KIT | KIT-Bibliothek | Impressum | Datenschutz

Spatio-temporal reconstruction of droplet impingement dynamics by means of color-coded glare points and deep learning

Dreisbach, Maximilian ORCID iD icon 1; Stroh, Alexander ORCID iD icon 1; Kriegseis, Jochen ORCID iD icon 1
1 Institut für Strömungsmechanik (ISTM), Karlsruher Institut für Technologie (KIT)

Abstract:

The present work introduces a deep learning approach for the three-dimensional reconstruction of the spatio-temporal dynamics of the gas-liquid interface on the basis of monocular images obtained via optical measurement techniques.
The method is tested an evaluated at the example of liquid droplets impacting on structured solid substrates.
The droplet dynamics are captured through high-speed imaging in an extended shadowgraphy setup with additional glare points from lateral light sources that encode further three-dimensional information of the gas-liquid interface in the images.
A neural network is trained for the physically correct reconstruction of the droplet dynamics on a labelled dataset generated by synthetic image rendering on the basis of gas-liquid interface shapes obtained from direct numerical simulation.
The employment of synthetic image rendering allows for the efficient generation of training data and circumvents the introduction of errors resulting from the inherent discrepancy of the droplet shapes between experiment and simulation.
The accurate reconstruction of the three-dimensional shape of the gas-liquid interface during droplet impingement on the basis of images obtained in the experiment demonstrates the practicality of the presented approach.
... mehr


Zugehörige Institution(en) am KIT Institut für Strömungsmechanik (ISTM)
Publikationstyp Forschungsdaten
Publikationsdatum 14.05.2024
Erstellungsdatum 01.03.2023 - 29.04.2024
Identifikator DOI: 10.35097/AcElpeTrdkOvxYWf
KITopen-ID: 1000170366
HGF-Programm 38.03.02 (POF IV, LK 01) Power-based Fuels and Chemicals
Lizenz Creative Commons Namensnennung – Weitergabe unter gleichen Bedingungen 4.0 International
Vorab online veröffentlicht am 01.05.2024
Schlagwörter droplet impingement, two-phase flow, volumetric reconstruction, post-processing, deep learning, shadowgraphy, glare points
Liesmich

This dataset consists of raw and processed images obtained in droplet impingement experiments in a shadowgraphy method with additional color-coded glare points. The raw images are saved in the uncompressed file format .tif and processed images are saved as .png.

Art der Forschungsdaten Dataset
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page