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Holistic insect monitoring needs scalable techniques to overcome taxon
biases, determine species abundances, and gather functional traits for all
species. This requires that we address taxonomic impediments and the pau-
city of data on abundance, biomass and functional traits. We here outline
how these data deficiencies could be addressed at scale. The workflow
starts with large-scale barcoding (megabarcoding) of all specimens from
mass samples obtained at biomonitoring sites. The barcodes are then used
to group the specimens into molecular operational taxonomic units that
are subsequently tested/validated as species with a second data source
(e.g. morphology). New species are described using barcodes, images and
short diagnoses, and abundance data are collected for both new and
described species. The specimen images used for species discovery then
become the raw material for training artificial intelligence identification
algorithms and collecting trait data such as body size, biomass and feeding
modes. Additional trait data can be obtained from vouchers by using geno-
mic tools developed by molecular ecologists. Applying this pipeline to a few
samples per site will lead to greatly improved insect monitoring regardless
of whether the species composition of a sample is determined with images,
metabarcoding or megabarcoding.

This article is part of the theme issue ‘Towards a toolkit for global insect
biodiversity monitoring’.
1. Introduction
Insects deliver many ecosystem services such as pollination, nutrient recycling,
seed dispersal, etc. They also transmit pathogens, prey on other species and
are an important food source [1–3]. Given the high species diversity and biomass
of insects, it is inconceivable that any ecosystem can be understood and moni-
tored without comprehension of the ecology of its insect communities. This is
why biomonitoring should not stop with determining species richness, but
also resolve taxonomic issues and include an assessment of abundance and func-
tional diversity [4,5]. However, how can we obtain all this information? We here
outline how to go from mass samples collected with standardized traps (e.g.
Malaise traps) to generating data for functional analysis. The workflow starts
with individually barcoding all specimens in a mass sample (‘megabarcoding’
[6]), grouping them into molecular operational taxonomic units (MOTUs), revis-
ing the MOTU boundaries to obtain species limits, training artificial intelligence
(AI) identification algorithms for common species, and using vouchers to collect
trait and natural history data at scale. Once this pipeline has been applied to a few
samples at each monitoring site, all subsequent monitoring becomes easier,
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because AI tools can be used to identify at least some of the common species. In addition, species lists and abundances becomemore
meaningful, because the samples can be analysed at species-level and use trait data for functional analysis.

Given the enormous number of insect species on our planet, the vision outlined above does come with many challenges. Before
we outline the workflow in more depth, we would thus like to mitigate some typical concerns, while simultaneously stressing
specific advantages. At present, only very few, charismatic species (e.g. some species of birds, butterflies, trees, etc.) are really mon-
itored at a global scale [7]. By contrast, insect biomonitoring is conducted locally at a limited number of sites. Monitoring only
becomes ‘global’ through the analysis of trends across local sites. Given this approach to global monitoring it is important that
local sites are analysed in detail. This means that we need methods that go well beyond generating species lists. Such data
should include abundance, trait, and natural history information for key species. Fortunately, gathering meaningful trait and natu-
ral history information for locally dominant species is made distinctly easier by typical patterns of species abundances [8]: most
specimens at a site belong to a moderate number of species. These species then become a priority for collecting trait and natural
history data. For example, analysis of Malaise trap data from eight countries in Srivathsan et al. [9] shows that on average, 39% of
the specimens in a trap belong to the 20 most abundant species. Depending on sample, biogeographic region and habitat, the
number of species contributing 50% of all specimens ranged from 7 to 195 (median = 53) (figure 1; electronic supplementary
material). This suggests that many functional insights into insect communities can be gained by collecting trait data for a manage-
able number of species. However, this requires that biologists let go of their usual habit of studying only particular taxa and/or
rare species. Instead, we propose that the focus should be on abundant species. Such a shift to abundance-based research priorities
will be desirable not only for holistic insect biomonitoring, but also for addressing taxonomic impediments. Srivathsan et al. [9]
also showed that more than half the specimens and species in Malaise trap samples belong to only 20 family level insect taxa
[9]. Since most of these taxa are neglected by taxonomists [9], the setting of taxonomic priorities according to abundance will
automatically shift attention to taxa that are currently understudied.

The need for the holistic study of bulk samples also becomes apparent when we consider current approaches. Morphospecies
sorting and cherry-picking specimens from bulk samples have been largely replaced with bulk sequencing techniques using meta-
barcoding and metagenomics [10,11]. These techniques were developed to allow entire samples to be characterized at once and en
masse [11–13]. However, all metabarcoding comes with the downside of losing the association between DNA barcode and speci-
men. In addition, many popular metabarcoding techniques are destructive, requiring the homogenization of samples into ‘insect
soups’ before sequencing, leaving no voucher specimens to validate results [14,19]. This is problematic, as the barcode region tar-
geted by metabarcoding is only a few hundred base pairs of DNA long. For 10–20% of taxa, this information has repeatedly been
shown to be insufficient for delimiting species [15,16]. This problem also remains when non-destructive methods for metabarcod-
ing are used (e.g. mild lysis, extraction of DNA from preservatives [17,18]). A further complication of metabarcoding is that
different DNA extraction methods and the use of different primers yield different results [18,19]. Thus, method development
is still ongoing to ensure the comparability of the presence–absence and approximate abundance data obtained from bulk
sequencing of whole samples across studies [11,17,20].
2. Towards holistic insect monitoring
Each insect sample is like a library documenting the environmental conditions in the habitat where the sample was collected.
To adequately extract this information, we must resolve species limits and gather data on the natural history of these species.
We thus argue that metabarcoding should be complemented with techniques that generate barcode databases for validated
species, reveal how common these species are, and how they interact with the environment. The data obtained from such a work-
flow will increase the value of species lists regardless of whether they were collected in the past or will be collected in the future.

Our proposal is that each site chosen for biomonitoring should be covered by an in-depth analysis of a few samples obtained
with the kind of traps that will also be used for routine biomonitoring. These samples should be analysed by applying megabar-
coding [6] combined with semi-automatic imaging of all specimens. In addition to establishing accessible vouchers, such an
approach will reveal species richness and abundances. The resulting vouchers are then available for collecting important trait
data. For example, data obtained with genome skimming or low-coverage genome sequencing can be mined for ecological infor-
mation (see below), but also used to construct phylogenetic relationships [21], determine genetic diversity [22], population
connectivity [23] and population size [24] (for further reading, see Theissinger et al. [25]). Inferences about the environmental his-
tory of a monitoring site will thus cover long time periods ranging from the condition at the time of collecting over recent years
(e.g. population connectivity [23]) to thousands of years ago (e.g. community assembly [26]) This information can then also enrich
the analysis of samples processed with metabarcoding, because the trait data would be associated with specific species names and
the species would be identifiable via barcodes. As outlined below, this is eminently feasible, because we already know how to get
barcodes and images at scale and metagenomics or whole genome sequencing can yield much of the remaining information [27].
3. From megabarcoding to species
Bulk insect samples generally consist of a relatively small number of species in high abundance and a very large number of rare
species (figures 1 and 2). Many abundant species belong to ‘dark taxa’, which Hartop et al. [28] defined as high-diversity clades
(greater than 1000 species) that are poorly known (fewer than 10% of species described) [28]. What makes such taxa understudied
is a combination of high abundance and diversity, usually accompanied by small size, poorly developed taxonomy and a reliance
on microscopic characters for species identification [28,29]. Dark taxa are arguably the biggest obstacle for a holistic monitoring of
insect communities. They are the main reason why, until recently, Malaise or pitfall trap samples were very rarely fully processed.
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Figure 1. Proportion of specimens in Malaise traps belonging to the top 10 (green), next 10 (blue) and remaining (grey) MOTUs in Malaise traps characterised in
Srivathsan et al. [9]. Pie charts are scaled to abundance. L50 values represent the number of MOTUs that cover 50% of the specimens. Map made using ggmap in R
(Google maps, satellite, 2023 NASA).

royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

379:20230120

3

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

08
 M

ay
 2

02
4 
Such dark taxa can be resolved at scale when bulk samples are processed by megabarcoding (figure 2; [6,9,30–33]). Such individual
barcoding of all specimens is now feasible owing to the plummeting cost, high efficiency and rapidly increasing accuracy of third
generation sequencing [34]. Megabarcoding associates every specimen in a sample with a DNA barcode and relies on use of non-
destructive techniques to preserve morphological features of the specimens [31]. It thus generates a large number of vouchers that
allow for downstream taxonomic and genomic research. One important use of these vouchers is species delimitation and descrip-
tion based on multiple types of data (integrative taxonomy) [35,36]. Recently, large-scale integrative taxonomy (LIT) was proposed
as a systematic way to generate integrative species hypotheses [28]. Preliminary hypotheses are generated based on a data source
such as DNA barcodes that is inexpensive and easy to obtain at scale. The hypotheses are then validated or revised using a second
type of data obtained for a smaller number of specimens that was specifically chosen to test the preliminary hypotheses (e.g. based
on haplotype divergence [28]).

LIT has been successfully tested twice. The first test [28] was based on approximately 18 000 specimens shown to contain 365
species of Phoridae (Diptera), although the specimens were initially only assigned to 315 molecular clusters. Barcodes were
obtained for all specimens, but the targeted morphological checks only required revisiting just over 5% of specimens. A second
successful validation of LIT was recently undertaken by Meier et al. [37] for 1456 specimens of Mycetophilidae (Diptera) which
were shown to contain 120 species based on a LIT analysis. Compared to the first test based on phorid flies, a larger proportion
of specimens had to be checked for MOTU validation because studying only one specimen for each of the 120 species already
meant inspecting greater than 8% of all specimens in the sample (n = 1456). Still, LIT was again found to be effective at resolving
conflict between MOTUs and morphology by studying the morphology of only a small subset of all specimens [37,38].

In the above applications of LIT, DNA barcodes were the data source used to generate preliminary species
hypotheses and morphology was the second data source used to validate these hypotheses. However, LIT could also include
other types of data. For example, automated imaging combined with AI algorithms for unsupervised learning may
eventually advance sufficiently for new solutions: the first data source could be image data, while the validation of preliminary
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Figure 2. From bulk insect sample to species. Sorting involves megabarcoding and sorting specimens into MOTUs (ONT, Oxford Nanopore Technologies). Taxonomic
research includes MOTU validation with LIT followed by either identification or description. AI training and trait data should be collected for validated species, but
processing at MOTU-level can yield approximate data.
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species hypothesis could be barcodes or morphological data from genitalia. Since automated imaging could yield thousands of
images at low cost, this would be in line with the basic principle of LIT, i.e. that the data used for sorting should be cheap.

Delimiting all species found in a sample precedes one of the most difficult work phases in biodiversity science—identification
or description. The task of distinguishing between species that have already been described and those that need description is
often complicated by crumbling type material, muddled public databases, and insufficiently detailed legacy descriptions in the
historical literature [36,39]. Resolving legacy issues in taxonomy is time-consuming, but this time only needs to be invested
once per taxon and region. For example, once the described species of fungus gnats (Diptera: Mycetophilidae) in Southeast
Asia had been evaluated based on descriptions and types, Amorim et al. [38] were able to describe 115 of the 120 species of
one set of Malaise trap samples from Singapore as new to science. When Meier et al., analysed a second set of samples, more
than 90% of the specimens belonged to the species described based on the first set samples. Indeed, the barcodes suggested
the presence of fewer than 20 additional new species [37]. This implies that a few iterations of taxonomic revision of a taxon at
any one site will be sufficient for allowing most species to be assigned to a species. The use of barcode and morphological
data will also mean that the species are robustly delimited and can be identified with either barcodes or morphological features
[28,38,40]. Associated high quality images will enable future-proofing the descriptions.
4. Robotics, machine learning and biomass
Processing several bulk samples per site using specimen-based approaches requires the use of robotics. In fact, we argue that the
ultimate goal should be to develop AI identification algorithms, so that specimens can be largely identified based on images.
Robots such as the DiversityScanner [41] have already been deployed to accelerate specimen transfer from bulk samples to 96-
well microplates. This robot detects, photographs and sorts insects in preparation for megabarcoding [41]. Concomitant with
the automation of barcoding, the DiversityScanner is programmed to generate stacked images for each specimen. These images
(and associated specimens) are then grouped into putative species using barcode data. Even now, the DiversityScanner can
already identify common families without sequencing, because it uses a trained convolutional neural network (CNN) for the
most abundant insect families [41]. The next logical step is to train identification algorithms to recognize common species, first
using MOTUs as approximations of species and later species after validation with LIT. Common species will benefit first, but
even species that are rare in individual samples can eventually be covered by CNNs because specimens for rare species from
many samples can be pooled until there are a sufficiently large number of images for training the algorithms.

At present, the extent to which CNNs will be able to identify specimens to species remains unclear [42]. However, this is prob-
ably a matter of what kinds of images (e.g. orientation, body part) are provided for training and identification. Importantly, the
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quality, variety, and orientation of images needed for CNN training may vary across taxa (see approaches used for nematodes:
[43]). However, it is likely that the need for barcoding of specimens belonging to common species will dramatically decrease.
Instead, such species will be identified based on images, then counted, and finally transferred into species-specific vials.
Only unknown specimens will subsequently have to be picked up, imaged, and barcoded. This yields a continuous feedback
loop that slowly whittles away the unknown biodiversity, and facilitates finding rare species that require additional sources of
data, or expert attention. DNA barcoding may eventually be used only to validate identification generated by CNNs or for the
identification of body parts that have lost diagnosable features.

The next step in holistic biomonitoring is semi-automatic collection of biomass information. Some tools are already available,
but their use is still limited, because they either require identified specimens [44] or the biomass of three-dimensional insects is
estimated based on two-dimensional images of whole samples [45] or individual specimens [41]. It appears to us that the next
logical step is determining biomass based on three-dimensional models. They could initially be produced for common species
by modelling several specimens covering the species’ size range. Afterwards, one could establish the relationship between
three-dimensional volumes and two-dimensional measurements so that routine biomonitoring could continue to rely on two-
dimensional imaging. Once AI identification tools are available and conversion factors are known, one could spread an insect
sample across a large table-sized tray and use cameras to identify and measure all specimens in almost real-time. When combined
with information on what the species does in its environment, this will allow us to resolve changes in not only the size distribution
and abundance of insects over time, but also to relate such changes to ecosystem stability. Such advances will get us one step closer
to reading a bulk insect sample like we would read the books in an environmental library.
 oc.B
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5. Large-scale natural history data
Holistic insect biomonitoring requires an understanding of the functional diversity of insect communities detected at particular
sites [46,47]. Characterization of functional diversity ranges from using classifications of species into functional groups to the
quantification of functional traits for species [48–50]. Some trait information can be obtained from the natural history literature
[51], but this literature is in decline [52] and tends to cover mostly charismatic species. We thus argue that collecting trait data
has to be greatly expanded and more targeted on species that are particularly common and/or contribute much of the biomass
in different trophic groups. Semi-automatic imaging [41] immediately provides information on morphological traits such as
body size, biomass, hairiness, eye number and size [4]. The vouchers generated by megabarcoding can also be used to obtain
other life-history traits such sex ratios, time of reproduction, egg or clutch size. Beyond morphological traits, metagenomics
(via whole genome sequencing) of vouchers will arguably offer the most promising approach for collecting additional ecological
insights. This technique can simultaneously detect many species interactions across a broad range of taxa without amplification-
related biases [53]. Indeed, metagenomics is particularly suitable when there is a need to rapidly characterize the feeding ecology,
host genetics, parasites and microbes of a particular species [54]. Note that the same low-coverage genomic data also enables
reconstructing phylogenetic relationships and estimating the genetic diversity within species [27,55].

However, metagenomics remains expensive and metabarcoding will retain much of its importance. For example, prey
detection via metabarcoding of the gut content of predators using targeted primers is now well established [56,57], as is the
sequencing of pollen found on insects [58–60]. Indeed, pollen can sometimes simply be shaken off insects and used directly as
DNA template [58–60]. Given that much of the biomass of holometabolous insects is accumulated by larvae, dietary metabarcod-
ing is particularly needed for immature stages [61]. This requires that the larvae and adults are first associated via megabarcoding
[62]. Even tools that were initially developed only for vertebrate detection via invertebrate derived DNA (iDNA) can now also be
used for revealing species interactions between insects and vertebrates [63–67], and plants [68]. The study of iDNA is particularly
scalable and cost-effective when applied to insect faeces or regurgitates, as neither substrate requires DNA extraction [69]. Other
cost-effective techniques are the analysis of fresh or archived plants for arthropod DNA [70,71] and the analysis of spider webs for
prey DNA [72,73]. Occasionally, the interpretation of the signal can be difficult, but tools such as metabolite screens can even
resolve whether the detected iDNA originated from carrion or dung [74,75].

For monitoring environmental health and ecosystem functioning, the study of microbiomes [76,77] is becoming integral to
understanding of insect ecology [78], but the analysis of microbiomes also allows for the detection of antimicrobial resistance
among the microorganisms in a habitat and sometimes it can even resolve whether the resistance genes were acquired by the
insects when feeding on contaminated food (as has been shown for cockroaches, houseflies, ants, mosquitoes: [79]). Unfortunately,
it is currently unknown to what extent bacteria with such resistance genes are prevalent in common insects, but in-depth study of
vouchers for common species can answer these questions. Note, that screens of host genomes and microbiomes are also important
for discovering new insect-derived antimicrobial substances [80] and can reveal mutations related to pesticide resistance, thus
predicting the susceptibility of insect populations and contributing to selecting appropriate control measures [81–83].
6. Conclusion
To achieve holistic insect monitoring, we must overcome taxon biases and the lack of trait data for common species. This can be
done by paying more attention to resolving species limits and making species identifiable through a variety of user-friendly tools.
We predict that image-based identification will eventually turn out to be the tool of choice for many species. In the meantime,
DNA barcoding using third generation sequencing is a viable and valuable intermediate solution, because it also yields the bar-
codes needed for the analysis of environmental DNAwith metabarcoding and metagenomics. Following megabarcoding, the next
logical step in holistic biomonitoring is collecting functional traits at scale. Body size, biomass, feeding habits, seasonality, clutch
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and egg size, and many other traits are low-hanging fruits, but many additional traits can be obtained through shallow sequencing
of whole vouchers or body parts. By using these methods for characterizing the most common species in a few samples per site, a
transformative shift in the quality of insect monitoring will be feasible.
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