
Retrieval-Augmented Large Language
Models

Seminar Thesis of

Sebastian Tewes

KASTEL - Institute of Information Security and Dependability - Karlsruhe Institute of

Technology (KIT)

Advisor: M.Sc. Dominik Fuchß

This seminar paper examines the concept of Retrieval-Augmented Large

Language Models (RALLMs). This concept merges "Retrieval-Augmented" (RA)

with "Large Language Models" (LLM) and represents a new generation of infor-

mation retrieval (IR) systems. By using the IR systems extended information,

the LLMs can also answer questions for which no information was available

in the LLMs’ training data. This includes proprietary knowledge, but also

knowledge that is more recent than the training data. After a brief introduction

to the terms information retrieval and large language model, an overview of

methods and applications of RALLMs will be given. A particular focus is on

what applications there are for RALLMs in software development.

In dieser Seminararbeit wird das Konzept der Retrieval-Augmented Large

Language Models (RALLMs) untersucht. Diese Bezeichnung verbindet die

Begriffe „Retrieval-Augmented“ (RA) und „Large Language Models“ (LLM) und

repräsentiert eine neue Generation von Systemen für den Informationsabruf.

Durch die Nutzung der erweiterten Informationen des Retrievalsystems können

die LLMs auch Fragen beantworten, zu denen in den Trainingsdaten der LLMs

keine Informationen verfügbar waren. Dazu gehört proprietäres Wissen, aber

auch Wissen, das aktueller als die Trainingsdaten ist. Nach einer kurzen

Einführung in die Begriffe Informationsabruf (Information Retrieval, IR) und

großes Sprachmodell (Large Language Model, LLM) wird ein Überblick über

Methoden und Anwendungen von RALLMs gegeben. Ein besonderer Fokus

liegt darauf, welche Anwendungen es für RALLMs in der Softwareentwicklung

gibt.

1

Contents

Contents

1 Introduction 3

2 Background 4
2.1 Information Retrieval . 4

2.2 Large Language Models . 4

3 Retrieval-Augmented Large Language Models: Methods 6
3.1 Query Rewriter . 7

3.2 Retriever . 8

3.3 Reranker . 11

3.4 Reader . 12

3.5 Further RALLM Models and additional Aspects 13

3.6 Evaluation . 14

4 Retrieval-Augmented Large Language Models: Applications 15
4.1 General Applications . 15

4.2 Applications in Software Engineering . 19

4.2.1 Code Generation with Retrieval Methods 19

4.2.2 Code Search with Retrieval Methods 22

4.2.3 Code Summarizing with Retrieval Methods 23

4.2.4 Requirements Traceability with Retrieval Methods 24

4.2.5 Commit Message Generation with Retrieval Methods 24

4.2.6 Automatic Program Repair with Retrieval Methods 25

5 Discussion and Conclusion 26

References 27

2

1 Introduction

This seminar paper focuses on Retrieval-Augmented Large Language Models (RALLMs),

a term that combines "Retrieval-Augmented" and "Large Language Models". This name

indicates the beginning of a new era in the field of information retrieval systems. They

are traditionally used when searching for information, in chatbots, but also in software

development [109].

Information retrieval systems are used as a tool for finding information [109]. The

available knowledge should be filtered depending on a user’s input, so that only information

relevant to the user’s input remains. The external data source can be document databases,

real-time internet sources, Git repositories or private data. Filtering the information is

usually done using sparse vectors / keywords or dense vectors / semantic embeddings.

Large language models (LLMs) model natural language and are able to generate relevant

output based on a user’s input. If you join the information retrieval system and the large

language model, you get a retrieval-augmented large language model [109]. The word

"augmented" indicates that the learned weights (parametric memory) of the large language

model are enhanced with additional information sourced from the information retrieval

system (so-called non-parametric external memory), so that the LLM can also answer

questions about this knowledge. There are approaches that fine-tune pre-trained models,

train systems end to end and approaches that do not require any training at all as a

plug-and-play model.

The RALLM can solve numerous problems faced by LLMs [109]. By using the IR sys-

tem’s extended information, the LLMs can also answer questions for which no information

was available in the LLMs’ training data. This includes proprietary knowledge, but also

knowledge that is more current than the training data. In addition, LLM hallucinations and

factual inaccuracy can be reduced and LLM responses become more reliable and precise.

This seminar paper is structured as follows: It begins with a brief discussion of the

terms "Information Retrieval" (IR) and "Large Language Models" (LLMs) in section 2. What

follows is an overview of the methods of the Retrieval-Augmented Large Language Model

(RALLM) pipeline in section 3 with a particular focus on query rewriting, retrieval, rerank-

ing and readers. Finally, applications for RALLMs will be presented in section 4. General

applications for RALLMs will first be presented, such as question answering. Then a

special focus will be placed on which applications RALLMs are used and how they are

used in software development, such as code generation. It should also be noted that this is

neither a paper on LLMs nor a paper on processes in software development. The terms

from these subject areas that are necessary for further understanding are briefly explained.

The topic of RALLMs has experienced a major upswing since the breakthrough of large

language models in the early 2020s and is undergoing dynamic change. This means that

a standard process has not yet been established for many challenges related to RALLMs.

Therefore, many of the scientific publications break new ground. More than 50% of the

papers cited in this seminar paper are from 2023 or newer, so that a review process has

not (yet) taken place for some papers.

3

2 Background

2 Background

This section discusses information retrieval and large language models.

2.1 Information Retrieval

According to section 1, information retrieval systems are used as a tool for finding infor-

mation. The term information retrieval (IR) has undergone an evolution since its creation

in the 1950s [80]. The new ability of computers to store large amounts of data made

it necessary to mine this data for useful information. When the National Institute of

Standards and Technology (NIST) launched the Text Retrieval Conference (TREC) [26] in

1992, the field of research experienced a boom [80]. With search engines like Google [6],

algorithms were developed for the first time that could search the Internet.

Due to progress in computational linguistics, the focus of the research field has shifted to

interaction with natural language with so-called user queries (also called user prompts or

user inputs) [109]. However, the core functionality of the IR system has remained the same:

filtering information from a (large) defined context of knowledge that is relevant to the

user. The approach to information retrieval has evolved over time. Previous approaches

filter documents based on sparse vectors (keyword matching) [69]. More recent approaches

are based on dense vectors [36], which determines the semantic similarity of text sections.

2.2 Large Language Models

Large language models (LLMs) model the generative likelihood of word sequences and

they predict the probability of the following words, so that they can generate text in a

natural language [106]. LLMs are the result of an evolutionary process in Natural Language

Processing (NLP). There are the following stages of development (see Figure 1): statistical

language models (SLM) based on the markov assumption, neural language models (NLM)

based on multi-layer perceptron (MLP) and recurrent neural networks (RNNs), pre-trained

language models (PLM) based on bidirectional long short-term memory (biLSTM) or

Transformer architecture [88] with the pre-training and fine-tuning learning paradigm,

large language models (LLM) as scaling PLM with billions of parameters.

Figure 1: paradigms for language models [106]

As sequence-to-sequence mod-

els (seq2seq), LLMs transform an

input sequence into an output se-

quence. Interaction with users

usually takes place on a text ba-

sis. Modern models are based on

the transformer architecture [88]

with an attention mechanism. The

transformer architecture is based

on the encoder-decoder structure,

where the encoder maps an input sequence x in a continuous representation z. The decoder

maps this representation z to an output sequence y. The attention mechanism maps a

query and a key-value pair to an output, where the output is a sum of the values weighted

4

2.2 Large Language Models

(a) LLM timeline [106] (b) NL2Code models timeline [101]

Figure 2: LLM examples

depending on the query and key, i.e. the more relevant a key is to a query, the more

its value is weighted. Important information is emphasized, irrelevant information is

suppressed.

According to Liu et al. [50] and Zhao et al. [106], different paradigms have emerged in

the use of LLMs. In the pre-train and fine-tune paradigm, a model with a fixed architecture

is pre-trained on large data sets in order to learn general-purpose features. The pre-trained

model is then adapted to downstream tasks with smaller task-specific data sets. In the

"pre-train, prompt, and predict" paradigm [50], downstream tasks are reformulated using

textual prompts so that they are comparable to the pre-training tasks. Additional task-

specific training can often be avoided, making a single general-purpose LLM suitable for

numerous tasks, provided the LLM receives appropriate prompts.

There are numerous LLMs in the literature and in practice (see Figure 2a). Some of

them will be briefly presented here. BERT (Bidirectional Encoder Representations from

Transformers) [16] is a language model developed by Google AI based on the Transformer

architecture with 110M total parameters. It can process text bidirectionally, which is

a significant improvement over previous models that process text sequentially. It is a

pre-trained model that can be fine-tuned with an additional output layer. BART [43] is a

denoising autoencoder from Facebook AI for pre-training sequence-to-sequence (seq2seq)

models. It uses the Transformer architecture and represents a generalization of BERT.

It is particularly suitable for fine-tuning. GPT-3 [7] from OpenAI (further development

GPT-4 [61]) is an up-scaled LLM with 175 billion parameters (10x more than any previous

non-sparse language model) with strong task-agnostic performance without the need for

fine-tuning. LLaMA [86] and the further development Llama 2 [85] from Meta represent a

collection of open source models with up to 70B parameters.

All of these LLMs are also suitable for generating programming code described using

natural language (NL2Code). However, there are also some models that are specialized for

these NL2Code tasks (see Figure 2b). A milestone is Codex [11], a GPT-based model that

has been fine-tuned on GitHub Python code and is the basis for GitHub Copilot
1
. Zan et al.

[101] provides an overview of 27 LLMs that specialize in the generation of programming

code, for example CodeT5+ [95] (see section 4).

1https://github.com/features/copilot

5

https://github.com/features/copilot

3 Retrieval-Augmented Large Language Models: Methods

3 Retrieval-Augmented Large Language Models: Methods

ARetrieval-Augmented Large LanguageModel (RALLM) represents, as described in section

1, the combination of an information retrieval system and a large language model. This

section describes the methods in more detail and explains how these parts are combined

and assembled into a type of pipeline.

Based on Zhu et al. [109], a pipeline consisting of the four modules (see Figure 3) query

rewriter, retriever, reranker and reader has proven to be a standard process for RALLMs.

The process begins with a user question (hereinafter called query), which can optionally

be adapted by the query rewriter module. The retriever module then searches the available

knowledge for documents or text passages that are relevant to the query. The optional

reranker module can look at these documents or text passages in more granular detail.

Finally, the text passages found in the previous modules are presented to a reader module,

usually consisting of an LLM, together with the user question in order to answer the user

query. There are many variants of these modules, and with this modular approach many

variants can be combined with each other as desired. A retriever and a reader must be

present in every RALLM, query rewriters and rerankers are optional.

Figure 3: RALLM Pipeline, adapted from Zhu et al. [109]

The set of knowledge available to the RALLM (often called document repository or

knowledge base) needs to be clearly defined, and its accessibility must be ensured. This

can be closed knowledge (set of text files) or open knowledge (e.g. the Internet). The

knowledge base can change dynamically without any training.

In the following sections (3.1 - 3.4) the four modules of the described pipeline process

for RALLMs, namely the query rewriter, retriever, reranker, and reader, will be examined

in more detail along with their different details and characteristics. These approaches are

based on so-called in-context learning [7, 17, 68], in which an LLM is intended to answer

a user query based on a provided context and not on the previously learned knowledge.

However, there are also some approaches for RALLMs that cannot be classified into this

standard pipeline. These should be discussed in the section 3.5. Finally, a brief overview of

evaluation methods (section 3.6) for RALLMs will be given.

6

3.1 Query Rewriter

3.1 Query Rewriter

The "Query Rewriter" module of a RALLM is intended, according to Zhu et al. [109], to

increase the precision and meaningfulness of a user query at the beginning of the pipeline.

There are approaches to reformulate user queries (rewriting, expansion, multi-queries) or

approaches to generate a pseudo-answer for the retriever step.

Query rewriting approaches respond to the fact that original user query are often short,

contradictory or imprecise [109]. The rewriting approaches are intended to give the re-

triever the opportunity to find exactly the documents that are relevant to the user. They

improve the results of the RALLM, but are not mandatory.

A common option for query rewriting is a query expansion [8], which adds additional

information to a query. Here an LLM is given an original query q and is asked to reformulate

it and provide different variants of the query q’ with similar terms [15]. A vocabulary

mismatch, especially in sparse retrievers, can be avoided because the extended query can

recognize relevant documents that have no lexical and only a slight semantic match with

the original query. The original query is then usually concatenated with the generated

variants of the query and passed to a retriever [32].

Ye et al. [99] describes four properties that a rewritten query should have: Correctness

(preserve the meaning of the original query), Clarity (unambiguous and independent of

the conversational context), Informativeness (incorporate valuable, relevant and useful

information from the conversational context), Non-redundancy (avoid duplicating context).

Experimental results show that query expansion approaches are particularly suitable for

sparse retriever approaches and then significantly increase the performance of a RALLM.

Hypothetical Document Embeddings (HyDE) [22] lets an LLM generate a hypothetical

pseudo document based on a user query (see Figure 4). With the following (dense) re-

triever module relevant documents with semantic similarity to the generated hypothetical

document are searched. A semantic similarity between the original user query and the

document corpus is no longer determined. This reduces the number of noisy documents

and eliminates the need for many retrievers to assume that questions and answers have a

high semantic similarity.

Generate-and-Retrieval (GandR) [103] is an approach comparable to HyDE that carries

out the retrieval process with a preliminary prediction as a pseudo answer. The retrieval

process is then carried out with this psedo-response. In contrast to HyDE, it requires

training and it is embedded in a generate-and-retrieval framework.

HyDE and GandR are particularly suitable for dense retriever approaches, outperform-

ing numerous classic dense retriever approaches. However, they require more computing

time than conventional approaches. Query2doc [92] is an approach that extends the

query for sparse and dense retrievers with generated pseudo-documents and, for example,

outperforms approaches such as HyDE.

In the information retrieval paradigm conversational search [66], an (iterative) interac-

tion takes place between the user and the retrieval system. Query rewriting approaches

also exist for conversational search, for example from Mao et al. [55] and Ye et al. [99].

7

3 Retrieval-Augmented Large Language Models: Methods

Figure 4: HyDE [22]

Ma et al. [54] represents a fundamentally different query rewriting approach compared

to previous approaches. An end-to-end rewrite-retrieve-read pipeline trained with re-

inforcement learning is proposed, i.e. the rewriter is supported by the reader feedback

trained. Compared to trained rewriters and frozen (blackbox) rewriters, the end-to-end

reinforcement learning approach shows significant performance gains on numerous data

sets. However, the end-to-end training means it deviates significantly from the previously

adopted modular approach of the RALLM pipeline.

3.2 Retriever

Figure 5: Multi-Stage Architecture [24]

The "Retriever" module of a RALLM is,

according to Zhu et al. [109] andGuo et

al. [24], a first-pass document filter that

has the task of delivering relevant doc-

uments or text passages based on the

user query from the available knowl-

edge. This returns a subset of the doc-

ument repository/corpus that is rele-

vant to the user query (or the output

of the query rewriting module). Ex-

pressed formally [107]: Let 𝑞 be a nat-

ural language query and 𝑑𝑖 be a text

or document from a large document

repository 𝐷 = {𝑑𝑖}𝑚𝑖=1 consisting of m documents. Now a ranked list L = [𝑑1, 𝑑2, ...𝑑𝑘]
of the k « m most relevant documents should be returned based on a relevance score of

the retrieval model. If a reranking mechanism is used in the RALLM pipeline, an initial

set of k document candidates is searched with the aim of achieving a high recall. The

reranking module then takes over the more fine-grained consideration with the aim of

good precision (see Figure 5).

According to Guo et al. [24], there are two main paradigms for retrievers: classical

term-based models (sparse retriever) and semantic models (dense retriever) with word

embeddings. Formally speaking, most or all elements of a dense vector contain non-zero

values. In sparse vectors, most of the elements are zero and the few non-zero values carry

the essential information. In addition, there are hybrid approaches (Table 1 in the survey

8

3.2 Retriever

from Guo et al. [24] offers a list of methods).

Sparse retrieval methods [24] usually represent each document and each query as a

sparse vector, usually based on a discrete symbolic representation (e.g. bag of words).

Sparse retrieval methods can be further divided into two classes (neural weighting schemes,

sparse representation learning), depending on how the sparse representation is learned.

A key advantage of the sparse retriever is its clarity and interpretation options. Since

no semantic information is taken into account, the so-called vocabulary mismatch prob-

lem (no consideration of similar words) and the lack of consideration of word order are

disadvantages of sparse retrievers.

BM25 [69] is a popular traditional sparse retriever approach based on a Probabilistic

Relevance Framework (PRF). It is based on the term frequency (TF) in the document

and their inverse document frequency (IDF), where common terms are considered less

important and rare words are given higher weight. The term frequency is normalized with

the document length to prevent longer documents from being systematically preferred. In

addition, various models and variations derived from BM25 exist.

SPLADE [21] is a newer approach to a sparse retriever. It uses a weighted representation

of words that takes into account not only frequency but also semantic meaning based on

BERT [16]. Experiments show that it can keep up with dense retrieval methods, but at the

same time requires fewer computing resources and is more efficient.

Dense retrieval methods [24] use word embedding techniques and continuous vec-

tors taking into account word semantics instead of a discrete symbolic representation.

Figure 6: Dense Retrieval Architecture [24]

Word embedding techniques [57] learn

word representations using neural net-

works (here continuous skip-gram

model) and thus map linguistic rules

and patterns in the learned vectors.

They learn precise syntactic and se-

mantic word relationships so that they

can be ’calculated’ with, for exam-

ple: 𝑣𝑒𝑐 (′𝑀𝑎𝑑𝑟𝑖𝑑′) − 𝑣𝑒𝑐 (′𝑆𝑝𝑎𝑖𝑛′) +
𝑣𝑒𝑐 (′𝐹𝑟𝑎𝑛𝑐𝑒′) ≈ 𝑣𝑒𝑐 (′𝑃𝑎𝑟𝑖𝑠′). By tak-

ing word semantics into account, word

embedding techniques solve the vocab-

ulary mismatch problem of sparse re-

trievers.

Dense retrieval methods can also be further divided [24] into two classes (term-level rep-

resentation learning and document-level representation learning), depending on whether

the vectors are based on individual sentences/sequences (fine-granular) or based on entire

documents (coarse-granular) are formed.

In order to find suitable documents d for a query q, dense vectors are determined for

the query q and for all available documents d (see dual-encoder architecture or siamese

network in Figure 6), i.e. there are independent dense vectors for the queries 𝜙 (𝑞) and
the documents𝜓 (𝑑). In a matching layer f, a final relevance score is calculated from the

9

3 Retrieval-Augmented Large Language Models: Methods

learned representations 𝜙 (𝑞) and 𝜓 (𝑑), often using a similarity function. The k most

relevant documents according to this score are selected.

Zhao et al. [107] offers a further overview of dense text retrieval methods, based on over

300 papers. In particular, the aspects of architecture, i.e. how to design the dense retrieval

architecture, training, i.e. how to optimize the training of the dense fetcher, indexing,

i.e. how to design efficient data structures for indexing and retrieving dense vectors, and

integration, i.e. how to integrate a complete retrieval pipeline.

Dense Passage Retrieval (DPR) [36] is a common approach for a dense retriever. Be-

cause it is used in many applications (see Section 4.1), it is discussed in more detail here.

DPR do not form vector representations at the level of the entire document but at the

level of passages in the document, i.e. they split each document d into passages p as a

sequence of tokens w. Each passage is approximately the same length; The ideal length

of a passage, often called chunk, and its separations is a function of the retriever and the

reader and is further investigated by Wang et al. [96]. The embedding model is trained so

that the inner product between the question and the relevant passage at the vector level

is maximized for a batch. DPR further uses a dense encoder 𝐸𝑃 (·), which maps each of

the text passages onto a d-dimensional vector. At runtime, the user query is also mapped

onto a d-dimensional vector using an encoder 𝐸𝑄 (·) and the k passages with the shortest

distance to the query vector are selected, called maximum inner product search (MIPS).

The distance or similarity between the query and the text passage is determined by the

dot product of their vectors: 𝑠𝑖𝑚(𝑞, 𝑝) = 𝐸𝑄 (𝑞)𝑇𝐸𝑃 (𝑝). If the vectors are normalized to 1

(unit vector), the cosine similarity is equivalent to the inner product. Alternatively, the

euclidean distance (L2) can also be used.

In addition to DPR, there are other approaches for embeddings and dense retrievers.

A common and commercial model for text embeddings is text-embedding-ada-002
2
from

OpenAI, provided via an API endpoint, with a maximum length for input tokens of 8191

and a fixed vector output dimension of 1536.

FAISS [34] is an open source library for efficient similarity search in dense vectors. Vari-

ous approaches to how the distance or similarity between dense vectors can be determined

are discussed. In addition, high-performance and parallel implementations on GPUs are

proposed.

Adapted Dense Retrieval (Adder) [1] (under review) represents an extension of the Dense

Retrieval method. Embeddings are transformed task-specifically, so that the retrieval result

improves for small k (k=1 or 3 or 5).

Contriever [31] represents a dense retriever that was trained without supervision and

still achieves good performance in various retrieval settings, with reranking (see Section

3.3) it even outperforms DPR [36]. This enables the development of trained domain-specific

retrievers without the need for labeled data sets. Based on contrastive learning, an auxiliary

task, the Inverse cloze task (ICT), takes over the supervision by predicting the surrounding

context given a query.

2https://platform.openai.com/docs/guides/embeddings

10

https://platform.openai.com/docs/guides/embeddings

3.3 Reranker

3.3 Reranker

The "Reranker" module of a RALLM is, according to Zhu et al. [109], a second-pass docu-

ment filter that has the task of evaluating or ranking a list of documents or text passages in

terms of relevance to the user query. Such a ranking is more fine-grained than the previous

retriever step and it focuses more on the quality of the documents, but is not mandatory.

Due to the lower but higher quality context, performance and latency also improves. The

reranker module assumes that the Retriever module provides a list of k documents or

text passages. There are essentially two approaches to reranking: fine-tuning a specific

reranking model / LLM or prompting an LLM for reranking.

Fine-tuned reranking models evaluate the documents or text passages found in the

retriever module for relevance to the user query. Reranking is defined as a classification

task.

MonoT5 [60] uses a generation model and trains it to return the tokens ’true’ or ’false’,

depending on the relevance of document d with respect to query q. Depending on the

estimated probability of relevance P(relevant=1|q,d), determined exclusively by softmax to

’true’ or ’false’, the document chunks can then be sorted. The paper also shows how such

a ranking model can be trained and that a sequence-to-sequence architecture outperforms

an encoder-only architecture. RankT5 [110] refers to this and shows that a direct numerical

determination of the ranking scores instead of generating text tokens outperforms the

approach of Nogueira et al. [60] by 2%.

(a) Reranking Prompt Types [83] (b) UPR Reranking Scheme [72]

Figure 7: Reranking

As an alternative to the first approach, LLMs can be used to rerank documents or text

passages through prompting. There are different prompting approaches (see Figure 7a)

[83]: The relevance generation approach asks the LLM whether an individual document

(pointwise) appears relevant to a query. The query generation approach asks the LLM for

a query for each document (pointwise), whereby the relevance of each document depends

on the logarithmic probability of generating the respective query given this document.

The permutation generation approach prompts the query and a list of documents (listwise,

often with sliding windows due to the long context) into an LLM and asks it to order the

documents according to their relevance to the query.

11

3 Retrieval-Augmented Large Language Models: Methods

The Unsupervised Passage Reranker (UPR) [72] uses a pretrained zero-shot question

generation model to rescore document passages. It can be applied on top to any retriever

and does not require any task-specific fine-tuning due to the unsupervised approach.

It rescores each of the k document passages 𝑝𝑖 from the retrieval step by calculating

the likelihood of the input question q given the document passage 𝑝𝑖 (see Figure 7b).

Experiments show that the reranking of the top 1000 document chunks of the contriever

[31] (see Section 3.2) in the top-20 retrieval accuracy metric outperforms the DPR [36].

However, UPR [72] relies on the availability of the model’s logarithmic output, which is

not the case for many commercial models. This problem is addressed by various works.

The RankGPT approach [83] responds to this by proposing an alternative permutation

generation approach, whereby the LLM (here GPT-4) should suggest permutations of a

group of passages. A sliding window approach responds to the limited context window.

This approach outperforms previous approaches. Since this method relies on proprietary

models behind API endpoints, RankVicuna [64] was developed as an open-source reranking

model with a zero-shot setting whose performance lies between GPT-3.5 and GPT-4. Cho

et al. [13] further investigates how prompts can be optimized for zero-shot reranking

models.

3.4 Reader

The "Reader" module of a RALLM, according to Zhu et al. [109], has the task of generating

an answer based on the user query and taking into account the received text passages or

documents and presenting it to the user. This reader is usually represented by an LLM

(see section 2.2). A distinction is made between passive and active readers.

A passive reader uses the received documents or text passages directly and presents

them to the LLM, whereby the IR system and the LLM are basically independent [109].

REPLUG [77] (under review) views the LLM in a RALLM as a blackbox, in contrast to

many previous approaches that fine-tune LLMs. The retriever (and possibly reranker) is

adapted to the LLM and the documents received are inserted together with the query into

the input prompt of the LLM, which then provides the final answer to the query. This also

enables the use of commercial blackbox APIs, which - without being able to see parameters

or internal information of the model - send an output back to an input. The Retriever

component of REPLUG is potentially tunable.

The In-Context RALM [68] is an approach that leaves the architecture of the (L)LM

unchanged and requires no further training or fine-tuning. In contrast to REPLUG [77],

which only requires one retriever operation, the in-context RALM [68] requires a retrieval

operation every s (retrieval stride) tokens. Experiments show that a higher frequency of

retriever operations leads to improved performance, but at the expense of a significantly

longer runtime. Therefore, Ram et al. [68] propose to find a balance between performance

and runtime by retrieving every s=4 tokens.

In contrast to passive readers, an active reader can trigger the retrieval pipeline if they

think it is necessary [109]. Here the IR system and LLM are usually not independent, so

this paradigm also represents a small deviation from the standard RALLM pipeline.

12

3.5 Further RALLM Models and additional Aspects

Forward-Looking Active REtrieval augmented generation (FLARE) [33] is a method

that actively decides when and what to retrieve. It iteratively generates a temporary next

sentence. If this contains low-probability tokens, the generated temporary sentence is

used as a query to retrieve documents and then a final sentence is generated. Demonstrate-

Search-Predict (DSP) [37] is a high-level program that can systematically break down

problems into small problems while bootstrapping pipelines. Composable functions boot-

strap training examples (Demonstrate), information from a knowledge corpus is recorded

(Search) and an output is generated (Predict).

Readers (active and passive readers) can be expanded through the Chain of Thought

(CoT) paradigm. CoT [97] is a paradigm with a series of intermediate reasoning steps that

extends a prompt as a classic input-output pair to <input, chain of thought, output>.

Multi-Chain Reasoning (MCR) [100] prompts an LLM with multiple chains of thought.

Information and facts are then selected from several reasoning chains to generate an

answer. A decomposition model and a retriever iteratively generate a reasoning chain,

which are then merged into a multi-chain context, which is then passed along with the

original question to the meta-reasoner model.

3.5 Further RALLM Models and additional Aspects

This section presents some approaches to RALLMs that deviate from the previous pipeline

and also discusses other aspects.

Figure 8: RAG training (end-to-end) [44]

Lewis et al. [44] presents a general-purpose fine-tuning recipe for retrieval-augmented

generation (RAG). Similar to the RALLM pipeline presented previously, a pre-trained

sequence-to-sequence (seq2seq) model is combined as parametric memory with a dense

vector as non-parametric memory. In contrast to the previously presented RALLM pipeline,

the model is trained end to end with back-propagation (backprop [70]) and query input x

is mapped directly to the generated answer y as output using the retrieved text documents

z (see Figure 8). Extensive training of the model is necessary and the components used

(retriever, generator) are trained together and are no longer independent of each other.

The retrieval component 𝑝𝜂 is based on the DPR [36] (see Section 3.2) and the generator

component 𝑝𝜃 is based on BART [43] (see Section 2.2). The top k documents are found via

13

3 Retrieval-Augmented Large Language Models: Methods

a Maximum Inner Product Search (MIPS), whereby the query x is translated with q(x) and

the documents z with d(z) into a dense vector representation. More generally, RAG is a

method that aims to link retrieval and generation components end-to-end in one model.

RALLMs only aim to extend an LLM with a retriever, so the RAG is a specific RALLM

implementation.

Sachan et al. [71] represents another approach to training a RALLM end to end. Unsu-

pervised pre-training is followed by supervised fine tuning. Through end-to-end training,

better results in retrieval accuracy and answer extraction can be achieved; this requires

resource-intensive training and flexible modularization is not possible.

Autoencoding-based Retriever Training (ART) [73] introduces a new autoencoding

training scheme for dense retrieval models that only requires unpaired inputs and outputs

and no longer requires labeled training data. The retrieved documents are viewed as a

noisy representation of the query, with the question reconstruction probability providing

soft labels for the relevance of the document.

The sequential nature of the retrieval augmentation pipeline increases the waiting time

(latency) for an answer compared to classic search algorithms or simple LLM queries

[82]. This is because the LLM often needs to be given long contexts as input and the

computational complexity in a self-attention transformer layer increases quadratically

with the input sequence [88]. Additionally, running LLMs with billions of parameters is

often not possible on small computing environments. To improve response times, it is

advisable to transfer compression techniques for neural networks such as Knowledge Dis-

tilling [28] to RALLM approaches. Distillation generally involves transferring knowledge

from a large, slow model to a smaller, fast model. QUILL [82] and ReAugKD [105] are

respectively approaches that apply knowledge distillation approaches to RALLMs through

a professor-teacher-student approach. For example, ReAugKD achieves state-of-the-art

results on the GLUE benchmark with less than 3% latency overhead compared to the

baseline without retrieval augmentation.

The RALLM approaches considered in this seminar paper so far are limited to text.

MuRAG [12] and RA-CM3 [98] are models that extend RALLMs multimodally so that they

(retriever, generator/reader) can process images in addition to text.

3.6 Evaluation

There are numerous approaches to evaluate the performance of a RALLM methods. Ac-

cording to Section 1, a RALLM using external knowledge is intended to make an LLM

more precise and reliable, while reducing the problem of hallucinations and outdated and

unknown knowledge.

According to Es et al. [19], there are essentially two dimensions to consider when

evaluating a RALLM: the ability of the retriever to obtain relevant documents and the

ability of the LLM/reader to generate an answer to the question using the information

from the retriever.

14

Figure 9: RALLM Abilities [10]

Chen et al. [10] describes that a RALLM

should have four abilities: noise robustness,

negative rejection, information integration,

and counterfactual robustness. Noise Ro-

bustness is the ability of the RALLM to ex-

tract the relevant information from a noisy

document. Negative rejection is the abil-

ity of the RALLM to reject an answer to a

question if the required information is not

present in the (received) documents. Infor-

mation integration is the ability of RALLM

to answer complex questions that require

combining information from multiple doc-

uments to answer them. Counterfactual

robustness is the ability of the RALLM to

detect factual errors in the documents. Fig-

ure 9 shows a concrete example for each of

the four abilities. Data sets have been cre-

ated for all four capabilities of the RALLM

[10].

Retrieval Augmented Generation Assessment (RAGAS) [19] is a framework for reference-

free evaluation of Retrieval Augmented Generation (RAG) pipelines. It provides metrics

(including faithfulness, answer relevance, context relevance) to evaluate a RALLM even

without human annotations, allowing LLMs to evaluate the relevance of a document or

the quality of a question through prompting.

4 Retrieval-Augmented Large Language Models: Applications

In this section, various applications for RALLMs will be presented. General applications,

especially question-answering systems, including those with private knowledge, and

web browsing systems will be presented in Section 4.1. RALLM applications in software

engineering will then be presented in Section 4.2. The focus here is on applications that

use RALLM approaches. Further LLM based approaches for these applications are covered

by Kaddour et al. [35].

4.1 General Applications

This section presents general applications for RALLMs. These are primarily question

answering systems that are expanded with general publicly available data sources such as

Wikipedia or the Internet, special public data sources such as in medicine or private data

sources.

LLMs give an answer to a question as input as an output in natural language and thus

represent a question answering system, thus extending classic open domain question

15

4 Retrieval-Augmented Large Language Models: Applications

answering systems (ODQA). ODQA’s task is to answer factoid questions correctly. The

first major evaluation of domain-independent question answering systems took place back

in 2000 at TREC-8 (see Section 2.1) [90]. Fact-based questions should be answered from

approximately 1.5 gigabytes of text, with a ranked list of 5 pairs [document-id, answer-

string] being returned for each question. Since then, the ODQA task has been improved

and various benchmarks have been created, such as SQuAD [67], Natural Questions (NQ)

[40] and WebQuestions (WQ) [5].

The Dense Passage Retriever (DPR) [36] presented in Section 3.2 was developed for

ODQA. Experiments show that DPR performs better than the sparse retriever BM25 [69]

(see Section 3.2) on the data sets NQ and WQ.

RAG-end2end [81] extends the RAG approach [44], which was presented in Section

3.5. Through the extension, this can be adapted to a domain-specific knowledge base,

whereby the retriever component and the generator component are trained together end-

to-end (instead of a separate fine-tuning of the DPR). The evaluation on data sets from the

COVID-19, conversations and news domain shows that end-to-end training leads to better

results.

The Hybrid Hierarchical Retriever (HHR) [2] combines sparse retrieval methods and

dense retrieval methods in a hierarchical structure (document retrieval followed by a

passage retriever, see Figure 10), similar to the retrieve-reranking pipeline. Hierarchical,

because first top-𝑘𝑑 documents are retrieved, from which the top-𝑘𝑝 passages are then

retrieved. For both steps, sparse or dense retriever can be selected or the hybrid variant,

resulting in a total of 9 possible configurations. This shows that dense and sparse retrievers

can complement each other well.

Figure 10: HHR with Wikipedia [2]

In addition to the ODQA data sets mentioned,

it is common for RALLM applications to use a

Wikipedia dump
3
as the (only) source of knowl-

edge (see Figure 10). Wikipedia contains up-to-

date knowledge in natural language. The machine

reading at scale (MRS) setting [9] first uses the

document (sparse) retriever to find 5 relevant ar-

ticles from the over 5 million english-language

wikipedia articles, which are then retrieved by the

document reader be examined in more detail. It

can be shown that the 2017 approach outperforms the classic built-in Wikipedia search

engine
4
(e.g. 77.8% vs. 62.7% on SQuAD). However, the MRS approach is generic and not

just limited to Wikipedia.

Since ODQA is often ambiguous and often allowsmultiple interpretations of the question-

answer combination, it often makes sense to generate a longer answer while taking into

accountmultiple possible interpretations. The Tree of Classifications (TOC) [38] framework

takes this challenge into account by recursively constructing a tree of disambiguations for

ambiguous questions. This results in improvements in performance.

3https://dumps.wikimedia.org/enwiki/latest/
4https://www.mediawiki.org/wiki/API:Search

16

https://dumps.wikimedia.org/enwiki/latest/
https://www.mediawiki.org/wiki/API:Search

4.1 General Applications

Figure 11: WikiChat [75]

WikiChat [75], based on GPT-4, represents a very new, high-performance approach to

integrating information from Wikipedia into an LLM chat. It is optimized for the three

metrics factuality, conversationality and latency. WikiChat achieves 97.3% factual accuracy

in conversations, in contrast to GPT-4’s 66.1%. That’s why they call it the first LLM-based

few-shot chatbot that almost never hallucinates and has high conversational ability and

low latency. The 7-stage pipeline (see Figure 11) combines the best of all information

retrieval approaches. Stage 1 generates a query that is sent to an information retrieval

system and returns 𝑁𝐼𝑅 passages. Stage 2 extracts relevant parts of the preserved passages

and summarizes them in bullet points. Stage 3 generates a response for the conversation

history. Stage 4 divides the answer into multiple claims. Stage 5 verifies each claim using

chain-of-thought prompting. Stage 6 generates another draft answer based on the bullet

points and the verified claims. Stage 7 refines the answer based on relevance, naturalness,

non-repetition and temporal accuracy and provides a final answer. However, due to nu-

merous API calls, latency worsens and costs are higher compared to GPT-4. Therefore,

WikiChat provides a second, smaller model with knowledge distillation (see Section 3.5)

and still achieves a factual accuracy of 91.1% with a latency comparable to GPT-4. A real

user study with 40 participants confirms the better results in terms of factual accuracy of

WikiChat compared to GPT-4.

RALLMs can also be used to verify facts and statements in order to find fake news (see

FakeNews Challenge
5
). Fact Extraction and VERification (FEVER) [84] is a data set of

185,445 claims, which are divided into 3 categories: Supported, Refuted and NotEnough-

Info. A baseline is provided, with the retrieval component being implemented using a

5http://www.fakenewschallenge.org/

17

http://www.fakenewschallenge.org/

4 Retrieval-Augmented Large Language Models: Applications

sparse retriever. Guzman Olivares et al. [25] will set a new state of the art on the FEVER

benchmark for fact verification in 2023, based on an approach that takes Wikipedia’s graph

structure into account.

The RALLM applications for ODQA or fact verification presented so far were limited

to a specific data set or Wikipedia as an external knowledge repository. As an extension

to this, RALLMs were developed that can access the Internet via a web search and use

the knowledge. WebGPT [59] is an extension of GPT-3 developed by OpenAI, where the

LLM searches the Internet through the Microsoft Bing Web Search API
6
and can answer a

user’s question based on the information found there. Lazaridou et al. [42] (under review)

publish a comparable work that relies on the Google Search Engine.

The RALLM applications presented so far were designed for open-domain knowledge

and were not limited to a specific area of knowledge. However, there are also approaches

that are limited to a specific area and are more effective in this area.

Mavi et al. [56] applies existing question answering systems to specific domains such as

law and finance using chain-of-thought prompting. It should be noted that data in these

domains is often only semi-structured and often contains numbers in table format and

therefore requires special treatment during retrieval.

PaperQA [41] (under review) applies the RAG model [44] (see Section 3.5) to question

answering tasks for scientific literature. It provides information retrieval on the entire

scientific article and can provide answers to questions. For this purpose, a benchmark data

set for RAG for scientific papers LitQA was created for further improvements in the future.

Chat-Orthopedist [78] represents a shared decision making tool for adolescent idiopathic

scoliosis (AIS, spinal deformity) patients, which is based on a RALLM (see Figure 12).

It consists of three components: an external AIS knowledge base (document chunks

with 2000 tokens), a retriever (dense retriever with embedding size d=768) and an LLM

(ChatGPT). Chat-Orthopedist marks a significant advancement beyond earlier models,

offering numerous benefits. It leverages a database with options for rapid updates and

ensures source transparency. Additionally, it employs multi-source reasoning to avoid

producing hallucinations, while providing a dialogue that is human-like.

Figure 12: Chat-Orthopedist [78]

6https://www.microsoft.com/en-us/bing/apis/bing-web-search-api

18

https://www.microsoft.com/en-us/bing/apis/bing-web-search-api

4.2 Applications in Software Engineering

BEEDS [94] applies the RALLM approach to literature in biomedicine, using a three-step

pipeline (document retriever, document reader, normalizer) to extract event triples for a

searched protein or gene and put them in a knowledge database can be saved.

Schumann et al. [74] applies the idea of document retrieval to a text corpus of 709

German regulatory documents to collect relevant regulatory information for an audit.

They examine 13 different retrieval variants and 16 search queries, which show that hybrid

variants of sparse and dense retrievers perform best.

The RALLM applications presented so far have assumed that they are questions about

publicly available knowledge, but there are numerous use cases in which questions about

private or proprietary knowledge can be asked. Responding to this requirement, Split

Iterative Retrieval (SPIRAL) [3] creates a RALLM with an understanding of private data.

4.2 Applications in Software Engineering

In this section, various applications for RALLMs in the field of software engineering will

be presented.

First of all, there are numerous applications for LLMs in software engineering (LLM4SE).

Numerous survey papers provide a good overview over models [101], applications [20]

and literature [29]. However, the applications presented in this work are limited to the use

of LLMs in combination with retrieval systems in software engineering.

The applications of RALLMs in software engineering primarily include classic code

generation tasks that are expanded with retrieval systems (e.g. at the level of a repository).

But there are also some applications in the areas of requirements engineering, program

repairing, code summarization, code search and commit generation. It should be particu-

larly pointed out that the focus is on which applications retrieval methods are used and

how they are used, and less on the applications themselves.

4.2.1 Code Generation with Retrieval Methods

Code generation and code completion has the task of generating code from a natural

language description or completing unfinished code. RALLM approaches can help with

this task. First, different repository-level code generation approaches are presented, with a

particular focus on RepoCoder by Zhang et al. [104]. This is followed by code generation

approaches that refer to API specifications or code documentation during retrieval.

RepoCoder [104] is a generic framework to complete unfinished code based on the

context of the associated repository. This makes it possible to complete code based on

dependencies on other files in the repository (including shared utilities, configurations,

cross-API invocations) while taking into account naming conventions and coding styles of

the respective repository.

RepoCoder uses a retriever to find relevant context for code completion within the repos-

itory and an LLM as a generator. Figure 13a shows that, compared to other techniques

(especially RAG approach), RepoCoder uses an iterative pipeline of retriever and generator.

19

4 Retrieval-Augmented Large Language Models: Applications

(a) Structure (b) Iterations (c) Prompt

Figure 13: RepoCoder [104]

Figure 13b shows a code example for this iteration, in which the COLMAP API is called in

the first iteration. However, the predicted parameters are incorrect because the retrieval

query was not yet suitable. In a second iteration, the target API signature can be retrieved

using the incorrect API call as a new query and the code can be completed correctly.

Based on the code files of the repository 𝐶𝑟𝑒𝑝𝑜 = {𝑐1, 𝑐2, ...}, a retriever R searches with

the unfinished code X as a query in the repository 𝐶𝑟𝑒𝑝𝑜 the most relevant code snippets

𝐶𝑟𝑒𝑡 = R(𝐶𝑟𝑒𝑝𝑜 , 𝑋). Then an LLM M generates a prediction for the searched code 𝑌 =

M(𝐶𝑟𝑒𝑡 , 𝑋). Figure 13c shows an example prompt of how the retrieved code snippets 𝐶𝑟𝑒𝑡

are combined with the unfinished code X. Since this is an iterative procedure, the previous

prediction 𝑌 𝑖−1
is used as the new retrieval query for the following i-th iteration, so that

in the i-th iteration 𝐶𝑖
𝑟𝑒𝑡 = R(𝐶𝑟𝑒𝑝𝑜 , 𝑋, 𝑌

𝑖−1) are returned as relevant code snippets and

𝑌 𝑖 = M(𝐶𝑖
𝑟𝑒𝑡 , 𝑋) as a new prediction. M and R remain unchanged throughout the entire

retrieval process. The retriever R can be any retriever that, given a query, returns relevant

documents (experiments in the paper with sparse and dense retrievers). The generator M
can be any pre-trained LLM (experiments with GPT-3.5-Turbo and CodeGen). The code

snippets in the retrieval database are generated using a sliding window approach with a

window size of 𝑆𝑤 and a sliding size of 𝑆𝑠 .

RepoCoder also includes a new benchmark RepoEva from a collection of Python reposi-

tories from GitHub, making it the first benchmark with three levels of code completion

granularity (line completion, API invocation completion, function body completion). Ex-

periments show that RepoCoder improves existing in-file completion benchmarks by over

10%, especially after at least two iterations. However, they still describe some limitations

that leave room for improvements in the future. These include, in particular, limited

effectiveness in repositories with low code duplication. Improvements in time efficiency,

in choosing the optimal number of iterations or suitable prompt templates are still possible.

In addition to RepoCoder [104], there are other code generation approaches that refer

to a repository.

ReACC [53] is a retrieval-augmented code completion framework comparable to Re-

poCoder, but it is not limited to its own repository in the source code database. It also

consists of a retriever and a generation component, but only goes through one iteration

20

4.2 Applications in Software Engineering

Figure 14: ReAcc [53]

(see middle scheme in Figure 13a). Figure 14 shows an example of how incomplete code

can be completed using a retrieved similar code.

RepoFusion (under review) [79] expands the idea of RepoCoder and suggests training

codemodels with the integration of relevant repository context with the Fusion-in-Decoder

method in order to benefit from better performance while at the same time being smaller

models to benefit.

Figure 15: DocPrompting [108]

CodeGen4Libs [49] is an approach to library-

oriented code generation. In the first step (im-

port generation stage) it imports import state-

ments from third-party libraries and in the sec-

ond step (code generation stage) it generates

code based on the query and the imports. It can

improve previous benchmarks.

RepoBench [51] (under review) also repre-

sents a new benchmark for repository-level

code auto-completion systems with zero-shot

learning. It consists of three sub-tasks for the

programming languages Java and Python: Re-

trieval Task (RepoBench-R, ability to retrieve

the most relevant code snippets), Code Comple-

tion Task (RepoBench-C, predict the next line of

code), End-to-End Pipeline Task (RepoBench-P,

simulate the complete process of code auto completion).

A Stanford CS224N Custom Project [89] shows that it is in principle possible to use

StackOverflow
7
as a code snippet corpus. This expands the amount of accessible knowl-

edge and removes the restriction to specific repositories and data sets for the retrieval step.

7https://stackoverflow.com/

21

https://stackoverflow.com/

4 Retrieval-Augmented Large Language Models: Applications

After dealing with the repository level-specific code generation approaches, approaches

that relate to API specifications or code documentation will now be discussed: APICoder

[102] and DocPrompting [108].

DocPrompting [108] is a natural language to code framework (retrieval-then-generate

paradigm) that can generate code based on a retrieval of relevant documentation (e.g.

code manuals). Given a query in natural language, DocPrompting retrieves relevant parts

of the code documentation from an up-to-date documentation pool. It then generates

programming code based on the retrieval of the input query (example in figure 15). It

is inspired by human programming behavior, where human programmers are inspired

by code manuals. In contrast to previous approaches, reference can be made to unseen

functions or libraries that were not included in the training data or have changed since

then (for example new arguments in the function). It can be applied to any programming

language and is not dependent on the underlying LLM. This makes it the first approach to

leveraging documentation in models, improving numerous existing benchmarks. They

also publish a new benchmark for retrieval-based code generation.

Figure 16: APICoder [102]

APICoder [102] is an approach compa-

rable to DocPrompting, which enables re-

trieval (APIRetriever) of the API documen-

tation for private libraries in order to gen-

erate code (APICoder) based on it (see Fig-

ure 16). Both modules (APIRetriever, API-

Coder) were trained with data from pub-

lic libraries and can generalize to private

libraries. In addition, three benchmarks

(TorchDataEval, MonkeyEval, BeatNumEval) are published for private libraries.

CRUSH4SQL [39] is a Text2SQL approach that uses a hallucinated minimal database

schema as a query for an information retriever. A two-stage mechanism is used. In a

first step, an LLM is used to hallucinate a minimal database schema. This hallucination

serves as a bridge between the lexical gap between the tokens of the user query and the

actual schema elements. In the second step, the system uses the hallucinated schema to

extract a subset of the schema that is closest to the hallucinated schema. Unlike traditional

Text2SQL generators, which include and encode the entire schema, this approach is more

effective for large databases with thousands of columns, also because it requires fewer

computing and storage resources. Since there are currently no benchmark data sets with

information retrieval for Text2SQL tasks with schema subsetting, three new benchmark

data sets are also being introduced.

4.2.2 Code Search with Retrieval Methods

There are also applications that are limited to code retrieval in the sense of a code search.

This makes it more of a retrieval application than a RALLM application.

Deep Code Search (DeepCS) [23] is a Code-Description Embedding Neural Network

(CODEnn) based code search tool based on a dense retriever. For the search, code snippets

22

4.2 Applications in Software Engineering

and natural language descriptions are transferred to a high-dimensional vector space

so that the code snippet and the associated description have similar vectors. DeepCS /

CODEnn thus takes into account that source code and its natural language description

are heterogeneous in their lexical tokens, but are semantically closely linked. Figure 17

shows the architecture of DeepCS, which includes three phases: offline training, offline

code embedding, online code search. CODEnn was trained on over 18.2 million Java code

snippets.

Figure 17: DeepCS [23]

CodeRetriever [47] learns code seman-

tics at the function level through large-scale

code-text contrastive pre-training. In do-

ing so, it reacts to previous weaknesses

of token-based approaches to code search.

These include the token imbalance in pro-

gramming languages (keywords or opera-

tors appear in many places in the code) and

the cross-language representation (chal-

lenge to learn a unified semantic represen-

tation of the code with the same function-

ality but using different programming languages). CodeRetriever consists of a text encoder

and a code encoder that transforms text and code into separate dense vectors, minimizing

the unimodal contrastive loss and the bimodal contrastive loss during training. Experi-

ments show that CodeRetriever performs best compared to all other approaches.

Li et al. [45] also shows how query expansion and query rewriting / augmentation

methods explained in Section 3.1 can be applied to code search. This achieves a new

state-of-the-art performance.

4.2.3 Code Summarizing with Retrieval Methods

Given a code snippet, code summarization is intended to generate a summary of that code

snippet so that software developers can understand code quickly and correctly. Some

approaches in which RALLM can help are presented below.

REDCODER [62] is a framework that retrieves relevant code or code summaries from a

retrieval database in order to pass them on as a supplement to a model for code generation

or code summarization. The consideration at this point should be limited to code summary.

To do this, a code snippet is passed as input to a retriever model (SCODE-R, based on the

DPR [36] from Section 3.2), which then extracts k relevant summaries from a Database (e.g.

GitHub or StackOverflow). The retrieved summary is then concatenated with the original

input code and the generator (SCODE-G, a variant of BART) then generates a summary of

the code. Experiments show that retrieval methods improve code summarization.

EditSum [46] is a retrieve-and-edit framework for source code summarization compara-

ble to REDCODER. A retriever module (sparse retriever BM25 [69], see Section 3.2) retrieves

a similar code snippet from a pre-defined corpus in order to use it as a prototype summary.

The prototype serves as a starting point for the edit module (encoder-decoder-architecture),

and is then adapted to the semantic information of the input code.

23

4 Retrieval-Augmented Large Language Models: Applications

The approaches described so far (REDCODER and EditSum) have the disadvantage that

they neither take into account the relationship between the original code and the similar

code nor the relationship between the original code and the summary of the similar code,

as these are each processed separately and simply concatenated become. READSUM [14]

responds to this disadvantage with a Transformer model for source code summarization

that uses retrieval augmented techniques. The relevance between the original code and the

retrieved code is taken into account using attention-based augmentation and important

keywords of the similar summary from the original code are extracted using a fusion

network. To learn the relationship between the original code and the retrieval code, a code

representation based on a multi-head self-attention mechanism is used, using the Abstract

Syntax Tree (AST) sequence at the embedding stage; i.e. instead of being processed

separately, sequential and structural processes are processed in a single transformer.

Experiments show that READSUM achieves state-of-the-art performance on all evaluation

metrics for Java data sets and also outperforms many baselines for Python.

4.2.4 Requirements Traceability with Retrieval Methods

Requirements traceability refers to the links between software artifacts (forward and

backward) and helps throughout the entire software evolution process to check the com-

pleteness of a software artifact in relation to the requirements, to discover dependencies

and thus to ensure the overall quality of a software.

Udagawa [87] discusses early approaches based on vector space information retrieval

methods for the automatic restoration of requirements traceability. Similarities between

artifacts from the requirements phase and the design phase are measured, whereby the

similarity measures depend heavily on the accuracy of the description. Sparse vectors

based on inverse document frequency are used.

CERBERUS [18] is also an early approach that attempts to identify the source code in

a program in relation to a feature or requirement and uses information retrieval. The

requirements or features are viewed as a query and the source code as a document. Sparse

vectors are used, which are formed with special consideration of the keywords of the

programming language and the inverse document frequency.

YamenTrace [58] is a newer approach to recover and visualize Requirement-to-Code

Traceability Links (RtC-TLs), which also uses retrieval methods. To do this, latent semantic

indexing (LCI) and singular value decomposition (SVD) are used to search for textual

similarity between the code and the requirements on the term-document matrix. A formal

concept analysis (FCA) further clusters similar code and requirements.

4.2.5 Commit Message Generation with Retrieval Methods

Commit messages should document and summarize changes in the code and be as mean-

ingful as possible so that a good understanding of the evolutionary history of a software

is created. RALLM approaches can also help here.

24

4.2 Applications in Software Engineering

RACE [76] represents a retrieval-augmented commit message generation method. A

similar commit message is initially retrieved as an example. A meaningful commit message

is then generated based on the content of the code diff and the similar commit message

with the support of an example guide (learns the semantic similarity between retrieved

and current code diff). A code diff encoder learns the semantics of code diffs and encodes

it in high-dimensional semantic space. Repetitive or redundant commit messages should

be avoided. Experiments show that RACE outperforms all baselines. Context-Aware

Retrieval-based Deep Commit Message Generation (CoRec) [91] is a comparable approach

to RACE, but uses end-to-end training.

COME [27] as a newer approach to commit message generation with retrieval methods

uses a fine-grained way to represent code changes in embeddings, thus responding to

inappropriate representations of code changes from previous approaches. For this purpose,

code change representations are learned in a self-supervised manner in an encoder-decoder

neural network. COME achieves state-of-the-art performance on various benchmarks.

4.2.6 Automatic Program Repair with Retrieval Methods

Figure 18: RAP-Gen Bug Example [93]

Automatic Program Repair (APR) is

designed to reduce manual debug-

ging effort using tools. While con-

ventional APR methods follow the

search-based approach and heuris-

tic rules, progress in machine learn-

ing has meant that program repair

could be learned as a mapping from

a buggy source program to a correct

target program as a sequence to se-

quence problem (see for example TFix [4]). These models have limited performance due to

their limited number of parameters and the complexity of many bugs, so extending these

models with a patch retriever is worthwhile.

The Retrieval-Augmented Patch Generation framework (RAP-Gen) [93] is a generic

framework for APR with a retrieval system. It uses a hybrid patch retriever, a combination

of the sparse retriever BM25 [69] and the dense retriever DPR [36], described in Section

3.2. It consists of an external database that retrieves bug fix pairs to extend the input

to the CodeT5 code-specific language model [95] (see Section 2.2). Figure 18 offers an

example where the patch retriever is used to search for several similar/relevant bug fixing

pairs for a bug, which are then passed on to the CodeT5 patch generator in a ranked list,

with the help of which the original bug is fixed. The fix can be verified using unit tests or

developer verification. Extensive evaluations show that RAP-Gen outperforms previous

state-of-the-art methods on various benchmarks for Java and JavaScript (e.g. 69.3% vs.

78.8% for error removal accuracy on TFix [4]).

25

5 Discussion and Conclusion

5 Discussion and Conclusion

In this seminar paper, current methods and applications for Retrieval-Augmented Large

Language Models (RALLMs) were presented. They can solve numerous problems of LLMs

and expand them with external knowledge, so that they can also answer questions for

which there is no training data and therefore hallucinate less.

It is notable that although research on information retrieval has existed since the 1950s,

it has undergone enormous innovation in the early 2020s and the research area has

therefore developed in many dimensions (see Section 2). This increase in innovation

remains dynamic and is closely associated with the development of LLMs. Nevertheless,

there are still numerous approaches for future-oriented scientific research, and there is

still room for improvement, particularly when it comes to the factual accuracy of LLMs

and RALLMs.

Dealing with private data in RALLMs will remain a challenge. Huang et al. [30] offers a

study on privacy risks in retrieval-based LLMs. In order to develop customized in-domain

RALLMs, RETA-LLM [48] provides a toolkit for creating a complete pipeline.

Due to the success of RALLMs and due to the large amount of knowledge in the world,

it will be relevant to develop RALLMs that can scale to millions of text passages and

still produce good results. Pradeep et al. [65] offers some comments and an empirical

study. Furthermore, it remains a challenge to reduce the latency of RALLMs and enable

multimodal search.

RALLMs usually assume that the knowledge in the external database is factually correct.

However, due to numerous fake news on the Internet, this assumption is not always

true. Therefore, it remains a challenge that RALLMs can classify external counterfactual

knowledge and distinguish correct reliable knowledge from incorrect knowledge. They

should also improve their answer quality (less hallucination) and their reference quality

(source instead of blackbox). RECALL [52] (under review) is therefore a benchmark for

context with counterfactual information in order to be able to build models in the future

that can meet this requirement.

All of the challenges described (including scaling, correctness, private data, customiza-

tion) also exist for RALLM applications in software development. Furthermore, it is

noticeable that numerous benchmark data sets for different code generation and summa-

rization tasks have been created in the last 2 years, especially at the repository level (see

applications in Section 4.2). As this is a new area of research, these benchmark data sets

have yet to become established and widely accepted. Nevertheless, it can be expected that

the performance on these benchmark data sets will improve in the future. Despite all the

progress on existing benchmark data sets, it remains a challenge to generate high-quality

and secure code. For example, a user study [63] shows that the use of AI coding assistance

leads to significantly less secure code, which still leaves room for improvement.

26

References

[1] Anonymous. “Adder: Adapted Dense Retrieval”. In: Submitted to The Twelfth Inter-
national Conference on Learning Representations. under review. 2023. url: https:
//openreview.net/forum?id=n3kFlvVhJM.

[2] Manoj Ghuhan Arivazhagan et al. “Hybrid Hierarchical Retrieval for Open-Domain

Question Answering”. In: Findings of the Association for Computational Linguistics:
ACL 2023. Ed. by Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki. Toronto,

Canada: Association for Computational Linguistics, July 2023, pp. 10680–10689.

doi: 10.18653/v1/2023.findings-acl.679. url: https://aclanthology.org/

2023.findings-acl.679.

[3] Simran Arora et al. “Reasoning over Public and Private Data in Retrieval-Based

Systems”. In: Transactions of the Association for Computational Linguistics 11 (2023),
pp. 902–921. doi: 10.1162/tacl_a_00580. url: https://aclanthology.org/2023.

tacl-1.51.

[4] Berkay Berabi et al. “TFix: Learning to Fix Coding Errors with a Text-to-Text Trans-

former”. In: Proceedings of the 38th International Conference on Machine Learning.
Ed. by Marina Meila and Tong Zhang. Vol. 139. Proceedings of Machine Learning

Research. PMLR, July 2021, pp. 780–791. url: https://proceedings.mlr.press/

v139/berabi21a.html.

[5] Jonathan Berant et al. “Semantic Parsing on Freebase from Question-Answer Pairs”.

In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing. Ed. by David Yarowsky et al. Seattle, Washington, USA: Association for

Computational Linguistics, Oct. 2013, pp. 1533–1544. url: https://aclanthology.

org/D13-1160.

[6] Sergey Brin and Lawrence Page. “The anatomy of a large-scale hypertextual Web

search engine”. In: Computer Networks and ISDN Systems 30.1 (1998). Proceedings
of the Seventh International World Wide Web Conference, pp. 107–117. issn: 0169-

7552. doi: https://doi.org/10.1016/S0169- 7552(98)00110- X. url: https:

//www.sciencedirect.com/science/article/pii/S016975529800110X.

[7] Tom Brown et al. “Language Models are Few-Shot Learners”. In: Advances in
Neural Information Processing Systems. Ed. by H. Larochelle et al. Vol. 33. Curran

Associates, Inc., 2020, pp. 1877–1901. url: https://papers.nips.cc/paper/2020/

hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

[8] Claudio Carpineto andGiovanni Romano. “A Survey of Automatic Query Expansion

in Information Retrieval”. In: ACM Comput. Surv. 44.1 (Jan. 2012). issn: 0360-0300.
doi: 10 . 1145 / 2071389 . 2071390. url: https : / / doi . org / 10 . 1145 / 2071389 .

2071390.

[9] Danqi Chen et al. “Reading Wikipedia to Answer Open-Domain Questions”. In:

Proceedings of the 55th Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers). Ed. by Regina Barzilay and Min-Yen Kan. Vancouver,

27

https://openreview.net/forum?id=n3kFlvVhJM
https://openreview.net/forum?id=n3kFlvVhJM
https://doi.org/10.18653/v1/2023.findings-acl.679
https://aclanthology.org/2023.findings-acl.679
https://aclanthology.org/2023.findings-acl.679
https://doi.org/10.1162/tacl_a_00580
https://aclanthology.org/2023.tacl-1.51
https://aclanthology.org/2023.tacl-1.51
https://proceedings.mlr.press/v139/berabi21a.html
https://proceedings.mlr.press/v139/berabi21a.html
https://aclanthology.org/D13-1160
https://aclanthology.org/D13-1160
https://doi.org/https://doi.org/10.1016/S0169-7552(98)00110-X
https://www.sciencedirect.com/science/article/pii/S016975529800110X
https://www.sciencedirect.com/science/article/pii/S016975529800110X
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.1145/2071389.2071390
https://doi.org/10.1145/2071389.2071390
https://doi.org/10.1145/2071389.2071390

References

Canada: Association for Computational Linguistics, July 2017, pp. 1870–1879. doi:

10.18653/v1/P17-1171. url: https://aclanthology.org/P17-1171.

[10] Jiawei Chen et al. Benchmarking Large Language Models in Retrieval-Augmented
Generation. Accepted to AAAI 2024. 2023. arXiv: 2309.01431 [cs.CL].

[11] Mark Chen et al. Evaluating Large Language Models Trained on Code. 2021. arXiv:
2107.03374 [cs.LG].

[12] Wenhu Chen et al. “MuRAG: Multimodal Retrieval-Augmented Generator for Open

Question Answering over Images and Text”. In: Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing. Ed. by Yoav Goldberg, Zornitsa

Kozareva, and Yue Zhang. Abu Dhabi, United Arab Emirates: Association for

Computational Linguistics, Dec. 2022, pp. 5558–5570. doi: 10.18653/v1/2022.

emnlp-main.375. url: https://aclanthology.org/2022.emnlp-main.375.

[13] Sukmin Cho et al. “Discrete Prompt Optimization via Constrained Generation for

Zero-shot Re-ranker”. In: Findings of the Association for Computational Linguistics:
ACL 2023. Ed. by Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki. Toronto,

Canada: Association for Computational Linguistics, July 2023, pp. 960–971. doi:

10.18653/v1/2023.findings-acl.61. url: https://aclanthology.org/2023.

findings-acl.61.

[14] Yunseok Choi et al. “READSUM: Retrieval-Augmented Adaptive Transformer for

Source Code Summarization”. In: IEEE Access 11 (2023), pp. 51155–51165. doi:

10.1109/ACCESS.2023.3271992.

[15] Vincent Claveau. “Neural Text Generation for Query Expansion in Information

Retrieval”. In: IEEE/WIC/ACM International Conference on Web Intelligence and
Intelligent Agent Technology. WI-IAT ’21. Melbourne, VIC, Australia: Association

for Computing Machinery, 2022, pp. 202–209. isbn: 9781450391153. doi: 10.1145/

3486622.3493957. url: https://doi.org/10.1145/3486622.3493957.

[16] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for

Language Understanding”. In: Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers). Ed. by Jill Burstein, Christy Do-

ran, and Thamar Solorio. Minneapolis, Minnesota: Association for Computational

Linguistics, June 2019, pp. 4171–4186. doi: 10.18653/v1/N19-1423. url: https:

//aclanthology.org/N19-1423.

[17] Qingxiu Dong et al. A Survey on In-context Learning. 2023. arXiv: 2301.00234
[cs.CL].

[18] Marc Eaddy et al. “CERBERUS: Tracing Requirements to Source Code Using In-

formation Retrieval, Dynamic Analysis, and Program Analysis”. In: 2008 16th
IEEE International Conference on Program Comprehension. 2008, pp. 53–62. doi:
10.1109/ICPC.2008.39.

[19] Shahul Es et al. RAGAS: Automated Evaluation of Retrieval Augmented Generation.
2023. arXiv: 2309.15217 [cs.CL].

28

https://doi.org/10.18653/v1/P17-1171
https://aclanthology.org/P17-1171
https://arxiv.org/abs/2309.01431
https://arxiv.org/abs/2107.03374
https://doi.org/10.18653/v1/2022.emnlp-main.375
https://doi.org/10.18653/v1/2022.emnlp-main.375
https://aclanthology.org/2022.emnlp-main.375
https://doi.org/10.18653/v1/2023.findings-acl.61
https://aclanthology.org/2023.findings-acl.61
https://aclanthology.org/2023.findings-acl.61
https://doi.org/10.1109/ACCESS.2023.3271992
https://doi.org/10.1145/3486622.3493957
https://doi.org/10.1145/3486622.3493957
https://doi.org/10.1145/3486622.3493957
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://arxiv.org/abs/2301.00234
https://arxiv.org/abs/2301.00234
https://doi.org/10.1109/ICPC.2008.39
https://arxiv.org/abs/2309.15217

[20] Angela Fan et al. Large Language Models for Software Engineering: Survey and Open
Problems. 2023. arXiv: 2310.03533 [cs.SE].

[21] Thibault Formal, Benjamin Piwowarski, and Stéphane Clinchant. “SPLADE: Sparse

Lexical and Expansion Model for First Stage Ranking”. In: Proceedings of the 44th
International ACM SIGIR Conference on Research and Development in Information
Retrieval. SIGIR ’21. New York, NY, USA: Association for Computing Machinery,

2021, pp. 2288–2292. isbn: 9781450380379. doi: 10.1145/3404835.3463098. url:

https://doi.org/10.1145/3404835.3463098.

[22] Luyu Gao et al. “Precise Zero-Shot Dense Retrieval without Relevance Labels”.

In: Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Ed. by Anna Rogers, Jordan Boyd-Graber,

and Naoaki Okazaki. Toronto, Canada: Association for Computational Linguistics,

July 2023, pp. 1762–1777. doi: 10.18653/v1/2023.acl- long.99. url: https:

//aclanthology.org/2023.acl-long.99.

[23] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. “Deep Code Search”. In: 2018
IEEE/ACM 40th International Conference on Software Engineering (ICSE). 2018,
pp. 933–944. doi: 10.1145/3180155.3180167. url: https://ieeexplore.ieee.

org/abstract/document/8453172.

[24] Jiafeng Guo et al. “Semantic Models for the First-Stage Retrieval: A Comprehensive

Review”. In: ACM Transactions on Information Systems 40.4 (Mar. 2022), pp. 1–42.

issn: 1558-2868. doi: 10.1145/3486250. url: http://dx.doi.org/10.1145/

3486250.

[25] Daniel Guzman Olivares, Lara Quijano, and Federico Liberatore. “Enhancing Infor-

mation Retrieval in Fact Extraction and Verification”. In: Proceedings of the Sixth
Fact Extraction and VERification Workshop (FEVER). Ed. by Mubashara Akhtar et al.

Dubrovnik, Croatia: Association for Computational Linguistics, May 2023, pp. 38–

48. doi: 10.18653/v1/2023.fever-1.4. url: https://aclanthology.org/2023.

fever-1.4.

[26] Donna Harman. “Overview of the First TREC Conference”. In: Proceedings of the
16th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval. SIGIR ’93. Pittsburgh, Pennsylvania, USA: Association for

Computing Machinery, 1993, pp. 36–47. isbn: 0897916050. doi: 10.1145/160688.

160692. url: https://doi.org/10.1145/160688.160692.

[27] Yichen He et al. “COME: Commit Message Generation with Modification Em-

bedding”. In: Proceedings of the 32nd ACM SIGSOFT International Symposium on
Software Testing and Analysis. ISSTA 2023. New York, NY, USA: Association for

Computing Machinery, 2023, pp. 792–803. doi: 10.1145/3597926.3598096. url:

https://doi.org/10.1145/3597926.3598096.

[28] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge in a Neural
Network. 2015. arXiv: 1503.02531 [stat.ML].

[29] Xinyi Hou et al. Large Language Models for Software Engineering: A Systematic
Literature Review. 2023. arXiv: 2308.10620 [cs.SE].

29

https://arxiv.org/abs/2310.03533
https://doi.org/10.1145/3404835.3463098
https://doi.org/10.1145/3404835.3463098
https://doi.org/10.18653/v1/2023.acl-long.99
https://aclanthology.org/2023.acl-long.99
https://aclanthology.org/2023.acl-long.99
https://doi.org/10.1145/3180155.3180167
https://ieeexplore.ieee.org/abstract/document/8453172
https://ieeexplore.ieee.org/abstract/document/8453172
https://doi.org/10.1145/3486250
http://dx.doi.org/10.1145/3486250
http://dx.doi.org/10.1145/3486250
https://doi.org/10.18653/v1/2023.fever-1.4
https://aclanthology.org/2023.fever-1.4
https://aclanthology.org/2023.fever-1.4
https://doi.org/10.1145/160688.160692
https://doi.org/10.1145/160688.160692
https://doi.org/10.1145/160688.160692
https://doi.org/10.1145/3597926.3598096
https://doi.org/10.1145/3597926.3598096
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/2308.10620

References

[30] Yangsibo Huang et al. “Privacy Implications of Retrieval-Based Language Models”.

In: Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing. Ed. by Houda Bouamor, Juan Pino, and Kalika Bali. Singapore: Asso-

ciation for Computational Linguistics, Dec. 2023, pp. 14887–14902. url: https:

//aclanthology.org/2023.emnlp-main.921.

[31] Gautier Izacard et al. “Unsupervised Dense Information Retrieval with Contrastive

Learning”. In: Transactions on Machine Learning Research (2022). issn: 2835-8856.

url: https://openreview.net/forum?id=jKN1pXi7b0.

[32] Rolf Jagerman et al. Query Expansion by Prompting Large Language Models. 2023.
arXiv: 2305.03653 [cs.IR].

[33] Zhengbao Jiang et al. “Active Retrieval Augmented Generation”. In: Proceedings of
the 2023 Conference on Empirical Methods in Natural Language Processing. Ed. by
Houda Bouamor, Juan Pino, and Kalika Bali. Singapore: Association for Compu-

tational Linguistics, Dec. 2023, pp. 7969–7992. url: https://aclanthology.org/

2023.emnlp-main.495.

[34] Jeff Johnson, Matthijs Douze, and Hervé Jégou. “Billion-Scale Similarity Search

with GPUs”. In: IEEE Transactions on Big Data 7.3 (2021), pp. 535–547. doi: 10.

1109/TBDATA.2019.2921572.

[35] Jean Kaddour et al. Challenges and Applications of Large Language Models. 2023.
arXiv: 2307.10169 [cs.CL].

[36] Vladimir Karpukhin et al. “Dense Passage Retrieval for Open-Domain Question

Answering”. In: Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP). Ed. by Bonnie Webber et al. Online: Association

for Computational Linguistics, Nov. 2020, pp. 6769–6781. doi: 10.18653/v1/2020.

emnlp-main.550. url: https://aclanthology.org/2020.emnlp-main.550.

[37] Omar Khattab et al. Demonstrate-Search-Predict: Composing retrieval and language
models for knowledge-intensive NLP. 2023. arXiv: 2212.14024 [cs.CL].

[38] Gangwoo Kim et al. “Tree of Clarifications: Answering Ambiguous Questions

with Retrieval-Augmented Large Language Models”. In: Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing. Ed. by Houda

Bouamor, Juan Pino, and Kalika Bali. Singapore: Association for Computational

Linguistics, Dec. 2023, pp. 996–1009. url: https://aclanthology.org/2023.emnlp-

main.63.

[39] Mayank Kothyari et al. “CRUSH4SQL: Collective Retrieval Using Schema Halluci-

nation For Text2SQL”. In: Proceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing. Ed. by Houda Bouamor, Juan Pino, and Kalika Bali.

Singapore: Association for Computational Linguistics, Dec. 2023, pp. 14054–14066.

url: https://aclanthology.org/2023.emnlp-main.868.

[40] Tom Kwiatkowski et al. “Natural Questions: A Benchmark for Question Answering

Research”. In: Transactions of the Association for Computational Linguistics 7 (2019).
Ed. by Lillian Lee et al., pp. 452–466. doi: 10.1162/tacl_a_00276. url: https:

//aclanthology.org/Q19-1026.

30

https://aclanthology.org/2023.emnlp-main.921
https://aclanthology.org/2023.emnlp-main.921
https://openreview.net/forum?id=jKN1pXi7b0
https://arxiv.org/abs/2305.03653
https://aclanthology.org/2023.emnlp-main.495
https://aclanthology.org/2023.emnlp-main.495
https://doi.org/10.1109/TBDATA.2019.2921572
https://doi.org/10.1109/TBDATA.2019.2921572
https://arxiv.org/abs/2307.10169
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://aclanthology.org/2020.emnlp-main.550
https://arxiv.org/abs/2212.14024
https://aclanthology.org/2023.emnlp-main.63
https://aclanthology.org/2023.emnlp-main.63
https://aclanthology.org/2023.emnlp-main.868
https://doi.org/10.1162/tacl_a_00276
https://aclanthology.org/Q19-1026
https://aclanthology.org/Q19-1026

[41] Jakub Lála et al. “PaperQA: Retrieval-Augmented Generative Agent for Scientific Re-

search”. In: Submitted to The Twelfth International Conference on Learning Represen-
tations. under review, available at https://openreview.net/forum?id=clU5xWyItb
and https://arxiv.org/abs/2312.07559. 2023. url: https://openreview.net/

forum?id=clU5xWyItb.

[42] Angeliki Lazaridou et al. Internet-augmented language models through few-shot
prompting for open-domain question answering. 2023. url: https://openreview.
net/forum?id=hFCUPkSSRE.

[43] Mike Lewis et al. “BART: Denoising Sequence-to-Sequence Pre-training for Natural

Language Generation, Translation, and Comprehension”. In: Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics. Ed. by Dan Jurafsky
et al. Online: Association for Computational Linguistics, July 2020, pp. 7871–7880.

doi: 10.18653/v1/2020.acl-main.703. url: https://aclanthology.org/2020.

acl-main.703.

[44] Patrick Lewis et al. “Retrieval-Augmented Generation for Knowledge-Intensive

NLP Tasks”. In: NIPS’20. Vancouver, BC, Canada: Curran Associates Inc., 2020. isbn:

9781713829546. url: https://dl.acm.org/doi/abs/10.5555/3495724.3496517.

[45] Dong Li et al. Generation-Augmented Query Expansion For Code Retrieval. 2022.
arXiv: 2212.10692 [cs.SE].

[46] Jia Allen Li et al. “EditSum: A Retrieve-and-Edit Framework for Source Code

Summarization”. In: 2021 36th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, Nov. 2021. doi: 10.1109/ase51524.2021.9678724.
url: http://dx.doi.org/10.1109/ASE51524.2021.9678724.

[47] Xiaonan Li et al. “CodeRetriever: A Large Scale Contrastive Pre-Training Method

for Code Search”. In: Proceedings of the 2022 Conference on Empirical Methods
in Natural Language Processing. Ed. by Yoav Goldberg, Zornitsa Kozareva, and

Yue Zhang. Abu Dhabi, United Arab Emirates: Association for Computational

Linguistics, Dec. 2022, pp. 2898–2910. doi: 10.18653/v1/2022.emnlp-main.187.

url: https://aclanthology.org/2022.emnlp-main.187.

[48] Jiongnan Liu et al. RETA-LLM: A Retrieval-Augmented Large Language Model Toolkit.
2023. arXiv: 2306.05212 [cs.IR].

[49] Mingwei Liu et al. “CodeGen4Libs: A Two-Stage Approach for Library-Oriented

Code Generation”. In: 2023 38th IEEE/ACM International Conference on Automated
Software Engineering (ASE). 2023, pp. 434–445. doi: 10.1109/ASE56229.2023.00159.

[50] Pengfei Liu et al. “Pre-Train, Prompt, and Predict: A Systematic Survey of Prompting

Methods in Natural Language Processing”. In: ACM Comput. Surv. 55.9 (Jan. 2023).
issn: 0360-0300. doi: 10.1145/3560815. url: https://doi.org/10.1145/3560815.

[51] Tianyang Liu, Canwen Xu, and Julian McAuley. “RepoBench: Benchmarking

Repository-Level Code Auto-Completion Systems”. In: Submitted to The Twelfth
International Conference on Learning Representations. under review, available at
https://openreview.net/forum?id=pPjZIOuQuF and https://arxiv.org/abs/

2306.03091. 2023.

31

https://openreview.net/forum?id=clU5xWyItb
https://arxiv.org/abs/2312.07559
https://openreview.net/forum?id=clU5xWyItb
https://openreview.net/forum?id=clU5xWyItb
https://openreview.net/forum?id=hFCUPkSSRE
https://openreview.net/forum?id=hFCUPkSSRE
https://doi.org/10.18653/v1/2020.acl-main.703
https://aclanthology.org/2020.acl-main.703
https://aclanthology.org/2020.acl-main.703
https://dl.acm.org/doi/abs/10.5555/3495724.3496517
https://arxiv.org/abs/2212.10692
https://doi.org/10.1109/ase51524.2021.9678724
http://dx.doi.org/10.1109/ASE51524.2021.9678724
https://doi.org/10.18653/v1/2022.emnlp-main.187
https://aclanthology.org/2022.emnlp-main.187
https://arxiv.org/abs/2306.05212
https://doi.org/10.1109/ASE56229.2023.00159
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://openreview.net/forum?id=pPjZIOuQuF
https://arxiv.org/abs/2306.03091
https://arxiv.org/abs/2306.03091

References

[52] Yi Liu et al. “RECALL: A Benchmark for LLM Robustness against External Coun-

terfactual Knowledge”. In: under review, ACL ARR 2023 December Blind Submis-

sion, available at https://openreview.net/forum?id=yMHcVZQtP6 and https:

//arxiv.org/pdf/2311.08147.pdf. 2023.

[53] Shuai Lu et al. “ReACC: A Retrieval-Augmented Code Completion Framework”.

In: Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Ed. by Smaranda Muresan, Preslav Nakov, and

Aline Villavicencio. Dublin, Ireland: Association for Computational Linguistics,

May 2022, pp. 6227–6240. doi: 10.18653/v1/2022.acl-long.431. url: https:

//aclanthology.org/2022.acl-long.431.

[54] Xinbei Ma et al. “Query Rewriting in Retrieval-Augmented Large LanguageModels”.

In: Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing. Ed. by Houda Bouamor, Juan Pino, and Kalika Bali. Singapore: Associa-

tion for Computational Linguistics, Dec. 2023, pp. 5303–5315. doi: 10.18653/v1/

2023.emnlp-main.322. url: https://aclanthology.org/2023.emnlp-main.322.

[55] Kelong Mao et al. “Large Language Models Know Your Contextual Search Intent:

A Prompting Framework for Conversational Search”. In: Findings of the Association
for Computational Linguistics: EMNLP 2023. Ed. by Houda Bouamor, Juan Pino,

and Kalika Bali. Singapore: Association for Computational Linguistics, Dec. 2023,

pp. 1211–1225. doi: 10.18653/v1/2023.findings- emnlp.86. url: https://

aclanthology.org/2023.findings-emnlp.86.

[56] Vaibhav Mavi, Abulhair Saparov, and Chen Zhao. “Retrieval-Augmented Chain-

of-Thought in Semi-structured Domains”. In: Proceedings of the Natural Legal
Language Processing Workshop 2023. Ed. by Daniel Preot

,
iuc-Pietro et al. Singapore:

Association for Computational Linguistics, Dec. 2023, pp. 178–191. doi: 10.18653/

v1/2023.nllp-1.18. url: https://aclanthology.org/2023.nllp-1.18.

[57] Tomas Mikolov et al. “Distributed Representations of Words and Phrases and their

Compositionality”. In: Advances in Neural Information Processing Systems. Ed. by
C.J. Burges et al. Vol. 26. Curran Associates, Inc., 2013. url: https://proceedings.

neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-

Paper.pdf.

[58] Ra’Fat Al-Msie’deen. Requirements Traceability: Recovering and Visualizing Trace-
ability Links Between Requirements and Source Code of Object-oriented Software
Systems. 2023. doi: http://dx.doi.org/10.12785/ijcds/140123.

[59] Reiichiro Nakano et al.WebGPT: Browser-assisted question-answering with human
feedback. 2022. arXiv: 2112.09332 [cs.CL].

[60] RodrigoNogueira et al. “Document Rankingwith a Pretrained Sequence-to-Sequence

Model”. In: Findings of the Association for Computational Linguistics: EMNLP 2020.
Ed. by Trevor Cohn, Yulan He, and Yang Liu. Online: Association for Computational

Linguistics, Nov. 2020, pp. 708–718. doi: 10.18653/v1/2020.findings-emnlp.63.

url: https://aclanthology.org/2020.findings-emnlp.63.

[61] OpenAI et al. GPT-4 Technical Report. 2023. arXiv: 2303.08774 [cs.CL].

32

https://openreview.net/forum?id=yMHcVZQtP6
https://arxiv.org/pdf/2311.08147.pdf
https://arxiv.org/pdf/2311.08147.pdf
https://doi.org/10.18653/v1/2022.acl-long.431
https://aclanthology.org/2022.acl-long.431
https://aclanthology.org/2022.acl-long.431
https://doi.org/10.18653/v1/2023.emnlp-main.322
https://doi.org/10.18653/v1/2023.emnlp-main.322
https://aclanthology.org/2023.emnlp-main.322
https://doi.org/10.18653/v1/2023.findings-emnlp.86
https://aclanthology.org/2023.findings-emnlp.86
https://aclanthology.org/2023.findings-emnlp.86
https://doi.org/10.18653/v1/2023.nllp-1.18
https://doi.org/10.18653/v1/2023.nllp-1.18
https://aclanthology.org/2023.nllp-1.18
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://doi.org/http://dx.doi.org/10.12785/ijcds/140123
https://arxiv.org/abs/2112.09332
https://doi.org/10.18653/v1/2020.findings-emnlp.63
https://aclanthology.org/2020.findings-emnlp.63
https://arxiv.org/abs/2303.08774

[62] Md Rizwan Parvez et al. “Retrieval Augmented Code Generation and Summariza-

tion”. In: Findings of the Association for Computational Linguistics: EMNLP 2021.
Ed. by Marie-Francine Moens et al. Punta Cana, Dominican Republic: Associa-

tion for Computational Linguistics, Nov. 2021, pp. 2719–2734. doi: 10.18653/v1/

2021.findings-emnlp.232. url: https://aclanthology.org/2021.findings-

emnlp.232.

[63] Neil Perry et al. “Do Users Write More Insecure Code with AI Assistants?” In:

Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications
Security. CCS ’23. New York, NY, USA: Association for Computing Machinery, 2023,

pp. 2785–2799. doi: 10.1145/3576915.3623157. url: https://doi.org/10.1145/

3576915.3623157.

[64] Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy Lin. RankVicuna: Zero-Shot
Listwise Document Reranking with Open-Source Large Language Models. 2023. arXiv:
2309.15088 [cs.IR].

[65] Ronak Pradeep et al. “How Does Generative Retrieval Scale to Millions of Pas-

sages?” In: Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing. Ed. by Houda Bouamor, Juan Pino, and Kalika Bali. Singa-

pore: Association for Computational Linguistics, Dec. 2023, pp. 1305–1321. url:

https://aclanthology.org/2023.emnlp-main.83.

[66] Filip Radlinski and Nick Craswell. “A Theoretical Framework for Conversational

Search”. In: Proceedings of the 2017 Conference on Conference Human Information
Interaction and Retrieval. CHIIR ’17. Oslo, Norway: Association for Computing Ma-

chinery, 2017, pp. 117–126. isbn: 9781450346771. doi: 10.1145/3020165.3020183.

url: https://doi.org/10.1145/3020165.3020183.

[67] Pranav Rajpurkar et al. “SQuAD: 100,000+ Questions for Machine Comprehension

of Text”. In: Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing. Ed. by Jian Su, Kevin Duh, and Xavier Carreras. Austin,

Texas: Association for Computational Linguistics, Nov. 2016, pp. 2383–2392. doi:

10.18653/v1/D16-1264. url: https://aclanthology.org/D16-1264.

[68] Ori Ram et al. “In-Context Retrieval-Augmented LanguageModels”. In: Transactions
of the Association for Computational Linguistics 11 (2023), pp. 1316–1331. doi:

10.1162/tacl_a_00605. url: https://aclanthology.org/2023.tacl-1.75.

[69] Stephen Robertson and Hugo Zaragoza. “The Probabilistic Relevance Framework:

BM25 and Beyond”. In: Foundations and Trends in Information Retrieval 3 (Jan. 2009),
pp. 333–389. doi: 10.1561/1500000019. url: https://dl.acm.org/doi/10.1561/

1500000019.

[70] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning repre-

sentations by back-propagating errors”. In: Nature (1986). doi: https://doi.org/
10.1038/323533a0. url: https://www.nature.com/articles/323533a0.

33

https://doi.org/10.18653/v1/2021.findings-emnlp.232
https://doi.org/10.18653/v1/2021.findings-emnlp.232
https://aclanthology.org/2021.findings-emnlp.232
https://aclanthology.org/2021.findings-emnlp.232
https://doi.org/10.1145/3576915.3623157
https://doi.org/10.1145/3576915.3623157
https://doi.org/10.1145/3576915.3623157
https://arxiv.org/abs/2309.15088
https://aclanthology.org/2023.emnlp-main.83
https://doi.org/10.1145/3020165.3020183
https://doi.org/10.1145/3020165.3020183
https://doi.org/10.18653/v1/D16-1264
https://aclanthology.org/D16-1264
https://doi.org/10.1162/tacl_a_00605
https://aclanthology.org/2023.tacl-1.75
https://doi.org/10.1561/1500000019
https://dl.acm.org/doi/10.1561/1500000019
https://dl.acm.org/doi/10.1561/1500000019
https://doi.org/https://doi.org/10.1038/323533a0
https://doi.org/https://doi.org/10.1038/323533a0
https://www.nature.com/articles/323533a0

References

[71] Devendra Sachan et al. “End-to-End Training of Neural Retrievers for Open-Domain

Question Answering”. In: Proceedings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers). Ed. by Chengqing Zong et al. Online:

Association for Computational Linguistics, Aug. 2021, pp. 6648–6662. doi: 10.

18653/v1/2021.acl- long.519. url: https://aclanthology.org/2021.acl-

long.519.

[72] Devendra Sachan et al. “Improving Passage Retrieval with Zero-Shot Question

Generation”. In: Proceedings of the 2022 Conference on Empirical Methods in Natural
Language Processing. Ed. by Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang.

Abu Dhabi, United Arab Emirates: Association for Computational Linguistics,

Dec. 2022, pp. 3781–3797. doi: 10.18653/v1/2022.emnlp-main.249. url: https:

//aclanthology.org/2022.emnlp-main.249.

[73] Devendra Singh Sachan et al. “Questions Are All You Need to Train a Dense Passage

Retriever”. In: Transactions of the Association for Computational Linguistics 11 (2023),
pp. 600–616. doi: 10.1162/tacl_a_00564. url: https://aclanthology.org/2023.

tacl-1.35.

[74] Gerrit Schumann, KatharinaMeyer, and JorgeMarx Gomez. “Query-Based Retrieval

of German Regulatory Documents for Internal Auditing Purposes”. In: 2022 5th
International Conference on Data Science and Information Technology (DSIT). 2022,
pp. 01–10. doi: 10.1109/DSIT55514.2022.9943943.

[75] Sina Semnani et al. “WikiChat: Stopping theHallucination of Large LanguageModel

Chatbots by Few-Shot Grounding on Wikipedia”. In: Findings of the Association
for Computational Linguistics: EMNLP 2023. Ed. by Houda Bouamor, Juan Pino,

and Kalika Bali. Singapore: Association for Computational Linguistics, Dec. 2023,

pp. 2387–2413. doi: 10.18653/v1/2023.findings- emnlp.157. url: https://

aclanthology.org/2023.findings-emnlp.157.

[76] Ensheng Shi et al. “RACE: Retrieval-augmented Commit Message Generation”. In:

Proceedings of the 2022 Conference on Empirical Methods in Natural Language Process-
ing. Ed. by Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang. Abu Dhabi, United

Arab Emirates: Association for Computational Linguistics, Dec. 2022, pp. 5520–

5530. doi: 10.18653/v1/2022.emnlp-main.372. url: https://aclanthology.org/

2022.emnlp-main.372.

[77] Weijia Shi et al. REPLUG: Retrieval-Augmented Black-Box Language Models. under
review, ACL ARR 2023 October Blind Submission, available at https://arxiv.org/

abs/2301.12652 and https://openreview.net/forum?id=6z_yPCrdCA4. 2023.

[78] Wenqi Shi et al. “Retrieval-Augmented Large Language Models for Adolescent

Idiopathic Scoliosis Patients in Shared Decision-Making”. In: Proceedings of the 14th
ACM International Conference on Bioinformatics, Computational Biology, and Health
Informatics. BCB ’23. Houston, TX, USA: Association for Computing Machinery,

2023. doi: 10.1145/3584371.3612956. url: https://doi.org/10.1145/3584371.

3612956.

34

https://doi.org/10.18653/v1/2021.acl-long.519
https://doi.org/10.18653/v1/2021.acl-long.519
https://aclanthology.org/2021.acl-long.519
https://aclanthology.org/2021.acl-long.519
https://doi.org/10.18653/v1/2022.emnlp-main.249
https://aclanthology.org/2022.emnlp-main.249
https://aclanthology.org/2022.emnlp-main.249
https://doi.org/10.1162/tacl_a_00564
https://aclanthology.org/2023.tacl-1.35
https://aclanthology.org/2023.tacl-1.35
https://doi.org/10.1109/DSIT55514.2022.9943943
https://doi.org/10.18653/v1/2023.findings-emnlp.157
https://aclanthology.org/2023.findings-emnlp.157
https://aclanthology.org/2023.findings-emnlp.157
https://doi.org/10.18653/v1/2022.emnlp-main.372
https://aclanthology.org/2022.emnlp-main.372
https://aclanthology.org/2022.emnlp-main.372
https://arxiv.org/abs/2301.12652
https://arxiv.org/abs/2301.12652
https://openreview.net/forum?id=6z_yPCrdCA4
https://doi.org/10.1145/3584371.3612956
https://doi.org/10.1145/3584371.3612956
https://doi.org/10.1145/3584371.3612956

[79] Disha Shrivastava et al. “RepoFusion: Training Code Models to Understand Your

Repository”. In: Submitted to The Twelfth International Conference on Learning
Representations. under review, available at https://openreview.net/forum?id=
2drC319yHQ and https://arxiv.org/abs/2306.10998. 2023.

[80] Amit Singhal and I. Google. “Modern Information Retrieval: A Brief Overview”. In:

IEEE Data Engineering Bulletin 24 (Jan. 2001), pp. 35–43.

[81] Shamane Siriwardhana et al. “Improving the Domain Adaptation of Retrieval

Augmented Generation (RAG) Models for Open Domain Question Answering”. In:

Transactions of the Association for Computational Linguistics 11 (2023), pp. 1–17.
doi: 10.1162/tacl_a_00530. url: https://aclanthology.org/2023.tacl-1.1.

[82] Krishna Srinivasan et al. “QUILL: Query Intent with Large Language Models using

Retrieval Augmentation and Multi-stage Distillation”. In: Proceedings of the 2022
Conference on Empirical Methods in Natural Language Processing: Industry Track.
Ed. by Yunyao Li and Angeliki Lazaridou. Abu Dhabi, UAE: Association for Com-

putational Linguistics, Dec. 2022, pp. 492–501. doi: 10.18653/v1/2022.emnlp-

industry.50. url: https://aclanthology.org/2022.emnlp-industry.50.

[83] Weiwei Sun et al. “Is ChatGPT Good at Search? Investigating Large Language

Models as Re-Ranking Agents”. In: Proceedings of the 2023 Conference on Em-
pirical Methods in Natural Language Processing. Ed. by Houda Bouamor, Juan

Pino, and Kalika Bali. Singapore: Association for Computational Linguistics, Dec.

2023, pp. 14918–14937. doi: 10.18653/v1/2023.emnlp-main.923. url: https:

//aclanthology.org/2023.emnlp-main.923.

[84] James Thorne et al. “FEVER: a Large-scale Dataset for Fact Extraction and VERifi-

cation”. In: Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long Papers). Ed. by Marilyn Walker, Heng Ji, and Amanda Stent. New Orleans,

Louisiana: Association for Computational Linguistics, June 2018, pp. 809–819. doi:

10.18653/v1/N18-1074. url: https://aclanthology.org/N18-1074.

[85] Hugo Touvron et al. Llama 2: Open Foundation and Fine-Tuned Chat Models. 2023.
arXiv: 2307.09288 [cs.CL].

[86] Hugo Touvron et al. LLaMA: Open and Efficient Foundation Language Models. 2023.
arXiv: 2302.13971 [cs.CL].

[87] Yoshihisa Udagawa. “An Augmented Vector Space Information Retrieval for Re-

covering Requirements Traceability”. In: 2011 IEEE 11th International Conference
on Data Mining Workshops. 2011, pp. 771–778. doi: 10.1109/ICDMW.2011.27.

[88] Ashish Vaswani et al. “Attention is All You Need”. In: Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems. NIPS’17. Long Beach,
California, USA: Curran Associates Inc., 2017, pp. 6000–6010. isbn: 9781510860964.

url: https://dl.acm.org/doi/10.5555/3295222.3295349.

[89] Shreyas Vinayakumar and Swagata Ashwani. “AI Can Look Up StackOverflow too:

Retrieval-Augmented Code Generation”. In: 2023. url: http://web.stanford.edu/

class/cs224n/final-reports/final-report-169502968.pdf.

35

https://openreview.net/forum?id=2drC319yHQ
https://openreview.net/forum?id=2drC319yHQ
https://arxiv.org/abs/2306.10998
https://doi.org/10.1162/tacl_a_00530
https://aclanthology.org/2023.tacl-1.1
https://doi.org/10.18653/v1/2022.emnlp-industry.50
https://doi.org/10.18653/v1/2022.emnlp-industry.50
https://aclanthology.org/2022.emnlp-industry.50
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://aclanthology.org/2023.emnlp-main.923
https://aclanthology.org/2023.emnlp-main.923
https://doi.org/10.18653/v1/N18-1074
https://aclanthology.org/N18-1074
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2302.13971
https://doi.org/10.1109/ICDMW.2011.27
https://dl.acm.org/doi/10.5555/3295222.3295349
http://web.stanford.edu/class/cs224n/final-reports/final-report-169502968.pdf
http://web.stanford.edu/class/cs224n/final-reports/final-report-169502968.pdf

References

[90] Ellen M. Voorhees and Dawn M. Tice. “The TREC-8 Question Answering Track”.

In: Proceedings of the Second International Conference on Language Resources and
Evaluation (LREC’00). Ed. by M. Gavrilidou et al. Athens, Greece: European Lan-

guage Resources Association (ELRA), May 2000. url: http://www.lrec-conf.org/

proceedings/lrec2000/pdf/26.pdf.

[91] Haoye Wang et al. “Context-Aware Retrieval-Based Deep Commit Message Gener-

ation”. In: ACM Trans. Softw. Eng. Methodol. 30.4 (July 2021). issn: 1049-331X. doi:

10.1145/3464689. url: https://doi.org/10.1145/3464689.

[92] Liang Wang, Nan Yang, and Furu Wei. “Query2doc: Query Expansion with Large

Language Models”. In: Proceedings of the 2023 Conference on Empirical Methods in
Natural Language Processing. Ed. by Houda Bouamor, Juan Pino, and Kalika Bali.

Singapore: Association for Computational Linguistics, Dec. 2023, pp. 9414–9423.

url: https://aclanthology.org/2023.emnlp-main.585.

[93] Weishi Wang et al. “RAP-Gen: Retrieval-Augmented Patch Generation with CodeT5

for Automatic Program Repair”. In: Proceedings of the 31st ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. ESEC/FSE 2023. New York, NY, USA: Association for Computing

Machinery, 2023, pp. 146–158. doi: 10.1145/3611643.3616256. url: https://doi.

org/10.1145/3611643.3616256.

[94] Xing David Wang, Ulf Leser, and Leon Weber. “BEEDS: Large-Scale Biomedical

Event Extraction using Distant Supervision and Question Answering”. In: Pro-
ceedings of the 21st Workshop on Biomedical Language Processing. Ed. by Dina

Demner-Fushman et al. Dublin, Ireland: Association for Computational Linguis-

tics, May 2022, pp. 298–309. doi: 10.18653/v1/2022.bionlp-1.28. url: https:

//aclanthology.org/2022.bionlp-1.28.

[95] Yue Wang et al. “CodeT5+: Open Code Large Language Models for Code Under-

standing and Generation”. In: The 2023 Conference on Empirical Methods in Natural
Language Processing. 2023. url: https://openreview.net/forum?id=uu6Oq7MN7g.

[96] Zhiguo Wang et al. “Multi-passage BERT: A Globally Normalized BERT Model

for Open-domain Question Answering”. In: Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP). Ed. by Kentaro Inui

et al. Hong Kong, China: Association for Computational Linguistics, Nov. 2019,

pp. 5878–5882. doi: 10.18653/v1/D19-1599. url: https://aclanthology.org/D19-

1599.

[97] Jason Wei et al. “Chain-of-Thought Prompting Elicits Reasoning in Large Language

Models”. In:Advances in Neural Information Processing Systems. Ed. by S. Koyejo et al.
Vol. 35. Curran Associates, Inc., 2022, pp. 24824–24837. url: https://proceedings.

neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-

Paper-Conference.pdf.

36

http://www.lrec-conf.org/proceedings/lrec2000/pdf/26.pdf
http://www.lrec-conf.org/proceedings/lrec2000/pdf/26.pdf
https://doi.org/10.1145/3464689
https://doi.org/10.1145/3464689
https://aclanthology.org/2023.emnlp-main.585
https://doi.org/10.1145/3611643.3616256
https://doi.org/10.1145/3611643.3616256
https://doi.org/10.1145/3611643.3616256
https://doi.org/10.18653/v1/2022.bionlp-1.28
https://aclanthology.org/2022.bionlp-1.28
https://aclanthology.org/2022.bionlp-1.28
https://openreview.net/forum?id=uu6Oq7MN7g
https://doi.org/10.18653/v1/D19-1599
https://aclanthology.org/D19-1599
https://aclanthology.org/D19-1599
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf

[98] Michihiro Yasunaga et al. “Retrieval-Augmented Multimodal Language Modeling”.

In: Proceedings of the 40th International Conference on Machine Learning. ICML’23.

Honolulu, Hawaii, USA: JMLR.org, 2023.

[99] Fanghua Ye et al. “Enhancing Conversational Search: Large Language Model-Aided

Informative Query Rewriting”. In: Findings of the Association for Computational
Linguistics: EMNLP 2023. Ed. by Houda Bouamor, Juan Pino, and Kalika Bali. Singa-

pore: Association for Computational Linguistics, Dec. 2023, pp. 5985–6006. url:

https://aclanthology.org/2023.findings-emnlp.398.

[100] Ori Yoran et al. “Answering Questions by Meta-Reasoning over Multiple Chains of

Thought”. In: Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing. Ed. by Houda Bouamor, Juan Pino, and Kalika Bali. Singapore:

Association for Computational Linguistics, Dec. 2023, pp. 5942–5966. url: https:

//aclanthology.org/2023.emnlp-main.364.

[101] Daoguang Zan et al. “Large Language Models Meet NL2Code: A Survey”. In:

Proceedings of the 61st Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers). Ed. by Anna Rogers, Jordan Boyd-Graber, and

Naoaki Okazaki. Toronto, Canada: Association for Computational Linguistics,

July 2023, pp. 7443–7464. doi: 10.18653/v1/2023.acl-long.411. url: https:

//aclanthology.org/2023.acl-long.411.

[102] Daoguang Zan et al. “When Language Model Meets Private Library”. In: Findings
of the Association for Computational Linguistics: EMNLP 2022. Ed. by Yoav Goldberg,
Zornitsa Kozareva, and Yue Zhang. Abu Dhabi, United Arab Emirates: Association

for Computational Linguistics, Dec. 2022, pp. 277–288. doi: 10.18653/v1/2022.

findings-emnlp.21. url: https://aclanthology.org/2022.findings-emnlp.21.

[103] Yury Zemlyanskiy et al. “Generate-and-Retrieve: Use Your Predictions to Improve

Retrieval for Semantic Parsing”. In: Proceedings of the 29th International Conference
on Computational Linguistics. Ed. by Nicoletta Calzolari et al. Gyeongju, Republic of
Korea: International Committee on Computational Linguistics, Oct. 2022, pp. 4946–

4951. url: https://aclanthology.org/2022.coling-1.438.

[104] Fengji Zhang et al. “RepoCoder: Repository-Level Code Completion Through Itera-

tive Retrieval and Generation”. In: Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing. Ed. by Houda Bouamor, Juan Pino, and Ka-

lika Bali. Singapore: Association for Computational Linguistics, Dec. 2023, pp. 2471–

2484. url: https://aclanthology.org/2023.emnlp-main.151.

[105] Jianyi Zhang et al. “ReAugKD: Retrieval-Augmented Knowledge Distillation For

Pre-trained Language Models”. In: Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers). Ed. by Anna

Rogers, Jordan Boyd-Graber, and Naoaki Okazaki. Toronto, Canada: Association for

Computational Linguistics, July 2023, pp. 1128–1136. doi: 10.18653/v1/2023.acl-

short.97. url: https://aclanthology.org/2023.acl-short.97.

[106] Wayne Xin Zhao et al. A Survey of Large Language Models. 2023. arXiv: 2303.18223
[cs.CL].

37

https://aclanthology.org/2023.findings-emnlp.398
https://aclanthology.org/2023.emnlp-main.364
https://aclanthology.org/2023.emnlp-main.364
https://doi.org/10.18653/v1/2023.acl-long.411
https://aclanthology.org/2023.acl-long.411
https://aclanthology.org/2023.acl-long.411
https://doi.org/10.18653/v1/2022.findings-emnlp.21
https://doi.org/10.18653/v1/2022.findings-emnlp.21
https://aclanthology.org/2022.findings-emnlp.21
https://aclanthology.org/2022.coling-1.438
https://aclanthology.org/2023.emnlp-main.151
https://doi.org/10.18653/v1/2023.acl-short.97
https://doi.org/10.18653/v1/2023.acl-short.97
https://aclanthology.org/2023.acl-short.97
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2303.18223

References

[107] Wayne Xin Zhao et al. “Dense Text Retrieval Based on Pretrained Language Models:

A Survey”. In: ACM Trans. Inf. Syst. (Dec. 2023). Just Accepted. issn: 1046-8188. doi:
10.1145/3637870. url: https://doi.org/10.1145/3637870.

[108] Shuyan Zhou et al. “DocPrompting: Generating Code by Retrieving the Docs”.

In: The Eleventh International Conference on Learning Representations. ICLR 2023

notable top 25%. 2023. url: https://openreview.net/forum?id=ZTCxT2t2Ru.

[109] Yutao Zhu et al. Large Language Models for Information Retrieval: A Survey. 2023.
arXiv: 2308.07107 [cs.CL].

[110] Honglei Zhuang et al. “RankT5: Fine-Tuning T5 for Text Ranking with Ranking

Losses”. In: Proceedings of the 46th International ACM SIGIR Conference on Research
and Development in Information Retrieval. SIGIR ’23. New York, NY, USA: Associ-

ation for Computing Machinery, 2023, pp. 2308–2313. isbn: 9781450394086. doi:

10.1145/3539618.3592047. url: https://doi.org/10.1145/3539618.3592047.

38

https://doi.org/10.1145/3637870
https://doi.org/10.1145/3637870
https://openreview.net/forum?id=ZTCxT2t2Ru
https://arxiv.org/abs/2308.07107
https://doi.org/10.1145/3539618.3592047
https://doi.org/10.1145/3539618.3592047

	Introduction
	Background
	Information Retrieval
	Large Language Models

	Retrieval-Augmented Large Language Models: Methods
	Query Rewriter
	Retriever
	Reranker
	Reader
	Further RALLM Models and additional Aspects
	Evaluation

	Retrieval-Augmented Large Language Models: Applications
	General Applications
	Applications in Software Engineering
	Code Generation with Retrieval Methods
	Code Search with Retrieval Methods
	Code Summarizing with Retrieval Methods
	Requirements Traceability with Retrieval Methods
	Commit Message Generation with Retrieval Methods
	Automatic Program Repair with Retrieval Methods

	Discussion and Conclusion
	References

