
The Journal of Systems and Software 213 (2024) 112051

A
0
n

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

New Trends and Ideas

A conceptual and architectural characterization of antifragile systems✩

Vincenzo Grassi a, Raffaela Mirandola b,∗, Diego Perez-Palacin c

a Università di Roma Tor Vergata, Roma, Italy
b Karlsruhe Institute of Technology (KIT), Germany
c Linnaeus University, Växjö, Sweden

A R T I C L E I N F O

Keywords:
Antifragility
Dependability
Uncertainty
Software architecture

A B S T R A C T

Antifragility is one of the terms that have recently emerged with the aim of indicating a direction that
should be pursued toward the objective of designing Information and Communications Technology systems
that remain trustworthy despite their dynamic and evolving operating context. We present a characterization
of antifragility, aiming to clarify from a conceptual viewpoint the implications of its adoption as a design
guideline and its relationships with other approaches sharing a similar objective. To this end, we discuss the
inclusion of antifragility (and related concepts) within the well-known dependability taxonomy, which was
proposed a few decades ago with the goal of providing a reference framework to reason about the different
facets of the general concern of designing dependable systems. From our conceptual characterization, we then
derive a possible path toward the engineering of antifragile systems.
1. Introduction

Information and Communications Technology (ICT) systems repre-
sent a vital infrastructure for our society and, consequently, we are
increasingly concerned with their trustworthiness. In this respect, it is
widely recognized that the ability of these systems to cope with the
more and more dynamic and evolving contexts where they operate is a
key element to achieving the desired level of confidence about them.

How to design and build ICT systems that remain trustworthy de-
spite changing operating conditions is a long-standing concern and dif-
ferent lines of work have been proposed and pursued to this end (Weyns
and others, 2013; Ghezzi, 2016). In parallel with them, it has emerged
the need for conceptual frameworks that can help in shedding light
on the different facets of this general concern, to clarify specific (and
possibly different) objectives that could be pursued, methodologies and
techniques that are most suitable to achieve them, and their mutual
relationships. In this respect, a fundamental contribution is the taxon-
omy mainly developed during the ’80s and ’90s under the dependability
umbrella term (Avizienis et al., 2004), where dependability is defined
as ‘‘[...] the ability [of an ICT system] to deliver service that can justifiably
be trusted’’ (as an alternative definition, the same paper proposes ‘‘[...]
the ability to avoid service failures that are more frequent and more severe
than is acceptable’’). That taxonomy, starting from the dependability
root term, provided a common vocabulary and conceptual reference
for reasoning about the different facets of what impairs dependability,
how to cope with it, and how to assess the resulting dependability.

✩ Editor: P. Lago.
∗ Corresponding author.
E-mail addresses: vincenzo.grassi@uniroma2.it (V. Grassi), raffaela.mirandola@kit.edu (R. Mirandola), diego.perez@lnu.se (D. Perez-Palacin).

In the next years, other terms besides dependability (and the more
specific terms and concepts derived from it in that taxonomy) have
been introduced to characterize possible approaches aimed at building
ICT systems able to cope with changes. Two of these terms that have
emerged over others are resilience and, more recently, antifragility. Both
terms have their origin in areas other than ICT systems, but their
usage within this latter area has become increasingly popular, somehow
obfuscating any reference to the previous dependability taxonomy from
a conceptual and terminology perspective. However, the scope of these
terms and underlying concepts and their relationship with other terms
and concepts that can be encountered in related literature is sometimes
not very clear. It has also been argued (Avižienis, 2017), referring in
particular to resilience, that this term, as it appears to be used in the
ICT literature, does not actually bring with it visions or concepts dif-
ferent from those that could be already derived from the dependability
taxonomy (Avizienis et al., 2004).

In this respect, we believe that a primary need for a software
engineer involved in the design of trustworthy systems able to cope
with changes is to have a commonly agreed-on repertoire of terms
and underlying concepts, which makes clear which system aspects each
term intends to capture, whether some term is a specialization (qualifi-
cations) of some other, or if it denotes a means for attaining a property
indicated by another term. From this perspective, our position is that
the crisp conceptual reference provided by the dependability taxonomy
vailable online 8 April 2024
164-1212/© 2024 The Authors. Published by Elsevier Inc. This is an open access art
c-nd/4.0/).

https://doi.org/10.1016/j.jss.2024.112051
Received 2 October 2023; Received in revised form 5 February 2024; Accepted 1 A
icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

pril 2024

https://www.elsevier.com/locate/jss
https://www.elsevier.com/locate/jss
mailto:vincenzo.grassi@uniroma2.it
mailto:raffaela.mirandola@kit.edu
mailto:diego.perez@lnu.se
https://doi.org/10.1016/j.jss.2024.112051
https://doi.org/10.1016/j.jss.2024.112051
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2024.112051&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


The Journal of Systems & Software 213 (2024) 112051V. Grassi et al.
should not be lost or obfuscated but rather updated and expanded, if
necessary. As a contribution in this direction, in this paper, we revisit
the taxonomy presented in Avizienis et al. (2004) and propose an
extension of its scope that allows us to give first-class status to issues
that were somewhat overlooked in the original proposal. As a result of
this extension, we argue that the antifragility term and the underlying
concepts can be integrated into that taxonomy, maintaining in this way
its role of a unified place where the relationships among different goals
and approaches aimed at designing and building ICT systems able to
cope with changes can be better understood and compared.

Then, based on this conceptual clarification, as a second contri-
bution of this paper, we discuss how to promote the engineering of
this antifragility vision. To this end, we first present a reference model
for antifragile ICT systems inspired by the three-layer reference model
for self-managing systems proposed in Kramer and Magee (2007), and
then we delineate a path based on the Digital Twin technology for the
realization of antifragile systems.

This paper builds upon the preliminary ideas on this topic presented
in Grassi et al. (2023), where a first proposal of including the an-
tifragility concept in the dependability taxonomy was presented, and
extends it as follows:

(i) we provide in Section 4 an enhanced characterization of the
systems under study including the impact of uncertainty and a
refinement of the concept of satisfaction metric as an overall
measure of dependability;

(ii) in Section 5.2.1 we introduce and explain the concept of depend-
ability lifecycle to better define the antifragility attribute;

(iii) in Section 6 we include the mapping of the proposed definition
into a reference model and present a path toward its realiza-
tion with a mapping to the Digital Twin standard reference
architecture;

(iv) we extensively use the running example in the paper to illustrate
the introduced concepts and notation;

(v) we include in Section 7 an extended related work section;
(vi) we include a discussion on open issues in a new section;

(vii) we add an appendix about resilience to complete the analysis of
the terminology;

(viii) we include a new appendix with preliminary experiments with
the running example about the tractability of antifragility.

Paper organization The rest of the paper is organized as follows.
Section 2 briefly reviews the taxonomy presented in Avizienis et al.
(2004), highlighting its main concepts, and presents the high-level
idea of our contribution. In Section 3, we outline an example system
we will use throughout the paper to illustrate some of the concepts
we introduce. In Section 4, we present the conceptual framework we
use as a basis for our discussion. Then, in Section 5, we present our
extensions to the original taxonomy, showing how, thanks to this, the
antifragility concept can find a proper placement within that taxonomy.
In Section 6, we discuss the engineering implications of the antifragility
vision and outline a reference model and a possible realization di-
rection for antifragile ICT systems. Finally, we present related works
in Section 7, discuss some open issues related to our proposal in
Section 8, and draw some final conclusions and hints for future work
in Section 9. To complete the terminology analysis, in Appendix A,
we briefly present some considerations about the resilience term, and
in Appendix B we presents some preliminary experiments with the
running example about antifragility tractability.

2. Background

Antifragility. The notion of antifragility originates from N. N. Taleb’s
book (Taleb, 2012), where the following often-cited definition is given:
‘‘Antifragility is beyond resilience or robustness. The resilient resists shocks
and stays the same; the antifragile gets better.’’. An antifragile system is
2

thus a system that thrives and improves when facing events with a
Fig. 1. The dependability taxonomy and the proposed extensions.
Source: Elaborated from Avizienis et al. (2004).

negative impact. As noted in Taleb (2012), the immune system is a
typical example of such a system taken from the natural world.

Taleb’s book, however, mainly presents the general vision of an-
tifragility, with no focus on specific domains like ICT systems.

The dependability taxonomy. The taxonomy presented in Avizienis et al.
(2004) (the black parts of Fig. 1 illustrate its first levels) starts from
the dependability root term, which identifies the context this taxonomy
refers to, as stated in the definitions reported in Section 1. At the
immediately next level of the taxonomy tree, we find three different
branches: attributes, which define a vocabulary of terms that can be
used to characterize from (partially) different perspectives the prop-
erties an ICT system should exhibit to consider it dependable; means,
which identify different (not mutually exclusive) possible categories
where we can group approaches that can be adopted to attain de-
pendability, as described by its attributes; threats, which specify what
these approaches should cope with, which can impair dependability,
distinguishing the different facets captured by the concepts of fault,
error, and failure. In particular, these latter three concepts are related
to each other through the identification of the ‘‘chain of dependability
threats’’: ⋯ →fault→error→failure→fault→ … . In this chain, a failure is
the manifestation at the system interface of a deviation of the delivered
service from the correct service, an error is the part of the system’s
total state that may lead to a failure, while a fault is defined as ‘‘[...]
The adjudged or hypothesized cause of an error [...]’’. In particular, faults
can be classified as internal when they originate within the system
boundary, or external when they originate outside the system boundary
(i.e., in the system environment).

In the end, as stated in the definition reported in the Introduction,
it is the occurrence of failures beyond some acceptable frequency and
severity that impairs the trust we have in the system capacity to deliver
an acceptable service, i.e., its dependability. Hence, over a narrow
horizon, a fault is the cause of an error, while over a broader horizon, it
is the cause that triggers the chain of events that shape our perception
of the system’s dependability.

Our contribution. With respect to the background outlined in the two
paragraphs above, the extension we propose involves all three branches
of the taxonomy. We aim to find a proper collocation to the antifragility
concept within that taxonomy, which clarifies its relationships and
interactions with other taxonomy concepts and suggests directions for
designing and operating an antifragile ICT system. To this end, we
extend the scope of possible threats to dependability, by expanding
the concept of fault into the more general concept of change, which
includes in particular what we call knowledge change. Then, we propose
adding antifragility to the class of possible dependability attributes as a



The Journal of Systems & Software 213 (2024) 112051V. Grassi et al.
new attribute focusing on assessing a system’s capacity to cope with
knowledge changes. Finally, as a possible suitable way to cope with
this new kind of threat, we extend the categories of means to achieve
dependability, including in it the new category of changes triggering and
exploitation.

The gray italics parts of Fig. 1 summarize this extension, which
is discussed in detail in Section 5. This extension then provides the
conceptual basis for the path toward the engineering of antifragile ICT
systems presented in Section 6.

3. Running example

To illustrate some of the main concepts introduced in the paper we
adopt an example inspired by the case provided in Hole (2016) on
malware spreading over a networked system. The system consists of
distributed nodes that need to connect with each other to accomplish
the system mission, where nodes can be computers, mobile robots,
IoT devices, etc. The network topology is dynamic in the sense that
nodes can appear/disappear, and the system operates according to
a self-organizing principle, where each node decides to which other
nodes it should connect to accomplish the current mission. Software
hosted by nodes is susceptible to malware attacks, where the infection
can originate from an external attack (outbreak of malware) or from
an internal propagation from another infected node. Regarding the
infection propagation, an unhealthy node will infect all its directly
connected nodes with which it shares a vulnerability. Different software
applications and different versions of the same application may have
different vulnerabilities. Nodes can realize that they have been infected
and apply a self-healing operation, but recognizing the infection is not
immediate. Fig. 2 illustrates a network of ten nodes of five different
types, where each geometric shape (e.g., ○,▵,□,…) represents a pos-
sible type, characterized by the specific set of applications (and relative
versions) it hosts. Dot filled nodes 1-3 are infected. Node 2 may have
already propagated its infection to node 3, and node 3 could propagate
its infection to nodes 4 and 10.

4. Conceptual framework

In this section we first discuss (Section 4.1) the impact of uncer-
tainty on dependability, then we present (Section 4.2) the notation
we use throughout the paper, and finally (Section 4.3) we introduce
a possible measure of dependability.

4.1. Characterization of uncertainty

As recalled in the Introduction, the taxonomy presented in Avizienis
et al. (2004) stresses the point that a system is dependable if we
can have a justifiable trust about its ability to deliver the service it
is intended for. This trust can be undermined by the presence of
threats, categorized in Avizienis et al. (2004) in the three distinct classes
of faults, errors, and failures. We believe that, besides these threats,
another important factor deserves to be explicitly considered when
talking about the dependability of a system: the uncertainty we have
about the threats that could affect the system, concerning, for example,
what they really are, and when, where, and how they could occur.
This uncertainty heavily contributes to shaping the trust we have in
a system, i.e., our perception of its dependability.

This uncertainty mainly derives from a lack of knowledge, and
different terminologies and taxonomies (Perez-Palacin et al., 2014;
Weyns and others, 2013) have been defined to characterize the spec-
trum of its possible manifestations. In this paper, we choose to refer
to a characterization along the two dimensions of model and data,
derived from Casti (2011). The first dimension (model) refers to the
availability (or lack) of a body of knowledge about some fragment
of the real world we are interested in: in our context, this fragment
includes a system and its operating environment. The model provides
3

Fig. 2. Example of a networked system with different types of nodes.

Fig. 3. Four-quadrants uncertainty model.
Source: Adapted from Casti (2011).

a framework, based on sources including past experience, theoretical
assumptions, and field observations, which allows us to interpret or
forecast the current or future system behavior and its interactions
with the environment. In particular, it is thanks to this model that
we can assess our perception of the system dependability. The second
dimension (data) refers to the availability (or lack) of information that
can be exploited to instantiate or refine a model, and/or to validate it.
Depending on what we have along these two dimensions, we can give
the following (coarse) characterization of the uncertainty scenarios we
could have to cope with de Lemos et al. (2013) Casti (2011), as shown
in Fig. 3:

• Known Knowns quadrant: in this case, both a model and the data
to instantiate and analyze it are available [Model and Data];

• Known Unknowns quadrant: in this case, data are available, but we
lack a model that fits those data and supports their interpretation
[No Model and Data];

• Unknown Knowns quadrant: in this case, a model is available, but
we lack some data that would be necessary to ‘‘fill’’ it [Model and
No Data];

• Unknown Unknowns quadrant: this case is also called deep uncer-
tainty (Walker et al., 2003), or latent uncertainty (Baruwal Chhetri
et al., 2019), that is an uncertainty of which there is no awareness:
neither a model nor data to instantiate it are present [No Model
and No Data].

4.2. Notation

We now introduce the notation we will use to refer to the fragment
of the real world we are interested in:



The Journal of Systems & Software 213 (2024) 112051V. Grassi et al.
• 𝑆: an ICT system (in the following simply called: system) made
of hardware and software components that together implement
some domain-specific logic;

• 𝐸: the environment with which the system interacts through a
suitable interface, where the boundary between the system and
the environment is based on the perspective and context of an
observer.

• 𝑅: the requirements that express the expectations that the system’s
stakeholders have about what is the correct behavior of the
system within its environment. These expectations are stated as
a set of properties that must/should hold, concerning what the
system must/should do (functional properties) and how it should
do it (non-functional properties, e.g., concerning the system per-
formance, security, etc.).

• 𝑀 : a model that captures at some suitable abstraction level the
current level of knowledge and understanding we have of 𝑆 and
𝐸.

The quality of 𝑆 (and hence the trust we can have in it) depends on
its ability to fulfill 𝑅 in the environment 𝐸. However, the assessment
we can make of this quality strongly depends on 𝑀 . We remark that
𝑀 represents the partial knowledge we have about 𝑆 and 𝐸, as what
we know and understand about them can be affected by different
types of uncertainty or even complete ignorance (Perez-Palacin and
Mirandola, 2014). Hence, 𝑀 captures only a subset of the whole set
of elements 𝑆 and 𝐸 are actually made of. Referring to the four-
quadrants classification of the uncertainty scenarios discussed above,
the lowermost two quadrants in Fig. 3 are out of the scope of 𝑀 , and
the uncertainty they reflect thus represents a serious threat to our trust
assessment. In turn, for the subset of 𝑆 and 𝐸 covered by 𝑀 (uppermost
two quadrants in Fig. 3), 𝑀 not only captures the current status but
also represents the effect of the changes/faults of which there exist
knowledge. This representation can be ‘‘imprecise’’ (e.g., because of
the lack of enough data needed to estimate some model parameters
or because of the adopted abstraction level) and partially uncertain
(e.g., there is no observed data that supports or bring full awareness
of the effect of a change).

Example 1. In the malware spreading example, 𝑆 includes nodes, their
connections, vulnerabilities, healing processes, etc., while 𝐸 includes
the set A of cyberattack vectors that could infect nodes of 𝑆.

𝑅 could include the following two quality requirements: (i) the
system should keep, on average, at least 95% of its nodes healthy
(i.e., non-infected) along time, and (ii) each node should be connected
to at least two nodes.

𝑀 represents what we actually know of 𝑆 and 𝐸 at a given time.
This body of knowledge could include:

• an instance of the metamodel in Fig. 4 that represents the current
knowledge of the system and environment;

• the assumption that nodes of different types do not share any
vulnerability because their software binaries are different (rep-
resented in Fig. 4 by setting to one the multiplicity of the Vulner-
ableSoftware association); as a consequence, an infected node can
propagate the infection only to its directly connected nodes of the
same type;

• a set 𝐴 ⊂ A of known attack vectors (A ⧵𝐴 is thus the set of attack
vectors not (yet) known to system designers);

• a stochastic model of the behavior of nodes health lifecycle, from
their infection and malware propagation to their recovery by the
self-healing process; it could simply consist of a random sampling
based on the probAttack probability or meanHealingT value in
Fig. 4: they refer, respectively, to the probability that an attack
successfully exploits some vulnerability of a node’s software and
the mean time that the node takes to heal from the infection.
4

Fig. 4. Metamodel part of the body of knowledge in M.

Based on this body of knowledge embedded in M, we can assess
the system’s ability to fulfill 𝑅. This assessment may be affected by
different types of uncertainty. Some uncertainties can be located within
the upper two quadrants ((Un-)Known Known) in Fig. 3: they could
concern, for example, the value of the probAttack probability for known
instances of AttackVectors, or even the composition itself of the set
of AttackVectors instances. In the former case, we likely already have
data to estimate the probability value, but more data would allow
a more precise and updated estimation. In the latter case, we could
not have yet collected evidence of the presence of some new attack
vector (lack of data), but our model is anyway ready to take it into
account when it will be possibly detected. Other uncertainties can be
located within the lower two quadrants ((Un-)Known Unknowns). They
could concern, for example, the adequacy of the adopted model for the
infection propagation: it is based on assumptions that, in the future,
could be revealed to be inadequate, but, at present, we are not able to
understand which of them should be possibly corrected and in which
way.

4.3. A measure of dependability

The taxonomy presented in Avizienis et al. (2004) does not provide
suggestions about possible ‘‘measures’’ of the overall level of trust we
could have in a given system, i.e., of its dependability. It proposes
instead a list of attributes (e.g., reliability, availability, safety, … ) that
can be used to measure from different perspectives the properties that
the system should manifest to allow us to trust it. We propose an
expansion of this perspective, starting from the argument that, in the
end, we trust a system if we are confident that (i) it is able to do
what it was designed for (functional requirements), (ii) it is able to
do it well (non-functional requirements), (iii) notwithstanding possible
threats to its ability to do that. In other words, we trust a system if we
are reasonably confident that it is able to fulfill its requirements, where
these requirements include, in general, statements about functions to
be performed, and about quality expectations we have about those
functions. In particular, the latter could concern different aspects of
the delivered service, including its performance (e.g., response time),
its readiness (e.g., availability Avizienis et al., 2004), or its continu-
ity (e.g., reliability Avizienis et al., 2004). In this respect, we note
that Avizienis et al. (2004) focuses only on attributes like the latter
two.

Based on these considerations, we introduce the concept of satisfac-
tion function 𝑄𝑅(𝑀) ∈ U, as a possible overall measure of the degree
of trust we have in a system, i.e., of its dependability, where U is some
suitable (possibly multi-dimensional) metric space with an associated
ordering relation ⪯. In our vision, 𝑄𝑅(𝑀), together with the metric
space (U,⪯) it is defined on, is intended to play a double-sided role:

• on the one side, it assesses to what extent the system 𝑆 is able
to fulfill in the environment 𝐸 the properties stated in 𝑅, based
on what we know and understand about them, i.e., 𝑀 . In this
respect, we point out the different roles that the ‘‘parameters’’



The Journal of Systems & Software 213 (2024) 112051V. Grassi et al.
𝑅 and 𝑀 play in the definition of 𝑄𝑅(𝑀): 𝑅 defines the (mul-
tidimensional) ‘‘space’’ within which a given system 𝑆 is to be
evaluated, and specifies the boundaries of the acceptable region
within that space; 𝑀 allows to identify the ‘‘point’’ within that
space corresponding to 𝑆. Based on this, 𝑄𝑅(𝑀) assesses whether
the point represented by 𝑀 lies within the acceptable region,
or how distant it is from it (where this general concept of ‘‘dis-
tance’’ should be suitably refined according to the domain-specific
characteristics);

• on the other side, as discussed in Section 4.1, 𝑄𝑅(𝑀) should also
embed information about the uncertainty affecting the provided
assessment of the distance between the ‘‘point’’ represented by 𝑀
and the acceptable region specified by 𝑅. This uncertainty results
from the combination of different factors, including the lack of
precision in the measurement of a given quantity or the degree
of confidence or belief we assign to the modeling assumptions
underlying the provided assessment.

Hence, given a set of requirements 𝑅 and two models 𝑀 ′ and 𝑀 ′′

corresponding to two different systems 𝑆′ and 𝑆′′ intended to fulfill
𝑅, 𝑄𝑅(𝑀 ′) ⪯ 𝑄𝑅(𝑀 ′′) means that, based on the knowledge we have,
𝑆′′ can be considered more dependable than 𝑆′, taking into account
both the estimated distance from 𝑅 and the uncertainties about this
estimation.

Example 2. Let us assume that for the considered example system
we are only interested in how many of the two requirements stated in
Example 1 the system fulfills, with a slight preference for requirement
(i) in case of partial fulfillment. Moreover, in case of the unfulfillment
of a requirement, no relevance is given to how far the system is from
its fulfillment. Under these assumptions, using fictional values for the
sake of exemplification, a possible (very simplistic) distance function
measuring the distance from R of the system modeled by M could be
defined as follows (where lower is better):

𝑑𝑖𝑠𝑡(𝑅,𝑀) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if both requirements are fulfilled
0.3 if only requirement (i) is fulfilled
0.5 if only requirements (ii) is fulfilled
1.0 otherwise

Moreover, let us assume that we have a separate measure of our
confidence in the distance estimation (due to uncertainties affecting
the distance assessment), based on a 0-1 scale, where 0 and 1 mean
no confidence and complete confidence, respectively.

A possible (again very simplistic) satisfaction metric could be thus
defined as follows:

𝑄𝑅(𝑀) = (1.0 − 𝑑𝑖𝑠𝑡(𝑅,𝑀)) ⋅ 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒

With this definition, the metric space U corresponds to the set R ∈
[0, 1], and the ordering relation ⪯ corresponds to the usual ≤ relation
defined on this set.

Actually evaluating 𝑄𝑅(𝑀) defined in this way for a given system
modeled by 𝑀 requires carrying out an analysis procedure based on
the model 𝑀 outlined in Example 1 (where 𝑀 includes, for example,
the stochastic model of infection propagation, and the assumptions
made about how infection propagates). As an example, this analysis
for a given model instance 𝑀 ′ could result in assessing that the system
it represents fulfills both requirements, but the confidence associated
with this assessment is only 0.6; hence, our overall trustworthiness
degree is expressed by 𝑄𝑅(𝑀 ′) = 1.0 ⋅ 0.6 = 0.6. On the other hand,
for another model instance 𝑀 ′′ referring to a different system, the
analysis carried out using 𝑀 ′′ could reveal that this alternative system
fulfills only requirement (i) in Example 1, but the confidence about this
assessment is high, being equal to 0.95. Hence, for this second system,
we have 𝑄𝑅(𝑀 ′′) = 0.7 ⋅ 0.95 = 0.665, which represents a higher overall
5

trustworthiness degree with respect to the former system.
5. Extending the dependability taxonomy

Based on the considerations discussed in the previous section, we
revisit in this section the dependability taxonomy (Avizienis et al.,
2004) with the aim of extending and refining its scope. In particular,
this extension and refinement will allow us to give a suitable definition
and collocation of the antifragility concept. To this end, we discuss in
the next three subsections issues concerning the three main branches
of the original taxonomy: threats (Section 5.1), attributes (Section 5.2)
and means (Section 5.3).

5.1. Dependability threats

Within the conceptual framework provided by Avizienis et al.
(2004), faults play the role of fundamental triggering element of the
‘‘chain of dependability threats’’: ⋯ →fault→error→failure→fault→ …
. Indeed, they denote the cause that makes 𝑆 and 𝐸 enter or remain
within an error state, i.e., a state where 𝑆 could be partially or totally
unable to fulfill some of the requirements stated in 𝑅. Then, the
actual manifestation of this inability at the 𝑆’s interface represents a
failure. Hence, making a system dependable basically means devising
a satisfactory way to cope with possible faults and their consequences.

We revisit in this section these concepts, broadening their scope. In
particular, we extend besides faults the class of possible triggers of the
chain of dependability threats, including in this class other elements
that were somehow overlooked in the original taxonomy. We give to
the elements of this broadened class the general name of changes that
a system has to cope with and that could impair its dependability.

As a first step, we introduce the following classification into three
different types of possible changes that could occur, depending on
which of the elements we have identified in our conceptual framework
(i.e., 𝑆, 𝐸, 𝑅, or 𝑀) they affect:

1. state changes: they affect 𝑆 and/or 𝐸 by causing the modification
of the state of some of their elements so as to possibly enter
or remain within an error state. They thus include the original
concept of fault introduced in Avizienis et al. (2004);

2. requirement changes: they affect 𝑅, adding to and/or removing
from 𝑅 statements about properties of the system and/or its
environment;

3. knowledge changes: they affect 𝑀 , as a result of a modification of
the knowledge and understanding we have about 𝑆 and/or 𝐸.
We point out that a change of this type does not directly corre-
spond, in general, to a modification of 𝑆 or 𝐸 (which we classify
as state change). They could rather (but not necessarily) be
the consequence of the accumulation of observed state changes,
which better fit some new knowledge framework obtained by
modifying 𝑀 .

We now argue that besides state changes, which, as stated above,
include the concept of fault in Avizienis et al. (2004), also the latter two
types of changes (requirement and knowledge changes) can be considered
as triggers of the chain of dependability threats:

• requirement changes: a change of this type is likely to cause a mis-
alignment between 𝑆 (operating within 𝐸) and the new version
of 𝑅, as it, in a sense, re-shapes the boundary that delimits the
subset of error states within the overall set of possible states for 𝑆
and 𝐸. As a consequence, this may bring 𝑆 and 𝐸 to an error state,
which could lead to the manifestation of a failure, thus resulting
in the following ‘‘chain of threats’’:
requirement change→error→failure→... ;

• knowledge changes: at first sight, it could seem that they can hardly
be considered as the cause of an error (and then of a failure that
could impair the system dependability), as they do not refer to
a modification of any of 𝑆, 𝐸 or 𝑅, but only to the acquisition

of a new (hopefully better) understanding about them. However,



The Journal of Systems & Software 213 (2024) 112051V. Grassi et al.

t

w
i

a
t
o
a
i
a
t
m
a

E

this new understanding can lead to the realization that what was
considered as a correct state of 𝑆 and 𝐸 with respect to 𝑅 is
actually incorrect, i.e., it is an error that can ultimately lead to
the manifestation of a failure. Hence, the assessment we could
have made of the system dependability before the occurrence of
the knowledge change was fallacious, and after a new assessment,
we may realize that the system dependability is actually different
(lower). In other words, a knowledge change can generate an
error by transforming a hidden error we were unaware of into a
manifest error. As a consequence, knowledge changes can also be
considered as the starting point of a ‘‘chain of threats’’: knowledge
change→error→failure→...

From this discussion, the ‘‘chain of dependability threats’’ can be
hus extended in this way:

⋯ →change→error→failure→change→ … ,

here change belongs to any of the three types we have introduced and
ncludes in it the concept of fault of the original taxonomy.

However, we remark that even if these three types of changes can
ll be encompassed under the common notion of dependability threats,
hey are related in different ways to the uncertainty characterization
utlined in Section 4.1. On the one side, state and requirement changes
re the elements that ‘‘fill’’ the four quadrants of that characterization;
n this respect, a given model 𝑀 represents a specific partitioning
mong these quadrants of the set of all state and requirement changes
hat could possibly occur. On the other side, knowledge changes enact a
odification in the partitioning of this set among the four quadrants,

s reflected in the updated/new model they lead to.

xample 3.

• The infection of a healthy node because of a known attack 𝑎′ ∈
A is an example of state change originated in the environment
E, whose uncertainty status can be situated within the Known
Knowns quadrant. Indeed, we may assume to have a model for
𝑎′ (represented by a specific instance of the VulnerabilityExploit
metaclass) and data about it (which could include the historical
series of past attacks of that type) that allows us to instantiate
the class parameters (e.g., the probAttack attribute). We remark
that some degree of uncertainty is anyway present also in this
case, represented by the stochastic model (based on the probAttack
attribute) that we use to make forecasts about future occurrences
of this state change. Similar considerations could be made for the
connection/disconnection of a node to/from the system because
of an autonomous decision taken by the node itself, which is an
example of state change originated within S;

• The infection of a healthy node because of an unknown attack
𝑎′′ ∈ A⧵A is instead an example of state change whose uncertainty
status can be situated within the Unknown Knowns quadrant.
Indeed, differently from the previous example, we lacked the nec-
essary data to build a suitable instance of the VulnerabilityExploit
metaclass corresponding to 𝑎′′. A consequence of this ignorance is
that our current assessment of 𝑄𝑅(𝑀) does not take into account
the impact of this attack;

• Continuing the above example, when we gain awareness of the
new attack 𝑎′′ (after its manifestation), this results in a knowledge
change, represented by the update of M through the addition of a
suitable instance of the VulnerabilityExploit metaclass correspond-
ing to 𝑎′′. This knowledge change reshapes the boundary between
the Known Knowns and Unknown Knowns quadrants: the con-
cepts of vulnerability and corresponding exploitation probability
were already present in the model (i.e., they were part of the
Knowns embedded in the model, as exemplified by the metamodel
in Fig. 4), but we lacked some (Unknown) data about them;
6

• The realization of the fallacy of the assumption that an infection
propagates only to nodes of the same type is instead an example
of knowledge change that reshapes the boundary of the (Un)known
Unknowns quadrants: the metamodel in Fig. 4 constraints to
one the multiplicity of the VulnerableSoftware association, which
means that the possibility of infections propagating to nodes of
different types was completely beyond our awareness horizon.
No model instance can be created from that metamodel that can
appropriately fit the data that we now observe. This knowledge
change has thus a deeper impact than the previous one, as it will
lead to the definition of a different metamodel;

• An example of requirement change whose uncertainty can be
situated in the Known Knowns quadrant can be, for example,
the change toward always using secure communication between
nodes, enforced by a law announced in advance. In this case,
indeed, we have both the model (the boolean secComm attribute
included in the Node class that flags whether the node implements
secure communication) and the data (derived from testing secure
communication between nodes and observing the nodes that
already implemented it before it was enforced by law);

• An example of requirement change in the (Un)known Unknowns
quadrants could be the addition of a new requirement to the
set 𝑅 stated in Example 1 (leading to a new set of requirements
𝑅′), caused by the emergence of an unforeseen new stakeholder.
The new stakeholder could bring into the system sustainability
concerns, requiring, for example, that the nodes average energy
consumption remains below a given threshold 𝜃.

5.2. Dependability attributes

In this section, we start with a characterization of the lifecycle of a
system from the perspective of its dependability. Then, based on this
characterization, we give a definition of antifragility and motivate its
addition to the list of attributes that the taxonomy (Avizienis et al.,
2004) proposes as possible qualifications of the system dependability.

5.2.1. The dependability lifecycle
From a dependability perspective, the lifecycle of a system 𝑆 can

be seen as consisting of a sequence of successive phases. Each phase
corresponds to a single realization of the outer dependability cycle in
Fig. 5. A phase starts with the release of a version of 𝑆 that is deemed
adequate to fulfill 𝑅 in a given 𝐸, based on the knowledge we have
about them (i.e., 𝑀). The adequacy of the current version of 𝑆 means
that we are satisfied by the level of trust we can put in it, as measured
by the value of 𝑄𝑅(𝑀). When this adequacy no longer holds (as
discussed below), the current phase ends and a new version of 𝑆 is
released, which marks the beginning of the next phase (next cycle of
the outer cycle).

Within each phase, 𝑆 and 𝐸 are not ‘‘static’’, as they are subject to
what we have called state changes (as depicted by the self-loop of the
state labeled S, E, M, R in Fig. 5). However, these changes do not modify
𝑄𝑅(𝑀), i.e., the assessment we have made of the 𝑆’s dependability, as
long as their occurrence does not lead to the modification of one of the
‘‘pillars’’ 𝑄𝑅(𝑀) is based on, i.e., 𝑅 or 𝑀 , resulting in a modification
of its value.

Requirement or knowledge changes can also occur within a phase
(transitions labeled as R-change and K-change in Fig. 5), possibly leading
to a modification of the 𝑄𝑅(𝑀) value. If this modification does not
make 𝑄𝑅(𝑀) exit its acceptable region, this means that 𝑆 is adequate
also for the new knowledge/requirement scenario, and the system
remains within the inner dependability cycle evidenced as dotted arrows
in Fig. 5 (which thus includes only state changes and K- or R-changes
that keep 𝑄𝑅(𝑀) to an acceptable value). On the other hand, if 𝑄𝑅(𝑀)
drops below the acceptable threshold because of an R-change or K-
change, this motivates the release of a new version of 𝑆 (transitions
labeled R-triggered and K-triggered evolution, respectively), which starts



The Journal of Systems & Software 213 (2024) 112051V. Grassi et al.
Fig. 5. Dependability cycle.

a new phase (outer cycle) where 𝑄𝑅(𝑀) has been brought again to an
acceptable value.

Fig. 5 evidences, in the succession of phases that constitute the outer
cycle (dashed arrows), the distinction between two types of phases,
named R-phase and K-phase, depending on whether they terminate
because of the occurrence of a R-change or K-change, respectively. Both
types of phases start with given 𝑆, 𝐸, 𝑅 and 𝑀 (resulting from the
previous phase), and the consequent value 𝑄𝑅(𝑀), which assesses the
trust we have on 𝑆. From that point on, they evolve differently, as
briefly discussed below.

R-phase. When an R-change occurs, it modifies 𝑅 to some new 𝑅′, but
leaves 𝑀 unchanged, as it does not impact, in general, the understand-
ing we have of 𝑆 and 𝐸. However, the R-change leads to a reassessment
of the system dependability, measured by a new value 𝑄𝑅′ (𝑀). If this
new dependability value turns out to be unsatisfactory, this motivates
(as shown in the lower part of Fig. 5) the release of a new version of the
system, denoted as 𝑆′, with the consequent update of the model 𝑀 to
a new 𝑀 ′ that embeds the novelties introduced in 𝑆′ with respect to 𝑆,
and (hopefully) guarantees a satisfactory dependability value 𝑄𝑅′ (𝑀 ′).
𝑅′ and 𝑀 ′ thus represent, respectively, the new requirements and the
updated knowledge that characterize the beginning of the next phase.

K-phase. When a K-change occurs, it modifies 𝑀 to some new 𝑀 ′,
while 𝑅 remains unchanged. This leads to a reassessment of the system
dependability, measured by a new value 𝑄𝑅(𝑀 ′). If this new depend-
ability value turns out to be unsatisfactory, this again motivates (as
shown in the upper part of Fig. 5) the release of a new version of
the system (𝑆′′), and the consequent update of the already updated
model 𝑀 ′ to a newer 𝑀 ′′, which embeds the novelties introduced in
𝑆′′ with respect to 𝑆. 𝑀 ′′ thus represents the updated knowledge that
characterizes the beginning of the next phase, while the requirements
𝑅 remain unchanged.

Example 4.

• The knowledge changes mentioned in Example 3 (e.g., the discov-
ery of a new type of attack, or the realization of the existence of
attacks affecting nodes of different types simultaneously) lead to
the definition of a new model 𝑀 ′ that includes the new sources
of risk for the system. This may lead to realizing that the system
S trustworthiness measured by 𝑄𝑅(𝑀 ′) has decreased below the
acceptable value, thus triggering the release of a new version 𝑆′′

(with the associated model 𝑀 ′′) embedding suitable countermea-
sures that bring back the system trustworthiness to the previous
acceptable value, or even better (i.e., 𝑄𝑅(𝑀) ⪯ 𝑄𝑅(𝑀 ′′)). These
countermeasures could include the introduction of patches in
7

the affected software, which at least partially remedy the newly
discovered vulnerability or the implementation of new proactive
healing procedures.

• The requirement change mentioned in Example 3 (modification
of the set 𝑅 into a new set 𝑅′, because of the addition of a new
requirement concerning energy saving) triggers the release of a
new version 𝑆′ (with the associated model 𝑀 ′), in case the exist-
ing system S results unable to fulfill the new requirement (i.e., it
results 𝑄𝑅′ (𝑀) below the acceptable threshold). We point out
that the fulfillment of this new requirement could imply the need
for a trade-off with the fulfillment of previous requirements: for
example, this would be the case when energy saving is achieved
by reducing the frequency of the periodic preventive self-healing
procedures, which could increase the risk of undetected infection
propagation, with a negative impact on the requirement concern-
ing the node healthiness. As a consequence, it could result in
𝑄𝑅′ (𝑀) ≺ 𝑄𝑅′ (𝑀 ′) (comparison with respect to the extended
requirements), while 𝑄𝑅(𝑀 ′) ≺ 𝑄𝑅(𝑀) (comparison with respect
to the original requirements).

5.2.2. Antifragility
The concept of dependability cycle introduced in the previous section

gives us the basis for the characterization of the antifragility con-
cept. To this end, we start from the definition of antifragility for
ICT systems proposed, for example, in Russo and Ciancarini (2016),
Hole (2016), which largely recalls the general one already quoted in
Section 2 (Taleb, 2012): ‘‘Antifragility is beyond resilience or robustness.
The resilient resists shocks and stays the same; the antifragile gets better’’.
This definition strictly connects antifragility with the vision of a system
that does not simply resist ‘‘shocks’’ (i.e., changes, in the terminology
we have introduced) but rather exploits them to continuously improve
itself. However, this concept of ‘‘improvement’’ remains quite generic.
To give it a more precise characterization, we connect it with the idea
of ‘‘dependability growth’’: in our vision, a system improves itself if it is
able to improve the trust its stakeholders put in it (i.e., its dependability).
According to the discussion in Section 4.3, this amounts to saying that
a system improves itself if it is able to get closer and closer to the
complete fulfillment of the requirements stated in 𝑅 and to reduce
our uncertainty about that. In our framework, this definition of system
improvement can be made more precise as follows:

Definition 1. Given a succession of phases:
[

𝑝ℎ𝑎𝑠𝑒0, 𝑝ℎ𝑎𝑠𝑒1,… , 𝑝ℎ𝑎𝑠𝑒𝑛
]

, where 𝑅𝑖 and 𝑀 𝑖 denote, respectively,
the requirements and model at the beginning of phase 𝑖, and 𝑄𝑖

𝑅𝑖 (𝑀 𝑖)
denotes the corresponding satisfaction function (trustworthiness level),
a system improves itself in the timespan covered by those phases if it
holds:

𝑄𝑖
𝑅𝑖 (𝑀 𝑖) ⪯ 𝑄𝑖+1

𝑅𝑖+1 (𝑀
𝑖+1), 0 ≤ 𝑖 ≤ 𝑛 − 1 (1)

A succession of phases
[

𝑝ℎ𝑎𝑠𝑒0, 𝑝ℎ𝑎𝑠𝑒1,… , 𝑝ℎ𝑎𝑠𝑒𝑛
]

fulfilling the condi-
tion stated in expression (1) is said to be monotone.

Definition 1 implicitly relies on the meaningfulness of the compari-
son stated in expression (1). In this respect, we recall from Section 4.3
the different roles that 𝑅 and 𝑀 play in the definition of 𝑄𝑅(𝑀): 𝑅
defines the (multidimensional) evaluation space for a given system 𝑆,
and specifies the boundaries of the acceptable region within that space;
𝑀 identifies the point within that space corresponding to 𝑆. Finally,
𝑄𝑅(𝑀) assesses whether this point lies within the acceptable region
or how far it is from it. From this perspective, expression (1) makes
sense only if 𝑀 𝑖 and 𝑀 𝑖+1 identify points within the same space, and if
𝑄𝑖

𝑅𝑖 (𝑀 𝑖) and 𝑄𝑖+1
𝑅𝑖+1 (𝑀

𝑖+1) assess their position with respect to the same
acceptable region. In other words, expression (1) is meaningful only if it
holds:

𝑅𝑖 = 𝑅𝑖+1, 0 ≤ 𝑖 ≤ 𝑛 − 1 (2)



The Journal of Systems & Software 213 (2024) 112051V. Grassi et al.
From the discussion at the end of the previous subsection, we see
that the condition stated in expression (2) holds only if the succes-
sion

[

𝑝ℎ𝑎𝑠𝑒0, 𝑝ℎ𝑎𝑠𝑒1,… , 𝑝ℎ𝑎𝑠𝑒𝑛
]

consists exclusively of K-phases. Hence,
all these considerations lead to state the following definition of an
antifragile system:

Definition 2. A system is antifragile if it implements monotone
successions of K-phases.

An antifragile system is thus a system that is able to exploit knowl-
edge changes to improve its dependability. Such a virtuous behavior is
evidently a property that could be required for a system to consider it
trustworthy in specific scenarios. However, none of the dependability
attributes listed in Avizienis et al. (2004) (e.g., availability, reliability,
etc.) fits well with this kind of desirable behavior. From the perspective
of the dependability taxonomy (Avizienis et al., 2004), our suggestion is
thus to extend it by adding antifragility to the list of attributes that can
be used to qualify a system as dependable, as the behavior captured
by this new attribute (stated in Definition 2) can, in some contexts, be
considered relevant for the trustworthiness of a system.

5.3. Means to attain dependability

Possible means that can be exploited to attain the various attributes
of dependability are grouped in Avizienis et al. (2004) into four major
categories: prevention, tolerance, removal, and forecasting.

In the original proposal, these four categories refer to different ways
of coping with the threat represented by faults. In Section 5.1 we have
discussed the extension of this concept of threat to the wider class of
changes, which includes in it also the concepts of requirement change
and knowledge change, besides faults. In this section, we discuss whether
the four categories of means identified in Avizienis et al. (2004) are
also well suited to cope with this extended concept of threat. To this
end, we base our discussion on the consideration made in Avizienis
et al. (2004) that the four categories of means can be grouped into two
different classes, depending on the aim they have in coping with a given
threat: (i) means aimed at avoiding the occurrence of a threat, which
include prevention and removal, and (ii) means aimed at accepting
the occurrence of a threat, which include tolerance and forecasting (as
shown in the black part of Fig. 6). Considering now the extended
concept of changes we have introduced, both these classes appear as
reasonable ways of coping with the impact of these changes on the
dependability of a given system, as we argue in the following.

In the case of requirement changes, avoiding may include ap-
proaches aiming at conducting a thorough requirements elicitation
phase as much as possible, while accepting could include the adoption
of approaches fostering the so-called technical credit, with the adoption
of principles that prevent the introduction of (known or unknown)
‘‘negative lifecycle impacts’’ (Berenbach, 2014).

In the case of knowledge changes, avoiding could include approaches
aiming at gaining a deep and complete knowledge of the system and
its environment as much as possible, keeping the uncertainty about
them at a minimum, while accepting could include, also in this case,
the adoption of technical credit principles, investing in designing and
engineering systems able to anticipate as much as possible future
emergent situations (Berenbach, 2014).

However, with regard to knowledge changes, we point out that such
changes should (hopefully) lead to a better understanding of the system
and its environment and, possibly, to the release of a better system
version. For this reason, another goal to be pursued (besides avoiding or
accepting them) should also be to encourage their occurrence and their
exploitation to evolve the system into an improved version. Hence,
besides the means already introduced in Avizienis et al. (2004), we
should certainly devise means specifically aimed at achieving this goal,
i.e., fostering the occurrence and exploitation of knowledge changes.

Based on these considerations, we suggest the addition of a new
category to the four means to attain dependability already introduced
8

Fig. 6. Classification of means according to their aim w.r.t. to changes.
Source: Elaborated from Avizienis et al. (2004).

in Avizienis et al. (2004), specifically tailored to deal with knowledge
changes, taking advantage from them: we call it change triggering and ex-
ploitation. This category encompasses approaches such as fault injection
techniques or adversarial machine learning methods that may help to
understand the system’s behavior when facing stressful situations and
to exploit this knowledge, so realizing system behaviors as described
by Definition 2 aimed at attaining antifragility.

Fig. 6 evidences (in gray italics) the addition of the fostering class of
means, besides avoiding and accepting, and the introduction of the new
mean of change triggering and exploitation.

Finally, Fig. 1, already presented in Section 2, summarizes the
extensions (highlighted in gray italics) of the dependability taxonomy
that we have introduced in this section.

6. Antifragility engineering

In the previous sections, we have evidenced the need to give first-
class status to knowledge changes (K-changes) and we have defined
antifragility as an attribute that can be used to characterize a (positive)
attitude in dealing with this kind of changes. We have also added a new
category to the means to attain dependability, called change triggering
and exploitation, as a suitable means that can be used to improve the
antifragility of a system by encouraging and exploiting the occurrence
of K-changes.

In this section, to promote the engineering of antifragile systems,
we first discuss (Section 6.1) a mapping of this characterization of
antifragility into a reference model, whose goal is to help separate
different concerns and identify more precisely the main functionality
and the open problems that are key in progressing toward the design
of antifragile systems. Then, as a further step toward realizing this
reference model in practice, we present (Section 6.2) a possible path
from the proposed reference model to a concrete reference architec-
ture by leveraging existing Digital Twin frameworks. Specifically, we
highlight how the main functionalities of the proposed framework can
be managed by the entities in the Digital Twin reference architecture,
while also providing considerations about potential advantages and
disadvantages (Section 6.3).

6.1. Reference model

The reference model we propose is an extension of the three-
layer architectural reference model for self-managing systems presented
in Kramer and Magee (2007). This choice brings with itself the idea
that antifragility can be seen as an extension of the self-managing
design principle, which also includes the system’s ability to learn from
changes and improve itself. Fig. 7 illustrates our model, evidencing
the extension with respect to the original model. In particular, the
extension mainly concerns the uppermost layer of the model, while
the role of the other two layers remains substantially unchanged, as

outlined below.



The Journal of Systems & Software 213 (2024) 112051V. Grassi et al.
Bottom and middle layer. In the original proposal, within a self-
managing perspective, the role of the bottom and middle layers is to
cope with variations in the system itself or in its operating environment
by applying pre-defined adaptation plans. What differs between the
two layers is the scope of these plans, which in the bottom layer is
limited to single components (component tuning and adaptation), while
in the middle layer it may generally embrace the whole architecture
or relevant parts of it. Both layers also perform event and state moni-
toring activities and reporting to the respective upper layer, to enable
adaptation decisions that go beyond their respective limited scope.

We retain these roles in our reference model. With respect to the
conceptual framework discussed in the previous sections, this means
that the bottom and middle layers mainly cope with single component
or system-wide state changes, respectively, whose uncertainty character-
ization fits in both cases the Known-Knowns quadrant. These changes
are handled in the inner dependability cycles within a single phase,
as discussed in Section 5.2.1. According to these considerations, in
Fig. 7, we name these layers component-level state change management
and system-level state change management, respectively.

Upper layer. The role of this layer includes, as in Kramer and Magee
(2007), the responsibility of devising new action plans in response to:
(i) the introduction of new goals or (ii) the signaling from the layer
below of unforeseen operating states for which the existing plans reveal
to be inadequate. In terms of our conceptual framework, this corre-
sponds to the ability to cope with R-changes and K-changes, respectively
(in Fig. 7 we name this layer R- and K-change management). However,
we point out that our concept of K-change is broader than what is
envisioned by point (ii) above, as it includes not only the realization
of the existence of unforeseen state changes but also the achievement
of a better understanding of the existing system, environment, or
requirements, as they are.

Given this broad concept of K-changes, the extension we propose
aims at exploiting the potential of these changes to improve the sys-
tem, in the perspective of devising an antifragile system. To achieve
this goal, we thus suggest including in the upper layer the following
features, according to what was discussed in Section 5.3:

• change triggering mechanisms able to favor (possibly offline, e.g.,
working with a virtual duplicate of the real system) the occur-
rence of K-changes;

• learning and exploitation mechanisms allowing both the improve-
ment of the system quality (by making it able to cope with new
operating conditions or to better cope with already known condi-
tions) and the learning of new aspects that were not predefined.

These two sets of mechanisms should work together to enact the
‘‘evolution part’’ of each dependability cycle by triggering K-changes
and exploiting through suitable learning activities the newly acquired
knowledge.

Fig. 7 explicitly evidences the features introduced in the upper layer.
As a final remark, we point out that, as in Kramer and Magee (2007),
the distinction of concerns among the three layers reflects a time scale
differentiation: immediate feedback actions are at the lowest layer
while the more time-consuming actions (e.g., requiring the definition of
new action plans, or system evolution as a consequence of knowledge
change) are at the uppermost layer.

Example 5. A possible example of managing logic at the bottom layer
(component-level state change management) are the self-check and self-
healing operations that nodes can carry out independently to realize
that they are infected and solve it. Another example at this layer is
the implementation of the circuit-breaker pattern (Richardson, 2018)
together with the application of the fail-fast principle to create regions
of nodes in quarantine when a node realizes that it is infected and no-
tifies its neighboring nodes. In turn, an action under the responsibility
of the middle layer (system-level state change management) may be
9

Fig. 7. Reference model.

Fig. 8. ISO 23247 Digital Twin Reference Architecture entity (ISO, 2021); (a) Proposed
sub-entities, (b) sub-entities functional view.

to frequently analyze the system topology to find nodes that act as
a hub (i.e., many other nodes are connected to it) and send them a
signal to proactively self-heal (i.e., change their software binaries even
if they have not detected that they are infected), since a long-term
infection of these nodes is critical to the spread of the malware along
the whole system. Finally, an action that can be taken at the upper layer
(R- and K-change management) is to apply Chaos Engineering (Basiri
et al., 2016) and study its effects in order to gain new knowledge about
vulnerabilities of connected nodes and how malware actually spreads
across system nodes.

6.2. From a reference model to a reference architecture

Nowadays, the Digital Twin is a popular technology to collect infor-
mation and reason about actions in a system. Digital Twins keep their
digital representations synchronized with the real-world elements. In the
following, we leverage the entities defined in the Digital Twin reference
architecture specified in the ISO-23247 standard (ISO, 2021) to outline
a possible reification of the reference model in Fig. 7, with the aim of
suggesting how an antifragile system could be concretely designed. In
this respect, we remark that we may reasonably expect that (complex)
systems already incorporate technologies for model simulation, behav-
ior planning, etc., leveraging models or digital representations of their
components. These technologies clearly enable the full adoption of the
Digital Twin technology, thus paving the way toward the incremental
achievement of the antifragility goal.

Fig. 8(a) shows the three sub-entities in the Digital Twin reference
architecture proposed by ISO-23247—namely Operation and Manage-
ment, Application and Service, and Resource Access and Interchange—
whereas Fig. 8(b) details the corresponding functional entities (FE).



The Journal of Systems & Software 213 (2024) 112051V. Grassi et al.
Fig. 9. Collaboration between Digital Twin functional entities to achieve change
triggering and exploitation.

With respect to our conceptual framework, the Operation and Man-
agement Sub-Entity maintains the information about the real world
(𝑆 and 𝐸) by means of its functional entities (Synchronization FE,
Maintenance FE, Presentation FE), while the Digital Representation FE
handles the model 𝑀 and the requirements 𝑅.

The Synchronization FE handles state changes affecting directly 𝑆
and/or 𝐸, reflecting the new state in the corresponding digital rep-
resentation. Maintenance FE handles knowledge changes affecting 𝑀 ,
‘‘repairing’’ possibly discovered anomalies in the digital representation
(we explain below how the new knowledge could be obtained). Finally,
requirement changes come from a user entity, which is part of the Digital
Twin Framework in ISO (2021) and can interact with the Digital Twin
entity, through a collaboration with the Maintenance FE that fixes the
representation of the new requirements in the Digital Representation FE.

We now consider in particular knowledge changes. The knowledge
they bring into the system may come from different sources: directly
from the Analytic Service FE (part of the Application and Service Sub-
Entity), which analyzes the accumulated data collected during previous
state changes (e.g., referring to the running example, it recalculates the
probability of successful attack); from the user entity when a knowledge
change has not been internally generated; or from the change trig-
gering, learning and exploitation mechanisms we are envisioning. We
focus on the latter one and outline a process for its realization involving
different functional entities of the ISO-23247 standard. Fig. 9 sketches
the process. First, the Application Support FE generates the change to
be triggered and studied by accessing the Digital Representation FE
and producing a modified representation that includes the change
effects. Then, the consequences of the change should be unveiled. Two
alternative options arise:

• Through the observation of the modified real system. In this
case, the Synchronization FE, whose functionality is bidirectional,
synchronizes the modified representation in the real system. After
that, the Synchronization FE is again responsible for reflecting in
the Digital Representation FE the observed consequences of the
change that was applied to the system (i.e., how the modified
system behaves). This option is related to the Chaos Engineering
discipline and has advantages and disadvantages. An obvious
advantage is that it is possible to observe the true consequences of
any change. A weakness of this alternative is that its application
is constrained to learn from changes in 𝑆; learning about environ-
ment 𝐸 changes is more complicated because the actuators may
not be able to modify 𝐸 but only 𝑆. Another obvious disadvantage
is that experimenting with changes in the real system to learn
their consequences can take the system down and even threaten
safety and security.

• Through offline simulation. In this case, the Simulation FE receives
the modified representation and predicts the consequences of the
change in the system behavior. This alternative presents some
advantages: the consequences of a change are obtained safely
10
through a simulation; we can also simulate environment changes;
it is possible to make a sensitivity analysis or evaluate what-if
scenarios over a range of intensities for a change. A disadvantage
of this alternative is that we need to rely on the results of a
simulator, which may not be well-tested for boundary behaviors;
moreover, the unveiling of unknown unknowns is limited, since a
simulator cannot operate using inputs different from those it has
been engineered around.

Once the consequences of a change are available, the Analytical
Service FE is in charge of analyzing them and creating new knowledge.
This is the main functional entity where the learning is carried out. After
that, the Maintenance FE updates the representation in the Representa-
tion FE according to the new knowledge, making it more accurate with
respect to the behavior of the real system 𝑆 and the properties of the
environment 𝐸.

As a final remark, we point out that we have not mentioned in
our presentation all the functional entities included in the ISO-23247
reference architecture standard (ISO, 2021). This does not mean that
they are irrelevant, but we do not delve into them as they appear to be
out of the scope of change triggering and learning mechanisms, which
is our focus.

6.3. Engineering considerations

We discuss here some potential impediments in the suggested path
toward antifragility engineering. We first focus on the situations where
change triggering fosters K-changes, either by modifying the real system
or by simulation (Fig. 9). The potential impediments in the observation
of the consequences of changes in the real system stem from the usual
tasks carried out in the data cleaning area. It is necessary to identify
incorrect data and fix the data set for, subsequently, learning from it.
Incorrect data may refer to corrupted, duplicated, outliers, gaps over
time, or unexpected formats in part of the data in the dataset. This
task, which is commonly performed by data quality analysts, requires
leveling up its automation to approach the expected level of autonomy
in antifragile ICT systems. Another potential impediment is related to
the synchronization activities between the model (or digital represen-
tation) and the real system and this is one of the challenges in digital
twin deployments that are currently receiving research attention.

On the other hand, when the consequences of changes are obtained
through simulation, the impediments to observing such consequences
include the limitations of the simulation engine and its degree of cou-
pling with the system model. The engineers need to clearly understand
what is being simulated and which information in the model is ignored
by the simulation engine. Moreover, the simulation engine most prob-
ably uses a language different from the one adopted for the system
representation. In such a case, the Model-Driven Engineering field pro-
vides solid engineering techniques for integrating these two languages
through Model-to-Model transformations. However, the engineering
team needs expertise in Model-Driven Engineering to appropriately use
the model transformation languages.

Regarding the system improvement on behalf of the learning and
exploitation mechanisms, the evolution task carried out after a K-change
or R-change (Fig. 5) may be engineered following disparate methods,
from the pure manual evolution of the system to the autonomous self-
evolving software, passing through semi-automatic methods where the
system may autonomously find a potentially higher quality evolution
being guided and supervised by an engineer. Automated approaches
may take advantage of faster system simulation to compute the quality
of different potential evolution alternatives of the system and propose
the subset of options with the expected best quality. This makes the
simulation engine (the Simulation FE in the Digital Twin reference ar-
chitecture) be accessed from different parts of the antifragility process.
The experiments illustrated in Appendix B implement this possibility
where a simulator is used by the change triggering and by the learning
and exploitation during the exploration of alternative networked systems
to calculate the expected quality of each candidate.



The Journal of Systems & Software 213 (2024) 112051V. Grassi et al.

p
2
d
a
t
F
a
G
W
a
c
a
a
e
t

b
t
t
t
t

7. Related work

In this section, we briefly summarize works on dependability, re-
silience, and antifragility on which we leveraged (Section 7.1) and
existing architectural solutions dealing with (un)known (un)knowns
(Section 7.2).

7.1. Dependability, resilience, and antifragility

The word dependability is often used broadly to indicate a set of
roperties that guarantee that a system is functioning as required. In
004, Avizienis et al. (2004) defined a taxonomy that formalizes the
efinition of dependability as a set of attributes (e.g., reliability, safety,
vailability), means to attain dependability (e.g., fault prevention, fault
olerance) and threats to dependability (faults, errors, and failures).
rom 2004 until now, several other terms have emerged as, for ex-
mple, robustness, resilience, and self-healing (Andersson et al., 2021;
hosh et al., 2007; Laprie, 2008; Schmeck et al., 2010; Guelfi, 2011;
oods, 2015; Weyns and others, 2013), to characterize the system

bility to deal with faults and changes. Many of these papers provide
onceptual frameworks that assist in identifying the current state of the
rt, relationships among different approaches, and promising research
venues. However, they focus on some of these terms without consid-
ring their collocation into a general framework like the dependability
axonomy (Avizienis et al., 2004).

With the growing number of terms referring to concepts whose
oundaries are not always well defined, Avizienis in 2017 discussed
his ‘‘jungle of terminology’’ (Avižienis, 2017) to compare the different
erms and find common ground. This study suggests that the use of the
raditional taxonomy is able to cover the new terms that emerged in
his field.

At the same time, the use of the term antifragility introduced in
2012 in Taleb (2012) as the ability of a system to work in an open,
uncertain environment being able to absorb changes, react meaning-
fully even to unforeseen events and get even better afterward, is gaining
momentum. A recent comprehensive survey analyzing antifragility and
resilience with the aim of shedding light on approaches able to man-
age disruptions in business ecosystems is presented in Ramezani and
Camarinha-Matos (2020). A classification of disruption sources and
drivers is considered, complemented by a list of strategies to handle
disruptions and examples of engineered systems implementing promis-
ing approaches to increase resilience and antifragility. In the area of
ICT systems, Hole (2016) analyzes the concept of antifragility and
illustrates several examples of how often today’s ICT systems are fragile
to downtime and other large-impact events. The book then discusses
and illustrates, with some examples, a set of principles like modularity,
redundancy, and diversity, to cite a few, which could help move toward
the engineering of antifragile systems. A similar set of principles has
also been outlined in Russo and Ciancarini (2016, 2017) focusing on
software engineering and software architectures, respectively. The need
for a change of perspective when designing new antifragile systems is
also outlined in Bakhouya and Gaber (2014), de Bruijn et al. (2020),
Gorgeon (2015), which emphasizes the need to embrace the change
from the system conception phase instead of facing it.

With respect to these works, we have chosen to maintain the de-
pendability taxonomy (Avizienis et al., 2004) as the basic conceptual
reference model for the design of trustworthy systems, and to integrate
in it newly emerged concepts such as antifragility.

7.2. Architecting antifragility

As concerns existing architectural solutions underlying systems whose
goal is dealing with changes, we review here a set of recent architec-
tural proposals that can be considered a step forward toward a sys-
tematic approach to the design of antifragile systems (e.g., Gheibi and
Weyns, 2022; Klös et al., 2018a; Perrouin et al., 2012; Baruwal Chhetri
11
et al., 2019; Bouchenak et al., 2011; Zavala et al., 2020; Roth et al.,
2015; Baruwal Chhetri et al., 2018). For all of them, their design
choices can be understood in terms of the extended three-layer refer-
ence model we have proposed in Section 6.1. However, we note that in
most of the cases, the extensions they propose (mainly concerning the
uppermost layer of the model) only partially cover all the concerns that
would be required for a full-fledged antifragile system. Most of them,
indeed, include a learning component but do not include the change
triggering and exploitation capability.

These proposed architectures share a common conceptual vision
for the bottom and middle layers. In particular, the middle layer
implements the system-wide self-adaptation managing logic, mainly
architected according to the well-known MAPE-K model (Kephart and
Chess, 2003), where the 𝐾(knowledge) component stores the pre-
defined adaptation plans that are then implemented by the other MAPE
components.

As remarked above, the definition of the upper layer functionalities
is the characterizing aspect of these architectures, as summarized in the
remainder of this section and in Table 1.

Work in Gheibi and Weyns (2022) presents an architecture proposal
for a lifelong self-adaptive system, where the new layer goal is to detect
and manage new knowledge through learning mechanisms, e.g., by
updating and evolving the learning models and adaptation plans imple-
mented by the underlying layers. In Klös et al. (2018a), the upper layer
includes an evaluation, a learning, and a verification component whose
goal is to adjust the adaptation logic implemented by the underlying
layer when this is deemed necessary on the basis of newly acquired
knowledge. The idea of an upper layer managing self-improvement
through learning can also be found in Baruwal Chhetri et al. (2019). An
upper layer, organized with a feedback loop based on the 𝑀𝐴𝑃𝐸 −𝐾
model, is introduced in Roth et al. (2015), Perrouin et al. (2012), and
in Zavala et al. (2020) with the aim to adapt the adaptation logic
of the managing system. The definition of a layer implementing self-
self management by adopting a recursive design and mirroring and
replicating the autonomic components is presented in Bouchenak et al.
(2011) and exploited in Baruwal Chhetri et al. (2018) and Uzunov et al.
(2021) with the addition of learning capabilities.

The approach that appears to be closer to our vision is the one
presented in Hashmi et al. (2022), which focuses on secure systems.
The authors do not present explicitly a software architecture for their
approach but plan to exploit the AWARE (Baruwal Chhetri et al., 2018)
framework and enhance it to encompass self-exploration, self-learning
and self-training activities. Specifically, they envision systems able
to self-explore (through adversarial search approaches) the potential
impact of the cyber-attacks to evaluate suitable responses. Self-learning
abilities could help both the exploration and the understanding of
the attacks, while self-training capabilities, based on reinforcement
learning techniques, aim to help the evolution and the improvement
of the system as a result of the attacks. These new activities nicely fit
the reference model outlined in Fig. 7.

In summary, all the revised solutions can be characterized as partial
instances of the three-layer reference model we have proposed, as they
extend the model in Kramer and Magee (2007) by explicitly including
in the upper layer learning capabilities aimed at better enabling the sys-
tem to cope with modifications of the operating conditions. However,
what we want to stress with our reference model that extends the model
in Kramer and Magee (2007) is that the full vision of an antifragile
system (i.e., a system that learns from experience and improves itself)
would require exploiting learning capabilities also in the absence of
significant variations of the operating conditions, with the goal of
gaining a better understanding (knowledge change) of how the system
performs in a given environment, and how this performance could be
improved (which could also possibly lead to uncovering hidden parts
of the system itself or its environment). To this end, mechanisms like
fault injection and adversarial techniques in the uppermost layer could
help, and should be added to the proposed architectural solutions to

make them fully antifragile.



The Journal of Systems & Software 213 (2024) 112051V. Grassi et al.

a
c
m

𝑄
i
‘
t
i
b
E
r
c
a
c

Table 1
Upper layer roles in proposed architectures.

Name Upper layer

Lifelong Computing (Gheibi and
Weyns, 2022)

Meta-learning

Self-learning (Klös et al., 2018b) Evaluation, Learning
and Verification

ALM (Roth et al., 2015) MAPE-K loop with Prediction
and learning

DAS (Perrouin et al., 2012) MAPE-K loop and variability
models

HaFLoop (Zavala et al., 2020) Centralized and decentralized
MAPE-K loops

Self-Improving (Baruwal Chhetri
et al., 2019)

Agent-based learning

JADE (Bouchenak et al., 2011) Autonomic component mirroring
and replication

AWARE (Baruwal Chhetri et al.,
2018)

Learning

AWARE2 (Uzunov et al., 2021)
Adversarial search (Hashmi et al.,
2022)

Exploration, learning and training

8. Discussion

In this section, we discuss the connection between antifragility and
requirement changes (Section 8.1), the growth of the design space to
explore (Section 8.2), and some issues underlying the definition of
𝑄𝑅(𝑀) (Section 8.3).

8.1. Requirement changes and antifragility

The discussion in Section 5 establishes a direct connection between
antifragility and knowledge changes. Indeed, it characterizes antifragility
s a system attribute that describes its ability to cope with knowledge
hanges, taking advantage of them to improve its dependability (as
easured by the satisfaction function 𝑄𝑅(𝑀)), where the ‘‘improve-

ment’’ is observed with respect to an invariant set of requirements 𝑅.
We note that, indirectly, this characterization establishes a connection
also between antifragility and state changes, as in general, it is the ac-
cumulation of observations about (possibly unexpected) state changes
that, in the end, triggers a knowledge change.

What remains out of this characterization is the third type of
changes we have considered, i.e., requirement changes. We are aware
that these changes do occur during the system’s lifespan and that the
ability of a system to cope with them successfully can contribute to
building our trust in it. However, at present, we have doubts about the
suitability of antifragility as an attribute that characterizes ‘‘success’’
in coping with requirement changes. Other attributes could be more
suitable to capture relevant aspects of this success (see, for example,
the work in the area of technical credit (Berenbach, 2014)). We have
yet to reach a firm position about this point and thus prefer to leave it
as an open issue requiring further consideration.

8.2. Design space growth

One of the research challenges in model-based analysis is the growth
of the design space that needs to be explored. In the reference model
presented in Section 6.1, the antifragile system faces this challenge at
least twice: in the upper layer change triggering that modifies 𝑀 and in
the learning and exploitation.

The change triggering mechanisms in the upper layer generate data
about the system quality in a set of unprecedented circumstances to,
subsequently, learn from them. If the change triggering is guided by
humans, the design space size is limited to the ranges of the variables
the human desires to explore. A larger challenge comes when the
change triggering is autonomous. The objective is that this autonomous
12

mechanism unveils something that is currently unknown, and thus, it
should not only explore variants whose elements hold a tiny difference
with known environment and system situations. However, as an engi-
neered mechanism under some ground assumptions, it is designed with
limits in the types of variants it can create (e.g., the types of models that
the metamodel supports); it cannot explore situations that were totally
unexpected in the design. Referring to Section 4.1, this mechanism can
resolve Unknown–Knowns since it produces data on circumstances that
can be represented by the current models, but it cannot assist in the
obscure task of exploring variants of pure Unknown–Unknown circum-
stances. Nevertheless, with careful design of the change triggering, it
is possible to partially penetrate the Unknown–Unknowns quadrant,
as motivated in Garlan (2021) (e.g., using the ‘‘assume less’’ strategy
introduced in Garlan (2021) which, in our running example, would
make less assumptions about prior knowledge of the attack effects
and vulnerabilities). The latter possibility brings great benefits since
it enables becoming antifragile to unanticipated circumstances, but it
also exacerbates the challenge of the size of the design space to explore.

The learning and exploitation mechanisms carry out the system im-
provement. If the middle layer makes decisions using machine learning
models, the improvement may refer to finding knowledge from the new
data in the explored configurations in terms of further training the used
learner. These learners encompass modern artificial neural networks
and more traditional rule-based learners, such as decision trees. In this
case, the challenges in these fields, such as under and over-fitting or
changing data formats, affecting the model size, appear. The system
improvement may also refer to an optimization problem in terms of
modifying some system elements to increase the system overall quality,
now also including the newly explored scenarios. This optimization
may suffer again from the problem of exploring the design space. The
use of heuristics, like genetic algorithms, attempts to overcome the
challenge and still find the optimal result.

8.3. Satisfaction function

We have introduced in Section 4.3 the concept of satisfaction function
𝑅(𝑀), as an overall measure of the system dependability, underlining

ts double role: on the one side, it should provide an assessment of the
‘distance’’ of a given system (modeled by 𝑀) from the fulfillment of
he requirements stated in 𝑅; on the other side, it should also provide
nformation about the ‘‘precision’’ (uncertainty) of this assessment, as
oth aspects underpin our trust in a system. We have also given in
xample 2 a possible instantiation of 𝑄𝑅(𝑀). Still, we would like to
emark that it had only exemplification purposes, giving a very simple
oncrete example of our general idea of satisfaction function. Devising
suitable 𝑄𝑅(𝑀) for a real system is a far more complex task, requiring

ontributions from different fields, which include:

• Methodologies to estimate the set of ‘‘observables’’ involved in the
definition of 𝑅. In the case of an existing system, these methodolo-
gies can be based on data collected on the field, which, depending
on domain-specific situations, could require to be suitably cleaned
and elaborated. In the case of a still-to-be system, they should
rely on data derived from other sources, like suitable simulation
models. In both cases, more or less sophisticated analytic or
simulation models could be necessary to infer from these data the
observables’ value;

• Methodologies that, given an estimate of the observables’ value,
assess their distance from the acceptable region identified by 𝑅.
Several proposals about this issue have emerged in the recent
past, concerning, e.g., the assessment of measures of the partial
fulfillment of the requirements in 𝑅 or of the distance from some
target values (e.g. Lacerda et al., 2019; Klös et al., 2018b);

• Methodologies that allow the explicit annotation and estimation
of the confidence related to the assessment of the satisfaction
function 𝑄𝑅(𝑀). To this end, the adoption of languages and data
types that allow the representation of measurement uncertainties,



The Journal of Systems & Software 213 (2024) 112051V. Grassi et al.

9

f
2
t

for example, with the addition of the degree of belief associated
with that measurement as in Bertoa et al. (2020), Troya et al.
(2021) or using ranges, distribution probabilities, or confidence
intervals, could represent a possible solution to this issue;

• Methodologies to suitably combine the two ‘‘sides’’ of our 𝑄𝑅(𝑀)
concept, i.e., ‘‘distance’’ and ‘‘precision’’ of the assessment: re-
ferring again to Example 2, we have given there the idea of
combining these two sides through a simple product of separate
measures of these two aspects. Also, in this case, we remark that
this choice has only exemplification purposes, and it does not
mean in any way that we are suggesting its adoption as a general
methodology to get an overall single figure of merit.

. Conclusion

We have presented a conceptual characterization of antifragility,
unded on an extension of the dependability taxonomy (Avizienis et al.,
004). In this characterization, antifragility is an attribute that captures
he ability of a system to cope with a particular type of changes

(knowledge changes), taking advantage of their occurrence. We have
then suggested change triggering and exploitation as a suitable mean
to achieve this ability.

Then, based on this characterization, we have delineated a refer-
ence model for antifragile systems, have shown how recently proposed
architectures for advanced self-adaptive systems can fit this reference
model, and how an emerging technology such as Digital Twin can foster
their realization.

As a next step of this work, we plan to tackle the issue of how we
can assess the ‘‘antifragility degree’’ of an ICT system. Core elements of
this issue are the definition of suitable antifragility metrics and method-
ologies for their evaluation. In this respect, we note that such metrics
should allow us to quantify to what extent a system is able to cover
two distinct facets of antifragility, according to the characterization we
have given in Section 5: (i) the system’s ability to learn (extract new
knowledge) from the data it collects, and (ii) the ability to apply this
knowledge to evolve and improve itself.

On a broader perspective, we recall that the result of the an-
tifragility assessment is one of the elements that may concur with the
assessment of an overall satisfaction function 𝑄𝑅(𝑀), which we have
suggested in Section 4.3 as overall dependability measure for an ICT
system. We have discussed in Section 8.3 some issues concerning this
broader goal, which represent further lines of research we plan to
investigate.

CRediT authorship contribution statement

Vincenzo Grassi: Conceptualization, Investigation, Methodology,
Visualization, Writing – original draft, Writing – review & editing.
Raffaela Mirandola: Conceptualization, Investigation, Methodology,
Visualization, Writing – original draft, Writing – review & editing.
Diego Perez-Palacin: Conceptualization, Investigation, Methodology,
Software, Visualization, Writing – original draft, Writing – review &
editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability
13

No data was used for the research described in the article.
Acknowledgments

This work has been partially founded from the topic Engineering
Secure Systems of the Helmholtz Association (HGF) and by KASTEL
Security Research Labs, and from the Swedish Knowledge Foundation
with Grant No. 20200117: ALADINO – ALigning Architectures for
DIgital twiN of the Organization.

Appendix A. A short discussion about resilience

As mentioned in the Introduction, resilience is another term, besides
antifragility, that has gained much hype in recent years when discussing
dependable systems. We have focused on antifragility, but we briefly
expose here some considerations about this other term and its role in
the discourses about dependability.

The role of this term was already considered by A. Avizienis in
his paper about what he calls the ‘‘jungle of terminology’’ (Avižienis,
2017). The conclusion he arrives at in that paper is that this term,
together with others he considers, does not bring with it new perspec-
tives or concepts that were not already included in the dependability
taxonomy (Avizienis et al., 2004). We share this opinion, and remain
convinced that taxonomy still represents a fundamental contribution
to the conceptual clarification in the dependability field, so that new
concepts and ideas possibly emerging in this field would benefit from
positioning themselves with respect to it. For what concerns in partic-
ular the resilience term, we recognize two different flavors in the use
of this term within the existing literature about ICT systems that must
cope with changes.

On the one side, from a rather narrow perspective, it is used to
denote some specific means that can be adopted to cope with faults that
can affect the system. This perspective is consistent with the definition
already given in Avizienis et al. (2004), where resilience is defined
as a synonym of fault tolerance and hence considered as one of the
means that can be used to achieve dependability. This same perspective
underlies other definitions that can be found in technical literature, see,
e.g., Vettor and Smith (2023), where resilience is defined as ‘‘ [...] the
ability of a system to react to failures and still remains functional.’’ and
some specific design patterns to achieve it are suggested.

On the other side, the resilience term is sometimes used from a
broader perspective, encompassing the generic ability of a system to
cope with changes by whatever means. This second perspective is in
line with the general definition given in Laprie (2008): ‘‘Resilience is
defined as the persistence of dependability when facing changes’’.

This double perspective recalls the problem faced by the authors of
the dependability taxonomy with respect to the use of the reliability
term, which was then used to denote both the broad concept of a
desirable property and the precisely defined mathematical concept of
continuous service delivery in a given time interval (Avižienis, 2017).
In that case, this overload of meanings was solved by introducing the
term dependability for the broad concept, thus leaving reliability to
denote the second narrower concept.

A similar solution should probably be also devised for the use of the
resilience term. To this end, our suggestion is to make resilience denote
the broad concept, while more specific (and often already existing)
terms should be used in the other cases.

Appendix B. Antifragility tractability: Experiments with the run-
ning example

This appendix describes a set of experiments based on the running
example to study the cost of running an implementation of the learning
and exploitation mechanisms for that system. The objective of this
experiment is to obtain some preliminary insights, albeit limited to
the considered example, about the complexity of running antifragile

systems.



The Journal of Systems & Software 213 (2024) 112051V. Grassi et al.
To this end, we measure how much time it takes to perform the
learning and exploitation after the change triggering has revealed benefi-
cial a system evolution. This means that this latter task has triggered a
change, created the modified representation of the system and its en-
vironment, a Simulator has calculated the consequences of the change,
and the result is that the system does not satisfy the requirement on
keeping, on average, at least 95% of nodes healthy.

For the experiments, we have developed in Java the following
modules:

• Model: We have developed a representation of the running exam-
ple.

• Simulator: We have developed a simulator of the system dynamic
behavior. It includes the probability of an attack happening in
a given moment, the probability of a node healing in a given
moment, and the propagation of the infection from an infected
node to its neighbor nodes of the same type. At each time step,
the simulator calculates the current proportion of healthy nodes
and the average of healthy nodes since the beginning of the
simulation.

• Learner: We have developed a learning module that explores the
quality of candidates for the system, and if it finds a candidate
that improves enough the system quality, it returns it.

Since this appendix explores the tractability of the design space
exploration problem, we provide more details of the learner implemen-
tation. The learner module considers the system structure of nodes and
connections as a connected undirected graph 𝐺 = (𝑉 ,𝐸) where the set
of vertices 𝑉 corresponds to the nodes and the set of edges 𝐸 corre-
sponds to the connections. An edge 𝑒 is represented by its connecting
vertices ⟨𝑣𝑖, 𝑣𝑗⟩. The generation of system alternatives is based on the
removal of edges from 𝐸. The search for a better candidate is developed
considering that having many connections in the system is a positive
characteristic because it allows faster communication between nodes.
However, it also considers that removing some connections could be a
good solution if the number of connections is high enough to propagate
infections easily and threaten the satisfaction of the requirement.

A connection 𝑒 = ⟨𝑣𝑖, 𝑣𝑗⟩ must satisfy some conditions to become
a candidate for removal: (a) the graph 𝐺′ = (𝑉 ,𝐸 ⧵ {𝑒}) must remain
connected, (b) both 𝑣𝑖 and 𝑣𝑗 must have at least two edges in 𝐺′, and (c)
the installed software in nodes 𝑣𝑖 and 𝑣𝑗 must be the same (otherwise
𝑒 is not propagating any infection). All the alternatives explored by the
learner have fewer connections than the original system. To make the
infection propagation slower, it is considered a good greedy heuristic
strategy to start pruning the connections of the nodes with the highest
number of connections, i.e., reduce the size of the nodes that are ‘‘hubs’’
to avoid infection super-spreaders.

After finding a possible candidate, the learner calls the Simulator
module, which calculates the average percentage of healthy nodes. If
the requirements are not met yet, the learner iterates and finds the next
candidate 𝐺′′, which will have one edge less than 𝐺′.

To observe an intensive execution of the learner, we create systems
where the improvement activity needs to apply a significant number of
iterations to reach a candidate system that satisfies the requirements.
In this respect, we noticed that several systems with 𝑛 nodes, 𝑛∕10 soft-
ware types, 𝑛∕5 average neighbors per node, 0.005 for the probability
of attack in a given moment, and 2.5 time units as average healing
time tended to show an average percentage of healthy nodes ∼65%. We
consider that evolving a system with 65% of healthy nodes to a system
that can keep more than 95% of them healthy is an improvement
that intensively exercises the learner module. We experiment with
this improvement for 20 different system sizes, from 𝑛=20 nodes to
𝑛=400, in increments of 20. In the experiments, we create ten random
system configurations for each system size to mitigate the effects of
particularly favorable or unfavorable software types and connections
configurations.
14
Fig. B.10. Execution times of the learning mechanism for different sizes of the running
example.

Fig. B.10 shows the experiment results, depicting a relation between
the system size and the execution time needed to find a suitable
candidate that satisfies the requirements. This time is less than a second
for systems of up to 40 nodes, and it grows up to 120 s, on average, for
systems of 400 nodes. The figure shows that the execution time grows
faster than linearly. More precisely, we can observe from the numeric
values that the execution time for problems of size 2𝑛 is between 3.9
and 5.9 times larger than the execution time for size 𝑛. That gives us
an approximate time complexity between 𝑛2 and 𝑛2.5 in the observed
values. We expected that the execution time would grow at least
quadratically with the system size in the current implementation since
the problem size affects the time needed for the simulation of each
candidate and also affects the number of candidates that the learner
needs to generate (i.e., the number of iterations in the learner).

From these results, we can observe that, for our example, the cost
of the learning and exploitation task may or may not be affordable
depending on the system size. This indicates the need to carefully
select the actual mechanisms used to implement this task, whose cost
should be traded off with the benefits of achieving the antifragility
property. Investigating this issue beyond the limited scope of our
running example is part of our planned future work.

References

Andersson, J., Grassi, V., Mirandola, R., Perez-Palacin, D., 2021. A conceptual frame-
work for resilience: fundamental definitions, strategies and metrics. Computing 103
(4), 559–588. http://dx.doi.org/10.1007/s00607-020-00874-x.

Avižienis, A., 2017. A visit to the jungle of terminology. In: 47th Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks Workshops (DSN-W).
pp. 149–152. http://dx.doi.org/10.1109/DSN-W.2017.32.

Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.E., 2004. Basic concepts and
taxonomy of dependable and secure computing. IEEE Trans. Dependable Sec.
Comput. 1 (1), 11–33.

Bakhouya, M., Gaber, J., 2014. Bio-inspired approaches for engineering adaptive
systems. Procedia Computer Science 32, http://dx.doi.org/10.1016/j.procs.2014.05.
503.

Baruwal Chhetri, M., Uzunov, A., Vo, Q.B., Kowalczyk, R., Docking, M., Luong, H.,
Rajapakse, I., Nepal, S., 2018. AWaRE - towards distributed self-management
for resilient cyber systems. In: 23rd International Conference on Engineering of
Complex Computer Systems. ICECCS, pp. 185–188. http://dx.doi.org/10.1109/
ICECCS2018.2018.00028.

Baruwal Chhetri, M., Uzunov, A., Vo, B., Nepal, S., Kowalczyk, R., 2019. Self-improving
autonomic systems for antifragile cyber defence: Challenges and opportunities.
In: IEEE International Conference on Autonomic Computing. ICAC, pp. 18–23.
http://dx.doi.org/10.1109/ICAC.2019.00013.

Basiri, A., Behnam, N., de Rooij, R., Hochstein, L., Kosewski, L., Reynolds, J.,
Rosenthal, C., 2016. Chaos engineering. IEEE Softw. 33 (3), 35–41. http://dx.doi.
org/10.1109/MS.2016.60.

Berenbach, B., 2014. On technical credit. Procedia Comput. Sci. 28, 505–512. http:
//dx.doi.org/10.1016/j.procs.2014.03.062, URL https://www.sciencedirect.com/
science/article/pii/S1877050914001252.

Bertoa, M., Burgueño, L., Moreno, N., Vallecillo, A., 2020. Incorporating measurement
uncertainty into OCL/UML primitive datatypes. Soft. Syst. Model. 19, http://dx.
doi.org/10.1007/s10270-019-00741-0.

http://dx.doi.org/10.1007/s00607-020-00874-x
http://dx.doi.org/10.1109/DSN-W.2017.32
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb3
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb3
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb3
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb3
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb3
http://dx.doi.org/10.1016/j.procs.2014.05.503
http://dx.doi.org/10.1016/j.procs.2014.05.503
http://dx.doi.org/10.1016/j.procs.2014.05.503
http://dx.doi.org/10.1109/ICECCS2018.2018.00028
http://dx.doi.org/10.1109/ICECCS2018.2018.00028
http://dx.doi.org/10.1109/ICECCS2018.2018.00028
http://dx.doi.org/10.1109/ICAC.2019.00013
http://dx.doi.org/10.1109/MS.2016.60
http://dx.doi.org/10.1109/MS.2016.60
http://dx.doi.org/10.1109/MS.2016.60
http://dx.doi.org/10.1016/j.procs.2014.03.062
http://dx.doi.org/10.1016/j.procs.2014.03.062
http://dx.doi.org/10.1016/j.procs.2014.03.062
https://www.sciencedirect.com/science/article/pii/S1877050914001252
https://www.sciencedirect.com/science/article/pii/S1877050914001252
https://www.sciencedirect.com/science/article/pii/S1877050914001252
http://dx.doi.org/10.1007/s10270-019-00741-0
http://dx.doi.org/10.1007/s10270-019-00741-0
http://dx.doi.org/10.1007/s10270-019-00741-0


The Journal of Systems & Software 213 (2024) 112051V. Grassi et al.
Bouchenak, S., Boyer, F., Claudel, B., De Palma, N., Gruber, O., Sicard, S., 2011. From
autonomic to self-self behaviors: The JADE experience. ACM Trans. Auton. Adapt.
Syst. 6 (4).

Casti, J., 2011. Four faces of tomorrow. OECD Int. Futures Proj on Future Glob. Shock.
de Bruijn, H., Größler, A., Videira, N., 2020. Antifragility as a design criterion

for modelling dynamic systems. Syst. Res. Behav. Sci. 37 (1), 23–37. http://dx.
doi.org/10.1002/sres.2574, URL https://onlinelibrary.wiley.com/doi/abs/10.1002/
sres.2574.

de Lemos, R., Camara, J., Cerqueira, R., Kaaniche, M., 2013. Dependability in self-
adaptive systems: How to justify trust in the face of ‘‘unknown unknowns’’?. LADC
2013 WDAS Panel, Accessible at http://www2.dc.ufscar.br/~delano/WDAS/slides/
deLemos_panelWDAS.pdf.

Garlan, D., 2021. The unknown unknowns are not totally unknown. In: International
Symposium on Software Engineering for Adaptive and Self-Managing Systems.
SEAMS, pp. 264–265. http://dx.doi.org/10.1109/SEAMS51251.2021.00047.

Gheibi, O., Weyns, D., 2022. Lifelong self-adaptation: Self-adaptation meets lifelong
machine learning. In: International Symposium on Software Engineering for Adap-
tive and Self-Managing Systems (SEAMS). ACM/IEEE, pp. 1–12. http://dx.doi.org/
10.1145/3524844.3528052.

Ghezzi, C., 2016. Dependability of adaptable and evolvable distributed systems. In:
Formal Methods for the Quantitative Evaluation of Collective Adaptive Systems.
Springer International Publishing, Cham, pp. 36–60. http://dx.doi.org/10.1007/
978-3-319-34096-8_2.

Ghosh, D., Sharman, R., Rao, H.R., Upadhyaya, S., 2007. Self-healing systems—survey
and synthesis. Decis. Support Syst. 42 (4), 2164–2185.

Gorgeon, A., 2015. Anti-fragile information systems. In: International Conference
on Information Systems - Exploring the Information Frontier, ICIS. Associa-
tion for Information Systems, URL http://aisel.aisnet.org/icis2015/proceedings/
BreakoutIdeas/6.

Grassi, V., Mirandola, R., Perez-Palacin, D., 2023. Towards a conceptual charac-
terization of antifragile systems. In: 20th International Conference on Software
Architecture, ICSA - Companion. IEEE, pp. 121–125.

Guelfi, N., 2011. A formal framework for dependability and resilience from a software
engineering perspective. Central Eur. J. Comput. Sci. 1 (3), 294–328. http://dx.doi.
org/10.2478/s13537-011-0025-x.

Hashmi, S.S., Dam, H.K., Smet, P., Chhetri, M.B., 2022. Towards antifragility in
contested environments: Using adversarial search to learn, predict, and counter
open-ended threats. In: IEEE International Conference on Autonomic Computing
and Self-Organizing Systems. ACSOS.

Hole, K., 2016. Anti-fragile ICT systems. Simula SpringerBriefs on Computing, Springer
International Publishing.

ISO, 2021. Automation systems and integration — Digital twin framework for
manufacturing (23247 Series). URL https://www.iso.org/standard/75066.html.

Kephart, J.O., Chess, D.M., 2003. The vision of autonomic computing. IEEE Comput.
36 (1), 41–50.

Klös, V., Göthel, T., Glesner, S., 2018a. Comprehensible and dependable self-
learning self-adaptive systems. J. Syst. Archit. 85–86, 28–42, URL https://www.
sciencedirect.com/science/article/pii/S1383762117304472.

Klös, V., Göthel, T., Glesner, S., 2018b. Runtime management and quantitative
evaluation of changing system goals in complex autonomous systems. J. Syst. Softw.
144, 314–327. http://dx.doi.org/10.1016/j.jss.2018.06.076.

Kramer, J., Magee, J., 2007. Self-managed systems: an architectural challenge. In:
International Conference on Software Engineering (ICSE), Workshop on the Future
of Software Engineering (FOSE). IEEE Computer Society, pp. 259–268. http://dx.
doi.org/10.1109/FOSE.2007.19.

Lacerda, B., Faruq, F., Parker, D., Hawes, N., 2019. Probabilistic planning with formal
performance guarantees for mobile service robots. Int. J. Robot. Res. 38 (9),
1098–1123. http://dx.doi.org/10.1177/0278364919856695.

Laprie, J.-C., 2008. From dependability to resilience. In: Dependable Systems and
Networks.

Perez-Palacin, D., Mirandola, R., 2014. Uncertainties in the modeling of self-adaptive
systems: a taxonomy and an example of availability evaluation. In: 5th ACM/SPEC
International Conference on Performance Engineering (ICPE). ACM, pp. 3–14.
http://dx.doi.org/10.1145/2568088.2568095.

Perez-Palacin, D., Mirandola, R., Merseguer, J., 2014. On the relationships between
QoS and software adaptability at the architectural level. J. Syst. Softw. 87, 1–17.

Perrouin, G., Morin, B., Chauvel, F., Fleurey, F., Klein, J., Le Traon, Y., Barais, O.,
Jézéquel, J.-M., 2012. Towards flexible evolution of dynamically adaptive systems.
In: 34th International Conference on Software Engineering. ICSE, pp. 1353–1356.
http://dx.doi.org/10.1109/ICSE.2012.6227081.

Ramezani, J., Camarinha-Matos, L.M., 2020. Approaches for resilience and antifragility
in collaborative business ecosystems. Technol. Forecast. Soc. Change 151, 119846.
http://dx.doi.org/10.1016/j.techfore.2019.119846.
15
Richardson, C., 2018. Microservices patterns: With examples in Java. Manning.
Roth, F.M., Krupitzer, C., Becker, C., 2015. Runtime evolution of the adaptation logic

in self-adaptive systems. In: 2015 IEEE International Conference on Autonomic
Computing. pp. 141–142. http://dx.doi.org/10.1109/ICAC.2015.20.

Russo, D., Ciancarini, P., 2016. A proposal for an antifragile software manifesto.
In: Shakshuki, E.M. (Ed.), In: Procedia Computer Science, vol. 83, Elsevier, pp.
982–987. http://dx.doi.org/10.1016/j.procs.2016.04.196.

Russo, D., Ciancarini, P., 2017. Towards antifragile software architectures. Procedia
Comput. Sci. 109, 929–934. http://dx.doi.org/10.1016/j.procs.2017.05.426.

Schmeck, H., Müller-Schloer, C., Çakar, E., Mnif, M., Richter, U., 2010. Adaptivity and
self-organization in organic computing systems. ACM Trans. Auton. Adapt. Syst. 5
(3), 10:1–10:32.

Taleb, N.N., 2012. Antifragile: Things that gain from disorder. Random House, New
York.

Troya, J., Moreno, N., Bertoa, M.F., Vallecillo, A., 2021. Uncertainty representation in
software models: A survey. Softw. Syst. Model. 20 (4), 1183–1213.

Uzunov, A.V., Brennan, M., Chhetri, M.B., Vo, Q.B., Kowalczyk, R., Wondoh, J.,
2021. AWaRE2-MM: A meta-model for goal-driven, contract-mediated, team-centric
autonomous middleware frameworks for antifragility. In: 2021 28th Asia-Pacific
Software Engineering Conference. APSEC, pp. 547–552. http://dx.doi.org/10.1109/
APSEC53868.2021.00066.

Vettor, R., Smith, S., 2023. Architecting cloud-native .NET apps for azure. https:
//dotnet.microsoft.com/en-us/download/e-book/cloud-native-azure/pdf.

Walker, W., Harremoes, P., Romans, J., van der Sluus, J., van Asselt, M., Janssen, P.,
Krauss, M., 2003. Defining uncertainty. A conceptual basis for uncertainty
management in model-based decision support. Integr. Assess. 4 (1), 5–17.

Weyns, D., et al., 2013. Perpetual assurances for self-adaptive systems. In: Software En-
gineering for Self-Adaptive Systems III. Assurances. In: Lecture Notes in Computer
Science, vol. 9640, Springer, pp. 31–63.

Woods, D.D., 2015. Four concepts for resilience and the implications for the future of
resilience engineering. Reliab. Eng. Syst. Saf. 141, 5–9, Special Issue on Resilience
Engineering.

Zavala, E., Franch, X., Marco, J., Berger, C., 2020. HAFLoop: An architecture for
supporting highly adaptive feedback loops in self-adaptive systems. Future Gener.
Comput. Syst. 105 (C), 607–630. http://dx.doi.org/10.1016/j.future.2019.12.026.

Vincenzo Grassi is full professor of Computer Science at the University of Roma
Tor Vergata. He received the Laurea degree in Computer Science with the highest
honors from the University of Pisa, Italy, in 1984. His general research interests are in
the field of methodologies and tools for the analysis and validation of non-functional
quality indices (in particular, performance and dependability indices) for computing
and communication systems. Within this general framework, he has recently focused
his research activity on mobile computing and distributed service-oriented systems, and
self-adaptive systems. He has more than 80 publications on these topics in international
conferences and journals.

Raffaela Mirandola is Full Professor at Karlsruhe Institute of Technology (KIT),
Germany. Her main research interests are in (i) Software quality requirements modeling,
analysis, and verification, (ii) Formal methods for (self-)adaptive dependable IT systems,
(iii) Model-driven Software engineering, and the application of the theories, approaches,
and techniques specific to the above research areas to service-oriented and component-
based systems, adaptive systems, mobile systems, and cloud computing. Her research
has been supported by several National and European programs. She has been and
is involved in the Program committee and in the organization of several conferences.
Recently, she has been program co-chair for the International Symposium on Software
Engineering for Adaptive and SelfManaging Systems-SEAMS 2021 and SEAMS 2023 and
general co-chair for the European Conference on Software Architecture, ECSA 2021. She
has been part of the Editorial Board of IEEE Transactions on Software Engineering and
the Journal of System and Software, Elsevier. She is at present Special Issue co-editor
for the Journal of System and Software, Elsevier.

Diego Perez-Palacin is currently a Senior Lecturer in the Computer Science and Media
Technology Department at Linnaeus University, Sweden. He received the Ph.D. degree
in Computer Science from the University of Zaragoza, Spain. Before joining Linnaeus
University, he was a postdoctoral researcher at Politecnico di Milano, Italy, and Senior
Researcher at the University of Zaragoza. His research interests are in the areas of
self-adaptive Software, smart industry via the use of Digital Twins, and evaluation of
Software quality properties such as performance, resilience, and antifragility; with a
special interest in autonomous decisions under uncertainty, the use of formal methods
and model-driven engineering.

http://refhub.elsevier.com/S0164-1212(24)00096-7/sb10
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb10
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb10
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb10
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb10
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb11
http://dx.doi.org/10.1002/sres.2574
http://dx.doi.org/10.1002/sres.2574
http://dx.doi.org/10.1002/sres.2574
https://onlinelibrary.wiley.com/doi/abs/10.1002/sres.2574
https://onlinelibrary.wiley.com/doi/abs/10.1002/sres.2574
https://onlinelibrary.wiley.com/doi/abs/10.1002/sres.2574
http://www2.dc.ufscar.br/~delano/WDAS/slides/deLemos_panelWDAS.pdf
http://www2.dc.ufscar.br/~delano/WDAS/slides/deLemos_panelWDAS.pdf
http://www2.dc.ufscar.br/~delano/WDAS/slides/deLemos_panelWDAS.pdf
http://dx.doi.org/10.1109/SEAMS51251.2021.00047
http://dx.doi.org/10.1145/3524844.3528052
http://dx.doi.org/10.1145/3524844.3528052
http://dx.doi.org/10.1145/3524844.3528052
http://dx.doi.org/10.1007/978-3-319-34096-8_2
http://dx.doi.org/10.1007/978-3-319-34096-8_2
http://dx.doi.org/10.1007/978-3-319-34096-8_2
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb17
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb17
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb17
http://aisel.aisnet.org/icis2015/proceedings/BreakoutIdeas/6
http://aisel.aisnet.org/icis2015/proceedings/BreakoutIdeas/6
http://aisel.aisnet.org/icis2015/proceedings/BreakoutIdeas/6
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb19
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb19
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb19
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb19
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb19
http://dx.doi.org/10.2478/s13537-011-0025-x
http://dx.doi.org/10.2478/s13537-011-0025-x
http://dx.doi.org/10.2478/s13537-011-0025-x
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb21
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb21
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb21
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb21
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb21
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb21
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb21
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb22
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb22
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb22
https://www.iso.org/standard/75066.html
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb24
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb24
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb24
https://www.sciencedirect.com/science/article/pii/S1383762117304472
https://www.sciencedirect.com/science/article/pii/S1383762117304472
https://www.sciencedirect.com/science/article/pii/S1383762117304472
http://dx.doi.org/10.1016/j.jss.2018.06.076
http://dx.doi.org/10.1109/FOSE.2007.19
http://dx.doi.org/10.1109/FOSE.2007.19
http://dx.doi.org/10.1109/FOSE.2007.19
http://dx.doi.org/10.1177/0278364919856695
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb29
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb29
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb29
http://dx.doi.org/10.1145/2568088.2568095
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb31
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb31
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb31
http://dx.doi.org/10.1109/ICSE.2012.6227081
http://dx.doi.org/10.1016/j.techfore.2019.119846
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb34
http://dx.doi.org/10.1109/ICAC.2015.20
http://dx.doi.org/10.1016/j.procs.2016.04.196
http://dx.doi.org/10.1016/j.procs.2017.05.426
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb38
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb38
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb38
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb38
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb38
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb39
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb39
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb39
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb40
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb40
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb40
http://dx.doi.org/10.1109/APSEC53868.2021.00066
http://dx.doi.org/10.1109/APSEC53868.2021.00066
http://dx.doi.org/10.1109/APSEC53868.2021.00066
https://dotnet.microsoft.com/en-us/download/e-book/cloud-native-azure/pdf
https://dotnet.microsoft.com/en-us/download/e-book/cloud-native-azure/pdf
https://dotnet.microsoft.com/en-us/download/e-book/cloud-native-azure/pdf
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb43
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb43
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb43
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb43
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb43
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb44
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb44
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb44
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb44
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb44
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb45
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb45
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb45
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb45
http://refhub.elsevier.com/S0164-1212(24)00096-7/sb45
http://dx.doi.org/10.1016/j.future.2019.12.026

	A conceptual and architectural characterization of antifragile systems
	Introduction
	Background
	Running example
	Conceptual Framework
	Characterization of Uncertainty
	Notation
	A Measure of Dependability

	Extending the Dependability Taxonomy
	Dependability Threats
	Dependability Attributes
	The Dependability Lifecycle
	Antifragility 

	Means to Attain Dependability

	Antifragility Engineering
	Reference Model 
	From a Reference Model to a Reference Architecture
	Engineering considerations

	Related Work
	Dependability, Resilience, and Antifragility
	Architecting Antifragility

	Discussion
	Requirement Changes and Antifragility
	Design space growth
	Satisfaction Function

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. A Short Discussion about Resilience
	Appendix B. Antifragility Tractability: Experiments with the Running Example
	References


