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A B S T R A C T   

Including uncertainty is essential for accurate decision-making in underground applications. We propose a novel 
approach to consider structural uncertainty in two enhanced geothermal systems (EGSs) using machine learning 
(ML) models. The results of numerical simulations show that a small change in the structural model can cause a 
significant variation in the tracer breakthrough curves (BTCs). To develop a more robust method for including 
structural uncertainty, we train three different ML models: decision tree regression (DTR), random forest 
regression (RFR), and gradient boosting regression (GBR). DTR and RFR predict the entire BTC at once, but they 
are susceptible to overfitting and underfitting. In contrast, GBR predicts each time step of the BTC as a separate 
target variable, considering the possible correlation between consecutive time steps. This approach is imple
mented using a chain of regression models. The chain model achieves an acceptable increase in RMSE from train 
to test data, confirming its ability to capture both the general trend and small-scale heterogeneities of the BTCs. 
Additionally, using the ML model instead of the numerical solver reduces the computational time by six orders of 
magnitude. This time efficiency allows us to calculate BTCs for 2′000 different reservoir models, enabling a more 
comprehensive structural uncertainty quantification for EGS cases. The chain model is particularly promising, as 
it is robust to overfitting and underfitting and can generate BTCs for a large number of structural models 
efficiently.   

1. Introduction 

Numerical simulations of physical systems described by differential 
equations are essential in engineering. Advancements in hardware have 
enabled computing units to solve coupled nonlinear differential equa
tions, encompassing a wide range of phenomena, from weather fore
casting (Bauer et al., 2015) to blood circulation in living bodies (Doost 
et al., 2016). However, these methods are computationally intensive and 
highly sensitive to specific cases. Besides the huge energy consumption 
of these computational infrastructures (Benoit et al., 2018), their 
availability is also limited. Furthermore, parameter tuning, sensitivity 
analysis (Borgonovo and Plischke, 2016), and uncertainty quantification 
(Abbaszadeh Shahri et al., 2022; Soize, 2017) demand up to millions of 
simulations. 

Machine learning (ML) methods have gained significant traction 
across various fields (Brunton and Kutz, 2022; Stadelmann et al., 2019), 
including geothermal applications (Okoroafor et al., 2022). In this 
context, data-driven and physics-informed ML (physics-informed neural 

network, PINN) techniques are of great interest (Carleo et al., 2019; 
Raissi et al., 2019). PINNs and their diverse descendants are ceaselessly 
flourishing to replace numerical solvers (Karniadakis et al., 2021; 
Kharazmi et al., 2019; Knapp et al., 2021; Yu et al., 2022); however, 
their accuracy and time-efficiency for solving complex problems is still a 
subject of development (Degen et al., 2023). 

One of the challenges in geothermal applications is characterizing 
fluid flow through complex underground networks. While the geometry 
of a fracture can define the general direction of flow, the local variation 
of petrophysical properties impacts the specific pathways (Meakin and 
Tartakovsky, 2009). The enhanced geothermal system (EGS), as an 
engineered underground reservoir, strongly relies on high flow rate 
circulation through the impermeable matrix. To enhance the reservoir’s 
permeability, the cold fracturing fluid is injected to create new fractures 
or reopen the pre-existing ones (e.g. Kohl and Mégel, 2007). Hence, a 
complex underground fracture/flow pattern can be observed in any EGS 
example like the model presented by Egert et al. (2020). 

Integrating local data coming from wells with field measurements 

* Corresponding author. 
E-mail address: Ali.dashti@kit.edu (A. Dashti).  

Contents lists available at ScienceDirect 

Geothermics 

journal homepage: www.elsevier.com/locate/geothermics 

https://doi.org/10.1016/j.geothermics.2024.103012 
Received 7 November 2023; Received in revised form 13 March 2024; Accepted 29 March 2024   

mailto:Ali.dashti@kit.edu
www.sciencedirect.com/science/journal/03756505
https://www.elsevier.com/locate/geothermics
https://doi.org/10.1016/j.geothermics.2024.103012
https://doi.org/10.1016/j.geothermics.2024.103012
https://doi.org/10.1016/j.geothermics.2024.103012
http://creativecommons.org/licenses/by/4.0/


Geothermics 120 (2024) 103012

2

like tracer tests (Cao et al., 2020) can provide insights into the EGS 
situation. Tracer test campaigns usually yield breakthrough curves 
(BTCs), which are widely used to extract properties of the porous media 
and fracture network. However, each measuring method is error-prone 
resulting in inherent uncertainty (Bond, 2015; Wellmann et al., 2010). 
Therefore, incorporating structural uncertainties in numerical simula
tions in EGS settings makes the flow forecast more realistic (Zhou et al., 
2022). 

This study proposes to replace computationally demanding simula
tions with speedy ML models to quantify structural uncertainty esti
mations derived from tracer data in two different EGS settings. By state- 
of-the-art ML methods like decision tree regression (DTR), random forest 
regression (RFR), and gradient boosting regression (GBR), multifold 
BTCs are generated on top of pure time-consuming numerical simula
tions. We train reliable ML models to map geometric data from the 
uncertain fractures of the EGS reservoir to the simulated BTC. The po
sition of the variating structural elements is used as the input feature, 
and the entire BTC is chosen as the target variable. The proposed ML 

model correlates the entire BTC with input features, rather than using a 
time window to predict the future. 

2. Methodology 

2.1. Tracer models 

Tracer flow in two different cases are applied in this study. The 
conceptual model introduced by Dashti et al. (2023) is used here as the 
first case. The model for the first case is called the ‘simple case’ because 
it is a highly simplified version of an EGS with a doublet configuration. 
The conceptual model contains two main transmissive/open faults that 
are connected to an injection and production well. There is also an 
additional sub-horizontal fault/fracture structure making a connection 
between the major faults at greater depth. However, data related to this 
structure are subject to uncertainty since this fault is located far from the 
drilling trajectory, and its existence as a conduit is confirmed only by 
additional geophysical surveys or hydraulic testing. Fig. 1 provides a 

Fig. 1. A schematic view of the simple case. The two certain sub-vertical faults (Fault_Inj and Fault_Pro) are shown as continuous black lines and the thinner green 
lines show traces of the uncertain sub-vertical fault (Fault_Con). Each green trace makes a unique structural scenario. 

Fig. 2. A complex EGS setting with seven fractures. Certain (five) fractures are shown as grey surfaces with varying shades and solid black borders while the two 
uncertain fractures are highlighted via the thick red border and hashed infill. Two arrows show the location of the injection and production wells. 
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schematic view of the model, where two sub-vertical faults intersect 
with the injection and production wells and are labeled as Fault_Inj and 
Fault_Pro, respectively. The sub-horizontal fault, referred to as Fault_
Con in the figure, is represented by thin green lines, as it connects the 
two major faults. Dashti et al. (2023) introduced a range of structural 
scenarios and perturbed the location of the sub-horizontal fault 50 times 
to investigate the impact of structural uncertainty on flow. 

To comprehensively evaluate the performance of ML methods, a 
second, more intricate fracture network model (named as complex case) 
was developed (Fig. 2). The ‘complex case’ incorporates seven fractures, 
with two designated as uncertain. The impact of varying these two 
fractures’ depth and dip angle on tracer flow was assessed through 100 
scenarios. All scenarios shared identical material properties, while the 
uncertain fractures’ dip and depth were varied. The modelling as
sumptions of the complex case are similar to the simple case which is 
already addressed in Dashti et al. (2023). 

2.2. Machine learning model 

The ML model in this study predicts the tracer concentrations over 
time, i.e. the BTCs for two cases. Time series estimation for different 
applications is a well-documented topic (Gudmundsdottir and Horne, 
2020; Weigend and Gershenfeld, 1994). For example, Alakeely and 
Horne (2020) introduced a recurrent neural network to predict the 
future by incorporating historical data. Such methods predict the sys
tem’s long-term performance based on a moderate duration of the 
monitoring data. However, our study predicts the entire time series 
making the ML models applicable for cases without any historical data. 

Due to the nature of the problem, two different strategies are 
developed. 

• Strategy 1: Two ML models, DTR and RFR, are trained to indepen
dently predict the tracer concentration values. Both models predict 
the entire time steps of the BTC, using the input features. In this study 
DTR and RFR correlate structural information of the geological 

model with the tracer concentration. While in DTR a single tree is 
trained to capture the relation between the input features and target 
variable, RFR cultivates several trees in parallel (bagging). DTR is 
simple to implement and interpret, but it can be prone to overfitting. 
Therefore, the more complex RFR is also included in this study. The 
mathematical foundations of DTR and RFR are well-documented in 
the literature e.g. Kotsiantis (2013), Liu et al. (2012) and XU et al. 
(2005).  

• Strategy 2: A GBR model is used to predict the concentration value at 
each time step by correlating it with the previous prediction. The 
GBR is an ensemble method that combines multiple simple and weak 
learners sequentially (bagging) to improve the overall performance 
of the model. This approach, denoted as the chain model, requires 
GBR to be executed for each time step of the BTC. Details of this 
approach are elaborated in the following. 

2.2.1. Chain GBR model 
Fig. 3 provides an overview of the chain regression model for the 

simple case. A BTC, serving as the target variable, is presented in Fig. 3- 
a. The input features are composed of the structural geometric infor
mation from the reservoir model with the coordinates of four corners of 
the uncertain sub-horizontal fracture (P1, P2, P3, and P4 in Fig. 3-b). 
The model correlates the x/z coordinates with the BTC concentration 
values, i.e. the y-coordinate data remain fixed across all scenarios for the 
sake of simplicity. All the governing equations and modelling assump
tions behind the calculation of the BTCs are fully addressed in Dashti 
et al. (2023). For the complex case, coordinates of the two uncertain 
fracture surfaces are used as the input feature while the BTC data are 
target variables. 

The chain model predicts the BTC concentration values in a 
sequential manner. It starts by predicting the concentration for the first 
time step (C1) based on the input features (Fig. 3-b and c). For the 
second and following time steps (C2), the model uses the previous 
values, i.e. C1, along with the input features. Some errors can exist in the 

Fig. 3. Workflow developed for chain GBR model a) A BTC representing concentration values, C, versus logarithmic time scale. b) Four corners of the sub-horizontal 
uncertain fault, P1, P2, P3, and P4, are used in the ML model to predict the first concentration value (C1) for the simple case. c) To predict the second concentration 
value (C2), the first predicted value (C1) is also included besides the coordinates of four corners. In each time step, the previous values are added up to the list of 
input features. 
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predicted C1 by GBR. However, to predict C2, the input feature list still 
contains 8 coordinate values than have a higher impact compared to the 
recently predicted C1. This gradual addition of the predicted values can 
help the chain model to adjust the weight of added features, i.e. previ
ously predicted concentrations. Fig. 3-c illustrates how concentration 
values from previous steps concatenate in the input features’ list. To 
predict the first concentration value (C1) in the GBR chain model, the 
input feature list initially contains eight values. To predict the concen
tration for the last time step of the simple case (C169), the input feature 
list contains eight coordinates and 168 previously predicted concen
tration values. In the complex case, the BTC includes 140 concentration 
values. The input feature list of the DTR and RFR models remains fixed, 
because these two methods predict all the time steps of the BTC merely 
based on the coordinates of the fractures. 

The GBR algorithm (Friedman, 2002) is selected due to its simplicity, 
bagging nature, and efficiency as a predictor for the chain model. Like 
other supervised ML algorithms (Gupta, 2022), GBR learns a function 
that maps the input feature/s (x) to target variable/s f(x) with the 
minimum loss: 

F(x) = argminL(f (x), f̂ (x)) (1)  

where L is the loss function and f̂ (x) represents the prediction. The loss 
function is chosen based on the type of learning (e.g., regression, clas
sification) and the type of the target variable (e.g., discrete, continuous). 
Squared error (L2) loss (Bühlmann and Yu, 2003) is a simple and effi
cient loss function when outliers are not expected and is hence chosen 
here: 

L =
∑n

i=1

1
2
(f (x) − f̂ (x))2 (2) 

ML methods generating an ensemble of predicting models in parallel 
(bagging methods like RFR) or sequential (boosting methods like GBR) 
are more reliable than models consisting of a single strong predictive 
model (like DTR) (Fanelli et al., 2013; Shu and Burn, 2004). Boosting 
methods like GBR can have a better performance for working on small 
data sets compared to bagging methods that distribute the data set be
tween different predictors. GBR starts with a very simple model (F0(x)), 
trying to fit a straight horizontal line (average of target variable). In fact, 
the derivation of the loss function with respect to the predictions es
tablishes the average value as the best guess for the first tree. In the next 
round, the GBR algorithm maps the input features to the residuals 
(remaining errors) of the previous tree, a process that can be interpreted 

as performing gradient descent on the negative derivative of the dif
ference between prediction and target variable w.r.t. the prediction 
(Breiman, 1998). The use of residuals rather than absolute values is 
another reason for choosing GBR. This allows for the inclusion of re
siduals contributed by recently error-prone predicted concentration 
values into the model. In subsequent rounds, new decision trees are 
trained based on the accumulated residuals of the whole ensemble 
(Schapire et al., 2003): 

F̂m(x) = Fm− 1(x) + αm f̂m(x) (3)  

where F̂m(x) represents the final general function that connects input 
features to the target variable, Fm− 1(x) contains the information from all 
previous tress, α is the learning rate that avoids overfitting and f̂m(x)
represents the last tree that is correlating remaining residuals and the 
input features. Low learning rates decrease the impact of each tree, i.e., 
more trees will be needed but the model also will be more generalized. 
GBR minimizes the error of each tree and uses the remaining errors as 
the target variable of the next tree. In this way, the model is trained 
based on its minimized errors and aggregates several trees with 
decreasing errors. He et al. (2022) delved into the details of the GBR. 

2.2.2. ML model optimization and quality control 
Each ML model has two types of arguments: 1) inputs that include 

hyperparameters (parameters related to the model’s architecture) and 
features selected by the user for predicting the target variable/s, and 2) 
output arguments that consist of internal weights and the target vari
able/s. The ML model is trained to minimize the error by tuning its input 
arguments, allowing the learning algorithm to optimize the output ar
guments and achieve better scores on the withheld test set (Alpaydin, 
2020; Hutter et al., 2019). This iterative process, known as hyper
parameter tuning (Raschka and Mirjalili, 2019) involves optimization of 
parameters such as the learning rate, number of trees, maximum depth 
of trees, etc. to decrease the error. Determining the optimal number of 
trees poses a challenge due to the bias-variance trade-off (Oshiro et al., 
2012; Probst et al., 2019). Another hyperparameter, the maximum 
depth of a tree, is defined as the longest path between the root node (first 
node) and the leaf node (last node). 

Grid search is a hyperparameter tuning method that allows input 
arguments to be defined as a range rather than a single value. It performs 
an exhaustive search over all possible combinations of values to identify 
the model with the lowest error i.e. highest score. For the RFR model, the 
number of trees and maximum depth is considered as arrays with 20 and 

Fig. 4. Change in the accuracy of the ML model with respect to different combinations of two hyperparameters of the RFR model on the train (a) and test (b) splits. 
The accuracy distribution in the train split (a) is smooth and higher accuracies can be achieved by increasing the number of threes and maximum depth of each tree. 
Subplot b depicts the more patchy and anisotropic behavior of the accuracy with respect to the hyperparameters. 
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10 elements, respectively that result in 200 combinations. For the DTR 
model also maximum depth of each tree, the minimum number of 
samples in a leaf node and the minimum number of samples for splitting 
an internal node are tuned. In total, an ensemble of 540 models has been 
calculated using hyperparameter tuning for the DTR method. In the GBR 
algorithm of the chain model default values are used. Conventionally, 
higher score values are preferred over lower ones, and therefore we also 
tried to find out the combination with the maximum negated mean 
squared error (MSE) using the grid search. 

To evaluate the model’s performance, k-fold cross-validation (Zhang 
et al., 1999) has been employed. Rather than splitting the input data into 
train and test, it randomly splits them arbitrarily into k number of 
”splits”. Then, the ML model will keep one split as the test and all others 
as the train sets. In the case of splitting data into five splits, the same 
number of models will be run and in each run, splits will be shuffled. 
This five-run procedure will be performed for all the assumed 200 
combinations of hyperparameters in the grid search for the RFR method. 
Therefore, it finally creates 1′000 ML models – each of them being an 
ensemble of individual trees – and the ensemble with the highest score 
will be used for the final prediction. In this study, we follow the rec
ommendations in the literature (An et al., 2007; Erdogan Erten et al., 
2022) and use five splits for cross-validation for all three methods. 
Training (online) time for the 1000 ML models of the RFR model on a 
Core i7 laptop is approximately 10 s. For DTR, with an ensemble of 2700 
ML models, the online time remains to be around 10 s. The simplicity of 
DTR compared to RFR results in faster computation. The chain model 
proves to be the most time-consuming approach, taking around 70 s for 

training without any hyperparameter optimization. Several hyper
parameters were tested for the chain model, but the online time only 
increased without improving the model’s accuracy. Therefore, default 
values were chosen for the chain model. For both the simple and com
plex cases several values have been tried for the learning rate in 
hyperparameter tuning but in the end, the default one (0.1) has been 
used. The required time for predicting a new solution with the trained 
models (offline time) remains in the range of milliseconds. To access the 
input data and trained ML models of two cases, please refer to the code 
and data availability section. 

Fig. 4-a and b show the distribution of the negative MSE scoring 
metric in train and test splits, focusing on two tuned hyperparameters of 
the RFR model in the simple case. The average of the MSE in the four 
train splits is presented in Fig. 4-a. The distribution of the average 
scoring metric in the train splits is influenced by both the number and 
maximum depth of trees. Based on Fig. 4-a, the accuracy of the model 
increases as both the maximum depth of trees and the number of trees 
increase. However, the score distribution in the test split (Fig. 4-b) is 
more complicated. The scores in the test split are generally lower than 
those in the train splits (− 0.04 to − 0.004 versus − 0.018 to − 0.003). 
While the score distribution for the train split promises high accuracy of 
the model by increasing the two hyperparameters, the heterogeneous 
distribution in Fig. 4-b raises doubts on this conclusion. The presented 
example in Fig. 4 concludes that determining the optimal combination 
even for only two hyperparameters is not a straightforward task. Going 
to higher dimensions can make the situation more complicated and 
unsolvable. Therefore, methods like grid search identify the best 

Fig. 5. a) Unique BTCs simulated using the finite element solver and used as target variables for the ML models. BTCs are different from each other due to changing 
structural models. b) A box plot visualizing the normalized peak concentration values versus the time of the calculated peak (analysis based on Dashti et al. (2023)). 
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combination of tuned hyperparameters. 

3. Results 

3.1. Simple case 

Dashti et al. (2023) employed numerical simulations to assess the 
effects of uncertainty in structural models using 50 different structural 
scenarios in a simplified EGS setting. In these synthetic models, a 
24-hour tracer injection on day eight of the simulation was assumed and 
monitored along a one-year time span in the production well (see 
Fig. 5-a with e.g. peak concentration time varying between days 54 and 
68). To better present the variations, a box plot (Fig. 5-b) is generated by 
extracting the highest concentration value from each BTC and normal
izing them based on their median. The variation of the tracer peak 
concentration time, as well as a 25 % fluctuation in peak magnitude, 
emphasize the significance of structural uncertainty, which can intro
duce unexpected deviations in the results of important field tests. 

The appearance of a second peak between days 100 and 150 in Fig. 5- 
a is due to the reinjection of the tracer, not multiple flow paths or 
stagnation zones. The first 30 days of the simulation are disregarded due 
to negligible concentration (almost zero) of the tracer in the production 
well during that period. 

Results of the k-fold cross-validation in Fig. 6 show how RMSE varies 
in five splits of the three ML methods. The average RMSE of the chain 
model is lower than the DTR and RFR. Apart from the higher absolute 
accuracy, the homogeneity of the model’s performance is another 
important factor to consider. Based on Fig. 6, RMSE values in the DTR 
model show higher standard deviations. The higher standard deviation 

of RMSE for the DTR model suggests that it is overfitting the training 
data. Overfitting occurs when a model learns the training data too well 
and is unable to generalize to new data. In the case of the DTR model, 
this may be due to the fact that it is a single-tree model. Hence it is more 
likely to memorize the training data than an ensemble model like the 
RFR or chain model. In this study, the simplicity of the DTR model is the 
main factor leading to overfitting issues. The RFR model mitigates 
overfitting by initiating multiple parallel trees that distribute the input 
data. The chain model also incorporates several sequential models that 
consistently outperform a single model. Overall, the chain model is the 
most accurate and robust ML model for predicting BTCs in cases without 
any historical data. It has a lower average RMSE and a lower standard 
deviation of RMSE than the RFR and DTR models. 

To better assess the trained models and prevent information leakage, 
two additional scenarios are imported into the three ML models. The 
trained ML models are then utilized to predict the BTCs of these two new 
test scenarios. Table 1 presents the accumulated RMSEs of these two test 
scenarios (test set) and models’ input data (train set). The ML models 
exhibit an increase in error when transitioning from train to test sce
narios. However, even for the two new test scenarios, the RMSE remains 
at an acceptable level. The DTR model had the largest difference in 
RMSE between the train and test sets, which clearly indicates over
fitting. The RFR and the chain models yield a better balance in terms of 
RMSE between the train and test data, suggesting their improved per
formance and ability to generalize. 

Fig. 7 shows the numerically simulated BTCs of two test scenarios 
and the outputs of three ML methods. For one of the test scenarios, all 
three ML methods achieved similar and reliable results compared to the 
simulation results. For the other test scenario, the DTR method was less 
accurate than the other methods, likely due to overfitting. The RFR and 
chain models had similar levels of accuracy. 

To further evaluate the trained models, an additional set of 2′000 
different structural scenarios is generated and imported into ML models. 
In this step, only the connecting fault is perturbed, and the coordinates 
of its four corners are inputted into the three ML models. Fig. 8 provides 
a visualization of the BTCs generated by the three ML models. These 
6′000 BTCs presented in Fig. 8 are calculated in the scale of milliseconds 
using DTR, RFR, and chain models. Two extreme cases from the training 
data are highlighted with blue color and dots to illustrate the boundaries 
of expectations. The RFR method perfectly follows the trend, generating 
2′000 almost unique and parallel BTCs (Fig. 8-a), which suggests that it 
may be underfitting the training data. The underfit models have a high 
bias due to oversimplifications and ignoring the underlying patterns in 
the train data. This problem can directly originate from the insufficient 
input data used to train the RFR model. The bagging procedure of RFR 
splits 50 input data sets into parallel bags making it difficult for each tree 
to be a balanced predictor. On the other hand, DTR has generated far 
fewer unique BTCs as shown in Fig. 8-b. The covered area with BTC 
curves in Fig. 8-a and b differs dramatically. DTR mainly repeats what it 
has observed in the training step. As Fig. 9 shows, only a few new BTCs 

Fig. 6. Accuracy distribution of the three designed ML models within their 
splits. RMSE values are represented as accuracy parameters. 

Table 1 
RMSE values of the three designed ML models within the train and test sets.   

DTR RFR chain model 
train set 1.1 × 10− 4 1.0 × 10− 4 1.2 × 10− 4 

test set 1.5 × 10− 1 4.0 × 10− 2 5.2 × 10− 2  

Fig. 7. Two different test cases were investigated to understand the accuracy of ML models. The chain model and RFR have a high accuracy in both cases.  
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are generated and the majority of 2′000 BTCs overlap the 50 BTCs used 
in the training step. 

The chain model consistently generated more reliable BTCs 
compared to RFR and DTR (Fig. 8-c). However, in some cases, the chain 
model generated BTCs with irregular patterns, such as concentration 
values fluctuating around the peak. Despite these local discrepancies, 
the chain model is still the most reliable ML model for predicting BTCs. 

Another notable point is that all the three data-driven ML methods 
are unable to be used for extrapolation. Even the frequency of generated 
BTCs decreases close to the extreme point for three subplots shown in 

Fig. 8. This issue is the worst with the DTR method while the chain 
model has generated more BTCs in the adjacency of the extreme cases. 

3.2. Complex case 

For the complex case, 100 BTCs are simulated in the numerical solver 
and used to train and test the three ML models. The number of scenarios 
has increased compared to the simple case (with 50 simulations) due to 
the complexity of the model. In the complex case, a 24-hour tracer in
jection on day five of the simulation is assumed and monitored for two 

Fig. 8. Two thousand generated BTCs using RFR (a), DTR (b), and chain model (c). Two extreme cases coming from the simulation are highlighted as blue curves 
with dots. 
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months in the production well. The simulation time is decreased due to 
the shorter/faster connection between the injection and production 
wells. Fig. 10 shows a 2D section of the 100 unique pathways that 
connect injection and production wells. Two pathways are plotted with 
red and blue colors and are used to test the validity of the ML methods 

because they have not been used in the training process. Test 1 scenario 
visually demonstrates how the two connecting fractures can have 
different depths and dipping angles. 

Fig. 11 shows the numerically simulated BTCs for 100 scenarios of 
the complex case. Similar to the simple case, the peak concentration 

Fig. 9. Most of the 2′000 BTCs generated by DTR (named Test and shown as solid black line) exactly match the input data used for training the model.  

Fig. 10. A 2D cross-section from the middle of the complex model. Thin black lines represent the trace of the two uncertain fractures that connect certain fractures 
shown via two thick black lines. The red and blue traces represent the geometry of the uncertain fractures in two tests. Arrows show the location of the injection and 
production wells. 

Fig. 11. Thin black curves represent 98 BTCs simulated using the finite element solver. Two test scenarios are also named as Test 1 and Test 2. To see the geological 
model of the test cases refer to Fig. 10. 
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time and magnitude of the BTCs vary due to the change in the 
geometrical properties of the fracture network. The color coding of the 
train and test scenarios (1 and 2) remains consistent with Fig. 10. 

Two test scenarios of the ML methods are shown in Fig. 12. The 
RMSE values confirm the higher accuracy of the chain method. The 
cumulative RMSE for both scenarios is 0.05 ppm for the chain model, 
0.18 ppm for DTR, and 0.16 ppm for RFR. Notably, all three machine 
learning models were employed with the same hyperparameters for both 
the simple and complex cases. 

4. Discussion 

Detailing the observed errors is crucial for future work aimed at 
improving the interpretability of the ML methods’ performance. The 
(negligible) discrepancy likely stems from the distribution of test sce
narios and size of input data (50 and 100 scenarios). This finding un
derscores the sensitivity of data-driven models to input data 
distribution. As extrapolation is a known challenge for such models, 
selecting a test sample near the boundary in this study exemplifies this 
limitation. A uniform high-density sampling strategy may prove more 
effective than the Gaussian distribution. 

Even with large datasets, data-driven ML methods can still deviate 
from the underlying physics. Degen et al. (2023) proposed promising 
physics-based ML methods using order reduction techniques e.g., 
non-intrusive reduced basis, to build the solution based on basis func
tions that preserve the structure of the physics. In this study, we 
employed a sequence of concentration values as the target variable, 
allowing the ML models to learn the temporal relationships. Three tested 
ML methods have been able to capture the trend for two different cases. 
The current limitation is that the concentration prediction is restricted to 
a single point within the model. However, our strategy can be extended 
to develop ML models that predict the target variable at various points 
over time. 

Meanwhile, the ML methods were significantly faster than the nu
merical solver, with up to six orders of magnitude reduction in 
computational time. To numerically solve the problem of the simple 
case, 12 cores on a high-performance computing cluster should run for 4 
h. The whole time for constructing (offline) and applying (online) the 
ML models remains in the scale of seconds. This substantial reduction 
makes uncertainty analysis feasible using fast and reliable ML models, 
without relying on time-consuming simulations that typically span 
multiple days. This concept can also be suited for including structural 
uncertainties in more complicated EGS settings with several intersecting 
fractures. 

5. Conclusion and outlook 

This study presents a novel approach for using ML methods that 

enables quantifying the impact of structural uncertainty on BTCs in two 
EGS reservoirs. The approach was the first test to expand the range of 
structural reservoir models using ML techniques, based on an original 
set of a limited number of the numerical scenarios. This meets the spe
cific requirement of uncertainty quantification, which is to provide a 
broad range of scenarios. 

Different ML approaches are trained using the available numerical 
simulations to predict the BTCs based on the geometries of the perturbed 
elements. One ML approach used DTR and RFR algorithms to predict the 
entire BTC at once. Another ML approach employed a chain of GBR 
models to predict each time step of the BTCs while considering the 
correlation between consecutive time steps. The DTR model suffered 
from overfitting, while the RFR and chain models were more reliable, 
achieving an acceptable accuracy with a balanced accumulated RMSE in 
train and test scenarios. In the simple case, the RMSE for the DTR model 
jumped from 0.00011 to 0.15 between train and test scenarios, while for 
the RFR and chain models, it reached from 0.0001 to 0.04 and from 
0.00012 to 0.052, respectively. 

The trained ML models are further applied to generate BTCs for 2′000 
unique structural scenarios in the model with a simple geometry. The 
chain model was more accurate than the RFR and DTR models. The RFR 
method produced 2′000 BTCs that closely follow the trend observed in 
the training set indicating the underfitting issue, whereas DTR can only 
replicate the BTCs from the training set. The chain model captures both 
the general trend and small-scale patterns of the data. However, the 
accuracy and reliability in all three methods decreases for test cases that 
are close to the boundaries of the input test data. A uniform sampling for 
selecting the input data can help the ML methods to have a wide and 
homogeneous distribution in the test data. 

The presented approach can be adopted for a broader number of 
forward calculation schemes. This opens up new possibilities for more 
complex fractured rock settings. Rather than coordinates of one/two 
fractures, a more complex structural network from a real-world EGS case 
can be used as the input features for the ML methods. 

While only structural models were varied herein to assess their 
impact on the BTCs, future applications could encompass modifications 
to specific petrophysical properties of the reservoir, further expanding 
the possibilities of stochasticity. Conversely, integrating more data into 
the model, such as BTC’s or hydraulic testing data obtained from specific 
EGS well configurations (e.g. Schill et al., 2017), can reduce structural 
uncertainties. This allows for the rapid elimination of non-viable models 
using ML-driven routines. 

Harnessing the computational efficiency of ML, this innovative 
approach can be transformed into a surrogate model, effectively repre
senting the core of an inverse, backward calculation scheme for 
parameter identification. This transformation has the potential to 
replace conventional analytical solutions, which are currently the pri
mary method for estimating parameters from tracer campaigns. The ML- 

Fig. 12. Simulation and ML-generated results for Test 1 are plotted as red circles and lines. Results related to Test 2 are plotted as blue circles and lines.  
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based surrogate model offers several advantages, including significantly 
faster calculation speeds and the ability to capture the non-uniqueness 
inherent in mathematical solutions. In this framework, BTC data serve 
as the primary input, while the parameters of the complex EGS reservoir 
represent the target variables. 
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