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A B S T R A C T

This letter presents an extended analysis and a novel upper bound of the subclass of Linear
Quadratic Near Potential Differential Games (LQ NPDG). LQ NPDGs are a subclass of potential
differential games, for which there is a distance between an LQ exact potential differential game
and the LQ NPDG. LQ NPDGs exhibit a unique characteristic: The smaller the distance from
an LQ exact potential differential game, the more closer their dynamic trajectories. This letter
introduces a novel upper bound for this distance. Moreover, a linear relation between this
distance and the resulting trajectory errors is established, opening the possibility for further
application of LQ NPDGs.

. Introduction

Game theory is a widely used mathematical tool to model interaction between multiple agents [1]. In a game, different players
nteract with each other in order to optimize their own cost function. Due to the interaction between them, the optimal solution
as to be computed in a coupled manner. One of the solution concepts is the so-called Nash Equilibrium (NE), which emerges as a
olution in non-cooperative games where players independently pursue their goals without forming agreements [2, Chapter 7–8].
his necessitates coupled optimization processes for each player in an 𝑁-player game. For a comprehensive overview of the theory
f dynamic games, it is referred to [3].

In the case of the so-called potential games, the game can be characterized by one single cost (potential) function instead of
, coupled optimizations. This enables the calculation of the Nash Equilibrium (NE) by simply optimizing this potential function.

urthermore, the uniqueness of the NE is assured when dealing with a convex potential function, enhancing the appeal of using
his game characterization in practical scenarios, like motion planning [4], communication network management [5], modeling
uman–robot interactions [6], multi agent systems [7] or network-flow control problems [8].

The core idea of near potential games is the usage of a distance metric between two differential games. In that way, the required
xactness of the exact potential differential games is transformed into a less restrictive condition, which permits a small, remaining
ifference between the two games. The concept of near potential static games is introduced in [9,10]. Based on the intuitive idea
hat if two games are close in terms of the properties of the players’ strategy sets, their properties in terms of NE should be somehow
imilar. A systematic framework for static games was developed in [9]. It was shown that a near potential static game has a similar
onvergence of the strategies1 compared to an exact potential static game. A similar convergence of the strategies means that similar
hanges in the input strategies lead to similar changes in the payoffs in the game. Furthermore, it is also shown that the meaning
f close can be quantified in the developed framework, see [9].

In this letter, a specific subclass, the Near Potential Differential Games (NPDG) is discussed. In [11], the concept of the NPDGs
as introduced, in which, the similarities of the trajectories are given as a non-linear function of the closeness of two games. In this

E-mail address: balint.varga2@kit.edu.
1 Note that the convergence of static games means the convergence of the decision-making process, which leads to one of the NEs of the game. The term
ynamics has no relation to the dynamics of the system states in the context of differential games.
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letter, a novel upper bound is provided: A linear relation is derived facilitating a more feasible application of this upper bound. The
primary contribution is the derivation of this novel upper bound for NPDGs.

2. Preliminaries

In the following, the focus of this letter lies on the linear quadratic (LQ) differential games. LQ differential games are useful for
odeling a wide range of engineering problems since they provide a simple and effective way to trade off conflicting objectives and
ake optimal decisions across dynamic systems.

.1. Exact potential differential games

efinition 1 (LQ Differential Game [12]). An LQ Differential Game 𝛤d is defined as a tuple of

• a set of 𝑁 players 𝑖 ∈  = {1, 2,… , 𝑁},
• a dynamic system with the system matrix 𝐀 and the input matrix of player 𝑖, 𝐁(𝑖)

𝒙̇(𝑡) = 𝐀𝒙(𝑡) +
∑

𝑖∈
𝐁(𝑖)𝒖(𝑖)(𝑡), (1)

• the joint set of control strategies of the players  =  (1) ×⋯ × (𝑁) and
• the set of the players’ cost functions  = {𝐽 (1), … , 𝐽 (𝑁)}, where

𝐽 (𝑖) = 1
2 ∫

𝜏end

0
𝒙(𝑡)𝖳𝐐(𝑖)𝒙(𝑡) +

∑

𝑗∈
𝒖(𝑗)(𝑡)𝖳𝐑(𝑖𝑗)𝒖(𝑗)(𝑡) d𝑡, 𝑖 ∈  , (2)

where 𝐐(𝑖) and 𝐑(𝑖𝑗) represent the penalty matrices for the system states and system inputs of the player 𝑖. The end of the
game is 𝜏end. It is assumed that the matrices of the cost functions have a diagonal structure 𝐐(𝑖) = diag

(

𝑞(𝑖)1 , 𝑞(𝑖)2 ,… , 𝑞(𝑖)𝑛
)

and

𝐑(𝑖𝑗) = diag
(

𝑟(𝑖𝑗)1 , 𝑟(𝑖𝑗)2 ,… , 𝑟(𝑖𝑗)𝑝𝑖

)

, are positive semi-definite and positive definite, respectively.

Definition 2 (Nash Equilibrium [12]). The game is in a Nash equilibrium (NE) if the players cannot deviate from their actual strategies
without increasing their costs

𝐽 (𝑖)
(

𝒖(𝑖)∗, 𝒖(¬𝑖)∗
)

≤ 𝐽 (𝑖)
(

𝒖(𝑖), 𝒖(¬𝑖)∗
)

∀𝑖 ∈  .

In order to compute the NE of a differential game, the so-called coupled Riccati equations are set up [2, Chapter 7], for which
the Hamiltonians of the players are computed such as

𝐻 (𝑖) = 1
2
𝒙(𝑡)𝖳𝐐(𝑖)𝒙(𝑡) + 1

2
∑

𝑗∈
𝒖(𝑗)(𝑡)𝖳𝐑(𝑖𝑗)𝒖(𝑗)(𝑡) + 𝝀(𝑖)𝑇 (𝑡)𝒙̇(𝑡). (3)

For further details on the solution to the coupled Riccati equation, it is referred to [1, Chapter 3].

Definition 3 (LQ Exact Potential Differential Games [13]). Let an LQ differential game 𝛤epd with system dynamics (1) be given.
Furthermore, let the quadratic cost functions (2) and Hamiltonian functions (3) of the players be given. Assume that the aggregated
inputs of the players and the aggregated input matrices are defined such that

𝒖(𝑝)(𝑡) =
[

𝒖(1)𝖳(𝑡), 𝒖(2)𝖳(𝑡), … 𝒖(𝑁)𝖳(𝑡)
]𝖳

,𝐁(𝑝) =
[

𝐁(1) and 𝐁(2),… ,𝐁(𝑁)] ,

respectively. Furthermore, consider an LQ optimal control problem over an infinite time horizon 𝜏end → ∞ with the cost function

𝐽 (𝑝) = 1
2 ∫

𝜏end

0
𝒙𝖳(𝑡)𝐐(𝑝)𝒙(𝑡) + 𝒖(𝑝)𝖳(𝑡)𝐑(𝑝)𝒖(𝑝)(𝑡)d𝑡 (4)

as well as the Hamilton function of the potential differential game

𝐻 (𝑝)(𝑡) = 1
2
𝒙(𝑡)𝖳𝐐(𝑝)𝒙(𝑡) + 1

2
𝒖(𝑝)𝖳(𝑡)𝐑(𝑝)𝒖(𝑝)(𝑡) + 𝝀(𝑝)𝑇 𝒙̇(𝑡), (5)

where the matrices 𝐐(𝑝) and 𝐑(𝑝) are positive semi-definite and positive definite, respectively. If

𝜕𝐻 (𝑝)(𝑡)
𝜕𝒖(𝑖)(𝑡)

=
𝜕𝐻 (𝑖)(𝑡)
𝜕𝒖(𝑖)(𝑡)

(6)

holds for ∀𝑖 ∈  , the LQ differential game 𝛤epd is an LQ exact potential differential game, which has the potential function 𝐽 (𝑝).

Definition 3 reveals that if the game is an exact potential differential game and (6) holds, the NE can be framed as an optimal
ontrol problem formulated by (1) and (4). This formulation offers a theoretical basis for understanding NE and also presents a
omputationally tractable method for analyzing equilibrium strategies in dynamic systems. For further discussions and examples,
he reader is referred to [14,15].
2
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2.2. Distance between two potential differential games

Similar to the static case [10], a distance measure between two differential games is introduced.

efinition 4 (Differential Distance [11]). Let an exact potential differential game 𝛤epd with the potential function 𝐽 (𝑝) be given.
Furthermore, let an arbitrary LQ differential game 𝛤npd according to Definition 1 be given. The differential distance (DD) between
𝛤 (𝑝)

epd and 𝛤npd is defined as

𝜎(𝑖)𝑑 (𝑡) ∶=
‖

‖

‖

‖

‖

𝜕𝐻 (𝑝)(𝑡)
𝜕𝒖(𝑖)(𝑡)

−
𝜕𝐻 (𝑖)(𝑡)
𝜕𝒖(𝑖)(𝑡)

‖

‖

‖

‖

‖2
, 𝑖 ∈  . (7)

Note 4: Definition 4 defines vector space, in which two games can be compared and their ‘‘closeness’’ can be quantified. It is
he intuitive extension of Definition 3 because for an exact potential differential game,

𝜎(𝑖)𝑑 (𝑡) = 0,∀𝑡 ∈ [0, 𝜏end]

olds, meaning that 𝛤npd has the same characteristics as 𝛤ed. Softening the condition 𝜎(𝑖)𝑑 (𝑡) = 0 enables a broader use. Using
efinition 4, the subclass of NPDGs is formally defined.

efinition 5 (Near Potential Differential Game [11]). A differential game 𝛤npd is said to be an NPDG if the DD between 𝛤npd and an
rbitrary exact potential differential game 𝛤epd is

max
𝑖

𝜎(𝑖)𝑑 (𝑡) ≤ 𝛥, 𝑖 ∈  , (8)

here 𝛥 ≥ 0 is a small constant, meaning that

lim
𝛥→0

max
𝑖

𝜎(𝑖)𝑑 (𝑡) = 0

olds.

Note 5.1: Definition 5 does not exclude the subclass of exact potential differential games as 𝛥 = 0 is possible. Thus, exact
otential differential games are a subset of NPDGs.
Note 5.2: The maximum DD is the measure of the likeness between the games. As the maximum DD increases, the dynamics

f states and input trajectories of the NPDG are gradually getting larger. Thus, the main question is that for a given upper bound
, how large the perturbation of the state and inputs dynamics between 𝛤npd and 𝛤epd is admissible. Therefore, this perturbation is

quantitatively characterized for LQ differential games in the following.

3. Upper bound of NPDGs

The main results of this letter are presented in this section: The novel upper bound of the DD and a further analysis of the
boundness of an NPDG.

3.1. Properties of an NPDG

Theorem 1 (LQ NPDG). Let an LQ exact potential differential game 𝛤 (𝑝)
ed with its state trajectories 𝒙

(𝑝)(𝑡) in its NE be given. Furthermore, let
an arbitrary LQ differential game 𝛤npd according to Definition 1 with its state trajectories 𝒙∗(𝑡) in the NE of 𝛤npd be given. It is also assumed
hat there is a 𝛥𝒙(𝑝)(𝑡) ≥ 0 such

𝒙(p)(𝑡) = 𝒙∗(𝑡) + 𝛥𝒙(𝑝)(𝑡) or (9)

𝒙(p)(𝑡) = 𝒙∗(𝑡) − 𝛥𝒙(𝑝)(𝑡) (10)

hold ∀𝑡 ∈ [0, 𝜏end]. Furthermore, 𝐏(𝑝) is the Riccati matrix obtained from the optimum of the potential function (4). The matrix 𝐏(𝑖) is the
solution of the coupled Riccati equation (3) for the player 𝑖, see [12]. If

max
𝑖

‖

‖

‖

𝐁(𝑖)𝖳𝐏(𝑝) − 𝐁(𝑖)𝖳𝐏(𝑖)‖
‖

‖2
< 𝛥∗(𝛥) (11)

holds, where 𝛥 is defined in (5), then 𝛤npd is an LQ NPDG in accordance with Definition 5.

Proof. The derivative of 𝐻 (𝑖) is expressed as

𝜕𝐻 (𝑖)(𝑡)
𝜕𝒖(𝑖)(𝑡)

= 𝐑(𝑖𝑖)𝒖(𝑖)(𝑡) + 𝐁(𝑖)𝑇 𝝀(𝑖)(𝑡), (12)

hich holds for 𝑖 ∈  . Since the optimal control law of the players, (12) is zero, a small perturbation around the optimal solution
s sought. Based on [6], the derivatives of the Hamiltonian of player 𝑖 can be rewritten as

𝜕𝐻 (𝑖)(𝑡)
= −𝜀(𝑖)(𝒙)𝐁(𝑖)𝑇𝐏(𝑖)𝒙∗(𝑡), (13)
3

𝜕𝒖(𝑖)(𝑡) 𝑐
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and for the derivatives of the Hamiltonian of the potential function

𝜕𝐻 (𝑝)(𝑡)
𝜕𝒖(𝑖)(𝑡)

= −𝜀(𝑝)𝑐 (𝒙)𝐁(𝑖)𝖳𝐏(𝑝)𝒙(𝑝)(𝑡) (14)

are obtained, where

𝜀(𝑝)𝑐 (𝒙) << 1 and 𝜀(𝑖)𝑐 (𝒙) << 1

are scalar perturbation functions. Substituting the derivatives into (7), the DD is stated as

𝜎(𝑖)𝑑 (𝑡) = ‖

‖

‖

𝜀(𝑝)𝑐 (𝒙)𝐁(𝑖)𝖳𝐏(𝑝)𝒙(𝑝)(𝑡) − 𝜀(𝑖)𝑐 (𝒙)𝐁(𝑖)𝑇𝐏(𝑖)𝒙∗(𝑡)‖‖
‖2

.

Introducing an upper bound of the variation 𝜀𝑐 ∶= max
(

𝜀(𝑝)𝑐 (𝒙), 𝜀(𝑖)𝑐 (𝒙)
)

, DD is rewritten as

𝜎(𝑖)𝑑 (𝑡) = ‖

‖

‖

𝜀𝑐𝐁(𝑖)𝖳𝐏(𝑝)𝒙(𝑝)(𝑡) − 𝜀𝑐𝐁(𝑖)𝑇𝐏(𝑖)𝒙∗(𝑡)‖‖
‖2

≤ |

|

𝜀𝑐 ||
‖

‖

‖

𝐁(𝑖)𝖳𝐏(𝑝)𝒙(𝑝)(𝑡) − 𝐁(𝑖)𝑇𝐏(𝑖)𝒙∗(𝑡)‖‖
‖2

. (15)

On the one hand, if (9) holds, the upper bound of 𝜎(𝑖)𝑑 (𝑡) is rewritten to

𝜎(𝑖)𝑑 (𝑡) = |

|

𝜀𝑐 ||
‖

‖

‖

𝐁(𝑖)𝖳𝐏(𝑝)𝒙(𝑝)(𝑡) − 𝐁(𝑖)𝑇𝐏(𝑖)𝒙(𝑝)(𝑡) + 𝐁(𝑖)𝑇𝐏(𝑖)𝛥𝒙(𝑝)(𝑡)‖‖
‖2

≤ |

|

𝜀𝑐 ||
‖

‖

‖

‖

(

𝐁(𝑖)𝖳𝐏(𝑝) − 𝐁(𝑖)𝑇𝐏(𝑖)
)

𝒙(𝑝)(𝑡)
‖

‖

‖

‖2
+ |

|

𝜀𝑐 ||
‖

‖

‖

𝐁(𝑖)𝑇𝐏(𝑖)𝛥𝒙(𝑝)(𝑡)‖‖
‖2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≈0 since 𝜀𝑐 ⋅𝛥𝒙(𝑝)<<1 and 𝜀𝑐 ⋅𝛥𝒙(𝑝)→0

≈ |

|

𝜀𝑐 ||
‖

‖

‖

𝐁(𝑖)𝖳𝐏(𝑝) − 𝐁(𝑖)𝑇𝐏(𝑖)‖
‖

‖2
‖

‖

‖

𝒙(𝑝)(𝑡)‖‖
‖2

𝑖 ∈  . (16)

On the other hand, if (10) holds, the upper bound of 𝜎(𝑖)𝑑 (𝑡) is

𝜎(𝑖)𝑑 (𝑡) ‖‖
‖

𝜀𝑐
|

|

|

‖

‖

‖

𝐁(𝑖)𝖳𝐏(𝑖) − 𝐁(𝑖)𝑇𝐏(𝑝)‖
‖

‖2
‖

‖

𝒙∗(𝑡)‖
‖2 𝑖 ∈  . (17)

Introducing the notation for the maximum magnitude of the state vectors

𝑥max ∶= max
(

‖

‖

𝒙∗(𝑡)‖
‖2 ,

‖

‖

‖

𝒙(𝑝)(𝑡)‖‖
‖2

)

,

the estimations (15) and (17) can be combined into

𝜎(𝑖)𝑑 (𝑡) ≤ |

|

𝜀𝑐 ||
‖

‖

‖

𝐁(𝑖)𝖳𝐏(𝑝) − 𝐁(𝑖)𝑇𝐏(𝑖)‖
‖

‖2
𝑥max 𝑖 ∈  .

ntroducing 𝛥∗ = 𝛥
|𝜀𝑐|⋅𝑥max

leads to the upper bound of 𝜎(𝑖)𝑑 ,

max
𝑖

‖

‖

‖

𝐁(𝑖)𝖳𝐏(𝑝) − 𝐁(𝑖)𝖳𝐏(𝑖)‖
‖

‖2
< 𝛥∗

roving that 𝛤npd is an NPDG with an upper bound of 𝛥∗. □

If the upper bound of DD 𝝈𝑑 between the NPDG and the exact potential differential games is sufficiently small, closed-loop
haracteristics with similar results can be drawn. In the case of differential games system state trajectories are analyzed.2 The terms
mall and similar are described more precisely in the next subsection.

.2. Dynamics of LQ NPDGs

The analysis of the so-called (approximate) 𝜖-NE can be found in [16] or [17]. In this letter, the dynamics of the system
rajectories are analyzed in order to provide a bound of the differences between two LQ differential games. In contrast to [11],
his letter provides a new, linear relation between the DD and the trajectory error.

Let it be assumed for the LQ differential game 𝛤npd that the control laws of the players 𝑖 ∈  are obtained from the solution to
he coupled Riccati equations over an infinite time horizon, which leads to the closed-loop system dynamics

𝒙̇(𝑡) = 𝐀∗
𝑐𝒙(𝑡), 𝒙(𝑡0) = 𝒙0, where 𝐀∗

𝑐 = 𝐀 −
∑

𝑖∈
𝐁(𝑖)𝐑(𝑖)−1𝐁(𝑖)𝖳𝐏(𝑖) (18)

nd that the unique solution to (18) is

𝒙∗(𝑡) = 𝑒𝐀
∗
𝑐 ⋅𝑡𝒙0. (19)

or the LQ exact potential differential games 𝛤epd, the control law 𝐊(𝑝) = 𝐑(𝑝)−1𝐁(𝑝)𝖳𝐏(𝑝) is obtained from the optimization of the
otential function (4), which is used to compute the feedback system dynamics

𝒙̇(𝑝)(𝑡) = 𝐀(𝑝)
𝑐 𝒙(𝑝)(𝑡), 𝒙(𝑝)(𝑡0) = 𝒙(𝑝)0 , where 𝐀(𝑝)

𝑐 = 𝐀 − 𝐁(𝑝)𝐑(𝑝)−1𝐁(𝑝)𝖳𝐏(𝑝). (20)

2 In the static case, the decision procedure to find the NE is the focus of the analysis. For a given distance between two static games, an approximate NE
ith an 𝜖 limit is obtained, which is called the 𝜖-NE of the game. For more information on the near potential static game and the concept of 𝜖-Nash Equilibrium,
4

it is referred to [10].
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The solution to (20) is

𝒙(𝑝)(𝑡) = 𝑒𝐀
(𝑝)
𝑐 ⋅𝑡𝒙(𝑝)0 . (21)

From the state trajectories 𝒙(𝑝)(𝑡) and 𝒙∗(𝑡), an upper bound (𝜂) of the errors is provided for a given 𝛥 between two games. For this,
a notion of the difference between two closed-loop system behaviors is introduced in Definition 6.

Definition 6 (Closed-Loop System Matrix Error). Consider an LQ exact potential differential game 𝛤epd with the system trajectories
(21). Furthermore, assume that an arbitrary LQ differential game 𝛤npd is an NPDG with the system trajectories (19). Then, the
closed-loop system matrix error between 𝛤epd and 𝛤npd is defined as

𝛥𝐊 ∶= 𝐀∗
𝑐 − 𝐀(𝑝)

𝑐 . (22)

Note 6: Two differential games are similar, if the closed-loop system matrix error is small and consequently, the system trajectories
of these two games 𝒙∗(𝑡) and 𝒙(𝑝)(𝑡) are close to each other. In this case, 𝛤npd is an NPDG. This closeness between an NPDG and an
LQ exact potential differential game is quantified in Theorem 2.

Theorem 2 (Boundedness of NPDGs). Let an LQ NPDG 𝛤npd and an exact potential differential game 𝛤epd be given. Let the system state
trajectories of the two games 𝛤 (𝑝)

epd and 𝛤npd be 𝒙(𝑝)(𝑡) and 𝒙∗(𝑡), respectively. Moreover,

𝒙(𝑝)(𝑡0) = 𝒙∗(𝑡0) = 𝒙0 (23)

hold for the initial values. Then, the error between the system state trajectories of 𝛤npd and 𝛤epd are bounded over an arbitrary time interval
[𝑡0, 𝑡1], such that

‖

‖

‖

𝒙(𝑝)(𝑡) − 𝒙∗(𝑡)‖‖
‖2

≤ 𝐶NPDG(𝑡) ⋅ 𝛥, ∀𝑡 ∈ [𝑡0, 𝑡1], (24)

where 𝐶NPDG(𝑡) ≥ 0 is a positive, time-invariant coefficient.

Proof. From the solution to the differential equations (18) and (20),

‖

‖

‖

𝒙∗(𝑡) − 𝒙(𝑝)(𝑡)‖‖
‖2

=
‖

‖

‖

‖

𝑒𝐀
∗
𝑐 ⋅𝑡𝒙0 − 𝑒𝐀

(𝑝)
𝑐 ⋅𝑡𝒙0

‖

‖

‖

‖2

is obtained. As (23) holds, using Definition 6 and [18, Theorem 11.16.7] leads to

‖

‖

‖

𝒙∗(𝑡) − 𝒙(𝑝)(𝑡)‖‖
‖2

≤ ‖𝛥𝐊 ⋅ 𝑡‖2 𝑒
max

(

‖

‖

‖

𝐀(𝑝)
𝑐 ⋅𝑡‖‖

‖2
,‖𝐀∗

𝑐 ⋅𝑡‖2

)

‖

‖

𝒙0‖‖2 . (25)

In the following, an upper bound of 𝛥𝐊 is sought. Let the notation

𝐏∑

 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐏(1)
∑



𝐏(2)
∑



⋮

𝐏(𝑖)
∑



⋮

𝐏(𝑁)
∑



⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐑(1)−1𝐁(1)𝖳𝐏(1)

𝐑(2)−1𝐁(2)𝖳𝐏(2)

⋮

𝐑(𝑖)−1𝐁(𝑖)𝖳𝐏(𝑖)

⋮

𝐑(𝑁)−1𝐁(𝑁)𝖳𝐏(𝑁)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(26)

be introduced. Substituting (19), (20) and (26) in (25), the upper bound

‖𝛥𝐊‖2 =
‖

‖

‖

‖

‖

𝐁(𝑝)𝐑(𝑝)−1𝐁(𝑝)𝖳𝐏(𝑝) − 𝐁(𝑝)
∑

𝑖∈
𝐑(𝑖)−1𝐁(𝑖)𝖳𝐏(𝑖)

‖

‖

‖

‖

‖2

=
‖

‖

‖

‖

𝐁(𝑝)
(

𝐑(𝑝)−1𝐁(𝑝)𝖳𝐏(𝑝) − 𝐏∑



)

‖

‖

‖

‖2

=
‖

‖

‖

‖

𝐁(𝑝)𝐑(𝑝)−1
(

𝐁(𝑝)𝖳𝐏(𝑝) − 𝐑(𝑝)𝐏∑



)

‖

‖

‖

‖2
(27)

is obtained. In addition, let the matrix

𝐑(𝑝) =
[

𝐑(𝑝)
1 , 𝐑(𝑝)

2 , … , 𝐑(𝑝)
𝑖 , … , 𝐑(𝑝)

𝑁

]𝖳
(28)

be defined where 𝐑(𝑝)
𝑖 is the submatrix for the inputs 𝒖(𝑖) of player 𝑖, for which

𝐑(𝑝)𝐏∑

 =
∑

𝑖∈
𝐑(𝑝)
𝑖 𝐏(𝑖)

∑



hold. Thus (27) can be reformulated to

‖𝛥𝐊‖2 =
‖

‖

‖

‖

‖

‖

𝐁(𝑝)𝐑(𝑝)−1
(

𝐁(𝑝)𝖳𝐏(𝑝) −
∑

𝑖∈
𝐑(𝑝)
𝑖 𝐏(𝑖)

∑



)

‖

‖

‖

‖

‖

‖

≤ ‖

‖

‖

𝐁(𝑝)‖
‖

‖2
‖

‖

‖

𝐑(𝑝)−1‖
‖

‖2

‖

‖

‖

‖

‖

𝐁(𝑝)𝖳𝐏(𝑝) −
∑

𝑖∈
𝐑(𝑝)
𝑖 𝐏(𝑖)

∑



‖

‖

‖

‖

‖2

. (29)
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g

T

h

i

D

h

i

T

Due to the well-known scaling ambiguity, there is a manifold of the potential functions (4) that result in an identical feedback
ain matrix, thus a scaling factor 𝜅𝑝 > 0 ∈ R can be chosen such that 𝐽 (𝑝) = 𝜅𝑝 ⋅ 𝐽 (𝑝) and ‖

‖

‖

𝐑(𝑝)‖
‖

‖2
> 1 holds. Assuming a suitable

scaling, (27) leads to

‖𝛥𝐊‖2 ≤
‖

‖

‖

𝐁(𝑝)‖
‖

‖2

‖

‖

‖

‖

‖

𝐁(𝑝)𝖳𝐏(𝑝) −
∑

𝑖∈
𝐑(𝑝)
𝑖 𝐏(𝑖)

∑



‖

‖

‖

‖

‖2

.

Then, let the following matrix be introduced

𝐅̃ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐁(1)𝖳𝐏(𝑝) − 𝐑(𝑝)
1 𝐏(1)

∑


⋮

𝐁(𝑖)𝖳𝐏(𝑝) − 𝐑(𝑝)
𝑖 𝐏(𝑖)

∑


⋮

𝐁(𝑁)𝖳𝐏(𝑝) − 𝐑(𝑝)
𝑁 𝐏(𝑁)

∑



⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 𝐁(𝑝)𝖳𝐏(𝑝) −
∑

𝑖∈
𝐑(𝑝)
𝑖 𝐏(𝑖)

∑

 . (30)

he so-called Frobenius norm is defined as the entry-wise Euclidean norm of a matrix (see [19]), for which

‖

‖

𝐅̃‖
‖2 ≤ ‖

‖

𝐅̃‖
‖𝐹 (31)

olds (see [20, Chapter 5] or [18, Section 9.8.12]). Applying the definition of the Frobenius norm to (30),

‖

‖

𝐅̃‖
‖𝐹 = 𝑁 ⋅max

𝑖

‖

‖

‖

‖

𝐁(𝑖)𝖳𝐏(𝑝) − 𝐑(𝑝)
𝑖 𝐏(𝑖)

∑



‖

‖

‖

‖2
, 𝑖 ∈  (32)

s obtained. Using property (31) and (32) leads to an upper bound

‖𝛥𝐊‖2 ≤
‖

‖

‖

𝐁(𝑖)‖
‖

‖2

‖

‖

‖

‖

‖

𝐁(𝑝)𝖳𝐏(𝑝) −
∑

𝑖∈
𝐑(𝑝)
𝑖 𝐏(𝑖)

∑



‖

‖

‖

‖

‖2

≤ ‖

‖

‖

𝐁(𝑝)‖
‖

‖2
𝑁 ⋅max

𝑖

‖

‖

‖

‖

𝐁(𝑖)𝖳𝐏(𝑝) − 𝐑(𝑝)
𝑖 𝐏(𝑖)

∑



‖

‖

‖

‖2
. (33)

ue to the scaling ambiguity, 𝐽 (𝑖) = 𝜅𝑖 ⋅ 𝐽 (𝑖), 𝜅𝑖 > 0 ∈ R holds and 𝜅𝑖 and 𝜅𝑝 can be modified to obtain 𝐑(𝑖) and 𝐑(𝑝), such that
‖

‖

‖

𝐁(𝑖)𝖳𝐏(𝑝) − 𝐑(𝑝)
𝑖 𝐑(𝑖)−1𝐁(𝑖)𝖳𝐏(𝑖)‖

‖

‖2
≤ ‖

‖

‖

𝐁(𝑖)𝖳𝐏(𝑝) − 𝐁(𝑖)𝖳𝐏(𝑖)‖
‖

‖2

olds, for which
‖

‖

‖

𝐑(𝑝)𝐑(𝑖)−1𝐁(𝑖)𝖳𝐏(𝑖)‖
‖

‖2
≥ ‖

‖

‖

𝐁(𝑖)𝖳𝐏(𝑖)‖
‖

‖2
(34)

s sufficient (see [18, Section 9.9.42]). This leads to

‖𝛥𝐊‖2 ≤
‖

‖

‖

𝐁(𝑝)‖
‖

‖2
𝑁 ⋅max

𝑖
‖

‖

‖

𝐁(𝑖)𝖳𝐏(𝑝) − 𝐁(𝑖)𝖳𝐏(𝑖)‖
‖

‖2
= ‖

‖

‖

𝐁(𝑝)‖
‖

‖2
𝑁 ⋅ 𝛥. (35)

he substitution of the upper bound of 𝛥𝐊 in (25) by (35) leads to the coefficient

𝐶NPDG(𝑡) =
‖

‖

𝒙0‖‖2
|

|

𝜀𝑐 || ⋅ 𝑥max
⋅ ‖‖
‖

𝐁(𝑝)‖
‖

‖2
𝑁 ⋅ 𝑡 ⋅ 𝑒max

(

‖

‖

‖

𝐀(𝑝)
𝑐 ⋅𝑡‖‖

‖2
,‖𝐀∗

𝑐 ⋅𝑡‖2

)

, (36)

which results in the following upper bound of the trajectory error
‖

‖

‖

𝒙(𝑝)(𝑡) − 𝒙∗(𝑡)‖‖
‖2

≤ 𝐶NPDG(𝑡) ⋅ 𝛥. □ (37)

Remark 1. From (37), it can be seen that the upper bound of the DD governs the maximal admissible error between the trajectories,
where the function 𝐶NPDG(𝑡) depends only on the initial value, the system structure and the time interval [𝑡0, 𝑡1].

Remark 2. In (36), 𝐶NPDG(𝑡) is bounded in the time interval [𝑡0, 𝑡1]. Thus, Theorem 2 holds ∀𝑡 ∈ [𝑡0, 𝑡1] only. However, 𝛥 can be
defined as

𝛥 ∶=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝛥1 ∀𝑡 ∈ [𝑡0, 𝑡1]

𝛥2 ∀𝑡 ∈ [𝑡1, 𝑡2]

⋮

𝛥𝑁 ∀𝑡 ∈ [𝑡𝑁−1, 𝑡𝑁 ]

⋮

In case of asymptotically stable system state trajectories 𝒙(𝑝)(𝑡) and 𝒙∗(𝑡), a monotonic decreasing series, 𝛥𝑁−1 ≥ 𝛥𝑁 , can be assumed
to prevent 𝐶 (𝑡) from an exponential growth for 𝑡 → ∞. Consequently, Theorem 2 also holds for 𝑡 → ∞.
6
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Remark 3. Note that Theorem 2 differs from the upper bound of the distance between solutions of two general initial value problems
of differential equations: The upper bound between two general initial value problems is given as a function of the Lipschitz constant
and is usually proved with the Grönwall–Bellman inequality, see e.g. [21, Theorem 3.4.]. On the other hand, Theorem 2 provides the
link between the upper bound ‖

‖

‖

𝒙(𝑝)(𝑡) − 𝒙∗(𝑡)‖‖
‖2

and the DD of the two games 𝛥, which differs from general initial value problems.
Thus, Theorem 2 is a special case of Theorem 3.4. in [21].

4. Discussion

The main result of this letter enables a broader understanding of the concepts of NPDGs, which provide a more compact
representation of strategic games. This makes them suitable for engineering applications, as the strictness of exact potential
differential games is softened, thereby extending the applicability of the concept of potential games.

Illustrative engineering examples include human–human or robot–human interactions, for which NPDGs are suitable mod-
els. Such interactions are modeled by differential games in literature [22,23] and studies have demonstrated that the resulting
motions of human–human or robot–human interactions can be characterized by the NE of this differential game [24]. Nevertheless,
the assumption of NE can be violated due to the so-called bounded rationality of humans in some cases (cf. [25,26]). In cases where
these violations of the NE in human–machine interaction scenarios, the proposed upper bound of the DD is a helpful tool to quantify
the deviation from the NE. Thus, the concept can be used to analyze and design human–machine interactions.

5. Summary and outlook

This letter introduces a novel upper bound between an NPDG and an exact potential differential game. Moreover, this letter shows
that the resulting trajectory error has a linear relation to the defined upper bound, which enables the prediction of the maximal
trajectory error between an NPDG and an exact potential differential game. In the future, the proposed NPDG will be applied to
model human–machine interactions.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

The author acknowledges the support from the KIT-Publication Fund of the Karlsruhe Institute of Technology.

References

[1] Başar T, Zaccour G, editors. Handbook of dynamic game theory. Cham: Springer International Publishing; 2018.
[2] Engwerda J. LQ dynamic optimization and differential games. Tilburg University, John Wiley & Sons; 2005.
[3] Parilina E, Reddy PV, Zaccour G. Theory and applications of dynamic games: a course on noncooperative and cooperative games played over event trees.

Theory and decision library c, Vol. 51, Cham: Springer International Publishing; 2022.
[4] Fabiani F, Grammatico S. Multi-Vehicle Automated Driving as a Generalized Mixed-Integer Potential Game. IEEE Trans Intell Transp Syst

2020;21(3):1064–73.
[5] Zazo S, Valcarcel Macua S, Sanchez-Fernandez M, Zazo J. Dynamic Potential Games With Constraints: Fundamentals and Applications in Communications.

IEEE Trans Signal Process 2016;64(14):3806–21.
[6] Varga B, Inga J, Lemmer M, Hohmann S. Ordinal Potential Differential Games to Model Human–Machine Interaction in Vehicle-Manipulators. In: 2021

IEEE conference on control technology and applications (CCTA). San Diego, CA, USA: IEEE; 2021, p. 728–34.
[7] Chen Z, Nian X, Meng Q. Nash equilibrium seeking of general linear multi-agent systems in the cooperation–competition network. Systems Control Lett

2023;175:105510.
[8] Prasad A, Mohapatra PS, Reddy PV. On the Structure of Feedback Potential Difference Games. IEEE Trans Automat Control 2024;69(1):637–44.
[9] Candogan O, Ozdaglar A, Parrilo PA. A Projection Framework for Near-Potential Games. In: 49th IEEE conference on decision and control (CDC). Atlanta,

GA, USA: IEEE; 2010, p. 244–9.
[10] Candogan O, Ozdaglar A, Parrilo PA. Near-Potential Games: Geometry and Dynamics. ACM Trans Econ Comput 2013;1(2):1–32.
[11] Varga B, Inga J, Hohmann S. Limited Information Shared Control: A Potential Game Approach. IEEE Trans Hum-Mach Syst 2023;53(2):282–92.
[12] Başar T, Haurie A, Zaccour G. Nonzero-Sum Differential Games. In: Basar T, Zaccour G, editors. Handbook of dynamic game theory. Cham: Springer

International Publishing; 2016, p. 1–49.
[13] González-Sánchez D, Hernández-Lerma O. A Survey of Static and Dynamic Potential Games. Sci China Math 2016;59(11):2075–102.
[14] Lã QD, Chew YH, Soong B-H. Potential game theory. Cham: Springer International Publishing; 2016.
[15] Fonseca-Morales A, Hernández-Lerma O. Potential Differential Games. Dyn Games Appl 2018;8(2):254–79.
[16] Firoozi D, Jaimungal S, Caines PE. Convex analysis for LQG systems with applications to Major–Minor LQG Mean–field game systems. Systems Control

Lett 2020;142:104734.
[17] Scarpa ML, Mylvaganam T. Open-Loop and Feedback LQ Potential Differential Games for Multi-Agent Systems. In: 2023 62nd IEEE conference on decision

and control (CDC). Singapore, Singapore: IEEE; 2023, p. 6283–8.
7

http://refhub.elsevier.com/S2590-0374(24)00023-2/sb1
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb2
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb3
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb3
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb3
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb4
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb4
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb4
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb5
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb5
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb5
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb6
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb6
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb6
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb7
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb7
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb7
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb8
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb9
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb9
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb9
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb10
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb11
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb12
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb12
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb12
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb13
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb14
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb15
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb16
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb16
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb16
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb17
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb17
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb17


Results in Applied Mathematics 22 (2024) 100453B. Varga
[18] Bernstein DS. Matrix mathematics: theory, facts, and formulas. 2nd ed.. Princeton, N.J: Princeton University Press; 2009.
[19] Bünger F, Lange M, Rump S. On Norms of Principal Submatrices. Linear Algebra Appl 2021;620:27–36.
[20] Horn RA, Johnson CR. Matrix analysis. Corrected Reprint ed., 2nd ed.. New York, NY: Cambridge University Press; 2017.
[21] Khalil HK. Nonlinear systems. 3rd ed.. Upper Saddle River, N.J: Prentice Hall; 2002.
[22] Li Y, Carboni G, Gonzalez F, Campolo D, Burdet E. Differential Game Theory for Versatile Physical Human– Robot Interaction. Nat Mach Intell

2019;1(1):36–43.
[23] Na X, Cole D. Theoretical and Experimental Investigation of Driver Noncooperative-Game Steering Control Behavior. IEEE/CAA J Autom Sin

2021;8(1):189–205.
[24] Braun DA, Ortega PA, Wolpert DM. Nash Equilibria in Multi-Agent Motor Interactions. PLoS Comput Biol 2009;5(8):e1000468.
[25] Chasnov B, Yamagami M, Parsa B, Ratliff LJ, Burden SA. Experiments with Sensorimotor Games in Dynamic Human/Machine Interaction. In: Islam MS,

George T, editors. Micro- and nanotechnology sensors, systems, and applications XI. Baltimore, United States: SPIE; 2019, p. 81.
[26] Calderone DJ, Chasnov BJ, Burden SA, Ratliff LJ. Consistent conjectural variations equilibria: Characterization and stability for a class of continuous games.

IEEE Control Syst Lett 2023;7:2743–8.
8

http://refhub.elsevier.com/S2590-0374(24)00023-2/sb18
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb19
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb20
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb21
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb22
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb22
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb22
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb23
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb23
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb23
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb24
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb25
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb25
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb25
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb26
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb26
http://refhub.elsevier.com/S2590-0374(24)00023-2/sb26

	On the Upper Bound of Near Potential Differential Games
	Introduction
	Preliminaries
	Exact Potential Differential Games
	Distance between two Potential Differential Games

	Upper Bound of NPDGs
	Properties of an NPDG
	Dynamics of LQ NPDGs

	Discussion
	Summary and Outlook
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


