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1 Introduction

Two-Higgs-Doublet models (2HDMs) [1, 2] are popular extensions of the Standard Model
(SM) due to their relative simplicity, involving no additional fields apart from a second Higgs
doublet. Moreover, a strong motivation to study 2HDMs also comes from theories in which a
second Higgs doublet is required due to symmetry arguments, e.g. axion models in the context
of the strong CP puzzle [3–5] or minimal supersymmetry [6]. 2HDMs differ in the structure
of Higgs-fermion Yukawa couplings. The historically most favoured variants are the so-called
type-I and type-II 2HDM in which both up-type and down-type quarks only couple to one of
the two Higgs doublets. In these types of 2HDMs, flavour-changing neutral current processes
(FCNC) such as the decay Bs → µ+µ− are loop-suppressed and therefore small masses of the
additional Higgs bosons are in principle possible, an appealing feature in the time of early LHC
searches. The generic 2HDM (also dubbed “type-III”), with most general Yukawa matrices,
exhibits, however, a much richer phenomenology [7–9] in which flavour-changing neutral
Higgs-boson couplings are possible, in case up-type or down-type quarks couple to more than
one Higgs doublet. The generic 2HDM suffers from a low level of predictivity caused by its
large number of parameters and moreover requires that FCNC couplings in the down-type
sector are tuned to small values in an ad-hoc way to comply with the many experimental
constraints from s → d, b → s, and b → d FCNC processes. Yet the economic 2HDM of
type I and II cannot address current anomalies in rare bottom quark decays, for instance
data favour an excess of B(B → Dτν)/B(B → Dµν) over its SM prediction [10–21] and this
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cannot be explained in these models. Also to address the observed deficit in b→ sµ+µ− for
low values of the lepton-pair invariant mass one resorts to the generic 2HDM [9].

In this paper, we propose a three-spurion 2HDM, a 2HDM which is more general than the
popular type-I and type-II models (which it contains as limiting cases) but more constrained
than the generic 2HDM. A process on which our model has characteristic imprints is
Bs → µ+µ−, which we study in detail in this paper, including the calculation of two-loop
QCD corrections. The model under consideration will feature flavour-changing up-type
Yukawa couplings of the additional heavy neutral Higgs bosons, most notably a charm-top
transition which may eliminate the Cabibbo-Kobayashi-Maskawa (CKM) suppression in
b → s transitions that is present in both the SM and the 2HDM type-II models.

The outline of the paper is as follows: the Yukawa and Higgs sectors of the three-spurion
2HDM are presented in section 2, with particular emphasis on some peculiarities of this
specific model. In section 3, we will introduce the effective operators contributing to the
low-energy weak Bs → µ+µ− decay, while section 4 is dedicated to a short description
of the computational setup used for the evaluation of Feynman diagrams. The limiting
case of the type-II 2HDM is discussed in section 5, with the additional contributions from
flavour-changing neutral-Higgs Yukawa couplings being presented in section 6. Finally, we
will discuss the phenomenology of such models in section 7 and summarize in section 8.

2 2HDM with suppressed down-type FCNC couplings

In this section we introduce the so-called three-spurion 2HDM, which allows for significant
flavour-changing Yukawa couplings in the up-type quark sector, while the ones in the down-
type quark sector are naturally suppressed.

2.1 General Yukawa sector

Our starting point, the quark Yukawa Lagrangian of the general (“type III”) 2HDM, reads

LY = −Q′f
[
Y
d
fiHd + εdfiHu

]
d′iR −Q

′
f

[
Y
u
fiεH

∗
u + εufiεH

∗
d

]
u′iR + h.c.

≡ −Q′
[
Y
d
Hd + εdHu

]
d′R −Q

′[
Y
u
εH∗u + εuεH∗d

]
u′R + h.c. (2.1)

with four general complex 3 × 3 matrices Y u,d and εu,d as well as

Hu,d =
(
H+
u,d

H0
u,d

)
, εH∗u,d =

(
H0∗
u,d

−H−u,d

)
, (2.2)

and Q′f =
(
u′fL
d′fL

)
. (2.3)

The subscripts f, i = 1, 2, 3 label the generations, e.g. u′3L = t′L. The notation of eq. (2.1)
follows ref. [8], except that our Hd corresponds to −εH∗d of that paper. The vacuum
expectation values (vevs) and related quantities are

〈H0
u〉 = vu = v sin β, 〈H0

d〉 = vd = v cosβ,

tan β := vu
vd
, v :=

√
v2
u + v2

d = 174GeV. (2.4)

– 2 –



J
H
E
P
0
4
(
2
0
2
4
)
0
4
7

The quark mass matrices are

Md = Y
d
v cosβ + εdv sin β, Mu = Y

u
v sin β + εuv cosβ, (2.5)

which we diagonalise in the usual way with the help of unitary matrices Su,dL,R,

u′L,R = SuL,RuL,R, d′L,R = SdL,RdL,R, (2.6)

Sd†L M
dSdR = M̂d =

md 0 0
0 ms 0
0 0 mb

 , Su†L M
uSuR = M̂u =

mu 0 0
0 mc 0
0 0 mt

 , (2.7)

with the unprimed fields corresponding to quark mass eigenstates. The gauge sector of
the 2HDM is invariant under independent unitary rotations of the fields Q′, d′R, and u′R in
flavour space. We use eq. (2.6) and choose

Q′ ≡ SdLQ (2.8)

and find LY in the so-called down basis:

LY ≡ −Q
[
Y dHd + εdHu

]
dR −Q

[
Y uεH∗u + εuεH∗d

]
uR + h.c. (2.9)

with the appropriately transformed Yukawa matrices

Y u,d = Sd†L Y
u,d
Su,dR , εu,d = Sd†L ε

u,dSu,dR (2.10)

and the CKM matrix

V = Su†L S
d
L. (2.11)

The Yukawa Lagrangian LY in eq. (2.9) is manifestly SU(2) invariant, with the SU(2) doublet

Q = Sd†L Q
′ =

(
V † uL
dL

)
.

Eq. (2.9) is our starting point; the Yukawa matrices are related to the diagonal mass matrices as

M̂d

v
= Y d cosβ + εd sin β, M̂u

v
= V (Y u sin β + εu cosβ) . (2.12)

Non-vanishing off-diagonal entries of Y d,u, εd,u give rise to FCNC couplings of the neutral
components of the Higgs doublets.

In a general 2HDM the quantity tan β has no physical meaning: one can arbitrarily
rotate

(
Hu, Hd

)
in eq. (2.1) leading to a Lagrangian of the same form (yet with different

Yukawa matrices) and the rotation angle will add to β. The situation is different in variants
of the 2HDM in which Hu and Hd are distinguished by quantum numbers which forbid such
rotations of

(
Hu, Hd

)
. Prominent examples are the 2HDM of type I and II, in which two out

of the four Yukawa matrices in eqs. (2.1) and (2.9) are absent. The type-I model corresponds
to εd = Y u = 0. The type-II model is instead found for εd = εu = 0.
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The doublets φSM, φnew of the Higgs basis [22–24] are defined by a rotation of the two
doublets Hu and Hd by the angle β such that φnew has no vev:(

φnew
φSM

)
=
(

cosβ − sin β
sin β cosβ

) (
Hu

Hd

)
(2.13)

One has

φSM =

 G+

v + φ0 + iG0
√

2

 , φnew =

 H+

φ0′ + iA0
√

2

 . (2.14)

Next we use eq. (2.13) to express LY in terms of φSM and φnew:

LY = Q
[
− Y d cosβ − εd sin β

]
φSMdR +Q

[
Y d sin β − εd cosβ

]
φnewdR

+QV †
[
− Y u sin β − εu cosβ

]
εφ∗SMuR

+QV †
[
− Y u cosβ + εu sin β

]
εφ∗newuR + h.c. (2.15)

By using eq. (2.12) to eliminate Y u and Y d one can write the couplings to the physical
charged and neutral Higgs bosons in eq. (2.15) as

Lphys
Y = − ūL

[
M̂u

v
cotβ + gu

]
uR

φ0′ − iA0
√

2
+ d̄L

[
M̂d

v
tan β + gd

]
dR
φ0′ + iA0
√

2

+ ūLV

[
M̂d

v
tan β + gd

]
dRH

+ + d̄LV
†
[
M̂u

v
cotβ + gu

]
uRH

−

− dL
M̂d

v
dR

(
v + φ0
√

2

)
− uL

M̂u

v
uR

(
v + φ0
√

2

)
+ h.c. (2.16)

with the matrices [8]

gd = −εd sin β (tan β + cotβ) , gu = −εu cosβ (tan β + cotβ) . (2.17)

The non-diagonal matrices gd and gu characterise the deviations from the popular type-II
2HDM (for which gd = gu = 0) and can induce flavour-changing couplings of neutral Higgs
bosons. Note that the type-I model is also included in the formalism and recovered by
using eq. (2.12) with Y u = 0 in the expression for gd. For our loop calculation and the
phenomenological analysis it is advantageous to work with gd,u rather than εd,u, especially
for the definition of the renormalisation prescriptions. We write gdidj

≡ gdij , where di is the
i-th down-type quark flavor, i = 1, 2, 3, and similarly for gu.

We restrict ourselves to the CP-conserving Higgs potential, such that A0 is a pseudoscalar
boson, while φ0 and φ0′ are scalar particles. The two Higgs bosons φ0 and φ0′ are in general
not mass eigenstates. The latter are given by h0 and H0, withh

0

H0

A0

 =

sin (β − α) cos (β − α) 0
cos (β − α) − sin (β − α) 0

0 0 1


φ

0

φ0′

A0

 . (2.18)

The angle α is a priori arbitrary, but data on decays of the 125GeV Higgs boson constrain
cos(β − α) to be close to zero.
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2.2 Spurion expansion

The 2HDM of type I and II (and their variants with modified lepton couplings) invoke (softly
broken) Z2 symmetries to forbid FCNC couplings of the neutral Higgs bosons. This was
motivated by the wish to find non-standard Higgs bosons at modern colliders, because for
generic values of the Yukawa matrices in eq. (2.9) constraints from FCNC processes like
meson-antimeson mixing push these masses to values outside the reach of LEP, Tevatron, and
LHC. With the absence of discoveries of non-standard Higgs bosons this line of arguments
loses its appeal and the consideration of more general Yukawa sectors is in order.

The type-II model is the most studied variant of the 2HDM for two reasons: firstly,
it constitutes the tree-level Higgs sector of the Minimal Supersymmetric Standard Model
(MSSM), in which the holomorphy of the superpotential enforces εu,d = 0. Secondly, the
type-II model is phenomenologically especially interesting, because in this model FCNC
processes are sensitive to loop effects of the charged Higgs boson. A prominent example
of the latter feature is the branching ratio B(B → sγ), which sets a stringent bound on
the charged-Higgs mass [25]. The type-II 2HDM further permits the possibility of large
down-type Yukawa couplings, a scenario motivated by the possibility of bottom-top Yukawa
unification. Such large-tan β scenarios are efficiently constrained by B(Bs → µ+µ−) [26–28]
and we will come back to this topic in section 5. Concerning the first above-mentioned
motivation, the Higgs sector of the MSSM is really richer than that of the type-II 2HDM:
in the limit of infinitely heavy superpartners one encounters non-decoupling loop-induced
Yukawa matrices εu,d, an effect caused by the supersymmetry-breaking terms [29–31]. Despite
the loop suppression large effects are possible in FCNC processes with down-type quarks
which involve the product εd tan β [32–37] with huge impact on B(Bs → µ+µ−) [32–35, 38].

The phenomenological constraints from meson-antimeson mixing and rare (semi-)leptonic
decays place severe bounds on the off-diagonal elements of εd, while those of εu are essentially
unconstrained except for εu12 and εu21. This situation calls for a variant of the general 2HDM
in which Y u,d and εu are arbitrary, while εd is suppressed. A strong motivation for such a
model is the possibility of spontaneous CP violation, implemented through a Higgs potential
developing complex vevs and real Yukawa matrices. Spontaneous CP violation is not possible
with a 2HDM of type I or II, but requires at least three out of the four matrices in eq. (2.9)
to be non-zero. Avoiding fine-tuning implies that the dominant piece of the needed effect
stems from εu, while εd can be neglected [39]. However, in such a model, the mixing of the
neutral Higgs fields is different from eq. (2.18) and instead involves all three fields. Yet for
the CP-conserving observables considered in this paper this feature is of minor relevance.
The 2HDM scenario with sizable Y u,d and εu has the appealing feature that it simultaneously
permits both measurable effects in FCNC processes and sufficiently light masses of the
non-standard Higgs particles enabling their discovery at the LHC.

Setting εd naively to zero leads to a non-renormalisable model, because there are UV-
divergent loops involving up-type quarks with Y u,d and εu couplings, which require countert-
erms proportional to elements of εd. Whenever one seeks to constrain the elements gujk of
eq. (2.16) from FCNC transitions of down-type quarks, one must foresee such a counterterm
to find a meaningful prediction. For example, Bs → µ+µ− is a b→ s transition constraining
gct and the corresponding loop contribution requires a counterterm for gsb. The minimal
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renormalisable theory is found by invoking flavour symmetries and systematically expanding
in terms of the spurions breaking these symmetries [40, 41]. The 2HDM gauge sector is
invariant under unitary rotations Q→ UQQ, dR → UddR, uR → UuuR in quark flavour space
with (UQ, Ud, Uu) ∈ SU(3)3 and the Yukawa sector is formally invariant under this flavour
symmetry if one transforms the matrices in eq. (2.9) as

Y u,d → UQY
u,dU †u,d, εu,d → UQε

u,dU †u,d. (2.19)

We propose to categorise the classes of renormalisable 2HDM in terms of the spurions
breaking the SU(3)3 flavour symmetry of the quark sector.1 The minimal choice are two
spurions, with just two physically distinct possibilities. Both comply with the definition of
minimal flavour violation (MFV) as defined in ref. [41]. The first possibility is to take Y u,d

as spurions and express the other two Yukawa matrices as εu,d = Pu,d(Y uY u†, Y dY d†)Y u,d,
where Pu and Pd are polynomials. This variant is discussed in ref. [41] and amounts to a
generalisation of the 2HDM of type II. It also constitutes a renormalisable extension of the
aligned 2HDM of refs. [42–44], in which Pu,d are constants. If the 2HDM is the low-energy
limit of a more fundamental theory obeying the considered two-spurion symmetry-breaking
pattern, the latter will naturally induce εu,d in the described way as well. An example for
such a UV theory is the MSSM with a flavour-blind supersymmetry breaking mechanism
(such as gauge mediation). The second possibility is to choose Y d, εu as spurions, leading
to a generalisation of the type-I 2HDM.

There are two possibilities for a 2HDM with three spurions, which can be taken as Y u,d

plus either εu or εd. The first possibility is the phenomenologically interesting one and studied
in this paper. The expansion up to third order reads

εd = cY d + c11Y
dY d†Y d

+ b11ε
uεu†Y d + b12ε

uY u†Y d + b21Y
uεu†Y d + b22Y

uY u†Y d (2.20)

with complex coefficients c, . . . , b22.
Concerning eq. (2.20) several comments are in order:

• The spurion expansion is only meaningful, if the contributions to the off-diagonal
elements of εd from higher electroweak orders (with five or more Yukawa matrices)
are small, so that they can be neglected. A sufficient condition for this is realised in
scenarios in which c11, . . . , b22 are induced by one-loop contributions in either the UV
completion or the 2HDM, while terms with (2n + 1) spurions are only generated at
n-loop order and beyond. We consider this scenario throughout this paper.2 Additional
QCD corrections (e.g. an extra loop with a gluon) comply with the pattern in eq. (2.20),
i.e. QCD renormalises the coefficients, but does not induce new ones.

1The generalisation to the lepton sector is straightforward, but not relevant for the calculations in this paper.
2A different application of eq. (2.20), in which c11, . . . , b22 = O(1) is allowed, is the case that Y u and εu

are almost aligned, so that eq. (2.12) means small off-diagonal matrix elements of these matrices in the chosen
basis. Since Y u

33, ε
u
33 = O(1) and further Y d

33 = O(1) is possible, some terms with five spurions must be added
to eq. (2.20), just as in the MFV case of ref. [41].
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• By rotating (Hu, Hd) in eq. (2.9) one can eliminate c in eq. (2.20). But in general
radiative corrections bring this term back and a counterterm to c is needed, unless one
corrects the rotation in each order of perturbation theory. It is therefore advisable to
keep c in eq. (2.20); we treat it as a perturbative quantity with c = 0 at tree level.

• The decay Bs → µ+µ−, which is the focus of the phenomenological analysis in this
paper, involves the FCNC vertex Qj-dRk-Hd with (j, k) = (2, 3). The dominant one-
loop vertex diagram involves an internal Hd line and the product Y dY d†Y d or εuεu†Y d

stemming from the three Hd Yukawa couplings. The UV divergences can be cancelled
by counterterms to c11 and b11.

• With eq. (2.12) we can trade Y u,d in eq. (2.20) for the quark masses and CKM elements.
Compared to the SM we find 14 additional complex parameters, the 9 entries of εu and
c11, . . . b22. Yet it is much more convenient to express observables in terms of gujk of
eq. (2.16) instead of εujk and then use eqs. (2.17) and (2.20) (with eq. (2.12)) to calculate
the gdjk in terms of the coefficients of the spurion expansion. While this procedure is
needed in a global analysis of all available data —which is beyond the scope of this
paper—, the study of b→ s transitions alone will simply involve gct and, with CKM
suppression, gut and gtt.

In a practical calculation it is cumbersome to implement the renormalisation procedure in
the described way, by providing counterterms to εujk and c, . . . , b22. Instead, it is much easier
to renormalise the gu,djk . If one renormalises all gu,djk in the MS scheme, one automatically
complies with SU(2)×U(1) gauge symmetry. Therefore it is sufficient to choose the gdjk in
such a way that eq. (2.20) is obeyed at tree level. In our calculation we will only need a
counterterm to gsb (in addition to the usual QCD counterterms for the SM parameters), if
ms is set to zero. If ms is kept non-zero, an additional counterterm to gbs is required.

In the three-spurion 2HDM the parameter tan β is well-defined, because unitary rotations
of (Hu, Hd) would lead to εd 6= 0 at tree level and spoil the spurion expansion. We are
interested in phenomenologically interesting scenarios, in which the rare decays B(Bs → µ+µ−)
or b → sγ deviate from the SM predictions at a level probed in current and forthcoming
measurements. The corresponding decay amplitudes involve a helicity flip and come with the
Yukawa matrix Y d, which grows with tan β, so that we will consider the case that tan β is large.
An interesting feature of the three-spurion 2HDM is that the above-mentioned amplitudes
scale differently with tan β than in the type-II model, due to new loop contributions with gct.

Next we briefly discuss the leptonic Yukawa Lagrangian. The extremely stringent
experimental bounds on FCNC transitions like `j → `kγ suggest that only one spurion is
present in the lepton sector, meaning that the lepton Yukawa couplings of the two Higgs
doublets are automatically diagonal in the mass eigenstate basis.3 For simplicity, we choose
the leptonic Lagrangian of type-II form (i.e. we set gl = 0), with the familiar tan β-enhanced
non-standard-Higgs couplings to charged leptons:

LlY = l̄L

[
M̂ l

v
tan β

]
lR
φ0′ + iA0
√

2
+ ν̄L

[
M̂ l

v
tan β

]
lRH

+ + h.c. (2.21)

3We set neutrino Yukawa couplings to zero.
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The diagonal mass matrix of the charged leptons is denoted by M̂ l and the couplings of
φSM are omitted in eq. (2.21).

3 The decay Bs → µ+µ−

The typical momentum scale for Bs decays is of order MBs or smaller, so that weak Bs
decays can be described by an effective theory in which the heavy W,Z bosons, the top
quark, and the Higgs bosons of the 2HDM are integrated out. The resulting |∆B| = 1
Hamiltonian Heff describes the interactions mediated by these heavy particles in terms of
dimension-6 operators changing the beauty quantum number B by one unit. The piece of
Heff relevant for Bs → µ+µ− reads

Heff = N
∑

i=A,S,P

(
CiQi + C ′iQ

′
i

)
. (3.1)

The operators in eq. (3.1) are

QA =
(
b̄γµPLs

)
(µ̄γµγ5µ) , Q′A =

(
b̄γµPRs

)
(µ̄γµγ5µ) ,

QS =
(
b̄PLs

)
(µ̄µ) , Q′S =

(
b̄PRs

)
(µ̄µ) ,

QP =
(
b̄PLs

)
(µ̄γ5µ) , Q′P =

(
b̄PRs

)
(µ̄γ5µ) ,

(3.2)

and are multiplied with their respective Wilson coefficients CA, . . . , C ′P which contain the
dependence on the large masses. The normalisation factor in eq. (3.1) is

N = G2
FM

2
W

π2 VtsV
∗
tb = GFαem (µ)√

2π sin2 θw
VtsV

∗
tb, (3.3)

which complies with the conventions of ref. [28]. The second “=” sign only holds to lowest
order in the electroweak interaction, while in higher orders the relation between the Fermi
constant GF and the electromagnetic coupling αem = e2/(4π), the weak mixing angle θw and
the W mass MW is modified. Electroweak corrections have been calculated in ref. [45] and
e.g. remove the ambiguities related to the choice of the renormalisation scheme for these
parameters; in the second version for N in eq. (3.3) this issue also includes the choice of the
scale in the running αem. In the following, we choose the first definition N ∝ G2

F in this paper,
for which the electroweak corrections to the SM contribution to CA are as small as −2.4% [45].

We introduce the perturbative expansion of the Ci as

Ci = C
(0)
i +

(
αs
4π

)
C

(1)
i + . . . , (3.4)

where C(0)
i denotes the leading order (LO), arising in the SM from one-loop electroweak

diagrams. C(1)
i comprises the next-to-leading order (NLO) QCD corrections. In the SM only

CA is relevant, C ′A is suppressed w.r.t. CA by the ratio mbms/M
2
W involving the strange

and bottom quark masses ms,b and C(′)
S,P receive additional suppression factors of M2

Bs
/M2

W .
The leading contributions C(0)

i arise from one-loop electroweak diagrams at order G2
F in the

SM, hence the branching ratio is rather small.
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The average time-integrated branching ratio is given by [46, 47]

B
(
Bs → µ+µ−

)
= |N |2

M3
Bs
f2
Bs

32πΓsH
β
[∣∣r (CA − C ′A)− u (CP − C ′P )∣∣2FP+
∣∣uβ (CS − C ′S)∣∣2FS] , (3.5)

with dimensionless quantities

r = 2mµ

MBs

, β =
√

1− r2 , u = MBs

mb +ms
. (3.6)

Here, ΓsH (ΓsL) denotes the decay width of the heavier (lighter) Bs mass eigenstate, and the
factors FP and FS account for the mixing of the Bs − B̄s system, given by

FP = 1− ΓsL − ΓsH
ΓsL

sin2 [arg
(
r
(
C ′A − CA

)
− u

(
C ′P − CP

))]
,

FS = 1− ΓsL − ΓsH
ΓsL

cos2 [arg
(
C ′S − CS

)]
(3.7)

in the absence of significant CP-violating New Physics contributions to the Bs − B̄s mixing
amplitude. In writing eq. (3.5), we have used the pseudoscalar decay constant fBs to rewrite
the operator matrix elements as

〈0|b̄γµγ5s|Bs(p)〉 = ipµfBs ,

〈0|b̄γ5s|Bs(p)〉 = −ifBs

M2
Bs

mb +ms
, (3.8)

where the second equation follows from the first one by use of the equations of motion.
The Higgs-mediated contributions in the SM can be neglected due to the tiny Yukawa

couplings of external particles. However, in the 2HDM with large Yukawa couplings of Higgs
bosons to right-handed down-type quarks and leptons, Feynman diagrams with Higgs bosons
are known to contribute significantly to CS and CP , as will be discussed in the following.

4 Computational setup

In this section, we describe the chain of programs used to generate and evaluate the corre-
sponding Feynman diagrams at leading and next-to-leading order. We use FeynRules with
the Universal FeynRules Output (UFO) [48–50] to obtain Feynman rules for the model.
The output is processed by tapir [51] into a Lagrangian file, which is used with qgraf [52]
in order to generate all Feynman diagrams.

We compute the one-loop diagrams for general electroweak gauge parameters for the W
and Z bosons and check that they drop out in the final result. This is a welcome check for
the conversion from UFO to qgraf and tapir. If diagrams with all different quark flavours
are explicitly calculated, we have at one-loop level < O(100) Feynman diagrams in the SM,4

4From the technical perspective, it is convenient to split the electroweak gauge bosons into two different
“particles”, with different propagator denominators

(
k2 −M2)−1 and

(
k2 − ξM2)−1, respectively, and treat

them as different diagrams; hence the large number of diagrams in the 1-loop calculation.
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νµ
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s
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ui

W

W

Z

b̄

s

µ+
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ui

g

W

W

νµ

b̄

s

µ+

µ−

ui

W

W

Zg

b̄

s

µ+

µ−
ui

ūi

g
W

Z

Figure 1. Sample diagrams contributing to CA at leading and next-to-leading order in the SM.

and an additional O(300) diagrams from contributions with at least one non-SM Higgs boson,
most of which are Higgs-penguin diagrams. At two-loop order, we perform the calculation
in the Feynman gauge for the W and Z bosons, but we keep the gluon gauge parameter
general and verify that it drops out of the final results.

The diagrams are then converted with the help of tapir into FORM [53] code using
Feynman rule definitions that were also produced in the conversion from UFO to the qgraf
Lagrangian file. The individual expressions for the diagrams are mapped onto integral families
using exp [54, 55] and a custom FORM setup is used to perform the remaining computational
steps. Since the Wilson coefficients are independent of the momenta of the external particles,
we set the latter to zero, so that only vacuum integrals need to be computed. (An exception
are diagrams with an FCNC self-energy in an external leg, which are calculated with on-
shell b quark and mb 6= 0 before the subsequent limit mb → 0 is taken.) We use a FORM
implementation of the algorithm presented in ref. [56], see ref. [57].

5 The decay Bs → µ+µ− in the two-Higgs-doublet model of type-II

In the SM the leading-order result was obtained in ref. [58] and next-to-leading order QCD
corrections have been presented in refs. [59–62]. Higher-order QCD and electroweak corrections
have been computed in refs. [27, 28, 45, 63, 64]. Next-to-leading corrections in the type-II
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g H±
h0,H0, A0

b̄
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µ+
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ui
b

b̄

g
h0,H0, A0

H±

Figure 2. Sample two-loop Feynman diagrams contributing to the Wilson coefficients C(′)
S (H1,2)

and C(′)
P (A0). In the left diagram, only flavour-diagonal transitions i = j are possible in the type-II

2HDM, while the more general 2HDM allows also for transitions with i 6= j, e.g. transitions from a
charm quark into a top quark.

2HDM have been calculated in refs. [26, 65–67]. We have reproduced these results for the
present paper, also as a check of the automated setup. The result can be expressed in terms
of dimensionless mass ratios of the top quark, W boson and charged Higgs boson masses,

xt = m2
t

M2
W

, rH = m2
t

M2
H+

. (5.1)

In the SM, only the Wilson coefficient CA receives significant contributions from diagrams
such as the ones depicted in figure 1. The Wilson coefficients C ′A, CS , . . . , C ′P are suppressed
by powers of ratios of light (external) masses and MW . The leading SM contribution is,
moreover, independent of the Yukawa couplings of all external particles, that is we can set
mb = ms = mµ = 0 for the contributions from W -box and Z-penguin diagrams. At leading
and next-to-leading order they are given by

C
W+Z,(0)
A =xt (xt − 4)

8 (xt − 1) + 3x2
t log xt

8 (xt − 1)2 , (5.2)

C
W+Z,(1)
A =2xt

(
2x2

t + 5xt + 5
)

3 (xt − 1)2 − xt
(
x2
t + 5xt + 2

)
log xt

(xt − 1)3 −
xt
(
x2
t + 2

)
Li2

(
1− 1

xt

)
(xt − 1)2

+
(
xt
(
x2
t + xt + 4

)
(xt − 1)2 − 6x2

t log xt
(xt − 1)3

)
log µ2

m2
t

, (5.3)

where the Z-penguin contributions include the flavour-changing quark self-energy diagrams
required to make the penguin diagrams finite. Moreover, since charm and up quark masses
can be neglected compared to MW and mt, after summation over internal up-type quarks
all contributions are proportional to the CKM factor VtsV ∗tb (contained in the normalisation
factor N defined in eq. (3.3)) due to the unitarity of the CKM matrix.

In the 2HDM of type-II the leading new effects stem from O
(
tan2 β

)
contributions to

C
(′)
S and C(′)

P , arising from penguin diagrams with a neutral Higgs boson, see e.g. figure 2,
and the W+-H+ box diagram [26]. The Higgs-penguin contributions to CS are given in
Feynman gauge for the W -boson by

C
h,(0)
S = − rb

[
rHxt log rH

4 (rH − 1) (rH − xt)
− rHxt log xt

4 (xt − 1) (rH − xt)

]
, (5.4)
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C
h,(1)
S = − rb

[
− 8rHxt

3 (rH − 1) (xt − 1) + 2rHxt (3rH − 7) log rH
3 (rH − 1)2 (rH − xt)

− 2rHxt (3xt − 7) log xt
3 (xt − 1)2 (rH − xt)

− 2 log
(
µ2

m2
t

)(
rHxt

(rH − 1) (xt − 1) + rHxt log rH
(rH − 1)2 (rH − xt)

− rHxt log xt
(xt − 1)2 (rH − xt)

)

+
2rHxtLi2

(
1− 1

rH

)
rH − xt

−
2rHxtLi2

(
1− 1

xt

)
rH − xt

 , (5.5)

where
rq = mµmq tan2 β

M2
W

. (5.6)

The Wilson coefficients for the right-handed operators C ′h,(i)S can be obtained by the re-
placement rb → rs in eqs. (5.4) and (5.5). Further contributions include terms of order
mbmsm

2
µ tan4 β/M4

W and m2
tm

2
µ/M

4
W entering the Wilson coefficients C ′A and CA, respec-

tively, as well as O
(
mbms tan2 β/M2

W

)
(in C ′A) and O

(
m2
t cot2 β/M2

W

)
(in CA) terms arising

from Z-penguin diagrams with a charged Higgs boson. Box diagrams with a single charged
Higgs boson also contribute to CS,P (C ′S,P ), with Wilson coefficients proportional to mb (ms).
We do not explicitly list these contributions here; they can be found in refs. [65–67]. With the
exception of the doubly muon-mass suppressed H+–H− box contributions to CA, we include
all of these additional terms in our analysis. The feature that CS and CP are proportional to
mb while their primed counterparts are proportional to ms holds beyond the type-II 2HDM
in our more general 2HDM with three spurions because of εd = Pd

(
εu, Y u, Y d

)
Y d, entailing

factors of mdj
in Yukawa couplings of djR. A rather remarkable feature of the type-II 2HDM

is the fact that the leading terms in tan β depend only on tan β and the charged-Higgs boson
mass MH+ , that is they are independent of the parameters of the neutral Higgs sector [26].
In the type-II 2HDM, the leading tan2 β contributions to the pseudoscalar and scalar Wilson
coefficients satisfy the rather simple relation

CS = CP , C ′S = −C ′P . (5.7)

In figure 3 we show the branching ratio B
(
Bs → µ+µ−

)
in the type-II 2HDM as a

function of the charged Higgs boson mass. The horizontal green, grey, and violet bands
correspond to the experimental measurements of LHCb [85] and CMS [70] as well as the
theory prediction [27], respectively, including 2σ uncertainties for the experimental values
(cf. table 1). The theory prediction of ref. [27] uses |Vcb| = 0.0424± 0.0009, which is close to
today’s value inferred from inclusive b→ c`ν decays. If one uses |Vcb| = 0.03936± 0.00068
from exclusive B decays [86] the central value of the theory prediction for 109B

(
Bs → µ+µ−

)
drops from 3.65 to 3.15.

The coloured lines are predictions from the 2HDM for different values of tan β. It is
interesting to note that for tan β . 25 low values of MH± are required to reproduce the
central value of the LHCb measurement. Of course, in the limit MH± →∞ all 2HDM curves
approach the SM prediction. Note that in the type-II model there is a tan β-independent 95%
C.L. lower bound on MH± in the range 570–800GeV from B → Xsγ [25]. This bound can be
easily weakened with our model’s additional couplings discussed in the following section.
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Figure 3. Branching ratio B (Bs → µ+µ−) in the type-II Two-Higgs-Doublet model at next-to-
leading order in QCD, for different values of tan β. All running parameters are evaluated at the
scale µ = mt (mt). The green dashed and dotted lines denote the central value and the experimental
2σ error of the LHCb measurement [68, 69], respectively, the grey band shows the corresponding
information for the CMS result [70]. The purple dashed and dotted bands indicate the SM prediction
with uncertainties, presented in ref. [27]. Note that the SM prediction in the purple band was obtained
including also O

(
α2
s

)
and O (αem) contributions and corresponds to |Vcb| = 0.0424 ± 0.0009. The

perturbativity of the scalar 2HDM potential constrains
∣∣M2

A0 −M2
H±

∣∣ ≤ |λ4 − λ5|v2 . 8v2 [71–84],
which can be converted into a lower bound on MH± by use of the experimentally excluded area of the
(MA0 , tan β) plane such as the ones shown in figure 9 used by us. The vertical dashed lines indicate
these lower limits on MH± for each value of tan β, whereas the vertical dotted lines show the same
limits obtained with the less stringent constraint |λ4 − λ5| ≤ 8π. The plot shows that Bs → µ+µ− will
only give contraints on the type-II 2HDM competitive with the Higgs searches, once the experimental
precision on B (Bs → µ+µ−) substantially improves.

Recently it has been pointed out that LHC data still permit MH± ≤ 400GeV with
couplings compatible with solutions of the b→ cτν flavour anomalies [87, 88]. Charged-Higgs
explanations of the latter have been found viable in refs. [89, 90] and are invigorated by
recent LHCb data on B → D(∗)τν [91], see refs. [92, 93]. It should be clearly stated that
this solution to the b→ cτν puzzle is not realised in the type-II model, in which for instance
B(b→ cτν) is suppressed rather than enhanced over B(b→ cµν) as preferred by data. Also
while charged Higgs searches at the LHC are compatible with the quoted H± masses [94],
the lower bound on MH± inferred from the data on gg/bb̄→ A0[→ τ+τ−] searches is larger
than 1TeV [95] in perturbed versions of the type-II 2HDM. Also in our model we cannot
substantially weaken this bound; to this end one must modify the A0 coupling to τ ’s by
deviating from the type-II form in eq. (2.21) and permitting the third lepton generation
to couple to the other Higgs doublet.

– 13 –



J
H
E
P
0
4
(
2
0
2
4
)
0
4
7

b̄

s

µ+

µ−

h0,H0, A0

Figure 4. Tree-level diagrams with flavour-changing neutral Higgs couplings. The b− s−H coupling
is denoted by a dot on the vertex.

s bui,R/L ui,L/R

H−

Figure 5. The loop-induced change of flavours s→ b via a quark self-energy diagram. The helicity
flip denoted by the cross entails a factor of tan β and linearity in ĝu.

6 Additional contributions in a model with flavour-changing neutral
Yukawa couplings

In a model with a Yukawa Lagrangian given by eq. (2.16) there are additional tree-level
contributions b̄s→ h0(H0, A0)→ µ+µ− of order tan β. A sample Feynman diagram is shown
in figure 4. At loop-level there are O(tan3 β) terms due to diagrams in which the neutral
Higgs boson couples to the b line. At LO these are diagrams with a FCNC self-energy and we
also refer to them as self-energy diagrams at NLO, even if a gluon connects the FCNC loop
with the s quark as in the diagram on the right in figure 2. These O

(
tan3 β

)
terms occur

because a tan β-enhanced coupling in the self-energy diagrams is not cancelled by a factor
cotβ in the second charged-Higgs coupling, which is a distinguishing feature compared to
the type-II model. If these self-energy diagrams involve a helicity flip of the internal fermion
line, see figure 5, they come with a factor of tan β and are linear in the flavour-changing
Yukawa matrix gu, which enters the result through the charged-Higgs coupling in the fourth
term of eq. (2.16). In fact, the dominant dependence on gct stems from this source and not
from diagrams in which a neutral Higgs boson couples to charm and top in a vertex diagram,
which have a factor of tan β less. Note that contributions from diagrams without helicity flip
are either already included in the type-II model or quadratic in gu (and without the factor
tan β), and we will consequently neglect the latter in what follows.
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6.1 Pseudoscalar Wilson coefficient CP

At tree level the Wilson coefficient CP originating from the diagram in figure 4 with a
virtual A0 boson is given by

C
(0),tree
P = − π2

G2
FM

2
WV

∗
tbVts

mµ tan β
2vM2

A0
g∗sb = −g

∗
sb

gbs
C
′(0)
P . (6.1)

Since there is no loop-suppression, even small values of gbs and g∗sb can have significant
impact on the branching ratio, but the spurion expansion in eq. (2.20) naturally leads
to (parametrically suppressed) small couplings. For convenience, let us define the linear
combinations g±bs ≡ gbs ± g∗sb.

At one-loop order only the self-energy diagrams contain an enhancement factor tan3 β

whereas the vertex contributions contain at most a quadratic term. The one-loop self-energy
contributions to CP and C ′P are ultra-violet divergent. The corresponding counterterm is
generated from eq. (6.1) and is of the form

g+,0
bs = g+

bs + δ
+(0)
A0,bs +

(
αs
4π

)
δ

+(1)
A0,bs + . . . . (6.2)

In the MS renormalisation scheme the one-loop contribution is given by

δ
+(0)
A0,bs = −1

ε

√
2GFmt tan2 β

8π2 [ (g∗utVus + g∗ctVcs + g∗ttVts)mbV
∗
tb

+ (gutV ∗ub + gctV
∗
cb + gttV

∗
tb)msVts] . (6.3)

Defining analogously

g−,0bs = g−bs + δ
−(0)
A0,bs +

(
αs
4π

)
δ
−(1)
A0,bs + . . . , (6.4)

the counterterms δ−(0)
A0,bs and δ

−(1)
A0,bs are found from δ

+(0)
A0,bs and δ

+(1)
A0,bs in eqs. (6.3) and (6.8) below

by the replacement mb → −mb. Thus the terms with mb renormalise the Wilson coefficient
CP ∝ g+

bs− g
−
bs, while the ones with ms renormalise the Wilson coefficient C ′P ∝ −

(
g+
bs + g−bs

)
.

The renormalised finite pseudoscalar Wilson coefficients read

C
(0)
P = C

(0),tree
P + Ñ

mb

M2
A0

(
g∗ut

Vus
Vts

+ g∗ct
Vcs
Vts

+ g∗tt

)
C̃

(0)
P ,

C
′(0)
P = C

′(0),tree
P − Ñ ms

M2
A0

(
gut

V ∗ub
V ∗tb

+ gct
V ∗cb
V ∗tb

+ gtt

)
C̃

(0)
P ,

(6.5)

with normalisation factor

Ñ = mtmµ tan3 β

GF
√

2M2
W v

= gmtmµ tan3 β

2GFM3
W

, (6.6)

the weak coupling constant g, and

C̃
(0)
P = −1

8

[
1 + log µ2

m2
t

− log rH
rH − 1

]
. (6.7)
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Our results in eqs. (6.1)–(6.7) confirm the result in eq. (3.16) of ref. [9]. At NLO in QCD (i.e.
two-loop order), the counterterm required to obtain a finite result is given by

δ
(1)
A0,sb = −GFmt tan2 β√

2π2 [ (g∗utVus + g∗ctVcs + g∗ttVts)mbV
∗
tb

+ (gutV ∗ub + gctV
∗
cb + gttV

∗
tb)msVts]×

[ 1
ε2

+ 4
3ε

]
. (6.8)

Note that in addition to the top quark mass mt also the flavour-changing Yukawa couplings
are minimally renormalised. The two-loop contribution to the Wilson coefficients reads

C
(1)
P = Ñ

mb

M2
A0

(
g∗ut

Vus
Vts

+ g∗ct
Vcs
Vts

+ g∗tt

)
C̃

(1)
P ,

C
′(1)
P = −Ñ ms

M2
A0

(
gut

V ∗ub
V ∗tb

+ gct
V ∗cb
V ∗tb

+ gtt

)
C̃

(1)
P ,

(6.9)

with

C̃
(1)
P = − 4(rH − 2)

3(rH − 1) + (3rH − 7) log(rH)
3(rH − 1)2 +

( 7− 4rH
3(rH − 1) −

log(rH)
(rH − 1)2

)
log

(
µ2

m2
t

)

− 1
2 log2

(
µ2

m2
t

)
+ Li2

(
1− 1

rH

)
. (6.10)

Next we discuss the dependence of our result on the renormalisation scale µ at which the
2HDM result is matched to the effective |∆B| = 1 Hamiltonian and the size of higher-order
corrections. In the case mt ∼ MH+ the choice µ = O(mt,MH+) leads to the absence of
large logarithms and the variation of µ between mt and MH+ does not constitute a relevant
source of theoretical uncertainty. Thus we are left to the phenomenologically interesting
case MH+ � mt. The logµ2 terms in the Wilson coefficients have two different origins,
divergent contributions involving Yukawa couplings or the QCD coupling, respectively. C(0)

P

stems from a loop with Yukawa couplings and C(0)
P involves no large logarithm for the choice

µ ∼ MH+ . To verify this expand eq. (6.7) as

C̃
(0)
P = −1

8

(
1 + log µ2

M2
H+

)
(1 +O (rH)) . (6.11)

This feature is generic for all logµ2 terms stemming from loops with Yukawa couplings,
because heavy particles like H+ do not contribute to the renormalisation group functions (i.e.
β functions and anomalous dimensions) for µ < MH+ since heavy particles are integrated out
at scales of the order of their masses. The same loop diagrams yielding C̃(0)

P also determine
the piece of the β functions of gsb proportional to the Yukawa couplings of top and bottom
quarks. The running of gsb(µ) from this source is compensated by the explicit logarithm in
eq. (6.11) and the remaining Yukawa-µ dependence is a tiny two-loop effect.

The situation is different with the µ dependence stemming from gluon loops and related
to the familiar QCD running of couplings and quark masses. The QCD running of gsb is
trivial, since the combination gsb(µ)/mb(µ), which enters CP · 〈QP 〉, is independent of µ (see
eq. (3.8)). To study the µ dependence of our two-loop result C(1)

P , we keep the logµ2 term
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Figure 6. QCD scale dependence of the Wilson coefficient CP at leading and next-to-leading order in
αs. In this plot we have used MH+ = 1.5 TeV and gct (mt) = 1 and have further set Vts/Vcs → 0. All
µ-independent prefactors have been fixed. CP (µ) depends logarithmically on the masses mt and MH+ ,
so that every choice of µ in the interval [mt,MH+ ] seems justified. The plot shows, however, that
choosing µ ∼MH+ in C(0)

P (µ) would badly underestimate the NLO result, while µ ∼ mt would sizably
overestimate it. C(0)

P (mt) exceeds C(0)
P (MH+) by 24%, while the corresponding value for C(1)

P (µ) is 9%.

stemming from the Yukawa interaction (i.e. the analogue of the logarithm in eq. (6.11)) fixed
and vary µ otherwise. C(0)

P depends on µ implicitly through the µ-dependence of mt and git
and this dependence should be compensated by the explicit logµ2 terms in C(1)

P , reducing
the µ-dependence to the three-loop (one-loop Yukawa correction and NNLO QCD) level.5 In
figure 6 we illustrate the QCD scale dependence of the O

(
α0
s

)
and O (αs) Wilson coefficient

CP for a particular choice of MH+ and gct ≡ gct (m̄t). All parameters that are not running
in QCD have been fixed in this figure and we have neglected the contributions from gut
and gtt, which have the same running as gct, such that the only running parameters are
in mtg

∗
ctC̃

(0,1)
P . The figure shows a significant improvement of the QCD scale dependence

with the inclusion of next-to-leading order QCD corrections. The LO result does not permit
a reliable prediction of CP , while CNLO

P merely changes by ±5% around its central value
when µ is varied between mt and MH+ .

From figure 6 it is clear that our calculated QCD corrections are needed for a reliable
prediction. Next we discuss uncalculated higher-order corrections involving Yukawa couplings,
obtained by dressing the LO diagrams with an additional Higgs boson. The large O(1)
couplings are the coupling of the SM-like Higgs boson h0 to the top quark and the A0, H0

couplings to the bottom quark.6 The former contributions are already present in the SM,
contained in the electroweak corrections of ref. [45]. Since they are very small in the SM, they

5The scale dependence of the light quark mass mb (µ) in CP is a relic of our choice of definition of the
effective operators, and will be cancelled by the corresponding running of the hadronic matrix element, see
eq. (3.8). Thus, we do not consider the running of mb in the following.

6While a priori the couplings of φnew to up-type quarks could be ≥ O(1), we will see in section 7 that in
the phenomenologically interesting parameter region they are smaller.
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will constitute an even smaller correction to the extra diagrams of the 2HDM. The dominant
contribution from an extra loop with A0 or H0 is expected from diagrams in which both
ends of the additional Higgs line are connected to a b line. Contrary to the QCD case, all A0,
H0 diagrams involve momenta which are far off-shell, because MA0,H0 is much larger than
mb. Thus the additional loop will give a correction in the few-% region to the leading 2HDM
term, which is numerically constrained to the range between SM prediction and experimental
value and thereby constitute a small correction to a small LO 2HDM term.

6.2 Scalar Wilson coefficient CS
The scalar Wilson coefficients receives contributions from both neutral CP-even Higgs mass
eigenstates h0 and H0. At tree level, the diagrams with h0 and H0 give rise to the Wilson
coefficients

C
(0),tree
S = − π2

G2
FM

2
WV

∗
tbVts

mµ tan β
2v RMg

∗
sb = g∗sb

gbs
C
′(0)
S , (6.12)

where
RM =

M2
h0 sin2 (β − α) +M2

H0 cos2 (β − α)
M2
h0M2

H0
(6.13)

contains the dependence on the neutral Higgs-boson masses. The counterterms required to
cure the divergences at one and two loops can be obtained from eqs. (6.3) and (6.8) analogously,
i.e. the combination g+

bs − g
−
bs renormalises CS , while the combination g+

bs + g−bs renormalises
C ′S . The renormalised Wilson coefficients CS and C ′S are related to the pseudoscalar ones by

C
(i)
S = RM M2

A0 C
(i)
P , C

′(i)
S = −RM M2

A0 C
′(i)
P . (6.14)

Note that there are no QCD corrections to C
(′),tree
S,P since they cancel in the matching

calculation.

7 Phenomenology

In this section we discuss the possible size of B
(
Bs → µ+µ−

)
in our 2HDM under the

constraint that other b → s processes comply with the data. We include the tree-level
contributions from diagrams with flavour-changing down-type couplings (cf. figure 4), as well
as the SM results and the leading quadratic tan β contributions in the type-II 2HDM to which
the additional diagrams of order tan3 β discussed in the previous section add as corrections.

In a generic 2HDM the tree-level couplings g±bs will drastically increase the branching
ratio for Bs → µ+µ− due to the missing loop suppression. In our model the spurion
expansion suppresses g±bs in a controlled way, but still permits large enough contributions
to get phenomenologically interesting effects in Bs → µ+µ−: even rather small up-type
couplings gct significantly modify the Wilson coefficients C(′)

P and C(′)
S , as they feature a CKM

factor Vcs instead of Vts. In the following, we will restrict ourselves to the experimentally
favoured scenario [96, 97] of aligned Higgs doublets, in which sin (β − α) ≈ 1. For the
numerical analysis, we will set sin (β − α) = 1, and therefore have RM = M−2

H0 . In this
case, the Higgs mass eigenstates h0 and H0 coincide with φ0 and −φ0′, respectively, and
only the latter possesses non-SM-like couplings to fermions. This reduces the number of
relevant non-Yukawa-type parameters of the extended Higgs sector to four, namely tan β,
MH+ , MA0 and Mφ0′ ≡ MH0 .
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Figure 7. Sample Feynman diagram for the rare decay b→ sγ at one loop in the 2HDM. The cross
indicates a chirality flip tL → tR.

7.1 Constraints from b→ sγ decays

An important constraint on the magnitude of flavour-changing Yukawa couplings in the up-
type quark sector arises from the inclusive rare decays B → Xsγ. This process is mediated at
the quark level by b→ sγ through a top quark loop with a charged W boson in the Standard
Model and receives additional contributions through charged-Higgs boson diagrams in the
2HDM, see figure 7. In order to eliminate the dependence on Vcb ' −Vts, one traditionally
works with the quantity

Rγ ≡
B (b→ sγ) + B (b→ dγ)

B (b→ clν) . (7.1)

Note that in the SM and the type-II 2HDM the branching ratio of b→ dγ is much smaller
than that of b → sγ.

In the type-II 2HDM, the contribution of the charged Higgs diagrams to the decay
rate is positive, moving the theoretical prediction for the branching ratio away from the
experimental value averaged in [25] to

Rγ,exp. = (3.22± 0.15) · 10−3 , (7.2)

where a lower cutoff of E0 ≥ 1.6 GeV has been put on the photon energy. The practical
independence of Rγ of tan β in the largest part of the parameter space in the type-II 2HDM
allowed for the extraction of a lower limit on the mass of the charged Higgs boson in [25],
see section 5. In the general 2HDM, where, contrary to the type-II case, the factor tan β
from the btH− vertex is not cancelled by a factor cotβ from the stH− vertex, the quantity
Rγ depends on tan β.7 The combination of the t̄LbRH+ and s̄LtRH

− Yukawa couplings
arising in the process is then given by(

mb tan β Vtb
v

)(
mt V

∗
ts

v tan β + V ∗usgut + V ∗cs gct + V ∗ts gtt

)
= mbmt VtbV

∗
ts

v2

(
1 + geff

st

)
, (7.3)

where we have defined the short-hand notation

geff
st ≡

v tan β
mt

(
gut

V ∗us
V ∗ts

+ gct
V ∗cs
V ∗ts

+ gtt

)
. (7.4)

7The absence of the cotβ suppression of the stH− vertex is also a feature of the aligned 2HDM [98–100].
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Note that geff
st carries a factor of tan β. The abbreviation geff

st denotes the size of the additional
s̄LtRH

+ coupling of our three-spurion 2HDM (terms involving guij) in units of the same
coupling in the type-II 2HDM (denoted by “1” in eq. (7.3)). Thus, the limiting case of the
type-II 2HDM is given by geff

st = 0, while our effective H± coupling vanishes for geff
st = −1,

i.e. geff
st = −1 must be chosen to recover the SM result for Rγ . We further note that geff

st is
dominated by gct due to the large ratio |Vcs/Vts|, and neglecting subleading CKM-matrix
elements (amounting to set to zero gtt and gut, which is instead constrained by b → d

processes) allows to convert constraints on geff
st into bounds on gct in the following discussion.

In order to constrain our new flavour-changing couplings, we use the results from [101]
and [25] with this trivial change of the s̄LtRH− Yukawa coupling. For large enough values
of MH± , the central value of Rγ is approximately given (at µ = mt (mt)) by

Rγ ≈ 10−4 ·
{

33.10|SM +
(
1 + Re geff

st

) [
rH

(
−48.93− 47.60 log rH − 0.99 (log rH)2

− 0.15 (log rH)3 + 4.71 Li2
(

1− 1
rH

))
+ r2

H

(
−53.82− 98.18 log rH + 4.79 Li2

(
1− 1

rH

))
+ r3

H

(
−56.04− 150.43 log rH + 3.17 Li2(1− 1

rH
)
)]}

, (7.5)

which agrees with the exact result within 1 % in the complete subdomain of
(
MH± ,Re geff

st

)
∈

[500 GeV,∞) × [−5, 5] in which Rγ lies within the band allowed by the experimental and
theoretical uncertainties (see below). The approximate formula in eq. (7.5) only includes the
interference of the new-physics contribution with the SM result and neglects the squared
new-physics contribution. In deriving eq. (7.5) we have used eq. (10) of ref. [102]. We
adopt the estimate of the theoretical uncertainty of about 6.73 % given in [25], consisting of
individual uncertainties of 5 % (non-perturbative), 1.5 % (parametric), 3 % (higher-order),
and 3 % (interpolation in the charm quark mass mc). In figure 8, we illustrate the ratio Rγ
in the

(
MH± ,Re geff

st

)
plane. The thick dashed line corresponds to the central experimental

value in eq. (7.2) and Rγ,exp ± ∆exp+th, where ∆exp+th = 2σexp + δth is the sum of the
experimental 2σ uncertainty intervals and the theoretical uncertainty of 6.73 %. For small
values of MH± , the allowed range of geff

st is tightly constrained around geff
st = −1, due to the

closeness of the Standard Model prediction and the experimental central value. At larger
MH± , a significantly wider range of flavour-changing Yukawa couplings is allowed. From Rγ
we derive MH±-dependent upper and lower bounds on Re

(
geff
st

)
which we will use in order to

constrain the real part of the flavour-changing up-type couplings appearing in Bs → µ+µ−.

7.2 Higgs searches

Searches for heavy Higgs bosons at the LHC put powerful lower limits on the masses of new
Higgs particles, but these depend on the Yukawa sector of the considered 2HDM. For the
case of the type-II model (or ramifications of it) these searches already exclude a significant
portion of the MA0 − tan β plane at present. In figure 9, we show a recent collection of
exclusion limits obtained through various different searches by the ATLAS experiment [95] in
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Figure 8. The ratio Rγ as a function of the charged Higgs boson mass MH± and geff
st . The dashed

lines correspond to the experimental central value and the ±2σ intervals, to which we have also added
the theoretical uncertainties.

a modification of the type-II model. These limits imply that large values of tan β can only
be realised if at the same time the additional Higgs bosons are quite heavy, MA0 & 1.5 TeV.

It should be noted that for heavy MA0 these bounds also approximately apply for MH+

and MH0 , since the masses become degenerate in the heavy-Higgs limit (for a thorough
analysis of the allowed mass splittings see [71]; see also the vertical dashed lines in figure 3).
Note that the bounds from neutral Higgs searches are more constraining than those for H+

searches [94]. The most stringent constraints are from final states with τ ’s and also apply
to our lepton Yukawa Lagrangian in eq. (2.21) which we have chosen of type-II. (However,
the choice of the τ Yukawa couplings is of no relevance for the phenomenology of the b→ s

FCNC processes discussed in this paper.) The presence of the additional couplings gujk will
increase some branching ratios at the expense of those of decays into τ ’s, so that these bounds
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Figure 9. Exclusion limits in the MA0 − tan β plane from different searches performed by the ATLAS
experiment; the plot is taken from ref. [95]. The shown limits are for a different variant of the type-II
2HDM than ours, but qualitatively apply as well to our model.

can be somewhat weakened, but the general trend remains valid. Our scenarios discussed
below comply with the ATLAS bounds.

7.3 Bs − B̄s mixing

The effective s̄LbRA0 and s̄LbRH0 vertices are the sum of the tree-level couplings ∝ gsb and the
loop contributions involving vertex and self-energy diagrams ∝ gutVtbV ∗us+gctVtbV ∗cs+gttVtbV ∗ts.
The coefficients CP and CS are proportional to this effective vertex, which is therefore the
relevant quantity constrained by B(Bs → µ+µ−). Now the Bs − B̄s mixing amplitude
depends quadratically on this effective vertex, while both quantities decrease quadratically
with MA0 and MH0 , so that the quantities give complementary information on the parameter
space. Bs − B̄s mixing is mediated in the Standard Model by the |∆B| = 2 operator
QV LL =

(
b̄LγµsL

) (
b̄Lγ

µsL
)
and in the 2HDM by three additional effective operators

QSLL =
(
b̄RsL

) (
b̄RsL

)
,

QSLR =
(
b̄RsL

) (
b̄LsR

)
,

QSRR =
(
b̄LsR

) (
b̄LsR

)
,

(7.6)

The Wilson coefficient of QSLL only involves the effective vertex governing Bs → µ+µ− and the
tree-level propagators of A0 and H0, while the coefficients of the other operators also involve
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the corresponding chirality-flipped effective s̄RbLA0 and s̄RbLH
0 vertices. The coefficient

CSLL (CSRR) is proportional to m2
b (m2

s), while the coefficient CSLR is proportional to mbms;
we therefore drop the operator QSRR in our analysis. However, considering the ATLAS
constraints implying large masses MA0,H0 , CSLL ∝ 1/M2

A0 − 1/M2
H0 is heavily suppressed

due to the small splitting of Higgs masses in the large-mass limit, and CSLR becomes relevant.
This feature results from the fact that QSLL violates hypercharge by two units of the Higgs
hypercharge and the coefficient CSLL is therefore suppressed by a factor of v2/M2

A0 compared
to CSLR multiplying QSLR which conserves hypercharge and SU(2). As a consequence, CSLR
is more important than CSLL. This feature has been widely studied in the context of the
effective 2HDM emerging from integrating out superpartners in the MSSM [33–35, 37].

In the following we correlate B(Bs → µ+µ−) with B(B → Xsγ) and the Bs − B̄s
oscillation frequency ∆MBs , which is proportional to the magnitude of the Bs − B̄s mixing
amplitude. Only the effective s̄LbRA0 and s̄LbRH0 vertices are physical, by e.g. changing
the renormalisation condition for gsb we can shift pieces between gsb and the renormlised
loop. For simplicity, we set the tree-value of gsb to zero, i.e. consider the case that this
coupling is only generated radiatively. The only non-trivial Yukawa structure entering the
considered observables is then geff

st .
In figure 10 and figure 11 we illustrate the dependence of the branching ratio B

(
Bs → µ+µ−

)
on the flavour-changing Yukawa couplings for some exemplary numerical values. We choose to
show our results separately for the LHCb [68, 69] and CMS [70] measurements, which lie on
different sides of the SM prediction calculated with the value |Vcb| taken from inclusive decays.
The interval allowed on the horizontal axis (the real part Re

(
geff
st

)
) is for each choice of Higgs

masses determined by the range allowed by b→ sγ. Recall that geff
st carries a factor of tan β,

which needs to be taken into account if the bounds on geff
st were to be converted into direct

bounds on gct. A priori generic ≤ O(0.1) values of gct could make geff
st in eq. (7.4) as large as

O(50). For the considered Higgs masses such large values of |geff
st | are forbidden by b→ sγ and

the range for Im (geff,bsγ) shown on the y axis in plots (a) to (d) only serves the purpose to
show the constraint from B

(
Bs → µ+µ−

)
. Low values for Higgs masses enforce small values

for tan β from the LHC searches, but for these scenarios b→ sγ forbids any measurable effect
in B

(
Bs → µ+µ−

)
. This situation changes if one considers large values for tan β and the Higgs

masses, because B
(
Bs → µ+µ−

)
grows faster with tan β than B(B → Xsγ), see plots (e) and

(f). We find that in the considered scenarios the bounds from B(B → Xsγ) are stronger
than those from ∆MBs , which we always find in the band allowed by the current theoretical
uncertainty. This situation changes if we go to even larger Higgs masses, permitting larger
values of |geff

st | in B(B → Xsγ). The quadratic dependence of ∆MBs on geff
st makes ∆MBs a

good probe of the parameter region in which both the Higgs masses and geff
st are large.

In order to assess the quality of the perturbative expansions, we discuss the size of
the new couplings here. The above-mentioned value geff

st ∼ 50 for the product of couplings
entering b→ sγ is large, because in eq. (7.4) geff

st is normalised to the type-II result which is
suppressed by cotβ. I.e. in the three-spurion model this suppression is offset, which gives
rise to a different phenomenology. Including the prefactor of eq. (7.4) results in the product
of couplings of order 0.8|VtbVts| for geff

st = 50, so that even for geff
st & 50 perturbation theory is

well-behaved and two-loop corrections involving more powers of gjt, j = u, c, t are tiny.
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parameter numerical value reference

MBs 5.367 GeV [103]
mb 4.18 GeV [85]
ms 0.093 GeV [85]
mµ 0.106 GeV [104]

mt (mt) 162.622 GeV [85]
αs (MZ = 91.1876 GeV) 0.1179 [85]

GF 1.166× 10−5 GeV−2 [105]
MW 80.37 GeV [106]
fBs 0.230 GeV [107]
ΓsH (1.616 ps)−1 HFLAV
ΓsL (1.427 ps)−1 HFLAV

|Vts| 0.041 CKMfitter
|Vtb| 0.999 CKMfitter
|Vcs| 0.974 CKMfitter
|Vcb| 0.041 CKMfitter

B
(
Bs → µ+µ−

)
SM 3.65(23)× 10−9 [27]

B
(
Bs → µ+µ−

)
LHCb 3.09+0.48

−0.44 × 10−9 [68, 69]
B
(
Bs → µ+µ−

)
CMS 3.95+0.52

−0.47 × 10−9 [70]

Table 1. Numerical input used for the phenomenological analysis. For the QCD running of the
top-quark mass and the renormalisation scale, we have used RunDec [108, 109]. The numerical values
of the CKM matrix elements have been taken from the updates provided on the CKMfitter [110] web
page. The numerical values of the Bs decay widths have been taken from the online updates provided
at the HFLAV web page [86].

We do not study the case of sizable imaginary parts of the new FCNC couplings here.
These imaginary parts impact CP asymmetries such as Amix

CP (Bs → J/ψφ), which will be
investigated in a follow-up paper. All numerical SM input parameters are given in table 1.
Note that we do not take into account uncertainties in the input parameters as the dependence
of the branching ratio is much weaker than the dependence due to the variation of flavour-
changing Yukawa couplings.

We stress here that the presented calculation equally applies to Bd → µ+µ− with the
change Vts → Vtd, but this is not true anymore when considering the constraint from Bd− B̄d
mixing because of the additional dependence on the light quark mass. Since md is negligibly
small, the Bd − B̄d mixing amplitude becomes insensitive to the effective b̄dA0 and b̄dH0

couplings in the limit of large and degenerate Higgs-boson masses.

8 Summary

We have presented a 2HDM with three flavour-breaking spurions in the quark Yukawa sector.
The model contains the established type-I and type-II models as limiting cases and otherwise
permits large FCNC couplings in the up-type sector while naturally suppressing FCNC effects
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Figure 10. Branching ratio of Bs → µ+µ− for different values of Higgs masses and tan β. All
quantities are evaluated at µ = mt (mt). The red dashed and dotted lines indicate the experimental
central value and the 2σ uncertainties of LHCb branching ratio measurement [68, 69], respectively.
The constraint of B(B → Xsγ) on |Im geff

st | is not shown.
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Figure 11. Same as figure 10 for the CMS branching ratio measurement [70].
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in down sector, as required by data. Despite the large number of parameters the model
makes characteristic predictions, such as correlations between b → sµ+µ−, b → sγ, and
Bs − B̄s mixing, all of which involve the same combination geff

st of fundamental parameters.
Also all couplings to right-handed down-type quarks are proportional to the quark masses
as in the type-II model.

We have studied in detail the rare decay Bs → µ+µ−, calculated the Wilson coefficients
of the effective operators QS and QP , and demonstrated the consistency of the model by
showing that the UV counterterms follow the pattern of the spurion expansion. Next we
have calculated next-to-leading order (two-loop) QCD corrections to this process to (i) verify
that higher-order QCD corrections can be correctly included (e.g. all UV divergences could
be renormalised in the usual way plus countertems for our new couplings) and (ii) tame the
sizable renormalisation-scale dependence of the Yukawa couplings. Then we have studied the
phenomenology of an FCNC coupling gct of the heavy neutral Higgs bosons to top and charm
quarks. We have found that — contrary to expectation — the dominant contribution to
the loop-induced s̄LbRA0 and s̄LbRH0 couplings do not come from vertex diagrams with the
neutral Higgs coupling to the internal top-charm line, but from charged-Higgs couplings which
inherit the dependence on gct through SU(2) symmetry. The corresponding diagram (FCNC
self-energy with the neutral Higgs attached to the b line) is enhanced by a factor of tan β
compared to the vertex diagram, resulting in a O

(
tan3 β

)
contribution to the Bs → µ+µ−

amplitude which is absent in the type-II model. This feature makes Bs → µ+µ− a sensitive
probe of the model even for Higgs masses well above the lower bounds found by the LHC
experiments. For small Higgs masses, however, b→ sγ precludes large effects in Bs → µ+µ−.
In our model the dominant contribution to Bs − B̄s mixing is naturally small due to a
suppression factor of msmb/v

2; nevertheless Bs− B̄s mixing sets constraints on the parameter
space for very large Higgs masses.
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