
Discrete Mathematics 347 (2024) 114031
Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Poset Ramsey number R(P , Q n). III. Chain compositions and 

antichains

Christian Winter

Karlsruhe Institute of Technology, Karlsruhe, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 July 2023
Received in revised form 2 April 2024
Accepted 4 April 2024
Available online xxxx

Keywords:
Poset Ramsey number
Boolean lattice
Chain decompositions
Antichains

An induced subposet (P2, ≤2) of a poset (P1, ≤1) is a subset of P1 such that for every two 
X, Y ∈ P2, X ≤2 Y if and only if X ≤1 Y . The Boolean lattice Q n of dimension n is the poset 
consisting of all subsets of {1, . . . , n} ordered by inclusion.
Given two posets P1 and P2 the poset Ramsey number R(P1, P2) is the smallest 
integer N such that in any blue/red coloring of the elements of Q N there is either a 
monochromatically blue induced subposet isomorphic to P1 or a monochromatically red 
induced subposet isomorphic to P2.
We provide upper bounds on R(P , Q n) for two classes of P : parallel compositions 
of chains, i.e. posets consisting of disjoint chains which are pairwise element-wise 
incomparable, as well as subdivided Q 2, which are posets obtained from two parallel 
chains by adding a common minimal and a common maximal element. This completes the 
determination of R(P , Q n) for posets P with at most 4 elements. If P is an antichain At

on t elements, we show that R(At , Q n) = n + 3 for 3 ≤ t ≤ log log n. Additionally, we briefly 
survey proof techniques in the poset Ramsey setting P versus Q n .

© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

1.1. Basic setting and background

A partially ordered set, or poset for short, is a pair (P , ≤P ) of a set P and a partial order ≤P on this set, i.e. a binary 
relation that is transitive, reflexive and anti-symmetric. Usually we refer to a poset (P , ≤P ) just as P . The elements of P are 
often called vertices. If two vertices A and B are incomparable, i.e. if A �≤ B and A �≥ B , we write A ‖ B . A poset (P2, ≤P2 ) is 
an (induced) subposet of a poset (P1, ≤P1 ) if P2 ⊆ P1 and for every two X, Y ∈ P2, X ≤P2 Y if and only if X ≤P1 Y . If such 
a P2 is isomorphic to some poset P ′ , we say that P2 is a copy of P ′ in P1. Equivalently, P2 is a copy of P ′ in P1 if P2 is 
the image of an embedding φ : P ′ → P1, i.e. an injective function such that for every two X, Y ∈ P ′ , X ≤P ′ Y if and only if 
φ(X) ≤P1 φ(Y ).

The Boolean lattice Q n is the poset whose vertices are the subsets of an n-element ground set ordered by inclusion. In 
this paper we consider colorings of the vertices of posets. A blue/red coloring of a poset P , is a mapping c : P → {blue, red}. 
We say that a poset is monochromatic if all its vertices have the same color. If all vertices are blue, we say that the poset is 
blue. Similarly, if all vertices are red, the poset is red.
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Ramsey-type problems are widely studied for graphs and hypergraphs and were extended to posets by Nešetřil and 
Rödl [19] in a general form. A special case of their studies asks to find for a fixed poset P , a hosting poset W such that 
every blue/red-coloring of the elements of W contains a monochromatic copy of P . Kierstead and Trotter [16] considered 
this setting with the goal of minimizing p(W ) for all posets P with fixed p(P ), where p is a poset parameter such as 
size, height or width. Axenovich and Walzer [1] introduced a closely related Ramsey setting which recently attracted the 
attention of various researchers. For fixed posets P1 and P2 the poset Ramsey number of P1 versus P2 is

R(P1, P2) = min{N ∈ N : every blue/red coloring of Q N contains either a blue copy of P1 or a red copy of P2}.
For the diagonal setting P1 = P2 = Q n , the bounds on R(Q n, Q n), n ≥ 3, were gradually improved to 2n + 1 ≤ R(Q n, Q n) ≤
n2 − n + 2, see chronologically Axenovich and Walzer [1], Cox and Stolee [8], Lu and Thompson [17], and Bohman and Peng 
[4]. The asymptotic behavior in terms of n remains an open problem. Note that for any P1 and P2 the poset Ramsey number 
is well-defined: It is easy to see that every two posets P1 and P2 are induced subposets of Q n for large n, thus an upper 
bound on R(Q n, Q n) implies the existence of R(P1, P2). For further results on diagonal poset Ramsey numbers R(P , P ) see 
e.g. Chen, Chen, Cheng, Li, and Liu [6] and Walzer [22].

Another actively investigated setting of poset Ramsey numbers considers R(Q m, Q n) for m fixed and n large. It is trivial to 
see that R(Q 1, Q n) = n + 1. In the case m = 2 it was shown that R(Q 2, Q n) = n +�

( n
log(n)

)
with upper bound due to Grósz, 

Methuku, and Tompkins [13] and lower bound due to Axenovich and the author [2]. For m ≥ 3 only rough estimates are 
known, see Lu and Thompson [17]. This open field of research as well as Erdős-Hajnal-type questions on posets motivated 
a detailed study of the off-diagonal poset Ramsey number R(P , Q n) for fixed P and large n which is presented in a series 
of papers [23], [3] including the present paper.

Other extremal problems on posets include rainbow Ramsey problems, see Chang, Gerbner, Li, Methuku, Nagy, Patkós, 
and Vizer [5]; Turan-type, most notable see Methuku and Pálvölgyi [18]; and saturation-type questions, which are discussed 
in a recent survey by Keszegh, Lemons, Martin, Pálvölgyi, and Patkós [15].

1.2. Summary of results

In order to understand the general framework of bounds on R(P , Q n) we consider two special posets. The V -shaped 
poset V 2 has three distinct vertices X, Y , and Z with Z ≤ X , Z ≤ Y , and X ‖ Y . Its symmetric counterpart is the poset �2
which has three distinct vertices X, Y , and Z where Z ≥ X , Z ≥ Y , and X ‖ Y . We say that a poset P is non-trivial if P
contains a copy of either V 2 or �2, otherwise we say that P is trivial. It was shown by Axenovich and the author [2] that 
two different asymptotic behaviors of R(P , Q n) emerge depending on whether the fixed P is trivial or not. Combined with 
a general lower bound of Walzer [22] and a general upper bound by Axenovich and Walzer [1] the following is known:

Theorem 1 ([1][2][22]). Let P be a trivial poset. Then for every n,

n + h(P ) − 1 ≤ R(P , Q n) ≤ n + h(P ) + α(w(P )) + 1.

Let P be a non-trivial poset. Then for sufficiently large n,

n + 1
15

n
log n ≤ R(P , Q n) ≤ h(P )n + dim2(P ).

Throughout this paper ‘log’ refers to the logarithm base 2. The height h(P ) is the size of the largest set of pairwise 
comparable vertices in P , while the width w(P ) denotes the size of the largest set of pairwise incomparable vertices in 
P . The 2-dimension dim2(P ) is the smallest dimension N of a Boolean lattice Q N which contains a copy of P . It is a 
basic observation that this poset parameter is well-defined. The Sperner number α(t) is the minimal integer N such that ( N

N/2�

) ≥ t . It was determined almost exactly in an explicit form by Habib, Nourine, Raynaud and Thierry [14] who showed 
that

α(t) ∈ {⌊
log t + log log t

2

⌋ + 1,
⌊

log t + log log t
2

⌋ + 2
}
. (∗)

We remark that posets P of height h(P ) = 1, i.e. antichains, are trivial, however for such P the general upper bound 
R(P , Q n) ≤ h(P )n + dim2(P ) by Axenovich and Walzer [1] is stronger than the bound R(P , Q n) ≤ n + h(P ) + α(w(P )) + 1
given in Theorem 1.

Another important contribution of Walzer [22] in the analysis of R(P , Q n) is providing a bound for parallel compositions
P . Given a poset P , two subposets P1, P2 ⊆ P are parallel if they are element-wise incomparable. We denote by P1 + P2 the 
parallel composition of two posets P1 and P2, that is the poset consisting of a copy of P1 and a copy of P2 which are disjoint 
and parallel. In the literature the parallel composition is also referred to as independent union. Note that this operation is 
commutative and associative.
2
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Table 1
Off-diagonal poset Ramsey bounds for small P and reference to the proofs of lower bound (LB) and 
upper bound (UB).

poset P R(P , Q n) proof

C1 = Q 0 n + 0 trivial

C2 = Q 1 n + 1 Theorem 8

A2 = 2C1 n + 2 Theorem 8

C3 n + 2 Theorem 8

C2,1 n + 3 Theorem 8

A3 = 3C1 n + 3 Theorem 5

V 2 = K1,2 n + c(n)n
log(n)

, 1
15 ≤ c(n) ≤ 1 + o(1) [2]

C4 n + 3 Theorem 8

C2,2 = 2C2 n + 3 Theorem 8

A4 = 4C1 n + 3 Theorem 5

C3,1 n + 4 Theorem 8

C2,1,1 n + 4 Theorem 9

V 2 + C1 n + c(n)n
log(n)

, 1
15 ≤ c(n) ≤ 1 + o(1) LB: Theorem 1 ([2]), 

UB: [2], Theorem 2 ([22])

K1,3 = V 3 n + c(n)n
log(n)

, 1
15 ≤ c(n) ≤ 1 + o(1) LB: Theorem 1 ([2]), 

UB: [23]

� = N n + c(n)n
log(n)

, 1
15 ≤ c(n) ≤ 1 + o(1) LB: Theorem 1 ([2]), 

UB: [3]

Q 2 = K1,2,1 n + c(n)n
log(n)

, 1
15 ≤ c(n) ≤ 2 + o(1) LB: Theorem 1 ([2]), 

UB: [13]

K1,1,2 = Y n + c(n)n
log(n)

, 1
15 ≤ c(n) ≤ 2 + o(1) LB: Theorem 1 ([2]), 

UB: [23]

Q −
2 n + c(n)n

log(n)
, 1

15 ≤ c(n) ≤ 2 + o(1) LB: Theorem 1 ([2]), 
UB: Corollary 4

K2,2 = � n + c(n)n
log(n)

, 1
15 ≤ c(n) ≤ 4 + o(1) LB: Theorem 1 ([2]), 

UB: [23]

Theorem 2 ([22]). Let � ≥ 2 and let P1, P2, . . . , P� , and Q be arbitrary posets. Let P = P1 + P2 +· · ·+ P� be the parallel composition 
of P1, . . . , P� . Then

R(P , Q ) ≤ max
j∈[�]

{
R(P j, Q )

} + α(�) ≤ max
j∈[�]

{
R(P j, Q )

} + log(�) + 1
2 log log(�) + 2.

Collecting known results and providing several new bounds in this paper, we obtain bounds on R(P , Q n) which are 
asymptotically tight in the two leading additive terms for all posets P on at most 4 vertices (of which there are 19 up to 
symmetry). Moreover, we exactly determine R(P , Q n) for all trivial P on at most 4 vertices. An overview of the bounds is 
given in Table 1. In every row of the table a poset P is defined by its Hasse diagram and labeled using the notation of this 
paper. Formal definitions of all posets are stated in Sections 1.3 and 2.1. Some posets have alternative names used in the 
literature, these are additionally mentioned in the table.

1.3. New results

A chain Ct of length t is a poset on t vertices forming a linear order. For s, t ∈ N , let S Ds,t denote the (s, t)-subdivided 
diamond, the poset obtained from two disjoint and element-wise incomparable chains of length s and t , respectively, by 
3
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Fig. 1. Hasse diagrams of S D3,2 and C4,3,3.

adding a common minimal vertex and a common maximal vertex, i.e. a vertex which is smaller than all others and a vertex 
which is larger than all others, see Fig. 1. Note that S D1,1 = Q 2. Our first result shows that for subdivided diamonds the 
lower bound obtained from Theorem 1 is asymptotically tight in a strong sense.

Theorem 3. Let s and t be fixed natural numbers. Then for sufficiently large n,

R(S Ds,t, Q n) ≤ n +
(
2 + o(1)

)
n

log n
.

Note that the poset Q −
2 , as defined in the penultimate line of Table 1, is an induced subposet of S D1,2. Thus, Theorem 3

implies:

Corollary 4. For n sufficiently large, R(Q −
2 , Q n) ≤ R(S D1,2, Q n) ≤ n + (

2 + o(1)
) n

log n .

We remark that Theorem 3 can be generalized, but the argument is rather technical, so we omit it here. Generalizing 
subdivided diamonds we can show that for every poset P with width w(P ) = 2 and which contains no copy of the N-shaped 
4-element poset �,

R(P , Q n) = n + O

(
n

log n

)
.

This bound follows from Theorem 3 of the present article, Theorem 1 and Corollary 6 of [23] as well as a characterization 
by Valdes [21] stating that a poset is �-free if and only if it is series-parallel.

An antichain At is the parallel composition of t single vertices, i.e. the poset consisting of t pairwise incomparable 
vertices. Since h(At) = 1 and dim2(At) = α(t) by the famous Sperner’s theorem [20], the bounds in [1] and (∗) imply that

n ≤ R(At, Q n) ≤ n + α(t) ≤ n + log t + log log t
2 + 2.

In this paper we exactly determine R(At , Q n), not only for fixed t but also if t grows at most double-logarithmic in terms 
of n. We remark that the case t ≤ 2 is covered by Theorem 8.

Theorem 5. For every two integers t and n with 3 ≤ t ≤ log log n,

R(At, Q n) = n + 3.

In fact, our result holds for n ≥ 22t−2 − 2, which is a slightly weaker precondition than t ≤ log log n. Besides that, we 
prove that if t is large in terms of n, the poset Ramsey number R(At , Q n) exceeds n + 3.

Theorem 6. Let n, r, t ∈N such that t >
(n+2r+1

r

)
. Then R(At , Q n) ≥ n + 2r + 2. In particular, if t ≥ n + 4, then R(At, Q n) ≥ n + 4.

Stated explicitly in terms of n and t , Theorems 1 and 6, and (∗) provide the following.

Corollary 7. For n, t ∈N with n ≥ 3 and t ≥ 2,

n + 2 log t

3 + logn
≤ R(At, Q n) ≤ n + log t + log log t

2
+ 2.

It is a simple observation that a poset is trivial if and only if it is a parallel composition of chains Ct1 , . . . , Ct� . We say 
that this is the chain composition with parameters t1, . . . , t� ,

Ct1,t2,...,t� = Ct1 + Ct2 + · · · + Ct� .
4
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Throughout the paper we use the convention that t1 ≥ t2 ≥ · · · ≥ t� . Theorem 1 provides that n + t1 −1 ≤ R(Ct1,t2,...,t� , Q n) ≤
n + t1 + α(�) + 1. Here we show exact bounds for chain compositions of width � ≤ 3.

Theorem 8. Let n, t1, t2 ∈N such that t1 ≥ t2 . Then

R(Ct1 , Q n) = n + t1 − 1 and R(Ct1,t2 , Q n) = n + t1 + 1.

Theorem 9. Let n, t1, t2, t3 ∈ N with t1 ≥ t2 ≥ t3 . If t1 ≤ t2 + 1, then R(Ct1,t2,t3 , Q n) = n + t1 + 2. If t1 > t2 + 1, then 
R(Ct1,t2,t3 , Q n) = n + t1 + 1.

Theorems 2 and 8 imply an improvement of the general bound for trivial posets.

Corollary 10. Let n ∈ N . Let P be a trivial poset. If w(P ) = 1, then R(P , Q n) = n + h(P ) − 1. If w(P ) ≥ 2, then n + h(P ) + 1 ≤
R(P , Q n) ≤ n + h(P ) + α(w(P )) − 1.

Note that every poset with w(P ) = 1 is trivial. By Theorem 1, the bounds in Corollary 10 for w(P ) ≥ 2 also hold for 
non-trivial posets if n is large. However, for small n, Corollary 10 does not extend to non-trivial posets, for example it can 
be easily checked that R(V 2, Q 1) = 3 < 4.

Our paper is structured as follows. In Section 2 we introduce basic definitions and notation, and discuss preliminary 
observations. Section 3 gives a proof of Theorem 3. Section 4 focuses on antichains, and gives a proof of Theorems 5 and 
6 as well as Corollary 7. In Section 5, we present proofs of Theorems 8 and 9. Finally, in Section 6 we summarize known 
proof techniques for bounding off-diagonal poset Ramsey numbers and collect some open problems.

In this paper we omit floors and ceilings where appropriate. The set of the first n natural numbers is denoted by 
[n] = {1, . . . , n}.

2. Preliminaries

2.1. Poset notation and classic results

In the previous section we stated formal definitions of the Boolean lattice Q n , the V -shaped poset V 2, the chain Ct , the 
antichain At , the (s, t)-subdivided diamond S Ds,t and the chain composition Ct1,t2,...,t� . Besides those we use the following 
notation for posets. Examples of all mentioned posets are given in Table 1.

The N-shaped poset � consists of four distinct vertices W , X, Y , and Z such that W ≤ Y , Y ≥ X , X ≤ Z , W ||X , W ||Z , 
and Y ||Z . The hook-shaped poset Q −

2 has distinct vertices W , X, Y , and Z where X ≤ Y ≤ Z , W ≥ X , W ||Y , and W ||Z .

The complete �-partite poset Kt1,...,t� is a poset on 
∑�

i=1 ti many vertices defined as follows. For each index i ∈ [�], there 
is a set of ti distinct vertices, called layer i. Every pair of vertices in the same layer is incomparable. For any two vertices X
and Y belonging to different layers i X and iY with i X < iY , we have X ≤ Y .

In this paper, we commonly consider a Boolean lattice Q n with a specified ground set. Given a set X, the Boolean lattice
Q(X) is the poset on all subsets of X equipped with set inclusion relation. The dimension of Q(X) is |X|. Let N = |X|. For 
� ∈ {0, . . . , N}, we say that layer � of Q(X) is the set of elements in {Z ∈ Q(X) : |Z | = �}. Note that Q(X) consists of N + 1
layers and that each layer induces an antichain in Q(X). A blue/red coloring of a Boolean lattice is layered if within each 
layer every vertex receives the same color.

The following classic result is known as Dilworth’s theorem [11].

Theorem 11 (Dilworth [11]). A poset P contains no antichain of size t if and only if all vertices of P can be covered by t − 1 chains.

A chain in an N-dimensional Boolean lattice is said to be symmetric if it consists of vertices X� ⊂ · · · ⊂ XN−� for some 
non-negative integer � such that |Xi | = i for all i ∈ {�, . . . , N − �}. De Bruijn, Tengbergen and Kruyswijk [9] showed the 
following decomposition result.

Theorem 12 ([9]). The vertices of an N-dimensional Boolean lattice can be decomposed into pairwise disjoint, symmetric chains.

2.2. Red Boolean lattice versus blue chain

In this paper we often consider the Boolean lattice Q(X ∪Y) where X and Y are two disjoints sets with Y �= ∅. We denote 
a linear ordering τ of Y where y1 <τ y2 <τ · · · <τ yk by a sequence τ = (y1, . . . , yk) implying that Y = {y1, . . . , yk}. Given 
a linear ordering τ = (y1, . . . , yk) of Y, a Y-chain corresponding to τ is a (k + 1)-element chain in Q(X ∪ Y) on vertices

X0 ∪∅, X1 ∪ {y1}, X2 ∪ {y1, y2}, . . . , Xk ∪ Y,
5
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where X0 ⊆ X1 ⊆ · · · ⊆ Xk ⊆ X. Note that Y-chains corresponding to distinct linear orderings of Y are distinct. The following 
Chain Lemma was proved implicitly by Chen, Cheng, Li and Liu [7] as well as Grósz, Methuku and Tompkins [13]. Since it is 
a fundamental lemma in determining R(P , Q n), we restate its self-contained proof by following the lines of Axenovich and 
the author, see Lemma 8 in [2].

Lemma 13 ([13], Chain Lemma). Let X and Y be disjoint sets with |X| = n and |Y| = k. Let Q(X ∪ Y) be a blue/red colored Boolean lat-
tice. Fix a linear ordering τ = (y1, . . . , yk) of Y. Then there exists in Q(X ∪ Y) either a red copy of Q n, or a blue Y-chain corresponding 
to τ .

Proof. We denote the set of the first i elements of Y with respect to τ by Y[i] = {y1, . . . , yi} for i ∈ [k] and let Y[0] = ∅. 
Assume that there does not exist a blue Y-chain corresponding to τ . We show that there is a red copy of Q n . Recall that a 
copy of P in Q is the image of an embedding φ : P → Q . In the following for every X ⊆ X, we recursively define a label 
�X ∈ {0, . . . , k} such that the function

φ : Q(X) → Q(X ∪ Y), φ(X) = X ∪ Y[�X ]
is an embedding with monochromatic red image. The image of such an embedding is a red copy of Q n as required. We 
choose labels �X , X ⊆ X, with the following properties:

(i) For any U ⊆ X , �U ≤ �X .
(ii) There is a blue chain C X of length �X “below” the vertex X ∪ Y[�X ], i.e. in the Boolean lattice Q X :=Q(X ∪ Y[�X ]) there 

is a blue Y[�X ]-chain corresponding to the linear ordering (y1, . . . , y�X ).
(iii) The vertex X ∪ Y[�X ] is colored red.

First, consider the subset ∅ ⊆ X. Let �∅ be the smallest index �, 0 ≤ � ≤ k, such that the vertex ∅ ∪ Y[�] is red. If there is 
no such �, then the vertices ∅ ∪ Y[0], . . . , ∅ ∪ Y[k] form a blue Y-chain corresponding to τ , a contradiction. It is immediate 
that Properties (i) and (iii) hold for �∅ . If �∅ = 0, then (ii) holds trivially. If �∅ ≥ 1, then vertices ∅ ∪ Y[0], . . . , ∅ ∪ Y[�∅ − 1]
form a blue chain of length �∅ as required for (ii).

Now consider an arbitrary non-empty X ⊆ X and suppose that for every U ⊂ X we already defined �U with Properties 
(i)-(iii). Let �′

X = max{U⊂X} �U and fix some W ⊂ X with �W = �′
X . Let CW be the blue chain obtained by Property (ii) for 

W . We define �X as the smallest integer � with �′
X ≤ � ≤ k such that the vertex X ∪ Y[�] is red in the coloring of Q(X ∪ Y). 

If such an � does not exist, i.e. if there is no red X ∪ Y[�], the vertices X ∪ Y[�′
X ], . . . , X ∪ Y[k] form a blue chain of length 

k − �′
X + 1. The chain CW is a blue chain “below” W ∪ Y[�W ]. Note that W ∪ Y[�W ] ⊂ X ∪ Y[�′

X ], thus both chains combine 
to a chain C X of length k + 1. It is easy to see that C X is a Y-chain corresponding to τ , so we arrive at a contradiction. 
Thus, �X is well-defined.

It is immediate that Property (iii) holds for �X . Furthermore, for U ⊂ X ⊆ X we have �U ≤ �′
X ≤ �X , thus (i) holds. It 

remains to verify Property (ii) for �X . Recall that W ⊂ X such that �W = �′
X . If �X = �′

X , the chain C X := CW is as required. 
If �X �= �′

X , the chain CW together with vertices X ∪ Y[�′
X ], . . . , X ∪ Y[�X − 1] is a blue chain of length �X , which verifies 

Property (ii).
We use the labels �X , X ⊆ X, to define an embedding of a Boolean lattice Q n in Q(X ∪ Y). Let φ : Q(X) → Q(X ∪ Y)

with φ(X) = X ∪ Y[�X ]. Property (iii) implies that the image of φ is colored monochromatically red. We show that for 
any two X1, X2 ⊆ X, it holds that X1 ⊆ X2 if and only if φ(X1) ⊆ φ(X2). Indeed, if φ(X1) ⊆ φ(X2), it is immediate that 
X1 = φ(X1) ∩ X ⊆ φ(X2) ∩ X = X2. Conversely, if X1 ⊆ X2, then by Property (i) we see that �X1 ≤ �X2 . Thus X1 ∪ Y[�X1 ] ⊆
X2 ∪ Y[�X2 ]. Therefore, φ is an embedding of Q(X) with red image, so in particular Q(X ∪ Y) contains a red copy of Q n . �

The red copy of Q n obtained in this lemma has a strong additional property with respect to X which is not needed 
here. For further details we refer the reader to Lemma 8 of [2]. The following corollary is a simplified version of the Chain 
Lemma.

Corollary 14. Let n ≥ 1 and k ≥ 0 be integers. Let Q be a blue/red colored Boolean lattice of dimension n + k. Then Q contains a red 
copy of Q n or a blue chain of length k + 1.

Note that Corollary 14 immediately implies the upper bound for R(Ct1 , Q n) in Theorem 8.

2.3. Embedding of a Boolean lattice

Axenovich and Walzer [1] showed that an embedding of a small Boolean lattice into a larger Boolean lattice has the 
following nice property, see Theorem 8 of [1].

Lemma 15 ([1]). Let n ∈ N and let Z be a set with |Z| > n. If there is an embedding φ : Q n → Q(Z), then there exist a subset X ⊂ Z
with |X| = n, and an embedding φ′ : Q(X) →Q(Z) with the same image as φ such that φ′(X) ∩ X = X for all X ⊆ X.
6
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Fig. 2. The permutation π̂ : [k] → [k].

In other words, for any copy Q ′ of Q n in the hosting lattice Q(Z) there is some X ⊂ Z such that the vertex-wise 
restriction of Q ′ to X is equal to Q(X).

3. Upper bound on R(S Ds,t, Q n)

3.1. Counting permutations

In this subsection we bound the number of permutations with a special property, in preparation for our proof of 
Theorem 3. A permutation π : [k] → [k] is called r-proper if for every j ∈ [k], |{� ≤ j : π(�) ≥ j − 1}| ≤ r. For example, 
the permutation π̂ given by (π̂ (1), . . . , π̂ (k)) = (k, 1, 3, 4, 5, . . . , k − 1, 2), see Fig. 2, is not 1-proper because at j = 3, 
{� ≤ 3 : π̂ (�) ≥ 2} = {1, 3}. However, π̂ is 2-proper.

Lemma 16. Let r, k ∈N . There are at most 2(r+log r)k distinct r-proper permutations π : [k] → [k].

Proof. For an r-proper permutation π , we say that an index i ∈ [k] is bad if π(i) ≥ i, and good if π(i) ≤ i − 1. Let Bπ and 
Gπ denote the set of indices that are bad and good, respectively, i.e. the sets partition [k]. Again considering the example 
(π̂ (1), . . . , π̂ (k)) = (k, 1, 3, 4, 5, . . . , k − 1, 2), we have that Bπ̂ = {1} ∪ {3, 4, . . . , k − 1} and Gπ̂ = {2, k}.

Given an r-proper permutation π , the proper restriction ρ of π is the restriction of π to its bad indices, i.e. ρ : Bπ → [k]
with ρ(i) = π(i) for every i. For example, the proper restriction of π̂ is ρ̂ : [k − 1] \ {2} → [k] with ρ̂(1) = k and ρ̂(i) = i for 
3 ≤ i ≤ k − 1. Note that ρ does not depend on r. Observe that a function ρ can be the proper restriction of distinct r-proper 
permutations. Let 
 be the set of all r-proper permutations π : [k] → [k]. If a function ρ is the proper restriction of some 
π ∈ 
, we say that ρ is a 
-restriction. To avoid ambiguity, we denote the domain of ρ by Bρ . Inheriting the properties of 
an r-proper permutation, ρ is injective and

∣∣{� ∈ Bρ : � ≤ j, ρ(�) ≥ j − 1}∣∣ ≤ r.

In the following we bound |
| by first estimating |{ρ : ρ is a 
-restriction}|, and then bounding |{π ∈ 
 : ρ is the proper
restriction of π}| for every fixed ρ .

Claim 1. There are at most 2rk distinct 
-restrictions.

Proof of Claim 1. We show that every 
-restriction has a distinct representation as a collection of r vectors V 1, . . . , Vr ∈
{0, 1}k , which implies that there are at most 2rk 
-restrictions. Let ρ be a 
-restriction with domain Bρ . For every i ∈ Bρ

we define an integer interval Ii = [i, ρ(i) + 1]. Consider the interval graph H given by intervals Ii , i.e. the graph on vertex 
set Bρ where {i, j} is an edge if and only if i �= j and Ii ∩ I j �= ∅. In the following we use terminology common in graph 
theory, for a formal introduction we refer the reader to Diestel [10].

Next we bound the maximal size of a clique in H . Suppose that vertices i1, . . . , im form a clique in H , then the intervals 
Ii1 , . . . , Iim pairwise intersect. Thus there exists an integer j ∈ [k] such that j ∈ Ii1 ∩ · · · ∩ Iim . Now

m = ∣∣{� ∈ Bρ : j ∈ I�}
∣∣ = ∣∣{� ∈ Bρ : � ≤ j, ρ(�) + 1 ≥ j}∣∣ ≤ r,

where the last inequality holds since ρ is a proper restriction. Thus there is no clique of size r + 1 in H . It is common 
knowledge that interval graphs are perfect, so there exists a proper vertex coloring of H using at most r colors. Fix such a 
coloring c of H with set of colors [r]. Note that for each color class the corresponding intervals are pairwise disjoint.

For every fixed s ∈ [r], let the set of indices with color s be Bs = {i ∈ Bρ : c(Ii) = s}. We define a vector V s ∈ {0, 1}k as 
follows. Let

V s(i) = · · · = V s(ρ(i)) = 1 for any i ∈ Bs and V s( j) = 0 for all other j ∈ [k].
Since the intervals Ii , i ∈ Bs , are pairwise disjoint, V s is well-defined. Moreover, we obtain that V s(ρ(i) + 1) = 0 for every 
i ∈ Bs . This implies that V s(i − 1) = 0, if defined, for i ∈ Bs . Observe that the vector V s encodes all indices in Bs and their 
7
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respective functional values ρ(i), i ∈ Bs: If for some j ∈ [k], V s( j) = 1 and V s( j − 1) = 0, then j ∈ Bs and ρ( j) is given by 
the maximal index j′ such that V s( j) = · · · = V s( j′) = 1.

We obtain a vector representation V 1, . . . , Vr of ρ . It is easy to see that distinct 
-restrictions have distinct representa-
tions. There are at most (2k)r distinct such vector representations, which proves the claim.

Claim 2. Given a fixed 
-restriction ρ , the number of r-proper permutations π with proper restriction ρ is at most rk.

Proof of Claim 2. Let ρ be a fixed 
-restriction and let G = [k] \ Bρ . We count the possible assignments of good indices i ∈ G
in an r-proper permutation given that π(�) = ρ(�) for every � ∈ Bρ . For this purpose we iterate through all good indices 
i ∈ G in increasing order while counting the choices for each π(i). Observe that 1 /∈ G since π(1) ≥ 1 for any permutation π . 
Fix an i ∈ G , i.e. i ≥ 2. Suppose that all indices � ∈ G ∩[i −1] are already assigned to an integer π(�) ≤ � −1 and all � ∈ Bρ are 
assigned to π(�) = ρ(�). There are two conditions on the choice of π(i): On the one hand i is a good index, so we require 
π(i) ∈ [i −1]. On the other hand π is injective, thus π(i) �= π(�) for all � < i. Therefore π(i) ∈ [i −1] \ {π(�) ∈ [i −1] : � < i}. 
We evaluate the size of this set using the fact that |{� < i : π(�) ≥ i − 1}| ≤ r:

∣∣{π(�) ∈ [i − 1] : � < i}∣∣ = ∣∣{� < i : π(�) ≤ i − 1}∣∣ = ∣∣[i − 1] \ {� < i : π(�) > i − 1}∣∣
≥ ∣∣[i − 1] \ {� < i : π(�) ≥ i − 1}∣∣ ≥ (i − 1) − r.

Thus also

∣∣[i − 1] \ {π(�) ∈ [i − 1] : � < i}∣∣ ≤ (i − 1) − (i − 1 − r) = r.

Hence, there are at most r choices for selecting π(i) for each i ∈ G . Note that |G| ≤ k, consequently the number of r-proper 
permutations with proper restriction ρ is at most rk .

Combining both claims, the number of r-proper permutations is at most

∑
ρ is a 
-restriction

∣∣{π ∈ 
 : ρ is a proper restriction of π}∣∣ ≤ 2rkrk = 2(r+log r)k. �

The bound provided here is not best possible. With a more careful approach the number N(k, r) of r-proper permutations 
π : [k] → [k] can be bounded between

rk ≤ N(k, r) ≤ (2r)2k.

Studying this extremal function might be of independent interest.

3.2. Proof of Theorem 3

Before presenting the proof of Theorem 3 we give a lemma which is purely computational and follows the lines of a 
similar claim by Grósz, Methuku and Tompkins [13].

Lemma 17. Let n ∈N , and let c ∈R be a positive constant. Let k = (2+ε)n
logn where ε = 3(log log n + log e + c + 2)(log n)−1 . Then for 

sufficiently large n,

k! > 2ck · 22(n+k).

Proof. By Stirling’s formula k! >
(

k
e

)k = 2k(log k−log e) . We shall show that k(log k − log e) > ck + 2(n + k). Using the fact that 

k = (2+ε)n
logn , we obtain

k
(

log k − log e − c − 2
) − 2n

≥ (2 + ε)n

logn

(
log(2 + ε) + logn − log log n − log e − c − 2

) − 2n

≥ εn − n

log n
(2 + ε)

(
log log n + log e + c + 2

)
> 0,

where the last inequality holds for sufficiently large n. �
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Proof of Theorem 3. For any s ≤ t , note that S Ds,t is an induced subposet of S Dt,t , so it suffices to show the Ramsey bound 
for s = t . Let k = (2+ε)n

logn where ε = 3(log log n + log e + c + 2)(log n)−1 and c = 2t + 2 + log(2t + 2). Let X and Y be disjoint 
sets with |X| = n, |Y| = k. Consider an arbitrary blue/red coloring of Q(X ∪ Y) with no red copy of Q n . We shall show that 
there is a blue copy of S Dt,t in this coloring.

There are k! linear orderings of Y. For every linear ordering τ of Y, Lemma 13 provides a blue Y-chain Cτ in Q(X ∪ Y)

corresponding to τ , say on vertices Zτ
0 ⊂ Zτ

1 ⊂ · · · ⊂ Zτ
k . Consider the smallest vertex Zτ

0 as well as the largest vertex Zτ
k . 

Both vertices are subsets of X ∪ Y, so there are at most 22(n+k) distinct pairs (Zτ
0 , Zτ

k ). By pigeonhole principle there is a 
collection τ1, . . . , τm of m = k!

22(n+k) distinct linear orderings of Y such that all of the corresponding Y-chains Cτi have both 
Zτi

0 and Zτi
k in common. Lemma 17 shows that m > 2ck .

Fix an arbitrary σ ∈ {τ1, . . . , τm}. By relabeling Y we can suppose that σ = (1, . . . , k), i.e. 1 <σ · · · <σ k. Consider a linear 
ordering τ j , j ∈ [m], (allowing that τ j = σ ) and let τ j = (y1, . . . , yk). Then we say that τ j is t-close to σ for some t ∈ N if 
for every i ∈ [k − t], either [i] ⊆ {y1, . . . , yi+t} or {y1, . . . , yi} ⊆ [i + t]. For example the linear ordering (4, 5, . . . , k, 1, 2, 3)

is 3-close to σ since the first i elements of this linear ordering are contained in [i + 3], for any i ∈ [k − 3]. However, our 
example is not 2-close to σ , because neither {1} ⊆ {4, 5, 6} nor {4} ⊆ [3]. In the remaining proof we distinguish two cases. 
If there is a linear ordering τ j which is not t-close to σ , we build a copy of S Dt,t from the Y-chains corresponding to σ
and τ j . If every linear ordering τ1, . . . , τm is t-close to σ , we find m > 2ck permutations fulfilling the property of Lemma 16, 
thus we arrive at a contradiction.

Case 1: There is a linear ordering τ ∈ {τ1, . . . , τm} which is not t-close to σ .

Suppose that the Y-chains corresponding to σ and τ are given by Zσ
0 , . . . , Zσ

k and Zτ
0 , . . . , Zτ

k , respectively. Recall that 
Zσ

0 = Zτ
0 and Zσ

k = Zτ
k . Since τ is not t-close to σ there is an index i ∈ [k − t] such that neither [i] ⊆ {y1, . . . , yi+t} nor 

{y1, . . . , yi} ⊆ [i + t]. Note that i < k − t because for i = k − t we have [k − t] ⊆ [k] = Y = {y1, . . . , yk}. The definition of 
Y-chains provides that Zσ

i ∩ Y = [i] and Zτ
i+t ∩ Y = {y1, . . . , yi+t}, thus Zσ

i �⊆ Zτ
i+t . By transitivity, Zσ

j �⊆ Zτ
j′ for any two 

j, j′ ∈ {i, . . . , i + t}. Similarly, Zτ
i �⊆ Zσ

i+t and so Zτ
j �⊆ Zσ

j′ . This implies that the set

P =
{

Zσ
j , Zτ

j : j ∈ {0,k} ∪ {i, . . . , i + t}
}

induces a copy of S Dt,t . Furthermore, every vertex of P is included in a blue Y-chain and thus colored blue. This completes 
the proof for Case 1.

Case 2: Every linear ordering τ ∈ {τ1, . . . , τm} is t-close.

Here we use the fact that every linear ordering τ j , j ∈ [m], is obtained by permuting the linear ordering σ . Fix an 
arbitrary τ ∈ {τ1, . . . , τm}, and let τ = (y1, . . . , yk). We say that the permutation corresponding to τ is π : [k] → [k] with 
π(�) = y� . We show that π has the following property.

Claim. For every j ∈ [k], |{� ≤ j : π(�) > j + t}| ≤ t.

The statement is trivially true if j + t > k. Now fix some j ∈ [k − t]. By t-closeness of τ either {π(1), . . . , π( j)} =
{y1, . . . , y j} ⊆ [ j + t] or [ j] ⊆ {y1, . . . , y j+t} = {π(1), . . . , π( j + t)}.

If {π(1), . . . , π( j)} ⊆ [ j + t], then for every � ≤ j we have π(�) ≤ j + t . Therefore {� ≤ j : π(�) > j + t} = ∅ and the 
statement holds.

If [ j] ⊆ {π(1), . . . , π( j + t)}, then let I = {π(1), . . . , π( j + t)} \ [ j], note that |I| = t . Observe that for every � ≤ j with 
π(�) > j + t , we know in particular that π(�) /∈ [ j], thus π(�) ∈ I . Since π is bijective,

∣∣{� ≤ j : π(�) > j + t}∣∣ = ∣∣{π(�) : � ≤ j, π(�) > j + t}∣∣ ≤ |I| = t.

This proves the claim.

In particular, π has the property that |{� ≤ j : π(�) ≥ j − 1}| ≤ 2t + 2 for every j ∈ [k], i.e. π is (2t + 2)-proper. Note that 
distinct linear orderings τi , i ∈ [m], correspond to distinct permutations πi : [k] → [k]. Lemma 16 provides that the number 
of (2t + 2)-proper permutations πi is at most

m ≤ 2(2t+2+log(2t+2))k = 2ck.

Recall that by Lemma 17, m > 2ck , so we arrive at a contradiction. �
4. Bounds on R(At, Q n)

4.1. Erdős-Szekeres variant

In preparation for the proof of Theorem 5 we reshape the following well-known result of Erdős and Szekeres [12].
9
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Theorem 18 (Erdős-Szekeres [12]). Let m ∈N . For an (m2 + 1)-element set Z, let S = (a1, a2, . . . , am2+1) be a sequence consisting of 
distinct elements of Z. Let τ be an arbitrary linear ordering of Z = {a1, . . . , am2+1}. Then there exists a subsequence (ai1 , . . . , aim+1 ) of 
S of length m + 1 such that ai1 <τ · · · <τ aim+1 or aim+1 <τ · · · <τ ai1 .

In the following we refer to a finite sequence of distinct elements as a permutation sequence on the set of these ele-
ments. We say that a sequence (b1, b2, . . . , b�) is an undirected subsequence of some sequence S if either (b1, b2, . . . , b�) or 
(b�, b�−1, . . . , b1) is a subsequence of S . Let {S1, . . . , Sm}, m ∈ N , be a collection of permutation sequences on the same 
set. If (b1, b2, . . . , b�) is an undirected subsequence of every Si , it is referred to as a common undirected subsequence of 
S1, . . . , Sm .

Corollary 19. Let S and T be two permutation sequences on an (m2 + 1)-element set Z. Then there exists a common undirected 
subsequence of S and T which has length m + 1.

Proof. Let S = (a1, a2, . . . , am2+1), i.e. Z = {a1, . . . , am2+1}. For � ∈ [m2 + 1], let j� be indices such that T = (a j1 , . . . , a jm2+1
). 

Consider the linear ordering τ given by a j1 <τ · · · <τ a jm2+1
. Then the Erdős-Szekeres theorem, Theorem 18, yields a sub-

sequence (ai1 , . . . , aim+1 ) of S which is also an undirected subsequence of T . In particular, (ai1 , . . . , aim+1 ) is a common 
undirected subsequence of S and T . �

By iteratively applying Corollary 19 we obtain a lemma that we need later on.

Lemma 20. Let d ∈N and N ≥ 22d−1 + 1. Let Z be an N-element set. Let τ1, . . . , τd be arbitrary linear orderings of Z. Then there exist 
pairwise distinct x, y, z ∈ Z such that for every i ∈ [d],

x <τi y <τi z or z <τi y <τi x.

Proof. For each i ∈ [d], say that τi is given by ai
1 <τi ai

2 <τi · · · <τi ai
N . Then let S(τi) be the sequence (ai

1, a
i
2, . . . , a

i
N). Note 

that S(τi) is a permutation sequence on Z. We show that there is a common undirected subsequence of S(τ1), . . . , S(τd) of 
length 3, because for such a subsequence (x, y, z) either x <τi y <τi z or z <τi y <τi x for every i ∈ [d]. We proceed with an 
iterative argument.

Let T 1 = S(τ1); note that |T 1| ≥ 22d−1 + 1. For i ∈ [d − 1], suppose that T i is a common undirected subsequence of all 
S(τ j), j ∈ [i], and has length at least 22d−i + 1. Let Zi be the underlying set of T i , and let Si be the restriction of S(τi+1)

to Zi . Then both T i and Si are permutation sequences on Zi . By Corollary 19, there is a common undirected subsequence 
T i+1 of T i and Si of length at least (22d−i

)
1
2 + 1 = 22d−(i+1) + 1. Since T i+1 is an undirected subsequence of T i , T i+1 is also 

an undirected subsequence of every S(τ j), j ∈ [i]. Furthermore, because T i+1 is an undirected subsequence of Si , it is also 
an undirected subsequence of S(τi+1).

After d − 1 steps, we obtain a sequence T d of length at least 220 + 1 = 3 which is a common undirected sequence of all 
S j , j ∈ [d]. Choose an arbitrary 3-element subsequence (x, y, z) of T d . Then x, y and z have the desired properties. �

We remark that the bound N ≥ 22d−1 +1 in Lemma 20 is tight: It is widely known that there is a sequence of m2 distinct 
elements which does not meet the property in the Erdős-Szekeres Theorem. Given such a sequence we can straightforwardly 
construct a collection of d linear orderings of a 22d−1

-element set such that no triple x, y, z has the property of Lemma 20.

4.2. Proof of Theorem 5

Proof of Theorem 5. Note that R(A3, Q n) ≤ R(At , Q n) ≤ R(Alog logn, Q n) for all 3 ≤ t ≤ log log n, so it suffices to show that 
R(A3, Q n) ≥ n + 3 and R(Alog logn, Q n) ≤ n + 3. Let N = n + 3.

For the lower bound, we consider the following coloring of the Boolean lattice Q = Q([N − 1]): For all i ∈ [N − 1], color 
[i] and [N − 1]\[i] in blue and color all remaining vertices in red. Observe that all blue vertices can be covered by the two 
chains 

{[i] : i ∈ [N − 1]} and 
{[N − 1]\[i] : i ∈ [N − 1]}, thus among any three distinct blue vertices we find two vertices 

contained in the same chain, i.e. there is no blue copy of A3 in Q. Now, assume towards contradiction that there is a 
red copy of Q n in Q. Lemma 15 provides that there is a set X ⊂ [N − 1], |X| = n, and an embedding φ : Q(X) → Q such 
that the image of φ is monochromatic red and φ(X) ∩ X = X for all X ⊆ X. Note that φ(∅) �= ∅ as ∅ is colored blue in 
Q, so say that a ∈ φ(∅). Then a /∈ X since φ(∅) ∩ X = ∅. Similarly, we know X ⊆ φ(X) �= [N − 1], so we find an element 
b ∈ [N − 1] \ φ(X) with b /∈ X. Observe that a ∈ φ(∅) ⊆ φ(X), but b /∈ φ(X), hence a �= b. Recall that |X| = n = (N − 1) − 2, 
thus X = [N − 1]\{a, b}. Because φ is an embedding of Q(X) and every vertex of Q(X) is comparable to ∅ and X, we obtain 
that a ∈ φ(X) and b /∈ φ(X) for every X ⊆ X. Now the fact that φ(X) ∩ X = X implies φ(X) = X ∪ {a} for all X ⊆ X.

If b ∈ {a + 1, . . . , N − 1}, then [a − 1] ⊆ X. Thus φ([a − 1]) = [a − 1] ∪ {a} = [a], but this vertex is colored blue in Q. This 
is a contradiction to the fact that φ has a monochromatic red image.
10
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If b ∈ {1, . . . , a − 1}, then [N − 1]\[a] ⊆ X. Now φ([N − 1]\[a]) = ([N − 1]\[a]) ∪ {a} = [N − 1]\[a − 1] which is colored 
blue in Q, so again we reach a contradiction.

For the upper bound, let Z be an arbitrary N-element set. Consider an arbitrary coloring of the Boolean lattice Q(Z)

which contains no blue copy of At where t ≤ log log n. We shall show that there is a red copy of Q n in Q(Z).
By Dilworth’s theorem, Theorem 11, there is a collection of t − 1 chains C1, . . . , Ct−1 which cover all blue ver-

tices. Without loss of generality, we assume that every Ci is a full chain, i.e. a chain on N + 1 vertices of the form 
∅, {a1}, {a1, a2}, . . . , {a1, . . . , aN} = Z. Then we say that each Ci , i ∈ [t − 1], corresponds to the unique linear ordering τi
of Z given by a1 <τi a2 <τi · · · <τi aN . Now we apply Lemma 20 to the collection of linear orderings τi , i ∈ [t −1], and obtain 
three distinct elements x, y, z ∈ Z such that for every i ∈ [t − 1], x <τi y <τi z or z <τi y <τi x. In particular, if for some blue 
vertex Z ∈Q(Z) we have x ∈ Z and z ∈ Z , then also y ∈ Z . This is because Z is covered by chain C j for some j ∈ [t − 1] and 
in the corresponding linear ordering τ j either y <τ j z or y <τ j x.

Now assume towards a contradiction that there is no red copy of Q n in Q(Z), then let Y = {x, y, z} and let X = Z\Y. 
Let τ be the linear ordering of Y given by x <τ z <τ y. Applying Lemma 13 we obtain that there exists a chain containing 
a blue vertex of the form X ∪ {x, z} for some X ⊆ X. Then y /∈ X , so this blue vertex contains both x and z but does not 
contain y, which is a contradiction. �
4.3. Proofs of Theorem 6 and Corollary 7

If t is large in terms of n, an improved lower bound on R(At , Q n) holds, which is shown using a layered construction, 
i.e. a coloring of the hosting lattice where each layer is colored monochromatically.

Proof of Theorem 6. Let n, r, t ∈N with t >
(n+2r+1

r

)
. Let Q = Q(Z) be the Boolean lattice on an arbitrary ground set Z on 

n + 2r + 1 elements. Consider the following layered blue/red coloring of Q: Color all vertices X ∈ Q such that |X | ≤ r or 
|X | ≥ n + r + 1 in blue and all other vertices in red. We see that Q consists of n + 2r + 2 layers of which 2r + 2 are colored 
monochromatically blue and all remaining n layers are colored monochromatically red. Since h(Q n) = n + 1, there is no red 
copy of Q n in this coloring. It remains to show that there is no blue copy of At in Q.

We fix a symmetric chain decomposition of Q as provided by Theorem 12. Let  be the family of only those symmetric 
chains which contain a vertex of size exactly r. For any vertex X of size at most r or at least n + r + 1, there is some chain 
C(X) in the decomposition which covers X . Using the properties of a symmetric chain we obtain C(X) ∈ , thus the chains 
in  cover all vertices of size at most r or at least n + r + 1. Thus all blue vertices are covered by chains in , whereat 
|| = (n+2r+1

r

)
< t . Then Dilworth’s theorem implies that there is no blue copy of At in Q. �

Proof of Corollary 7. The upper bound is obtained from the general bound by Axenovich and Walzer [1] and (∗) in Sec-
tion 1.2. For given n ≥ 3 and t ≥ 2, let r be the largest non-negative integer with t >

(n+2r+1
r

)
. In Theorem 6 we showed that 

R(At , Q n) ≥ n + 2r + 2. Now we bound r in terms of n and t . Note that by the maximality of r,

t ≤
(

n + 2r + 3

r + 1

)
≤

(
e(n + 2r + 3)

r + 1

)r+1

≤
(

en

r + 1
+ 3e

)r+1

≤ (2en)r+1.

Thus, r + 1 ≥ log t
log(2e)+logn ≥ log t

3+logn . �
5. Proofs of Theorems 8 and 9

Proof of Theorem 8. The lower bound on R(Ct1 , Q n) follows from Theorem 1. For the upper bound, fix an arbitrary blue/red 
coloring of the Boolean lattice Q1 :=Q([n + t1 − 1]). By Corollary 14 there is a blue copy of Ct1 or a red copy of Q n in Q1, 
so R(Ct1 , Q n) ≤ n + t1 − 1.

Next we consider the poset Ramsey number R(Ct1,t2 , Q n). Let N = n + t1 + 1. In order to prove that R(Ct1,t2 , Q n) ≤ N , we 
consider an arbitrarily blue/red colored Boolean lattice Q2 :=Q([N]) which contains no red copy of Q n . We show that there 
is a blue copy of Ct1,t2 in this coloring. Corollary 14 yields the existence of a blue chain C of length t1 + 2, say on vertices 
Z0 ⊂ Z1 ⊂ · · · ⊂ Zt1+1. Consider the subposet C′ of C on vertices Z1, . . . , Zt1 , i.e. obtained by discarding the minimum and 
maximum vertex of C . The poset C′ is a chain of length t1. Note that there exists an element a ∈ Z1 since Z1 has a proper 
subset Z0. Similarly, we find an element b ∈ [N] \ Zt1 . We obtain that {a} ⊆ Z1 ⊂ · · · ⊂ Zt1 ⊆ [N] \ {b}.

We consider the subposet Q3 := {Z ∈ Q2 : b ∈ Z , a /∈ Z}, see Fig. 3. Note that Q3 is a Boolean lattice of dimension 
N − 2 = n + t1 − 1 with a blue/red coloring induced by the coloring of Q2. Then Q3 contains no red copy of Q n , so 
since R(Ct2 , Q n) = n + t2 − 1 ≤ n + t1 − 1 there is a blue copy D of Ct2 in Q3. For every two X ∈ C′ and Y ∈ D, we 
know that a ∈ X \ Y and b ∈ Y \ X , thus X ||Y . We conclude that the vertices of C′ and D induce a blue copy of Ct1,t2 , so 
R(Ct1,t2 , Q n) ≤ N .

It remains to show that R(Ct1,t2 , Q n) ≥ N = n + t1 + 1. We verify this lower bound by introducing a layered coloring of 
Q4 := Q([N − 1]) which neither contains a blue copy of Ct1,t2 nor a red copy of Q n . Consider the coloring of Q4 where 
layer 0 and layer N − 1 (i.e. both one-element layers) are monochromatically blue, t1 − 1 arbitrary additional layers are blue, 
and all remaining N − (t1 + 1) = n layers are red.
11
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Fig. 3. C′ and Q3 are parallel.

Fig. 4. Chains C and D and vertex F in a copy of Ct1,t2,t3 .

Since Q n has height n + 1, there is no monochromatic red copy of Q n in this coloring. Assume that there is a blue copy 
P of Ct1,t2 in Q4. Note that ∅ /∈ P and [N − 1] /∈ P , because each of these two vertices is comparable to all other vertices 
of Q4 and in P no vertex comparable to all other vertices of P . Other than ∅ and [N − 1], Q4 has only t1 − 1 layers 
containing blue vertices, but h(P) = h(Ct1,t2 ) = t1, so there can not be a blue copy P of Ct1,t2 . �

We remark that the upper bound on R(Ct1 , Q n) alternatively follows from Lemma 4 in Axenovich and Walzer [1].

Proof of Theorem 9. It is a consequence of Theorem 8 and Corollary 10 that

n + t1 + 1 = R(Ct1,t2 , Q n) ≤ R(Ct1,t2,t3 , Q n) ≤ n + t1 + α(3) − 1 = n + t1 + 2.

Let N = n + t1 + 1. Now suppose that t1 ≥ t2 + 2. We shall show that R(Ct1,t2,t3 , Q n) ≤ N . Fix an arbitrary blue/red 
coloring of Q1 := Q([N]) which contains no red copy of Q n . We shall find a blue copy of Ct1,t2,t3 in Q1. By Corollary 14
there is a blue chain C of length t1 + 2. Let C have vertices Z0 ⊂ · · · ⊂ Zt1+1. Consider the subposet C′ of C on vertices 
Z1, . . . , Zt1 , which is a chain of length t1. Note that Z1 �= ∅ and Zt1 �= [N], thus we find some a, b ∈ [N] such that {a} ⊆
Z1 ⊆ · · · ⊆ Zt1 ⊆ [N] \ {b}.

Now consider the subposet Q2 := {Z ∈ Q1 : b ∈ Z , a /∈ Z}, which is a Boolean lattice of dimension N − 2 ≥ n + t2 + 1
with a blue/red coloring induced by Q1. In particular, Q2 contains no red copy of Q n , so Theorem 8 yields that there is a 
blue copy P of Ct2,t3 . Thus, for every two Z ∈ P and U ∈ C′ we know that a ∈ U \ Z , b ∈ Z \ U , so Z ||U . Consequently, the 
vertices of P and C′ induce a blue copy of Ct1,t2,t3 .

From now on, suppose that t1 ≤ t2 + 1. It remains to show that R(Ct1,t2,t3 , Q n) > n + t1 + 1 = N . If t1 = 1, this is a con-
sequence of Theorem 5, so say that t1 ≥ 2. We construct a blue/red coloring of Q3 := Q([N]) which neither contains a red 
copy of Q n nor a blue copy of Ct1,t2,t3 as follows. Color all vertices in the four layers � ∈ {0, 1, N − 1, N} monochromatically 
in blue. Color t1 − 2 arbitrary additional layers blue and all remaining (N + 1) − 4 − (t1 − 2) = n layers red. Clearly, this 
coloring contains no red copy of Q n since h(Q n) = n + 1. Assume for a contradiction that there is a blue copy P of Ct1,t2,t3

in Q3. In P denote a blue chain of length t1 by C , say on vertices Z1 ⊂ · · · ⊂ Zt1 . Furthermore there is a chain D of length 
t2 in P which is parallel to C , see Fig. 4. Let F be a vertex of P which is neither in C nor in D, i.e. F is incomparable to 
every vertex in C and D.

It is easy to see that neither ∅ nor [N] are in P , because both of these vertices are comparable to every other vertex in 
Q3 which does not occur in P . Excluding the two vertices ∅ and [N], there are exactly t1 layers containing blue vertices, 
including layer 1 and layer N − 1.

Recall that C is a blue chain of length t1, therefore the smallest vertex Z1 of C is in layer 1, while the largest vertex Zt1

of C is in layer N − 1. Thus we find a, b ∈ [N] such that Z1 = {a} and Zt1 = [N]\{b}. Let Q4 := {Z ∈ Q3 : b ∈ Z , a /∈ Z}, this 
poset is a Boolean lattice. Since F is incomparable to every vertex in C , we obtain that a /∈ F and b ∈ F . Thus F ∈Q4 and in 
particular F ⊇ {b} and F ⊆ [N]\{a}. Similarly, D ⊆Q4.

The coloring of Q3 induces a layered coloring of Q4 where exactly t1 of the layers are blue. Two of these blue layers 
in Q4 are the one-element layers given by {b} and [N] \ {a}. Since the chain D has height h(D) ≥ t1 − 1, either {b} ∈ D
or [N]\{a} ∈ D. This is a contradiction, because F is incomparable to every vertex in D but both {b} and [N]\{a} are 
comparable to F . �
12
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6. Summary of known approaches

6.1. Proof techniques

In order to give an insight on research of off-diagonal poset Ramsey numbers, we briefly survey known proof methods 
for bounding R(P , Q n) when P is fixed. For some easy-to-analyze posets, e.g. several trivial posets, no advanced tools are 
required to get an exact bound. An example for this is our proof of Theorem 8 in Section 5, which only relies on the basic 
observation Corollary 14. Many other posets require more involved proof techniques, and there are three methods which 
provides upper bounds on R(P , Q n).

A blob approach is used in particular for Boolean lattices P = Q m . The idea behind this method is to consider a blue/red 
colored hosting lattice in which we define many blobs, i.e. small sublattices that are pairwise disjoint, arranged in a product 
structure. If any blob is monochromatically blue, we obtain a blue copy of P . Otherwise, we find a red copy of Q n by 
choosing one red vertex in each blob. This proof technique was introduced in a related setting by Kierstead and Trotter 
[16], and provided a first general upper bound for poset Ramsey numbers in Axenovich and Walzer [1]. For a more refined 
version, see Lu and Thompson [17].

Grósz, Methuku and Tompkins [13] introduced another proof technique, the chain approach. Here we consider the large 
number of blue chains obtained by the Chain Lemma, Lemma 13, and use counting arguments to force the existence of a 
monochromatically blue copy of P . Exemplary for this method are the proof of Theorem 3 in Section 3 and Theorem 1 in 
Winter [23].

A more technical proof method is the blocker approach. It tries to strengthen the Chain Lemma in order to get a precise 
picture on how the blue chains in the coloring are located relative to each other, in fact they are grouped into structures 
called blockers. This proof technique is described in another part of this series, see Axenovich and the author [3].

A general lower bound on R(P , Q n) for every P is obtained from a trivial layered coloring, see Theorem 1. For bounding 
R(P , Q n) from below, most constructions slightly refine a layered coloring according to the fixed P , see e.g. the proofs of 
Theorems 8 and 9 or Grósz, Methuku and Tompkins [13]. Most known proofs for the lower bound strengthen the trivial 
lower bound just by a constant. The only non-marginal improvement of the trivial lower bound is given by Axenovich and 
the author [2] building on the structural insights obtained from the blocker approach.

6.2. Open problems

In our series of papers we discussed the asymptotic behavior in the off-diagonal poset Ramsey setting R(P , Q n) for P
fixed and n large. We close this study by collecting some open problems. For trivial P , i.e. posets containing neither V 2 nor 
�2, Theorem 1 bounds R(P , Q n) = n + �(1) tight up to an additive constant. We improved the bounds on this constant in 
Corollary 10, but a general exact bound for trivial P with w(P ) ≥ 4 remains to be determined. For non-trivial P the picture 
is more unclear. Theorem 1 provides that n + 1

15
n

log n ≤ R(P , Q n) ≤ cP · n. Axenovich and the author [2] conjectured that the 
true value of R(P , Q n) is closer to the lower bound.

Conjecture 21 ([2]). For every fixed poset P , R(P , Q n) = n + o(n).

The lower bound R(P , Q n) = n +�( n
log n ) is known to be asymptotically tight in the two leading additive terms for some 

non-trivial P , i.e. R(P , Q n) = n + �( n
log n ). We say that such a poset P is modest. Note that V 2 and �2 are modest, and 

every non-trivial poset contains either V 2 or �2 as a subposet. Belonging to the class of modest posets are e.g. subdivided 
diamonds, see Theorem 3, complete multipartite posets [23] and the N-shaped poset � [3]. Notably, it remains open 
whether there exists a non-trivial poset which is not modest.

Conjecture 22. There is a fixed poset P with R(P , Q n) = n + ω
(

n
log n

)
.

Known modest posets differ in various poset parameters, for example S Dt,t has large height and K1,t has large width. 
However, every known modest poset has order dimension 2. The order dimension of P is the minimal number of linear 
orderings such that P is the intersection of these linear orderings. Natural candidates for proving Conjecture 22 are either 
Q 3 or the standard example S3, the 6-element poset induced by layers 1 and 2 of Q 3. Both posets have order dimension 3.

Determining R(Q m, Q n) for m ∈N is one of the most interesting open problems regarding poset Ramsey numbers. While 
well-understood for m ∈ {1, 2}, the asymptotic behavior of R(Q m, Q n) for fixed m ≥ 3 is only bounded up to a constant linear 
factor, see Lu and Thompson [17]. Conjectures 21 and 22 are equivalent to the following.

Conjecture 23. For every fixed m ∈ N , R(Q m, Q n) = n + o(n). Furthermore there is a fixed integer m ∈ N with R(Q m, Q n) =
n + ω

(
n

log n

)
.

Note that Conjecture 23 is a strengthening of an open conjecture raised by Lu and Thompson [17].
13
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