{𝜈}, 𝑋 \ {𝜈}]).

We prove the correctness of Algorithm 3.7 by induction and show that the algorithm is
correct for the root node.
When the root node is prime, we use the following Lemma 3.8.

20

3.2 Skeleton Algorithm

Lemma 3.8: Let 𝐺 = (𝑉 , 𝐸) be a nested graph, 𝜈 ∈ 𝑉 an innermost vertex of 𝐺 , and P =

𝑂𝑉𝑃 (𝐺, [{𝜈},𝑉 \ {𝜈}]). Let𝑀1, . . . , 𝑀𝑘 be the children of𝑉 in𝑀𝐷 (𝐺). If𝑉 is prime in𝑀𝐷 (𝐺),
then the rightmost part of P is a singleton {𝑤} and the parts of 𝑂𝑉𝑃 (𝐺, [{𝑤},𝑉 \ {𝑤}]) are
𝑀1, . . . , 𝑀𝑘 .

This result is based on an algorithm for the transitive orientation of prime graphs that can
be used to check whether an arbitrary graph is prime [MS00]. This algorithm uses the two
calls to OVP in the exact same way as described in Lemma 3.8. We refer to the original paper
for proofs of Lemma 3.7 and Lemma 3.8.
Using these lemmas, we reproduce the correctness proof of Algorithm 3.7 in order to

facilitate understandability.
Theorem 3.9: Let 𝐺 be a nested graph and 𝜈 an innermost vertex. Algorithm 3.7 computes the

modular decomposition tree𝑀𝐷 (𝐺).
Proof. To prove the correctness of Algorithm 3.7, we first show that it is correct for the root
of𝑀𝐷 (𝐺). Then, we argue that calling ROP recursively has the same result as calling Chain
recursively.
As 𝜈 is an innermost vertex of 𝐺 , every non-trivial module of 𝐺 contains 𝜈 . Therefore, the

call to OVP in Line 1 returns an ordered partition of singleton sets. Let 𝜎 be the ordering of
the vertices based on the ordered partition P .
We now enter the call to ROP. If the graph has only one vertex, we are finished and return.

We now assume that the graph has at least two vertices. Let𝑤 ′ be the choice of𝑤 in this first
call to ROP. We show that OVP(𝐺, [{𝑤 ′},𝑉 \ {𝑤 ′}]) returns the children of the root.

For that we use the following properties. Because𝐺 is nested, its modular decomposition has
additional structure. Every inner node of𝑀𝐷 (𝐺) has at most one non-singleton child, the one
containing 𝜈 , otherwise, there would be a non-trivial module not containing 𝜈 . Furthermore,
every series or parallel node has exactly two children. Otherwise, the union of two children
that do not contain 𝜈 would be a module.
Using those properties, we show that the choice of 𝑤 ′ results in the computation of the

children of the root.
• If the root is a parallel node, it has two children, one of which is a singleton isolated
vertex. The vertex𝑤 ′ is that vertex, as ROP chooses an isolated vertex if it exists.

• If the root is a series node, it has two children, one of which is a singleton isolated
vertex in the complement of𝐺 . The ordering rule in OVP ensures that𝑤 ′ is that vertex,
as𝑤 ′ is adjacent to all other vertices.

• Otherwise, the root is a prime node, and Lemma 3.8 applies.
We now use induction to complete the proof. Chain is correct for |𝑉 | = 1. Assume that

Chain is correct for nested graphs with fewer vertices than 𝐺 .
We have shown that OVP(𝐺, [{𝑤 ′},𝑉 \ {𝑤 ′}]) computes the children. Any child not

containing 𝜈 is a singleton and can be added as a child to the root node. Let 𝑋 the child of 𝑉
that contains 𝜈 . To compute𝑀𝐷 (𝐺), only𝑀𝐷 (𝐺 [𝑋]) is left to compute. The graph 𝐺 [𝑋] is
nested with 𝜈 as the innermost vertices. By induction hypothesis, a call to Chain with 𝐺 [𝑋]
and 𝜈 computes𝑀𝐷 (𝐺 [𝑋]). Such a call would first call OVP to get an ordering and then call
ROP on𝐺 [𝑋]. We can apply Lemma 3.7, and we can use ordering 𝜎 [𝑋] instead of computing
the ordering new. Therefore calling ROP(G[X]) has the same result as calling Chain(𝐺 [𝑋]):
the modular decomposition tree 𝑀𝐷 (𝐺 [𝑋]). This tree is added as a child of the root node,
resulting in𝑀𝐷 (𝐺).

21

3 Algorithms

This concludes the description of the skeleton Algorithm 3.4. The analysis of the total
running time follows from the running time of OVP, resulting in 𝑂 (𝑛 +𝑚 log𝑛).

3.2.3 Implementation Details

In the following, we discuss some of the details of implementing the skeleton algorithm.
Although the algorithm has been implemented before, its implementation is no longer available
[GKBC04]. The algorithm heavily relies on recursion on induced subgraphs. This needs to be
done efficiently.
Efficiently Representing Subgraphs and Sub-Partitions. We start by discussing OVP

(Algorithm 3.5). Recall that OVP chooses a part 𝑋 ∈ P , refines the partition by calling
Split(𝑋,P), removes any edges between 𝑋 and 𝑉 \ 𝑋 from 𝐺 and recurses on 𝐺 [𝑋] and
𝐺 [𝑉 \𝑋]. Building𝐺 [𝑋] and𝐺 [𝑉 \𝑋] explicitly would be very costly. As any edges between
𝑋 and𝑉 \𝑋 are removed, we can reuse the data structures for𝐺 and P and only need to keep
track of the vertex sets 𝑋 and 𝑉 \ 𝑋 . This can be done by using an additional parameter 𝑉 ,
initialized with 𝑉 for the first call, and setting it to be 𝑋 and 𝑉 \ 𝑋 for the recursive calls for
𝐺 [𝑋] and 𝐺 [𝑉 \ 𝑋], respectively.

We also want to represent the vertex sets 𝑋 and 𝑉 \ 𝑋 efficiently. As 𝑋 was a part of P at
the start of the call, its vertices are consecutive in our ordered partition data structure. For
that to be also true for 𝑉 \ 𝑋 we restrict the choice of 𝑋 . We choose the first or the last part
of P , such that |𝑋 | ≤ |𝑉 |/2. This allows all recursive calls to work on the same graph and
ordered partition and let their subproblem be defined by a range of consecutive vertices in the
ordered partition data structure. This also works for the recursive steps on induced subgraphs
in the skeleton algorithm and Chain (Algorithm 3.4 and Algorithm 3.7). We only have to be
careful with the Chain algorithm. The first call to OVP removes all edges from 𝐺 and leaves
the ordered partition P with only singleton parts. For that, all removed edges are added again,
and the parts of P are merged into a single part, while numbering the vertices with the order
of their appearance in P .

A Suitable Graph Data Structure. The algorithm requires that we can efficiently remove a
set of edges and, with the previous optimization, the ability to add them to the graph again.
To do that, we adapt the adjacency array representation of graphs. All edges are stored in
an array. Each node keeps indices to two consecutive ranges of that array, its current, and
removed edges. Every edge (𝑢, 𝜈) is identified by its position in the edge array, and every edge
stores its endpoint 𝜈 , the index of its reverse edge (𝜈,𝑢), and whether it has been removed.
Given the set of indices of the edges we want to remove, we can iterate over them once to
mark them as removed and a second time to swap their position in the edge array with an
edge next to the range of removed edges. The range of current and removed edges of the
nodes need to be adjusted. This takes linear time in the number of removed edges. Note that
after the call to remove a set of edges, the edges move, and the edge indices are invalidated.
Adding all removed edges to the graph again can be done in linear time by iterating over all
edges, setting the removed bit to false and iterating over all vertices, adjusting their ranges of
current edges and removed edges.
Avoiding Recursion. One very important step while implementing the algorithm is to

convert any recursion to iteration to avoid stack overflow. This is pretty straightforward. In
Chain (Algorithm 3.7) we can even avoid a stack. Recall that in that context, every node in
𝑀𝐷 (𝐺) only has at most one non-singleton child. By covering the case of a singleton child
early, we can keep iterating over the non-singleton children until we finish.

22

3.3 Linear Algorithm

Special Cases for Hard Instances. Unfortunately, some input graphs lead to a lot of
unnecessary work that can be avoided. Consider the graph with vertices 𝑉 = {1, . . . , 𝑛}
and no edges. The skeleton algorithm first computes M(𝐺, 1) = {{1}, {2, . . . , 𝑛}} and the
spine(𝐺, 1), which is the tree with a parallel node and two children. The algorithm recurses
on both and many calls to the other algorithms are done. The same applies to the complete
graph and the tree with a series node and two children. Note that the theoretical running
time is not affected by this. Before computing M(𝐺,𝜈) in a call to the skeleton algorithm,
we first check whether all vertices have degrees 0 or 𝑛 − 1 and handle that case appropriately.
This leads to significant improvements, especially for graphs with many twins.

This concludes the description of the skeleton algorithm and its implementation details.
Next, we discuss the linear algorithm.

3.3 Linear Algorithm

One of the latest modular decomposition algorithms combines several ideas from previous
algorithms to achieve linear time [TCHP08]. It combines a divide-and-conquer approach
[EGMS94 | DGM97] and factorizing permutations [CHM02]. Additionally, the concept of
partition refinement is generalized from sets to trees. The algorithm is regarded as simple
compared to other linear time algorithms. We only give an overview of the algorithm without
discussing its details.
The algorithm relies on an ordered list of trees as the basic data structure. The leaves

correspond to the vertices of the input graph. During this exposition, sets of vertices are also
called trees. This can be represented in the data structure by grouping the vertices under a
common dummy node. Let 𝐺 = (𝑉 , 𝐸) be the input graph. The algorithm works recursively
and starts by choosing an arbitrary vertex𝑥 ∈ 𝑉 as a pivot. Its neighbors and non-neighbors are
placed left and right, respectively, resulting in the ordered list of trees 𝑁 (𝑥), 𝑥, 𝑁 (𝑥). With this
starting point, the modular decomposition tree of𝐺 [𝑁 (𝑥)] is calculated recursively. During its
computation 𝑁 (𝑥) is refined into 𝑁𝐴 (𝑥), 𝑁𝑁 (𝑥), the sets of vertices in 𝑁 (𝑥) with at least one
neighbor and no neighbor in 𝑁 (𝑥), respectively. Let 𝑇 (𝑁 (𝑥)) be the modular decomposition
tree of 𝐺 [𝑁 (𝑥)]. Then we have the ordered list of trees 𝑇 (𝑁 (𝑥)), 𝑥, 𝑁𝐴 (𝑥), 𝑁𝑁 (𝑥), and the
algorithm is applied recursively for 𝑁𝐴 (𝑥), refining 𝑁𝑁 (𝑥). This continues and results in the
following list of modular decomposition trees of layers 𝑁𝑖 .

𝑇 (𝑁0)︸︷︷︸
𝑁 (𝑥)

, 𝑥,𝑇 (𝑁1), . . . ,𝑇 (𝑁𝑘)︸ ︷︷ ︸
𝑁 (𝑥)

The next step, refinement, aims to transform the list into something close to a factorizing
permutation. The procedure works on edges incident to pivots and edges between layers.
For a strong module 𝑀 of 𝐺 not containing 𝑥 , it holds that 𝑀 ⊆ 𝑁𝑖 for some 𝑁𝑖 . Either 𝑀
is also a strong module of 𝐺 [𝑁𝑖], in which case 𝑇 (𝑁𝑖) already has a node corresponding
to 𝑀 , or it corresponds to the union of siblings in 𝑇 (𝑁𝑖), in which case they are grouped
under a new internal node during refinement. After the refinement, the strong modules not
containing 𝑥 appear consecutively (Lemma 1 [TCHP08]). Let 𝑇𝑘 , . . . ,𝑇1, 𝑥,𝑇 ′1 , . . . ,𝑇 ′ℓ be the
resulting ordered forest. For a strong module 𝑀 ′ of 𝐺 containing 𝑥 , there exist trees 𝑇𝑖 ,𝑇 ′𝑗 ,
such that𝑀 ′ ⊆ 𝑇𝑖 , . . . ,𝑇1, 𝑥,𝑇 ′1 , . . . ,𝑇 ′𝑗 , with 𝑖 and 𝑗 being maximal (Lemma 2 [TCHP08]). The
trees 𝑇𝑖 and 𝑇𝑗 are called bounding trees of 𝑀 ′. This interval becomes more precise and is
made exact by the next step.

23

3 Algorithms

The promotion step deletes nodes such that the remaining nodes correspond to the strong
modules not containing 𝑥 . When a node is deleted, its children are promoted upwards, and
any portion of a bounding tree that belongs to a module𝑀 ′ containing 𝑥 is placed closer to 𝑥 .
This leads to a factorizing permutation (Lemma 3 [TCHP08]).

The ordered list of trees corresponds to M(𝐺, 𝑥), {𝑥} and the maximal modules not con-
taining 𝑥 . The modular decomposition of the trees is already computed. It remains to identify
the strong modules containing 𝑥 and combine them with the modular decomposition tree of
𝐺 in the assembly step. As we computed a factorizing permutation, the strong modules are
nested [· · · [· · · [· · · 𝑥 · · ·] · · ·] · · ·]. Similar to the skeleton algorithm, a spine is computed,
and the previously computed trees are placed accordingly. The remaining tree is the modular
decomposition tree of 𝐺 .

3.3.1 Implementation Details

The authors of the original paper provided a provisional Java implementation of the algorithm
[TCHP08 | Ted11].3 Unfortunately, the website was taken offline during the writing of this
thesis, and the implementation is no longer readily available.

Fortunately, a recent implementation of the algorithm in C++ and Python3 exists4 [Miz23].
The authors of this implementation used it as a component of an algorithm to compute the
twin-width [BKTW20]. They won the exact track of the PACE 2023 algorithm challenge.5
We used the foreign function interface to call the C++ implementation directly from Rust.
Additionally, we translated the C++ code to provide a pure Rust implementation.

Our Rust implementation has some small improvements. Instead of iterating over the
tree, collecting the node indices, and then iterating over those indices, we use iterators or
callbacks to traverse the tree directly. Other than those changes, the reference implementation
is already well-optimized. Nevertheless, we uncovered a memory leak and problems with
missing headers and could provide fixes as pull requests to the C++ implementation.

3.4 Comparison of the Algorithms

In the previous sections, we saw a description of the fracture, skeleton, and linear
algorithms. Although they are quite different, they share some similarities.
All three algorithms use refinement techniques to computing the modules, either for

partitions or on trees, to separate the vertices into sets.
The concept of a 𝜈-modular partition M(𝐺,𝜈) can be seen as a central component of

all three algorithms. During the computation of factorizing permutations in the fracture
algorithm, the algorithm can be interpreted as recursively calculating M(𝐺,𝜈) and placing
its parts in the ordered partition, such that the modules of 𝜈 are a factor. The skeleton
algorithm works recursively on the parts of M(𝐺,𝜈) and computes a modular decomposition
of 𝐺/M(𝐺,𝜈), the “spine”. In contrast to the other algorithms, it orders the parts to compute
the children of the root node of the spine and does not produce a factorizing permutation.
The ordering is motivated by an algorithm for computing the transitive order of a prime
graph. The linear algorithm recursively computes modular decomposition trees in 𝑁 (𝑥) and

3
https://web.archive.org/web/20231117180242/http://www.cs.toronto.edu/~mtedder/

4
https://github.com/mogproject/modular-decomposition

5
https://pacechallenge.org/2023/

24

https://web.archive.org/web/20231117180242/http://www.cs.toronto.edu/~mtedder/
https://github.com/mogproject/modular-decomposition
https://pacechallenge.org/2023/

3.4 Comparison of the Algorithms

𝑁 (𝑥) for some pivot vertex 𝑥 . It then builds a factorizing permutation in the refinement and
promotion steps. At this point, the ordered list of trees corresponds to the parts of M(𝐺, 𝑥)
and, due to the factorizing permutation, the modules containing 𝑥 are nested (or a “factor”).
As discussed, the fracture and the linear algorithm use a factorizing permutation to

compute the modular decomposition. The fracture algorithm is special in that it fully com-
putes the factorizing permutation and then uses that to compute the modular decomposition.
This approach separates the implementation into two distinct phases, while the skeleton
and the linear algorithm recursively compute the modular decomposition instead.

25

4 Evaluation

In this chapter, we compare the implementations of the algorithms discussed in Chapter 3.
As one of the goals of this thesis is to find an algorithm that is efficient in practice, and we
evaluate them on real-world and generated graphs.

In particular, we are interested in the following questions.

1. How do the algorithms perform on practical data?

2. Does the algorithm’s performance depend on instance properties regarding their de-
composition?

3. How do the algorithm’s theoretical running times relate to their implementation’s’
runtimes?

4. Are some algorithms better suited for certain instances than others?

5. How do the algorithms perform on simple graph structures?

In the rest of this chapter, we describe the experiment setup, give an overview of the
datasets we used and then attempt to answer the questions.

4.1 Experimental Setup

This section gives a short overview of the hardware and software used in the experiments.
We take several steps to ensure that the results are comparable between algorithms. The

Rust implementation of the algorithms of Sections 3.1, 3.2, and 3.3 are called fracture,
skeleton and linear, respectively. We also evaluate the reference implementation in C++ of
the linear algorithm and call it linear (ref). We use the Rust foreign function interface to
call the C++ code. In the remainder of this chapter, we use algorithm and implementation
interchangeably. All algorithms provide the same interface and are divided into preparation,
computation, and a finalize step. The first and last steps cover any building and transformation
of graph and tree data structures and copying of data between Rust and C++. Only the
computation step is measured for the experiments. While the reference implementation
provides its execution time through its API, we measure all runtimes the same way to be
consistent across algorithms. A comparison has shown that the results of our setup differ by
less than a percent for almost all instances.

All experiments are performed on a single core of an Intel Xeon E5-2670 CPU with 8 cores
clocked at a base frequency of 2.60 GHz and 16 threads. At most 8 experiments were executed
at the same time. 64 GiB RAM is available, and the system runs on Ubuntu 22.04.3. The
project is compiled with Rust 1.72.1, target x86_64-unknown-linux-gnu and --release flag.
The wrapper for the C++ code is compiled with the cc crate at version 1.0, gcc at version 12.3.0
and optimization level -O3. Our implementation of the algorithms and code to reproduce the
experiments is available1.
1
https://github.com/jonasspinner/modular-decomposition

27

https://github.com/jonasspinner/modular-decomposition

4 Evaluation

real pace2023
exact

pace2023
heuristic

cograph gnm girg girg
deg-scaling

0.0

2.5

5.0

7.5

10.0

12.5

15.0

tim
e/

be
st

Algorithm
linear (ref)
linear
skeleton
fracture

Figure 4.1: A comparison of the algorithm performances for different datasets. The average
of three runs for each algorithm and instance is taken. The time for an algorithm is divided by
the time of the best algorithm for that instance. The median and quantiles are shown. Outliers
are marked as circles.

4.2 Instances

We used several types of real-world and generated graphs to evaluate the algorithms. The
following is a short description of each dataset.

• real2. 2977 real-world networks. These instances are originally from networkreposi-
tory.com [RA15] and have previously been used for analyzing graph algorithms [BF23].
Both this and the next dataset contain graphs from many different contexts, and we use
them as practical data in Section 4.3.

• pace2023 exact/heuristic3. 200 instances each. The public and private instances for
the exact and heuristic track of the PACE 2023 algorithm challenge. They are based
on various real-world and generated graphs and are chosen to present instances with
varying difficulty for computing the twin-width [BB23].

• gnm. 395 instances. Graphs from the 𝐺 (𝑛,𝑚) model, i.e., uniformly randomly chosen
graphs with 𝑛 vertices and𝑚 edges. The graphs are prime with high probability for
a large enough average degree. They also easily allow adjusting the number of edges.
They are used in Section 4.4.3 for being prime and in Section 4.5 to investigate the
scaling behavior of the algorithms.

• girg/girg-deg-scaling.4 500/900 instances. Graphs generated from the geometric in-
homogeneous and random graph (GIRG) model [BKL19] that have previously been
used for analyzing graph algorithms [BF23]. They are used for analyzing the scaling
behavior in Section 4.5.

2
https://zenodo.org/records/8058432. edge_lists_real. 111 of the 2977 instances were identified as being generated,
but we still include all instances.

3
https://pacechallenge.org/2023/

4
https://zenodo.org/records/8058432. edge_lists_girg/edge_lists_girg_deg_scaling

28

https://networkrepository.com/
https://networkrepository.com/
https://zenodo.org/records/8058432
https://pacechallenge.org/2023/
https://zenodo.org/records/8058432

4.3 Algorithms for Practical Data

empty path cycle complete

100

101

102

tim
e/

be
st

Algorithm
linear (ref)
linear
skeleton
fracture

Figure 4.2: Algorithm performance on empty, path, cycle, and complete graphs. Note, that
the vertical axis has a logarithmic scale.

• cograph. 320 instances. Cographs generated by first sampling a modular decompo-
sition tree with only series and parallel nodes and converting it into a graph. They
represent graphs with no prime modules. Details on how the graphs are generated are
in Section 4.4.2.

• empty/path/cycle/complete. 256/256/256/64 instances. Generated empty, path, cycle,
and complete graphs. They have a simple structure, and we use them as a baseline in
Section 4.4.1.

4.3 Algorithms for Practical Data

We evaluate the performance of the algorithms for practical data by using the real and pace2023
datasets. They contain graphs from various sources and were previously used to analyze and
compare algorithms. The fracture algorithm performs best, as seen in Figure 4.1. The next
best algorithm is the skeleton algorithm, which is about 2.5 times slower than the fracture
algorithm. The linear and linear (ref) implementation need about 3.5 and 6.5 times as
much time as the fracture algorithm. The algorithms with the non-optimal theoretical
running time are faster in practice for these instances. Interestingly, the port of the reference
implementation with only a few improvements is already significantly faster than the original.
More detailed results for the instances can be seen in Figure 4.3. The instances in the real

and pace2023 datasets are colored blue in the plot. We see that the real dataset provides a
wide range of instances, with at most one million vertices and edges. The exact and heuristic
instances are present as two and one clusters, respectively. We see the same general result as
in Figure 4.1. Additionally, we see an initial overhead for smaller graphs. The algorithms are
generally more efficient per vertex and edge for larger instances.
Another interesting detail is that the running time is only partially determined by the

number of vertices and edges. There are instances with very similar 𝑛 + 𝑚, that result
in different runtimes, even for the same algorithm. The individual influence of 𝑛 and 𝑚
independently is ignored when just looking at their sum, but the other datasets’ results also
suggest that the graph’s structure influences the runtime.

29

4 Evaluation

0.0

0.5

1.0

1.5

2.0

2.5

tim
e/

(n
+m

) [
s]

linear (ref) linear

102 104 106

n+m

0.0

0.5

1.0

1.5

2.0

2.5

tim
e/

(n
+m

) [
s]

skeleton

102 104 106

n+m

fracture

Dataset
real
pace2023-heuristic
pace2023-exact
gnm
girg-deg-scaling
girg
cograph

Figure 4.3: Algorithm performance with respect to 𝑛 +𝑚. Note that the horizontal axis is
scaled logarithmically. For each algorithm 5492 instances with 3 runs each are plotted. The
linear and linear (ref) implementation have 10 and 537 runs (≈ 3%) with a value of more
than 2.5 µs, respectively.

30

4.4 Influence of Graph Structure on Runtimes

0 100000 200000
n+m

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

tim
e/

(n
+m

) [
s]

Empty graphs En

0 200000 400000
n+m

Path graphs Pn

Algorithm
linear (ref)
linear
skeleton
fracture

0 200000 400000
n+m

Cycle graphs Cn

Figure 4.4: Simple graph classes: empty graphs, path graphs and the cycle paths for 𝑛 up to
218. The graphs have 0, 𝑛 − 1 and 𝑛 edges respectively.

The fracture algorithm performs best for the real and pace2023 datasets. For almost
all instances, it is the best algorithm and is 2.5 times faster on average than the next best
algorithm.

4.4 Influence of Graph Structure on Runtimes

In this section, we use graphs with different structures to determine if the properties of the
modular decomposition influence the algorithm’s performance. We start with very simple
graphs and then continue with graphs that do not contain any prime modules, and finally,
graphs that are prime with high probability.

4.4.1 Simple Graphs

Although not very practical with respect to real-world applications, simple graphs are a good
starting point to evaluate the algorithms.

We look at the following graph classes: empty graphs 𝐸𝑛 with 𝑛 vertices and no edges, the
path graphs 𝑃𝑛 , and the cycle graphs 𝐶𝑛 . Note that the path graph and cycle paths are prime.
Any graph with less than 𝑛 − 1 edges is not prime. We vary the number of vertices. Note that
empty graphs have a single parallel module and that the path graphs are aminimal prime graph.
The results are shown in Figure 4.4. The fracture and skeleton algorithms are consistent,
and their performances on paths and cycles are very similar. The fracture algorithm is
the fastest, and the skeleton algorithm is faster for the empty graph. An optimization
introduced in our implementation that tries to handle series and parallel subgraphs without
repeatedly computing the spine, explains this. The linear algorithms are significantly slower.
The reference implementation is about twice as slow as the Rust implementation.

Surprisingly, both linear and linear (ref) are slowest for the empty graphs and fastest
for the path graphs. This might be explained by looking at the algorithm. Recall that the
algorithm works recursively with layers 𝑁𝑖 , 𝑖 ∈ [0, 𝑘], where 𝑁𝑖 are the vertices with distance
𝑖 + 1 to the pivot vertex. A possible exception is the last layer 𝑁𝑘 , which might hold the

31

4 Evaluation

0

100

200

300

400

se
rie

s
tim

e/
(n

+m
) [

ns
]

linear (ref) linear skeleton fracture

n
1500
3000
4500
6000
7500

105 107

n+m

0

100

200

300

400

pa
ra

lle
l

tim
e/

(n
+m

) [
ns

]

105 107

n+m
105 107

n+m
105 107

n+m

Figure 4.5: Random cographs with parameters 𝑎 = 2, 𝑏 = 8, and 𝑛 ranging from 28 to 213.
Graphs with a series and parallel root node are shown at the top and bottom, respectively.
Note that the horizontal axis has a logarithmic scale, and the runtime is normalized. For this
choice of parameters, the modular decompositions of the instances have approximately 𝑛/4
inner nodes.

vertices that are not reachable from the pivot vertex. For the empty graph, all vertices are
unreachable from the first pivot vertex. For the path graphs, every layer consists of exactly
one vertex. For the cycle graphs, almost all layers have two vertices with the same distance to
the pivot vertex. This might degrade the performance for empty and cycle graphs.

Another weird result is the step pattern for linear (ref). This might be the result of some
data structure that grows exponentially. Unfortunately, we were unable to track down the
source of that effect. Interestingly, the Rust port does not behave that way. More alarmingly,
the normalized running time of the linear (ref) algorithm does not seem to stay constant for
a growing number of vertices, and the experiment results suggest an additional logarithmic
factor.

In conclusion, the fracture and skeleton algorithm performs best for simple graphs. For
the skeleton algorithm, the empty graphs are handled by an optimization we introduced in
the implementation. The linear and linear (ref) performance degrades with an additional
edge added to a path graph.

4.4.2 Cographs

The graphs with only series and parallel nodes in their modular decomposition are called
cographs. They are fully defined by the tree structure of their modular decomposition and
the type of its root node.
We generate random cographs, by first generating a random tree with a given number

of leaves and then assigning the node types, starting from the root. The random model is
parameterized by three parameters, 𝑛, 𝑎, 𝑏 ∈ ℕ, 2 ≤ 𝑎 ≤ 𝑏 ≤ 𝑛. The number of leaves is
determined by 𝑛, and 𝑎 and 𝑏 define the minimum and maximum number of children of inner

32

4.4 Influence of Graph Structure on Runtimes

0 50000 100000
m

0.0

0.5

1.0

1.5

2.0

2.5

3.0

tim
e/

(n
+m

) [
s]

n = 214, m = 212 217

0.0 0.5 1.0 1.5
m 1e7

n = 218, m = 218 224

Algorithm
linear (ref)
linear
skeleton
fracture

Figure 4.6: Random 𝐺 (𝑛,𝑚) graphs with fixed 𝑛 and growing𝑚. Note that the horizontal
axis has a linear scale. Plotting 𝑛 +𝑚 instead of𝑚 on the horizontal axis only shifts the values
by the fixed value of 𝑛. A constant normalized runtime implies a 𝑂 (𝑚) scaling behavior. The
first vertical line marks 𝑛, and the second vertical line marks the point, where all instances to
its right are prime graphs.

nodes. To generate the tree, a set of nodes without parents is maintained and initialized with
the leaves. Then, an out-degree 𝑑 is sampled from the uniform distribution 𝑈 ([𝑎, 𝑏]), and
a new inner node is added with 𝑑 children from the set of parent-less nodes. When only a
single node remains, the algorithm stops.
The algorithms are compared for 220 such graphs, as seen in Figure 4.5, with parameters

𝑎 = 2, 𝑏 = 8 and 𝑛 ranging from 28 to 213. Note that all algorithms perform very well for
cographs. The normalized runtime is measured in 𝑛𝑠 instead of µs. This can also be seen in
Figure 4.3, where cographs have the lowest normalized runtime compared to the other datasets.
All algorithms perform approximately as well on cographs as the fracture algorithm for the
simple graphs in Section 4.4.1. The fracture and skeleton algorithms perform best for a
smaller number of vertices. This changes for larger choices for 𝑛. For 𝑛 = 213, the reference
implementation of the linear algorithm in C++ performs the best.
Interestingly, the results do not match the scaling behavior we would expect for a linear

algorithm. A linear scaling behavior, with maybe some initial overhead, would show up as
the normalized time approaching a constant function for larger 𝑛 +𝑚. This might be caused
by the fact that we are far away from the worst case. All algorithms are a lot more efficient
for cographs than for other kinds of graphs.
Nevertheless, the linear (ref) algorithm performs best for cographs with at 𝑛 +𝑚 at

least 105. The linear and fracture algorithms are not far off, but the skeleton algorithm
performs the worst by taking approximately twice as long for larger instances.

4.4.3 Prime Graphs

In the previous section, we investigated instances with no prime module. The other extreme
are prime graphs. Note that the property of being prime restricts the number of edges. Any
prime graph has at least 𝑛 − 1 edges and a 𝑃4 as an induced subgraph.

33

4 Evaluation

We do not use a dataset of prime graphs directly but use a random graph model that results
in graphs with a giant prime module most of the time. A preliminary study showed that the
𝐺 (𝑛,𝑚) random graph model, uniformly randomly chosen graphs with a fixed number of
vertices and edges, can be used for that when the right parameters are used. For𝑚 = 0 the
graphs are the empty graph with a single parallel module. When𝑚 is lower than a small
multiple of 𝑛, there are many and varied types of module in the modular decomposition
tree. Note that a prime graph with a minimal number of edges is the path on 𝑛 vertices with
𝑚 = 𝑛 − 1 edges. For most values of𝑚, the modular decomposition is almost always one giant
prime module. Another reason for investigating 𝐺 (𝑛,𝑚) random graphs is the ability to vary
the number of vertices and edges precisely. This allows the comparison of the theoretical
running times with the actual performance of the algorithms. We will do that in Section 4.5.
We chose 𝑛 = 214 and 𝑛 = 218 and varied the number of edges. The normalized running

times can be seen in Figure 4.6. Both implementations of the linear algorithm start out worst
because of some overhead. All algorithms approach a constant normalized runtime. Recall
the theoretical running time of 𝑂 (𝑛 +𝑚) for the linear algorithm and 𝑂 (𝑛 +𝑚 log𝑛) for the
skeleton and fracture algorithm. When 𝑛 is fixed, the worst-case runtime is linear with
respect to𝑚. This is supported by Figure 4.6. The number of vertices should affect the scaling
with the number of edges for the skeleton and fracture algorithm. The fracture algorithm
has only a slightly larger normalized runtime for 𝑛 = 218. The skeleton algorithm takes
almost three times the amount of time per vertex and edge for 𝑛 = 218 than for 𝑛 = 214. This
makes the linear algorithms better than the skeleton algorithm for 𝑛 = 218. The fracture
algorithm performs the best for both choices for 𝑛 and all number of edges investigated in
this experiment.
For𝐺 (𝑛,𝑚) graphs, which are mostly prime for a larger number of edges, the fracture

algorithm performs best and scales consistently with the number of edges. The linear
algorithms become more efficient for more edges but still take at least twice as much time as
the fracture algorithm. The skeleton algorithm performs well for the smaller number of
vertices but is heavily affected when the 𝑛 is larger.

4.5 Scaling Experiments

In this section, we want to evaluate the algorithms on datasets of varying sizes to look at their
scaling behavior and to see if the theoretical running times influence the practical runtimes.

The girg-deg-scaling dataset is useful for analyzing the scaling behavior of the algorithms.
All instances have approximately the same number of vertices, and the average number of
edges takes on a range of values. The reference implementation of the linear algorithm
performs worst and has a high variance in runtime for graphs with a similar number of edges.
In contrast, the fracture algorithm is consistent and almost three times as fast as any other
algorithm. All algorithms, except the skeleton algorithms, are more efficient for a larger
number of edges.
Another graph model useful for investigating the algorithm performance for a range of

instance sizes is the 𝐺 (𝑛,𝑚) model. We looked at the case for constant 𝑛 and varying𝑚 in
Section 4.4.3 and Figure 4.6. We predicted and observed the 𝑂 (𝑚) scaling behavior.
For the 𝑂 (𝑛 +𝑚 log𝑛) algorithms, skeleton, and fracture, we would like to know if

we can see the log𝑛 factor. Fixing𝑚 and varying 𝑛 is insufficient, as the 𝑂 (𝑛) part would
dominate the 𝑂 (log𝑛) term. We choose to let𝑚 grow linearly with 𝑛. Then, the theoretical
running time is𝑂 (𝑛 log𝑛), and normalizing with 𝑛 +𝑚, which is𝑂 (𝑛), leaves the log𝑛 factor.

34

4.5 Scaling Experiments

200000 300000 400000 500000 600000

n+m

0

2

4

6

8

tim
e/

(n
+m

) [
s]

200000 300000 400000 500000 600000

n+m

0.0

0.2

0.4

0.6

0.8

1.0

1.2 Algorithm
linear (ref)
linear
skeleton
fracture
linear (ref)
linear
skeleton
fracture

Figure 4.7:GIRG graphs from the girg-deg-scaling dataset. 𝑛 ≈ 5·104 and𝑚 ≈ 15·104 . . . 60·104.
Both plots show the same data points at different scales of the y-axis. The bands are between
the 25% and 75% quantile, and the mean value is shown as a line.

10
20 Algorithm

linear (ref)
linear
skeleton
fracture

0.2 0.4 0.6 0.8 1.0
n+m 1e7

0.0

0.5

1.0

1.5

2.0

2.5

3.0

tim
e/

(n
+m

) [
s]

105 106 107

n+m

Figure 4.8: Random 𝐺 (𝑛,𝑚) graphs with𝑚 = 8𝑛 and 𝑛 ranging from 214 to 220. Both plots
show the same data points, only the scaling of the horizontal axis is different. The plot is
divided into [0, 3.25] and (3.25, 26] on the vertical axis to accommodate outliers for the linear
(ref) algorithm. For each instance, three runs are plotted.

35

4 Evaluation

We choose 𝑚 = 8𝑛 and let 𝑛 vary. Figure 4.8 shows the experiments. The fracture
algorithm has the best performance and is more than twice as fast as the other algorithms for
almost all values of 𝑛. The next best algorithm is skeleton, followed by linear, and finally
linear (ref). The linear (ref) algorithm has heavy outliers that persist over multiple runs.

An 𝑂 (𝑛 log𝑛) scaling behavior would end up as a linear function in the plot of normalized
runtimes and a logarithmic horizontal axis. This matches the data for larger instances. This is
expected for the fracture and skeleton algorithms but very surprising for the linear and
linear (ref) algorithms.
To summarize, the actual runtimes behavior of the fracture and skeleton algorithms

can be predicted by their theoretical running times, with the log factor being less pronounced
for the fracture algorithm. Unfortunately, the linear algorithms behave similarly. We are
unsure if the scaling behavior of all algorithms is a result of the dataset or if this is an indicator
of a performance bug in the linear implementations.

36

5 Conclusion

In this thesis, we presented three modular decomposition algorithms, fracture, skeleton,
and linear, and showed how to implement them efficiently. The algorithms share com-
mon concepts, like partition refinement, factorizing permutations, and divide-and-conquer
strategies based on the 𝜈-modular partition.
Overall, the fracture algorithm was nearly 2.5 times faster than the next best algorithm

for almost all datasets. The effect of the log factor is minimal. We improved upon the
implementation of linear (ref) by porting it to Rust and only applying minor changes to
avoid allocations and multiple traversals of the same tree nodes.

However, both linear implementations showed worse results than we would have predicted.
The linear (ref) behaves weirdly for simple graph classes, such as empty graphs, path graphs,
and cycle graphs. Furthermore, a scaling experiment with an increasing number of edges and
a constant average vertex degree showed that the linear algorithms are still worse than the
𝑂 (𝑛 +𝑚 log𝑛) algorithms. Additionally, their runtime increases similarly to the non-linear
algorithms we evaluated. It remains open, whether that is the result of the algorithm, the
implementations, or the choice of graphs.

Future Work

In terms of future work, although the thesis only covered modular decomposition on undi-
rected graphs, the algorithmic ideas and implementation details might transfer to similar
decomposition algorithms, such as modular decomposition on hypergraphs or directed graphs.
One can study the effects of choices throughout the algorithm, such as the choice of pivot
elements. Another would be the choice of part X in the ordered vertex partition algorithm of
the skeleton. Those choices might influence the runtime performance.
Finally, one could use the implementations in this thesis as a starting point for efficient

and practical implementations of several algorithms that use modular decomposition as a
preprocessing step. For example, the parameterized algorithms for maximum matching,
triangle counting, minimum cut, maximum flow, and more from [KN18].

37

Bibliography

[Art11] Artem Polyvyanyy. BPStruct. 2011. URL: https : //code . google . com/archive/p/
bpstruct/ (visited on 06/16/2023).

[BB23] Max Bannach and Sebastian Berndt. “PACE Solver Description: The PACE 2023
Parameterized Algorithms and Computational Experiments Challenge: Twin-
width”. In: 18th International Symposium on Parameterized and Exact Computa-

tion (IPEC 2023). Vol. 285. Schloss-Dagstuhl - Leibniz Zentrum für Informatik,
2023, 35:1–35:14. ISBN: 978-3-95977-305-8. DOI: 10.4230/LIPIcs.IPEC.2023.35.

[BCdMR05] Anne Bergeron, Cedric Chauve, Fabien de Montgolfier, and Mathieu Raffinot.
“Computing Common Intervals of K Permutations, with Applications to Modu-
lar Decomposition of Graphs”. In: Algorithms – ESA 2005. Berlin, Heidelberg:
Springer, 2005, pp. 779–790. ISBN: 978-3-540-31951-1. DOI: 10.1007 /11561071_69.

[BF23] Thomas Bläsius and Philipp Fischbeck. On the External Validity of Average-Case

Analyses of Graph Algorithms (Data, Docker, and Code). Zenodo, June 20, 2023.
DOI: 10.5281/zenodo.8058432. URL: https://zenodo.org/records/8058432 (visited on
02/17/2024).

[BKL19] Karl Bringmann, Ralph Keusch, and Johannes Lengler. “Geometric Inhomoge-
neous Random Graphs”. In: Theoretical Computer Science Volume 760 (Feb. 14,
2019), pp. 35–54. ISSN: 0304-3975. DOI: 10.1016/j.tcs.2018.08.014.

[BKTW20] Edouard Bonnet, Eun Jung Kim, Stephan Thomasse, and RemiWatrigant. “Twin-
Width I: Tractable FO Model Checking”. In: 2020 IEEE 61st Annual Symposium

on Foundations of Computer Science (FOCS). 2020 IEEE 61st Annual Symposium
on Foundations of Computer Science (FOCS). Durham, NC, USA: IEEE, Nov.
2020, pp. 601–612. ISBN: 978-1-72819-621-3. DOI: 10.1109/FOCS46700.2020.00062.

[Cap97] Christian Capelle. “Décomposition de Graphes et Permutations Factorisantes”.
PhD thesis. Univ. de Montpellier II, 1997.

[CH94] Alain Cournier and Michel Habib. “A New Linear Algorithm for Modular
Decomposition”. In: Trees in Algebra and Programming — CAAP’94. Berlin,
Heidelberg: Springer, 1994, pp. 68–84. ISBN: 978-3-540-48373-1. DOI: 10.1007 /
BFb0017474.

[CHM02] Christian Capelle, Michel Habib, and Fabien Montgolfier. “Graph Decompo-
sitions and Factorizing Permutations”. In: Discrete Mathematics & Theoretical

Computer Science Volume Vol. 5 (Jan. 1, 2002). ISSN: 1365-8050. DOI: 10.46298/
dmtcs.298.

[CPS85] D. G. Corneil, Y. Perl, and L. K. Stewart. “A Linear Recognition Algorithm for
Cographs”. In: SIAM Journal on Computing Volume 14 (Nov. 1985), pp. 926–934.
ISSN: 0097-5397. DOI: 10.1137 /0214065.

39

https://code.google.com/archive/p/bpstruct/
https://code.google.com/archive/p/bpstruct/
https://doi.org/10.4230/LIPIcs.IPEC.2023.35
https://doi.org/10.1007/11561071_69
https://doi.org/10.5281/zenodo.8058432
https://zenodo.org/records/8058432
https://doi.org/10.1016/j.tcs.2018.08.014
https://doi.org/10.1109/FOCS46700.2020.00062
https://doi.org/10.1007/BFb0017474
https://doi.org/10.1007/BFb0017474
https://doi.org/10.46298/dmtcs.298
https://doi.org/10.46298/dmtcs.298
https://doi.org/10.1137/0214065

Bibliography

[DGM01] Elias Dahlhaus, Jens Gustedt, and Ross M McConnell. “Efficient and Practical
Algorithms for Sequential Modular Decomposition”. In: Journal of Algorithms

Volume 41 (Nov. 1, 2001), pp. 360–387. ISSN: 0196-6774. DOI: 10.1006/jagm.2001.

1185.
[DGM97] Elias Dahlhaus, Jens Gustedt, and Ross M. McConnell. “Efficient and Practical

Modular Decomposition”. In: Proceedings of the Eighth Annual ACM-SIAM

Symposium on Discrete Algorithms. USA: Society for Industrial and Applied
Mathematics, Jan. 5, 1997, pp. 26–35. ISBN: 978-0-89871-390-9.

[EGMS94] A. Ehrenfeucht, H. N. Gabow, R. M. Mcconnell, and S. J. Sullivan. “An O(N2)
Divide-and-Conquer Algorithm for the Prime Tree Decomposition of Two-
Structures and Modular Decomposition of Graphs”. In: Journal of Algorithms

Volume 16 (Mar. 1, 1994), pp. 283–294. ISSN: 0196-6774. DOI: 10.1006/jagm.1994.

1013.
[FL15] Adrian Fritz and Fynn Lyte. Modular-Decomposition. 2015. URL: https://github.

com/LyteFM/modular-decomposition (visited on 06/12/2023).
[Gal67] T. Gallai. “Transitiv orientierbare Graphen”. In: Acta Mathematica Academiae

Scientiarum Hungarica Volume 18 (Mar. 1, 1967), pp. 25–66. ISSN: 1588-2632.
DOI: 10.1007 /BF02020961.

[GKBC04] Julien Gagneur, Roland Krause, Tewis Bouwmeester, and Georg Casari. “Modu-
lar Decomposition of Protein-Protein Interaction Networks”. In:Genome Biology

Volume 5 (July 21, 2004), R57. ISSN: 1474-760X. DOI: 10.1186/gb-2004-5-8-r57 .
[Gol80] Martin Charles Golumbic. Algorithmic Graph Theory and Perfect Graphs. 1980.

ISBN: 978-0-12-289260-8.
[HM79] M. Habib and M. C. Maurer. “On the X-join Decomposition for Undirected

Graphs”. In: Discrete Applied Mathematics Volume 1 (Nov. 1, 1979), pp. 201–207.
ISSN: 0166-218X. DOI: 10.1016/0166-218X(79)90043-X .

[Hop71] John Hopcroft. “An n Log n Algorithm for Minimizing States in a Finite Au-
tomaton”. In: Theory of Machines and Computations. Elsevier, 1971, pp. 189–196.
ISBN: 978-0-12-417750-5. DOI: 10.1016/B978-0-12-417750-5.50022-1.

[HP10] Michel Habib and Christophe Paul. “A Survey of the Algorithmic Aspects of
Modular Decomposition”. In: Computer Science Review Volume 4 (Feb. 1, 2010),
pp. 41–59. ISSN: 1574-0137. DOI: 10.1016/j.cosrev.2010.01.001.

[HPV99] Michel Habib, Christophe Paul, and Laurent Viennot. “Partition Refinement
Techniques: An Interesting Algorithmic Tool Kit”. In: International Journal of
Foundations of Computer Science Volume 10 (June 1999), pp. 147–170. ISSN:
0129-0541. DOI: 10.1142/S0129054199000125.

[JSC72] L.O. James, R.G. Stanton, and Donald Cowan. “Graph Decomposition for Undi-
rected Graphs”. In: Utilitas Mathematica. Third Southeastern Conference On
Combinatorics, Graph Theory, And Computing. Florida Atlantic University,
1972, pp. 281–290.

[Kar19] Stefan Karpinski. “GraphModularDecomposition.Jl”. 2019. URL: https://github.
com/StefanKarpinski/GraphModularDecomposition.jl (visited on 06/16/2023).

40

https://doi.org/10.1006/jagm.2001.1185
https://doi.org/10.1006/jagm.2001.1185
https://doi.org/10.1006/jagm.1994.1013
https://doi.org/10.1006/jagm.1994.1013
https://github.com/LyteFM/modular-decomposition
https://github.com/LyteFM/modular-decomposition
https://doi.org/10.1007/BF02020961
https://doi.org/10.1186/gb-2004-5-8-r57
https://doi.org/10.1016/0166-218X(79)90043-X
https://doi.org/10.1016/B978-0-12-417750-5.50022-1
https://doi.org/10.1016/j.cosrev.2010.01.001
https://doi.org/10.1142/S0129054199000125
https://github.com/StefanKarpinski/GraphModularDecomposition.jl
https://github.com/StefanKarpinski/GraphModularDecomposition.jl

[KN18] Stefan Kratsch and Florian Nelles. “Efficient and Adaptive Parameterized Al-
gorithms on Modular Decompositions”. In: 26th Annual European Symposium

on Algorithms (ESA 2018). Vol. 112. Schloss-Dagstuhl - Leibniz Zentrum für
Informatik, 2018, 55:1–55:15. ISBN: 978-3-95977-081-1. DOI: 10.4230/LIPIcs.ESA.
2018.55.

[MdM05] Ross M. McConnell and Fabien de Montgolfier. “Linear-Time Modular Decom-
position of Directed Graphs”. In: Discrete Applied Mathematics Volume 145
(Jan. 15, 2005), pp. 198–209. ISSN: 0166-218X. DOI: 10.1016/j.dam.2004.02.017 .

[Miz23] Yosuke Mizutani. Mogproject/Modular-Decomposition. 2023. URL: https://github.
com/mogproject/modular-decomposition.

[Möh85] Rolf H. Möhring. “Algorithmic Aspects of Comparability Graphs and Interval
Graphs”. In: Graphs and Order: The Role of Graphs in the Theory of Ordered Sets

and Its Applications. Dordrecht: Springer Netherlands, 1985, pp. 41–101. ISBN:
978-94-009-5315-4. DOI: 10.1007 /978-94-009-5315-4_2.

[MS00] Ross M. Mcconnell and Jeremy P. Spinrad. “Ordered Vertex Partitioning”. In:
Discrete Mathematics & Theoretical Computer Science Volume Vol. 4 no. 1 (Jan. 1,
2000). ISSN: 1365-8050. DOI: 10.46298/dmtcs.274.

[MS89] John H. Muller and Jeremy Spinrad. “Incremental Modular Decomposition”. In:
Journal of the ACM Volume 36 (Jan. 1, 1989), pp. 1–19. ISSN: 0004-5411. DOI:
10.1145/58562.59300.

[MS94] Ross M. McConnell and Jeremy P. Spinrad. “Linear-Time Modular Decom-
position and Efficient Transitive Orientation of Comparability Graphs”. In:
Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms.
USA: Society for Industrial and Applied Mathematics, Jan. 23, 1994, pp. 536–545.
ISBN: 978-0-89871-329-9.

[MS99] Ross M. McConnell and Jeremy P. Spinrad. “Modular Decomposition and Tran-
sitive Orientation”. In: Discrete Mathematics Volume 201 (Apr. 28, 1999), pp. 189–
241. ISSN: 0012-365X. DOI: 10.1016/S0012-365X(98)00319-7 .

[PLE71] A. Pnueli, A. Lempel, and S. Even. “Transitive Orientation of Graphs and Identifi-
cation of Permutation Graphs”. In: Canadian Journal of Mathematics Volume 23
(Feb. 1971), pp. 160–175. ISSN: 0008-414X, 1496-4279. DOI: 10.4153/CJM-1971-

016-5.
[RA15] Ryan Rossi and Nesreen Ahmed. “The Network Data Repositorywith Interactive

Graph Analytics and Visualization”. In: Proceedings of the AAAI Conference on
Artificial Intelligence Volume 29 (Mar. 4, 2015). ISSN: 2374-3468, 2159-5399. DOI:
10.1609/aaai.v29i1.9277 .

[Sal04] Andras Salamon. Graph-ModularDecomposition-0.15 - Modular Decomposition

of Directed Graphs - Metacpan.Org. 2004. URL: https://metacpan.org/release/AZS/
Graph-ModularDecomposition-0.15 (visited on 06/16/2023).

[Spi03] Jeremy P. Spinrad. Efficient Graph Representations. Providence, R.I: American
Mathematical Society, 2003. ISBN: 978-0-8218-2815-1.

[Spi24] Jonas Spinner. “Modular Decomposition. Thesis Repository.” GitHub. 2024. URL:
https://github.com/jonasspinner/modular-decomposition (visited on 02/21/2024).

41

https://doi.org/10.4230/LIPIcs.ESA.2018.55
https://doi.org/10.4230/LIPIcs.ESA.2018.55
https://doi.org/10.1016/j.dam.2004.02.017
https://github.com/mogproject/modular-decomposition
https://github.com/mogproject/modular-decomposition
https://doi.org/10.1007/978-94-009-5315-4_2
https://doi.org/10.46298/dmtcs.274
https://doi.org/10.1145/58562.59300
https://doi.org/10.1016/S0012-365X(98)00319-7
https://doi.org/10.4153/CJM-1971-016-5
https://doi.org/10.4153/CJM-1971-016-5
https://doi.org/10.1609/aaai.v29i1.9277
https://metacpan.org/release/AZS/Graph-ModularDecomposition-0.15
https://metacpan.org/release/AZS/Graph-ModularDecomposition-0.15
https://github.com/jonasspinner/modular-decomposition

Bibliography

[TCHP08] Marc Tedder, Derek Corneil, Michel Habib, and Christophe Paul. “Simpler
Linear-Time Modular Decomposition Via Recursive Factorizing Permutations”.
In: Automata, Languages and Programming. Berlin, Heidelberg: Springer, 2008,
pp. 634–645. ISBN: 978-3-540-70575-8. DOI: 10.1007 /978-3-540-70575-8_52.

[Ted] Marc Tedder. “Simpler, Linear-Time Modular Decomposition via Recursive Fac-
torizing Permutations (Code)”. URL: https://web.archive.org/web/20231117180242/
http://www.cs.toronto.edu/~mtedder/ (visited on 02/06/2024).

[Ted11] Marc Tedder. “Applications of Lexicographic Breadth-first Search to Modular
Decomposition, Split Decomposition, and Circle Graphs”. PhD thesis. Aug. 31,
2011. URL: https://tspace.library.utoronto.ca/handle/1807 /29888.

[Ted15] Marc Tedder. “Simpler, Linear-Time Transitive Orientation via Lexicographic
Breadth-First Search”. Mar. 9, 2015. arXiv: 1503.02773.

42

https://doi.org/10.1007/978-3-540-70575-8_52
https://web.archive.org/web/20231117180242/http://www.cs.toronto.edu/~mtedder/
https://web.archive.org/web/20231117180242/http://www.cs.toronto.edu/~mtedder/
https://tspace.library.utoronto.ca/handle/1807/29888
https://arxiv.org/abs/1503.02773

	Introduction
	Contributions
	Outline

	Preliminaries
	Modules
	An Ordered Partition Data Structure

	Algorithms
	Fracture Algorithm
	Computing a Factorizing Permutation
	Invariants
	Running time
	From Factorizing Permutation to Modular Decomposition
	Implementation Details

	Skeleton Algorithm
	Computing M(G, v)
	Computing spine(G, v)
	Implementation Details

	Linear Algorithm
	Implementation Details

	Comparison of the Algorithms

	Evaluation
	Experimental Setup
	Instances
	Algorithms for Practical Data
	Influence of Graph Structure on Runtimes
	Simple Graphs
	Cographs
	Prime Graphs

	Scaling Experiments

	Conclusion
	Bibliography

