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1 Introduction

In this thesis, we explore a young branch of computational complexity that deals

with problems whose solutions consist of real numbers subject to a given set of

polynomial constraints. Naturally, many of these problems come from computa-

tional geometry (the solutions may be coordinates of points), but examples are

found in nearly all branches of computer science and mathematics. In particular,

we study a complexity class called ∃ℝ that was proposed by Schaefer in 2009 [133].

It contains NP [144] and is itself contained in PSPACE [37]. The class ∃ℝ allows us

to precisely capture the computational complexity of many algorithmic problems

whose complexity remained open in terms of the more established classes NP and

PSPACE. Before we give a formal definition in Section 1.1, let us consider two

examples for such problems. As we are going to see, their commonality is the

underlying geometry, even though this might not be evident on first sight.

A famous family of problems from computational geometry is to decide whether a

given graph admits various kinds of intersection representations: Here, the vertices
are mapped to sets such that two vertices are adjacent if and only if the two

corresponding sets intersect. Our first example problem is the recognition of unit
disk graphs, i.e., graphs that admit an intersection representation by disk with

radius 1 in ℝ2
, see Figure 1.1.

𝑟 =1

𝑝1

𝑝2

𝑝3

𝑝4

𝑉 = {𝑝1, 𝑝2, 𝑝3, 𝑝4}

𝐸 =
{
{𝑝𝑖, 𝑝 𝑗 } | 𝑖 ≠ 𝑗 ∧ ∥𝑝𝑖 − 𝑝 𝑗 ∥ ≤ 2

}
𝐺 = (𝑉 , 𝐸)

Figure 1.1: A unit disk graph with a corresponding intersection representation.

Our second example is the problem to train a neural network, more specifically

to tweak its parameters such that it performs well on a given set of training data.

While not as evident as above, this can also be understood as a geometric problem: A

neural network realizes a function and the graph of this function can be studied from

a geometric perspective. The functions realized by simple neural networks are very

tame, and the geometry of their graphs is widely studied and well understood [91].

Figure 1.2 presents a neural network with two inputs, a single hidden layer, and

one output. It realizes a continuous piecewise linear function 𝑓 : ℝ2 → ℝ, whose

graph consists of polygonal cells with constant gradient.

1



1 Introduction
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2

Figure 1.2: A neural network realizing a continuous piecewise linear function.

We consider both of these and more geometric problems from a complexity per-

spective, in particular focusing on their computational hardness. It is not surprising

that both problems are difficult to solve, and indeed both are known to be NP-hard
for more than twenty years [25, 31]. However, NP-membership and therefore also

NP-completeness remains an open problem in both cases. Only recently it has been

proven that recognizing unit disk graphs and training neural networks are both

∃ℝ-complete and therefore “equally difficult” [4, 18, 112] (the result about training

neural networks is contained in this thesis). In particular, under the assumption

that NP ⊊ ∃ℝ, this implies that neither problem is in NP.

In this thesis, we study several ∃ℝ-complete problems with the goal to learn more

about the complexity class ∃ℝ itself. We prove ∃ℝ-completeness of interesting and

important problems from the literature whose complexity remained open until now.

In doing so, we sharpen the tools used for previous ∃ℝ-hardness results and also

develop new techniques. In addition, we explore natural extensions of the class ∃ℝ
to be able to determine the exact computational complexity of even more difficult

geometric problems.

1.1 The Existential Theory of the Reals and ∃ℝ

We have yet to define ∃ℝ formally. Intuitively, ∃ℝ contains all problems that can

be expressed as a polynomial system of equations and inequalities. To this end, we

define the following decision problem that serves as a canonical complete problem

for ∃ℝ:

Definition 1.1 (Existential Theory of the Reals (ETR)).
Input: An integer 𝑛 ∈ ℕ, symbols 𝑋1, . . . , 𝑋𝑛 for variables and a quantifier-free

first-order formula 𝜑 (𝑋1, . . . , 𝑋𝑛) whose atoms are polynomial equations and
inequalities in these variables.

Question: Is the sentence

∃𝑋1, . . . , 𝑋𝑛 ∈ ℝ : 𝜑 (𝑋1, . . . , 𝑋𝑛)

true, i.e., are there real numbers 𝑥1, . . . , 𝑥𝑛 ∈ ℝ such that 𝜑 (𝑥1, . . . , 𝑥𝑛) is true?

2



1 Introduction

We define the syntax and semantics of first-order formulas rigorously in Section 2.1

below. For now, let us stick to some examples. The sentence ∃𝑋 ∈ ℝ : 𝑋 2 < 0

is false because squares of real numbers are always non-negative. On the other

hand, the sentence ∃𝑋,𝑌, 𝑍 ∈ ℝ : 𝑌 = 𝑋 2 ∧ 𝑍 = 𝑋 3
is true: Its set of solutions

is (𝑋,𝑌, 𝑍 ) = (𝑡, 𝑡2, 𝑡3) ∈ ℝ3
for all 𝑡 ∈ ℝ and known as the twisted cubic.

Definition 1.2 (∃ℝ). The complexity class ∃ℝ contains exactly ETR and all decision
problems that are polynomial-time many-one reducible to it.

We mentioned two ∃ℝ-complete problems already: the recognition of unit disk

graphs and the training problem for neural networks. A short survey of further

∃ℝ-completeness results across different disciplines of computer science and math-

ematics follows in Section 1.4, illustrating that ∃ℝ indeed appears in a wide variety

of topics.

The canonical way to prove ∃ℝ-membership is by a reduction to ETR. For example,

this is straightforward for the recognition problem of unit disk graphs: Given a

graph 𝐺 = (𝑉 , 𝐸) with vertices 𝑣1, . . . , 𝑣𝑛 , we seek points 𝑝1, . . . , 𝑝𝑛 ∈ ℝ2
such that

for all 𝑖, 𝑗 ∈ {1, . . . , 𝑛} the distance between 𝑝𝑖 and 𝑝 𝑗 is at most 2 if and only if 𝑣𝑖
and 𝑣 𝑗 are adjacent. This question is equivalent to the following ETR instance

1
:

∃𝑝1, . . . , 𝑝𝑛 ∈ ℝ2
:

∧
{𝑢,𝑣}∈𝐸

∥𝑝𝑢 − 𝑝𝑣 ∥2 ≤ 2
2 ∧

∧
{𝑢,𝑣}∉𝐸

∥𝑝𝑢 − 𝑝𝑣 ∥2 > 2
2

(1.1)

The length
2
of sentence (1.1) is polynomial in |𝑉 | + |𝐸 |. Thus, we obtain ∃ℝ-

membership of recognizing unit disk graphs. In contrast, proving ∃ℝ-hardness
is much more elaborate. It is obtained by a reduction from the so-called Simple-
Stretchability problem [112]. As a matter of fact, the vast majority of ∃ℝ-hardness

reductions in the literature start with either ETR or SimpleStretchability. The
reductions contained in this thesis are no exceptions.

1.2 Our Contribution

We present new reductions to determine the computational complexity of several

important algorithmic problems. Most of these problems are (much) older than

the notion of ∃ℝ-completeness itself, and in this case there were so far at most

partial complexity results like NP-hardness or PSPACE-membership. As it turns

out, studying these problems in the context of ∃ℝ allows us to settle the complexity

question of these problems.

Apart from the problems themselves, we advance the theory of ∃ℝ-complete-

ness in several directions: We provide the first ∃ℝ-hardness results in hyperbolic

geometry, demonstrate how to utilize geometry to study hardness of machine

1 We have to work with squared distances in (1.1) because ∥·∥ is the square root of a polynomial

and square roots are not allowed in first-order formulas.

2 See Section 2.1.3 for a formal definition of the length of a sentence.

3



1 Introduction

learning, and identify the first natural problem complete for the complexity class

∀∃ℝ. Our contribution is spread across four main chapters. Each of these focuses

on one specific problem, thereby exploring a different aspect of ∃ℝ:

Chapter 3: Stretchability and Hyperbolic Geometry Many results concern-

ing ∃ℝ-hardness in the literature are obtained by a reduction from Simple-
Stretchability, placing it among the most important ∃ℝ-complete problems.

We study SimpleStretchability in the hyperbolic planeℍ2
, thereby exploring

how geometric problems that are ∃ℝ-hard in ℝ2
behave in ℍ2

.

Our main result is that SimpleStretchability is equivalent in ℝ2
and ℍ2

.

This allows us to adapt the known ∃ℝ-hardness reduction for recognizing

unit disk graphs to prove ∃ℝ-hardness of recognizing hyperbolic unit disk
graphs as well. Exploiting the mathematical similarities between ℝ2

and ℍ2
,

we generalize this reduction into a framework that is applicable to other

geometric problems, in particular to those concerning geometric intersection

representations in ℍ2
.

Chapter 4: Lombardi Graph Drawing A Lombardi drawing of a graph maps its

vertices to points in the plane ℝ2
and its edges to circular arcs such that each

vertex has perfect angular resolution, i.e., equal angles between all incident

edges. This drawing style has received considerable attention in the graph

drawing community since its introduction in 2010, proving the existence or

non-existence of Lombardi drawings for many graph classes [55, 56, 57, 59,

60, 61, 63, 99, 124]. Notably, there are no complexity results yet.

We close this gap by proving that it is ∃ℝ-complete to decide whether a given

graph admits a Lombardi drawing. Our reduction is from SimpleStretchabi-
lity and makes an elegant “detour” through hyperbolic geometry, building

on our main result from the previous chapter.

Chapter 5: Training Neural Networks Artificial neural networks are currently

the most successful tool in machine learning. Consequently, their training

problem, i.e., finding their parameters to fit a given set of training data well,

is highly important.

By a reduction from ETR we prove that the general training problem is

∃ℝ-complete. The proof heavily exploits the underlying geometry of struc-

turally simple neural networks. Our reduction also yields a so-called algebraic
universality theorem: This means that there exists instances, that are particu-

larly difficult to train, because their solutions require irrational numbers of

arbitrarily large degree.

Our result improves previous work by showing that ∃ℝ-hardness does not
stem from adversarial network architectures but is indeed inherent to the

problem. Furthermore, it explains why a celebrated NP-membership result

for extremely simple network architectures [12] withstood any generalization

to even slightly more complicated architectures.

4



1 Introduction

Chapter 6: The Hausdorff Distance and ∀∃ℝ The Hausdorff distance is a clas-
sical similarity measure for sets. It has applications in many areas of computer

science, mathematics and beyond.

We prove that computing the Hausdorff distance between two semi-algebraic

sets is complete for the complexity class ∀∃ℝ. This class contains ∃ℝ, so
computing the Hausdorff distance is supposedly even more difficult than all

problems in ∃ℝ. Actually, computing the Hausdorff distance is among the first

natural problems that were proven to be ∀∃ℝ-complete. More formally, ∀∃ℝ
contains all problems that polynomial-time many-one reduce to deciding

first-order formulas with two blocks of quantifiers of the form

∀𝑋 ∈ ℝ𝑛 . ∃𝑌 ∈ ℝ𝑚 : 𝜑 (𝑋,𝑌 ).

To obtain our result, we utilize sophisticated results and algorithms from

real algebraic geometry, in particular the so-called Ball Theorem and singly

exponential quantifier elimination.

In analogy to NP and Σ𝑃
2
being on the first and second level of the classical

polynomial hierarchy, the classes∃ℝ and∀∃ℝ are on the first and second level

of the real polynomial hierarchy. The study of the real polynomial hierarchy

has only recently gained momentum [47, 54, 96, 139], partly because of our

result.

1.3 Implications of ∃ℝ-Completeness

Our definition of∃ℝ relies on ETR as a canonical complete problem. ETR is known to

beNP-hard and in PSPACE [37, 144], however its precise computational complexity

is still unknown (and it is considered likely that it is neither NP- nor PSPACE-
complete). Therefore, proving a problem to be∃ℝ-complete only tells us its difficulty

relative to ETR. Nevertheless, proving ∃ℝ-completeness is a valuable contribution,

even for problems that are known to be NP-hard, because ∃ℝ-completeness has

several implications:

• As pointed out by Schaefer, ∃ℝ-completeness of a problem shifts the focus

away from the problem itself to its underlying algebraic nature: “Knowing

that a problem is ∃ℝ-complete does not tell us more than that it is NP-hard
and in PSPACE in terms of classical complexity, but it does tell us where to

start the attack: [...] A solution will likely not come out of graph drawing or

graph theory but out of a better understanding of real algebraic geometry

and logic.” [133]

• Often (but not always), ∃ℝ-hardness leads to algebraic universality results,

stating that optimal solutions require algebraic numbers of arbitrarily large

degree. Recall that this was the case for the neural network training problem.

There is no algebraic universality result for the recognition problem of unit

disk graphs. In fact, there is always an intersection representation in which

5



1 Introduction

all coordinates are rational [112]. Still, ∃ℝ-hardness has an impact on the

required precision: There are 𝑛-vertex unit disk graphs such that every inter-

section representation with integer coordinates requires disk centers whose

binary encoding has length exponential in 𝑛 [112]. Note that this makes

NP-membership unlikely, because the disk centers are not suited as an NP-
witness.

• Knowing that a problem is ∃ℝ-complete gives some hints towards the al-

gorithmic challenges that need to be overcome. While many NP-complete

problems can be solved well in practice by extremely optimized off-the-shelf

SAT- or ILP-solvers, no such general purpose tools are available for ∃ℝ-
complete problems. In fact, to the best of our knowledge, finding the optimal

solution for any ∃ℝ-complete problem requires algorithms from real alge-

braic geometry, for example a decision procedure for existentially quantified

first-order sentences like (1.1) (after reducing the problem to ETR). However,
these algorithms are very slow (all of them at least exponential in the num-

ber of variables) and therefore infeasible for large instances [123]. Different

heuristics have been employed successfully [8, 51], however, they are all

tailored towards the specific problem at hand.

• Lastly, problems from many areas of computer science and mathematics turn

out to be ∃ℝ-complete. In Section 1.4 below, we compile a comprehensive

but non-exhaustive list of many important examples. Knowing that they are

equally difficult might lead to synergy effects in algorithm design.

1.4 Importance of ∃ℝ in the Literature

Since ∃ℝ has first appeared in a publication in 2009 [133], numerous problems

across various disciplines have been shown to be ∃ℝ-complete
3
. Among others,

these include:

Computational Geometry Just like for unit disk graphs, the recognition prob-

lems for many other types of geometric intersections graphs are ∃ℝ-complete

[39, 38, 97, 110, 112, 133]. Other well-known ∃ℝ-complete problems include

the art gallery problem [3], geometric packing [7], covering polygons with

convex pieces [2], and geometric embeddings of simplicial complexes [5].

Moreover, the ∃ℝ-complete (Simple)Stretchability problem asks whether

a (simple) arrangement of curves can be “stretched” to an equivalent ar-

rangement of lines with the same intersection pattern [115, 130, 144] (see

3 Actually, some of the following results were obtained long before 2009. Consequently, these are

stated as NP-hardness results in the literature, even though the reductions imply ∃ℝ-hardness

in today’s language. Often, NP-membership is explicitly posed as an open problem. Knowing

that these problems are ∃ℝ-complete makes NP-membership unlikely (as this would imply

NP = ∃ℝ).

6



1 Introduction

Section 3.1 for a formal definition). Many ∃ℝ-hardness results in the litera-

ture are obtained by a reduction from SimpleStretchability [20, 89, 92, 103,
133, 134].

Graph Drawing The first explicit definition of ∃ℝ as a complexity class in a

publication was at the Graph Drawing conference in 2009 [133], so it is

no surprise that this field offers many ∃ℝ-complete problems. Often, they

involve finding a drawing of a graph that satisfies geometric constraints,

for example Lombardi graph drawing [92], the realization of linkages [1,

134], or recognizing many beyond-planar graphs like RAC-graphs [137] and

geometric 𝑘-planar graphs [135] (for sufficiently large 𝑘).

Furthermore, decision problems about graph parameters like the rectilinear

crossing number [20], the planar slope number [89] and the segment num-

ber [121] are ∃ℝ-complete. Deciding whether 𝑘 graphs with a shared vertex

set have a simultaneous straight line drawing is ∃ℝ-complete, even if 𝑘 is a

(large enough) constant [40, 105, 136].

Machine Learning The neural network training problem mentioned above is

known as EmpiricalRiskMinimization. Its input is a network architecture

and a set of training data. The goal is to compute the parameters of the

network to fit the given training data well. Preliminary work proved ∃ℝ-
hardness for adversarial network architectures [4]. In this thesis, we present

an ∃ℝ-hardness proof for fully connected two-layer neural networks [18].

∃ℝ-hardness is also studied in other contexts of neural networks, e.g., for

different activation functions [83] or reachability problems [153].

Mathematics In linear algebra, finding a non-negative matrix factorization is

∃ℝ-complete [143], as are many continuous constraint satisfaction problems

from combinatorial optimization [113]. In probability theory, the conditional

independence problem is co∃ℝ-complete (the class co∃ℝ is usually denoted

by ∀ℝ) [28].

Game Theory Problems concerning the existence of (special) Nash equilibria in

multi-player games are often NP-complete for two players, and ∃ℝ-complete

for three or more players [22, 68].
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2 Preliminaries

In this chapter, we revisit the theoretical background that is required to read this

thesis. We provide formal definitions of all occurring concepts and establish our

own (notational) conventions. Readers who are familiar with mathematical logic

and/or the complexity class ∃ℝ may skip this chapter or just look-up individual

definitions if needed.

Chapter Outline The chapter is split into three parts: First, we lay the logical

foundations in Section 2.1, defining syntax and semantics of the first-order theory of

the reals. The second part, Section 2.2, covers computational questions. We consider

decidability of the first-order theory of the reals and review existing algorithms

for it. The last part concerns ∃ℝ-completeness, discussing the main approaches to

prove ∃ℝ-hardness and ∃ℝ-membership.

2.1 The First-Order Theory of the Reals

We are going to formally define the first-order theory of the reals, a highly expressive
mathematical theory. Assuming some prior knowledge of the reader, we start

by providing some intuition and some examples before diving into the precise

definitions below.

For our purposes, a (first-order) formula is a logical combination of polynomial

equations and inequalities in real variables, possibly containing quantifiers. For
example, the formula 𝜑 (𝑋,𝑌 ) :≡ 𝑋 2 + 𝑌 2 = 1 defines the unit circle 𝑆𝜑 := {(𝑥,𝑦) ∈
ℝ2 | 𝜑 (𝑥,𝑦)}. Similarly, the set 𝑆𝜓 := {(𝑥,𝑦) ∈ ℝ2 | 𝜓 (𝑥,𝑦)}, where 𝜓 (𝑋,𝑌 ) :≡
𝑌 ≥ 𝑋 2

, contains all points above a parabola.

A sentence is a formula without free variables, and as such either true or false

when interpreted over the real numbers. For example, the sentence

∃𝑋,𝑌 ∈ ℝ : 𝜑 (𝑋,𝑌 ) ∧𝜓 (𝑋,𝑌 )

is true because 𝑆𝜑 and 𝑆𝜓 have non-empty intersection, i.e., 𝑆𝜑 ∩ 𝑆𝜓 ≠ ∅. The
first-order theory of the reals can also express more complex statements:

∀𝑋 ∈ ℝ : 𝑋 ≠ 0 =⇒ (∃𝑌 ∈ ℝ : 𝑋𝑌 = 1)

is true, because every real number except 0 has a multiplicative inverse. For our

last example, let 𝜙 be a first-order formula with 𝑛 free variables and let us consider

𝑆𝜙 := {𝑥 ∈ ℝ𝑛 | 𝜙 (𝑥)}. The set 𝑆𝜙 is open if and only if

∀𝑋 ∈ 𝑆𝜙 . ∃𝑅 ∈ ℝ+ .∀𝑌 ∈ ℝ𝑛
: ∥𝑋 − 𝑌 ∥ < 𝑅 =⇒ 𝑌 ∈ 𝑆𝜙 .

8



2 Preliminaries

In the remainder of this section, we make above intuition precise: We start by

specifying the syntax of first-order formulas in Section 2.1.1. The semantics in
Section 2.1.2 provides meaning to sentences, by determining their truth value. To-

gether, syntax and semantics define the first-order theory of the reals. Sections 2.1.3

and 2.1.4 lay the foundation for the following complexity section.

2.1.1 Syntax

The syntax is a set of rules that define what well-formed first-order formulas are.

We obtain a formal language. Let us stress that syntax is only concerned with which

sequences of which symbols are considered to be well-formed. It does not provide

any meaning to them.

The core concepts of the syntax are variables, atoms, formulas and sentences:

Variables A variable is a distinguished symbol without a value. Initially, all

variables in 𝐴 are said to be free.

As a convention, we use upper case letters (like 𝑋,𝑌, 𝑍 ) for variables. Often, we

group several individual variables into a vector of variables. In that case, we write

𝑋 = (𝑋1, . . . , 𝑋𝑛) for a vector of 𝑛 variables.

Atoms Let𝑋 = (𝑋1, . . . , 𝑋𝑛) be the symbols for 𝑛 variables and let 𝑃,𝑄 ∈ ℤ[𝑋 ] =
ℤ[𝑋1, . . . , 𝑋𝑛] be polynomials in these variables with integer coefficients. For sim-

plicity, the only allowed operations in the polynomials are addition, subtraction, and

multiplication. An atom𝐴 is a polynomial equation or inequality, i.e., an expression

of the form 𝑃 ◦ 𝑄 , where ◦ is one of the binary relations in {<, ≤,=,≠, ≥, >}.

Formulas & Sentences A formula is a combination of several atoms according

to the following inductive definition:

• Atoms: If 𝐴 is an atom, then 𝐴 is a formula.

• Negation: If 𝜑 is a formula, then ¬𝜑 is a formula.

• If 𝜑1 and 𝜑2 are formulas, then the following are formulas:

– Conjunction: 𝜑1 ∧ 𝜑2
– Disjunction: 𝜑1 ∨ 𝜑2

Additionally, we define the following shorthand notation:

– Implication: 𝜑1 =⇒ 𝜑2 denotes ¬𝜑1 ∨ 𝜑2
– Equivalence: 𝜑1 ⇐⇒ 𝜑2 denotes (𝜑1 =⇒ 𝜑2) ∧ (𝜑2 =⇒ 𝜑1)

• Quantifiers: If 𝜑 is a formula with a free variable 𝑋 , then

∃𝑋 ∈ ℝ : 𝜑 and ∀𝑋 ∈ ℝ : 𝜑

are formulas in which 𝑋 is bound by the respective quantifier. Each vari-

able can be bound at most once, so bound variables are not considered free

anymore.

9



2 Preliminaries

A sentence is a formula without free variables. On the other hand, if a formula 𝜑

contains a free variable 𝑋 , then we sometimes write 𝜑 (𝑋 ) to make this explicit.

Remark 2.1 (Operator Precedence). The negation operator “¬” binds stronger than
any of the binary operators “∧”, “∨”, “=⇒” or “⇐⇒”. On the other hand, we do not

specify any precedence among the binary operators. Instead, we use parenthesis to

avoid ambiguities. ⌟

2.1.2 Semantics

The semantics provide a “meaning” to sentences by assigning them a truth value,

either true or false. Together, syntax and semantics define a theory: A logical theory
is exactly the set of all true sentences in some formal language. Here, truth is

defined by the semantics, while the syntax defines the formal language.

Let 𝑋 be a free variable in a formula 𝜑 (𝑋 ). An instantiation of 𝑋 in 𝜑 (𝑋 ) by a real

number 𝑥 ∈ ℝ is obtained by replacing each occurrence of 𝑋 by the specific 𝑥 .

Throughout this thesis, we use lower case letters for real-valued instantiations.

By definition, a sentence 𝜑 contains no free variables and is therefore either true or

false. Its truth value is determined according to the following rules:

• An atom in which all variables are instantiated is true if and only if its

interpretation over the real numbers is true.

• A sentence ¬𝜑 is true if and only if 𝜑 is false.

• A sentence 𝜑1 ∧ 𝜑2 is true if and only if 𝜑1 and 𝜑2 are both true.

• A sentence 𝜑1 ∨ 𝜑2 is true if and only if at least one of 𝜑1 and 𝜑2 is true.

• A sentence ∃𝑋 ∈ ℝ : 𝜑 (𝑋 ) is true if there is at least one instantiation of 𝑋 by

some real number 𝑥 ∈ ℝ such that 𝜑 (𝑥) is true. Similarly, ∀𝑋 ∈ ℝ : 𝜑 (𝑋 ) is
true if 𝜑 (𝑥) is true for every possible instantiation of 𝑋 by 𝑥 ∈ ℝ.

Two formulas 𝜑1(𝑋 ) and 𝜑2(𝑋 ) with the same free variables 𝑋 = (𝑋1, . . . , 𝑋𝑛)
are equivalent if they evaluate to the same truth value for all instantiations of 𝑋 .

Formally, we write 𝜑1(𝑋 ) ≡ 𝜑2(𝑋 ) if and only if

∀𝑋 ∈ ℝ𝑛
: 𝜑1(𝑋 ) ⇐⇒ 𝜑2(𝑋 )

is true.

Definition 2.2 (First-Order Theory of the Reals). The first-order theory of the reals
contains all true sentences (according to the semantics in Section 2.1.2) in the formal
language of first-order formulas (according to the syntax in Section 2.1.1).

2.1.3 Encoding and Length

In essence, the length of a first-order formula𝜑 , denoted by |𝜑 |, is the number of bits

required to write it down. There are some subtleties, so let us give a more precise

definition here. This is crucial because it might depend on the exact method we
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2 Preliminaries

measure length in, whether a reduction takes polynomial time or not. Or definition is

inductive, mimicking the inductive definition of the syntax a formula in Section 2.1.1.

We start with the length of an atom 𝐴, denoted by |𝐴|. To this end we restrict

the signature of the polynomials, i.e., the available set of symbols, to

{
0, 1, +,−, ·,

(, ), 𝑋1, . . . , 𝑋𝑛
}
. In particular, we only allow 0 and 1 as coefficients and constants

(see Remark 2.3 why this does not need to bother us). Then, each of these 𝑂 (𝑛)
symbols can be represented by a unique string of 𝑂 (log𝑛) bits. The length of 𝐴 is

the number of bits needed in this encoding.

For the length of a formula 𝜑 , we consider 𝜑’s structure: If 𝜑 is an atom 𝐴,

then |𝜑 | = |𝐴|. If 𝜑 is constructed from smaller subformulas, then its length is the

sum of the lengths of its parts. For example, the formula 𝜑 :≡ 𝜑1 ∧ 𝜑2 has its length
defined as the length of its subformulas 𝜑1 and 𝜑2 plus a constant number of bits

for each additional symbol (∧ in this case): |𝜑 | = |𝜑1 | + |𝜑2 | +𝑂 (1)

Remark 2.3 (Integer Coefficients). Using only the constants 0 and 1, an arbitrary

integer coefficient 𝑘 ∈ ℕ can be constructed by an expression of length 𝑂 (log𝑘).
The idea is to use Horner’s rule on the binary expansion of 𝑘 . For example, we can

express 13 as

1310 = 11012 = 1+2 · (0+2 · (1+2 · 1)) = 1+ (1+1) · (0+ (1+1) · (1+ (1+1) · 1)).

Therefore, the length of a formula increases by at most a factor of 𝑂 (log𝑘) when
transforming a formula with arbitrary integer coefficients into one with only 0

and 1, assuming that 𝑘 is the largest coefficient. This logarithmic difference in

length has no effect on whether a reduction takes polynomial time or not. ⌟

Remark 2.4 (Exponentiation). There is no syntax for exponentiation. In fact,

the notation 𝑋𝑘 for some constant 𝑘 ∈ ℕ is just an abbreviation for the 𝑘-fold

product 𝑋 · . . . · 𝑋 . For example, the length of the polynomial (· · · ((𝑋 2)2) · · · )2
with𝑛 second powers is in𝑂 (2𝑛) (and not in𝑂 (𝑛)) [110]. This exponential difference
is indeed important for polynomial-time reductions. ⌟

2.1.4 Normal Forms

Formulas adhering to a restricted syntax are often easier to work with and al-

low for more streamlined reductions. For this reason, several normal forms exist.
Considering just polynomials, we need just one normal form:

Monomial Normal Form Apolynomial is inmonomial normal form if it is written

as a sum of monomials. In particular, no parentheses are used. Monomials

containing the same variables to the same powers are grouped together.

Transforming a polynomial into monomial normal form can lead to an expo-

nential increase in the length of the polynomial: For example, the polynomial

(𝑋1 + 1) (𝑋2 + 1) . . . (𝑋𝑛 + 1) has length in 𝑂 (𝑛) while its monomial normal form

has length 𝑂 (2𝑛) [110].
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On the other hand, a polynomial in 𝑛 variables and maximum degree 𝑑 has at

most (𝑑 + 1)𝑛 different monomials.

There are several normal forms for formulas. Every formula can be transformed

into each of these, so all normal forms have the same descriptive power.

Atom Normal Form A formula is in atom normal form if all of its atoms are of

the form 𝑃 ◦ 0, where 𝑃 is a polynomial and ◦ ∈ {<, ≤}.
Atom normal form can easily be achieved by elementary operations. This can

be done in linear time and increases the length by at most a constant factor.

Negation Normal Form A formula is in negation normal form if the negation

operation is only applied to atoms.

Negation normal form is achieved by repeatedly applying De Morgan’s law

¬(𝜑1 ∧ 𝜑2) ≡ ¬𝜑1 ∨ ¬𝜑2 and ¬(𝜑1 ∨ 𝜑1) ≡ ¬𝜑1 ∧ ¬𝜑2
as well as double negation ¬¬𝜑 ≡ 𝜑 and the negation of quantifiers

¬∃𝑋 ∈ ℝ : 𝜑 ≡ ∀𝑋 ∈ ℝ : ¬𝜑 and ¬∀𝑋 ∈ ℝ : 𝜑 ≡ ∃𝑋 ∈ ℝ : ¬𝜑 .

This increases the length of the formula only by a constant factor and takes

linear time.

Prenex Normal Form A formula 𝜑 is in prenex normal form if all quantifiers

appear at the beginning, i.e., 𝜑 starts with several blocks of quantified vari-

ables followed by a quantifier-free subformula (also called the matrix of the

formula).

We assume that each variable is denoted by its own, unique symbol. Then

a formula in negation normal form can be transformed into prenex normal

form by simply moving the quantification of the bound variables to the front

of the formula (keeping their relative ordering intact). This transformation

does not change the length of the formula and takes linear time.

If the formula is not in negation normal form, care has to be taken when

moving a quantifier out of the scope of a negation. Still, the length of the

formula only changes by a constant factor and the transformation takes linear

time.

Conjunctive/Disjunctive Normal Form A quantifier-free formula in negation

normal form is in conjunctive normal form (CNF) if it is a conjunction of dis-

junctions. Similarly, it is in disjunctive normal form (DNF) if it is a disjunction
of conjunctions.

Every formula can be transformed into an equivalent formula in CNF or DNF

by repeatedly applying the distributive law

𝜑1 ∧ (𝜑2 ∨ 𝜑3) ≡ (𝜑1 ∧ 𝜑2) ∨ (𝜑1 ∧ 𝜑3) and

𝜑1 ∨ (𝜑2 ∧ 𝜑3) ≡ (𝜑1 ∨ 𝜑2) ∧ (𝜑1 ∨ 𝜑3).
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Converting into CNF or DNF takes time linear in the length of the resulting

formula. However, both can be exponentially longer than the original formula.

2.2 Decidability and Algorithms

Given amathematical theory, the obvious question is whether it is decidable. In other
words: Is there an algorithm to decide the truth value of a given sentence? Variables

in the first-order theory of the reals can be instantiated with any of the uncountably

many real numbers. Therefore, iterating over all possible instantiations is not

possible. Still, the first-order theory of the reals is decidable, as proven by Tarski in

the 1940s. He provides a decision algorithm, however there is no elementary bound

on its time complexity [146]. Current algorithms are based on Collins’ cylindrical
algebraic decomposition (CAD) method and require doubly exponential time in the

number of variables [44].

Theorem 2.5 ([16, Theorem 14.17]). Consider a first-order formula

Φ :≡ Q1𝑋1 ∈ ℝ𝑛1 .Q2𝑋2 ∈ ℝ𝑛2 . . .Q𝜔𝑋𝜔 ∈ ℝ𝑛𝜔
: 𝜑 (𝑋1, 𝑋2, . . . , 𝑋𝜔 )

in prenex normal form, where𝜔 is the number of blocks of quantifiers, andQi ∈ {∀, ∃}.
Further, 𝜑 is quantifier-free, contains 𝑠 atoms, and each polynomial has degree at
most 𝑑 . Then there is an algorithm to decide truth of Φ in time

𝑠 (𝑛1+1)···(𝑛𝜔+1)𝑑𝑂 (𝑛1)···𝑂 (𝑛𝜔 ) .

The so-called ∃-fragment (“existential fragment”) of the first-order theory of the

reals consists of all true sentences in prenex normal form with a single block of

existentially quantified variables, i.e., sentences of the form

∃𝑋1, . . . , 𝑋𝑛 ∈ ℝ : 𝜑 (𝑋1, . . . , 𝑋𝑛),

where 𝜑 is quantifier-free. This theory is also known as the existential theory of the
reals. The decision problem whether such a sentence is true corresponds exactly

to the problem ETR from Definition 1.1 (the definition was incomplete back then

because we did not yet define “syntax”, “semantics” and “prenex normal form”). By

Theorem 2.5, there is an algorithm taking time 𝑠𝑛+1𝑑𝑂 (𝑛)
(take𝜔 = 1 as there is just a

single existential block of quantifiers). The first singly exponential time algorithms

to decide ETR are by Renegar [126, 127, 128], a PSPACE-algorithm is given by

Canny [37]. NP-hardness follows easily by a reduction from SAT to ETR [144].

Similarly, the ∀∃-fragment (“universal existential fragment”) of the first-order

theory of the reals consists all true sentences in prenex normal form with two

blocks of quantifiers of the form

∀𝑋1, . . . , 𝑋𝑛 ∈ ℝ . ∃𝑌1, . . . , 𝑌𝑚 ∈ ℝ : 𝜑 (𝑋1, . . . , 𝑋𝑛, 𝑌1, . . . , 𝑌𝑚),

where 𝜑 is quantifier-free. This theory can also be decided in PSPACE. Again, by
applying Theorem 2.5, now with 𝜔 = 2. In fact, it requires only singly exponential

time for every constant number of quantifier alternations.
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Remark 2.6 (Decidability of other Existential Theories). There are many other

interesting and related existential theories besides the existential theory of the

reals:

• The existential theory of 𝔽2 asks for Boolean variables satisfying a given

formula. This corresponds to the well-known SAT problem, therefore deciding

this theory is NP-complete.

• The existential theory of the integers asks for integer solutions of so-called
Diophantine equations. The corresponding decidability problem is known as

Hilbert’s tenth problem and known to be undecidable [109].

• The existential theory of the rationals asks for rational solutions of a first-order
formula. It is an open problem whether this theory is decidable.

• The existential theory of the complex numbers asks for the existence of complex

solutions. Koiran showed that, under the Generalized Riemann Hypothesis,

this theory can be decided in RPNP [101], which is in the second level of the

polynomial hierarchy (Π𝑃
2
).

• Tarski’s exponential function problem asks whether the existential theory of

the reals together with the exponential function exp(·) is decidable. This
question is still open.

Adding trigonometric functions like sin(·) and cos(·) to the existential theory
of the reals yields an undecidable theory [129]. ⌟

2.3 ∃ℝ-Completeness

Recall the definition of the complexity class ∃ℝ from Definition 1.2. A problem is

in ∃ℝ if there is a polynomial-time many-one reduction from it to ETR. Conversely,
a problem is ∃ℝ-hard if ETR can be polynomial-time many-one reduced to it. In

both cases, the reduction must be executed in the bit model of computation, or

equivalently, on a deterministic Turing machine. We say that a problem is ∃ℝ-
complete if it is both ∃ℝ-hard and in ∃ℝ.

∃ℝ-Hardness Most ∃ℝ-hardness reductions in the literature are either from

ETR or from SimpleStretchability. As a matter of fact, the reductions appearing

in Chapters 3 and 4 are based on SimpleStretchability, and the reductions in

Chapters 5 and 6 are based on (extensions of) ETR.
A general ETR instance may have a very complicated structure: Its matrix

may be nested several levels deep and/or contain arbitrary combinations of the

Boolean operators. To simplify reductions from ETR, a number of special cases with

restricted syntax have been proven to be ∃ℝ-complete as well (just like 3SAT is an

NP-complete syntactical restriction of SAT). Among other, the following restrictions

of ETR remain ∃ℝ-complete:

• INEQ: The matrix is a conjunction of atoms, each in monomial normal form.
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• Strict-INEQ: Variant of INEQ where each atom is a strict inequality.

• Feasibility: Variant of INEQ with only a single atom 𝑝 (𝑋1, . . . , 𝑋𝑛) = 0. Here,

𝑝 ∈ ℤ[𝑋1, . . . , 𝑋𝑛] is a multivariate polynomial of degree at most 4.

• ETR-Inv: Variant of INEQ in which each atom has the form

𝑋 + 𝑌 = 𝑍 or 𝑋𝑌 = 1,

where 𝑋 , 𝑌 and 𝑍 are symbols for variables. A promise version of ETR-Inv
allows us to assume that there is either no solution or a solution with all

variables in

[
1

2
, 2
]
. For example, our reduction in Chapter 5 is from ETR-Inv.

∃ℝ-Membership By definition, ∃ℝ-membership is proven by a polynomial-

time many-one reduction to ETR. Often this is straightforward, as we have seen

in Section 1.1 for the recognition of unit disk graphs. Another helpful property

is that ∃ℝ is closed under polynomial-time many-one NP-reductions [148], i.e.,
reductions executed on a non-deterministic Turing machine. Thus, reductions to

prove NP-membership may use non-determinism to guess parts of the resulting

ETR instance.

Another approach to prove ∃ℝ-membership is to apply a real-valued analog of

the Cook-Levin theorem proven by Erickson, van der Hoog and Miltzow [64]. It

states that ∃ℝ-membership is equivalent to the existence of a so-called real verifica-
tion algorithm. This is an algorithm that verifies a (possibly real-valued) witness in

polynomial time on a real RAM machine. The real RAM is a model of computation

that is similar to the classical word RAM but with additional registers that can hold

real values with arbitrary precision. Addition, subtraction, multiplication, division,

and even taking square roots of real numbers is possible in constant time. The real

RAM is omnipresent in computational geometry, in fact, the correctness of many

famous algorithms relies on the ability to compute with unbounded precision [108].
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3 Stretchability and Hyperbolic

Geometry

This chapter is based on our paper “Recognizing Unit Disk Graphs in Hyper-

bolic Geometry is ∃ℝ-Complete” presented at the 39th European Workshop on
Computational Geometry (EuroCG 2023). It is joint work with Nicholas Bieker,

Thomas Bläsius and Emil Dohse.

In this chapter, we consider the Stretchability problem. Certainly, this is one of

the most important ∃ℝ-complete problems because many ∃ℝ-hardness reductions

in the literature start from Stretchability or – more commonly – its restricted

version SimpleStretchability. Examples include Lombardi drawability [92], the

rectilinear crossing number [20], the planar slope number [89], the recognition

of various types of geometric intersection graphs [103, 133] and the realization of

graphs and linkages with prescribed edge lengths [1, 134].

Classically, Stretchability and SimpleStretchability are considered in the

Euclidean plane ℝ2
. Our main contribution of this chapter is to establish that both

remain ∃ℝ-complete in the hyperbolic plane ℍ2
. We use this insight to prove

that the recognition of hyperbolic unit disk graphs is ∃ℝ-complete. Actually, our

reduction for this result is very simple: It uses the known reduction by McDiarmid

and Müller [111] for Euclidean unit disk graph recognition as a black box, thereby

hiding all the complicated details.

Besides their simplicity, most arguments of the reduction are easily adaptable to

other geometric problems than recognizing hyperbolic unit disk graphs. We utilize

this to present a general framework to translate ∃ℝ-hardness reductions in the

literature from Euclidean to hyperbolic geometry.

Moreover, as a second application, ∃ℝ-hardness of SimpleStretchability in ℍ2

also plays an important role in the next chapter, where we prove ∃ℝ-hardness of a

purely Euclidean graph drawing problem.

Chapter Outline We start by defining Stretchability and SimpleStretchability
formally in Section 3.1. Afterward, we give a short introduction to hyperbolic

geometry in Section 3.2. The equivalence of SimpleStretchability in the Euclidean

planeℝ2
and in the hyperbolic planeℍ2

is proven in Section 3.3. The first application

is to prove ∃ℝ-hardness of recognizing hyperbolic unit disk graphs in Section 3.4.1,

the second application being our general framework in Section 3.4.2. We finish the

chapter by discussing further candidate problems for our framework.
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3 Stretchability and Hyperbolic Geometry

3.1 Stretchability of Pseudolines

A pseudoline is an 𝑥-monotone
1
curve in ℝ2

. A pseudoline arrangement A is a

collection of pseudolines that pairwise intersect each other at most once. We

say that A is simple if each pair of pseudolines intersects exactly once and no

three pseudolines have a common intersection. See Figure 3.1 for two pseudoline

arrangements.

ℓ1

ℓ2

ℓ3

ℓ4

(a) A simple and stretchable arrange-

ment of four pseudolines ℓ1, . . . , ℓ4.

𝑥 𝑦 𝑧

(b) A non-simple and non-stretchable

arrangement of nine pseudolines.

Figure 3.1: Two pseudoline arrangements with opposing properties.

A pseudoline arrangement A is stretchable if there exists a homeomorphism

𝑓 : ℝ2 → ℝ2
of the plane such that 𝑓 (A) is a line arrangement. Perhaps sur-

prisingly, not all pseudoline arrangements are stretchable. Indeed, the arrange-

ment shown in Figure 3.1b is not stretchable: By Pappus’ Hexagon Theorem [45,

page 232] the three intersection points 𝑥,𝑦, 𝑧 must be collinear, so no stretching

of the dashed pseudoline can contain just two of them. Let us note that this is the

smallest non-stretchable assignment, as all pseudolines arrangements with up to

eight pseudolines are stretchable [75].

Definition 3.1 ((Simple)Stretchability).
Input: A (simple) pseudoline arrangement A.
Question: Is A stretchable, i.e., homeomorphic to a line arrangement in ℝ2.

Let us note that there are several equivalent possibilities to encode the input of

(Simple)Stretchability. Section 3.1.1 below describes the one option that is used

throughout this thesis.

The following theorem is due to Mnëv [115] (who actually proves a much stronger

statement). Subsequently, Shor [144] and Richter-Gebert [130] gave simplified

proofs.

Theorem 3.2 (Mnëv [115]). Stretchability and SimpleStretchability are ∃ℝ-
complete.

1 An equivalent definition is that a pseudoline is a simple curve homeomorphic to a line.
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3 Stretchability and Hyperbolic Geometry

3.1.1 Encoding Pseudoline Arrangements

In order to reduce from (Simple)Stretchability we need a finite description of a

given pseudoline arrangement. We require that two pseudoline arrangements with

the same description have the same intersection pattern, i.e., the same pairs of

intersecting pseudolines and the same order of intersections along each pseudoline.

Let A = {ℓ1, . . . , ℓ𝑛} be a pseudoline arrangement with 𝑛 pseudolines. Through-

out this thesis, we always assume that no pseudoline is vertical and that the pseu-

dolines are labeled such that a vertical line to the left of all intersections crosses ℓ𝑖
below ℓ𝑗 (for 𝑖, 𝑗 ∈ {1, . . . , 𝑛}) if and only if 𝑖 < 𝑗 . We further assume that each

pseudoline ℓ ∈ A is oriented (arbitrarily) and thus divides the plane ℝ2
into two

open half-planes ℓ− and ℓ+.

Definition 3.3 (Combinatorial Description). A combinatorial description D of an
arrangement A of 𝑛 pseudolines consists of 𝑛 lists, one per pseudoline, each listing the
order of intersections along it from left to right. We say that A realizes D.

For example, the list of intersections for ℓ1 in Figure 3.1a contains (in this order) ℓ3,

ℓ4 and ℓ2. If A is simple, then each list contains exactly 𝑛 − 1 entries. Otherwise,

some lists may be shorter. If multiple pseudolines intersect in the same point, the

list entry is a tuple instead of a single other pseudoline.

Let us note that there are several other but equivalent possibilities to define a

combinatorial description in the literature. In this thesis, we just need the one from

Definition 3.3.

3.2 Introduction to the Hyperbolic Plane

The hyperbolic plane ℍ2
is a non-Euclidean geometry. In many ways it behaves

similar to the Euclidean plane ℝ2
, e.g., two points define a unique line and we can

measure distances and angles.

Formally, both ℝ2
and ℍ2

can be described by an axiomatic system (like the

one from Hilbert for ℝ2
[87]). In fact, axiomatic systems for ℝ2

and ℍ2
are nearly

identical, explaining the many similarities between ℝ2
and ℍ2

. Without going into

the technical details, Hilbert’s axiomatic system contains the so-called parallel
postulate stating that for any line ℓ and point 𝑝 not on ℓ in ℝ2

there is at most one

line through 𝑝 parallel to ℓ (indeed there is exactly one). Negating this axiom turns

Hilbert’s axiomatic system for ℝ2
into one that defines ℍ2

.

Remark 3.4 (Other Geometries). There are many other (2-dimensional) geometries

besides Euclidean and hyperbolic geometry, e.g., spherical geometry and elliptic
geometry. Both share many properties with Euclidean and hyperbolic geometry.

On the other hand, axiomatic systems for them differ significantly from the ones

for Euclidean and hyperbolic geometry. ⌟
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3 Stretchability and Hyperbolic Geometry

𝐷

(a)Beltrami-Klein disk

with hyperbolic lines.

𝐷

(b) Poincaré disk with

hyperbolic lines.

−2 −1 1 2
−2

2

2

(c) The hyperboloid 𝑆 for the

hyperboloid model.

Figure 3.2:Models of the hyperbolic plane.

3.2.1 Models of the Hyperbolic Plane

When working with the hyperbolic plane ℍ2
, we usually avoid working with the

axioms directly. Instead, we consider models, i.e., embeddings of ℍ2
into Euclidean

space. Formally, a model is a mathematical structure that defines “points” and “lines”

such that the axioms of hyperbolic geometry are true. Typically, points in ℍ2
are

mapped to points in ℝ2
and hyperbolic lines are mapped to geodesics according to

some non-Euclidean metric.

Several of these models appear in the literature, some of these are used in this

thesis. In the list below, we do not define these models formally, neither do we

prove that they indeed model the hyperbolic plane, i.e., satisfy all axioms (the

interested reader may consider [36] for the omitted details). Instead, we focus on

the properties that will be used by us.

• In the Beltrami-Klein model, the hyperbolic planeℍ2
is mapped to the interior

of a unit disk 𝐷 , the so-called Beltrami-Klein disk. The mapping is such that

the set of hyperbolic lines corresponds exactly to the set of chords of 𝐷 , see

Figure 3.2a. In particular, hyperbolic lines (and line segments) are mapped to

Euclidean line segments. This will be helpful when we consider hyperbolic

line arrangements and the SimpleStretchability problem in ℍ2
in Section 3.3

below.

• In the Poincaré disk model, the hyperbolic plane ℍ2
is again mapped to the

interior of a unit disk𝐷 , now called the Poincaré disk. In this model, hyperbolic

lines are mapped to circular arcs orthogonal to 𝐷 (this includes diameters

of 𝐷 , which can be thought of as circular arcs orthogonal to 𝐷 with infinite

radius), see Figure 3.2b. The Poincaré disk model has several useful properties:

– Circles (and circular arcs) are mapped to other circles (and circular

arcs). However, the center of a hyperbolic circle is not mapped to the

Euclidean center of the corresponding circle in the Poincaré disk.
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3 Stretchability and Hyperbolic Geometry

– The Poincaré disk model is conformal, meaning that the angles in the

hyperbolic plane equal the angles in a drawing inside the Poincaré

disk 𝐷 .

• Lastly, in the hyperboloid model, the hyperbolic plane ℍ2
gets embedded onto

a three-dimensional hyperboloid 𝑆 := {(𝑥,𝑦, 𝑧) ∈ ℝ3 | 𝑄 (𝑥,𝑦, 𝑧) = 1}, where
𝑄 (𝑥,𝑦, 𝑧) := 𝑧2 − 𝑥2 − 𝑦2 is the so-called Minkowski quadratic form. Actually,

the hyperboloid 𝑆 consists of two connected components, see Figure 3.2c.

The hyperbolic plane is represented by all points on the forward sheet 𝑆+ of 𝑆
(the connected component with 𝑧 > 0). The hyperbolic distance between two

points 𝑢, 𝑣 ∈ 𝑆+ is

𝑑ℍ(𝑢, 𝑣) = cosh
-1(𝐵(𝑢, 𝑣)),

where 𝐵(𝑢, 𝑣) is known as the Minkowski bilinear form

𝐵 : ℝ3 ×ℝ3 → ℝ

𝐵(𝑢, 𝑣) ↦→ 𝑢𝑧𝑣𝑧 − 𝑢𝑥𝑣𝑥 − 𝑢𝑦𝑣𝑦

and cosh
-1(𝑥) := ln

(
𝑥 +

√
𝑥2 − 1

)
is the inverse hyperbolic cosine. Note that

the Minkowski bilinear form 𝐵 is a polynomial.

3.3 Stretchability in the Hyperbolic Plane

In Section 3.1, we defined pseudolines as curves in ℝ2
that are homeomorphic

to a line in ℝ2
. However, the input for (Simple)Stretchability is not a set of

curves but only its combinatorial description. In particular, hyperbolic pseudo-

line arrangements in which every two lines intersect exactly once can be de-

scribed in the same manner as Euclidean ones
2
. This justifies the consideration of

(Simple)Stretchability in the hyperbolic plane as well, i.e., ask whether a given

pseudoline arrangement can be realized by a set of hyperbolic lines.

The main theorem of this chapter is the following easy application of the

Beltrami-Klein model of the hyperbolic plane.

Theorem 3.5. Let D be a combinatorial description of a pseudoline arrangement
in which every two pseudolines intersect exactly once. Then there is a Euclidean
line arrangement 𝐿ℝ realizing D in ℝ2 if and only if there is a hyperbolic line
arrangement 𝐿ℍ realizing D in ℍ2.

Proof. For an illustration of the following argument, see Figure 3.3.

Let 𝐿ℝ be a line arrangement in ℝ2
realizing D, and let 𝐷 be a disk strictly

enclosing all intersections of 𝐿ℝ. For each line in 𝐿ℝ, keep only its part strictly

2 In all other cases, an extended (but still finite) combinatorial description may be used to de-

scribe the relative position of non-intersecting subarrangements. One way to achieve this is to

additionally store the cyclic ordering of all intersections of pseudolines with the Poincaré disk.
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↔ ↔

𝐷 𝐷

Figure 3.3: Transforming line arrangements between the Euclidean plane ℝ2
(left)

and the hyperbolic plane ℍ2
(right, Betrami-Klein model).

inside 𝐷 . We think of 𝐷 as a unit disk and obtain a representation of a hyperbolic

line arrangement in the Beltrami-Klein model of the hyperbolic plane.

For the other direction, let 𝐿ℍ be a hyperbolic line arrangement and take a

representation inside the Beltrami-Klein disk 𝐷 . Recall that all hyperbolic lines are

represented by chords of 𝐷 . Remove 𝐷 and extend all chords to lines. The resulting

Euclidean line arrangement has the same combinatorial description because every

two pseudolines in D intersect exactly once. Therefore, all possible intersections

between two lines are already inside the Beltrami-Klein disk 𝐷 . ■

By definition, simple pseudoline arrangements fulfill the condition of Theorem 3.5,

i.e., every two pseudolines intersect exactly once. Thus, we obtain the following

corollary:

Corollary 3.6. Let D be the combinatorial description of a simple pseudoline ar-
rangement. Then D is stretchable in ℝ2 if and only if it is stretchable in ℍ2.

Remark 3.7. Theorem 3.5 does not hold for general pseudoline arrangements. For

example, consider three pseudolines ℓ1, ℓ2 and ℓ3 such that ℓ2 intersects ℓ3 and both

are parallel to ℓ1, see Figure 3.4. This pseudoline arrangement is stretchable in the

hyperbolic plane but not in the Euclidean plane. ⌟

𝐷

ℓ1

ℓ2

ℓ3

Figure 3.4: A hyperbolic line arrangement in the Beltrami-Klein disk for which no

Euclidean line arrangement with the same intersection pattern exists.
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3.4 Applications

We proceed by showing possible applications of Corollary 3.6. The applications in

this section are relatively straightforward. A more surprising application follows

in Chapter 4 below.

3.4.1 Recognition of Hyperbolic Unit-Disk Graphs

Recall that a unit disk graph is a graph that admits an intersection representation by

unit disks in ℝ2
. The class of unit disk graphs, denoted by UDG, is a well-studied

graph class due to its mathematical simplicity (compared to other geometric inter-

section graphs) and its practical relevance, e.g., in the context of sensor networks.

Usually, unit disk graphs are considered in the Euclidean plane ℝ2
. However,

in the past decade, research on intersection graphs of equally sized disks in the

hyperbolic plane ℍ2
has gained traction (see Remark 3.9 on why we have to talk

about equally sized disks instead of unit disks here). Hyperbolic geometry is well

suited to represent a wide range of graph structures, including complex scale-

free networks with heterogeneous degree distributions [24, 27, 78, 104, 119]. Most

research on such graphs is driven by the network science community studying

probabilistic network models, i.e., hyperbolic random graphs. However, when

omitting the probability distribution and looking at hyperbolic unit disk graphs as

a graph class, little is known so far.

We prove that recognizing hyperbolic unit disk graphs is ∃ℝ-complete. Let us

start by formally defining the graph class and its recognition problem.

Definition 3.8 (Hyperbolic Unit Disk Graphs, HUDG). A graph is a hyperbolic
unit disk graph if it admits an intersection representation by equally sized disks in ℍ2.
We denote the class of hyperbolic unit disk graphs by HUDG.

Let us note that there are earlier results on a related family of graph classes pa-

rameterized by the radius of the disks by Kisfaludi-Bak [100]. For a fixed 𝜌 > 0, he

defines the class UBGℍ2 (𝜌) to contain all intersection graphs of disks with radius 𝜌

in ℍ2
(UBG stands for “unit ball graph”). In a sense, the class HUDG is the union

over all 𝜌 of all these classes. This subtle difference is important when considering

asymptotic behavior, as it can be desirable to grow the disk size with the graph

size; see [23] for a detailed discussion.

Remark 3.9 (Equally Sized Disks). Our definition of hyperbolic unit disk graphs

requires an intersection representation with equally sized disks (instead of unit
disks). It is indeed important that the radius of the disks can depend on the graph:

For example, stars with up to five leaves are Euclidean unit disk graphs, while

stars with at least six leaves do not have an intersection representation by unit

(or equally sized) disks in ℝ2
. On the other hand, for every star 𝑆 , there exists a

radius 𝑟𝑆 such that 𝑆 has an intersection representation of disks with radius 𝑟𝑆 inℍ
2
.

However, there is no universal radius 𝑟 ∗ such that all stars have an intersection

representation of disks with radius 𝑟 ∗ in ℍ2
. See Figure 3.5 for an illustration. ⌟
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𝐷

(a) Star with six leaves.

𝐷

(b) Star with twelve leaves.

Figure 3.5: Two intersection representations of stars by equally sized (!) disks in
the hyperbolic plane (shown in the Poincaré disk model).

The recognition problem for a graph class G is to decide whether a given graph 𝐺

belongs to G:

Definition 3.10 (Recog(G)).
Input: A graph 𝐺 .
Question: Is 𝐺 ∈ G?

In the following, we prove that Recog(HUDG) is ∃ℝ-complete. We start by giving

a reduction to ETR, thereby proving ∃ℝ-membership.

Proposition 3.11. Recog(HUDG) is in ∃ℝ.

Proof. Let 𝐺 = (𝑉 , 𝐸) be a graph with vertex set 𝑉 = {𝑣1, . . . , 𝑣𝑛}. We introduce

the following variables: A single variable 𝑅 and for each vertex 𝑣𝑖 ∈ 𝑉 the (three-

dimensional) variable 𝑉𝑖 = (𝑋𝑖, 𝑌𝑖, 𝑍𝑖). We think of 𝑉𝑖 as the coordinates of 𝑣𝑖 in

the hyperboloid model of the hyperbolic plane, and of 𝑅 as the threshold distance

determining whether two vertices should be adjacent.

By definition, 𝐺 is a hyperbolic unit disk graph if and only if

∃𝑉1 . . . ,𝑉𝑛, 𝑅 ∈ ℝ3𝑛+1
:

∧
{𝑣𝑖 ,𝑣 𝑗 }∈𝐸

cosh
-1(𝐵(𝑉𝑖,𝑉𝑗 )) ≤ 𝑅 ∧∧

{𝑣𝑖 ,𝑣 𝑗 }∉𝐸
cosh

-1(𝐵(𝑉𝑖,𝑉𝑗 )) > 𝑅
(3.1)

is true. Recall that 𝐵(𝑉𝑖,𝑉𝑗 ) = 𝑍𝑖𝑍 𝑗 − 𝑋𝑖𝑋 𝑗 − 𝑌𝑖𝑌𝑗 is the Minkowski bilinear form.

Sentence (3.1) is not a well-formed sentence in the ∃-fragment of the first-order

theory of the reals because their syntax does not contain (hyperbolic) trigonometric

functions like cosh
-1(·). However, cosh-1(·) is a monotone function, so sentence (3.1)

can be rewritten as

∃𝑉1 . . . ,𝑉𝑛, 𝑅 ∈ ℝ3𝑛+1
:

∧
{𝑣𝑖 ,𝑣 𝑗 }∈𝐸

𝐵(𝑉𝑖,𝑉𝑗 ) ≤ 𝑅 ∧
∧

{𝑣𝑖 ,𝑣 𝑗 }∉𝐸
𝐵(𝑉𝑖,𝑉𝑗 ) > 𝑅. (3.2)
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Sentence (3.2) is a valid ETR instance (using that the Minkowski bilinear form is

a polynomial) and equivalent to 𝐺 ∈ HUDG. The reduction takes quadratic time,

thus ∃ℝ-membership follows. ■

We now consider ∃ℝ-hardness. It is well-known that Recog(UDG), i.e., the recog-
nition of Euclidean unit disk graphs, is ∃ℝ-complete [97, 111, 112], proven by a

reduction from SimpleStretchability. Our reduction for Recog(HUDG) builds on
the reduction by McDiarmid and Müller [111] (we chose the reduction from the

conference version [111] over the reduction from the journal version [112] because

it is conceptually simpler).

Allow us to shortly summarize their reduction: LetD be a combinatorial description

of a simple pseudoline arrangement. McDiarmid and Müller construct a graph𝐺D
fromD as follows: Let 𝑛 be the number of pseudolines ℓ1, . . . , ℓ𝑛 and let𝑚 = 1+

(𝑛+1
2

)
be the number of cells 𝐶1, . . . ,𝐶𝑚 . The arrangement described by D has exactly

this number of cells, because it is simple. We define𝐺D as the graph with vertex set

𝑉 = 𝐴 ∪ 𝐵 ∪𝐶 , where 𝐴 = {𝑎1, . . . , 𝑎𝑛}, 𝐵 = {𝑏1, . . . , 𝑏𝑛} and lastly𝐶 = {𝑐1, . . . , 𝑐𝑚}.
Vertex 𝑐𝑖 corresponds to cell 𝐶𝑖 . Regarding the edges, each of the sets 𝐴, 𝐵 and 𝐶

forms a clique. Furthermore, 𝑐𝑖 (for 𝑖 ∈ {1, . . . ,𝑚}) is connected to 𝑎 𝑗 (for 𝑗 ∈
{1, . . . , 𝑛}) if and only if 𝐶𝑖 ∈ ℓ−𝑗 , and to 𝑏 𝑗 (for 𝑗 ∈ {1, . . . , 𝑛}) if and only if 𝐶𝑖 ∈ ℓ+𝑗 .
McDiarmid and Müller prove that 𝐺D is a unit disk graph if and only if D is

stretchable. Their correctness argument is based on the following lemma:

Lemma 3.12 (adapted from [111, Lemma 1]). Fix a unit disk intersection represen-
tation of 𝐺D in ℝ2. Then the line arrangement 𝐿 = {ℓ1, . . . , ℓ𝑛} defined by

ℓ𝑖 :=
{
𝑝 ∈ ℝ2 | ∥𝑝 − 𝑎𝑖 ∥ = ∥𝑝 − 𝑏𝑖 ∥

}
has combinatorial description D (up to isometry).

The line ℓ𝑖 defined in Lemma 3.12 is the perpendicular bisector of the line segment

between 𝑎𝑖 and 𝑏𝑖 . In fact, the proof by McDiarmid and Müller still holds if we

consider the hyperbolic plane ℍ2
and hyperbolic distances instead. As a corollary

of their proof, we obtain the following hyperbolic version of Lemma 3.12:

Lemma 3.13 (based on [111, Lemma 1]). Fix an intersection representation of𝐺D
by equally sized disks in ℍ2. Then the line arrangement 𝐿 = {ℓ1, . . . , ℓ𝑛} defined by

ℓ𝑖 :=
{
𝑝 ∈ ℍ2 | 𝑑ℍ(𝑝, 𝑎𝑖) = 𝑑ℍ(𝑝, 𝑏𝑖)

}
has combinatorial description D (up to isometry).

Building on the reduction by McDiarmid and Müller sketched above, we are now

ready to describe our reduction to prove ∃ℝ-hardness of Recog(HUDG).

Proposition 3.14. Recog(HUDG) is ∃ℝ-hard.
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Proof. LetD be the combinatorial description of a simple pseudoline arrangement,

i.e., an instance of the ∃ℝ-complete SimpleStretchability problem. Using the

reduction from McDiarmid and Müller sketched above, we obtain a graph 𝐺D
that is a Euclidean unit disk graph if and only if D is stretchable in ℝ2

[111]. By

Corollary 3.6 this is equivalent to D being stretchable in ℍ2
.

Recently, Bläsius, Friedrich, Katzmann and Stephan proved that UDG ⊆ HUDG,
i.e., every Euclidean unit disk graph is also a hyperbolic unit disk graph

3
[23]. We

conclude that 𝐺D ∈ HUDG if D is stretchable in ℍ2
.

It remains to show the other direction, namely that D is stretchable if 𝐺D ∈
HUDG. This follows directly from Lemma 3.13. ■

The following theorem follows directly from Propositions 3.11 and 3.14:

Theorem 3.15. Recog(HUDG) is ∃ℝ-complete.

3.4.2 A Framework for ∃ℝ-Hardness

We saw in Section 3.1 that SimpleStretchability is the basis for many ∃ℝ-hardness

reductions in ℝ2
. In Section 3.4.1, we adapted the reduction for the Euclidean

Recog(UDG) problem to the hyperbolic Recog(HUDG) problem. The goal of this

section is to generalize the reduction from Section 3.4.1 to a few (hopefully) simple

steps that are independent of the specific Recog(HUDG) problem. We believe that

the resulting framework is applicable to other geometric problems as well, see

Section 3.4.3.

Let Πℝ be a geometric decision problem and 𝑓 be a polynomial-time reduction

from SimpleStretchability to Πℝ establishing ∃ℝ-hardness. Further, let Πℍ be

the corresponding decision problem obtained by considering the hyperbolic plane

instead of the Euclidean plane
4
. Our framework consists of the following steps. It

allows us to prove ∃ℝ-hardness of Πℍ by using the reduction 𝑓 intended for Πℝ:

Framework 3.16 (Hyperbolic ∃ℝ-Hardness).
1. Let D be a combinatorial description of a simple pseudoline arrangement,

i.e., an instance of the ∃ℝ-complete SimpleStretchability problem.

2. Apply the reduction 𝑓 to obtain 𝐼 = 𝑓 (D), i.e., an instance of the Euclidean

problemΠℝ. Recall that 𝐼 is a yes-instance ofΠℝ if and only ifD is stretchable.

3. Prove that every yes-instance of Πℝ is also a yes-instance of Πℍ.

4. Prove that a realization of a yes-instance of Πℍ in ℍ2
can be used to extract a

hyperbolic line arrangement realizing D.

3 Note that the converse is not true. Consider again Figure 3.5 for examples of hyperbolic unit

disk graphs that are not Euclidean unit disk graphs.

4 You may think of Πℝ = Recog(UDG) and Πℍ = Recog(HUDG). In this case, the reduction 𝑓 is

the construction of 𝐺D by McDiarmid and Müller [111].
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In the following, we consider the steps of the framework in more detail. We argue

why the framework is correct, and how a typical application of the framework

looks like.

Steps 1 and 2 require no work when applying the framework.

Step 3 ensures that a stretchable instance D yields a yes-instance of Πℍ. This step

requires coming up with a new argument. Still, we expect it to be relatively

simple because locally ℝ2
and ℍ2

are very similar. A promising approach is

to scale a Euclidean realization of 𝐼 to a tiny area, and to then interpret the

Euclidean polar coordinates as hyperbolic ones.

Step 4 ensures correctness. We have to show that a realization of a yes-instance

of Πℍ in ℍ2
yields a hyperbolic line arrangement realizingD. In doing so, we

prove that a no-instance of SimpleStretchability is mapped to a no-instance

of Πℍ. This step is non-trivial, but the Euclidean reduction 𝑓 for Πℝ might

help us again here (though not as a black box as in Step 2): If we are lucky, the

argument why a realization of 𝐼 in ℝ2
induces a Euclidean line arrangement

realizing D only uses the axioms of absolute geometry (the “common subset”

of Euclidean and hyperbolic geometry) and works without any adaptations

for realizations in ℍ2
, too.

Example 3.17 (Applying the Framework to Reprove Proposition 3.14). Using our
framework, proving ∃ℝ-hardness of Recog(HUDG) becomes extremely simple:

• Step 3 follows from UDG ⊆ HUDG, which is proven by Bläsius, Friedrich,

Katzmann and Stephan [23]. Their approach follows exactly our sketched

idea of scaling a Euclidean representation to a tiny area, to then interpret the

Euclidean polar coordinates of all disks to be hyperbolic polar coordinates.

• Step 4 follows directly from Lemma 3.13. Recall that this lemma is a simple

corollary of the proof of Lemma 3.12, i.e., the same lemma for the Euclidean

problem Recog(UDG). Proving Lemma 3.13 just requires checking that all

steps in the proof of Lemma 3.12 also work in the hyperbolic plane ℍ2
. ⌟

3.4.3 Discussing Further Graph Classes

In search of further applications of our framework, we discuss several other can-

didate graph classes below. While in principle being applicable to most of these

classes, we still reach very different conclusions: As it turns out, for some classes

the Euclidean and hyperbolic recognition problems are equivalent, rendering the

framework unnecessary for them. In another case, the framework is applicable,

but ∃ℝ-completeness is not (yet) proven even for the Euclidean variant. Lastly, we

discuss a problem for which we would have to adapt the framework slightly.

Disk Graphs A (hyperbolic) disk graph is a graph that admits an intersection

representation by disks in ℝ2
, respectively ℍ2

. Let us denote the classes of

(hyperbolic) disk graphs by DISK and HDISK.
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3 Stretchability and Hyperbolic Geometry

Indeed, Recog(DISK) is ∃ℝ-complete [97, 112] and our framework is applica-

ble to prove that Recog(HDISK) is also ∃ℝ-complete. Steps 3 and 4 require

arguments similar to the ones for (hyperbolic) unit disk graphs. We omit

these arguments here, as there is an easier argument for the ∃ℝ-hardness:
It holds that DISK = HDISK, so Recog(DISK) and Recog(HDISK) are ac-

tually the same problem. As such, they are obviously equally difficult. To

prove DISK = HDISK, consider a disk intersection representation R in ℝ2
.

Enclose R by a large circle and interpret this circle as a Poincaré disk. As

the Poincaré disk model maps hyperbolic circles to Euclidean circles, we

constructed a disk representation in ℍ2
. The other direction works similarly

by just “ignoring” the Poincaré disk.

Segment Graphs (Hyperbolic) segment graphs are those admitting an intersection

representation by line segments in ℝ2
, respectively ℍ2

. We denote the corre-

sponding graph classes by SEG and HSEG. ∃ℝ-completeness of Recog(SEG)
is well-known [103, 110, 133].

The situation of (hyperbolic) segment graphs is similar to those of (hyperbolic)

disk graphs: While our framework is applicable, it is unnecessary because

SEG = HSEG. The proof is the same as for DISK = HDISK, just switch to the

Beltrami-Klein model of the hyperbolic plane, which maps hyperbolic line

segments to Euclidean line segments.

Unit Segment Graphs (Hyperbolic) unit segment graphs are intersection graphs

of equal length
5
segments in ℝ2

, respectively ℍ2
. The corresponding graph

classes are denoted by USEG andHUSEG. It is known that USEG ⊊ SEG [35],

so this is indeed a sensible question.

To the best of our knowledge, it is not known whether Recog(USEG) is ∃ℝ-
hard

6
. If ∃ℝ-hardness could be proven by a reduction from SimpleStretcha-

bility, then we consider Recog(HUSEG) to be a promising candidate for our

framework.

Step 3 of our framework, i.e., proving that USEG ⊆ HUSEG, can be done

along the lines of [23, Theorem 1]. Note that we do not know if this inclusion is

strict. Step 4 would of course depend on the hypothetical Euclidean reduction.

Linkage Realization Schaefer proves that the GraphRealizability problem is

∃ℝ-complete, i.e., deciding whether a graph has a straight line drawing inℝ2

with prescribed edge lengths [134]. He further proves that this also holds if

several vertices are allowed to overlap or vertices may lie on edges. In this

5 The reason for considering equal length instead of unit segments is the same as for (hyperbolic)

unit disk graphs, see Remark 3.9.

6 Hoffmann, Miltzow, Weber and Wulf claim that Recog(USEG) is ∃ℝ-complete (personal commu-

nication). They prove this by a reduction from SimpleStretchability to Recog(USEG), exactly
what we need to apply our framework. However, a written version was not yet available at the

time of submission of this thesis.
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3 Stretchability and Hyperbolic Geometry

case, the problem is known as LinkageRealizability. His reduction is from

SimpleStretchability.

Are these problems ∃ℝ-complete in ℍ2
as well? Our framework is not di-

rectly applicable because Step 3 does not fit this kind of problem. Nevertheless,

Schaefer’s Euclidean reduction may serve as the basis for a hyperbolic reduc-

tion: The main ingredients are two gadgets that force triples of vertices to be

(1) collinear and (2) in a particular order in the resulting drawing. Both gad-

gets are based on a mechanism known as the Peaucellier linkage. Kourganoff
presents a hyperbolic version of the Peaucellier linkage [102]. While the

details remain to be checked, we are confident that hyperbolic gadgets can

be built with this mechanism.

Conjecture 1. The GraphRealizability and LinkageRealizability problems

are ∃ℝ-complete in ℍ2
.

3.5 Conclusion and Open Problems

Based on Corollary 3.6, i.e., the equivalence of SimpleStretchability in ℝ2
and ℍ2

,

we proved ∃ℝ-completeness of Recog(HUDG) using the already known reduction

for Recog(UDG). The proof strategy was independent of the concrete problem,

allowing us to formulate a general framework to transform ∃ℝ-hardness reductions

from ℝ2
to ℍ2

.

Open Problem 1. To which other problems is our framework applicable? How

can the framework be extended to be applicable to a wider range of problems? In

particular, answer Conjecture 1.

We already discussed several candidates in Section 3.4.3.

In addition to Euclidean and hyperbolic geometry, one might also consider spherical
geometry. Recall that two points in the Euclidean plane define a unique line. Simi-

larly, two points on a sphere define a unique great circle (a largest possible circle
through both points). Now, a (great-)pseudocircle is a simple closed curve, in particu-

lar homeomorphic to a (great-)circle on a sphere. A (great-)pseudocircle arrangement
is a set of (great)-pseudocircles such that every pair is either independent or crosses

exactly twice. Whether a (great-)pseudocircle arrangement is circularizable, i.e.,
homeomorphic to a (great-)circle arrangement, is ∃ℝ-complete [65].

Open Problem 2. Is there a similar framework in spherical geometry?
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4 Lombardi Graph Drawing

This chapter is based on our paper “On the Complexity of Lombardi Graph

Drawing” published at the 31st International Symposium on Graph Drawing and
Network Visualization (GD 2023) [92].

In this chapter, we present an application of the main result from the previous

chapter, which states that SimpleStretchability is equivalent in ℝ2
and ℍ2

. We

study whether a graph admits a so-called Lombardi drawing, a well-investigated
graph drawing style that embeds graphs into the Euclidean plane ℝ2

. Still, the key

idea of the proof is to “think hyperbolically”.

4.1 Lombardi Drawings of Graphs

Inspired by the work of American artist Mark Lombardi [88], a Lombardi drawing
of a given graph 𝐺 maps vertices to points and edges to circular arcs or line

segments connecting their endpoints. Furthermore, each vertex 𝑣 has perfect angular
resolution, meaning that all angles between edges incident to 𝑣 have an equal

measure of 2𝜋/deg(𝑣). Notably, planarity is not required (even for planar graphs)

and the crossing angle at intersections may be arbitrary. See Figure 4.1 for Lombardi

drawings of three well-known graphs.

(a) Octahedron Graph (b) Petersen Graph (c) Grötzsch Graph

Figure 4.1: Three Lombardi drawings created with the Lombardi Spirograph by

Eppstein [56].

Introduced by Duncan, Eppstein, Goodrich, Kobourov and Nöllenburg over ten

years ago [56], Lombardi drawings have received a lot of attention in the graph

drawing community, see the related work in Section 4.2 below.While most literature
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4 Lombardi Graph Drawing

focuses on the construction of Lombardi drawings for different graph classes, the

computational complexity to decide whether a Lombardi drawing exists remains

largely unknown. To the best of our knowledge, NP-completeness is only known

for certain regular graphs under the additional requirement that all vertices must lie

on a common circle [56]. No lower or upper bounds on the complexity for general

graphs are known (allowing arbitrary vertex placement).

We consider the case that the graph𝐺 comes with a fixed rotation system R, i.e.,

a cyclic ordering of the incident edges around each vertex. To this end, we define

the following decision problem:

Definition 4.1 (Lombardi).
Input: A graph𝐺 and a rotation system R that fixes the cyclic ordering of the incident

edges around each vertex.
Question: Does 𝐺 admit a Lombardi drawing respecting R.

Our main result is to determine the exact computational complexity of Lombardi:

Theorem 4.2. Lombardi is ∃ℝ-complete.

Previous work frequently utilizes hyperbolic geometry to construct Lombardi

drawings [56, 59, 62], the reason being that straight line segments in the hyperbolic

planeℍ2
can be visualized by circular arcs in the Euclidean planeℝ2

(with the same

crossing angles). We take a similar approach: A key ingredient of our ∃ℝ-hardness

reduction is Corollary 3.6, i.e., that a simple pseudoline arrangement is stretchable

in the Euclidean plane ℝ2
if and only if it is stretchable in the hyperbolic plane ℍ2

(see Sections 3.1 and 3.2 for the necessary definitions). This result allows us on the

one hand to construct Lombardi drawings from hyperbolic line arrangements, and

on the other hand to prove that sometimes no Lombardi drawing can exist.

Chapter Outline We start by reviewing the related work in Section 4.2, before

recalling the necessary preliminaries in Section 4.3. The main part of this chapter

presents the ∃ℝ-completeness proof in Section 4.4. There, we first consider a

restricted (but easier) case in Section 4.4.1, before presenting the general case in

Section 4.4.2.

4.2 Related Work

Lombardi drawings were introduced by Duncan, Eppstein, Goodrich, Kobourov and

Nöllenburg [56], motivated by the network visualizations of Mark Lombardi [88].

While not all graphs admit Lombardi drawings (with or without prescribing the

rotation system) [55, 56], many graph classes always admit Lombardi drawings.

Among them are 2-degenerate (and some 3-degenerate) graphs [56], subclasses of

4-regular graphs [56, 99] and many classes of planar graphs that even admit planar

Lombardi drawings. These include trees [57], cactus graphs [63], Halin graphs [56,

60], subcubic graphs [59], and outerpaths [55]. However, many planar graphs do

not admit planar Lombardi drawings in general [55, 56, 59, 61, 99].
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4 Lombardi Graph Drawing

A user study confirmed that Lombardi drawings are considered more aesthetic

than straight line drawings but do not increase the readability [124].

Many variants have been considered: In a 𝑘-circular Lombardi drawing, all
vertices lie on one of 𝑘 concentric circles [56]. Slightly relaxing the perfect angu-

lar resolution condition leads to near Lombardi drawings [43, 99]. Lastly, edges
in 𝑘-Lombardi drawings may be drawn as the concatenation of up to 𝑘 circular

arcs [55, 99].

Notmuch is known regarding the computational complexity of decidingwhether

a given graph admits a Lombardi drawing. Proving that a graph class always admits

a Lombardi drawing is usually done constructively, and this is the case for all classes

mentioned above. In fact, these proofs lead to efficient algorithms (at least in the

real RAM model of computation in which square roots can be computed exactly).

On the other hand, it is NP-complete to decide whether 𝑑-regular graphs have a

1-circular Lombardi drawing if 𝑑 ≡ 2 mod 4 [56]. Containment in NP might be

surprising as this is in sharp contrast to our main result showing ∃ℝ-hardness
for general graphs and “classical” Lombardi drawings. NP-membership follows

because those graphs are yes-instances if and only if they are Hamiltonian, an

easily verifiable property.

4.3 Preliminaries

SimpleStretchability Our reduction to establish ∃ℝ-hardness is from the

SimpleStretchability problem as introduced in Section 3.1. In particular, the inter-

section pattern of a given pseudoline arrangement A is given by its combinatorial

description D. To recall, this means that for each pseudoline ℓ ∈ A we store an

ordered list enumerating all intersections of ℓ with other pseudolines in A.

Hyperbolic Plane ℍ2
Recall Corollary 3.6, i.e., that a simple pseudoline arrange-

ment A is stretchable in ℝ2
if and only if it is stretchable in ℍ2

. In particular, we

seek realizations in the Poincaré disk model because its properties lead us towards

constructing Lombardi drawings: Hyperbolic lines are mapped to circular arcs,

exactly what we need for the edges in a Lombardi drawing. Furthermore, these

circular arcs are orthogonal to the Poincaré disk. As the Poincaré disk model is

conformal (it preserves angles), this helps us obtain perfect angular resolution.

Circle Geometry A circle inversion with respect to a circle 𝑐 with midpoint𝑚

and radius 𝑟 swaps the interior and the exterior of 𝑐 . Each point 𝑝 ∈ ℝ2 \ {𝑚}
is mapped to another point 𝑝′ ∈ ℝ2 \ {𝑚} such that both lie on the same ray

originating from𝑚 and such that ∥𝑝 −𝑚∥ · ∥𝑝′ −𝑚∥ = 𝑟 2. See Figure 4.2 for an

example. By adding a single point at infinity (denoted by∞) to ℝ2
, we obtain the

so-called extended plane, allowing us to extend the definition of a circle inversion

to ℝ ∪ {∞}. Now𝑚 is mapped to∞ and vice versa.

Circle inversions map circles and straight lines to other circles and straight lines.

Additionally, they are conformal, i.e., they preserve the angles between crossing
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𝑐

𝑚 𝑝 𝑝′

𝑟

Figure 4.2: Inversion of a point 𝑝 with respect to a circle 𝑐 of radius 𝑟 .

lines and circles. In particular, they map Lombardi drawings to other Lombardi

drawings. See [140] for a more thorough introduction.

4.4 Computational Complexity of Lombardi

We prove that Lombardi is ∃ℝ-complete, i.e., deciding whether a graph admits

a Lombardi drawing respecting a fixed rotation system. For that, we provide a

polynomial-time many-one reduction from SimpleStretchability.
Our reduction is split into two parts: We start by transforming a combinatorial

description D of a simple pseudoline arrangement into a graph 𝐺 with a fixed

rotation systemR. The reduction is such thatD is stretchable if and only if𝐺 admits

a Lombardi drawing Γ respecting R, under the additional restriction that certain

cycles in𝐺 must be drawn as circles in Γ. Only then we extend our construction so

to enforce the additional restrictions “automatically” in each Lombardi drawing.

4.4.1 Restricted Lombardi Drawings

The following construction is illustrated in Figure 4.3. Let D be a combinatorial

description of a simple arrangement A = {ℓ1, . . . , ℓ𝑛} of 𝑛 ≥ 2 pseudolines, i.e., an

instance of the ∃ℝ-complete SimpleStretchability problem. As A is simple, each

pseudoline has exactly 𝑛−1 intersections listed inD, one for each other pseudoline.

The first step of the construction is to extend the pseudoline arrangement A
by a simple closed curve 𝛾 intersecting every pseudoline in D exactly twice, such

that 𝛾 contains all intersections of A in its interior, see Figure 4.3a. Let us denote

the resulting arrangement by A𝛾 . The combinatorial description D𝛾 of A𝛾 can be

obtained by adding one intersection with 𝛾 to the beginning and to the end of each

pseudoline’s list. Similarly, D𝛾 contains a list of intersections for 𝛾 whose cyclic

ordering is ℓ1, . . . , ℓ𝑛, ℓ1, . . . , ℓ𝑛 .

Now let 𝐺𝛾 be the following graph: We start by adding two vertices 𝑣𝑙𝑖 and 𝑣
𝑟
𝑖

per pseudoline ℓ𝑖 corresponding to the left- and rightmost intersections of ℓ𝑖 (these

are the ones with 𝛾 ). These 2𝑛 vertices are then connected to form a cycle in the

order they appear on 𝛾 . Next, we connect each pair 𝑣𝑙𝑖 and 𝑣
𝑟
𝑖 by an edge 𝑒𝑖 . The

rotation system R𝛾 shall be such that all edges 𝑒𝑖 are on the same side of 𝐶𝛾 . Now,

for each pseudoline ℓ𝑖 , we add a path 𝑃𝑖 from 𝑣𝑙𝑖 to 𝑣
𝑟
𝑖 by iterating through the list of

its intersections from left to right. For each intersection with another pseudoline ℓ𝑗 ,
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𝛾

ℓ4

ℓ1

ℓ3
ℓ2

(a) An arrangement of four pseu-

dolines enclosed by a curve 𝛾 .

𝑣𝑙1 𝑣𝑙2 𝑣𝑙3 𝑣𝑙4 𝑣𝑟1 𝑣𝑟2 𝑣𝑟3 𝑣𝑟4

𝐶𝛾

𝑒1
𝑒2

𝑒3
𝑒4

𝑃1

𝑣𝑙1,2

𝑣𝑟1,2
𝐶3,4

𝐶2

(b) Graph𝐺𝛾 drawn such that it respects

rotation system R𝛾 .

Figure 4.3: Example construction of𝐺𝛾 and R𝛾 from a pseudoline arrangement A.

we add (in this order) two new vertices 𝑣𝑙𝑖, 𝑗 and 𝑣
𝑟
𝑖, 𝑗 to the path. In R𝛾 , path 𝑃𝑖 and

edge 𝑒𝑖 should be on opposite sides of 𝐶𝛾 . Let us denote by 𝐶𝑖 the cycle formed by

concatenating 𝑃𝑖 with 𝑒𝑖 . Lastly, for each intersection of two pseudolines ℓ𝑖 and ℓ𝑗
with 𝑖 < 𝑗 , we connect (in this order) 𝑣𝑙𝑖, 𝑗 , 𝑣

𝑙
𝑗,𝑖 , 𝑣

𝑟
𝑖, 𝑗 and 𝑣

𝑟
𝑗,𝑖 into a 4-cycle 𝐶𝑖, 𝑗 . In R𝛾 ,

the circular ordering around each of the four vertices should contain alternately

an edge of 𝐶𝑖, 𝑗 and an edge of 𝐶𝑖 respectively 𝐶 𝑗 . See Figure 4.3b for the complete

construction.

In the two lemmas below, we restrict ourselves to drawings of 𝐺𝛾 in which some

cycles must be drawn as circles. A cycle 𝐶 is said to be drawn as a circle 𝑐 if all
vertices and edges of 𝐶 lie on 𝑐 and the drawing is non-degenerate

1
. In particular,

this fixes the ordering of the vertices and edges of 𝐶 along 𝑐 (the only degree of

freedom is whether this ordering is clockwise or counterclockwise).

Lemma 4.3. If D is stretchable, then 𝐺𝛾 has a Lombardi drawing Γ respecting R𝛾
such that𝐶𝛾 , all𝐶𝑖 (for 𝑖 ∈ {1, . . . , 𝑛}) and all𝐶𝑖, 𝑗 (for 𝑖, 𝑗 ∈ {1, . . . , 𝑛} with 𝑖 < 𝑗 ) are
drawn as circles in Γ.

Proof. By Corollary 3.6, we can obtain a hyperbolic line arrangement realizing D
in the Poincaré disk model. Furthermore, each pseudoline ℓ𝑖 is drawn as a circular

arc 𝑎𝑖 (with underlying circle 𝑐𝑖 ) inside and orthogonal to the Poincaré disk. From

this, we construct a Lombardi drawing Γ of 𝐺𝛾 respecting R𝛾 .
We denote by 𝑐𝛾 the circle representing the Poincaré disk. We draw the vertices

of cycle𝐶𝛾 on it, such that 𝑣𝑙𝑖 and 𝑣
𝑟
𝑖 are placed at the left and right intersection of 𝑎𝑖

with 𝑐𝛾 . Next, we draw the edges 𝑒𝑖 outside 𝑐𝛾 on 𝑐𝑖 \ 𝑎𝑖 , and the paths 𝑃𝑖 inside 𝑐𝛾
on 𝑎𝑖 . As 𝑣

𝑙
𝑖 and 𝑣

𝑟
𝑖 have degree four and 𝑐𝑖 is orthogonal to 𝑐𝛾 , all vertices on 𝐶𝛾

have perfect angular resolution.

Next, for each pair of intersecting pseudolines ℓ𝑖 and ℓ𝑗 (with 𝑖 < 𝑗 ), we place

the vertices 𝑣𝑙𝑖, 𝑗 and 𝑣
𝑟
𝑖, 𝑗 to the left, respectively to the right, of the intersections

1 A drawing is degenerate if two vertices are drawn at the same point or a vertex is drawn in the

interior of an edge.
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on 𝑎𝑖 (and similar 𝑣𝑙𝑗,𝑖 and 𝑣
𝑟
𝑗,𝑖 on 𝑎 𝑗 ) such that they lie on a common circle 𝑐𝑖, 𝑗 which

is orthogonal to 𝑎𝑖 and 𝑎 𝑗 . Here, the orthogonality of 𝑐𝑖, 𝑗 with 𝑎𝑖 and 𝑎 𝑗 guarantees

perfect angular resolution at the four involved vertices. (We prove in Lemma 4.11

below that such a circle indeed exists.) Furthermore, we can choose 𝑐𝑖, 𝑗 small enough

so that no two such circles intersect, touch or contain each other.

The drawing is non-degenerate, respects R𝛾 , has 𝐶𝛾 , all 𝐶𝑖 and all 𝐶𝑖, 𝑗 drawn as

circles and perfect angular resolution, i.e., it is a Lombardi drawing. ■

See Figure 4.4 for a Lombardi drawing of the graph shown in Figure 4.3b that is

constructed as described in the proof of Lemma 4.3.

𝐶𝛾

𝑣𝑙1

𝑣𝑟1

𝑒1

Figure 4.4: A Lombardi drawing of the graph constructed in Figure 4.3.

Lemma 4.4. If 𝐺𝛾 has a Lombardi drawing Γ respecting R𝛾 such that 𝐶𝛾 , all 𝐶𝑖 (for
𝑖 ∈ {1, . . . , 𝑛}) and all 𝐶𝑖, 𝑗 (for 𝑖, 𝑗 ∈ {1, . . . , 𝑛} with 𝑖 < 𝑗) are drawn as circles in Γ,
then D is stretchable.

Proof. Let 𝑐𝛾 be the circle that 𝐶𝛾 is drawn as. We can assume without loss of

generality that all edges 𝑒𝑖 are drawn outside 𝑐𝛾 and all paths 𝑃𝑖 are drawn inside 𝑐𝛾 ,

as we can otherwise consider the drawing obtained from Γ by a circle inversion

with respect to 𝑐𝛾 . Recall that all vertices on 𝐶𝛾 have degree four. Let 𝑐𝑖 be the

circles that the cycles𝐶𝑖 are drawn as (for 𝑖 ∈ {1, . . . , 𝑛}). All 𝑐𝑖 are orthogonal to 𝑐𝛾
because Γ has perfect angular resolution.

This allows us to interpret 𝑐𝛾 as a Poincaré disk, and each circular arc 𝑎𝑖 of 𝑐𝑖
containing the drawing of 𝑃𝑖 in Γ as a hyperbolic line. Therefore, the interior

of 𝑐𝛾 induces a hyperbolic line arrangement. We prove that this hyperbolic line

arrangement has combinatorial description D.
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To this end, consider an arbitrary but fixed path 𝑃𝑖 . From left to right along 𝑃𝑖 , we

encounter pairs of vertices 𝑣𝑙𝑖, 𝑗 and 𝑣
𝑟
𝑖, 𝑗 that, together with 𝑣

𝑙
𝑗,𝑖 and 𝑣

𝑟
𝑗,𝑖 , form a 4-cycle

corresponding to the intersection between pseudolines ℓ𝑖 and ℓ𝑗 (assuming 𝑖 < 𝑗 ).

As 𝑐𝑖 and 𝑐 𝑗 are circles orthogonal to 𝑐𝛾 , their circular arcs 𝑎𝑖 and 𝑎 𝑗 intersect at

most once. Furthermore, as the vertices on 𝐶𝑖, 𝑗 are alternately on 𝑃𝑖 and 𝑃 𝑗 , there

must be an odd number of intersections between 𝑎𝑖 and 𝑎 𝑗 inside the drawing of𝐶𝑖, 𝑗
in Γ. It follows, that 𝑎𝑖 and 𝑎 𝑗 intersect exactly once, and they do so between 𝑣𝑙𝑖, 𝑗
and 𝑣𝑟𝑖, 𝑗 . Thus, each pseudoline intersects each other pseudoline exactly once and

in the order described by D, i.e., our Lombardi drawing Γ induces a hyperbolic

line arrangement with combinatorial description D. Because D is simple and by

Corollary 3.6, it follows that D is then also stretchable in ℝ2
. ■

Summarizing the results so far, we see that Lemmas 4.3 and 4.4 give a reduction

from SimpleStretchability to a restricted form of Lombardi. In what follows, we

see how to incorporate these restrictions into the reduction itself.

4.4.2 Enforcing the Circles

In Lemmas 4.3 and 4.4 above, we assumed that certain cycles in 𝐺𝛾 are drawn as

circles. Below, we describe how we can omit this explicit restriction by enforcing

all possible Lombardi drawings to “automatically” satisfy it.

An arc-polygon is a set of points 𝑣0, . . . , 𝑣𝑘 such that 𝑣𝑖 and 𝑣𝑖+1 (with 𝑣𝑘+1 = 𝑣0)
are connected by a circular arc or line segment. An arc-polygon is simple if it does
not self-touch or self-intersect. In case of two or three vertices, we speak of a bigon
and an arc-triangle, respectively. We utilize a lemma by Eppstein, Frishberg and

Osegueda [63] who characterize simple arc-triangles. Following their notation, the

vertices 𝑣0, 𝑣1 and 𝑣2 are numbered in clockwise order such that the interior of the

arc-triangle is to the right when going from 𝑣𝑖 to 𝑣 (𝑖+1) mod 3. The vertices enclose

internal angles 𝜃0, 𝜃1 and 𝜃2. If the vertices do not lie on a common line, then they

define a unique circle 𝑐 . In this case, we denote by 𝜙𝑖 the internal angle of the bigon

enclosed by 𝑐 and the circular arc 𝑎𝑖 between 𝑣 (𝑖−1) mod 3 and 𝑣 (𝑖+1) mod 3. Negative

(positive) values of 𝜙𝑖 mean that 𝑎𝑖 is outside (inside) of 𝑐 , and 𝜙𝑖 = 0 means that 𝑎𝑖
is on 𝑐 . See Figure 4.5 for an illustration.

𝑣0
𝑣1

𝑣2

𝜃0
𝜃1

𝜃2

𝜙0

𝜙1

𝜙2

𝜙0

𝜙1

𝜙2

𝑐

𝑎2

𝑎0
𝑎1

Figure 4.5: A simple arc-triangle illustrating the used notation.
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𝑣2 𝑣1𝑣0

𝜃2=𝜋𝜃0 𝜃1
ℓ

𝑟0 𝑟1

Figure 4.6: Ruling out the collinear case in Lemma 4.6.

Lemma 4.5 ([63, Lemma 4 and Corollary 5]). Let 𝑣0, 𝑣1 and 𝑣2 be a simple arc-triangle
as above, not on a common line. Then for𝜓 =

(
𝜋 −∑

2

𝑖=0 𝜃𝑖
)
/2 it holds that 𝜙𝑖 = 𝜓 +𝜃𝑖 .

We use Lemma 4.5 to prove that prescribing the interior angles of an arc-triangle to

certain values is enough to guarantee that one of its vertices lies on the underlying

circle of the circular arc connecting the other two vertices:

Lemma 4.6. Let 𝑣0, 𝑣1 and 𝑣2 be a simple arc-triangle with 𝜃0 = 𝜃1 ∈ [𝜋, 3𝜋/2)
and 𝜃2 = 𝜋 . Further, the edge 𝑣0𝑣2 is drawn as a circular arc 𝑎1 (and not as a line
segment) with an underlying circle 𝑐1. Then 𝑣0, 𝑣1 and 𝑣2 do not lie on a common line,
and 𝑐1 is the unique circle through them, with 𝑣1 on 𝑐1 \ 𝑎1.

Proof. We first rule out the case that all three vertices lie on a common line ℓ ,

see Figure 4.6: As the internal angle at 𝑣2 has size 𝜋 , vertices 𝑣0 and 𝑣1 must be on

opposite sides of ℓ . The internal angle 𝜃0 at 𝑣0 defines a ray 𝑟0 that must contain

the center of the underlying circle of 𝑎2 (the circular arc connecting 𝑣0 and 𝑣1).

Similarly, 𝜃1 defines another ray 𝑟1 that must contain the center of 𝑎2. However,

𝑟0 ∩ 𝑟1 = ∅, because 𝜃0 = 𝜃1 ∈ [𝜋, 3𝜋/2). We conclude that the three vertices cannot

lie on a common line. Thus, they lie on a unique circle 𝑐 .

We use Lemma 4.5 to compute the internal angle of the bigon enclosed by 𝑎1
and 𝑐 : We get that𝜓 = (𝜋 −∑

2

𝑖=0 𝜃𝑖)/2 = −𝜃1 and with that 𝜙1 = −𝜃1 +𝜃1 = 0, i.e., 𝑎1
must lie on 𝑐 and in particular 𝑐1 = 𝑐 . As simple arc-triangles do not self-intersect

or self-touch, it follows that 𝑣1 lies on 𝑐1 \ 𝑎. ■

Continuing with our reduction, we extend 𝐺𝛾 and R𝛾 by new vertices and edges to

obtain a graph 𝐺D with rotation system RD . We will identify several arc-triangles

in 𝐺D that fulfill the conditions of Lemma 4.6. Iteratively applying this lemma

allows us to prove that 𝐶𝛾 as well as all 𝐶𝑖 (for 𝑖 ∈ {1, . . . , 𝑛}) and all 𝐶𝑖, 𝑗 (for

𝑖, 𝑗 ∈ {1, . . . , 𝑛} with 𝑖 < 𝑗 ) must be drawn as circles in any Lombardi drawing

of 𝐺D respecting RD .
Let us introduce some notation for cycles 𝐶 = (𝑣1, . . . , 𝑣𝑘). We denote by 𝑒𝑖

the edge of the cycle connecting 𝑣𝑖 and 𝑣𝑖+1 (where 𝑣𝑘+1 = 𝑣1). If each 𝑣𝑖 (for 𝑖 ∈
{1, . . . , 𝑘}) has degree 4, then the incident edges form four angles between them,

which all have size 𝜋/2 because of perfect angular resolution. We call these the

quadrants of 𝑣𝑖 and label them by 𝑞1𝑖 , . . . , 𝑞
4

𝑖 in counterclockwise order. In doing so,

we label such that 𝑞1𝑖 is left of 𝑒𝑖 when traversing it from 𝑣𝑖 to 𝑣𝑖+1. A half-edge is an
edge incident to a vertex whose other endpoint is not yet specified.

A circle gadget for a cycle𝐶 = (𝑣1, . . . , 𝑣𝑘) as above together with 𝑘−3 additional
half-edges in each quadrant of all 𝑣 ∈ 𝑉 (𝐶) is the following set of edges: For

36



4 Lombardi Graph Drawing

𝑣1 𝑣2 𝑣8. . .

𝑞18

𝑞48𝑞38

𝑞28

Figure 4.7: Circle gadget for cycle 𝐶 = (𝑣1, . . . , 𝑣8). The four quadrants at 𝑣8 are
labeled.

𝑗 ∈ {1, . . . , 𝑘 − 3}, the 𝑗-th half-edge of 𝑞1
1
in clockwise order is joined with the 𝑗-th

half-edge of 𝑞2
𝑘− 𝑗 in counterclockwise order, see Figure 4.7. The following lemma

shows that these edges enforce that 𝐶 is drawn as a circle.

Lemma 4.7. Let 𝐺 be a graph containing a cycle 𝐶 = (𝑣1, . . . , 𝑣𝑘), extended with the
edges of a circle gadget as described above. Then in every Lombardi drawing Γ that
maps the edge 𝑒𝑘 to a circular arc 𝑎 (i.e., not to a line segment), all vertices and edges
of 𝐶 are drawn onto the underlying circle 𝑐 of 𝑎.

Proof. First, note that each vertex has equally many incident (half-)edges in each

of its four quadrants, so by the perfect angular resolution of Γ, each quadrant spans

an angle of 𝜋/2. In particular, the angle between any two consecutive cycle edges

is 𝜋 . Now consider the three cycle vertices 𝑣1, 𝑣𝑘−1 and 𝑣𝑘 which form a simple

arc-triangle whose internal angles satisfy the conditions of Lemma 4.6. It follows

that 𝑣𝑘−1 and 𝑒𝑘−1 are drawn onto 𝑐 \ 𝑎.
As we now know that the path from 𝑣1 counterclockwise via 𝑣𝑘 to 𝑣𝑘−1 follows

a single circular arc 𝑎′ in Γ, the same argument can be repeated for the simple

arc-triangle formed by the points 𝑣1, 𝑣𝑘−2 and 𝑣𝑘−1. It follows that 𝑣𝑘−2 and 𝑒𝑘−2 lie
on 𝑐 . Iterating the argument until we reach the simple arc-triangle formed by 𝑣1, 𝑣2
and 𝑣3 proves the statement. ■

With the circle gadget at hand, we can finally construct𝐺D and RD . Recall that𝐺𝛾
is 4-regular. We add 2𝑛 − 3 half-edges into each quadrant of every vertex 𝑣 ∈ 𝑉 (𝐺𝛾 )
and then the following circle gadgets:

• For the cycle𝐶𝛾 = (𝑣𝑙
1
, . . . , 𝑣𝑙𝑛, 𝑣

𝑟
1
, . . . , 𝑣𝑟𝑛) on 2𝑛 vertices. Here 𝑣𝑙

1
takes the role

of 𝑣1 and 𝑣
𝑟
𝑛 takes the role of 𝑣𝑘 in the circle gadget.

• For each cycle 𝐶𝑖 on 2𝑛 vertices (for 𝑖 ∈ {1, . . . , 𝑛}). Here 𝑣𝑟𝑖 takes the role
of 𝑣1 and 𝑣

𝑙
𝑖 takes the role of 𝑣𝑘 in the circle gadget.

• For each cycle 𝐶𝑖, 𝑗 (for 𝑖, 𝑗 ∈ {1, . . . , 𝑛} with 𝑖 < 𝑗 ). Here 𝑣1 = 𝑣𝑙𝑖, 𝑗 , 𝑣2 = 𝑣𝑙𝑗,𝑖 ,

𝑣3 = 𝑣
𝑟
𝑖, 𝑗 and 𝑣4 = 𝑣

𝑟
𝑗,𝑖 .

Note that several vertices are involved in multiple circle gadgets in our construction.

This is not a problem because we carefully placed the circle gadgets such that no two

circle gadgets operate in the same quadrant on each affected vertex. See Figure 4.8

for a visualization (for simplicity, just 𝐶1 and one 𝐶𝑖 are drawn): Green half-edges
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𝑣𝑙1

𝑣𝑟1𝑣𝑙𝑖

𝑣𝑟𝑖𝑣𝑙1,𝑖

𝑣𝑟1,𝑖𝑣𝑙𝑖,1 𝑣𝑟𝑖,1

𝑐𝛾

Figure 4.8: How to combine different circle gadgets.

show which quadrants are used by the circle gadget for 𝐶𝛾 . Orange half-edges

belong to the circle gadgets of𝐶1 and𝐶𝑖 . Lastly, blue half-edges belong to the circle

gadget of 𝐶1,𝑖 .

As the last step of the reduction, all remaining half-edges are terminated with a

new vertex of degree one. The resulting graph and rotation system are𝐺D and RD .

Lemma 4.8. If D is stretchable, then 𝐺D has a Lombardi drawing respecting RD .

Proof. We start by applying Lemma 4.3 to obtain a Lombardi drawing Γ𝛾 of the
subgraph 𝐺𝛾 of 𝐺D respecting R𝛾 and in which 𝐶𝛾 , all 𝐶𝑖 (for 𝑖 ∈ {1, . . . , 𝑛}) and
all 𝐶𝑖, 𝑗 (for 𝑖, 𝑗 ∈ {1, . . . , 𝑛} with 𝑖 < 𝑗 ) are drawn as circles.

It remains to draw the vertices and edges added by the circle gadgets. Recall that

equally many edges were added into each quadrant of all vertices 𝑣 ∈ 𝑉 (𝐺𝛾 ). Thus,
the angles between edges in 𝐸 (𝐺𝛾 ) remain unchanged. New edges must be drawn

with equal angles between them into their quadrants to obtain perfect angular

resolution.

Let 𝑒 be an edge of a circle gadget with endpoints 𝑢 and 𝑣 , and let 𝑐 be the

circle that 𝑢 and 𝑣 lie on in Γ𝛾 . By construction, 𝑒 was obtained by joining the 𝑗-th

half-edge in clockwise order in the first quadrant of 𝑢 with the 𝑗-th half-edge in

counterclockwise order in the second quadrant of 𝑣 for some 𝑗 . Thus, the two angles

between 𝑐 and the arc representing 𝑒 at 𝑢 and 𝑣 are equal and in [0, 𝜋/2). There is
exactly one circular arc that 𝑒 can be drawn onto [56, Property 1].

Lastly, we need to make sure that the vertices of degree 1 that resulted from

unjoined half-edges are drawn such that they do not lie on any other edge. This

can be achieved by drawing the half-edges sufficiently short. ■

Lemma 4.9. If 𝐺D has a Lombardi drawing Γ respecting RD , then D is stretchable.

Proof. Recall that edges of 𝐺D are mapped to circular arcs or line segments in Γ
and that each vertex has perfect angular resolution. We begin by analyzing how the

cycle 𝐶𝛾 = (𝑣𝑙
1
, . . . , 𝑣𝑙𝑛, 𝑣

𝑟
1
, . . . , 𝑣𝑟𝑛) in𝐺D must be drawn in Γ. We can assume that 𝑣𝑙

1
,

𝑣𝑟𝑛 and 𝑣
𝑟
𝑛−1 do not lie on a common line, and that the edge between 𝑣𝑙

1
and 𝑣𝑟𝑛 is

mapped to a circular arc 𝑎 (by a suitable circle inversion). Then, by Lemma 4.7, all

vertices and edges of 𝐶𝛾 lie on the underlying circle 𝑐𝛾 of 𝑎.

Next, we consider the circles 𝐶𝑖 for 𝑖 ∈ {1, . . . , 𝑛}. By applying a suitable circle

inversion with respect to 𝑐𝛾 (if necessary), we can assume that the paths 𝑃𝑖 are
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drawn inside 𝑐𝛾 . Conversely, the edges 𝑒𝑖 are drawn outside 𝑐𝛾 . Therefore, they

are drawn as circular arcs (because a line segment would be inside 𝑐𝛾 ). Applying

Lemma 4.7 to each 𝐶𝑖 guarantees that it is drawn as a circle 𝑐𝑖 in Γ.
It remains to consider the circles 𝐶𝑖, 𝑗 for 𝑖, 𝑗 ∈ {1, . . . , 𝑛} with 𝑖 < 𝑗 . If they

are not already drawn as circles 𝑐𝑖, 𝑗 , we can replace their drawing by a circle with

sufficiently small radius by Lemma 4.11.

Now it follows from Lemma 4.4 that D is stretchable. ■

4.4.3 Establishing ∃ℝ-Completeness

The previous sections establish ∃ℝ-hardness of Lombardi. It remains to prove

∃ℝ-membership as well.

Lemma 4.10. Lombardi ∈ ∃ℝ.

Proof. We describe a polynomial-time verification algorithm for a real RAM ma-

chine. Recall that the existence of such an algorithm proves ∃ℝ-membership (see

Section 2.2 and [64]).

Let 𝐺 with rotation system R be a yes-instance of the Lombardi problem. The

obvious witness is a Lombardi drawing Γ mapping each vertex to a point and each

edge to a circular arc or line segment. Given real-valued coordinates for each vertex

and a description of each edge, we have to check the following:

• No edge contains a vertex, except for its two endpoints.

• No two edges share more than one point.

• No two vertices are mapped to the same point.

• Each vertex has perfect angular resolution.

• The rotation system of Γ is R.
∃ℝ-membership follows because all of the above checks can easily be done in

polynomial time on a real RAM machine. ■

Proof of Theorem 4.2 (∃ℝ-Completeness of Lombardi). LetD be a combina-

torial description of a simple pseudoline arrangement. Construct 𝐺D and RD as

described above. By Lemmas 4.8 and 4.9, D is stretchable if and only if 𝐺D ad-

mits a Lombardi drawing respecting RD , proving ∃ℝ-hardness. ∃ℝ-membership is

proven in Lemma 4.10. Together, this yields the ∃ℝ-completeness of Lombardi. ■

4.4.4 Omitted Details

In the proof of Lemma 4.3, we construct a Lombardi drawing Γ𝛾 of 𝐺𝛾 . There, for
each pseudoline ℓ𝑖 , the corresponding path 𝑃𝑖 is drawn along a single circular arc.

Given a pair ℓ𝑖, ℓ𝑗 of two pseudolines (with 𝑖 < 𝑗 ), their corresponding circular

arcs 𝑎𝑖 and 𝑎 𝑗 cross, and we draw a sufficiently small circle 𝑐𝑖, 𝑗 enclosing their

intersection. Then the vertices 𝑣𝑙𝑖, 𝑗 , 𝑣
𝑙
𝑗,𝑖 , 𝑣

𝑟
𝑖, 𝑗 and 𝑣

𝑟
𝑗,𝑖 are placed on the intersection
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of 𝑐𝑖, 𝑗 with 𝑎𝑖 and 𝑎 𝑗 . To achieve perfect angular resolution, 𝑐𝑖, 𝑗 must be orthogonal

to both circular arcs. See again Figure 4.4. The following lemma guarantees the

existence of such a circle:

Lemma 4.11. Let 𝑎1 and 𝑎2 be two circular arcs with a unique proper intersection 𝑝
(i.e., not a touching). There is a sufficiently small circle 𝑐 orthogonal to 𝑎1 and 𝑎2
enclosing 𝑝 .

Proof. For 𝑖 ∈ {1, 2}, let 𝑐𝑖 be the underlying circle of 𝑎𝑖 with center (𝑥𝑖, 𝑦𝑖) and
radius 𝑟𝑖 . Without loss of generality, we assume that 𝑟1 ≥ 𝑟2. We denote by 𝑑 the

Euclidean distance between the centers of 𝑐1 and 𝑐2. By the assumption that 𝑎1
and 𝑎2 have a proper intersection, 𝑐1 and 𝑐2 must have two intersections, which is

the case if and only if 𝑑 < 𝑟1 + 𝑟2 and 𝑑 > 𝑟1 − 𝑟2.
We shall find a circle 𝑐 orthogonal to 𝑐1 and 𝑐2 with a tiny but fixed radius 𝑟

(whose exact value is to be determined later). Circle 𝑐 is orthogonal to 𝑐𝑖 if and only

if 𝑟 2𝑖 + 𝑟 2 = 𝑑2𝑖 , where 𝑑𝑖 denotes the distance between the center of 𝑐𝑖 and 𝑐 [140].

Thus, the center of 𝑐 must be at distance 𝑑𝑖 = (𝑟 2𝑖 + 𝑟 2)1/2 from the center of 𝑐𝑖 . In

particular, for 𝑖 ∈ {1, 2}, the center of 𝑐 must be on the circle 𝑐′𝑖 with center (𝑥𝑖, 𝑦𝑖)
and radius 𝑑𝑖 .

It remains to choose 𝑟 such that 𝑐′
1
and 𝑐′

2
have non-empty intersection. This

is the case if and only if 𝑑 ≤ 𝑑1 + 𝑑2 and 𝑑 ≥ |𝑑1 − 𝑑2 | = 𝑑1 − 𝑑2 (where the

last step follows from 𝑟1 ≥ 𝑟2). The first inequality holds for any choice of 𝑟 > 0

because 𝑑 < 𝑟1 + 𝑟2 < 𝑑1 +𝑑2 (where the first inequality follows from 𝑐1 having two

intersections with 𝑐2). For the second inequality, we know that 𝑑 > 𝑟1 − 𝑟2 (again,
because 𝑐1 and 𝑐2 intersect twice), so there is an 𝜀 > 0 such that 𝑑 = 𝑟1 − 𝑟2 + 𝜀.
Any 𝑟 > 0 such that |𝑑𝑖 − 𝑟𝑖 | < 𝜀/2 works for us: Then

𝑑 = 𝑟1 − 𝑟2 + 𝜀 >
(
𝑑1 −

𝜀

2

)
−
(
𝑑2 +

𝜀

2

)
+ 𝜀 = 𝑑1 − 𝑑2

as desired. Thus, for sufficiently small 𝑟 > 0, there are exactly two possible centers

for circles that are orthogonal to 𝑐1 and 𝑐2 and enclose one of their intersections

each. Choose the one corresponding to the intersection between 𝑎1 and 𝑎2. ■

4.5 Conclusion and Open Problems

We proved that Lombardi is ∃ℝ-complete, i.e., deciding whether a given graph𝐺

admits a Lombardi drawing respecting a fixed rotation system R. To the best of

our knowledge, this is the first result on the complexity of Lombardi drawing for

general graphs.

In fact, Lombardi drawing is just a special case of the more general problem,

where we want to draw a graph with circular arc edges and angles of prescribed

size. Our reduction immediately proves ∃ℝ-hardness for this problem as well:

Corollary 4.12. Let 𝐺 be a graph with a rotation system R, and let Θ be an angle
assignment prescribing the size of all angles in R. Then it is ∃ℝ-complete to decide
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whether𝐺 admits a drawing with edges as circular arcs or line segments respecting R
and Θ.

On the other hand, several interesting questions remain open: Our reduction heavily

relies on fixing the rotation systemR. By the perfect angular resolution requirement,

this fixes all angles in every Lombardi drawing. We wonder whether the problem

remains ∃ℝ-complete without fixing R:

Open Problem 3. What is the computational complexity of deciding whether a

graph admits any Lombardi drawing (without fixing a rotation system R)?

Concerning Open Problem 3, let us note that an extension of Lemma 4.10 for ∃ℝ-
membership is trivial. Thus, we actually ask for a stronger ∃ℝ-hardness reduction.

Given a planar graph, one usually asks for a planar Lombardi drawing. The graphs

constructed in our reduction are in general not planar. In fact, they contain arbi-

trarily large clique minors. This motivates our second open problem:

Open Problem 4. What is the complexity of deciding whether a planar graph

admits a planar Lombardi drawing (with or without fixing a rotation system R)?

Concerning Open Problem 4, let us note that a crossing gadget can easily be

constructed: At each intersection of two circular arcs 𝑎1 and 𝑎2, we add four vertices

that form a cycle𝐶 around it, just like the cycles𝐶𝑖, 𝑗 in our reduction. Inside𝐶 , one

of the circular arcs, say 𝑎1, can be “cut through”, thereby eliminating the intersection.

Complete the two loose ends with new vertices of degree one. The intact arc 𝑎2
then acts just like a circle gadget, forcing 𝐶 to be drawn as a circle. Perfect angular

resolution and the fixed rotation system guarantee that the two halves of 𝑎1 must

lie inside 𝐶 .

The existence of a crossing gadget does not yet solve Open Problem 4, because

we do not know in advance which pairs of edges intersect (this is particularly

obtuse for the edges of multiple overlapping circle gadgets).
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This chapter is based on our paper “Training Fully Connected Neural Networks

is ∃ℝ-Complete” published in Advances in Neural Information Processing Sys-
tems 36 (NeurIPS 2023) [18]. It is joint work with Daniel Bertschinger, Christoph

Hertrich, Tillmann Miltzow and Simon Weber.

This chapter considers our second example problem from Chapter 1, i.e., the neural

network training problem. For this, we shift our focus away from SimpleStretch-
ability and towards ETR itself, more precisely to its ∃ℝ-complete special case

ETR-Inv.
While the general training problem, usually denoted by EmpiricalRiskMini-

mization, is best described as a combinatorial optimization problem, our hardness

proof already holds for networks with an extremely simple architecture. As we

are going to see, this simple architecture allows us to study the problem from a

geometric perspective, and therefore to benefit from the ideas used in previous

hardness reductions for other geometric ∃ℝ-complete problems.

5.1 Introduction

The usage of neural networks in modern computer science is ubiquitous. They are

arguably the most powerful tool at our hands in machine learning [74]. Empiri-
calRiskMinimization, i.e., the neural network training problem, is one of the most

fundamental algorithmic questions in the field. It is natural to ask for its algorithmic

complexity, and indeed, a wide body of literature deals with this question for many

special cases (see Section 5.5).

Abrahamsen, Kleist and Miltzow [4] prove that the problem is ∃ℝ-complete

already for certain two-layer neural networks and linear activation functions. Their

result has one major downside, namely that the network architecture is adversarial:
The hardness inherently relies on choosing a network architecture that is particu-

larly difficult to train. The instances by Abrahamsen, Kleist and Miltzow could be

trained trivially if they were fully connected. This stems from the fact that they

use the identity function as the activation function, which reduces the problem to

matrix factorization. While intricate network architectures such as convolutional

and residual neural networks, pooling, autoencoders and generative adversarial

neural networks are common in practice, they are usually designed in a way that

facilitates training rather than making it difficult [74]. We strengthen the result

in [4] by showing ∃ℝ-completeness for fully connected two-layer neural networks.
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This shows that ∃ℝ-hardness does not stem from one specifically chosen worst-case

architecture but is inherent in the neural network training problem itself.

Although in practice a host of different architectures are used, fully connected

two-layer neural networks are arguably the most basic ones and they are often part

of more complicated network architectures [74]. We show hardness even for the

case of fully connected two-layer ReLU neural networks with exactly two input

and output neurons.

Remarkably, with only one instead of two output neurons, the problem is in NP.
This follows from a celebrated combinatorial search algorithm by Arora, Basu,

Mianjy and Mukherjee [12]. Our result explains why their algorithm was never

successfully generalized to more complex network architectures: Adding only a

second output neuron significantly increases the computational complexity of the

problem, from being contained in NP to being complete for ∃ℝ.
To achieve our result, our reduction follows a completely novel approach com-

pared to the reduction in [4]. Instead of encoding polynomial inequalities into an

adversarial network architecture, we make use of the underlying geometry of the

functions computed by two-layer neural networks and utilize the fact that their

different output dimensions have nonlinear dependencies.

Chapter Outline We start by formally introducing neural networks and their

training problem in Section 5.2. Thereafter, we present our main results in Sec-

tion 5.3. Section 5.4 presents different perspectives on how to interpret our findings,

including an in-depth discussion of the strengths and limitations. We cover related

work in Section 5.5. A simplified overview of the proof ideas is in Section 5.6. The

detailed proofs of ∃ℝ-membership and ∃ℝ-hardness follow in Section 5.7 and

Section 5.8, respectively.

5.2 Preliminaries

We introduce the necessary definitions and concepts related to neural network

training.

All neural networks considered in this thesis have a very simple architecture.

Therefore, for ease of presentation, we do not define neural networks and their

training problem in full generality here. Instead, we restrict ourselves to the simple

architectures we need.

Definition 5.1 (Fully Connected Two-Layer Neural Network). A fully connected

two-layer neural network 𝑁 = (𝑆 ∪𝐻 ∪𝑇, 𝐸) is a directed acyclic graph (the archi-
tecture) with real-valued edge weights. The vertices, called neurons, are partitioned
into the inputs 𝑆 , the hidden neurons 𝐻 and the outputs 𝑇 . Exactly all possible edges
from 𝑆 to 𝐻 as well as all possible edges from 𝐻 to 𝑇 are present. Additionally, each
hidden neuron has a real-valued bias and an activation function (ℝ → ℝ).
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The probably most commonly used activation function [12, 69, 74] is the rectified
linear unit (ReLU) defined as

ReLU: ℝ → ℝ

𝑥 ↦→ max{0, 𝑥}.

See Figure 5.1 for a small fully connected two-layer ReLU neural network.

input output

hidden

Figure 5.1: A fully connected two-layer neural network as studied in this thesis.

The symbol inside the hidden neurons denotes the ReLU activation function.

Given a neural network architecture 𝑁 as defined above, let us fix an arbitrary

ordering on 𝑆 and 𝑇 . Then 𝑁 realizes a function 𝑓 (·,Θ) : ℝ|𝑆 | → ℝ|𝑇 |
, where Θ

denotes the weights and biases that parameterize the function. For 𝑥 ∈ ℝ|𝑆 |
we

define 𝑓 (·,Θ) inductively: The 𝑖-th input neuron forwards the 𝑖-th component of 𝑥

to all its outgoing neighbors. Each hidden neuron forms the weighted sum over

all incoming values, adds its bias, applies the activation function to this sum, and

forwards it to all outgoing neighbors. An output neuron also forms the weighted

sum over all incoming values but does not add a bias and does not apply any

activation function.

For our purposes, we define the following special case of EmpiricalRiskMini-
mization, i.e., a restriction of the general neural network training problem.

Definition 5.2 (TrainNN).
Input: A 5-tuple (𝑁,𝜑, 𝐷,𝛾, 𝑐):

• 𝑁 = (𝑆 ∪𝐻 ∪𝑇, 𝐸) is the fully connected two-layer network architecture.
• 𝜑 : ℝ → ℝ is the activation function for hidden neurons.
• 𝐷 ⊆ ℚ|𝑆 | × ℚ|𝑇 | is the training data, i.e., a set of 𝑛 data points of the
form (𝑥 ;𝑦). Here, 𝑦 is called a label.

• 𝛾 ∈ ℚ≥0 is the target error.
• 𝑐 : ℝ|𝑇 | ×ℝ|𝑇 | → ℝ≥0 is a loss function. We require that it is computable
on a real RAM machine in polynomial time.

Question: Are there weights and biases Θ such that∑︁
(𝑥 ;𝑦)∈𝐷

𝑐
(
𝑓 (𝑥,Θ), 𝑦

)
≤ 𝛾?
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The data points 𝐷 and the target error 𝛾 are part of the input, which has finite

length (in some chosen encoding). We restrict them to be rational numbers because

these are straightforward to encode by noting their numerator and denominator

in binary, in contrast to much more complicated encodings required for arbitrary

(algebraic) real numbers.

Additionally, we require that the loss function is honest, meaning that it returns

zero if and only if the data is fit exactly. We will see that this is the only requirement

on the loss function to prove ∃ℝ-hardness of the zero-error case (𝛾 = 0).

5.3 Results

Ourmain result is the following theorem establishing ∃ℝ-completeness of TrainNN
even in very restricted cases:

Theorem 5.3. TrainNN is ∃ℝ-complete, even if
• there are only two input neurons,
• there are only two output neurons,
• the number of data points is linear in the number of hidden neurons,
• the data has only 13 different labels,
• the target error is 𝛾 = 0 and
• the ReLU activation function is used.

Let us note that the combination of all restrictions in Theorem 5.3 describes a special

case of EmpiricalRiskMinimization. Proving that TrainNN is ∃ℝ-hard also implies

∃ℝ-hardness for more general cases like EmpiricalRiskMinimization, for example

with more input/output neurons, more data points, more labels, arbitrary 𝛾 ≥ 0,

and possibly different activation functions.

Additionally, our ∃ℝ-hardness reduction implies algebraic universality:

Theorem 5.4. Let 𝛼 ∈ ℝ be an algebraic number. Then there exists an instance of
TrainNN, which has a solution with weights and biases Θ from ℚ[𝛼], but no solution
when the weights and biases Θ are restricted to a field 𝔽 not containing 𝛼 .

Here, ℚ[𝛼] is the smallest field extension of ℚ containing 𝛼 . This means that there

are training instances for which all global optima require irrational weights or

biases, even if all data points are integral.

Algebraic universality is known to hold for various ∃ℝ-complete problems [6],

however this is not an automatism: Algebraic universality cannot occur in problems

where the solution space is open, for example for Recog(UDG) [112]. On the

other hand, reductions to prove universality do not need to be in polynomial time.

Therefore, universality can be shown without proving ∃ℝ-hardness at the same

time.
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5.4 Discussion

There is already a wide body of literature about the computational hardness of Em-
piricalRiskMinimization, see Section 5.5 below. In order to clarify our contribution,

we use this section to discuss our results from various perspectives, pointing out

strengths and limitations.

Number of Input Neurons In practice, neural networks are often trained on

high dimensional data, thus having only two input neurons is even more restrictive

than the practical setting. Note that we easily obtain hardness for higher input

dimensions by simply placing all data points of our reduction into a two-dimensional

subspace. The precise complexity of training fully connected two-layer neural

networks with only one-dimensional input and multi-dimensional output remains

unknown. While this setting does not have practical relevance, we are still curious

about this open question from a purely mathematical perspective.

Number of Output Neurons As discussed earlier, if there is only one output

neuron instead of two, then the problem is known to be NP-complete [12, 66]. Our

reduction can easily be extended to the case with more than two output neurons

by padding all output vectors with zeros. Thus, the complexity classification is

complete with respect to the number of output neurons.

Number of Hidden Neurons Consider a situation where the number 𝑚 of

hidden neurons is larger than the number 𝑛 of data points. If there are no two

contradicting data points (𝑥1;𝑦1) and (𝑥2;𝑦2) with 𝑥1 = 𝑥2 but 𝑦1 ≠ 𝑦2, then we can

always fit all data points exactly [156]. Thus, we need at least a linear number of

data points in terms of𝑚 for ∃ℝ-hardness. Our result is (asymptotically) tight in

this aspect. Note that by adding additional data points, the ratio between 𝑛 and𝑚

can be made arbitrarily large. Thus, our reduction holds also for all settings in

which𝑚 is (asymptotically) much smaller than 𝑛.

Number of Output Labels The number of labels used in our reduction is just 13.

Requiring only a small constant number of different labels shows the relevance of

our result to practice, where the number of data points often largely exceeds the

number of labels, for instance, in classification tasks.

If all labels are contained in a one-dimensional affine subspace, then the problem

is in NP, as they can be projected down to one-dimensional labels and the problem

can be solved with the algorithm by Arora, Basu, Mianjy and Mukherjee [12]. As

any two labels span a one-dimensional affine subspace, the problem can only be

∃ℝ-hard for at least three affinely independent output labels.

We think it is not particularly interesting to close the gap between 13 and 3

output labels, but it would be interesting to investigate the complexity of the

problem when output labels have more structure. For example, in classification

tasks one often uses one-hot encodings, where the output dimension equals the
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number of classes and all labels have the form (0, . . . , 0, 1, 0, . . . , 0). Note that in this

case, at least three output dimensions are needed to obtain three different labels.

Target Error For simplicity, we only prove hardness for the case with target

error 𝛾 = 0. However, it is generally not required to fit the data exactly in real-world

applications. It is not too difficult to see that we can modify the value of 𝛾 by adding

inconsistent data points that can only be fit best in exactly one way. The precise

choice of these inconsistent data points heavily depends on the loss function. In

conclusion, for different values of 𝛾 , the decision problem does not get easier.

Activation Function The ReLU activation function is currently still the most

commonly used activation function in practice [12, 69, 74]. Our methods are proba-

bly easily adaptable to other piecewise linear activation functions, such as leaky
ReLUs. Having said that, our methods are not applicable to other types of activation
functions, such as Sigmoid, soft ReLU or step functions. We want to point out that

TrainNN (and even EmpiricalRiskMinimization) is in NP if a step function is used

as the activation function [98]. Concerning the Sigmoid and soft ReLU function, it is

not even clear whether the EmpiricalRiskMinimization is decidable, as trigonomet-

ric functions and exponential functions are not computable on the real RAM [64,

129].

Other Architectures We consider fully connected two-layer networks as the

most important case, but we are also interested in ∃ℝ-hardness results for other
network architectures. Specifically, fully connected three-layer neural networks and

convolutional neural networks are interesting. While it is hard to imagine that more

complicated architectures are easier to train, a formal proof of this intuition would

strengthen our result and show that ∃ℝ-completeness is a robust phenomenon, in

other words, independent of a choice of a specific network type.

Training in Practice Fitting the training data exactly is not required in practice.

Quite the contrary, allowing small errors significantly simplifies the training because

it permits the use of (meta-)heuristics. One meta-heuristic that often yields “good”

solutions for ∃ℝ-complete problems is gradient descent. Actually, training neural
networksmight be themost prominent example in this context: A variety of different

gradient descent variants powered by backpropagation are nowadays capable of

training neural networks containing millions of neurons. In general, we do not get

any approximation or runtime guarantees when using gradient descent, but under

the right additional assumptions such guarantees are sometimes possible [33].

From a complexity perspective, rounding the weights and biases Θ to the first

“few” digits after the comma might allow placing the problem of approximate neural
network training in NP. Yet, we are not aware of such a proof and we consider

it an interesting open question to establish this fact thoroughly. Related to this,

Bienstock, Muñoz and Pokutta [21] use the above idea to discretize the weights and

biases to show that arbitrary architectures can be trained to approximate optimality
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via linear programs with size linear in the size of the data set, but exponential in the

architecture size. While being an important insight, let us emphasize that this does

not imply NP-membership of an approximate version of neural network training.

Connection to Learning Theory We purely focus on the computational com-

plexity of EmpiricalRiskMinimization, that is, minimizing the training error . In the

practice, one usually desires to achieve low a generalization error , i.e., the error on
unseen test samples.

To formalize the concept of the generalization error, one needs to combine

the computational aspect with a statistical one. There are various models to do

so in the literature, the most famous one being probably approximately correct
(PAC) learnability [142, 149]. While EmpiricalRiskMinimization and learning are

two different questions, they are strongly intertwined; see Section 5.5 for related

work in this context. Despite the close connections, to the best of our knowledge,

the ∃ℝ-hardness of EmpiricalRiskMinimization has no direct implications on the

complexity of learning. Still, since EmpiricalRiskMinimization is the most common

learning paradigm in practice, our work is arguably also interesting in the context

of learning theory.

Lipschitz Continuity The set of data points created in the proof of Theorem 5.3

is intuitively very tame. Formally, this is captured by proving that for yes-instances

there exists a Θ such 𝑓 (·,Θ) is Lipschitz continuous for a small Lipschitz constant 𝐿.

We prove in Remark 5.21 that this holds for the instances constructed by our

reduction. Lipschitz continuity is also related to overfitting and regularization [76],

the purpose of the latter being to prefer simpler functions over more complicated

ones. Being Lipschitz continuous with a small Lipschitz constant essentially means

that the function is relatively flat. It is particularly remarkable that we can show

hardness even for small Lipschitz constants, since Lipschitz continuity has been

a crucial assumption in several recent results about training and learning ReLU

networks, for example in [21, 42, 70].

5.5 Related Work

Complexity of Neural Network Training It is well-known that minimizing

the training error of a neural network is a computationally difficult problem for a

large variety of activation functions and architectures [142].

Closest to our work is the recent ∃ℝ-completeness result by Abrahamsen,

Kleist and Miltzow for two-layer neural networks [4]. In contrast to our work,

they use the identity activation function and rely on particularly difficult to train

architectures, both qualities being uncommon in practice. Zhang [158] sketched a

similar result already in 1992: Training neural networks with real-valued data points
isNPℝ-complete, again with the identity activation function and with an adversarial

architecture. NPℝ is a complexity class in the BSS-model of computation [26], but a
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suitable discretization (considering the so-called constant-free Boolean part) yields
∃ℝ-completeness in today’s language.

For ReLU networks, NP-hardness, parameterized hardness and inapproxima-

bility results have been established even for the simplest possible architecture

consisting of only a single ReLU neuron [29, 52, 67, 72]. While all these results

require non-constant input-dimension, Froese and Hertrich show that it is also

NP-hard to train a two-layer ReLU network with two input neurons and one output

neuron [66]. On the positive side, the seminal algorithm by Arora, Basu, Mianjy and

Mukherjee [12] solves EmpiricalRiskMinimization for two-layer ReLU networks

with one output neuron to global optimality, placing the problem in NP. It was later
extended to a more general class of loss functions by Froese, Hertrich and Nieder-

meier [67]. The running time is exponential in the number of neurons in the hidden

layer and in the input dimension, but polynomial in the number of data points if

the former two parameters are considered to be constant. This NP-membership of

EmpiricalRiskMinimization with one-dimensional output is in sharp contrast to

our ∃ℝ-completeness result for TrainNN with two-dimensional outputs.

While minimizing training and generalization errors are different problems,

the hardness of the former also imposes challenges on the latter. Strategies to

circumvent hardness from the perspective of learning theory include allowing

improper learners, restricting the type of weights allowed in a neural network, or

imposing assumptions on the underlying distribution. For example, Chen, Klivans

and Meka [42] show fixed-parameter tractability of learning a ReLU network un-

der several assumptions, including Gaussian data and Lipschitz continuity of the

network. We refer to [15, 41, 53, 70, 73, 71] as a non-exhaustive list of other results

about (non-)learnability of ReLU networks in different settings.

Expressivity of ReLU Networks It is essential for our reduction to understand

the classes of functions representable by certain ReLU network architectures. So-

called universal approximation theorems state that a single hidden layer (with ar-

bitrary width) is already sufficient to approximate every continuous function on

a bounded domain with arbitrary precision [46, 90]. However, deeper networks

require much fewer neurons to reach the same expressive power, yielding a po-

tential theoretical explanation of the dominance of deep networks in practice [12,

58, 80, 82, 106, 120, 125, 132, 147, 154]. Other related work includes counting and

bounding the number of linear regions [81, 116, 117, 122, 125, 141], classifying

the set of functions exactly representable by different architectures [12, 50, 79, 85,

86, 118, 157], or analyzing the memorization capacity of ReLU networks [150, 155,

156]. Huchette, Muñoz, Serra and Tsay [91] provide a survey on the interactions

of neural networks and polyhedral geometry, including implications on training,

verification, and expressivity.
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5.6 Proof Idea

To prove ∃ℝ-hardness, we reduce from ETR-Inv, a restricted version of ETR intro-

duced in Section 2.3. To recall, an instance of ETR-Inv consists of real variables and

a conjunction of constraints in these variables. Each constraint is either an addition

constraint 𝑋 + 𝑌 = 𝑍 , or an inversion constraint 𝑋 · 𝑌 = 1. Given such an instance,

we construct a TrainNN instance that models the variables and whose training

corresponds to satisfying all addition and inversion constraints.

Variables A natural candidate for encoding variables are the weights and biases

of the neural network. However, those did not prove to be suitable for our purposes.

The main problem with using the parameters of the neural network as variables is

that the same function can be computed by many neural networks with different

combinations of these parameters. We are not aware of an easy way to normalize

the parameters.

To circumvent this issue, we work with the functions representable by fully

connected two-layer neural networks directly. We frequently make use of the

geometry of their graphs. For now, it is only important to understand that each

hidden ReLU neuron encodes a continuous piecewise linear function with exactly

two pieces (both of constant gradient). These two pieces are separated by a so-

called breakline. Now, if we have𝑚 hidden neurons, their individually encoded

functions add up such that the function computed by the whole neural network is

a continuous piecewise linear function with at most𝑚 breaklines. Between these

breaklines all pieces of the function have constant gradient.

To keep things simple for now, let us first consider a neural network with only

one input and one output neuron. We place a series of data points (𝑥𝑖 ;𝑦𝑖) ∈ ℝ2

as seen in Figure 5.2. All continuous piecewise linear functions 𝑓 (·,Θ) computed

by a neural network with only four hidden neurons (i.e., only four breaklines and

therefore at most five pieces) that fit these data points exactly must be very similar.

In fact, they can only differ in one degree of freedom, namely the slope of the piece

going through the data point 𝑝 . In our construction, this slope represents the value

of a variable. The whole set of data points enforcing this configuration is called a

variable gadget.

Linear Dependencies The key insight for encoding constraints between vari-

ables is that we can relate the values of several variable gadgets by a data point: By

placing a data point 𝑝 at a location where several variable gadgets overlap, each of

the variable gadgets contributes its part towards fitting 𝑝 . The exact contribution

of each variable gadget depends on its slope. Consequently, if one variable gadget

contributes more, the others have to lower their contribution by the same amount.

This enforces linear dependencies between different variable gadgets and can be

used to design addition and copy gadgets.
We need a second input dimension in order to intersect multiple variable gadgets.

This extends each variable gadget into a stripe in ℝ2
, with Figure 5.2 showing only
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𝑝

data point

𝑥

𝑦

Figure 5.2: The value of 𝑓 (·,Θ) is fixed (black part), except for the segment through

data point 𝑝 . The red, orange and blue segments are just three out of uncountably

many possibilities. Its slope can be used to encode a real-valued variable.

an orthogonal cross-section of this stripe. See Figure 5.3 for two intersecting variable

gadgets. Much of the technical difficulties lie in the subtleties to enforce the presence

of multiple (possibly intersecting) gadgets using a finite number of data points.

𝑝

Figure 5.3: Two intersecting variable gadgets. The slopes of the blue and the red

region encode the values. Point 𝑝 lies in the intersection of both and can encode a

linear relationship between them.

An addition gadget encodes a linear relation between three variables. In ℝ2
,

three lines (or stripes) usually do not intersect in a single point. Thus, we have to

carefully place the gadgets to guarantee such a single intersection point. To this

end, we create copies of the involved variable gadgets (copying is a linear relation

between just two variables, thus “easy”). These copies can then be positioned

(almost) freely.

Inversion We are not able to encode nonlinear constraints within only a single

output dimension [12]. By adding a second output dimension, the neural network

now represents two functions 𝑓 1(·,Θ) and 𝑓 2(·,Θ). Consequently, we are allowed
to use data points with two different output labels, one for each output dimension.

One important observation is that the locations of the breaklines of 𝑓 = 𝑓 (·,Θ) =
(𝑓1(·,Θ), 𝑓2(·,Θ)) are independent of the weights of the edges in the second layer

of the neural network. Thus, both functions 𝑓 1 and 𝑓 2 have the same breaklines.

Still, setting some weights to zero may erase a breakline in one of the functions.

We define an inversion gadget (realizing the constraint 𝑋 · 𝑌 = 1), which also

corresponds to a stripe in ℝ2
. For simplicity, we only show a cross-section here,
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see Figure 5.4. In each output dimension individually, the inversion gadget looks

exactly like a variable gadget. The inversion gadget can therefore be understood as

a variable gadget that carries two values.

We prove that by allowing only five breaklines in total, a function 𝑓 can only fit

all data points exactly if 𝑓 1 and 𝑓 2 share three of their four breaklines (while both

having one “exclusive” breakline each, which is erased in the other dimension). This

enforces a nonlinear dependency between the slopes of 𝑓 1 and 𝑓 2. By choosing the

right parameters, this nonlinear relation models exactly an inversion constraint.

𝑝

𝑞
both dimensions equal

Data points:

Dimension 1
Dimension 2

Figure 5.4: Data points 𝑝 and 𝑞 have different labels in the two output dimensions,

enforcing that the slopes of the red and the blue pieces are related via a nonlinear

dependency.

Reduction Let us illustrate the reduction by giving a simple example. Note that

this is not yet the complete picture. We start with an ETR-Inv instance, for example,

deciding whether the following sentence

∃𝑋1, 𝑋2, 𝑋3, 𝑋4 ∈ ℝ : (𝑋1+𝑋2 = 𝑋3)∧ (𝑋1+𝑋3 = 𝑋4)∧ (𝑋1 ·𝑋4 = 1)∧ (𝑋4 ·𝑋3 = 1)

is true. This instance has four variables 𝑋1, 𝑋2, 𝑋3, 𝑋4 and four constraints: two

additions and two inversions. Recall that every gadget corresponds to a stripe in

the input space ℝ2
. See Figure 5.5 for the following construction (the stripes are

drawn as lines for better readability).

• We add a variable gadget for each of the variables. All of these are placed

such that their corresponding stripes are parallel and do not overlap, see the

horizontal lines in Figure 5.5.

• We introduce threemore variable gadgets for each addition constraint, one per

involved variable. These are placed such that they have a common intersection

point while also intersecting their corresponding variable gadget. In Figure 5.5,

see the two bundles to the left. A data point at the triple intersection enforces

the addition constraint, while data points labelled •= encode that the values

of the two intersecting variable gadgets are equal.
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• Lastly, we add an inversion gadget for each inversion constraint and place

it such that it intersects the variable gadgets of the two involved variables.

See the two dashed lines in Figure 5.5. Data points labelled •=1 (•=2) enforce
equality only in the first (second) output dimension.

𝑋1
𝑋2
𝑋3
𝑋4

𝑋1 + 𝑋2 − 𝑋3 = 0

=

=

=

=

=

=

𝑋1 + 𝑋3 − 𝑋4 = 0

=1=2

=1

=2

𝑋4 · 𝑋3 = 1

𝑋1 · 𝑋4 = 1

Figure 5.5: Overview of the global arrangement of the gadgets.

To see that the above reduction is correct, assume first that the ETR-Inv instance

is true. Then there exist real values for the four variables and these values can be

used as the slopes of their corresponding variable gadgets. By the correctness of

the individual gadgets (that we prove below), it follows that each data point is fit

exactly.

Conversely, if all data points are fit exactly, then the correctness of the gadgets

implies that the slopes of the variable gadgets give a solution to the ETR-Inv instance.
Intuitively, this holds because the addition and inversion constraints are encoded

exactly by the gadgets of our construction.

5.7 ∃ℝ-Membership

∃ℝ-membership is already proven by Abrahamsen, Kleist and Miltzow:

Proposition 5.5 ([4, Section 2]). TrainNN ∈ ∃ℝ.
For the sake of completeness, while not being too repetitive, we shortly summarize

their argument: ∃ℝ-membership is shown by describing a polynomial-time real

verification algorithm (see Section 2.3 and [64]). The input of such an algorithm

is a TrainNN instance 𝐼 , as well as a witness Θ consisting of real-valued weights

and biases. Instance 𝐼 consists of a network architecture, data points 𝐷 and a target

error 𝛾 . The algorithm has to verify that the neural network parameterized by Θ
fits all data points in 𝐷 with a total error at most 𝛾 .

To achieve this, it loops over all data points in 𝐷 and evaluates the function

realized by the neural network for each of them individually. As each hidden neuron

uses the ReLU activation function, each such evaluation takes only linear time in

the size of the network. Proposition 5.5 follows, since, by Definition 5.2, the loss

function can be computed in polynomial time on a real RAM.
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5.8 ∃ℝ-Hardness

This section is devoted to proving ∃ℝ-hardness of TrainNN. Our reduction is

mostly geometric, so we start by reviewing the underlying geometry of two-layer

neural networks in Section 5.8.1. This is followed by a high-level overview of the

reduction in Section 5.8.2 before we describe the gadgets in detail in Section 5.8.3.

Finally, in Section 5.8.4, we combine the gadgets into the proof of Theorem 5.3.

5.8.1 Geometry of Two-Layer Neural Networks

Our reduction constructs a neural network that has just two input neurons, two

output neurons, and 𝑚 hidden neurons. Thus, for given weights and biases Θ,
it realizes a function 𝑓 (·,Θ) : ℝ2 → ℝ2

. In this section, we build a geometric

understanding of 𝑓 (·,Θ), in particular, we study the geometry of the graph of 𝑓 (·,Θ).
For further results in this direction, we point the interested reader to [12, 50, 85,

118, 157] that investigate the set of functions exactly represented by different

architectures of ReLU networks.

The 𝑖-th hidden ReLU neuron 𝑣𝑖 realizes a function

𝑓𝑖 : ℝ
2 → ℝ

(𝑥1, 𝑥2) ↦→ ReLU(𝑎1,𝑖𝑥1 + 𝑎2,𝑖𝑥2 + 𝑏𝑖),

where 𝑎1,𝑖 and 𝑎2,𝑖 are the edge weights from the first and second input neuron to 𝑣𝑖
and 𝑏𝑖 is its bias. Note that 𝑓𝑖 is a continuous piecewise linear function: If 𝑎1,𝑖 =

𝑎2,𝑖 = 0, then 𝑓𝑖 is constant, 𝑓𝑖 = ReLU(𝑏𝑖) = max{𝑏𝑖, 0}. Otherwise, the domain ℝ2

is partitioned into two half-planes, touching along a so-called breakline given by

the equation 𝑎1,𝑖𝑥1 + 𝑎2,𝑖𝑥2 + 𝑏𝑖 = 0. The two half-planes are (see Figure 5.6)

• the inactive region
{
(𝑥1, 𝑥2) ⊆ ℝ2 | 𝑎1,𝑖𝑥1 + 𝑎2,𝑖𝑥2 + 𝑏𝑖 ≤ 0

}
, in which 𝑓𝑖 is

constantly 0, and

• the active region
{
(𝑥1, 𝑥2) ⊆ ℝ2 | 𝑎1,𝑖𝑥1+𝑎2,𝑖𝑥2+𝑏𝑖 > 0

}
, in which 𝑓𝑖 is positive

and has a constant gradient.

Now let 𝑐𝑖,1 and 𝑐𝑖,2 be the weights of the edges connecting 𝑣𝑖 with the first and

second output neuron, and let 𝑓 (·,Θ) = (𝑓 1(·,Θ), 𝑓 2(·,Θ)). For 𝑗 ∈ {1, 2}, the func-
tion 𝑓 𝑗 (·,Θ) = ∑𝑚

𝑖=1 𝑐𝑖, 𝑗 · 𝑓𝑖 (·,Θ) is a weighted linear combination of the functions

computed at the hidden neurons. We make three observations:

• Each function computed by a hidden ReLU neuron has at most one breakline.

Thus, the domain of 𝑓 𝑗 (·,Θ) is partitioned into the cells of a line arrangement

containing at most 𝑚 breaklines. Apart from that, 𝑓 𝑗 (·,Θ) has a constant

gradient inside each cell.

• Let 𝑏𝑖 be the breakline produced by a hidden neuron 𝑣𝑖 in 𝑓
𝑗 (·,Θ). Its position

is solely determined by 𝑎·,𝑖 and 𝑏𝑖 . In particular, it is independent of 𝑐𝑖, 𝑗 . Thus,

the sets of breaklines of 𝑓 1(·,Θ) and 𝑓 2(·,Θ) are both subsets of the same set

of (at most𝑚) breaklines determined by the hidden neurons.
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Figure 5.6: A continuous piecewise linear function computed by a hidden ReLU

neuron. It has exactly one breakline; the flat part is the inactive region, whereas

the sloped part is the active region.

• Even if all 𝑓𝑖 (·,Θ) have a breakline, their sum 𝑓 𝑗 (·,Θ) at each output neuron

might have fewer breaklines: It is possible for a breakline to be erased by

setting 𝑐𝑖, 𝑗 = 0. Other possibilities are that several breaklines contributed by

different hidden neurons cancel each other (producing no breakline) or lie on

top of each other (combining multiple breaklines into one). In our reduction

we deliberately erase some breaklines in some output dimensions, i.e, we

make use of the 𝑐𝑖, 𝑗 = 0 trick. However, we avoid the other two cases of

breaklines combining/canceling.

Combining above observations yields a stronger statement: For each output neuron

and breakline ℓ , the change of gradient of 𝑓 𝑗 (·,Θ) along ℓ is constant (see also [50]).
Based on this, we distinguish two types of breaklines:

Definition 5.6. A breakline ℓ is concave (convex) in 𝑓 𝑗 (·,Θ) if the restriction
of 𝑓 𝑗 (·,Θ) to any two cells separated by ℓ is concave (convex).

The type of a breakline is a tuple (𝑡1, 𝑡2) ∈ {∧, 0,∨}2 describing whether the break-
line is concave (∧), erased (0), or convex (∨) in 𝑓 1(·,Θ) and 𝑓 2(·,Θ), respectively.

By now, we gained a geometric understanding of 𝑓 (·,Θ), the continuous piecewise
linear function computed by a ReLU neural network with two input and two output

neurons. However, not every continuous piecewise linear function can be computed

by such a neural network. For the correctness of our reduction, we need a sufficient

condition for this:

Lemma 5.7. A continuous piecewise linear function 𝑓 : ℝ2 → ℝ2 whose breaklines
form a line arrangement L with𝑚 lines can be realized by a fully connected two-layer
neural network with𝑚 hidden neurons if the following two conditions hold:

• In at least one cell of L the value of 𝑓 is constantly (0, 0).

• For each breakline ℓ ∈ L, the change of the gradient of 𝑓 along ℓ is constant in
both output dimensions.
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Proof. We can use the following construction: Add one hidden neuron per break-

line, oriented such that its inactive region is the halfplane containing the (0, 0)-cell.
The position solely depends on the weights of the first layer and the bias. The

weights of the second layer are then chosen to produce the right change of gradi-

ent in each output dimension. It is easy to see that the sum of all these neurons

computes 𝑓 . ■

We refer to [50] for a precise characterization of the functions representable by

two-layer neural networks with𝑚 hidden neurons.

5.8.2 Preparing the Reduction

We establish ∃ℝ-hardness of TrainNN by giving a polynomial-time many-one

reduction from ETR-Inv to TrainNN. As mentioned in Section 2.3, ETR-Inv is a

variant of ETR that is frequently used as a starting point for ∃ℝ-hardness reductions

in the literature, for example in [3, 4, 107, 54].

Recall that ETR-Inv is a special case of ETR in which the quantifier-free part 𝜑

of the input sentence Φ :≡ ∃𝑋1, . . . , 𝑋𝑛 ∈ ℝ : 𝜑 (𝑋1, . . . , 𝑋𝑛) is a conjunction of

constraints, each of which is either of the form 𝑋 +𝑌 = 𝑍 or 𝑋 ·𝑌 = 1. Additionally,

we are promised that Φ either has no solution or one with all values in

[
1

2
, 2
]
.

∃ℝ-completeness of ETR-Inv is proven in [3]. Furthermore, ETR-Inv exhibits the

same algebraic universality that we seek for TrainNN:

Theorem 5.8 ([6]). Let 𝛼 be an algebraic number. Then there exists an instance
of ETR-Inv, which has a solution in ℚ[𝛼], but no solution when the variables are
restricted to a field 𝔽 that does not contain 𝛼 .

The reduction starts with an ETR-Inv instance Φ and outputs an integer 𝑚 and

a set of 𝑛 data points such that there is a fully connected two-layer ReLU neural

network 𝑁 with𝑚 hidden neurons exactly fitting all data points (𝛾 = 0) if and only

if Φ is true. Recall that the neural network 𝑁 defines a continuous piecewise linear

function 𝑓 (·,Θ) : ℝ2 → ℝ2
.

We define several gadgets representing the variables as well as the linear and
inversion constraints of the ETR-Inv instanceΦ. Strictly speaking, a gadget is defined
by a set of data points that need to be fit exactly. These data points serve two tasks:

Firstly, most of the data points are used to enforce that 𝑓 (·,Θ) has𝑚 breaklines

with predefined orientations and at almost predefined positions. Secondly, the

remaining data points enforce relationships between the exact positions of different

breaklines.

Globally, our construction yields 𝑓 (𝑥,Θ) = (0, 0) for “most” 𝑥 ∈ ℝ2
. Each gadget

consists of a constant number of parallel breaklines (enforced by data points) that

lie in a stripe of constant width in ℝ2
. The value of 𝑓 (·,Θ) may be non-zero only

within these stripes. The “meaning” of a gadget
1
is fully determined by the distances

between its parallel breaklines. Thus, each gadget can be translated and rotated

arbitrarily without affecting its meaning.

1 For a variable gadget, its “meaning” is the real number represented by it.
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Abstractions Describing all gadgets purely by their data points is tedious and

obscures the relatively simple geometry enforced by these data points. We therefore

introduce two additional constructs, namely data lines and weak data points, that
simplify the presentation. In particular, data lines impose breaklines, which in turn

are needed to define gadgets. Weak data points allow us to have features that are

only active in one output dimension. How these constructs can be realized with

carefully placed data points is deferred to Sections 5.8.3.6 and 5.8.3.7, after we have

introduced all other gadgets.

• A data line (ℓ ;𝑦) consists of a line ℓ ⊆ ℝ2
and a label 𝑦 ∈ ℝ2

. We say that a

data line is fit if 𝑓 (ℓ,Θ) = {𝑦}, i.e., the neural network maps every point on

it to 𝑦.

As soon as we consider several gadgets, their corresponding stripes in ℝ2

might intersect. We do not require that the data lines are fit correctly inside

these intersections. As we are going to see below, each data line is realized

by finitely many data points on it. We make sure that their coordinates do

not lie in any of the intersections.

• A weak data point relaxes the notion of a regular data point and prescribes

only a lower bound on the label. For example, we denote by (𝑥 ;𝑦1, ≥ 𝑦2)
that 𝑓 1(𝑥,Θ) = 𝑦1 and 𝑓

2(𝑥,Θ) ≥ 𝑦2. Weak data points can have such an

inequality label in the first, the second or both output dimensions.

5.8.3 Gadgets and Constraints

We describe all gadgets in isolation first, the interaction of two or more gadgets

is considered only where it is necessary. In particular, we assume that 𝑓 (𝑥,Θ) is
constantly zero for 𝑥 ∈ ℝ2

outside the outermost breaklines enforced by each

gadget. After all gadgets have been introduced, we describe the global arrangement

of the gadgets in Section 5.8.4. Recall that, since each gadget can be freely translated

and rotated, we can describe the positions of all its data lines and (weak) data points

relative to each other.

Not all gadgets make use of the two output dimensions. Some gadgets have

the same labels in both output dimensions for all of their data lines, and thus

look the same in both output dimensions. For these gadgets, we simplify the usual

notation of (𝑦1, 𝑦2) ∈ ℝ2
to single-valued labels 𝑦 ∈ ℝ. In our figures, data points

and functions looking the same in both output dimensions are drawn in black,

while features only occurring in one dimension are drawn in different colors to

distinguish them from each other.

Let (ℓ1;𝑦𝑖), . . . , (ℓ𝑘 ;𝑦𝑘) be parallel data lines. Further, let ℓ ⊆ ℝ2
be an oriented

line intersecting all ℓ𝑖 . Without loss of generality, we assume that ℓ intersects ℓ𝑖
before ℓ𝑗 if and only if 𝑖 < 𝑗 . A cross-section through (ℓ1;𝑦𝑖), . . . , (ℓ𝑘 ;𝑦𝑘) is defined
as follows: For each data line (ℓ𝑖 ;𝑦𝑖), the cross-section contains a data point 𝑝𝑖 =

(𝑥𝑖 ;𝑦𝑖) ∈ ℝ ×ℝ2
, where 𝑥𝑖 is the oriented distance between the intersections of ℓ1

and ℓ𝑖 on ℓ . Two data points 𝑝𝑖 and 𝑝 𝑗 in the cross-section are consecutive if |𝑖− 𝑗 | = 1.
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If ℓ is perpendicular to all ℓ𝑖 , then the cross-section is orthogonal. The intersection
of a breakline with ℓ is a breakpoint.

We draw cross-sections by projecting a data point (𝑥𝑖 ;𝑦𝑖) ∈ ℝ × ℝ2
into a

two-dimensional coordinate system, marking 𝑥𝑖 along the abscissa and 𝑦𝑖 along the

ordinate. If a 𝑦𝑖 behaves differently in the two output dimensions, then we draw it

twice and distinguish the two dimensions by color.

Observation 5.9. Let 𝑓 be a continuous piecewise linear function interpolating three
consecutive data points 𝑝𝑖 , 𝑝𝑖+1 and 𝑝𝑖+2 in a cross-section of a gadget. The following
holds for each output dimension:

(i) If they are collinear, then 𝑓 has either no breakpoint strictly between 𝑝𝑖 and 𝑝𝑖+2
or at least two.

(ii) If they are not collinear, then 𝑓 has a breakpoint 𝑏 strictly between 𝑝𝑖 and 𝑝𝑖+2.
Furthermore, if 𝑝𝑖+2 is left (right) of the ray from 𝑝𝑖 through 𝑝𝑖+1, then 𝑏 is
convex (concave).

Observation 5.9 is the key to prove that data lines enforce breaklines of a certain

type, with a prescribed orientation and (almost) fixed position. It is illustrated in

Figure 5.7.

𝑝1 𝑝2 𝑝3

(a) If the points are collinear, then

there is either no breakpoint or there

are at least two.

𝑝1 𝑝2

𝑝3

(b) If the points are not collinear, then

we need a breakpoint of a certain type,

here convex.

Figure 5.7: Three consecutive points 𝑝1, 𝑝2 and 𝑝3 in a cross-section and possible

interpolations through them (solid and dashed).

5.8.3.1 Variable Gadget

A variable gadget consists of twelve parallel data lines ℓ1, . . . , ℓ12, without loss of
generality vertical and numbered from left to right. Additionally, there is a weak

data point 𝑞 between ℓ3 and ℓ4. For all of these, the following table lists their relative

distance to ℓ1 and their label (note that both output dimensions have the same

label):

ℓ1 ℓ2 ℓ3 q ℓ4 ℓ5 ℓ6 ℓ7 ℓ8 ℓ9 ℓ10 ℓ11 ℓ12

distance to ℓ1 0 1 2 3 + 2

3
4 6 7 8 10 12 14 15 16

label 0 0 0 ≥ 2 3 6 6 6 4 2 0 0 0
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0
1
2
3
4
5
6

𝑞

𝑝1 𝑝2 𝑝3

𝑝4

𝑝5 𝑝6 𝑝7

𝑝8

𝑝9

𝑝10 𝑝11 𝑝12

∨-break ∨-break
∧-break

∧-break

Figure 5.8: Orthogonal cross-section of a variable gadget. The bars below the

cross-section indicate non-collinear triples used in the proof of Lemma 5.10. For

example, there needs to be a convex breakpoint between 𝑝2 and 𝑝4.

See Figure 5.8 for an orthogonal cross-section through a variable gadget.

Lemma 5.10. A continuous piecewise linear function 𝑓 that fits ℓ1, . . . , ℓ12 and 𝑞
exactly must have at least four breaklines. If it has exactly four breaklines, then they
must all be parallel to the data lines. In this case, let 𝑏1, 𝑏2, 𝑏3 and 𝑏4 be the breaklines,
numbered from left to right. It holds in both output dimensions that:

• 𝑓 is constantly 0 to the left of 𝑏1 and to the right of 𝑏4.

• 𝑓 is constantly 6 between 𝑏2 and 𝑏3.

• 𝑏3 lies on ℓ7 and 𝑏4 lies on ℓ10.

• The slope of the variable gadget, i.e., the norm of the gradient between 𝑏1 and 𝑏2,
is at least 3

2
and at most 3.

Before we prove Lemma 5.10, let us describe the functionality of a variable gadget:

The slope 𝑠𝑋 of a variable gadget for a variable 𝑋 is in

[
3

2
, 3
]
. In order to represent

values in

[
1

2
, 2
]
, we say that a slope 𝑠𝑋 encodes the value 𝑋 = 𝑠𝑋 − 1.

Proof of Lemma 5.10. We first prove that four breaklines are indeed necessary to

fit all data lines exactly. Every orthogonal cross-section contains four non-collinear

triples: (𝑝2, 𝑝3, 𝑝4), (𝑝4, 𝑝5, 𝑝6), (𝑝6, 𝑝7, 𝑝8) and (𝑝9, 𝑝10, 𝑝11). They pairwise share at

most one point, so by Observation 5.9(ii), four breakpoints are indeed required.

Since the data lines are parallel to each other, all orthogonal cross-sections look

the same, and each breakpoint corresponds to a breakline that is parallel to the

data lines. For the rest of the proof, we denote the breaklines by 𝑏1, 𝑏2, 𝑏3 and 𝑏4,

numbered from left to right.

In the following, we consider each of the non-collinear triples individually, to

further locate the positions of the breaklines. The following observations are all

due to Observation 5.9:
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• The non-collinear triple (𝑝2, 𝑝3, 𝑝4) implies that 𝑏1 must be between ℓ2 and ℓ4.

The collinear triple (𝑝1, 𝑝2, 𝑝3) enforces that 𝑏1 is to the right of ℓ3 and that 𝑓

is constantly 0 to the left of 𝑏1.

• The non-collinear triple (𝑝4, 𝑝5, 𝑝6) implies that 𝑏2 must be between 𝑝4 and 𝑝6.

The collinear triple (𝑝5, 𝑝6, 𝑝7) enforces that 𝑏2 is to the left of ℓ5 and that 𝑓

is constantly 6 to the right of 𝑏2.

• The non-collinear triple (𝑝6, 𝑝7, 𝑝8) implies that 𝑏3 must be between ℓ6 and ℓ8.

The collinear triples (𝑝5, 𝑝6, 𝑝7) and (𝑝7, 𝑝8, 𝑝9) leave ℓ7 as the only remain-

ing position for 𝑏3. The collinear triple (𝑝5, 𝑝6, 𝑝7) implies that 𝑓 must be

constantly 6 to the left of 𝑏3.

• The non-collinear triple (𝑝9, 𝑝10, 𝑝11) implies that 𝑏4 must be between ℓ9
and ℓ11. The collinear triples (𝑝8, 𝑝9, 𝑝10) and (𝑝10, 𝑝11, 𝑝12) leave ℓ10 as the
only remaining position for 𝑏4. The collinear triple (𝑝10, 𝑝11, 𝑝12) implies

that 𝑓 must be constantly 0 to the right of 𝑏4.

As 𝑏1 must be on ℓ3 or to its right and 𝑏2 must be on 𝑝5 or to its left, the slope is at

most 3. Lastly, weak data point 𝑞 enforces that the slope is at least 3

2
. ■

5.8.3.2 Measuring a Value from a Variable Gadget

Consider a variable gadget for a variable 𝑋 with slope 𝑠𝑋 . We call the two parallel

lines with distance 1 to ℓ4 itsmeasuring lines. More precisely, we distinguish between

the lower measuring line (the one towards ℓ3) and the upper measuring line (the one
towards ℓ5). Since the slope of the variable gadget is in

[
3

2
, 3
]
, both measuring lines

are always inside or at the boundary of the sloped part (in other words, between

breaklines 𝑏1 and 𝑏2).

Assume that the variable gadget is fit exactly. Then, at any point 𝑝 on ℓ4, the

variable gadget contributes 3 to 𝑓 (𝑝,Θ). It follows that a point 𝑝𝑢 on the upper

measuring line contributes 3 + 𝑠𝑋 to 𝑓 (𝑝𝑢,Θ). Similarly, a point 𝑝𝑙 on the lower

measuring line contributes 3 − 𝑠𝑋 to 𝑓 (𝑝𝑙 ,Θ). See Figure 5.9 for a visualization.

𝑝3

𝑝4

𝑝5

0
1
2
3
4
5
6

1
𝑠𝑋

1
𝑠𝑋

Figure 5.9: Partial cross-section of a variable gadget with slope 𝑠𝑋 = 2, so 𝑋 = 1.

The lower and upper measuring lines are drawn in blue and red. This variable

gadget contributes 3 − 𝑠𝑋 to the lower and 3 + 𝑠𝑋 to the upper measuring line.
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5.8.3.3 Linear Constraints: Addition and Copying

Until this point, we considered individual gadgets separately from each other. As

soon as we have two or more gadgets, their corresponding stripes may intersect,

leading to interference of the gadgets inside these intersections. We exploit this to

encode linear constraints.

Let A and B be subsets of the variables. We can enforce a linear constraint of

the form

∑
𝐴∈A 𝐴 =

∑
𝐵∈B 𝐵 using just one additional data point 𝑝 . In particular, we

care about the following two special cases:

• To copy a value from one variable 𝑋 to another variable 𝑌 , we model 𝑋 = 𝑌

by A = {𝑋 } and B = {𝑌 }.

• To encode the addition 𝑋 + 𝑌 = 𝑍 , we set A = {𝑋,𝑌 } and B = {𝑍 }.
For all variables in A, the data point 𝑝 must be on the upper measuring line of

their corresponding variable gadget. Similarly, for variables in B, the data point 𝑝

must be on the lower measuring line. This requires a placement of the gadgets

such that all required measuring lines intersect in a single point, where we can

place 𝑝 . This is trivial for |A| + |B| = 2, as we only require the involved variable

gadgets to be non-parallel, see Figure 5.10. For |A| + |B| ≥ 3, this is more involved.

We can use the equality constraint 𝑋 = 𝑌 to copy the value of a variable onto

additional variable gadgets, which can then be positioned freely to obtain the

required intersections, see Figure 5.11. We discuss the global layout to achieve this

in more detail in Section 5.8.4 below.

Lemma 5.11. Let A and B be subsets of the variables. A data point 𝑝 with label
4|A|+2|B| placed on the upper measuring line of each𝐴 ∈ A and the lower measuring
line of each 𝐵 ∈ B enforces the linear constraint

∑
𝐴∈A 𝐴 =

∑
𝐵∈B 𝐵.

Proof. Let 𝑠𝑋 be the slope of the variable gadget for variable 𝑋 . For each 𝐴 ∈ A,

the data point 𝑝 is placed on the upper measuring line of 𝐴’s variable gadget, so 𝐴

contributes 3 + 𝑠𝐴 to 𝑓 (𝑝,Θ). Similarly, for each variable 𝐵 ∈ B, the data point 𝑝 is

placed on the lower measuring line of 𝐵’s variable gadget, so 𝐵 contributes 3 − 𝑠𝐵
to 𝑓 (𝑝,Θ).

The overall contribution of all involved variables adds up to

𝑓 (𝑝,Θ) =
∑︁
𝐴∈A

(3 + 𝑠𝐴) +
∑︁
𝐵∈B

(3 − 𝑠𝐵)

=
∑︁
𝐴∈A

(4 +𝐴) +
∑︁
𝐵∈B

(2 − 𝐵)

= 4|A| + 2|B| +
∑︁
𝐴∈A

𝐴 −
∑︁
𝐵∈B

𝐵,

where we used that𝑋 = 𝑠𝑋−1 to get from the first to the second line. Setting the label

of 𝑝 to 4|A| + 2|B|, yields that 𝑝 is fit exactly if and only if

∑
𝐴∈A 𝐴 =

∑
𝐵∈B 𝐵. ■
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ℓ𝑋1

ℓ𝑋12

ℓ𝑋4

ℓ𝑌1

ℓ𝑌4

ℓ𝑌12

𝑝

Figure 5.10: Top-down view on the intersection of two variable gadgets corre-

sponding to two variables𝑋 (red) and𝑌 (blue). The dashed lines are their measuring

lines. The point 𝑝 is placed at the intersection of the upper measuring line for𝑋 and

lower measuring line for 𝑌 , and receives label 6 to enforce the constraint 𝑋 = 𝑌 .

ℓ𝑋3

ℓ𝑋4

ℓ𝑌3ℓ𝑌4ℓ𝑌5

ℓ𝑍3ℓ𝑍4ℓ𝑍5

ℓ𝑋5

𝑝

Figure 5.11: Top-down view of the intersection of three variable gadgets corre-

sponding to variables 𝑋 (red), 𝑌 (orange), and 𝑍 (blue). The dashed lines are the

upper measuring lines for 𝑋 and 𝑌 and the lower measuring line for 𝑍 , intersecting

in a single point 𝑝 with label 10. This realizes the constraint 𝑋 + 𝑌 = 𝑍 .
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As already mentioned above, we do not require Lemma 5.11 in its full generality,

but only two special cases: The only linear constraint in an ETR-Inv instance is the

addition 𝑋 + 𝑌 = 𝑍 . Additionally, we also need the ability to copy values in our

reduction, i.e., constraints of the form 𝑋 = 𝑌 .

Corollary 5.12. To encode the addition constraint 𝑋 + 𝑌 = 𝑍 of ETR-Inv, data
point 𝑝 has label 10. For the copy constraint 𝑋 = 𝑌 , the data point has label 6.

Until now, we never distinguished between the two output dimensions of a variable

gadget. Let us note, that the data point 𝑝 abovemay also be aweak data point, as long

as its label is fixed in one output dimension. This holds, because the breaklines of a

variable gadget are the same in both output dimensions, therefore also representing

the same value in both dimensions.

5.8.3.4 Inversion Gadget

In essence, an inversion gadget is the superposition of two variable gadgets. By

using data lines with different labels in the two output dimensions, it can represent

two real variables at once. However, their values have a non-linear dependency.

Formally, the inversion gadget consists of 13 data lines ℓ1, . . . , ℓ13, without loss

of generality vertical and numbered from left to right. The following table lists

their relative distance to ℓ1 and their labels:

ℓ1 ℓ2 ℓ3 ℓ4 ℓ5 ℓ6 ℓ7 ℓ8 ℓ9 ℓ10 ℓ11 ℓ12 ℓ13

distance to ℓ1 0 1 2 4 7 9 10 11 13 15 17 18 19

label in dim. 1 0 0 0 3 6 6 6 6 4 2 0 0 0

label in dim. 2 0 0 0 0 3 6 6 6 4 2 0 0 0

See Figure 5.12 for an orthogonal cross-section through an inversion gadget.

Lemma 5.13. A continuous piecewise linear function that fits ℓ1, . . . , ℓ13 exactly
must have at least five breaklines. If it has exactly five breaklines, then they must
all be parallel to the data lines. In this case, let 𝑏1, 𝑏2, 𝑏3, 𝑏4 and 𝑏5 be the breaklines,
numbered from left to right. It holds that:

• 𝑓 is constantly (0, 0) to the left of 𝑏1 and to the right of 𝑏5.

• In output dimension 1, 𝑓 is constantly 6 between 𝑏2 and 𝑏4.

• In output dimension 2, 𝑓 is constantly 0 to the left of 𝑏2 and constantly 6

between 𝑏3 and 𝑏4.

• 𝑏4 is on ℓ8 and 𝑏5 is on ℓ11.

• The inversion gadget has two slopes 𝑠𝑋 and 𝑠𝑌 .

– In dimension 1, slope 𝑠𝑋 is the norm of the gradient between 𝑏1 and 𝑏2.
– In dimension 2, slope 𝑠𝑌 is the norm of the gradient between 𝑏2 and 𝑏3.

It holds that 𝑠𝑋𝑠𝑌 = 𝑠𝑋 + 𝑠𝑌 .
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𝑠𝑋
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𝑝1 𝑝2 𝑝3

𝑝8𝑝6 𝑝7

𝑝13
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𝑝11 𝑝12
(∨,0)-break

(∧,∨)-break
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(0,∧)-break
(∧,∧)-break

(∨,∨)-break

Figure 5.12: Cross-section of the inversion gadget. Data points 𝑝4 and 𝑝5 have

different labels in the first (red) and second (blue) output dimension.

Before we prove Lemma 5.13, let us describe the functionality of an inversion gadget:

As mentioned above, an inversion gadget is the superposition of two variable

gadgets. Only four of the five breaklines are “visible” in each output dimension, the

fifth being erased. It has a slope in each dimension: 𝑠𝑋 in the first, 𝑠𝑌 in the second.

Therefore, it encodes two values 𝑋 = 𝑠𝑋 − 1 and 𝑌 = 𝑠𝑌 − 1. It holds that

𝑋𝑌 = (𝑠𝑋 − 1) (𝑠𝑌 − 1) = 𝑠𝑋𝑠𝑌 − 𝑠𝑋 − 𝑠𝑌 + 1

(∗)
= 𝑠𝑋 + 𝑠𝑌 − 𝑠𝑋 − 𝑠𝑌 + 1 = 1,

where the equality labeled (∗) follows from the 𝑠𝑋𝑠𝑌 = 𝑠𝑋 + 𝑠𝑌 condition provided

by the lemma. We conclude, that the non-linear relation between the two slopes

exactly models the inversion constraint 𝑋𝑌 = 1 of an ETR-Inv instance.

Proof of Lemma 5.13. As in the proof of Lemma 5.10, we use non-collinear triples

to argue that each orthogonal cross-section requires exactly five breakpoints. Again,

because all data lines are parallel to each other, all orthogonal cross-sections look

the same, and all breakpoints correspond to a breakline that is parallel to the data

lines.

All the following observations rely on Observation 5.9:

• The non-collinear triple (𝑝2, 𝑝3, 𝑝4) enforces a breakline of type (∨, 0) strictly
between ℓ2 and ℓ4. We call this breakline 𝑏1. As (𝑝1, 𝑝2, 𝑝3) is collinear in both

dimensions, 𝑏1 must be on or to the right of ℓ3 and 𝑓 must be constantly (0, 0)
to the left of 𝑏1.

• The non-collinear triple (𝑝5, 𝑝6, 𝑝7) enforces a breakline of type (0,∧) strictly
between ℓ5 and ℓ7. We call this breakline 𝑏3. As (𝑝6, 𝑝7, 𝑝8) is collinear in both

dimensions, 𝑏3 must be on or to the left of ℓ6 and 𝑓 must be constantly (6, 6)
to the right of 𝑏3.
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• The non-collinear triple (𝑝7, 𝑝8, 𝑝9) enforces a breakline of type (∧,∧) strictly
between ℓ7 and ℓ9. We call this breakline 𝑏4. As (𝑝6, 𝑝7, 𝑝8) and (𝑝8, 𝑝9, 𝑝10)
are collinear in both dimensions, 𝑏4 must lie on ℓ8.

• The non-collinear triple (𝑝10, 𝑝11, 𝑝12) enforces a breakline of type (∨,∨)
strictly between ℓ10 and ℓ12. We call this breakline 𝑏5. The triples (𝑝9, 𝑝10, 𝑝11)
and (𝑝11, 𝑝12, 𝑝13) are collinear in both dimensions, so 𝑏5 must lie on ℓ11.

The triples enforcing the breaklines 𝑏1, 𝑏3, 𝑏4 and 𝑏5 are pairwise disjoint, so all of

these breaklines are indeed necessary.

An orthogonal cross-section of an inversion gadget contains two more non-

collinear triples: (𝑝3, 𝑝4, 𝑝5) and (𝑝4, 𝑝5, 𝑝6). Both enforce a breakline of type (∧,∨).
Note, that all other non-collinear triples intersecting them have a different type.

Therefore, none of the previous four breaklines is compatible, and at least one more

breakline is indeed necessary. Assuming that ℓ1, . . . , ℓ13 must be fit with just five

breaklines, we call this breakline 𝑏2, and conclude that it must be on or between ℓ4
and ℓ5. Furthermore, 𝑓 must be constantly 0 in dimension 2 to the left of 𝑏2.

It remains to prove that 𝑠𝑋𝑠𝑌 = 𝑠𝑋 + 𝑠𝑌 . To this end, we derive the exact position
of 𝑏2 between ℓ4 and ℓ5. In dimension 1, it holds that 𝑓 1(ℓ4,Θ) = 3 and 𝑓 1(𝑏2,Θ) = 6.

The distance between ℓ4 and 𝑏2 is
6−3
𝑠𝑋

. In dimension 2, it holds that 𝑓 2(ℓ5,Θ) = 3

and 𝑓 2(𝑏2,Θ) = 0. The distance between ℓ5 and𝑏2 is
3−0
𝑠𝑌

.We conclude that 3 = 3

𝑠𝑋
+ 3

𝑠𝑌
,

which is equivalent to 𝑠𝑋 + 𝑠𝑌 = 𝑠𝑋𝑠𝑌 for all 𝑠𝑋 , 𝑠𝑌 ≠ 0. ■

5.8.3.5 Applying the Inversion Gadget

An inversion gadget has two pairs of measuring lines, one in each dimension. The

lower and upper measuring lines in dimension 1 have distance 1 to ℓ4. Similar, in

dimension 2, they have distance 1 to ℓ5.

To encode an 𝑋𝑌 = 1 constraint of an ETR-Inv instance, we first identify two

normal variable gadgets carrying the variables 𝑋 and 𝑌 . Then the inversion gadget

is placed such that its measuring lines intersect the measuring lines of the variable

gadgets. We copy𝑋 to the first dimension of the inversion gadget at the intersection

with the variable gadget for 𝑋 . Similarly, we copy 𝑌 to the second dimension of the

inversion gadget at the intersection with the variable gadget for𝑌 . This copying can

be done as described in Section 5.8.3.3 using weak data points. See Figure 5.13 for a

top-down view. Technically, the inversion gadget enforces the inversion constraint

only in one dimension of each involved variable gadget. However, this is sufficient

because variable gadgets always carry the same value in both output dimensions.

5.8.3.6 Realizing Weak Data Points: Lower Bound Gadgets

So far, we used weak data points, i.e., data points whose label is just a lower bound

on 𝑓 (·,Θ). Weak data points are just a concept meant to simplify the description of

the gadgets; a TrainNN instance cannot contain weak data points. For this reason,

we introduce a lower bound gadget that simulates a weak data point using only

ordinary data points, i.e., data points with constant labels.
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ℓ∗1 ℓ∗4 ℓ∗5 ℓ∗13

ℓ𝑌12

ℓ𝑌1

ℓ𝑋12

ℓ𝑋1

ℓ𝑌4

ℓ𝑋4

𝑝𝑋

𝑝𝑌

Figure 5.13: Top-down view on two variable gadgets (horizontal) for vari-

ables 𝑋 (blue) and 𝑌 (red) (the data lines are solid, the measuring lines are dashed).

The sloped gadget is an inversion gadget. Two weak data points 𝑝𝑋 and 𝑝𝑌 copy 𝑋

and 𝑌 to the first and second dimension of the inversion gadget, respectively.

0
−1
−2
−3

𝑝1 𝑝2 𝑝3 𝑝6 𝑝7 𝑝8𝑝4 𝑝5

(0,∧)-br. (0,∧)-br.

(0,∨)-break

(0,∨)-break

(a) The lower bound gadget can be

asymmetric.

0
−1
−2
−3

𝑝1 𝑝2 𝑝3 𝑝6 𝑝7 𝑝8𝑝4 𝑝5

(0,∧)-br. (0,∧)-br.

(0,∨)-break

(0,∨)-break

(b) A lower bound gadget has a max-

imum contribution to the weak data

point of −2.

Figure 5.14: Cross-sections of a lower bound gadget which is inactive in the first

(red) dimension and active in the second (blue) dimension. It is used to simulate a

weak data point in the active dimension (blue) that lies on the dashed vertical line.

It does not contribute to 𝑓 (·,Θ) in the inactive dimension (red), i.e., all breaklines

are erased (type 0).
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Recall that a weak data point can have a lower bound label in either one or

in both dimensions. For this reason, a lower bound gadget can be either active or
inactive in each dimension. If the lower bound gadget is active in some dimension,

its breaklines form a ∨-shape of (almost) arbitrary depth in that dimension. On the

other hand, if the lower bound gadget is inactive in some output dimension, then it

is constantly 0 in this dimension.

Formally, a lower bound gadget consists of eight data lines ℓ1, . . . , ℓ8, without

loss of generality vertical and numbered from left to right. The following table lists

their relative distance to ℓ1 and their labels:

ℓ1 ℓ2 ℓ3 ℓ4 ℓ5 ℓ6 ℓ7 ℓ8

distance to ℓ1 0 1 2 3 5 6 7 8

label in active dimension(s) 0 0 0 −1 −1 0 0 0

label in inactive dimension(s) 0 0 0 0 0 0 0 0

See Figure 5.14 for orthogonal cross-sections through a lower bound gadget. We

always assume that a lower bound gadget has at least one active dimension, as it is

otherwise unnecessary.

Lemma 5.14. A continuous piecewise linear function 𝑓 that fits ℓ1, . . . , ℓ8 exactly
must have at least three breaklines. If it has exactly three breaklines, then they must
all be parallel to the data lines. In this case, let 𝑏1, 𝑏2 and 𝑏3 be the breaklines. In an
inactive dimension 𝑓 is constantly 0, in an active dimension it holds that:

• 𝑓 is constantly 0 to the left of 𝑏1 and to the right of 𝑏3.

• 𝑓 (𝑝,Θ) ≤ −2 for all points 𝑝 with equal distance to ℓ4 and ℓ5.

Proof. As in the proof of Lemma 5.10, we use non-collinear triples to argue that at

least three breaklines are necessary for a lower bound gadget with at least one active

dimension. Again, because all data lines are parallel to each other, all orthogonal

cross-sections look the same, and all breakpoints correspond to a breakline that is

parallel to the data lines.

The following observations rely on Observation 5.9. In an inactive dimension,

all triples are collinear, so 𝑓 must be constantly 0 everywhere. From now on, we

focus purely on the active dimension.

• The non-collinear triple (𝑝2, 𝑝3, 𝑝4) enforces a ∧-type breakline strictly be-

tween ℓ2 and ℓ4. We call this breakline 𝑏1. By the collinear triple (𝑝1, 𝑝2, 𝑝3),
𝑏1 must be on or to the right of ℓ3. Furthermore, 𝑓 must be constantly 0 to

the left of 𝑏1.

• The non-collinear triple (𝑝5, 𝑝6, 𝑝7) enforces a ∧-type breakline strictly be-

tween ℓ5 and ℓ7. We call this breakline 𝑏3. By the collinear triple (𝑝6, 𝑝7, 𝑝8),
𝑏3 must be on or to the left of ℓ6. Furthermore, 𝑓 must be constantly 0 to the

right of 𝑏3.
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Breaklines 𝑏1 and 𝑏3 are both necessary, as the non-collinear triples enforcing

them are disjoint. The lower bound gadget contains two more non-collinear triples:

(𝑝3, 𝑝4, 𝑝5) and (𝑝4, 𝑝5, 𝑝6), both of type ∨. Assuming that all data lines are fit with

just three breaklines, a third breakline called 𝑏2 must lie on or between 𝑝4 and 𝑝5.

The value of 𝑓 (𝑏2,Θ) can be arbitrarily small. However, in the extreme case, it

holds that 𝑏1 = ℓ4 and 𝑏3 = ℓ5, in which case 𝑓 (𝑏2,Θ) = −2. No larger values are

possible. ■

For a lower bound gadget with two active dimensions, we can make the following

observation. It holds because the breaklines must be at the exact same positions in

both output dimensions.

Observation 5.15. A lower bound gadget that is active in both dimensions contributes
the same amount in both dimensions.

We need one lower bound gadget per weak data point. It gets placed such that the

weak data point is equidistant to ℓ4 and ℓ5. The weak data point with label ≥ 𝑦 is

converted into an ordinary data point with label 𝑦 − 2.

By Lemma 5.14, the lower bound gadget can contribute any value 𝑐 ∈ (−∞,−2]
to the new data point. Thus, the data point can be fit perfectly if and only if the

other gadgets contribute at least a value of 𝑦 to the data point, that is, the intended

lower bound constraint is met.

5.8.3.7 Realizing Data Lines using Data Points

We previously assumed that our gadgets are defined by data lines, while in reality,

we are only allowed to use data points. In this section, we argue that a set of data

lines can be simulated by replacing each data line by three data points. This allows

us to define the gadgets described throughout previous sections solely using data

points.

This section is devoted to showing the following lemma, which captures this

transformation formally. Note that our replacement of data lines by data points does

not work in full generality, but we show it for all the gadgets that we constructed.

Lemma 5.16. Assume we are given a set of variable, inversion and lower bound
gadgets that in total require at least𝑚 breaklines (four, five, and three per variable,
inversion and lower bound gadget, respectively). Furthermore, assume that the gadgets
are placed in ℝ2 such that no two parallel gadgets overlap. Then each data line can be
replaced by three data points, such that a continuous piecewise linear function with at
most𝑚 breaklines fits the data points if and only if it fits the data lines.

For the proof, consider the line arrangement induced by the data lines. We introduce

three vertical lines 𝑣1, 𝑣2, 𝑣3 to the right of all intersections. The vertical lines are

placed at unit distance to one another. In our construction in Section 5.8.4, we make

sure that no data line is vertical. Thus, each data line intersects each of the vertical

lines exactly once. We place one data point on each intersection between a vertical
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line and a data line. The new data point inherits the label of the underlying data line.

Furthermore, on each vertical line, we ensure that the minimum distance 𝛼 between

any two data points belonging to different gadgets is larger than the maximum

distance𝑤 between data points belonging to the same gadget. This can be achieved

by placing the 𝑣1, 𝑣2 and 𝑣3 far enough to the right and by ensuring a minimum

distance between parallel gadgets. See Figure 5.15 for an illustration.

𝑣1 𝑣2 𝑣3

≤ 𝑤

≥ 𝛼

≤ 𝑤

ℓ12

ℓ1

ℓ8

ℓ1

Figure 5.15: Data lines defining a variable gadget (blue) and a lower bound gad-

get (red), and their intersections with the vertical lines 𝑣1, 𝑣2, 𝑣3. We add a data point

at each intersection. The values 𝛼 and 𝑤 describe the minimal distance between

data lines of different gadgets, and the maximal distance between data lines of the

same gadget, respectively. In orange, we highlighted three matching breakpoint

intervals (forcing a ∧-breakpoint between ℓ4 and ℓ6 of the variable gadget).

Along each of the three vertical lines, the data points form cross-sections of

all the gadgets, similar to the cross-sections shown in Figures 5.8, 5.12 and 5.14

(but here, the cross-sections are not orthogonal). We have previously analyzed

cross-sections of individual gadgets in the proofs of Lemmas 5.10, 5.13 and 5.14.

There, we identified certain intervals between some of the data lines that need to

contain a breakpoint (the intersection of a breakline and the cross section). We

refer to these intervals as breakpoint intervals along the vertical lines. Note that

a breakpoint interval may degenerate to just one point. By our placement of the

vertical lines, the cross-sections (and thus also the breakpoint intervals) of different

gadgets do not overlap.

Any two data lines bounding a breakpoint interval on 𝑣1 also bound a breakpoint

interval on 𝑣2 and 𝑣3. We call the three breakpoint intervals on 𝑣1, 𝑣2 and 𝑣3 which

are bounded by the same data lines matching breakpoint intervals.

In total, there are 3𝑚 breakpoint intervals. We show that the only way to stab
each of them exactly once using 𝑚 breaklines is if each breakline stabs exactly

three matching breakpoint intervals. The first observation towards this is that

each breakline can only stab a single breakline interval per vertical line because
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all breakline intervals are pairwise disjoint. Thus, having𝑚 breakpoint intervals

on each vertical line, each of the𝑚 breaklines has to stab exactly three intervals,

one per vertical line. In a first step, we show that each breakline has to stab three

breakpoint intervals belonging to the same gadget.

Claim 5.17. Each breakline has to stab three breakpoint intervals of the same gadget.

Proof of Claim. The proof is by induction on the number of gadgets. For a single

gadget, the claim holds trivially. For the inductive step, we consider the lowest

gadget 𝑔 (on 𝑣1, 𝑣2 and 𝑣3) and assume for the sake of contradiction that there is

a breakline 𝑏 stabbing a breakpoint interval of 𝑔 on 𝑣2 and a breakpoint interval

of a different gadget 𝑔′ above 𝑔 on 𝑣1. By construction, the minimum distance 𝛼

between different gadgets is larger than the maximum width𝑤 of any gadget on

all three vertical lines. Thus, the distance of any breakpoint interval of 𝑔′ to any

breakpoint interval of 𝑔 on 𝑣1 is larger than the width of 𝑔 on 𝑣3. Therefore, we

know that the breakline 𝑏 intersects 𝑣3 below any breakpoint intervals of 𝑔, which

is the lowest gadget on 𝑣3. Thus, it stabs at most two breakpoint intervals in total,

and therefore not all intervals can be stabbed. The same reasoning holds if the roles

of 𝑣1 and 𝑣3 are flipped. All breaklines stabbing breakpoint intervals of 𝑔 on 𝑣2 must

therefore also stab breakpoint intervals of 𝑔 on 𝑣1 and 𝑣3. Applying the induction

hypothesis on the remaining gadgets, it follows that each breakline only stabs

breakpoint intervals of the same gadget. ◀

We can therefore analyze the situation for each gadget in isolation. The main

underlying idea is to use the type of the required breakline. Each breakline must

stab three breakpoint intervals of the same type. Let us summarize the findings

about required breakline locations and types from the proofs of Lemmas 5.10, 5.13

and 5.14 in Table 5.1.

Table 5.1: Location and type of the breaklines in variable gadgets, inversion gadgets,

and lower bound gadgets.

Location Type

𝑏1 [ℓ3, ℓ4) (∨,∨)
𝑏2 (ℓ4, ℓ5] (∧,∧)
𝑏3 on ℓ7 (∧,∧)
𝑏4 on ℓ10 (∨,∨)

(a) Variable gadget.

Location Type

𝑏1 [ℓ3, ℓ4) (∨, 0)
𝑏2 (ℓ4, ℓ5) (∧,∨)
𝑏3 (ℓ5, ℓ6] (0,∧)
𝑏4 on ℓ8 (∧,∧)
𝑏5 on ℓ11 (∨,∨)

(b) Inversion gadget.

Location Type

𝑏1 [ℓ3, ℓ4) (0,∧)
𝑏2 (ℓ4, ℓ5) (0,∨)
𝑏3 (ℓ5, ℓ6] (0,∧)

(c) Lower bound gadget.

Claim 5.18. To stab all breakpoint intervals of a variable gadget with only four
breaklines, each of them has to stab three matching breakpoint intervals.

Proof of Claim. See Table 5.1a. On the three vertical lines, there are six breakpoint

intervals for breaklines of type (∨,∨) in total. If only two breaklines should stab
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these six breakpoint intervals, one breakline needs to stab at least two of the

single-point intervals. If a breakline goes through two of the single points, it also

goes through the third point, and can thus not go through the proper intervals.

Therefore, one breakline must stab the single-point intervals, and the other one

stabs the proper breakpoint intervals.

The same argument can be made for the breakpoint intervals of type (∧,∧),
and thus each breakline stabs three matching breakpoint intervals. ◀

Claim 5.19. To stab all breakpoint intervals of an inversion gadget with only five
breaklines, each of them has to stab three matching breakpoint intervals.

Proof of Claim. See Table 5.1b. All five sets of threematching breakpoint intervals

have a different type of required breakline, thus each breakline stabs three matching

breakpoint intervals. ◀

Claim 5.20. To stab all breakpoint intervals of a lower bound gadget with only three
breaklines, each of them has to stab three matching breakpoint intervals.

Proof of Claim. See Table 5.1c. There is only one set of three breakpoint intervals

for a breakline of type (0,∨), so it is trivially matched correctly.

We can see that the breakpoint intervals for a breakline of type (0,∧) have
distance 2 from each other, each having width 1. If the two breaklines of this type

would not stab three matching breakpoint intervals, one of them would need to stab

two matching intervals and one non-matching interval. As the distance between the

vertical lines is equal, and the breakpoint intervals are further apart from each other

than their width, there is no way for a breakline to lie in this way. We conclude

that all breaklines stab three matching breakpoint intervals. ◀

It also follows from Claims 5.18 to 5.20 that no two breaklines can cross each other

between the vertical lines. Neither can a breakline cross a data line. Together with

Claim 5.17, we can finally prove Lemma 5.16.

Proof of Lemma 5.16. By Claim 5.17, every breakline must stab three breakpoint

intervals of the same gadget. By Claims 5.18 to 5.20, each breakline must stab three

matching breakpoint intervals, and therefore the breaklines do not cross any data

lines between the three vertical lines.

It remains to show that the data points already ensure that each breakline 𝑏 is

parallel to the two parallel data lines 𝑑 and 𝑑′ enclosing it. To this end, consider

the parallelogram defined by 𝑑,𝑑′, 𝑣1, 𝑣3 (see Figure 5.16) and let 𝑗 be an output

dimension in which 𝑏 is not erased. Since no other breakline intersects this paral-

lelogram, we obtain that 𝑓 𝑗 has exactly two linear pieces within the parallelogram,

which are separated by 𝑏. Moreover, since 𝑏 stabs matching breakpoint intervals,

the three data points on 𝑑 must belong to one of the pieces. Since these points

have the same label, it follows that the gradient of this piece in output dimension 𝑗

must be orthogonal to 𝑑 (and, thus, to 𝑑′ as well). Applying the same argument

on the data points on 𝑑′, we obtain that the gradient of the other piece must be
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orthogonal to 𝑑 and 𝑑′ as well. This implies that also the difference of the gradients

of the two pieces is orthogonal to 𝑑 and 𝑑′. Finally, since 𝑏 must be orthogonal to

this difference of gradients, we obtain that it is parallel to 𝑑 and 𝑑′. ■

𝑣1 𝑣3

𝑏

𝑑′

𝑑

Figure 5.16: The parallelogram enclosed by the two data lines 𝑑 , 𝑑′ and the vertical
lines 𝑣1, 𝑣3. The three data points (black) on each data line enforce the gradient in

both cells to be orthogonal to the data lines. As a consequence, the breakline 𝑏 (blue)

separating the cells has to be parallel to the data lines.

5.8.4 Global Construction

As a last step in our ∃ℝ-hardness proof of TrainNN we describe the global arrange-

ment of the different gadgets. To this end, fix an arbitrary ETR-Inv instance. See

Figure 5.17 for a visualization.

Variables For each variable 𝑋 , we build a horizontal variable gadget carrying the

value of this variable. We say that this is the canonical variable gadget for 𝑋 .
Lemma 5.10 already ensures that 𝑋 ∈

[
1

2
, 2
]
.

In order to realize the weak data points of the variable gadgets, we add one

lower bound gadget each. They are placed parallel to each other, not parallel

to the variable gadgets, and such that their stripes do not intersect any other

data points.

Addition The following is done for each addition constraint 𝑋 + 𝑌 = 𝑍 , next to

each other: For each involved variable, we copy the value from its canonical

variable gadget to a new variable gadget. To this end, a data point with label 6

is placed on the intersection of the upper measuring line of the canonical

variable gadget and the lower measuring line of the new variable gadget

(Corollary 5.12).

The three new variable gadgets are positioned such that the correct measuring

lines intersect in a common intersection above all horizontal variable gadgets

(upper for𝑋,𝑌 and lower for 𝑍 ). A data point with label 10 at the intersection

enforces the addition constraint (Corollary 5.12).
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𝑋1
𝑋2
𝑋3
𝑋4

𝑋1 + 𝑋2 − 𝑋3 = 0

=

=

=

=

=

=

𝑋1 + 𝑋3 − 𝑋4 = 0

=1=2

=1

=2

𝑋4 · 𝑋3 = 1
𝑋1 · 𝑋4 = 1

≤ 2
≤ 2
≤ 2
≤ 2

Figure 5.17: The layout of all gadgets and additional data points for the complete

reduction. Each gadget is simplified to a single line for clarity. Solid: Variable

gadgets. Dashed: Inversion gadgets. Gray: Lower bound Gadgets. A point with

label =𝑖 indicates a copy that is only active in output dimension 𝑖 .

Inversion The following is done for each inversion constraint 𝑋𝑌 = 1, next to

each other: We add an inversion gadget that intersects all canonical variable

gadgets. Using weak data points with label 6 in the respective dimensions,

we copy 𝑋 to the first dimension of the inversion gadget, and 𝑌 to its second

dimension (Corollary 5.12). The inversion constraint itself is then enforced by

the non-linear relation of the two slopes of the inversion gadget (Lemma 5.13).

All inversion gadgets are placed parallel to each other.

The involved weak data points are realized by two lower bound gadgets per

inversion gadget. We place them parallel to the lower bound gadgets for the

variables, again such that their stripes do not intersect any other data points.

Based on the global arrangement of the gadgets, we can finally prove our main

theorem of this chapter, i.e., the ∃ℝ-completeness of TrainNN:

Proof of Theorem 5.3. For ∃ℝ-membership we refer to [4] and Section 5.7.

For ∃ℝ-hardness, we reduce the ∃ℝ-complete problem ETR-Inv to TrainNN.
Given an instance of ETR-Inv, we construct an instance of TrainNN as described

in the previous paragraphs. We set the target error to 𝛾 = 0.
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Let𝑚 be the minimum number of breaklines needed to realize all gadgets of

the above construction: We need four breaklines per variable gadget (Lemma 5.10),

five breaklines per inversion gadget (Lemma 5.13) and three breaklines per lower

bound gadget (Lemma 5.14). By Lemma 5.16, no breakline can contribute to different

gadgets, so we need exactly that many.

In the remainder of the proof, we show equivalence of the following statements.

(1) The ETR-Inv instance is a yes-instance, i.e., there exists a satisfying assign-

ment of the variables.

(2) There exists a continuous piecewise linear function with𝑚 breaklines that fits

all data points of the constructed TrainNN instance. Furthermore, it fulfills

the conditions of Lemma 5.7.

(3) The TrainNN instance is a yes-instance, i.e., there exists a fully connected

two-layer neural network with𝑚 hidden ReLU neurons exactly fitting all the

data points.

To see that (1) implies (2), assume that there is a satisfying assignment of the ETR-
Inv instance with all variables in

[
1

2
, 2
]
. For each variable 𝑋 , we use 𝑠𝑋 = 𝑋 + 1

as the slope of all corresponding variable gadgets and inversion gadgets. The

superposition of all these gadgets yields the desired continuous piecewise linear

function. It satisfies Lemma 5.7 because, first, the gadgets are built in such a way

that functions fitting all data points are constantly zero everywhere except for

within the gadgets, and second, the gradient condition is satisfied for each gadget

separately and, hence, also for the whole function.

For the other direction, i.e., that (2) implies (1), assume that such a continuous

piecewise linear function exists. By Lemmas 5.14 and 5.16, the data points enforce

exactly the same continuous piecewise linear function as the conceptual data lines

and weak data points would. Then, by Lemmas 5.10 and 5.13, this continuous piece-

wise linear function has the shape of the gadgets. The fact that all data points are

fit implies that the slopes of the variable and inversion gadgets indeed correspond

to a satisfying assignment of ETR-Inv.
Lemma 5.7 yields that (2) implies (3).

It remains to prove that (3) implies (2). To this end, first note that the function

realized by a fully connected two-layer neural networkwith𝑚 hidden ReLU neurons

is always a continuous piecewise linear function with at most𝑚 breaklines that

additionally satisfies the gradient condition by Lemma 5.7. The existence of a (0, 0)-
cell follows from the fact, that all gadgets are constantly 0 outside their stripes.

The TrainNN instance can be constructed in polynomial time, as the gadgets can

be arranged in such a way that all data points (residing on intersections of lines)

have coordinates which can be encoded in polynomial length.

The number of hidden neurons𝑚 is linear in the number of variables and the

number of constraints of the ETR-Inv instance. The number of data points can be

bounded by 10𝑚, thus the number of hidden neurons is linear in the number of

data points.
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As can be gathered from Lemmas 5.10, 5.13 and 5.14 and Corollary 5.12, the set

of used labels has cardinality 13 as claimed. ■

Remark 5.21. Note that if the ETR-Inv instance is satisfiable, then each variable

gadget and inversion gadget in a corresponding solution Θ to the constructed

TrainNN instance has a slope of at most 3 in each dimension. Furthermore, no

lower bound gadget needs to contribute less than −12 to satisfy its corresponding

weak data point. Thus, there must also be a solution Θ′
, where each lower bound

gadget is symmetric, and thus the function 𝑓 (·,Θ′) is Lipschitz continuous with a

low Lipschitz constant 𝐿, which in particular does not depend on the given ETR-Inv
instance. Checking all the different ways how our gadgets intersect, one can verify

that 𝐿 = 25 is sufficient. ⌟

5.9 Algebraic Universality

It remains to prove algebraic universality of TrainNN. Intuitively, it suffices to show

that a solution of an ETR-Inv instance can be transformed into a solution of the

corresponding TrainNN instance (and vice versa) using only basic field arithmetic,

that is, addition, subtraction, multiplication, and division.

For the following lemma, let Φ be an instance of ETR-Inv with 𝑘 variables, and

let 𝑁 be an instance of TrainNN with a total of ℓ weights and biases. Furthermore,

𝑁 was constructed from Φ via our reduction. We denote by 𝑉 (Φ) ⊆ ℝ𝑘
the set of

all satisfying variable assignments. Similarly, 𝑉 (𝑁 ) ⊆ ℝℓ
contains all weight-bias-

combinations that fit all data points.

Lemma 5.22. For any field extension 𝔽 of ℚ it holds that

𝑉 (Φ) ∩ 𝔽 𝑘 ≠ ∅ ⇐⇒ 𝑉 (𝑁 ) ∩ 𝔽 ℓ ≠ ∅.

Proof. “=⇒:” Let 𝑋1, . . . , 𝑋𝑛 ∈ 𝑉 (Φ) ∩ 𝔽 𝑘 be a satisfying variable assignment

for Φ. In our reduction, we place our data points on rational coordinates,

and thus all implied data lines can be described by equations with rational

coefficients. There exists a unique continuous piecewise linear function 𝑓

which fits these data points, corresponds to the solution 𝑋1, . . . , 𝑋𝑛, and in

which all lower bound gadgets are symmetric. This function can be realized

by a fully connected two-layer neural network by Lemma 5.7. The gradients

of all cells in this function can be obtained through elementary operations

from the values 𝑋1, . . . , 𝑋𝑛 and rational numbers. Furthermore, all breaklines

can be described by equations with coefficients derivable from these same

numbers. Thus, there exist weights and biases Θ ∈ 𝔽 ℓ for the neural network

which realize function 𝑓 , showing that Θ ∈ 𝑉 (𝑁 ) ∩ 𝔽 ℓ ≠ ∅.

“⇐=:” Let Θ ∈ 𝑉 (𝑁 ) ∩ 𝔽 ℓ be a set of weights and biases fitting all data points

of the TrainNN instance 𝑁 . For each variable 𝑋 of Φ, there is a canonical
variable gadget corresponding to𝑋 whose slope 𝑠𝑋 satisfies𝑋 = 𝑠𝑋 −1. There
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is a unique hidden neuron 𝑣𝑖 contributing the first breakline of that variable

gadget. Using the notation from Section 5.8.1, the slope of this variable gadget

is 𝑎2,𝑖 · 𝑐𝑖,1, because the variable gadget is horizontal (implying that 𝑎1,𝑖 = 0)

and its output is equal in both output dimensions (implying 𝑐𝑖,1 = 𝑐𝑖,2). Thus,

𝑋 = 𝑎2,𝑖 · 𝑐𝑖,1 − 1, which is clearly in 𝔽 . The same holds for all other variables,

thus 𝑉 (Φ) ∩ 𝔽 𝑘 ≠ ∅.
■

Now Theorem 5.4, i.e., the algebraic universality of TrainNN, follows directly from

the algebraic universality of ETR-Inv (Theorem 5.8) combined with Lemma 5.22.

5.10 Conclusion and Open Problems

We proved ∃ℝ-completeness of TrainNN, and therefore also for the general neural

network training problem known as EmpiricalRiskMinimization. Previous work
shows this only for specifically designed adversary network architectures [4].

Our result fits well into the existing body of literature about the hardness of

training even small neural networks. It improves the more than twenty-year-oldNP-
hardness result by Blum and Rivest [25], contemplating it with algebraic universality.

At the same time, our result renders any generalization of the celebrated NP-
membership argument for single-output neural networks by Arora, Basu, Mianjy

and Mukherjee impossible [12].

Apart from that, ∃ℝ-hardness has the “usual” implications, see Section 1.3. In

particular, our result gives theoretical evidence on why no better algorithms than

backpropagation are available to train neural networks.

Nevertheless, several problems remain open, some of which are highlighted below:

Open Problem 5. What is the complexity to train (two-layer) neural networks

with a single input neuron?

Open Problem 5 asks about neural networks with an even simpler architecture than

the ones considered above. We proved ∃ℝ-hardness for two input and two output

neurons. It is known that a single output neuron leads to NP-membership [12],

but the case for a single input neuron is open. A possible approach to prove NP-
membership would be to first guess the so-called activation pattern of each ReLU

neuron non-deterministically (“Which side is the active region?”), and then to

use a linear program to compute the weights and biases. However, the details of

this approach would need to be worked out. Note that training two-layer neural

networks with a (large enough) constant number of inputs is already NP-hard [66].

Open Problem 6. What is the complexity of training neural networks with two

or more hidden layers?

Having just one hidden layer is the simplest possible case, and we proved ∃ℝ-
hardness for it. However, our reduction heavily relies on the geometry of continuous
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piecewise linear functions realized by neural networks with a single hidden layer.

We are not aware of any approach to generalize our reduction to the more compli-

cated geometry of neural networks with more hidden layers. On the other hand, we

are also not aware of any reason why the problem should become computationally

simpler.

Open Problem 7. What is the complexity of “approximately” training neural

networks?

Open Problem 7 is deliberately not well-defined. In practice, one does not need large

precision for the weights and biases to achieve low training and generalization

error. Even custom hardware like tensor processing units (TPUs) with particularly

low precision but in exchange high performance is used for training large neural

networks.

∃ℝ-hardness and high precision often go hand in hand, and our result does

not generalize to approximate training
2
. In particular, it does not rule out efficient

algorithms for well-defined approximate versions of EmpiricalRiskMinimization.
Progress in this direction would be of high significance to the machine learning

community.

2 Actually, we can prove ∃ℝ-hardness for a very weak form of approximate training, namely

such that each data point is fit up to an error of at most 𝜀, where 𝜀 is doubly exponentially small

in the instance size. This follows from standard techniques based on Theorem 6.13 below. See

also [49]. We consider this to only be of theoretical interest, and not yet as a promising approach

towards solving Open Problem 7.
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This chapter is based on our paper “The Complexity of the Hausdorff Distance”

published in Discrete & Computational Geometry [95]. Preliminary versions

were presented at the 38th European Workshop on Computational Geometry
(EuroCG 2022) [93] and published at the 38th International Symposium on Com-
putational Geometry (SoCG 2022) [94]. It is joint work with Linda Kleist and

Tillmann Miltzow.

So far, in Chapters 3 to 5, the computational complexity of all considered problems

was captured exactly by the complexity class ∃ℝ. In other words, all these problems

are equally difficult as deciding ETR, the existential theory of the reals. Now, we

consider a problem that is presumably even more difficult, namely the problem to

compute the Hausdorff distance between two semi-algebraic sets. As it turns out,

this problem is ∀∃ℝ-complete, where ∃ℝ ⊆ ∀∃ℝ.
Recall that we can think of ∃ℝ as a “real analogue” of NP. Together, NP and

coNP form the first level of the polynomial hierarchy (PH). Similarly, one can define

the real polynomial hierarchy having ∃ℝ and ∀ℝ = co∃ℝ at its first level. The

complexity class ∀∃ℝ is on the second level of this hierarchy and can be understood

as the real analogue of ΠP
2
in the (classical) polynomial hierarchy.

Explicitly, the study of ∀∃ℝ was initiated recently by Dobbins, Kleist, Miltzow

and Rzążewski [54], but similar concepts appeared earlier [34]. Still, not much is

known about this class, and standard tools to prove ∀∃ℝ-hardness have yet to be

developed. Our result about the ∀∃ℝ-completeness of computing the Hausdorff

distance is the first ∀∃ℝ-completeness result for a natural problem.

ChapterOutline In Section 6.1, we introduce the Hausdorff distance, motivate its

importance, highlight its practical difficulty, and discuss possible solution strategies.

The main results and a high-level proof sketch are presented in Section 6.2, followed

by the related work in Section 6.3. In Section 6.4, we discuss the necessary tools

from real algebraic geometry. Section 6.5 contains our key technical contribution,

which is crucial to prove ∀∃ℝ-hardness in Section 6.6.

Next, we discuss ∀∃ℝ-membership: First, in Section 6.7, under consideration of

a recent paper that followed our initial publication. Second, in Section 6.8, using our

original approach. We finish this chapter with an excursion about exotic quantifiers

and their applications to the Hausdorff problem in Section 6.9.
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6.1 Introduction

The question “How similar are two given objects?” occurs in numerous settings.

For three concrete examples, consider Figure 6.1. A typical tool to quantify their

similarity is the Hausdorff distance: Two sets have small Hausdorff distance if every

point of one set is close to some point of the other set and vice versa.

𝐴1
𝐵1

(a) 𝑑H(𝐴1, 𝐵1)

𝐵2
𝐴2

(b) 𝑑H(𝐴2, 𝐵2)

𝐴3
𝐵3

(c) 𝑑H(𝐴3, 𝐵3)

Figure 6.1: How similar are these sets?

Formally, the directed Hausdorff distance between two non-empty sets 𝐴, 𝐵 ⊆ ℝ𝑛
is

defined as

®𝑑H(𝐴, 𝐵) := sup

𝑎∈𝐴
inf

𝑏∈𝐵
∥𝑎 − 𝑏∥.

The directed Hausdorff distance between𝐴 and 𝐵 can be interpreted as the smallest

value 𝑡 ≥ 0 such that the (closed) 𝑡-neighborhood of 𝐵 contains 𝐴. Hence, it

nicely captures the intuition of how much 𝐵 has to be expanded uniformly in all

directions to contain 𝐴. Note that this definition is not symmetric, so
®𝑑H(𝐴, 𝐵) and

®𝑑H(𝐵,𝐴) may differ. For an example, consider Figure 6.1a; while 𝐴1 ⊆ 𝐵1 and thus

®𝑑H(𝐴1, 𝐵1) = 0, it holds that
®𝑑H(𝐵1, 𝐴1) > 0. In contrast, the (undirected) Hausdorff

distance is symmetric and defined as

𝑑H(𝐴, 𝐵) := max

{ ®𝑑H(𝐴, 𝐵), ®𝑑H(𝐵,𝐴)}.
In this thesis, we investigate the computational complexity of deciding whether

the Hausdorff distance of two sets is at most a given threshold.

The Hausdorff distance appears in many branches of science: In mathematics,

the Hausdorff distance provides a metric on sets and henceforth also a topology.

This topology can be used to discuss continuous transformations of one set to an-

other [30]. In computer vision and geographical information science, the Hausdorff

distance is used to measure the similarity between spacial objects [114, 131] for

example the quality of quadrangulations of complex 3D models [151].

6.1.1 Semi-Algebraic Sets

The algorithmic complexity of computing the Hausdorff distance clearly depends

on the type of the underlying sets: If both sets consist of finitely many points, then

their Hausdorff distance can easily be computed in polynomial time by checking
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all pairs of points. However, one often considers infinite sets, such as collections of

disks in the plane, cubic splines or surfaces in three (or more) dimensions.

Here, we consider semi-algebraic sets. Formally, a semi-algebraic set is the finite
union of so-called basic semi-algebraic sets. A basic semi-algebraic set 𝑆 is specified

by two finite families of polynomials P and Q such that

𝑆 =

{
𝑥 ∈ ℝ𝑛 |

∧
𝑃∈P

𝑃 (𝑥) ≤ 0 ∧
∧
𝑄∈Q

𝑄 (𝑥) < 0

}
.

Semi-algebraic sets clearly cover the vast majority of practical cases. Simultaneously,

even in supposedly simple cases, i.e., when considering circles, ellipses or cubic

splines, one has to use polynomial equations to describe the sets.

Remark 6.1 (Integer Coefficients). In real algebraic geometry, one usually allows

real-valued coefficients, i.e., P,Q ⊆ ℝ[𝑋1, . . . , 𝑋𝑛]. However, we consider the

computational complexity of computing the Hausdorff distance in the standard

bit-model of computation. Here, the polynomials describing the two sets 𝐴 and 𝐵

are part of the input and therefore given with finite precision, usually in some

binary encoding. In this thesis, we always assume that the coefficients are integers

encoded as described in Section 2.1.3. ⌟

Having said that, it is still possible to encode semi-algebraic sets with arbitrary

coefficients from ℝalg by introducing auxiliary variables:

Example 6.2 (Algebraic Coefficients). Assume that we are interested in 𝑑H(𝐴, 𝐵)
for two semi-algebraic sets

𝐴 :=
{
𝑥 ∈ ℝ |

√
2 · 𝑥2 = 1

}
and

𝐵 :=
{
𝑥 ∈ ℝ | 𝑥 = 1

}
.

The coefficient

√
2 in the definition of 𝐴 is obviously not an integer and thus does

not fulfill above restriction. However, it is possible to define two new sets

𝐴′
:=

{
(𝑥,𝑢) ∈ ℝ2 | 𝑢 > 0 ∧ 𝑢2 = 2 ∧ 𝑢 · 𝑥2 = 1

}
and

𝐵′ :=
{
(𝑥,𝑢) ∈ ℝ2 | 𝑢 > 0 ∧ 𝑢2 = 2 ∧ 𝑥 = 1

}
that circumnavigate this problem: The trick is to add a new variable 𝑢 whose

value is forced to 𝑢 =
√
2 by the additional constraints. Note that all constraints

have integer coefficients only. It holds that 𝑑H(𝐴, 𝐵) = 𝑑H(𝐴′, 𝐵′). Thus, modeling

algebraic coefficients is indeed possible with a small overhead in the description

complexity of the considered sets. ⌟

6.1.2 An Algorithmic Approach

In order to demonstrate how difficult it is in practice to compute the Hausdorff

distance even between two simple curves in ℝ2
, let us consider an example. Our

presented approach uses the convexity and continuity of the two curves. In par-

ticular, it does not easily generalize to arbitrary semi-algebraic sets. In the next

paragraph, we present a slower, but more general method.
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Example 6.3 (Bernd Sturmfels, 2019). The polynomials 𝑓 , 𝑔 ∈ ℤ[𝑥,𝑦], given by

𝑓 (𝑥,𝑦) := 𝑥4 + 𝑦4 + 12𝑥3 + 2𝑦3 − 3𝑥𝑦 + 11 and

𝑔(𝑥,𝑦) := 7𝑥4 + 8𝑦4 − 1,

define sets 𝐴 = {(𝑥,𝑦) ∈ ℝ2 | 𝑓 (𝑥,𝑦) = 0} and 𝐵 = {(𝑥,𝑦) ∈ ℝ2 | 𝑔(𝑥,𝑦) = 0}. For
an illustration, see the blue and green curve in Figure 6.2, respectively.

𝑎2

𝐴

𝑎1

𝑏2 𝑏1

𝐵

5

−5

−5−10

Figure 6.2: The Hausdorff distance between the compact semi-algebraic sets 𝐴

(blue) and 𝐵 (green) is attained at points (𝑎2, 𝑏2) such that the segment 𝑎2𝑏2 is

orthogonal to the tangents at 𝑎2 and 𝑏2. The segment 𝑎1𝑏1 is longer than 𝑎2𝑏2, but

it crosses both 𝐴 and 𝐵. Therefore, (𝑎1, 𝑏1) does not realize the Hausdorff distance.

Both curves are convex and smooth, so their Hausdorff distance is attained at

points 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 such that the segment 𝑎𝑏 is orthogonal to the tangents at 𝑎

and 𝑏. This can be formulated by a set of polynomial equations in four variables.

The system has 240 complex solutions, eight of which are real. These 240 solutions

can be computed using computer algebra systems based on Gröbner bases. For

some real solutions (𝑎, 𝑏), the segment 𝑎𝑏 crosses 𝐴 and 𝐵, for example 𝑎1𝑏1 in

Figure 6.2. These solutions can be discarded. Among the remaining solutions,

the points 𝑎2 ≈ (−11.48362,−6.1760) and 𝑏2 ≈ (−0.56460,−0.43583) realize the
Hausdorff distance of approximately 12.33591. ⌟

6.1.3 A Decision Algorithm and Computational Complexity

Assume we are given two semi-algebraic sets 𝐴 and 𝐵, and a threshold 𝑡 ∈ ℕ. The

statement
®𝑑H(𝐴, 𝐵) ≤ 𝑡 can be encoded as a first-order sentence of the form

1

∀𝜀 > 0, 𝑎 ∈ 𝐴 . ∃𝑏 ∈ 𝐵 : ∥𝑎 − 𝑏∥ ≤ 𝑡 + 𝜀, (6.1)

1 An extension to the undirected case 𝑑H (𝐴, 𝐵) ≤ 𝑡 is straightforward, see Section 6.8, and was

already done by Dobbins, Kleist, Miltzow and Rzążewski [54].
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where the 𝜀 is needed to also consider points in the closure of 𝐵. Recall that such a

sentence is decidable (Section 2.2) by applying sophisticated algorithms from real

algebraic geometry that can deal with two blocks of quantifiers [16, Chapter 14].

However, these algorithms are so slow that they are impractical, even for small

instances like the one in Example 6.3.

Despite being unable to decide the truth of a sentence like (6.1) efficiently

in practice, it already provides an upper bound on the complexity of the directed

Hausdorff distance: Deciding whether
®𝑑H(𝐴, 𝐵) ≤ 𝑡 is at most as difficult as deciding

the ∀∃-fragment of the first-order theory of the reals.

To make this precise, let us recall the definition from Section 2.2: Let 𝜑 be a

quantifier-free formula in the first-order theory of the reals with variables 𝑋 =

(𝑋1, . . . , 𝑋𝑛) and 𝑌 = (𝑌1, . . . , 𝑌𝑚). The decision problem Universal Existential
Theory of the Reals (UETR) asks whether a sentence of the form

∀𝑋 ∈ ℝ𝑛 . ∃𝑌 ∈ ℝ𝑚 : 𝜑 (𝑋,𝑌 )

is true. We denote the special case of UETR in which 𝜑 does not contain nega-

tions (no “¬”) and all atoms are strict inequalities (only “<”, “>” or “≠”) by Strict-
UETR. Of course, Strict-UETR is at most as difficult as UETR.

The complexity classes ∀∃ℝ and ∀∃<ℝ contain exactly all decision problems

that polynomial-time many-one reduce to UETR and Strict-UETR, respectively. To
the best of our knowledge, ∀∃ℝ was first introduced by Bürgisser and Cucker [34,

Section 9] under the name BP0(∀∃) (in the constant-free Boolean part of the BSS

model [26]). The notation ∀∃ℝ emerged later in [54], extending the notation from

Schaefer and Štefankovič [138].

6.2 Problem and Results

We now have all ingredients to state our problem and main results:

Definition 6.4 (Hausdorff).
Input: An integer 𝑛 ∈ ℕ, two quantifier-free formulas 𝜑𝐴 (𝑋 ) and 𝜑𝐵 (𝑋 ) with 𝑛 free

variables 𝑋 = (𝑋1, . . . , 𝑋𝑛), and an integer 𝑡 ∈ ℕ.
Question: For 𝐴 := {𝑥 ∈ ℝ𝑛 | 𝜑𝐴 (𝑥)} and 𝐵 := {𝑥 ∈ ℝ𝑛 | 𝜑𝐵 (𝑥)}, is 𝑑H(𝐴, 𝐵) ≤ 𝑡?
In the same manner, we denote by DirectedHausdorff the problem to determine

whether
®𝑑H(𝐴, 𝐵) ≤ 𝑡 .

Note that 𝑛, the dimension of the ambient space of 𝐴 and 𝐵, is part of the input.

In fact, there is a polynomial-time algorithm for every fixed 𝑛, see the related work

in Section 6.3. Our main result determines the algorithmic complexity:

Theorem 6.5. Hausdorff and DirectedHausdorff are ∀∃<ℝ-complete.

Prior to our result, it was not even known whether computing the Hausdorff

distance is NP-hard. As ∀∃<ℝ contains the complexity classes NP, coNP, ∃ℝ and

∀ℝ, our result implies hardness for these classes. Theorem 6.5 answers an open

question posed by Dobbins, Kleist, Miltzow and Rzążewski [54].
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Remark 6.6 (∀∃<ℝ = ∀∃ℝ). When we published Theorem 6.13 [93, 94, 95], it

remained an open question whether ∀∃<ℝ ⊆ ∀∃ℝ was a strict inclusion. This

question was answered recently by Schaefer and Štefankovič, who prove that

∀∃<ℝ = ∀∃ℝ [139], implying∀∃ℝ-completeness of Hausdorff andDirectedHaus-
dorff. We discuss the implications of their result on our reduction in Section 6.7

below. ⌟

Our ∀∃<ℝ-hardness reduction for Hausdorff creates instances with some addi-

tional properties. First, our reduction is a gap reduction. In particular, the Hausdorff

distance of the obtained instance is either below the threshold 𝑡 or at least 𝑡 · 22Ω (𝑛)
.

Thus, our result also yields the following inapproximability result:

Corollary 6.7. Let 𝐴 and 𝐵 be two semi-algebraic sets in ℝ𝑛 and 𝑓 (𝑛) = 2
2
𝑜 (𝑛) . There

is no polynomial-time 𝑓 (𝑛)-approximation algorithm to compute 𝑑H(𝐴, 𝐵), unless
P = ∀∃<ℝ.

Second, our reduction can be modified slightly to obtain a Hausdorff instance
in which 𝐴 and 𝐵 are described by structurally simple formulas: All atoms are

polynomial equations of bounded degree and the formula is a conjunction of atoms.

Of course, this comes at an expense, namely an increased number of variables.

The following corollary states that this structural simplicity does not make the

Hausdorff problem simpler, instead it remains equally difficult:

Corollary 6.8. The Hausdorff problem remains ∀∃<ℝ-complete, even if the two
sets 𝐴 and 𝐵 are both described by either

(i) a conjunction of quadratic polynomial equations, or
(ii) a single polynomial equation of degree at most four.

6.2.1 Techniques and Proof Idea

In this section, we present the general idea behind the ∀∃<ℝ-hardness reduction

for the Hausdorff problem. The goal is to convey the intuition and to motivate

the technical intermediate steps needed. The sketched reduction is oversimplified

and thus neither in polynomial time nor fully correct. We point out both of these

issues and give first ideas on how to solve them.

Let Φ :≡ ∀𝑋 ∈ ℝ𝑛 . ∃𝑌 ∈ ℝ𝑚 : 𝜑 (𝑋,𝑌 ) be a Strict-UETR instance. We define

two sets

𝐴 :=
{
𝑥 ∈ ℝ𝑛 | ∃𝑌 ∈ ℝ𝑚 : 𝜑 (𝑥,𝑌 )

}
and

𝐵 := ℝ𝑛

and ask whether 𝑑H(𝐴, 𝐵) = 0. If Φ is true, then 𝐴 = ℝ𝑛
and we have 𝑑H(𝐴, 𝐵) = 0

because both sets are equal. Otherwise, if Φ is false, then there exists some 𝑥 ∈ ℝ𝑛

for which there is no 𝑦 ∈ ℝ𝑚 satisfying 𝜑 (𝑥,𝑦) and we conclude that 𝐴 ⊊ ℝ𝑛
. In

general, we call the set of all 𝑥 ∈ ℝ𝑛
for which there is no 𝑦 ∈ ℝ𝑚 satisfying 𝜑 (𝑥,𝑦)

the counterexamples ⊥(Φ) of Φ. One might hope that ⊥(Φ) ≠ ∅ is enough to obtain
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that 𝑑H(𝐴, 𝐵) > 0. However, this is not the case. To this end, consider the formula

Ψ :≡ ∀𝑋 ∈ ℝ . ∃𝑌 ∈ ℝ : 𝑋𝑌 > 1, which is false. The set ⊥(Ψ) = {0} contains
only a single element, so we have 𝐴 = ℝ \ {0} and 𝐵 = ℝ. Sets 𝐴 and 𝐵 have the

same closure, so their Hausdorff distance evaluates to 𝑑H(𝐴, 𝐵) = 0. We conclude

that above reduction does not (yet) work, because it may map no-instances of

Strict-UETR to yes-instances of Hausdorff.
We solve this issue by a preprocessing step that expands the set of counterex-

amples. Specifically, Theorem 6.20 below establishes a polynomial-time algorithm

to transform a Strict-UETR instance Φ into an equivalent instance Φ′
such that

the set of counterexamples is either empty (if Φ′
is true) or contains an open ball

of positive radius (if Φ′
is false). The radius of the ball serves as a lower bound on

the Hausdorff distance 𝑑H(𝐴, 𝐵). Thus, a reduction starting from Φ′
is correct. A

key tool for this step is that we can restrict the variable ranges from ℝ𝑛
and ℝ𝑚

to small and compact intervals. Figure 6.3 presents an example on how such a

range restriction may enlarge the set of counterexamples from a single point to an

interval.

𝑥

𝑦

(a) Points (𝑥,𝑦) ∈ ℝ2
in the green open

region satisfy 𝑥𝑦 > 1. Only for 𝑥 = 0

(in red) no suitable 𝑦 ∈ ℝ exists.

𝑥

𝑦

(b) If we restrict 𝑌 to [−1, 1], then for

no 𝑥 ∈ [−1, 1] (in red) a suitable 𝑦 ∈
[−1, 1] with 𝑥𝑦 > 1 exists.

Figure 6.3: Expanding the set of counterexamples of ∀𝑋 ∈ ℝ . ∃𝑌 ∈ ℝ : 𝑋𝑌 > 1.

We emphasize that it is unclear, whether it is possible to restrict the variable

ranges for generalUETR instances. However, we exploit a special property of Strict-
UETR instances, namely that they are ∀-strict: A negation-free and implication-free

formula is ∀-strict if each atom containing universally quantified variables is a strict

inequality. Being ∀-strict is a key property of many of the formulas considered

throughout this chapter, and our proofs crucially rely on it.

Another challenge hides in the definition of set 𝐴. While the description com-

plexity of 𝐵 depends only on 𝑛, the definition of𝐴 contains an existential quantifier.

This is troublesome because our definition of the Hausdorff problem requires

quantifier-free formulas as its input, and in general there is no equivalent quantifier-

free formula of polynomial length which describes the set𝐴 [48]. We overcome this

issue by taking the existentially quantified variables as additional dimensions into

account. We scale them to a range doubly exponentially smaller than the range of

the universally quantified variables, so that their influence on the Hausdorff dis-

tance becomes negligible. Therefore, instead of the above, we work (in Section 6.6)
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with sets similar to

𝐴 :=
{
(𝑥,𝑦) | 𝑥 ∈ [−𝐶,𝐶]𝑛 ∧ 𝑦 ∈ [−1, 1]𝑚 ∧ 𝜑 (𝑥,𝑦)

}
and

𝐵 := [−𝐶,𝐶]𝑛 × {0}𝑚

for some value𝐶 that is doubly exponentially large in |Φ|. This definition of𝐴 and 𝐵

introduces the new issue that, even if Φ is true, the Hausdorff distance 𝑑H(𝐴, 𝐵)
might be strictly positive. However, we manage to identify a threshold 𝑡 ∈ ℕ, such

that 𝑑H(𝐴, 𝐵) ≤ 𝑡 if and only if Φ is true.

6.3 Related Work

The notion of the Hausdorff distance was introduced by Hausdorff in 1914 [84].

Many early works focused on the Hausdorff distance for finite point sets. For a

set of 𝑎 points and another set of 𝑏 points in any fixed dimension, the Hausdorff

distance can be computed by checking all pairs, i.e., in time 𝑂 (𝑎𝑏). In the plane,

the runtime can be improved to 𝑂 ((𝑎 + 𝑏) log(𝑎 + 𝑏)) using Voronoi diagrams [9].

In fact, this method can be extended to sets consisting of pairwise non-crossing

line segments in the plane, e.g., simple polygons and polygonal chains fulfill this

property. If the polygons are convex, their Hausdorff distance can even be computed

in linear time [13].

More generally, the Hausdorff distance can be computed in polynomial time

whenever the two sets can be described by a simplicial complex of fixed dimension.

Alt, Braß, Godau, Knauer and Wenk [10, Theorem 3.3] show how to compute

the directed Hausdorff distance between two sets in ℝ𝑛
consisting of 𝑎 and 𝑏

𝑘-dimensional simplices in time 𝑂 (𝑎𝑏𝑘+2) (assuming 𝑛 is constant). Using a Las

Vegas algorithm for computing the vertices of the lower envelope, similar ideas

yield an approach with randomized expected time in 𝑂 (𝑎𝑏𝑘+𝜀) for 𝑘 > 1 and

every 𝜀 > 0 [10, Theorem 3.4]. They additionally present algorithms with better

randomized expected running times for sets of triangles in ℝ3
and point sets in ℝ𝑛

.

Given two semi-algebraic sets 𝐴, 𝐵 ⊆ ℝ𝑛
and a threshold value 𝑡 ∈ ℕ, the Haus-

dorff decision problem can be encoded as a UETR sentence Φ, thereby proving

∀∃ℝ-membership. Recall that we have done this already for the DirectedHaus-
dorff problem in sentence (6.1), based on a UETR formula for Hausdorff by

Dobbins, Kleist, Miltzow and Rzążewski [54]. Such a sentence can be decided in

time 𝑠 (𝑛+1)2𝑑𝑂 (𝑛)2
by Theorem 2.5, i.e., by using an algorithm to decide general

sentences from the first-order theory of the reals. (Here 𝑑 denotes the maximum

degree of any polynomial of Φ and 𝑠 denotes the number of atoms.)

Independently (and using different terminology), Bürgisser and Cucker proved

∀∃ℝ-membership and ∀∗∃ℝ-hardness for DirectedHausdorff [34]. The ∀∗ is a
so-called “exotic” quantifier. We discuss the connection between this complexity

class and ∀∃<ℝ in Section 6.9.

In other contexts, the two sets are allowed to undergo certain transformations

(e.g., translations) such that their Hausdorff distance gets minimized [32]. See for

example the survey by Alt and Guibas [11].
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6.4 Preliminaries

This section introduces the basic tools for our reduction. We start by recalling the

necessary complexity classes and discuss their relations among one another. Then

we review two important results from real algebraic geometry that will allow us to

restrict the ranges of the variables. For the definitions of first-order formulas and

their encoding, see Section 2.1.

6.4.1 Complexity Classes

Several complexity classes appear in this chapter. Here, we discuss their relations

among one another. We make use of a helpful lemma from the literature. It allows

us to replace a quantifier-free formula 𝜑 by a structurally simpler one (at the cost

of adding additional variables).

Concerning notation, we express the existence of a polynomial 𝑝 ∈ ℤ[𝑌1, . . . , 𝑌𝑘]
such that 𝑥 ≤ 𝑝 (𝑦1, . . . , 𝑦𝑘) by 𝑥 ≤ poly(𝑦1, . . . , 𝑦𝑘). Furthermore, we write QFF for

the set of all quantifier-free first-order formulas.

Lemma6.9 ([138, Lemma 3.2]). Let𝜑 (𝑋 ) ∈ QFF be a formula with𝑛 free variables𝑋 .
Then we can construct either of the following in polynomial time:

(i) Integers ℓ,𝑚 ≤ poly( |𝜑 |), and for 𝑖 ∈ {1, . . . ,𝑚} a polynomial 𝐹𝑖 : ℝ𝑛+ℓ → ℝ

with integer coefficients of degree at most 2 such that

{𝑥 ∈ ℝ𝑛 | 𝜑 (𝑥)} = {𝑥 ∈ ℝ𝑛 | ∃𝑌 ∈ ℝℓ
:

𝑚∧
𝑖=1

𝐹𝑖 (𝑥,𝑌 ) = 0}.

(ii) An integer 𝑘 ≤ 𝑝𝑜𝑙𝑦 ( |𝜑 |), and a polynomial 𝐹 : ℝ𝑛+𝑘 → ℝ with integer coeffi-
cients of degree at most 4 such that

{𝑥 ∈ ℝ𝑛 | 𝜑 (𝑥)} = {𝑥 ∈ ℝ𝑛 | ∃𝑌 ∈ ℝ𝑘
: 𝐹 (𝑥,𝑌 ) = 0}.

For any fixed ◦ ∈ {<, ≤}, the subset QFF◦ ⊆ QFF contains all quantifier-free and
negation-free first-order formulas in which each atom uses ◦. Further, we denote
by ∀∃◦ℝ the subset of ∀∃ℝ containing all decision problems that polynomial-time

many-one reduce to a UETR-instance whose quantifier-free parts are contained
in QFF◦. Similarly, we denote the corresponding subsets of ∃ℝ and ∀ℝ by ∃◦ℝ
and ∀◦ℝ, respectively. The following lemma summarizes what we know about the

relation between the complexity classes ∀∃<ℝ, ∀∃≤ℝ and ∀∃ℝ as well as their

relation to the well-studied classes NP, coNP, ∃ℝ, ∀ℝ, and PSPACE.

Lemma 6.10. The following inclusions hold:

PSPACE
NP

coNP

∃ℝ

∀ℝ
∀∃ℝ∀∃<ℝ

⊆

⊆
⊆ ⊆

⊆
⊆

=∀∃≤ℝ
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Proof. The inclusion NP ⊆ ∃ℝ was first presented by Shor [144]. This directly

implies coNP ⊆ ∀ℝ (because ∀ℝ = co∃ℝ). For ◦ ∈ {<, ≤} the inclusion ∀∃◦ℝ ⊆
∀∃ℝ follows by definition because the left-hand side is just a special case of the

right-hand side. Using that ∃<ℝ = ∃ℝ [138, Theorem 4.1], the same argument can

be used for ∃ℝ ⊆ ∀∃<ℝ. Canny first established ∀∃ℝ ⊆ PSPACE [37].

To show that ∀∃ℝ ⊆ ∀∃≤ℝ, consider a UETR instance

Φ :≡ ∀𝑋 ∈ ℝ𝑛 . ∃𝑌 ∈ ℝ𝑚 : 𝜑 (𝑋,𝑌 ).

We apply Lemma 6.9 to 𝜑 and obtain in polynomial time an integer 𝑘 ≤ poly( |𝜑 |)
and a polynomial 𝐹 : ℝ𝑛+𝑚+𝑘 → ℝ, such that

Ψ :≡ ∀𝑋 ∈ ℝ𝑛 . ∃𝑌 ∈ ℝ𝑚+𝑘
: 𝐹 (𝑋,𝑌 ) ≤ 0 ∧ −𝐹 (𝑋,𝑌 ) ≤ 0,

is equivalent to Φ. Note that both atoms use ≤.
Lastly, let us consider the inclusion ∀ℝ ⊆ ∀∃<ℝ. Note that ∀ℝ = ∀<ℝ (because

two complexity classes are equal whenever their complement classes are equal and

∃ℝ = ∃≤ℝ is known [138]). Then ∀<ℝ ⊆ ∀∃<ℝ follows by definition. ■

6.4.2 Tools from Real Algebraic Geometry

We review two sophisticated results from real algebraic geometry. The first is singly

exponential quantifier elimination, i.e., an algorithm to transform a first-order

formula in prenex normal form into an equivalent quantifier-free formula. The

currently most efficient versions are presented in a series of articles by Renegar [126,

127, 128].

Theorem 6.11 ([16, Theorem 14.16]). Let 𝑋1, . . . , 𝑋𝑘 , 𝑌 be blocks of real variables
where 𝑋𝑖 has length 𝑛𝑖 , 𝑌 has length𝑚, formula 𝜑 (𝑋1, . . . , 𝑋𝑘 , 𝑌 ) ∈ QFF has 𝑠 atoms
and Q𝑖 ∈ {∃,∀} is a quantifier for all 𝑖 ∈ {1, . . . , 𝑘}. Furthermore, let 𝑑 be the
maximum total degree of any polynomial of 𝜑 (𝑋1, . . . , 𝑋𝑘 , 𝑌 ). Then for any formula

Φ(𝑌 ) :≡ Q1𝑋1 ∈ ℝ𝑛1 . . .Q𝑘𝑋𝑘 ∈ ℝ𝑛𝑘
: 𝜑 (𝑋1, . . . , 𝑋𝑘 , 𝑌 )

there is an equivalent quantifier-free formula of size at most

𝑠 (𝑛1+1)···(𝑛𝑘+1) (𝑚+1)𝑑𝑂 (𝑛1)···𝑂 (𝑛𝑘 )𝑂 (𝑚) .

Throughout this chapter we use the following corollary of Theorem 6.11 which is

already stated by D’Costa, Lefaucheux, Neumann, Ouaknine and Worrel [47]. It is

weaker but easier to work with.

Corollary 6.12 ([47]). Let Φ(𝑌 ) be as in Theorem 6.11, and let 𝐿 = |𝜑 (𝑋1, . . . , 𝑋𝑘 , 𝑌 ) |
be the length of its matrix. Then for some constant 𝛼 ∈ ℝ independent of Φ, there
exists an equivalent quantifier-free formula of size at most

𝐿𝛼
𝑘+1·(𝑛1+1)·...·(𝑛𝑘+1)·(𝑚+1) .
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The second tool is the so-called Ball Theorem. It guarantees that every non-empty

semi-algebraic set contains an element not too far from the origin. The Ball Theorem

was first proven by Vorob’ev [152] as well as by Grigor’ev and Vorobjov [77]
2
.

Explicit bounds on the distance are given by Basu and Roy [17]. We use a version

from Schaefer and Štefankovič [138]:

Theorem 6.13 (Ball Theorem [138, Corollary 3.1]). Every non-empty semi-algebraic
set in ℝ𝑛 of complexity at most 𝐿 ≥ 4 contains a point of distance at most 2𝐿8𝑛 from
the origin.

Recall that for any quantifier-free formula 𝜑 (𝑋 ) with free variables 𝑋 ∈ ℝ𝑛
, the

set 𝑆 := {𝑥 ∈ ℝ𝑛 | 𝜑 (𝑋 )} is semi-algebraic. It follows from Theorem 6.13 that

∃𝑋 ∈ ℝ𝑛
: 𝜑 (𝑋 ) is equivalent to ∃𝑋 ∈ [−𝐶,𝐶]𝑛 : 𝜑 (𝑋 ) where𝐶 := 2

𝐿8𝑛
. This is how

we are going to use Theorem 6.13.

Below, we apply Corollary 6.12 and Theorem 6.13 to prove a lemma that is stated

in [47, Lemma 14] for two quantifiers only. We are interested in the general case

with 𝑘 quantifiers. The proof goes along the same lines as the proof for two quan-

tifiers. A qualitatively equivalent statement also follows from (the proof of) [34,

Theorem 9.2].

Lemma 6.14. Let 𝑋1, . . . , 𝑋𝑘 be blocks of variables where 𝑋𝑖 has length 𝑛𝑖 ≥ 1 and
let 𝜑 (𝜀, 𝑋1, . . . , 𝑋𝑘) ∈ QFF with 𝐿 := |𝜑 |. For Q𝑖 ∈ {∃,∀} consider the set

𝑆 := {𝜀 > 0 | Q1𝑋1 ∈ ℝ𝑛1 . . .Q𝑘𝑋𝑘 ∈ ℝ𝑛𝑘
: 𝜑 (𝜀, 𝑋1, . . . , 𝑋𝑘)}.

If 𝑆 is non-empty, then there is an 𝜀∗ ∈ 𝑆 such that for some constant 𝛽 ∈ ℝ we have

𝜀∗ ≥ 2
−𝐿𝛽𝑘+2 (𝑛1+1) ·· · (𝑛𝑘+1) .

Proof. Let Φ(𝜀) be the subformula Q1𝑋1 ∈ ℝ𝑛1 . . .Q𝑘𝑋𝑘 ∈ ℝ𝑛𝑘
: 𝜑 (𝜀, 𝑋1, . . . , 𝑋𝑘).

By Corollary 6.12, there is a constant 𝛼 ∈ ℝ and a quantifier-free formula 𝜙 (𝜀) of
length

|𝜙 (𝜀) | ≤ 𝐿2𝛼
𝑘+1 (𝑛1+1)···(𝑛𝑘+1)

such that 𝑆 = {𝜀 > 0 | 𝜙 (𝜀)}. Let 𝑑 be the maximum degree of any polynomial in 𝜙

and 𝛿 be a new variable. We replace each atom 𝑃 (𝜀) ◦ 0 (where ◦ ∈ {<, ≤}) of 𝜙 by

𝛿𝑑𝑃
(
1

𝛿

)
◦ 0 and denote the new formula by𝜓 (𝛿). Then for 𝜀 > 0 it follows that 𝜙 (𝜀)

is true if and only if for 𝛿 = 1

𝜀
the sentence𝜓 (𝛿) is true. We get

∃𝜀 > 0 : 𝜙 (𝜀) ≡ ∃𝛿 > 0 : 𝜓 (𝛿).

To obtain an upper bound on |𝜓 (𝛿) |, note that the length of each atom increases by

a factor of at most 𝑑 , which is obviously at most |𝜙 (𝜀) |. We conclude that

|𝜓 (𝛿) | ≤ |𝜙 (𝜀) | · 𝑑 ≤ |𝜙 (𝜀) |2.

2 Vorob’ev and Vorobjov are two different transcriptions of the same name from the Cyrillic to

the Latin alphabet.
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If 𝑆 is non-empty, then ∃𝛿 > 0 : 𝜓 (𝛿) is true. By Theorem 6.13, there is some 𝛿∗

such that𝜓 (𝛿∗) is true and 𝛿∗ ≤ 2
|𝜓 (𝛿) |8

. We get that

𝛿∗ ≤ 2
|𝜓 (𝛿) |8 ≤ 2

|𝜙 (𝜀) |16 ≤ 2
𝐿32𝛼

𝑘+1 (𝑛
1
+1) ·· · (𝑛𝑘+1) ≤ 2

𝐿𝛽
𝑘+2 (𝑛

1
+1) ·· · (𝑛𝑘+1)

,

where 𝛽 := max{32, 𝛼} is a real constant independent of the input. The result

follows for 𝜀∗ := 1

𝛿∗ . ■

Lastly, let us state a lemma that we will use frequently to scale (some dimensions

of) semi-algebraic sets. For some 𝑁 ∈ ℕ and 𝑁 + 1 variables 𝑈 = (𝑈0, . . . ,𝑈𝑁 ),
consider the following formula:

𝜒 (𝑈 ) :≡ (2 ·𝑈0 = 1) ∧
𝑁∧
𝑖=1

(𝑈𝑖 = 𝑈 2

𝑖−1) (6.2)

Lemma 6.15. For 𝑢 ∈ [−1, 1]𝑁+1 formula 𝜒 (𝑢) is true if and only if 𝑢𝑖 = 2
−2𝑖 .

Proof. The if-part is trivial. The only-if-part follows from a simple induction. ■

6.4.3 Bounding the Ranges of theQuantifiers

In the following, we show how to restrict the ranges of the variables. This was first

done by D’Costa et al. [47] in the context of their ∃∀≤ℝ-complete escape problem.

Lemmas 6.16 and 6.18 below are stated in our setting, but their proofs directly

follow the ideas in [47].

As a first step, we restrict the universally quantified variables. This works for

general UETR instances without any further requirements on the formula.

Lemma 6.16. Let 𝑋 and 𝑌 be blocks of variables with 𝑛 := |𝑋 | and𝑚 := |𝑌 |, let
𝜑 (𝑋,𝑌 ) ∈ QFF, and let

Φ :≡ ∀𝑋 ∈ ℝ𝑛 . ∃𝑌 ∈ ℝ𝑚 : 𝜑 (𝑋,𝑌 ).

Then there exists an integer 𝑁 ≤ poly(𝑛,𝑚, |𝜑 |), such that for 𝐶 := 2
2
𝑁 the sentence

Ψ :≡ ∀𝑋 ∈ [−𝐶,𝐶]𝑛 . ∃𝑌 ∈ ℝ𝑚 : 𝜑 (𝑋,𝑌 )

is equivalent to Φ.

Proof. We rewrite Φ via a double negation to get

Φ ≡ ¬
(
∃𝑋 ∈ ℝ𝑛 .∀𝑌 ∈ ℝ𝑚 : ¬𝜑 (𝑋,𝑌 )

)
and let𝐿 := |¬𝜑 | denote the length of the quantifier-free part. By Corollary 6.12 there
is a constant 𝛼 ∈ ℝ and a quantifier-free formula𝜓 (𝑋 ) such that Φ is equivalent to

¬
(
∃𝑋 ∈ ℝ𝑛

: 𝜓 (𝑋 )
)
, where

|𝜓 | ≤ 𝐿𝛼
2 (𝑛+1) (𝑚+1) = 2

𝛼2 log(𝐿) (𝑛+1) (𝑚+1)
.
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Assuming that {𝑥 ∈ ℝ𝑛 | 𝜓 (𝑥)} is non-empty, Theorem 6.13 yields that it contains

a point of distance at most

𝐷 := 2
|𝜓 |8𝑛 ≤ 2

(2𝛼2 log(𝐿) (𝑛+1) (𝑚+1) )8𝑛 = 2
2
8𝛼2 log(𝐿)𝑛 (𝑛+1) (𝑚+1)

from the origin. Let 𝑁 =
⌈
8𝛼2 log(𝐿)𝑛(𝑛 + 1) (𝑚 + 1)

⌉
≤ poly(𝑛,𝑚, log(𝐿)) ≤

poly(𝑛,𝑚, |𝜑 |). Then it holds that 𝐶 := 2
2
𝑁 ≥ 𝐷 . It follows, that

¬Φ ≡ ¬(∃𝑋 ∈ ℝ𝑛
: 𝜓 (𝑋 ))

≡ ¬(∃𝑋 ∈ [−𝐶,𝐶]𝑛 : 𝜓 (𝑋 ))
≡ ¬(∃𝑋 ∈ [−𝐶,𝐶]𝑛 .∀𝑌 ∈ ℝ𝑚 : 𝜑 (𝑋,𝑌 ))
≡ ¬Ψ

and therefore Φ ≡ Ψ. ■

In a second step, we additionally restrict the existentially quantified variables.

Before we do so, we show that this may be impossible in general (without changing

its true/false value):

Example 6.17. Consider the following sentence:

∀𝑋 ∈ ℝ . ∃𝑌 ∈ ℝ : 𝑋 = 0 ∨ 𝑋𝑌 = 1

It is clearly true, as either 𝑋 = 0 or, if 𝑋 ≠ 0, we may choose 𝑌 to equal 1/𝑋 . This
remains true if we restrict the range of 𝑋 , e.g., to [−1, 1]. However, note that the
absolute value of 1/𝑋 may be arbitrarily large, even if 𝑋 ∈ [−1, 1]. Consequently,
we cannot restrict the range of 𝑌 to any interval. ⌟

In the following, we show how the ranges can be restricted in case of ∀-strict
formulas. Requiring the formula to be ∀-strict is a slight generalization of the

corresponding statement shown in [47] (where the formula is required to be strict).

This more general case is crucial for our proofs in Sections 6.8 and 6.9.

Lemma 6.18. Let 𝑋 and 𝑌 be blocks of variables with 𝑛 := |𝑋 | and𝑚 := |𝑌 | and
𝜑 (𝑋,𝑌 ) ∈ QFF. Furthermore, let 𝑁 be an integer and 𝐶 := 2

2
𝑁 . Then for a ∀-strict

sentence

Φ :≡ ∀𝑋 ∈ [−𝐶,𝐶]𝑛 . ∃𝑌 ∈ ℝ𝑚 : 𝜑 (𝑋,𝑌 )

there is an integer𝑀 ≤ poly(𝑛,𝑚, 𝑁, |𝜑 |) such that for 𝐷 := 2
2
𝑀 the sentence

Ψ :≡ ∀𝑋 ∈ [−𝐶,𝐶]𝑛 . ∃𝑌 ∈ [−𝐷, 𝐷]𝑚 : 𝜑 (𝑋,𝑌 )

is equivalent to Φ.
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Proof. If Φ is false, then there exists an 𝑥 ∈ [−𝐶,𝐶]𝑛 such that no 𝑦 ∈ ℝ𝑚 satisfies

𝜑 (𝑥,𝑦). In particular, no 𝑦 ∈ [−𝐷, 𝐷]𝑚 ⊆ ℝ𝑚 satisfies 𝜑 (𝑥,𝑦). Thus, Ψ is also false.

In the remainder of the proof, we assume thatΦ is true. The proof consists of two

steps. First, we show that an upper bound𝐷 for the existentially quantified variables

indeed exists. In a second step, we use the Ball Theorem to actually compute an

upper bound for 𝐷 .

For the first step, let 𝑆 := [−𝐶,𝐶]𝑛 . Sentence Φ being true implies that for

each 𝑥 ∈ 𝑆 there is a 𝑦 (𝑥) ∈ ℝ𝑚 such that 𝜑 (𝑥,𝑦 (𝑥)) is true. Even stronger, as 𝜑 is

∀-strict, we even find an 𝜀 (𝑥) > 0, such that for all 𝑥 ∈ 𝑆 with ∥𝑥 −𝑥 ∥ < 𝜀 (𝑥) we get
that 𝜑 (𝑥,𝑦 (𝑥)) is true. Recall that we denote by 𝐵𝑛 (𝑥, 𝑟 ) = {𝑥 ∈ ℝ𝑛 | ∥𝑥 − 𝑥 ∥ < 𝑟 }
the open ball with center 𝑥 and radius 𝑟 inℝ𝑛

. Then {𝐵𝑛 (𝑥, 𝜀 (𝑥)) | 𝑥 ∈ 𝑆} is an open
cover of 𝑆 . As 𝑆 is compact, it has a finite subcover 𝐵𝑛 (𝑥1, 𝜀 (𝑥1)), . . . , 𝐵𝑛 (𝑥𝑠, 𝜀 (𝑥𝑠)).
Now, given some 𝑥 ∈ 𝑆 , there is an 𝑖 ∈ {1, . . . , 𝑠}, such that 𝜑 (𝑥,𝑦 (𝑥𝑖)) is true. We

define 𝑦max := max{∥𝑦 (𝑥1)∥∞, . . . , ∥𝑦 (𝑥𝑠)∥∞}. Then, for all 𝐷 ≥ 𝑦max formula Φ
implies

∃𝐷 > 0 .∀𝑋 ∈ [−𝐶,𝐶]𝑛 . ∃𝑌 ∈ ℝ𝑚 :

𝑚∧
𝑖=1

|𝑌𝑖 | ≤ 𝐷 ∧ 𝜑 (𝑋,𝑌 ),

proving the existence of an upper bound 𝐷 for the existentially quantified variables.

The second step is to obtain a bound on 𝐷 . We first need to construct 𝐶 = 2
2
𝑁

inside the formula. For this, let𝑈 = (𝑈0, . . . ,𝑈𝑁 ) be 𝑁 + 1 new variables and 𝜒 (𝑈 )
be the formula (6.2). Recall that, by Lemma 6.15, 𝜒 (𝑢) is true if and only if 𝑢𝑖 = 2

−2𝑖
.

Furthermore, each𝑈𝑖 can be trivially restricted to be in [−1, 1]. Using 𝜒 (𝑈 ), we can
rewrite above sentence as

∃𝐷 > 0 .∀𝑋 ∈ ℝ𝑛,𝑈 ∈ [−1, 1]𝑁+1 . ∃𝑌 ∈ ℝ𝑚 :(
𝜒 (𝑈 ) ∧

𝑛∧
𝑖=1

|𝑋𝑖 |𝑈𝑁 ≤ 1

)
=⇒

𝑚∧
𝑖=1

|𝑌𝑖 | ≤ 𝐷 ∧ 𝜑 (𝑋,𝑌 ).

From here on, bounding 𝐷 is a straightforward application of the Ball Theorem:

Let 𝐿 be the length of the subformula behind the existential quantification of 𝐷 . By

Corollary 6.12 there is a constant 𝛼 ∈ ℝ and a quantifier-free formula𝜓 (𝐷), such
that above sentence is equivalent to ∃𝐷 > 0 : 𝜓 (𝐷) where |𝜓 | ≤ 𝐿2𝛼

3 (𝑛+𝑁+2) (𝑚+1)
.

Then Theorem 6.13 yields the following upper bound for 𝐷 :

𝐷 ≤ 2
|𝜓 (𝐷) | ≤ 2

(𝐿2𝛼3 (𝑛+𝑁+2) (𝑚+1) )8𝑛 = 2
2
16𝛼3 log(𝐿)𝑛 (𝑛+𝑁+2) (𝑚+1)

.

Lastly, we choose𝑀 ≤
⌈
16𝛼3 log(𝐿)𝑛(𝑛 + 𝑁 + 2) (𝑚 + 1)

⌉
to be the smallest integer

such that 𝐷 ≤ 2
2
𝑀
. Note that 𝑀 ≤ poly(𝑛,𝑚, 𝑁, log𝐿) ≤ poly(𝑛,𝑚, 𝑁, |𝜑 |) as

required. ■
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6.5 Counterexamples of Strict-UETR

Let us recall the definition of counterexamples which we motivated in Section 6.2.1

above. Given a sentence Φ :≡ ∀𝑋 ∈ ℝ𝑛 . ∃𝑌 ∈ ℝ𝑚 : 𝜑 (𝑋,𝑌 ), we call

⊥(Φ) := {𝑥 ∈ ℝ𝑛 | ∀𝑌 ∈ ℝ𝑚 : ¬𝜑 (𝑥,𝑌 )}

its counterexamples. The counterexamples of Φ are exactly the values 𝑥 ∈ ℝ𝑛
for

which there is no 𝑦 ∈ ℝ𝑚 such that 𝜑 (𝑥,𝑦) is true. The main result of this section,

Theorem 6.20, is that we can transform a Strict-UETR instance Φ into an equivalent

formula Ψ for which ⊥(Ψ) is either empty or contains an open ball. The main tools

for this are the range restrictions from Section 6.4.3 and the following lemma from

calculus.

Lemma 6.19. Let 𝑆 and 𝑇 be compact sets and 𝑓 : 𝑆 × 𝑇 → ℝ be a continuous
function. Then 𝑔 : 𝑆 → ℝ, 𝑥 ↦→ min

𝑦∈𝑇
{𝑓 (𝑥,𝑦)} is continuous over 𝑆 .

Proof. We first observe that the compactness of 𝑆 and𝑇 implies that their Cartesian

product 𝑆 × 𝑇 is compact as well. Thus, because 𝑓 is continuous on 𝑆 × 𝑇 , it is
even uniformly continuous, i.e., for every 𝜀 > 0 there is a 𝛿 > 0, such that for

every two points (𝑥,𝑦), (𝑥,𝑦) ∈ 𝑆 × 𝑇 we have |𝑓 (𝑥,𝑦) − 𝑓 (𝑥,𝑦) | < 𝜀 whenever

∥(𝑥,𝑦) − (𝑥,𝑦)∥ < 𝛿 .
Now consider 𝑥, 𝑥 ∈ 𝑆 with ∥𝑥 − 𝑥 ∥ < 𝛿 . We have

𝑔(𝑥) − 𝑔(𝑥) = 𝑔(𝑥) − 𝑓 (𝑥,𝑦) (for some 𝑦 ∈ 𝑇 )
< 𝑔(𝑥) − (𝑓 (𝑥,𝑦) − 𝜀) (by uniform continuity)

≤ 𝑔(𝑥) − (𝑔(𝑥) − 𝜀) (by definition of 𝑔)

= 𝜀.

By exchanging the role of 𝑥 and 𝑥 , we get 𝑔(𝑥) − 𝑔(𝑥) < 𝜀. Combined, we obtain

that |𝑔(𝑥)−𝑔(𝑥) | < 𝜀 for all 𝑥, 𝑥 ∈ 𝑆 with ∥𝑥−𝑥 ∥ < 𝛿 . It follows that 𝑔 is continuous
on 𝑆 . ■

With these tools at hand, we are able to tackle the main result of this section:

Theorem 6.20. Given a Strict-UETR instance Φ, we can construct in polynomial
time an equivalent UETR instance Ψ of the form

∀𝑋 ∈ [−1, 1]𝑛 . ∃𝑌 ∈ [−1, 1]ℓ : 𝜓 (𝑋,𝑌 ),

such that ⊥(Ψ) is either empty or contains an 𝑛-dimensional open ball.

Before proving Theorem 6.20 in full generality, let us illustrate the key idea with

an example for a very simple Strict-UETR instance Φ having only a single atom.

This already shows how bounding the ranges of the quantifiers expands the set of

counterexamples while not yet requiring the technical calculus arguments that are

required to handle more than one atom.
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Example 6.21 (Single Atom). We consider the Strict-UETR instance

Φ :≡ ∀𝑋 ∈ ℝ . ∃𝑌 ∈ ℝ : 𝑋𝑌 < 0.

Note that Φ is a no-instance with ⊥(Φ) = {0}, i.e., there is only a single counterex-

ample. We start by introducing a new existentially quantified variable 𝑍 and rewrite

the single atom 𝑃 < 0 as ∃𝑍 ∈ ℝ : 𝑍 2 · 𝑃 + 1 < 0 to get

Φ1 :≡ ∀𝑋 ∈ ℝ . ∃𝑌 ∈ ℝ, 𝑍 ∈ ℝ : 𝑍 2 · 𝑋𝑌 + 1 < 0.

It holds that Φ ≡ Φ1 and even stronger that ⊥(Φ) = ⊥(Φ1) = {0}. While this

transformation may look innocent, it is very powerful. The key insight is as follows:

Once we bound the range of 𝑍 to some compact interval [−𝐷,𝐷], this requires
𝑋𝑌 < − 1

𝐷2
in order to satisfy the atom. This is stronger than just requiring 𝑋𝑌 < 0

and expands the set of counterexamples. To see this in action, we apply Lemmas 6.16

and 6.18 and get integer constants 𝐶 and 𝐷 such that Φ1 is equivalent to

Φ2 :≡ ∀𝑋 ∈ [−𝐶,𝐶] . ∃𝑌 ∈ [−𝐷, 𝐷], 𝑍 ∈ [−𝐷,𝐷] : 𝑍 2 · 𝑋𝑌 + 1 < 0

and, furthermore, ⊥(Φ2) ⊇ ⊥(Φ1) ∩ [−𝐶,𝐶]. It remains to argue that ⊥(Φ2) indeed
contains an open ball.

Consider some 𝑥 ∈ (0,𝐶]. For which 𝑦, 𝑧 ∈ [−𝐷, 𝐷] does 𝑧2 · 𝑥𝑦 + 1 < 0 hold?

Neither of 𝑦, 𝑧 may be zero and 𝑦 must be negative (as 𝑧2 is always positive). Then,

𝑧2 · 𝑥𝑦 + 1 < 0 is equivalent to 𝑥𝑦 < − 1

𝑧2
. We get

−𝑥𝐷 ≤ 𝑥𝑦 < − 1

𝑧2
≤ − 1

𝐷2
.

It follows that −𝑥𝐷 < − 1

𝐷2
and thus 𝑥 > 1

𝐷3
. This means that

(
0, 1

𝐷3

]
⊆ ⊥(Φ2) and

this interval contains an open ball. ⌟

Proof of Theorem 6.20. The proof is split into two parts. First, we construct Ψ
from Φ. Afterward, we show that ⊥(Ψ) has the desired properties.

Construction of 𝚿 Each atom of the sentence

Φ :≡ ∀𝑋 ∈ ℝ𝑛 . ∃𝑌 ∈ ℝ𝑚 : 𝜑< (𝑋,𝑌 )

with 𝜑< ∈ QFF< is of the form 𝑃 < 0, where 𝑃 ∈ ℤ[𝑋,𝑌 ] is a polynomial. Individu-

ally, each atom 𝑃 < 0 is equivalent to the formula ∃𝑍 ∈ ℝ : 𝑍 2𝑃 + 1 < 0. Note that

the new variable 𝑍 is monotone: If the formula is true for one particular choice

of 𝑍 , it is also true for all values with smaller absolute value. Thus, a single new

variable 𝑍 can be used to rewrite all atoms of Φ to obtain an equivalent sentence

Φ1 :≡ ∀𝑋 ∈ ℝ𝑛 . ∃𝑌 ∈ ℝ𝑚, 𝑍 ∈ ℝ : 𝜑′< (𝑋,𝑌, 𝑍 )

in prenex normal form. Here, 𝜑′< is obtained from 𝜑< by above transformation, in

particular, they have exactly the same logical structure (their only difference lies in
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the transformed atoms). The length increases only by a constant amount per atom,

so |Φ1 | is linear in |Φ|. Furthermore, we have ⊥(Φ1) = ⊥(Φ) by construction.

We can apply Lemma 6.16 to restrict the ranges of the universally quantified vari-

ables and obtain an integer 𝑁 ≤ poly( |Φ1 |) such that for 𝐶 := 2
2
𝑁
the sentence Φ1

is equivalent to

Φ2 :≡ ∀𝑋 ∈ [−𝐶,𝐶]𝑛 . ∃𝑌 ∈ ℝ𝑚, 𝑍 ∈ ℝ : 𝜑′< (𝑋,𝑌, 𝑍 ).

It holds that ⊥(Φ2) ⊆ ⊥(Φ1) and that ⊥(Φ2) = ⊥(Φ1) ∩ [−𝐶,𝐶]𝑛 .
Each atom in Φ2 is a strict inequality. Thus, we can use Lemma 6.18 to also

restrict the ranges of the existentially quantified variables. We obtain another

integer𝑀 ≤ poly(𝑁, |Φ2 |) such that for 𝐷 := 2
2
𝑀
above sentence Φ2 is equivalent

to

Φ3 :≡ ∀𝑋 ∈ [−𝐶,𝐶]𝑛 . ∃𝑌 ∈ [−𝐷,𝐷]𝑚, 𝑍 ∈ [−𝐷,𝐷] : 𝜑′< (𝑋,𝑌, 𝑍 ).

Regarding the counterexamples, we have ⊥(Φ3) ⊇ ⊥(Φ2).
The last step is to scale the ranges over which the variables are quantified to

the interval [−1, 1]. To this end, define 𝐾 := max{𝑁,𝑀}, let 𝑈 := (𝑈0, . . . ,𝑈𝐾 )
be 𝐾 + 1 new variables, and let 𝜒 (𝑈 ) be formula (6.2). Recall that by Lemma 6.15,

for 𝑢 ∈ [−1, 1]𝐾+1 we have 𝜒 (𝑢) if and only if 𝑢𝑖 = 2
−2𝑖

. Let 𝑑 be the maximum

degree of any polynomial in 𝜑′<. We define

Ψ :≡ ∀𝑋 ∈ [−1, 1]𝑛 . ∃𝑌 ∈ [−1, 1]𝑚, 𝑍 ∈ [−1, 1],𝑈 ∈ [−1, 1]𝐾 :

𝜒 (𝑈 ) ∧𝑈 𝑑
𝐾 · 𝜑′<

( 𝑋
𝑈𝑁

,
𝑌

𝑈𝑀
,
𝑍

𝑈𝑀

)
,

where 𝑋/𝑈𝑁 expresses that every 𝑋𝑖 is replaced by 𝑋𝑖/𝑈𝑁 (and likewise for 𝑌/𝑈𝑀 ).
The multiplication of𝜑′< with𝑈 𝑑

𝐾
denotes that both sides of each atom are multiplied

by 𝑈 𝑑
𝐾
. This restores the requirement that each atom is a polynomial inequality.

(Strictly speaking, the obtained formula contains the divisions by𝑈𝑁 and𝑈𝑀 . How-

ever, because 𝐾 ≥ 𝑁 , we can replace any𝑈𝐾 · (𝑋𝑖/𝑈𝑁 ) by𝑈𝐾−𝑁𝑋𝑖 , which does not

contain divisions. Likewise, we handle 𝑌/𝑈𝑀 .) As this last step just scales variables,

we conclude that Ψ is equivalent to Φ3 and therefore also to Φ. Furthermore, Ψ has

the form required by the statement of the theorem.

Properties of ⊥(𝚿) It remains to show that ⊥(Ψ) is either empty (if Ψ is true)

or contains an 𝑛-dimensional open ball (if Ψ is false). Note that scaling variables

(as done to get from Φ3 to Ψ) also scales the counterexamples; thus, an open ball

in⊥(Φ3) is mapped to an open ball in⊥(Ψ). It therefore suffices to prove that⊥(Φ3)
contains an open ball. As Φ3 is the simpler formula, we analyze ⊥(Φ3) below.

By construction, Φ and Φ3 are equivalent. Thus, Φ is true if and only Φ3 is

true. In particular, ⊥(Φ) = ∅ implies that ⊥(Φ3) = ∅. From now on, we assume

that Φ3 is false. Let 𝑥
∗ ∈ ⊥(Φ2) be a counterexample of Φ2, fixed until the end of

the proof. We know that 𝑥∗ ∈ [−𝐶,𝐶]𝑛 (by Lemma 6.16) and also that 𝑥∗ ∈ ⊥(Φ3)
(by construction of Φ3).
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We prove below that for some 𝑟 > 0, all 𝑥 ∈ [−𝐶,𝐶]𝑛 with ∥𝑥∗ − 𝑥 ∥ < 𝑟 are

counterexamples of Φ3 as well. If 𝐵𝑛 (𝑥∗, 𝑟 ) ⊆ [−𝐶,𝐶]𝑛 , then 𝑥∗ is the center of

our desired open ball of counterexamples. If 𝐵𝑛 (𝑥∗, 𝑟 ) is not completely contained

in [−𝐶,𝐶]𝑛 , then any 𝑥′ ∈ 𝐵𝑛 (𝑥∗, 𝑟 ) ∩ (−𝐶,𝐶)𝑛 can be used instead as the center of

a smaller (but still open) ball of counterexamples.

To simplify the following argument, we further assume that 𝜑< (in Φ) is in
disjunctive normal form (DNF), i.e., a disjunction of conjunctions of atoms. By

construction, 𝜑′< is then also in DNF and has exactly the same logical structure.

This is justified, as the set of counterexamples is invariant under applications of

the distributive law on the matrix. Thus, 𝜑< and 𝜑′< have exactly the same coun-

terexamples as their DNFs. Assuming that 𝜑< is in DNF allows us to consider the

conjunctive clauses independently, as our counterexample 𝑥∗ is indeed a counterex-
ample for each of them. We are going to prove that a false clause remains false,

even for 𝑥 sufficiently close to 𝑥∗. As this holds for clauses, and all clauses are false,

we may just consider a single clause from now on.

Let C(𝑋,𝑌 ) :=
(∧𝑠

𝑖=1 𝑃𝑖 (𝑋,𝑌 ) < 0

)
be an arbitrary conjunctive clauses of (the

DNF of) 𝜑< (𝑋,𝑌 ). For our fixed counterexample 𝑥∗ ∈ ⊥(Φ2), every conjunctive

clause of 𝜑< (𝑥∗, 𝑌 ) evaluates to false independently of 𝑌 . We get that for all 𝑦 ∈ ℝ𝑚

and thus in particular for all 𝑦 ∈ [−𝐷, 𝐷]𝑚 that C(𝑥∗, 𝑦) is false and that

𝑠∨
𝑖=1

(
𝑃𝑖 (𝑥∗, 𝑦) ≥ 0

)
(6.3)

is true. Let us point out that for different choices of 𝑦 ∈ [−𝐷,𝐷]𝑚 , different subsets
of the polynomials 𝑃𝑖 (𝑥∗, 𝑦) may evaluate to non-negative values. We only know

that for every 𝑦, at least one of the polynomials is non-negative (here it is important

that 𝜑< (𝑋,𝑌 ) is in DNF). To overcome this, we combine the polynomials into a

single function.

Each of the 𝑃𝑖 ∈ ℤ[𝑋,𝑌 ], 𝑖 ∈ {1, . . . , 𝑠}, is a polynomial and thus continuous.

The maximum over a finite number of continuous functions is again continuous, so

𝑃max : [−𝐶,𝐶]𝑛 × [−𝐷,𝐷]𝑚 → ℝ

(𝑥,𝑦) ↦→ max

𝑖=1,...,𝑠
{𝑃𝑖 (𝑥,𝑦)}

is continuous. For our fixed counterexample 𝑥∗ and all 𝑦 ∈ [−𝐷, 𝐷]𝑚 it follows

by (6.3) that

𝑃max(𝑥∗, 𝑦) ≥ 0. (6.4)

We want to argue about the value of 𝑃max at points 𝑥 in a small neighborhood

around 𝑥∗. To this end, we consider the function

𝑃∗ : [−𝐶,𝐶]𝑛 → ℝ

𝑥 ↦→ min

𝑦∈[−𝐷,𝐷]𝑚
𝑃max(𝑥,𝑦),
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which eliminates the dependency on𝑦. The sets [−𝐶,𝐶]𝑛 and [−𝐷,𝐷]𝑚 are compact,

so, by Lemma 6.19, the function 𝑃∗ is again continuous. From (6.4), we get for our

fixed counterexample 𝑥∗ that

𝑃∗(𝑥∗) ≥ 0.

By the continuity of 𝑃∗, for every 𝜀 > 0 there exists a 𝛿 > 0 such that for all 𝑥 ∈
[−𝐶,𝐶]𝑛 with ∥𝑥∗ −𝑥 ∥ < 𝛿 we have |𝑃∗(𝑥) − 𝑃∗(𝑥∗) | < 𝜀. We choose 𝜀 < 1/𝐷2

and

conclude that for a sufficiently small 𝛿 > 0 and all 𝑥 ∈ [−𝐶,𝐶]𝑛 with ∥𝑥∗ − 𝑥 ∥ < 𝛿 ,
it holds that

𝑃∗(𝑥) > − 1

𝐷2
.

Fix one such 𝑥 . Going backwards through our chain of defined functions, it follows

for all 𝑦 ∈ [−𝐷,𝐷]𝑚 that 𝑃max(𝑥,𝑦) > −1/𝐷2
and moreover that

𝑠∨
𝑖=1

𝑃𝑖 (𝑥,𝑦) > − 1

𝐷2
. (6.5)

Now also fix an arbitrary 𝑦 ∈ [−𝐷, 𝐷]𝑚 and choose 𝑗 ∈ {1, . . . , 𝑠} such that

𝑃 𝑗 (𝑥,𝑦) > −1/𝐷2
. Because 𝐴 := (𝑃 𝑗 (𝑋,𝑌 ) < 0) is an atom in the DNF of 𝜑< (𝑋,𝑌 ),

there is a corresponding atom𝐴′
:= (𝑍 2𝑃 𝑗 (𝑋,𝑌 ) + 1 < 0) in the DNF of 𝜑′< (𝑋,𝑌, 𝑍 ).

Note that 𝐴′
can never be true for 𝑍 = 0. For 𝑍 ≠ 0, the atom 𝐴′

can be rewrit-

ten as 𝑃 𝑗 (𝑋,𝑌 ) < −1/𝑍 2
. From 𝑍 ∈ [−𝐷, 𝐷], we get that 𝑍 2 ≤ 𝐷2

and therefore

our considered atom 𝐴′
can only ever be satisfied, if 𝑃 𝑗 (𝑋,𝑌 ) < −1/𝑍 2 ≤ −1/𝐷2

.

However, by the choice of 𝑗 and (6.5), we know that 𝑃 𝑗 (𝑥,𝑦) > −1/𝐷2
. Thus,

because 𝑦 was fixed arbitrarily, 𝑥 must be a counterexample of Φ3. Additionally,

because 𝑥 ∈ ℝ𝑛
with ∥𝑥∗ − 𝑥 ∥ < 𝛿 was chosen arbitrarily, we conclude that all

such 𝑥 are counterexamples of Φ3, forming an 𝑛-dimensional open ball. ■

6.6 ∀∃<ℝ-Hardness of Hausdorff

We are now able to prove ∀∃<ℝ-hardness.

Theorem 6.22. Hausdorff and DirectedHausdorff are ∀∃<ℝ-hard.

Proof. Let Φ be an instance of Strict-UETR. We give a polynomial-time many-

one reduction to an equivalent Hausdorff instance. The proof is split into two

parts: In the first part, we transform Φ into an equivalent UETR instance Ψ whose

counterexamples ⊥(Ψ) contain an open ball (if there are any). Sentence Ψ is then

used to construct a Hausdorff instance (𝐴, 𝐵, 𝑡). The second part proves that Φ
and (𝐴, 𝐵, 𝑡) are indeed equivalent.
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Constructing Hausdorff instance (𝑨, 𝑩, 𝒕) The first step is to apply Theo-

rem 6.20 to Φ and to obtain in polynomial time an equivalent UETR instance

Ψ′
:≡ ∀𝑋 ∈ [−1, 1]𝑛 . ∃𝑌 ∈ [−1, 1]𝑚 : 𝜓 ′(𝑋,𝑌 ),

where 𝜓 ′ ∈ QFF. We know that either ⊥(Ψ′) = ∅ (if Ψ′
is true) or that ⊥(Ψ′)

contains an 𝑛-dimensional open ball (if Ψ′
is false). Based on Ψ′

we define

𝜓 (𝑋,𝑌 ) :≡ 𝜓 ′(𝑋,𝑌 ) ∨
𝑛∧
𝑖=1

𝑋𝑖 = 0 and

Ψ :≡ ∀𝑋 ∈ [−1, 1]𝑛 . ∃𝑌 ∈ [−1, 1]𝑚 : 𝜓 (𝑋,𝑌 ).

Note that Ψ′
and Ψ are equivalent: If Ψ′

is true, then obviously Ψ is also true because

the new condition is added using a logical “or”. IfΨ′
is false, then⊥(Ψ) = ⊥(Ψ′)\{®0}.

Since ⊥(Ψ′) contains an open ball, it follows that ⊥(Ψ) also contains an open ball.

The key idea behind the definition of Ψ is that ⊥(Ψ) is guaranteed to be a strict

subset of ℝ𝑛
. This will be important below to make sure that set 𝐴 is non-empty.

If Ψ is false, then there is an 𝑥 ∈ ⊥(Ψ) ⊆ [−1, 1]𝑛, such that 𝐵𝑛 (𝑥, 𝑟 ) ⊆ ⊥(Ψ)
for some 𝑟 > 0. Expressed as a sentence in the first-order theory of the reals, we get

∃𝑟 > 0, 𝑋 ∈ [−1, 1]𝑛 .∀𝑋 ∈ [−1, 1]𝑛, 𝑌 ∈ [−1, 1]𝑚 : ∥𝑋−𝑋 ∥2 < 𝑟 2 =⇒ ¬𝜓 (𝑋,𝑌 ).

Let us denote by 𝐿 the length of the matrix of this sentence. We see that 𝐿 is clearly

polynomial in |Ψ| which by construction is polynomial in |Φ|. Above sentence

has the form required by Lemma 6.14, and we get a constant 𝛽 ∈ ℝ such that the

following lower bound for 𝑟 can be assumed:

𝑟 ≥ 2
−𝐿𝛽4 (𝑛+1) (𝑛+𝑚+1)

(6.6)

Let 𝑁 ≤
⌈
𝛽4(𝑛 + 1) (𝑛 +𝑚 + 1)

⌉
be the smallest integer, such that

𝑟 · 22𝑁 > 𝑚. (6.7)

By Equation (6.6), it holds that 𝑁 ≤ poly(𝑛,𝑚, log(𝐿)) ≤ poly( |Φ|). Define𝐶 := 2
2
𝑁
.

The idea now is to scale the universally quantified variables by a factor of 𝐶

(so that they are from the interval [−𝐶,𝐶]). This then also scales the set of coun-

terexamples ⊥(Ψ) and in particular the radius of the open ball in ⊥(Ψ) by 𝐶 . Let
𝑈 = (𝑈0, . . . ,𝑈𝑁 ) ∈ [−1, 1] be 𝑁 +1 new variables and 𝜒 (𝑈 ) be formula (6.2). Recall

that by Lemma 6.15, for 𝑢 ∈ [−1, 1]𝑁+1
we have 𝜒 (𝑢) if and only if 𝑢𝑖 = 2

−2𝑖
. With

this, we define

𝜙 (𝑋,𝑌,𝑈 ) :≡ 𝜒 (𝑈 ) ∧𝜓 (𝑈𝑁𝑋,𝑌 ),

where 𝑈𝑁𝑋 means that every occurrence of 𝑋𝑖 in 𝜓 is replaced by 𝑈𝑁𝑋𝑖 . Finally,

we are ready to define our desired Hausdorff instance:

𝐴 :=
{
(𝑥,𝑦,𝑢) ∈ [−𝐶,𝐶]𝑛 × [−1, 1]𝑚 × {2−20} × . . . × {2−2𝑁 } | 𝜙 (𝑥,𝑦,𝑢)

}
𝐵 := [−𝐶,𝐶]𝑛 × {0}𝑚 × {2−20} × . . . × {2−2𝑁 }
𝑡 := 𝑚
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Note that this is well-defined, because both sets 𝐴 and 𝐵 are non-empty. While this

is trivial for 𝐵, it holds for 𝐴 by our construction of 𝜙 from Φ: It always holds that

∅ ≠ {0}𝑛 × [−1, 1]𝑚 × {2−20} × . . . × {2−2𝑁 } ⊆ 𝐴.

Equivalence of𝚽 and (𝑨, 𝑩, 𝒕) To see thatΦ and (𝐴, 𝐵, 𝑡) are equivalent, assume

first that Φ is true. For every point 𝑎 := (𝑥,𝑦,𝑢) ∈ 𝐴, it holds that 𝑢𝑖 = 2
−2𝑖

as this

is necessary to satisfy 𝜒 (𝑢). Consider the point 𝑏 := (𝑥, {0}𝑛, 𝑢) ∈ 𝐵. We get that

∥𝑎 − 𝑏∥ = ∥(𝑥,𝑦,𝑢) − (𝑥, {0}𝑚, 𝑢)∥ = ∥𝑦 − ®0∥ ≤
√︁∑𝑚

𝑖=1 1 =
√
𝑚 ≤ 𝑚 = 𝑡 .

As 𝑎 was chosen arbitrarily, we get an upper bound for the directed Hausdorff

distance
®𝑑H(𝐴, 𝐵) ≤ 𝑡 . On the other hand, let 𝑏 := (𝑥, {0}𝑚, 𝑢) be an arbitrary point

in 𝐵. Because Φ (and therefore Ψ) is true, there is some 𝑦 ∈ [−1, 1]𝑚 such that there

is a point 𝑎 := (𝑥,𝑦,𝑢) ∈ 𝐴. By the same calculation as above, we get
®𝑑H(𝐵,𝐴) ≤ 𝑡

and thus

𝑑H(𝐴, 𝐵) ≤ 𝑡 . (6.8)

Now assume that Φ and Ψ are false. Then there is some 𝑥 ∈ [−1, 1]𝑛 such that

there is an𝑛-dimensional open ball 𝐵𝑛 (𝑥, 𝑟 ) ⊆ ⊥(Ψ) (the 𝑟 here is the one from (6.6)).

By the construction of 𝐴, this corresponds to an open ball of radius 𝐶 · 𝑟 in ℝ𝑛 \𝐴.
Let 𝑥∗ be the center of this open ball in ℝ𝑛 \𝐴. Then for 𝑏 := (𝑥∗, {0}𝑚, 𝑢) ∈ 𝐵 all

points 𝑎 ∈ 𝐴 have

∥𝑎 − 𝑏∥ ≥ 𝐶 · 𝑟 > 𝑚 = 𝑡 .

It follows that

𝑑H(𝐴, 𝐵) ≥ ®𝑑H(𝐵,𝐴) ≥ ∥𝑎 − 𝑏∥ > 𝑡 . (6.9)

Equations (6.8) and (6.9) prove that 𝑑H(𝐴, 𝐵) ≤ 𝑡 (and also ®𝑑H(𝐵,𝐴) ≤ 𝑡 ) if and only
if Φ is true. ■

In the proof of Theorem 6.22, we could choose 𝑁 ′
:= 𝑁 + 1 instead of 𝑁 in Equa-

tion (6.7). Then in the case that Φ is false, the Hausdorff distance 𝑑H(𝐴, 𝐵) is at
least

2
2
𝑁+1
𝑟 > 2

2
𝑁+1−2𝑁𝑚 = 2

2
𝑁

𝑚 = 2
2
𝑁

𝑡 .

Note that the number of free variables in the formulas describing the resulting

sets 𝐴 and 𝐵 equals 𝑛 +𝑚 + 𝑁 ′ + 1 = Θ(𝑁 ). We created a gap of size 2
2
Θ(𝑁 )

. This

implies the following inapproximability result.

Corollary 6.7. Let 𝐴 and 𝐵 be two semi-algebraic sets in ℝ𝑛 and 𝑓 (𝑛) = 2
2
𝑜 (𝑛) . There

is no polynomial-time 𝑓 (𝑛)-approximation algorithm to compute 𝑑H(𝐴, 𝐵), unless
P = ∀∃<ℝ.
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Another interesting observation is that we can restrict the sets 𝐴 and 𝐵 to be

described by structurally simple formulas. We can express both formulas as a

conjunction of (down to one) polynomial equation(s) with bounded degree at the

expense of adding a polynomial number of new variables.

Corollary 6.8. The Hausdorff problem remains ∀∃<ℝ-complete, even if the two
sets 𝐴 and 𝐵 are both described by either

(i) a conjunction of quadratic polynomial equations, or
(ii) a single polynomial equation of degree at most four.

Proof. Taking the formula𝜓 in the proof of Theorem 6.22, we apply Lemma 6.9(i)

to obtain an equivalent new formula 𝜓 ′
(with additional existentially quantified

variables) which is a conjunction of quadratic polynomial equations. Then𝐴 can be

defined using𝜓 ′
instead of𝜓 . Similarly, 𝐵 can be trivially described in the desired

form. This shows statement (i).

For (ii), we modify the above procedure by applying Lemma 6.9(ii) to𝜓 to obtain

an equivalent formula, which is a single polynomial of degree at most four. ■

6.7 Interlude: ∀∃<ℝ = ∀∃ℝ

The main result of the previous section, Theorem 6.22, gives a lower bound on the

computational complexity of the Hausdorff problem. We obtained ∀∃<ℝ-hardness

by a reduction from Strict-UETR. Regarding an upper bound, sentence (6.1) shows

that the DirectedHausdorff problem is in ∀∃ℝ; an extension of (6.1) to the Haus-
dorff problem is trivial (and done in Section 6.8 below). Does one of these classes

capture the computational complexity of theHausdorff problem exactly? Do both?

In Section 6.8 below, we demonstrate how to transform a Hausdorff instance
into an equivalent Strict-UETR instance, thereby proving that Hausdorff is in-
deed in ∀∃<ℝ. The reduction is laborious and involves several technical ad-hoc

arguments. While this settles the question about the computational complexity of

Hausdorff, it is still an intriguing open question whether ∀∃<ℝ is really a strict

subset of ∀∃ℝ, or whether these two classes coincide. In the journal article that

this chapter builds upon [95], we pose the following open problem:

Problem 6.23. Is ∀∃<ℝ = ∀∃ℝ?

Motivated by our ∀∃<ℝ-completeness result and the ∃∀≤ℝ-completeness result

by D’Costa et al. [47], Schaefer and Štefankovič very recently studied the im-

pact of strictness to first-order formulas. In their recent paper [139], they answer

Problem 6.23 affirmatively. In fact, they prove the general case with 𝑘 blocks of quan-

tifiers: Let us denote by Π𝑘ℝ the complexity class containing all problems that are

polynomial-time many-one reducible to deciding a sentence in the ∀∃ . . .-fragment

(𝑘 − 1 quantifier alternations) of the first-order theory of the reals. Furthermore,

Π<
𝑘
ℝ ⊆ Π𝑘ℝ is obtained by restricting to strict inequalities (and forbidding nega-

tions). Similarly, Σ𝑘ℝ and Σ<
𝑘
ℝ denote the classes obtained by starting with an

∃-quantifier and possibly restricting to strict inequalities.
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Theorem 6.24 ([139, Theorem 1.1]). We have Σ𝑘ℝ = Σ<
𝑘
ℝ and Π𝑘ℝ = Π<

𝑘
ℝ for

all 𝑘 ≥ 1.

With Theorem 6.24 at hand, we now know that ∀∃<ℝ = ∀∃ℝ and can therefore

conclude that Hausdorff is actually ∀∃ℝ- and “not just” ∀∃<ℝ-hard. This is good

news, because we already know that ∀∃ℝ-membership can be shown easily. Still,

the proof of Theorem 6.24 is quite complicated and requires sophisticated results

from real algebraic geometry, in particular an effective Łojasiewicz inequality by

Solernó [145]. For the sake of self-containedness, we continue by presenting our

original ∀∃<ℝ-membership proof. It is rather technical, but requires only basic

transformations.

6.8 ∀∃<ℝ-Membership of Hausdorff

This section is devoted to proving the following theorem.

Theorem 6.25. Hausdorff and DirectedHausdorff are contained in ∀∃<ℝ.

Let (𝐴, 𝐵, 𝑡) be a Hausdorff instance, where the two sets 𝐴 = {𝑥 ∈ ℝ𝑛 | 𝜑𝐴 (𝑥)}
and 𝐵 = {𝑥 ∈ ℝ𝑛 | 𝜑𝐵 (𝑥)} are described by quantifier-free formulas 𝜑𝐴 and 𝜑𝐵
with 𝑛 free variables each. For simplicity, we only consider the directed Hausdorff

distance here, namely whether

®𝑑H(𝐴, 𝐵) := sup

𝑎∈𝐴
inf

𝑏∈𝐵
∥𝑎 − 𝑏∥

?

≤ 𝑡 .

It is obvious, that 𝑑H(𝐴, 𝐵) ≤ 𝑡 if and only if ®𝑑H(𝐴, 𝐵) ≤ 𝑡 and ®𝑑H(𝐵,𝐴) ≤ 𝑡 . So if we
can formulate the decision problem for the directed Hausdorff distance as a Strict-
UETR instance, their conjunction is a formula for the general Hausdorff problem.

Assuming that no variable name appears in both operands of this conjunction, this

formula can be converted into prenex normal form by just moving the quantifiers

to the front.

Recall (see also formula (6.1)) that
®𝑑H(𝐴, 𝐵) ≤ 𝑡 is equivalent to

∀𝜀 > 0, 𝑎 ∈ 𝐴 . ∃𝑏 ∈ 𝐵 : ∥𝑎 − 𝑏∥2 < 𝑡2 + 𝜀. (6.10)

Let us remark that introducing the real variable 𝜀 is necessary to also consider the

points in the closure of 𝐵. Moreover, we work with the squared distance between 𝑎

and 𝑏, because ∥𝑎 − 𝑏∥ is the square root of a polynomial.

Below we transform formula (6.10) in multiple technical steps into a form

that allows us to apply a recent theorem by D’Costa et al. [47] such that ∀∃<ℝ-

membership follows. Before we do so, we state a few helpful lemmas. These allow

us to consider some intermediate steps in isolation, thereby simplifying the needed

notation. Also, Lemma 6.28 below is used again in Section 6.9.

The first lemma allows us to transform a UETR instance of special structure

into an equivalent Strict-UETR instance:

100



6 The Hausdorff Distance and ∀∃ℝ

Lemma 6.26. Given a UETR instance

Φ :≡ ∀𝑋 ∈ [−1, 1]𝑛 . ∃𝑌 ∈ [−1, 1]𝑚 : 𝜑< (𝑋,𝑌 ) ∨ 𝐻 (𝑋,𝑌 ) = 0,

where 𝜑< (𝑋,𝑌 ) ∈ QFF< and 𝐻 : [−1, 1]𝑛+𝑚 → ℝ is a polynomial. Then we can
compute in polynomial time an equivalent Strict-UETR instance.

Proof. We first prove that there exists an integer 𝑁 ≤ poly( |Φ|), such that the

Strict-UETR instance

Ψ :≡ ∀𝑋 ∈ [−1, 1]𝑛 . ∃𝑌 ∈ [−1, 1]𝑚 : 𝜑< (𝑋,𝑌 ) ∨ 𝐻 (𝑋,𝑌 )2 < 2
−2𝑁

is equivalent to Φ. In a second step, we construct 2
−2𝑁

inside the formula.

The direction Φ =⇒ Ψ is trivially true for any 𝑁 ∈ ℕ. To prove the other

direction, we show its contraposition ¬Φ =⇒ ¬Ψ. Assume that

¬Φ ≡ ∃𝑋 ∈ [−1, 1]𝑛 .∀𝑌 ∈ [−1, 1]𝑚 : ¬𝜑< (𝑋,𝑌 ) ∧ 𝐻 (𝑋,𝑌 )2 > 0

is true. Hence, for at least one fixed 𝑥 ∈ [−1, 1]𝑛 , we obtain a polynomial 𝐻 (𝑥,𝑌 )2
that is positive everywhere on [−1, 1]𝑚 (the fixed 𝑥 values are real coefficients

for the variables 𝑌 ). Because [−1, 1]𝑚 is compact and because polynomials are

continuous, 𝐻 (𝑥,𝑌 )2 attains its minimum over [−1, 1]𝑚 and it follows that

∃𝜀 > 0 . ∃𝑋 ∈ [−1, 1]𝑛 .∀𝑌 ∈ [−1, 1]𝑚 : ¬𝜑< (𝑋,𝑌 ) ∧ 𝐻 (𝑋,𝑌 )2 ≥ 𝜀 (6.11)

is true. Let 𝐿 be the length of the matrix in (6.11). By Lemma 6.14, there is a

constant 𝛽 ∈ ℝ such that ∃𝜀 > 0 in (6.11) can be strengthened to ∃𝜀 ≥ 2
−𝐿𝛽4 (𝑛+1) (𝑚+1)

.

Now choose 𝑁 ≤
⌈
𝛽4(𝑛 + 1) (𝑚 + 1)

⌉
to be the smallest integer satisfying 2

−2𝑁 <

2
−𝐿𝛽4 (𝑛+1) (𝑚+1)

. Note that 𝑁 ≤ poly(𝑛,𝑚, log𝐿), so it is polynomial in the input size.

Plugging in the lower bound on 𝜀, we get that ¬Φ is equivalent to

∃𝑋 ∈ [−1, 1]𝑛 .∀𝑌 ∈ [−1, 1]𝑚∃¬𝜑< (𝑋,𝑌 ) ∧ 𝐻 (𝑋,𝑌 )2 ≥ 2
−2𝑁

,

which is exactly ¬Ψ. We conclude that Φ ≡ Ψ as claimed.

To construct a Strict-UETR instance from Ψ, we need to express 2−2𝑁 inside the

formula. To this end, introduce 𝑁 + 1 new variables 𝑈 = (𝑈0, . . . ,𝑈𝑁 ) ∈ [−1, 1]𝑁+1

and let 𝜒 (𝑈 ) be formula (6.2). Recall that, by Lemma 6.15, 𝜒 (𝑢) is true if and only

if 𝑢𝑖 = 2
−2𝑖

. Including 𝜒 (𝑈 ) into our formula, we conclude that

∀𝑋,𝑈 ∈ [−1, 1]𝑛+𝑁+1 . ∃𝑌 ∈ [−1, 1]𝑚 : ¬𝜒 (𝑈 )∨¬𝜑< (𝑋,𝑌 )∨𝐻 (𝑋,𝑌 )2 < 𝑈𝑁 (6.12)

is equivalent to Φ.
We arrived at a sentence where all variables are restricted to [−1, 1] and in

which all atoms are strict. At this point, we use a recent result by D’Costa et al. [47].

They show that it is ∃∀≤ℝ-complete to decide a sentence of the form

∃𝑋 ∈ [−1, 1]𝑛 .∀𝑌 ∈ [−1, 1]𝑚 : 𝜑≤ (𝑋,𝑌 )
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with 𝜑≤ ∈ QFF≤. Because ∃∀≤ℝ = co∀∃<ℝ, deciding the complements of these

sentences, i.e., sentences of the form

∀𝑋 ∈ [−1, 1]𝑛 . ∃𝑌 ∈ [−1, 1]𝑚 : 𝜑< (𝑋,𝑌 )

with 𝜑< ∈ QFF< is ∀∃<ℝ-complete. Sentence (6.12) is of this form. Thus, there is a

polynomial-time reduction to an equivalent Strict-UETR instance. ■

The next lemma establishes an upper bound on the value of a polynomial over a

compact domain.

Lemma 6.27. Let 𝑃 : ℝ𝑛 → ℝ be a polynomial, 𝑁 be an integer and 𝐶 := 2
2
𝑁 .

Then we can compute in polynomial time an integer 𝐾 ≤ poly( |𝑃 |, 𝑁 , 𝑛) such that
for 𝐸 := 2

2
𝐾 and all 𝑥 ∈ [−𝐶,𝐶]𝑛 it holds that |𝑃 (𝑥) | ≤ 𝐸.

Proof. Because 𝑃 is a polynomial, |𝑃 | is continuous, and therefore |𝑃 | attains its
maximum over any compact domain. We conclude that

∃𝐸 ∈ ℝ .∀𝑋 ∈ [−𝐶,𝐶]𝑛 : |𝑃 (𝑋 ) | ≤ 𝐸

is true. Note that, strictly speaking, we may not use |·| inside the formula. However,

|𝑃 (𝑋 ) | ≤ 𝐸 is equivalent to 𝑃 (𝑋 ) ≤ 𝐸 ∧ −𝑃 (𝑋 ) ≤ 𝐸.

To obtain an upper bound on 𝐸, we first need to encode 𝐶 inside the formula.

We introduce 𝑁 + 1 new variables𝑈 = {𝑈0, . . . ,𝑈𝑁 } and let 𝜒 (𝑈 ) be formula (6.2).

Recall that, by Lemma 6.15, 𝜒 (𝑢) is true if and only if 𝑢𝑖 = 2
−2𝑖

. Now we can rewrite

the above formula equivalently as

∃𝐸 ∈ ℝ .∀𝑋 ∈ ℝ𝑛 . ∃𝑈 ∈ ℝ𝑁+1
:

𝑛∧
𝑖=1

|𝑋𝑖𝑈𝑁 | ≤ 1 =⇒ |𝑃 (𝑋 ) | ≤ 𝐸.

Let 𝜑 (𝐸) be the subformula following the quantification of 𝐸 (starting from ∀) and
𝐿 := |𝜑 (𝐸) |. Applying quantifier elimination (Corollary 6.12) to 𝜑 (𝐸), we obtain a

constant 𝛼 ∈ ℝ and an equivalent, quantifier-free formula𝜓 (𝐸) of length

|𝜓 (𝐸) | ≤ 𝐿2𝛼
3 (𝑛+1) (𝑁+2)

.

The Ball Theorem (Theorem 6.13) applied to ∃𝐸 ∈ ℝ : 𝜓 (𝐸) now yields an upper

bound for 𝐸:

𝐸 ≤ 2
|𝜓 |8 ≤ 2

𝐿16𝛼
3 (𝑛+1) (𝑁+2)

= 2
2
16 log( |𝜓 | )𝛼3 (𝑛+1) (𝑁+2)

Choose 𝐾 =
⌈
16 log( |𝜓 |)𝛼3(𝑛 + 1) (𝑁 + 2)

⌉
. Obviously, 𝐾 ≤ poly(log|𝜓 |, 𝑁 , 𝑛).

Since |𝜓 | ≤ poly( |𝑃 |, 𝑛, 𝑁 ), the claim follows. ■

Above lemma is used to prove the following lemma that allows us to transform

some more general UETR instances into equivalent Strict-UETR instances.
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Lemma 6.28. Given a UETR instance

∀𝜀 > 0, 𝑋 ∈ ℝ𝑛 . ∃𝑌 ∈ ℝ𝑚 : 𝐹 (𝑋 )2 > 0 ∨
(
𝐺 (𝑌 ) = 0 ∧ 𝑃 (𝑋,𝑌 ) < 𝜀

)
,

where 𝐹 : ℝ𝑛 → ℝ, 𝐺 : ℝ𝑚 → ℝ and 𝑃 : ℝ𝑛+𝑚 → ℝ are polynomials. Then we can
compute in polynomial time an equivalent Strict-UETR instance.

Proof. Via a series of manipulations, we transform the given sentence into an

equivalent UETR instance that has the form required by Lemma 6.26. The first step

is to move “𝜀 > 0”-condition into the formula. We obtain an equivalent sentence

∀𝜀 ∈ ℝ, 𝑋 ∈ ℝ𝑛
: (𝜀 > 0) =⇒(

∃𝑌 ∈ ℝ𝑛
: 𝐹 (𝑋 )2 > 0 ∨ (𝐺 (𝑌 ) = 0 ∧ 𝑃 (𝑋,𝑌 ) < 𝜀)

)
.

Now we observe that 𝜀 > 0 is equivalent to ∃𝛿 ∈ ℝ : 𝛿2𝜀 − 1 = 0. Incorporating this

yields an equivalent sentence

∀𝜀 ∈ ℝ, 𝑋 ∈ ℝ𝑛
: (∃𝛿 ∈ ℝ : 𝛿2𝜀 − 1 = 0) =⇒(

∃𝑌 ∈ ℝ𝑚 : 𝐹 (𝑋 )2 > 0 ∨ (𝐺 (𝑌 ) = 0 ∧ 𝑃 (𝑋,𝑌 ) < 𝜀)
)
.

Rewriting the implication 𝐴 =⇒ 𝐵 as ¬𝐴 ∨ 𝐵 turns the existential quantifier in

front of 𝛿 into a universal quantifier. Furthermore, we replace ¬(𝛿2𝜀 − 1 = 0) by
the equivalent (𝛿2𝜀 − 1)2 > 0. We get an equivalent sentence

∀𝜀 ∈ ℝ, 𝑋 ∈ ℝ𝑛
:

(
∀𝛿 ∈ ℝ : (𝛿2𝜀 − 1)2 > 0

)
∨(

∃𝑌 ∈ ℝ𝑚 : 𝐹 (𝑋 )2 > 0 ∨ (𝐺 (𝑌 ) = 0 ∧ 𝑃 (𝑋,𝑌 ) < 𝜀)
)
.

Moving all quantifiers to the front turns this into an equivalent prenex normal form

∀𝜀 ∈ ℝ, 𝛿 ∈ ℝ, 𝑋 ∈ ℝ𝑛 . ∃𝑌 ∈ ℝ𝑚 :

(𝛿2𝜀 + 1)2 > 0 ∨ 𝐹 (𝑋 )2 > 0 ∨
(
𝐺 (𝑌 ) = 0 ∧ 𝑃 (𝑋,𝑌 ) < 𝜀

)
.

This sentence is ∀-strict, so Lemmas 6.16 and 6.18 are applicable. Thus, there are

two integers 𝑁,𝑀 bounded by a polynomial in the length of the sentence, such

that for 𝐶 := 2
2
𝑁
and 𝐷 := 2

2
𝑀
all universally quantified variables can be restricted

to [−𝐶,𝐶] and all existentially quantified variables can be restricted to [−𝐷, 𝐷].
We obtain another equivalent sentence

∀𝜀 ∈ [−𝐶,𝐶], 𝛿 ∈ [−𝐶,𝐶], 𝑋 ∈ [−𝐶,𝐶]𝑛 . ∃𝑌 ∈ [−𝐷, 𝐷]𝑚 :

(𝛿2𝜀 + 1)2 > 0 ∨ 𝐹 (𝑋 )2 > 0 ∨
(
𝐺 (𝑌 ) = 0 ∧ 𝑃 (𝑋,𝑌 ) < 𝜀

)
.

In the next step, we replace the strict inequality 𝑃 (𝑋,𝑌 ) < 𝜀 by the non-strict

inequality 𝑃 (𝑋,𝑌 ) ≤ 𝜀. For this step, we exploit the fact that a continuous func-

tion over a compact domain attains its minimum and maximum. Consequently,

the sentence ∀𝜀 > 0, 𝑋 ∈ [−𝐶,𝐶] . ∃𝑌 ∈ [−𝐷, 𝐷] : 𝑃 (𝑋,𝑌 ) < 𝜀 is (true if and
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only if max𝑋∈[−𝐶,𝐶] min𝑌∈[−𝐷,𝐷] 𝑃 (𝑋,𝑌 ) ≤ 0 and thus) equivalent to ∀𝜀 > 0, 𝑋 ∈
[−𝐶,𝐶] . ∃𝑌 ∈ [−𝐷, 𝐷] : 𝑃 (𝑋,𝑌 ) ≤ 𝜀. We obtain the equivalent sentence

∀𝜀 ∈ [−𝐶,𝐶], 𝛿 ∈ [−𝐶,𝐶], 𝑋 ∈ [−𝐶,𝐶]𝑛 . ∃𝑌 ∈ [−𝐷, 𝐷]𝑚 :

(𝛿2𝜀 + 1)2 > 0 ∨ 𝐹 (𝑋 )2 > 0 ∨
(
𝐺 (𝑌 ) = 0 ∧ 𝑃 (𝑋,𝑌 ) ≤ 𝜀

)
.

Going one step further, we now want to express 𝑃 (𝑋,𝑌 ) ≤ 𝜀 as a polynomial

equation. We replace it by the equivalent formula ∃𝐵 ∈ ℝ : 𝑃 (𝑋,𝑌 ) − 𝜀 + 𝐵2 = 0.

By Lemma 6.27, we can also bound the range over which 𝐵 is quantified: We can

compute in polynomial time an integer 𝐾 ≤ poly( |𝑃 |,max{𝑁,𝑀}, 𝑛 +𝑚 + 1) such
that |𝐵 | ≤ 𝐸 := 2

2
𝐾
. We get another equivalent sentence

∀𝜀 ∈ [−𝐶,𝐶], 𝛿 ∈ [−𝐶,𝐶], 𝑋 ∈ [−𝐶,𝐶]𝑛 . ∃𝑌 ∈ [−𝐷, 𝐷]𝑚, 𝐵 ∈ [𝐸, 𝐸] :
(𝛿2𝜀 + 1)2 > 0 ∨ 𝐹 (𝑋 )2 > 0 ∨

(
𝐺 (𝑌 ) = 0 ∧ 𝑃 (𝑋,𝑌 ) − 𝜀 + 𝐵2 = 0

)
.

At this point, we define

𝜑< (𝜀, 𝛿, 𝑋 ) > 0 := (𝛿2𝜀 + 1)2 ∨ 𝐹 (𝑋 )2 > 0 and

𝐻 (𝑋,𝑌, 𝜀, 𝐵) := 𝐺 (𝑌 )2 + (𝑃 (𝑋,𝑌 ) − 𝜀 + 𝐵2)2.

Note that 𝜑< ∈ QFF<. We use these to get the equivalent sentence

∀𝜀 ∈ [−𝐶,𝐶], 𝛿 ∈ [−𝐶,𝐶], 𝑋 ∈ [−𝐶,𝐶]𝑛 . ∃𝑌 ∈ [−𝐷,𝐷]𝑚, 𝐵 ∈ [𝐸, 𝐸] :
𝜑< (𝜀, 𝛿, 𝑋 ) ∨ 𝐻 (𝑋,𝑌, 𝜀, 𝐵) = 0.

The last step is to scale all variables to be in the interval [−1, 1]. For this, let
𝑆 := max{𝑁,𝑀,𝐾} and introduce 𝑆+1 new variables𝑈 = {𝑈0, . . . ,𝑈𝑆 }. Furthermore,

let 𝜒 (𝑈 ) be formula (6.2). Recall that, by Lemma 6.15, 𝜒 (𝑢) is true if and only

if 𝑢𝑖 = 2
−2𝑖

. We can rewrite our sentence to the equivalent sentence

∀𝜀, 𝛿, 𝑋,𝑈 ∈ [−1, 1]1+1+𝑛+𝑆+1 . ∃𝑌, 𝐵 ∈ [−1, 1]𝑚+1
:

¬𝜒 (𝑈 ) ∨𝑈 𝑑
𝑆 · 𝜑<

(
𝜀

𝑈𝑆
,
𝛿

𝑈𝑆
,
𝑋

𝑈𝑆

)
∨𝑈 𝑑

𝑆 · 𝐻
(
𝑋

𝑈𝑆
,
𝑌

𝑈𝑆
,
𝜀

𝑈𝑆
,
𝐵

𝑈𝑆

)
= 0.

Here 𝑑 is the maximum degree of any polynomial in 𝜑< and 𝐻 . By 𝑋/𝑈𝑆 , we denote
that every variable 𝑋𝑖 is replaced by 𝑋𝑖/𝑈𝑆 . Multiplying by𝑈 𝑑

𝑆
makes sure that each

atom remains a polynomial. What we obtained is a UETR instance that has the form

required by Lemma 6.26 (note that ¬𝜒 (𝑈 ) is strict). Therefore, we can transform

this into an equivalent Strict-UETR instance in polynomial time. ■

Finally, we have all the needed tools to prove Theorem 6.25 which states that

the Hausdorff problem is contained in ∀∃<ℝ. We do this by transforming for-

mula (6.10) into the form required by Lemma 6.28. This then yields an equivalent

Strict-UETR instance, and therefore proves ∀∃<ℝ-membership.

104



6 The Hausdorff Distance and ∀∃ℝ

Proof of Theorem 6.25. Recall that
®𝑑H(𝐴, 𝐵) ≤ 𝑡 is equivalent to (6.10), which is

∀𝜀 > 0, 𝑎 ∈ 𝐴 . ∃𝑏 ∈ 𝐵 : ∥𝑎 − 𝑏∥2 < 𝑡2 + 𝜀.

In a first step, we resolve the shorthand notations 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 and we obtain

∀𝜀 > 0, 𝑎 ∈ ℝ𝑛
: 𝜑𝐴 (𝑎) =⇒

(
∃𝑏 ∈ ℝ𝑛

: 𝜑𝐵 (𝑏) ∧ ∥𝑎 − 𝑏∥2 < 𝑡2 + 𝜀
)
.

Next, we consider the (quantifier-free) formulas 𝜑𝐴 (𝑎) and 𝜑𝐵 (𝑏). Using Lemma 6.9,

we obtain in polynomial time two integers 𝑘, ℓ and two polynomials 𝐹𝐴 : ℝ
𝑛+𝑘 → ℝ

and 𝐹𝐵 : ℝ
𝑛+ℓ → ℝ, such that 𝜑𝐴 (𝑎) is equivalent to ∃𝑈𝑎 ∈ ℝ𝑘

: 𝐹𝐴 (𝑎,𝑈𝑎) = 0 and

similarly 𝜑𝐵 (𝑏) is equivalent to ∃𝑈𝑏 ∈ ℝℓ
: 𝐹𝐵 (𝑏,𝑈𝑏) = 0. This yields the equivalent

sentence

∀𝜀 > 0, 𝑎 ∈ ℝ𝑛
:

(
∃𝑈𝑎 ∈ ℝ𝑘

: 𝐹𝐴 (𝑎,𝑈𝑎) = 0

)
=⇒(

∃𝑏 ∈ ℝ𝑛,𝑈𝑏 ∈ ℝℓ
: 𝐹𝐵 (𝑏,𝑈𝑏) = 0 ∧ ∥𝑎 − 𝑏∥2 < 𝑡2 + 𝜀

)
.

Rewriting the implication 𝑋 =⇒ 𝑌 as ¬𝑋 ∨ 𝑌 changes the existential quantifier

in front of𝑈𝑎 into a universal quantifier, which we can move to the front. Also, the

equation gets negated. Substituting ¬(𝐹 (𝑎,𝑈𝑎) = 0) by 𝐹 (𝑎,𝑈𝑎)2 > 0, we get the

equivalent sentence

∀𝜀 > 0, 𝑎 ∈ ℝ𝑛,𝑈𝑎 ∈ ℝ𝑘
: 𝐹𝐴 (𝑎,𝑈𝑎)2 > 0 ∨(

∃𝑏 ∈ ℝ𝑛,𝑈𝑏 ∈ ℝℓ
: 𝐹𝐵 (𝑏,𝑈𝑏) = 0 ∧ ∥𝑎 − 𝑏∥2 < 𝑡2 + 𝜀

)
.

Lastly, we move the existential quantifier after the universal one and get an equiva-

lent sentence

∀𝜀 > 0, 𝑎 ∈ ℝ𝑛,𝑈𝑎 ∈ ℝ𝑘 . ∃𝑏 ∈ ℝ𝑛,𝑈𝑏 ∈ ℝℓ
:

𝐹𝐴 (𝑎,𝑈𝑎)2 > 0 ∨
(
𝐹𝐵 (𝑏,𝑈𝑏) = 0 ∧ ∥𝑎 − 𝑏∥2 < 𝑡2 + 𝜀

)
in prenex normal form. This sentence has the form required by Lemma 6.26, con-

cluding the proof. ■

6.9 The Hausdorff Distance and ExoticQuantifiers

By now, we have determined the exact computational complexity of Hausdorff.
The main tool was Theorem 6.20 that allowed us to obtain a Strict-UETR instance

which, if false, had an open ball of counterexamples. Thus, we managed to get from

a syntactical restriction (strictness) to a topological one (having an open ball of

counterexamples).

In this section, we want to study these topological restrictions. Bürgisser and

Cucker consider the computational complexity of several problems related to prop-

erties of semi-algebraic sets [34]. They notice that the computational complexity

of several problems defies to be classified into levels of the real polynomial hi-

erarchy. Recall that we had a similar situation with the Hausdorff problem, as
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did D’Costa et al. with their “escape problem”. In both cases, the solution was to

consider complexity classes (concretely ∀∃<ℝ and ∃∀≤ℝ) obtained by putting syn-

tactic restrictions to the formulas. Bürgisser and Cucker take a different approach

and define three additional exotic quantifiers besides ∃ and ∀3. Two of them are

highly related to our work:

∀∗𝑋 ∈ ℝ𝑛
: 𝜑 (𝑋 ) :≡ ∀𝜀 > 0, 𝑋 ∈ ℝ𝑛 . ∃𝑋 ∈ ℝ𝑛

: ∥𝑋 − 𝑋 ∥2 < 𝜀 ∧ 𝜑 (𝑋 )
∃∗𝑋 ∈ ℝ𝑛

: 𝜑 (𝑋 ) :≡ ∃𝜀 > 0, 𝑋 ∈ ℝ𝑛 .∀𝑋 ∈ ℝ𝑛
: ∥𝑋 − 𝑋 ∥2 < 𝜀 =⇒ 𝜑 (𝑋 )

Intuitively, ∀∗𝑋 ∈ ℝ𝑛
: 𝜑 (𝑋 ) expresses that 𝜑 (𝑥) does not need to be true for

all 𝑥 ∈ ℝ𝑛
but just for all 𝑥 ∈ 𝐷 , where 𝐷 is a dense subset of ℝ𝑛

. Conversely,

∃∗𝑋 ∈ ℝ𝑛
: 𝜑 (𝑋 ) expresses that there must be an 𝑥 ∈ ℝ𝑛

and some radius 𝑟 > 0,

such that for all 𝑥 ∈ 𝐵𝑛 (𝑥, 𝑟 ) it holds that 𝜑 (𝑥), where 𝐵𝑛 (𝑥, 𝑟 ) denotes the 𝑛-
dimensional open ball of radius 𝑟 centered at 𝑥 .

As one would expect, it holds that

¬∀∗𝑋 ∈ ℝ𝑛
: 𝜑 (𝑋 ) ≡ ∃∗𝑋 ∈ ℝ𝑛

: ¬𝜑 (𝑋 ) and

¬∃∗𝑋 ∈ ℝ𝑛
: 𝜑 (𝑋 ) ≡ ∀∗𝑋 ∈ ℝ𝑛

: ¬𝜑 (𝑋 ).

Theorem 6.29, the main theorem of this section, establishes a relation between

the two approaches. As it turns out, the topological restrictions on the formulas

by Bürgisser and Cucker are equivalent to the syntactical restrictions made in this

thesis. For this purpose, let Exotic-UETR denote the decision problem whether a

sentence of the form

∀∗𝑋 ∈ ℝ𝑛 . ∃𝑌 ∈ ℝ𝑚 : 𝜑 (𝑋,𝑌 )

with quantifier-free 𝜑 is true. The complexity class ∀∗∃ℝ shall contain all prob-

lems that polynomial-time many-one reduce to Exotic-UETR. We show that the

complexity classes ∀∗∃ℝ and ∀∃<ℝ coincide.

Theorem 6.29. Exotic-UETR is ∀∃<ℝ-complete. Thus ∀∗∃ℝ = ∀∃<ℝ.

Proof. The ∀∃<ℝ-hardness of Exotic-UETR follows from Theorem 6.20: For a

given Strict-UETR instance

Φ :≡ ∀𝑋 ∈ ℝ𝑛 . ∃𝑌 ∈ ℝ𝑚 : 𝜑< (𝑋,𝑌 )

with 𝜑< ∈ QFF<, Theorem 6.20 allows us to compute an equivalent UETR instance

Ψ :≡ ∀𝑋 ∈ ℝ𝑘 . ∃𝑌 ∈ ℝℓ
: 𝜓 (𝑋,𝑌 )

in polynomial time, where𝜓 ∈ QFF. Recall that on the one hand, if Ψ is false, then

the set of counterexamples ⊥(Ψ) contains an open ball. On the other hand, if Ψ is

3 While they mainly work in the BSS-model, they also consider some problems in the bit-model

of computation. The complexity classes ∃ℝ, ∀ℝ and ∀∃ℝ appear under the names BP0 (∃),
BP0 (∀) and BP0 (∀∃), respectively. (Here the BP stands for “Boolean part” and the superscript “0”

denotes that there are no machine constants in the BSS machine.)

106



6 The Hausdorff Distance and ∀∃ℝ

true, then ⊥(Ψ) = ∅. Therefore, Ψ is true if and only if it is true for a dense subset

of ℝ𝑘
. It follows that the ∀-quantifier can be replaced by the exotic ∀∗-quantifier

in Ψ and we get

Φ ≡ Ψ ≡ ∀∗𝑋 ∈ ℝ𝑘 . ∃𝑌 ∈ ℝℓ
: 𝜓 (𝑋,𝑌 ).

Consequently, Exotic-UETR is ∀∃<ℝ-hard.

To prove that Exotic-UETR is contained in ∀∃<ℝ, we transform

∀∗𝑋 ∈ ℝ𝑛 . ∃𝑌 ∈ ℝ𝑚 : 𝜑 (𝑋,𝑌 )

in polynomial time into an equivalent sentence of the form required by Lemma 6.28.

This lemma allows us to construct an equivalent Strict-UETR instance in polyno-

mial time, thereby proving ∀∃<ℝ-membership. We start by expressing the exotic

quantifier ∀∗ in terms of classical quantifiers ∀ and ∃, obtaining an equivalent

sentence

∀𝜀 > 0, 𝑋 ∈ ℝ𝑛 . ∃𝑋0 ∈ ℝ𝑛, 𝑌 ∈ ℝ𝑚 : ∥𝑋 − 𝑋0∥2 < 𝜀 ∧ 𝜑 (𝑋0, 𝑌 ).

By Lemma 6.9, we can compute in polynomial time an integer 𝑘 and a polynomial

𝐺 : ℝ𝑛+𝑚+𝑘 → ℝ such that 𝜑 (𝑋0, 𝑌 ) is equivalent to ∃𝑈 ∈ ℝ𝑘
: 𝐺 (𝑋0, 𝑌 ,𝑈 ) = 0.

Plugging this into above sentence, we get another equivalent sentence

∀𝜀 > 0, 𝑋 ∈ ℝ𝑛 . ∃𝑋0 ∈ ℝ𝑛, 𝑌 ∈ ℝ𝑚,𝑈 ∈ ℝ𝑘
: ∥𝑋 −𝑋0∥2 < 𝜀 ∧𝐺 (𝑋0, 𝑌 ,𝑈 ) = 0.

This has the form required by Lemma 6.28. Hence, ∀∃<ℝ-membership follows. ■

Remark 6.30 (Recent Advances). Again, taking into account the recent result

by Schaefer and Štefankovič, we can further say that ∀∗∃ℝ = ∀∃ℝ [139], i.e., the

definition of ∀∃ℝ is robust under replacing the ∀ quantifier with a ∀∗ quantifier.
Furthermore, the recent bachelor’s thesis of Junginger [96] also studies the real

polynomial hierarchy, proving its robustness under exotic quantifiers up to the

second level. ⌟

6.9.1 Application to the Hausdorff Problem

We now use above insights to establish the exact computational complexity of Eu-
clideanRelativeDenseness (ERD) which was left as an open problem by Bürgisser

and Cucker [34]. In ERD, we are given two semi-algebraic sets 𝐴 and 𝐵, and ask

whether 𝐴 is contained in 𝐵, i.e., the closure of 𝐵. Note that ERD is equivalent to

deciding whether
®𝑑H(𝐴, 𝐵) = 0. Bürgisser and Cucker show:

Theorem 6.31 ([34, Corollary 5.6]). ERD is in ∀∃ℝ and ∀∗∃ℝ-hard.

They prove this in the BSS-model, but the same proof also works in the bit-model.

Building on our results from above, we are able to determine the exact computational

complexity of ERD in the bit-model of computation.
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Theorem 6.32. ERD is ∀∃<ℝ-complete.

Proof. By Theorem 6.29 and the ∀∗∃ℝ-hardness from Theorem 6.31, it follows

that ERD is ∀∃<ℝ-hard. Furthermore, Theorem 6.25 implies that ERD is contained

in ∀∃<ℝ. Consequently, ERD is ∀∃<ℝ-complete. ■

Remark 6.33 (Hausdorff distance 0). The ∀∃<ℝ-hardness of ERD implies ∀∃<ℝ-

hardness of the DirectedHausdorff problem (for any distance 𝑡 ≥ 0): Given an

instance 𝐴, 𝐵 ⊆ ℝ𝑛
of ERD, we define 𝐴′

:= (𝐴, 0) ⊆ ℝ𝑛+1
and 𝐵′ := (𝐵, 1) ⊆ ℝ𝑛+1

.

Then
®𝑑H(𝐴, 𝐵) = 0 if and only if

®𝑑H(𝐴′, 𝐵′) ≤ 1. ⌟

6.10 Conclusion and Open Problems

We proved that computing the Hausdorff distance between two semi-algebraic sets

is ∀∃<ℝ-complete, which is equivalent to being ∀∃ℝ-complete by a recent result

from Schaefer and Štefankovič stating that ∀∃<ℝ = ∀∃ℝ [139]. This settles the

computational complexity of a very important problem in computational geometry.

Furthermore, we contribute the first ∀∃ℝ-completeness proof of a natural problem.

We wonder about the complexity of different variants of the Hausdorff problem.

For example, deciding whether the Hausdorff distance between two semi-algebraic

sets is exactly 0, is ∀ℝ-complete, so supposedly easier than the general case [95].

The opposite might be true for the Hausdorff distance under translation, i.e., the

Hausdorff distance after applying an arbitrary translation to one of the two sets.

Open Problem 8. What is the computational complexity of computing the Haus-

dorff distance under translation?

Deciding whether the Hausdorff distance under translation is at most 𝑑 can be

formulated as a first-order sentence of the form

∃𝑡 ∈ ℝ𝑛
:

( (
∀𝑎 ∈ 𝐴, 𝜀 > 0 . ∃𝑏 ∈ 𝐵 : ∥(𝑎 + 𝑡) − 𝑏∥ < 𝑑 + 𝜀

)
∧(

∀𝑏 ∈ 𝐵, 𝜀 > 0 . ∃𝑎 ∈ 𝐴 : ∥(𝑎 + 𝑡) − 𝑏∥ < 𝑑 + 𝜀
) )
,

proving that it is in ∃∀∃ℝ. Is it also hard for this class?

Complementing our results, we also establish a connection to exotic quantifiers, and

present first results on their impact on the complexity classes. The effect of exotic

quantifiers is not yet fully understood and has been the topic of other publications

following our initial results [96, 139]. The following question is again highlighted

in Chapter 7 below.

Open Problem 9. What is the effect of exotic quantifiers on the complexity

classes ∃ℝ, ∀∃ℝ, . . . ?
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We explored the complexity classes ∃ℝ and ∀∃ℝ. As outlined in Chapter 1, our

goal was to learn more about the classes themselves and the problems therein.

Our findings allowed us to prove ∃ℝ- and ∀∃ℝ-completeness of several well-

known problems whose complexity status remained unclear up to this point. For

each of these results, a new idea was necessary to make the reduction possible.

Below, we summarize our results, highlighting the key techniques used. Some of

these techniques have already been adapted to other problems, confirming their

usefulness. We hope that they continue to serve for future reductions, and thereby

advance the study of ∃ℝ beyond the results presented in this thesis. To finish, we

state two open-ended questions to stimulate further research, and on which we

hope to see progress in the future.

Summary In Chapter 3, we employed the Beltrami-Klein model to prove that

SimpleStretchability is equivalent in the Euclidean plane ℝ2
and the hyperbolic

plane ℍ2
. This led to a general framework to translate ∃ℝ-hardness results fromℝ2

to ℍ2
. More importantly, these hyperbolic insights are the key idea to prove ∃ℝ-

completeness of Lombardi graph drawing in Chapter 4, a widely studied graph

drawing style. Let us remind the reader that Lombardi drawability is a “purely

Euclidean” drawing style. The detour through hyperbolic geometry allowed us

to utilize the commonalities of Lombardi drawing and the Poincaré disk model,

ultimately leading to the first complexity result for general graphs.

Chapter 5 considered the training of artificial neural networks. Since 1992, this

is known to be NP-hard [25], even for small networks with just three neurons.

However, a matching upper bound remained elusive. We were able to close this gap

by proving ∃ℝ-completeness. In particular, we lifted the lower bound, and thereby

proved that it is supposedly evenmore difficult. Ourmain technical contribution is to

understand and utilize the underlying geometry of small neural networks. Building

on the shape of the ReLU activation function (𝑥 ↦→ max{0, 𝑥}), we constructed
gadgets that could not just store real numbers, but also add and inverse them. In

turn, this allowed us to encode an arbitrary system of polynomial equations into a

neural network training instance. In fact, our method to geometrically construct

the gadgets proved flexible enough, that it was already applied by others for an

NP-hardness reduction in a similar setting [66].

Lastly, in Chapter 6, we proved ∀∃<ℝ-completeness of computing the Hausdorff

distance of two semi-algebraic sets. Many algorithms for simpler versions of this

problem have been developed, but the complexity of the general problem remained

open. Actually, it was explicitly asked for in [54]. The missing piece for a reduction
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was a method to enlarge the set of counterexamples of an UETR instance. Recall

that intuitively, a counterexample witnesses the falseness of a UETR instance. This

witness might be an isolated point in ℝ𝑛
, but the reduction requires an open ball.

We accomplished this enlargement for Strict-UETR instances, leading to ∀∃<ℝ-

completeness. Independently, this led to a proof that ∀∃<ℝ = ∀∗∃ℝ, establishing a

connection between classical and exotic quantifiers. Alongside the results in [47, 54],

this triggered subsequent work answering the ∀∃<ℝ = ∀∃ℝ question left open by

us [139].

Outlook Chapters 3 to 6 each end with a short list of open problems, which we

consider to be interesting follow-up questions. While some are stated precisely,

others are more open-ended. Answering them might involve finding a sensible and

precise statement first. To contextualize these questions, we also provided some

first ideas on how to tackle them, or discussed why our current approaches do not

seem strong enough.

We finish this thesis about the complexity classes ∃ℝ, ∀∃ℝ and alike by high-

lighting two directions for future research. The first one naturally arises from

our results on the complexity of computing the Hausdorff distance in Chapter 6.

The second is independent of our results. Still, in our eyes, it is among the most

important questions in this field.

The Real Polynomial Hierarchy In Chapter 6, we studied the class ∀∃ℝ. Recall

that ∃ℝ and ∀∃ℝ can be understood as being real counterparts of NP and

ΠP
2
in the polynomial hierarchy PH. Accordingly, one can define the real

polynomial hierarchy: On its 𝑘-th level, the classes Σ𝑘ℝ and Π𝑘ℝ capture the

complexity of deciding a first-order sentence in prenex normal form with

exactly 𝑘 − 1 quantifier alternations.

While the number of known ∃ℝ-complete problems has increased rapidly

over the last years, there are still only a handful of problems known to be

complete for the second level, i.e., for ∀∃ℝ = Π2ℝ or ∃∀ℝ = Σ2ℝ. Interest-

ingly, there is a similar phenomenon forNP and higher levels of the “classical”

polynomial hierarchy. One reason for this discrepancy might be the natural

increase of technical difficulty concomitant with an increasing number of

quantifiers.

Open Problem 10. Identify more problems that are complete for the second

(or even third, fourth, . . . ) level of the real polynomial hierarchy.

Concerning Open Problem 10, several candidates are discussed in [54].

An interesting structural question concerns the robustness of the real poly-
nomial hierarchy, i.e., whether the complexity classes Σ𝑘ℝ and Π𝑘ℝ are

invariant under small changes of the syntax. A first notable result is by Schae-

fer and Štefankovič, who prove robustness under restrictions to the set of

comparison operators [139]. In particular, one obtains the same classes when
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restricting to negation-free formulas in which all atoms are strict inequalities

(using only “<”, “>” or “≠”).

In contrast, the effect of the exotic quantifiers ∃∗
and ∀∗ (see Chapter 6) is

not yet fully understood [34]: It is conjectured that ∃∗
and ∀∗ can always

be replaced by their non-starred “classical” counterparts. For example, our

Theorem 6.29 states that ∀∗∃ℝ = ∀∃<ℝ, which itself equals ∀∃ℝ [139].

Currently, this is only known for the first level (∃∗ℝ = ∃ℝ and ∀∗ℝ = ∀ℝ),
with some partial results for the second and higher levels, see Section 6.9

and [96, 139].

Open Problem 11. Is the real polynomial hierarchy robust under exotic

quantifiers?

(Conditional) Class Separations We know that NP ⊆ ∃ℝ ⊆ PSPACE [37, 144],

but neither inclusion is known to be strict. In fact, proving either of them to

be strict seems out of reach, as this would trivially imply NP ⊊ PSPACE.

Having said that, it might be easier to prove a conditional separation, i.e., to
prove NP ⊊ ∃ℝ under an additional assumption that is unproven but widely

believed by the community. For example, one such unproven assumption is

that the polynomial hierarchy PH does not collapse, i.e., that the inclusions
ΣP
𝑘
⊊ ΣP

𝑘+1 and ΠP
𝑘
⊊ ΠP

𝑘+1 are strict for all 𝑘 ∈ ℕ. Now, if the hypothetical

inclusion ∃ℝ ⊆ NP would imply a collapse of the polynomial hierarchy, then

this would be strong evidence for NP ⊊ ∃ℝ. (Let us note that we do not have

any evidence in this direction.)

Open Problem 12. Find (conditional) class separations for NP ⊆ ∃ℝ and/or

∃ℝ ⊆ PSPACE.

Another interesting result would be an ∃ℝ-version of the so-called relativiza-
tion barrier [14]. In its usual form, it states that there are oracles 𝐴 and 𝐵

such that P𝐴 = NP𝐴 but P𝐵 ≠ NP𝐵 . This is highly relevant in computational

complexity, as it rules out certain proof techniques to answer the famous P
vs. NP question. In particular, 𝑃 ≠ NP cannot be a proven by a proof that is

based purely on diagonalization.

Open Problem 13. Are there oracles 𝐴 and 𝐵 such that NP𝐴 = ∃ℝ𝐴
but

NP𝐵 ≠ ∃ℝ𝐵
? How about ∃ℝ and PSPACE?

Note that the notation ∃ℝ𝑂
for an oracle𝑂 has not yet been defined formally

in the literature.
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