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Condorcet domains are sets of preference orders such that the majority relation corresponding to 
any profile of preferences from the domain is acyclic. The best known examples in economics 
are the single-peaked, the single-crossing, and the group separable domains. We survey the 
latest developments in the area since Monjardet’s magisterial overview (2009), provide some 
new results and offer two conjectures concerning unsolved problems. The main goal of the 
presentation is to illuminate the rich internal structure of the class of maximal Condorcet domains. 
In an appendix, we present the complete classification of all maximal Condorcet domains on four 
alternatives obtained by Dittrich (2018).
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1. Introduction

A Condorcet domain is a set of linear orders on a given set of alternatives such that, if every voter is known to have a preference 
from that set, the pairwise majority relation is acyclic. Equivalently, Condorcet domains guarantee that a Condorcet winner exists 
on every subset of alternatives. From the perspective of collective decision making, Condorcet domains thus represent the most 
well-behaved restricted domains and are therefore of great importance in applications. In particular, every Condorcet domain admits 
rich classes of Arrovian aggregators as well as strategy-proof social choice functions, see e.g., Moulin (1980); Saporiti (2009); Puppe 
and Slinko (2019).

Well-known examples of Condorcet domains are the single-peaked domain, the single-crossing domain and the domain of group 
separable preferences. Besides continuing and growing work on these ‘classical’ domains, there has also been an unflagging interest 
in identifying ‘large’ Condorcet domains, see Abello and Johnson (1984); Craven (1996); Fishburn (1997, 2002) and the literature 
surveyed by Monjardet (2009). Among other things, this literature has demonstrated the great diversity of Condorcet domains, the 
scope of which is far from being understood completely. However, progress has been made on several counts since Monjardet’s 
magisterial survey was published, and it seems to us that the time is ripe to summarize this progress. This is the purpose of the 
present paper.

First, the work of Danilov et al. (2012) has led to a deeper understanding of an important subclass of Condorcet domains, the so-

called ‘peak-pit’ domains (with maximal width) of which the single-peaked, the single-crossing and the ‘Fishburn alternating scheme 
domains’ are special cases. Moreover, the subclasses of single-peaked and locally single-peaked domains have been axiomatically 
characterized by Puppe (2018) and Slinko (2019), respectively, and are now well understood.

Second, an important connection with the theory of median graphs has been established in Puppe and Slinko (2019) that helps 
understanding the structure of Condorcet domains by visualizing them as graphs.

Third, a complete list of all maximal Condorcet domains on up to five alternatives has been obtained by Dittrich (2018) using 
a computational protocol: there are exactly 18 different equivalence classes in the case of four alternatives, and 688 in the case of 
five alternatives. We present the complete classification for the case of four alternatives in the appendix of this paper. By contrast, 
a detailed qualitative analysis of the class of all maximal domains on five alternatives is clearly beyond the scope and limits of 
the present survey; here, we only briefly review the classification of all peak-pit domains with maximal width in the case of five 
alternatives obtained by Li et al. (2021). Most recently, the computational analysis of Condorcet domains has been extended to the 
case of up to seven alternatives (Akello-Egwell et al., 2023).

Fourth, Danilov and Koshevoy (2013) discovered a series of symmetric maximal Condorcet domains, one for each number of 
alternatives, that all have size 4; we call them Raynaud domains, as Raynaud (1981) was the first who discovered such a domain in 
the case of four alternatives. Raynaud domains were characterized by Karpov and Slinko (2023b) by means of simple permutations, 
a well-known object in combinatorics. We conjecture that any symmetric maximal domain can be constructed recursively from 
Raynaud domains (see Section 4.2 below for the details).

Finally, recent progress has also been made in the search for large peak-pit Condorcet domains. Solving a long-standing open 
problem, Leedham-Green et al. (2024) have recently discovered the largest Condorcet domain on eight alternatives using computa-

tional methods; it contains 224 different orders. Interestingly, this domain does not coincide with Fishburn’s so-called ‘alternating 
scheme’ which represents the largest Condorcet domains on up to seven alternatives. (On eight alternatives, the domain correspond-

ing to the Fishburn alternating scheme contains 222 orders.) In fact, the record domain discovered by Leedham-Green et al. (2024)

does not even have ‘maximal width,’ i.e. it does not contain a pair of completely reversed orders. Therefore, it does not contribute to 
the problem of identifying the largest peak-pit domains of maximal width for all numbers of alternatives. Danilov et al. (2012) have 
shown that for 42 alternatives the maximal peak-pit Condorcet domain with maximal width is different from the Fishburn alternating 
scheme; recently, Karpov and Slinko (2023a) have shown this to hold already for 34 alternatives. At the heart of both results is a 
construction that produces from two given peak-pit maximal Condorcet domains another maximal peak-pit domain of a larger size.

Importantly, the present survey is limited to the case of Condorcet domains of linear orders, and for the most part to the analysis 
of maximal Condorcet domains. A first step in the analysis of Condorcet domains of weak orders is taken in Puppe (2018), and 
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(2019). Our analysis also assumes that every voter faces the same restricted domain of individual preferences, and that every profile 
of individually admissible preferences is admissible at the group level. Alternative surveys on restricted preference domains have 
recently been provided by Elkind et al. (2022) and Karpov (2022); these contributions are both complementary to ours in that they 
cover larger classes of domains and in that they focus on algorithmic aspects.

The remainder of this survey is organized as follows. In Section 2 we review the basic concepts and results on Condorcet domains. 
In Subsection 2.2, we present the characterization of all monotone Arrovian aggregators on every closed Condorcet domain; it 
implies that every closed Condorcet domain admits a large class of strategy-proof social choice functions (Puppe and Slinko, 2019), 
and we provide some examples. Section 3 analyzes the class of connected domains and shows that this class is intimately related 
to the so-called ‘peak-pit’ domains. In Subsection 3.1, we present the characterization of the single-peaked domain as the only 
maximal Condorcet domain that satisfies three simple conditions: connectedness, maximal width (i.e., the existence of two completely 
reversed orders) and minimal richness (i.e., for each alternative the existence of an order with that alternative at the top). Subsection 
3.2 contains the generalization of this result which dispenses with the maximal width condition and shows that the remaining 
two conditions characterize the maximal locally single-peaked (sometimes called ‘Arrow’ single-peaked) domains. Subsection 3.3

is devoted to three equivalent combinatorial characterizations of the general ‘peak-pit’ domains with maximal width: in terms of 
rhombus tilings (Danilov et al., 2012), in terms of arrangements of pseudolines (Galambos and Reiner, 2008), and in terms of 
separated ideals (Li et al., 2021). In Subsection 3.4 we present the conjecture that the class of all peak-pit maximal Condorcet 
domains (with or without maximal width) coincides with the class of connected maximal Condorcet domains. Section 4 is devoted to 
the class of symmetric Condorcet domains. A particular feature of these domains is that they are characterized by a complete set of 
‘never-middle’ conditions (i.e., the conditions that require that in the restriction to every triple of alternatives there is one alternative 
that never occupies the middle position in the ranking). We present a construction of indecomposable symmetric Condorcet domains 
via ‘simple sequences’ and conjecture that this construction exhausts the class of non-trivial indecomposable symmetric Condorcet 
domains. Section 5 is devoted to recent advances in the construction of ‘large’ Condorcet domains, i.e., of maximal Condorcet domains 
with a large number of different orders.

We do not reproduce proofs that can be found in the literature, but whenever appropriate we do provide the basic intuition 
behind results.

2. Basic concepts and results

2.1. Isomorphism and flip-isomorphism

Let 𝐴 be a finite set and (𝐴) be the set of all linear orders (transitive, complete and asymmetric binary relations) on 𝐴. Any non-

empty subset  ⊆ (𝐴) will be called a domain. If 𝑎1 ≻ 𝑎2 ≻⋯ ≻ 𝑎𝑚 is a linear order on 𝐴, it will be denoted by a string 𝑎1𝑎2… 𝑎𝑚. 
We will sometimes denote linear orders also with small Latin letters, and write 𝑎 ≻𝑣 𝑏 if 𝑎 is ranked higher than 𝑏 in the linear order 
𝑣 (usually associated with a voter). Let us also introduce notation for reversing orders, i.e., if 𝑣 = 𝑎1𝑎2… 𝑎𝑚, then 𝑣 = 𝑎𝑚𝑎𝑚−1… 𝑎1.

Any sequence 𝑃 = (≻1, … , ≻𝑛) = (𝑣1, … , 𝑣𝑛) ∈𝑛 of linear orders from  will be called a profile over . Unlike a domain it can 
contain several identical linear orders. Profiles usually represent a collection of opinions of members of a certain society so 𝑣1, … , 𝑣𝑛
are also called voters (voters and their linear orders are usually denoted with the same letter).

Definition 1. The majority relation ⪰𝑃 of a profile 𝑃 = (≻1, … , ≻𝑛) is defined as

𝑎 ⪰𝑃 𝑏 ⟺ #{𝑖 ∣ 𝑎 ≻𝑖 𝑏} ≥ #{𝑖 ∣ 𝑏 ≻𝑖 𝑎},

i.e., 𝑎 ⪰𝑃 𝑏 means that the number of voters who prefer 𝑎 to 𝑏 is at least as large as the number of voters who prefer 𝑏 to 𝑎. For an 
odd 𝑛, this relation is a tournament, i.e., complete and asymmetric binary relation.

The main object of our investigation are Condorcet domains, defined as follows.

Definition 2. A domain  ⊆ (𝐴) over a set of alternatives 𝐴 is a Condorcet domain if the majority relation of any profile 𝑃 over 
with an odd number of voters is transitive. A Condorcet domain  is maximal if for any Condorcet domain ′ ⊆ (𝐴) the inclusion 
 ⊆′ implies  =′.

An equivalent definition of a Condorcet domain requires the majority relation to be acyclic for all 𝑛, see Monjardet (2009); this is 
why Fishburn (1997, 2002) refers to Condorcet domains also as acyclic sets of linear orders.

As any other abstractly defined object in mathematics, a Condorcet domain can have several ‘material’ appearances. To relate 
them together we need a concepts of an isomorphism and flip-isomorphism. Let 𝜓 ∶ 𝐴 → 𝐴′ be a bijection between two sets of 
alternatives. It can be extended to a mapping 𝜓 ∶ (𝐴) → (𝐴′) in two ways: by mapping the linear order 𝑢 = 𝑎1𝑎2… 𝑎𝑚 to 𝜓(𝑢) =
𝜓(𝑎1)𝜓(𝑎2) … 𝜓(𝑎𝑚) or to the reverse (‘flipped’) order 𝜓(𝑢) = 𝜓(𝑎𝑚)𝜓(𝑎𝑚−1) … 𝜓(𝑎1).1
428
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Fig. 1. Two isomorphic group separable domains. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 2. Two flip-isomorphic domains: 𝑎𝑏𝑐 (left) and 𝑎𝑏𝑐 (right).

Definition 3. Let 𝐴 and 𝐴′ be two sets of alternatives (not necessarily distinct) of equal cardinality. We say that two domains, 
 ⊆ (𝐴) and ′ ⊆ (𝐴′) are isomorphic if there is a bijection 𝜓 ∶ 𝐴 → 𝐴′ such that ′ = {𝜓(𝑑) ∣ 𝑑 ∈ }, and flip-isomorphic if 
′ = {𝜓(𝑑) ∣ 𝑑 ∈}.

We refer to the domain  ∶= {𝑢 ∣ 𝑢 ∈} as flipped ; evidently, the flipped domain  is flip-isomorphic to , but it is usually 
not isomorphic to it.

There is only one maximal Condorcet domain on a set {𝑎, 𝑏} of two alternatives, namely  = {𝑎𝑏, 𝑏𝑎}. Up to an isomorphism, 
there are three maximal Condorcet domains on a set of three alternatives {𝑎, 𝑏, 𝑐}, and up to an isomorphism or a flip-isomorphism 
there are only two maximal Condorcet domains on a set of three alternatives. To verify and illustrate this, consider the following two 
pairs of domains. The two domains shown in Fig. 1 belong to the class of so-called group separable domains introduced by Inada 
(1964).

Definition 4. A domain  on the set 𝐴 of alternatives is called group separable if every subset 𝐵 ⊆ 𝐴 with at least two elements 
can be partitioned into two non-empty subsets 𝐵′ and 𝐵′′ such that every order in  either (i) ranks all elements of 𝐵′ above all 
elements in 𝐵′′, or (ii) ranks all elements of 𝐵′′ above all elements in 𝐵′.

Inada (1964) showed that group separability is a sufficient condition for acyclicity of the majority relation. Indeed, as is easily 
verified the two domains {𝑎𝑏𝑐, 𝑏𝑎𝑐, 𝑐𝑎𝑏, 𝑐𝑏𝑎} (Fig. 1, left) and {𝑎𝑏𝑐, 𝑎𝑐𝑏, 𝑏𝑐𝑎, 𝑐𝑏𝑎} (Fig. 1, right) are maximal Condorcet domains on 
the set {𝑎, 𝑏, 𝑐}. The group separability of the domain on the left side follows via the partition {{𝑎, 𝑏}, {𝑐}} of 𝐴, and of the domain on 
the right side via the partition {{𝑎}, {𝑏, 𝑐}} (for proper subsets of 𝐴 the condition is trivial). The first domain is in fact isomorphic to 
the second, as can be seen by applying the bijection 𝜓(𝑎) = 𝑐, 𝜓(𝑏) = 𝑏, 𝜓(𝑐) = 𝑎. Both are self flip-isomorphic relative to the identity 
mapping.

Fig. 2 depicts two other well-known Condorcet domains on the set {𝑎, 𝑏, 𝑐}, the single-peaked and the single-dipped domain.

Definition 5. A domain  on the set 𝐴 of alternatives is called single-peaked if there exists a linear order (the ‘spectrum’) > on 𝐴 such 
that, for every order 𝑣 ∈, the upper contour set 𝑈𝑣(𝑏) ∶= {𝑎 ∈𝐴 ∶ 𝑎 ≻𝑣 𝑏} is connected in the order > for all 𝑏 ∈𝐴. The domain of 
all single-peaked orders with respect to a given spectrum > is denoted by >.

Similarly, a domain  on the set 𝐴 of alternatives is called single-dipped if there exists a linear order (the ‘spectrum’) > on 𝐴 such 
that, for every order 𝑣 ∈, the lower contour set 𝐿𝑣(𝑏) ∶= {𝑎 ∈𝐴 ∶ 𝑏 ≻𝑣 𝑎} is connected in the order > for all 𝑏 ∈𝐴. The domain of 
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all single-dipped orders with respect to a given spectrum > is denoted by >.
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The two domains shown in Fig. 2 are not isomorphic (this follows, e.g., from the fact that they have a different number of distinct 
top alternatives), but flip-isomorphic.

Remark. A remark on terminology is in order. The single-peaked domain as defined above has been introduced by Black (1948, 1958)

and discussed in Arrow (1951, 1963). A weaker (‘local’) concept of single-peakedness only requires the restriction of a domain to 
any triple to be single-peaked, see Sen (1970). To distinguish the two concepts, some authors have called the above ‘global’ notion of 
single-peakedness ‘Black single-peakedness’ and the weaker local version ‘Arrow single-peakedness.’ In order to avoid any confusion, 
we use the terms ‘single-peakedness’ for the global concept, and ‘local single-peakedness’ for the weaker notion of single-peakedness 
on all triples. The distinction will play an important role in Section 3 below.

We will say that a Condorcet domain  is closed if the majority relation corresponding to any profile over  with an odd number 
of voters is again an element of . The following simple observation is useful, see e.g. Puppe and Slinko (2019).

Proposition 2.1. Let  be a Condorcet domain and 𝑣 ∈ (𝐴) be the majority relation corresponding to a profile over  with an odd number 
of voters. Then  ∪ {𝑣} is again a Condorcet domain. In particular, every Condorcet domain is contained in a closed Condorcet domain and 
every maximal Condorcet domain is closed.

2.2. Arrovian aggregation and strategy-proof social choice on closed Condorcet domains

Before we move on to the detailed analysis of the rich internal structure of Condorcet domains, let us demonstrate the usefulness 
of Condorcet domains in economic applications. Specifically, we present a characterization of the class of all monotone Arrovian 
aggregators on any Condorcet domain, and show that every Condorcet domain admits a large class of strategy-proof social choice 
functions beyond the choice of the Condorcet winner. The following presentation is based on Puppe and Slinko (2019, Sect. 6).

Definition 6. A mapping 𝑓 ∶𝑛 ⟶ is called an Arrovian aggregator on  if it satisfies the following conditions.

(i) (Unanimity) For all ≻ ∈, 𝑓 (≻, ..., ≻) = ≻, and

(ii) (Independence) For any pair of profiles (≻1, ..., ≻𝑛), (≻′
1, ..., ≻

′
𝑛) from  and all 𝑥, 𝑦 ∈𝐴, if 𝑥 ≻ 𝑦 and, for all 𝑖 = 1, .., 𝑛, [𝑥 ≻𝑖 𝑦 ⇔

𝑥 ≻′
𝑖
𝑦], then 𝑥 ≻′ 𝑦, where ≻ = 𝑓 (≻1, ..., ≻𝑛) and ≻′ = 𝑓 (≻′

1, ..., ≻
′
𝑛).

A mapping is called a monotone Arrovian aggregator if it satisfies in addition the following condition.

(iii) (Monotonicity) For all ≻1, ..., ≻𝑛, ≻′
𝑖
∈ and all 𝑥, 𝑦 ∈ 𝐴, if 𝑥 ≻ 𝑦 where ≻ = 𝑓 (≻1, ..., ≻𝑖, ..., ≻𝑛) and 𝑥 ≻′

𝑖
𝑦, then 𝑥 ≻′ 𝑦 where 

≻′ = 𝑓 (≻1, ..., ≻′
𝑖
, ..., ≻𝑛).

In the following, let 𝑁 ∶= {1, ..., 𝑛} denote the set of voters. For every ordered pair (𝑥, 𝑦) ∈ 𝐴 × 𝐴 of distinct alternatives, let 
𝑥𝑦 be a non-empty collection of non-empty subsets 𝑊 ⊆ 𝑁 of voters (the ‘winning coalitions for 𝑥 against 𝑦’) satisfying [𝑊 ∈
𝑥𝑦 & 𝑊 ′ ⊇𝑊 ] ⇒𝑊 ′ ∈𝑥𝑦.

Definition 7. A collection  = {𝑥𝑦 | (𝑥, 𝑦) ∈ 𝐴 × 𝐴, 𝑥 ≠ 𝑦} is called a structure of winning coalitions if, for all 𝑥 ≠ 𝑦, 𝑊 ∈𝑥𝑦 ⇔
(𝑁 ⧵𝑊 ) ∉ 𝑦𝑥. A structure of winning coalitions is called order preserving if, for all distinct pairs 𝑥, 𝑦 ∈ 𝐴 and all distinct pairs 
𝑧, 𝑤 ∈𝐴,

{≻ ∈ | 𝑥 ≻ 𝑦} ⊆ {≻ ∈ | 𝑧 ≻ 𝑤} ⟹ 𝑥𝑦 ⊆𝑧𝑤.

In other words, order preservation requires that, if every potential voter who ranks 𝑥 above 𝑦 also ranks 𝑧 above 𝑤, then every 
winning coalition for 𝑥 over 𝑦 must also be winning for 𝑧 over 𝑤.

Applying a general possibility result on aggregation on median spaces due to Nehring and Puppe (2007), we obtain the following 
characterization, see Puppe and Slinko (2019).

Theorem 2.1. Let  be a closed Condorcet domain and let  be any order preserving structure of winning coalitions. For all profiles 
(≻1, ..., ≻𝑛) ∈𝑛 there exists a unique order ≻ ∈ such that, for all 𝑥, 𝑦 ∈𝐴,

𝑥 ≻ 𝑦 ⟺ {𝑖 ∈𝑁 | 𝑥 ≻𝑖 𝑦} ∈𝑥𝑦. (1)

The aggregator defined by (1) is a monotone Arrovian aggregator. Conversely, every monotone Arrovian aggregator takes the form (1) for 
some order preserving structure of winning coalitions  .

Observe that pairwise majority voting with an odd number 𝑛 of voters corresponds to the structure of winning coalitions for 
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which all 𝑥𝑦 consist of all coalitions of at least half of the voters. Since in that case 𝑥𝑦 =𝑧𝑤 for any two pairs (𝑥, 𝑦) and (𝑧, 𝑤)
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of distinct alternatives, this structure of winning coalitions is clearly order preserving. But evidently, there is large class of further 
order preserving structures of winning coalitions different from pairwise majority voting. One class of examples are the unanimity 
rules with a default, defined as follows. Consider a closed Condorcet domain , and fix any order ≻0 ∈ (the ‘default’); define a 
structure of winning coalitions (≻0) by setting, for all distinct 𝑥, 𝑦 ∈𝐴,

𝑥𝑦(≻0) ∶=
{

2𝑁 ⧵ {∅} if 𝑥 ≻0 𝑦
{𝑁} if 𝑥 ⊁0 𝑦

. (2)

Thus, for any 𝑥, 𝑦 ∈ 𝐴, the corresponding social order ≻(≻0) defined by (1) agrees with ≻0 in the pairwise comparison between 
𝑥 and 𝑦 unless there is unanimous consent to depart from it. As is easily seen, the structure of winning coalitions (≻0) is order 
preserving. The fact that the order ≻(≻0) belongs to  for all possible profiles of voters’ preferences can be shown to follow from 
the closedness of , see Puppe and Slinko (2019, Prop. 6.1) for a proof of this assertion. As a simple concrete illustration, consider 
again the maximal group-separable Condorcet domain  = {𝑎𝑏𝑐, 𝑎𝑐𝑏, 𝑏𝑐𝑎, 𝑐𝑏𝑎} (cf. Fig. 1, right) and choose as default order ≻0 the 
order 𝑎𝑏𝑐. Suppose that, at a given profile, there is no agreement about the pairwise comparison of 𝑏 and 𝑐, but there is unanimous 
consent that 𝑏 should be ranked above 𝑎. By the structure of , every voter who places 𝑏 above 𝑎 must also place 𝑐 above 𝑎, hence 
the social order at such a profile is 𝑏𝑐𝑎; indeed, the pairwise comparison between 𝑏 and 𝑐 is decided by the default 𝑏 ≻0 𝑐, whereas 
the two other pairwise comparisons are decided by unanimity.

Theorem 2.1 allows one to define a large class of strategy-proof social choice functions on every closed (hence also on every 
maximal) Condorcet domain in a natural way, as follows. A social choice function 𝐹 ∶𝑛 ⟶𝐴 is strategy-proof on  if, for all voters 
𝑖, all profiles (≻1, ..., ≻𝑛) ∈𝑛 and all ≻′

𝑖
∈,

𝐹 (≻1, ...,≻𝑖, ...,≻𝑛) ⪰𝑖 𝐹 (≻1, ...,≻
′
𝑖 , ...,≻𝑛).

For each order ≻ ∈ (𝐴) denote by 𝜏(≻) ∈𝐴 the unique top element of ≻. The following result is due to Puppe and Slinko (2019).

Theorem 2.2. Let  be a closed Condorcet domain. For every order preserving structure of winning coalitions  , the social choice function 
defined by

𝐹 (≻1, ...,≻𝑛) ∶= 𝜏(≻ ) (3)

is strategy-proof on  where ≻ is the order given by (1).

In the case of the single-peaked domain >, the anonymous social choice functions defined by (3) are exactly the generalized 
medians with respect to the spectrum > on 𝐴 identified by Moulin (1980)2; and in the case of single-crossing domains (defined and 
further analyzed in Section 3.3.1 below) they coincide with the strategy-proof social choice functions described in Saporiti (2009). 
For instance, in the case of the single-peaked domain, the social choice function induced via (3) by the unanimity rule with default 
≻0 corresponds to the generalized median that puts 𝑛 − 1 phantom voters at 𝜏(≻0).

Thus, in the two well-studied cases of single-peakedness and single-crossingness, the anonymous social choice functions of the 
form (3) exhaust the class of all anonymous and strategy-proof social choice functions. It is an open and worthwhile problem to 
determine if this holds more generally, i.e., to investigate to what extent the large class of strategy-proof social choice functions 
defined by (3) on a closed Condorcet domain  exhausts the class of all strategy-proof social choice functions on .

2.3. Never conditions

Let us now return to the main topic of the present paper, the analysis of the rich internal structure of the class of all Condorcet 
domains. The domain to the left in Fig. 1 contains all the linear orders on {𝑎, 𝑏, 𝑐} in which 𝑐 is never ranked second, the domain 
to the right in Fig. 1 contains all the linear orders on {𝑎, 𝑏, 𝑐} in which 𝑎 is never ranked second; following Monjardet (2009), we 
denote these conditions as 𝑐𝑁{𝑎,𝑏,𝑐}2, and 𝑎𝑁{𝑎,𝑏,𝑐}2, respectively. We note that these are the only conditions of type 𝑥𝑁{𝑎,𝑏,𝑐}𝑖 with 
𝑥 ∈ {𝑎, 𝑏, 𝑐} and 𝑖 ∈ {1, 2, 3} that these two domains satisfy. Similarly, the domain to the left in Fig. 2 contains all the linear orders on 
{𝑎, 𝑏, 𝑐} in which 𝑏 is never ranked last—that is, it satisfies 𝑏𝑁{𝑎,𝑏,𝑐}3,—and the domain to the right in Fig. 2 contains all the linear 
orders on {𝑎, 𝑏, 𝑐} in which 𝑏 is never ranked first satisfying 𝑏𝑁{𝑎,𝑏,𝑐}1. Again, these are the only conditions of type 𝑥𝑁{𝑎,𝑏,𝑐}𝑖 with 
𝑥 ∈ {𝑎, 𝑏, 𝑐} and 𝑖 ∈ {1, 2, 3} that these domains satisfy.

Definition 8. Any condition of type 𝑥𝑁{𝑎,𝑏,𝑐}𝑖 with 𝑥 ∈ {𝑎, 𝑏, 𝑐} and 𝑖 ∈ {1, 2, 3} is called a never condition since it says that in a triple 
{𝑎, 𝑏, 𝑐} alternative 𝑥 never takes 𝑖th position. We say that a family

 ⊆ {𝑥𝑁{𝑎,𝑏,𝑐}𝑖 ∣ {𝑎, 𝑏, 𝑐} ⊆𝐴, 𝑥 ∈ {𝑎, 𝑏, 𝑐} and 𝑖 ∈ {1,2,3}}

is a complete set of never conditions if  contains at least one never condition for every triple 𝑎, 𝑏, 𝑐 of elements of 𝐴.
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Denote by ( ) the collection of all linear orders that satisfy the set of never conditions  . If ( ) is non-empty, we call 
consistent.3 Let us also denote by  () the set of all never conditions that are satisfied by the linear orders from .

Proposition 2.2. A non-empty domain of linear orders  ⊆ (𝐴) is a Condorcet domain if and only if it satisfies a complete set of 
never conditions.4 Moreover, for any complete and consistent set of never conditions  , the domain ( ) is a closed Condorcet domain. 
Conversely, every maximal Condorcet domain is of this form.5

Note that (almost by definition) a domain  satisfies a complete set of never conditions if and only if every profile from  is 
value-restricted in the sense of Sen (1966).

A major difficulty in the analysis of maximal Condorcet domains stems from the fact that a maximal Condorcet  ⊆ (𝐴) does 
in general not induce a maximal Condorcet domain on a subset 𝐵 ⊆ 𝐴. In other words, the set 𝐵 of all orders in  restricted to 
the subset 𝐵 need not be maximal as a Condorcet domain. (But, of course, if  is a Condorcet domain on the set of alternatives 𝐴, 
then 𝐵 ⊆(𝐵) is a Condorcet domain on every non-empty subset 𝐵 ⊆𝐴.) To illustrate this, consider the following example on five 
alternatives:

̃ ∶= {𝑎𝑏𝑐𝑑𝑒, 𝑐𝑎𝑒𝑏𝑑, 𝑑𝑏𝑒𝑎𝑐, 𝑒𝑑𝑐𝑏𝑎}. (4)

The domain ̃ is a maximal Condorcet domain (see Section 4 below). Its restriction to the triple {𝑎, 𝑏, 𝑑} is given by ̃{𝑎,𝑏,𝑑} =
{𝑎𝑏𝑑, 𝑑𝑏𝑎}, in particular, ̃{𝑎,𝑏,𝑑} is not a maximal Condorcet domain on the triple {𝑎, 𝑏, 𝑑} because its size is less than 4. This 
also implies that the domain ̃ satisfies several never conditions on the triple {𝑎, 𝑏, 𝑑}, namely the four never conditions 𝑎𝑁{𝑎,𝑏,𝑑}2, 
𝑏𝑁{𝑎,𝑏,𝑑}1, 𝑏𝑁{𝑎,𝑏,𝑑}3, and 𝑑𝑁{𝑎,𝑏,𝑑}2.

Definition 9. A Condorcet domain  ⊆ (𝐴) is called maximal on triples, or copious (Slinko, 2019), if for all triples {𝑥, 𝑦, 𝑧}, the 
restricted domain {𝑥,𝑦,𝑧} is a maximal Condorcet domain on {𝑥, 𝑦, 𝑧}. Equivalently, a Condorcet domain  is copious if and only if |{𝑥,𝑦,𝑧}| = 4 for all triples {𝑥, 𝑦, 𝑧} ⊆ 𝐴.

Below we will show that interesting subclasses of Condorcet domains are in fact copious. For those, the following simple obser-

vation is useful.

Proposition 2.3. A maximal Condorcet domain is copious if and only if satisfies exactly one never condition on each triple.

The fact that maximal Condorcet domains may induce non-maximal Condorcet domains on subsets applies, perhaps surprisingly, 
even to pairs. The following maximal Condorcet domain on five alternatives was recently discovered by Akello-Egwell et al. (2023)

(orders are represented as columns):

̂ =

⎡⎢⎢⎢⎢⎢⎣

𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑑 𝑑 𝑑 𝑑

𝑏 𝑏 𝑏 𝑐 𝑐 𝑐 𝑑 𝑑 𝑎 𝑎 𝑏 𝑐

𝑐 𝑐 𝑒 𝑏 𝑏 𝑒 𝑏 𝑐 𝑏 𝑐 𝑎 𝑎

𝑑 𝑒 𝑐 𝑑 𝑒 𝑏 𝑐 𝑏 𝑐 𝑏 𝑐 𝑏

𝑒 𝑑 𝑑 𝑒 𝑑 𝑑 𝑒 𝑒 𝑒 𝑒 𝑒 𝑒

⎤⎥⎥⎥⎥⎥⎦
. (5)

Note that all orders in ̂ place 𝑎 above 𝑒, i.e. ̂{𝑎,𝑒} = {𝑎𝑒}; in other words, ̂ does not induce a maximal Condorcet domain 
on the pair {𝑎, 𝑒}.6 The fact that both domains, ̃ in (4) and ̂ in (5), are defined on five alternatives is not by chance. Indeed, for 
alternative sets with at most four elements, maximality of a Condorcet domain is inherited to all subsets, as asserted by the following 
observation.

Proposition 2.4. Suppose that  ⊆ (𝐴) is a maximal Condorcet domain and |𝐴| ≤ 4. Then 𝐵 is a maximal Condorcet domain on 𝐵 for 
all non-empty subsets 𝐵 ⊆𝐴.

This follows easily from the complete classification of all maximal Condorcet domains on up to four alternatives provided below.

We close this subsection with some further terminology. A domain that, for any triple {𝑎, 𝑏, 𝑐} ⊆ 𝐴, satisfies a condition 𝑥𝑁{𝑎,𝑏,𝑐}1
with 𝑥 ∈ {𝑎, 𝑏, 𝑐} is called never-top domain, a domain that for any triple {𝑎, 𝑏, 𝑐} ⊆𝐴 satisfies a condition 𝑥𝑁{𝑎,𝑏,𝑐}2 with 𝑥 ∈ {𝑎, 𝑏, 𝑐}

3 It is easy to construct complete sets of never conditions that are inconsistent, i.e., such that ( ) is empty. For instance, it is not possible that all alternatives in 
𝐴 are never on top of any order.

4 The website https://nevercondition .de offers an online tool to determine, for 𝑚 = 4, 5, 6 alternatives, if a given domain is a Condorcet domain and, if so, which 
never conditions it satisfies.

5 On the other hand, not every closed Condorcet domain must contain all orders compatible with a given set of complete and consistent never conditions.
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6 Maximal Condorcet domains such that all their restrictions to pairs are maximal have been called ample in Karpov and Slinko (2023a).

https://nevercondition.de
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is called never-middle domain,7 and a domain that for any triple {𝑎, 𝑏, 𝑐} ⊆ 𝐴 satisfies a condition 𝑥𝑁{𝑎,𝑏,𝑐}3 with 𝑥 ∈ {𝑎, 𝑏, 𝑐} is called 
never-bottom domain. A domain that, for any triple, satisfies either a never-top or a never-bottom condition is called a peak-pit domain

(Danilov et al., 2012). Both the never-top and the never-bottom conditions are called peak-pit conditions.

2.4. Embedding in the permutohedron

In mathematics, the universal domain (𝐴) has many representations. The most useful one for us is by the permutohedron of 
order 𝑚, which is an (𝑚 − 1)-dimensional polytope embedded in an 𝑚-dimensional Euclidean space. Its vertices are labeled by the 
permutations of {1, 2, … , 𝑚} from the symmetric group 𝑆𝑚. Two permutations are connected by an edge if they differ only in two 
neighboring places. For our purposes geometry is not important, so for us the permutohedron is the skeleton of this polytope, that 
is, the graph whose vertices are the permutations from 𝑆𝑚 with edges inherited from the edges of the aforementioned polytope. The 
use of permutohedron in social choice was pioneered by Guilbaud and Rosenstiehl (1963).

The permutahedron is naturally endowed with the following betweenness structure (Kemeny, 1959). An order 𝑣 is between orders 
𝑢 and 𝑤 if 𝑣 ⊇ 𝑢 ∩𝑤, i.e., if 𝑣 agrees with all binary comparisons in which 𝑢 and 𝑤 agree (see also Kemeny and Snell, 1960). The 
set of all orders that are between 𝑢 and 𝑤 is called the interval spanned by 𝑢 and 𝑤 and is denoted by [𝑢, 𝑤]. With this notation, two 
orders 𝑢, 𝑤 are connected by an edge—we call them neighbors—if and only if [𝑢, 𝑤] = {𝑢, 𝑤}.

Figs. 1 and 2 show the permutohedron of order three with the different subdomains shown in red (for a graphic representation 
of the permutohedron of order four, see below). One observes an important difference between the two group separable Condorcet 
domains in Fig. 1 and the single-peaked and single-dipped domains in Fig. 2: the latter are connected but the former are not. We 
formalize connectedness in the following definition.

Definition 10. A domain  is called connected if any two orders 𝑢, 𝑤 ∈ are connected by a path in the permutohedron that stays 
within , in other words, if there exist {𝑣1, … , 𝑣𝑘} ⊆ such that, for all 𝑗 = 1, … , 𝑘 − 1, 𝑣𝑗 and 𝑣𝑗+1 differ only in two neighboring 
positions, and 𝑣1 = 𝑢 and 𝑣𝑘 =𝑤. A stronger notion of direct connectedness requires in addition that the path between 𝑢 and 𝑤 satisfies 
{𝑣ℎ, ..., 𝑣𝑙} ⊆ [𝑣ℎ, 𝑣𝑙] for all 1 ≤ ℎ < 𝑙 ≤ 𝑘 (Sato, 2013; Puppe, 2016).

To illustrate the difference between connectedness and direct connectedness, consider on the set 𝐴 = {𝑎, 𝑏, 𝑐} the domain consist-

ing of all linear orders on {𝑎, 𝑏, 𝑐} except 𝑎𝑏𝑐. This domain is connected but not directly so, because the path that connects the two 
neighbors 𝑏𝑎𝑐 and 𝑎𝑐𝑏 of the missing order 𝑎𝑏𝑐 in this domain is not a shortest path in the permutohedron.

3. Connected domains

3.1. The single-peaked domain

The single-peaked domain > is connected (see e.g., Elkind et al. (2014)) and possesses the following two properties.

Definition 11. A Condorcet domain  is said to have maximal width if there is some linear order 𝑢 such that 𝑢 ∈ and 𝑢 ∈.

The property of maximal width plays an important role in the analysis of Condorcet domains as the existence of two completely 
reversed orders simplifies matters considerably. Mathematically, this is reflected by the fact that a maximal Condorcet domain can 
be naturally endowed with the structure of a distributive lattice if it has maximal width.8 Danilov and Koshevoy (2013) use this for 
a characterization of all Condorcet domains with maximal width, and they derive a lattice formula for the majority relation on such 
domains.9

Observe that a maximal connected Condorcet domain can contain at most one pair of completely reversed orders. Indeed, if we 
had two such pairs, say 𝑢, 𝑢 and 𝑣, 𝑣, then we can find a triple {𝑎, 𝑏, 𝑐} on which 𝑢 and 𝑣 disagree. Without loss of generality 
we may assume that the restriction 𝑢{𝑎,𝑏,𝑐} of 𝑢 and the restriction 𝑣{𝑎,𝑏,𝑐} of 𝑣 are 𝑎𝑏𝑐 and 𝑎𝑐𝑏, respectively. But then {𝑎,𝑏,𝑐} ⊇
{𝑎𝑏𝑐, 𝑐𝑏𝑎, 𝑎𝑐𝑏, 𝑏𝑐𝑎}, and since  is a Condorcet domain in fact {𝑎,𝑏,𝑐} = {𝑎𝑏𝑐, 𝑐𝑏𝑎, 𝑎𝑐𝑏, 𝑏𝑐𝑎}, which is not connected. In particular, a 
maximal connected Condorcet domain with maximal width contains a unique pair of completely reversed orders.

The second property of the single-peaked domain is its ‘minimal richness,’ as follows.

Definition 12. A Condorcet domain  is said to be minimally rich if, for all 𝑎 ∈ 𝐴, there exists an order in  that has alternative 𝑎
on top.

From an economic point of view, minimal richness is a very natural property; it requires that every feasible alternative should be 
the best individual choice for at least one potential voter. This condition has been considered frequently (under that name) in the 
literature on domain restrictions, see, e.g., Aswal et al. (2003).

7 The domain ̃ in (4) is a never-middle domain notwithstanding the fact that it also satisfies a never-top and a never-bottom condition on the triple {𝑎, 𝑏, 𝑑}; 
indeed, for all other triples, it satisfies exactly one never-middle condition.

8 And in fact only then, see Puppe and Slinko (2019, Coroll. 3.2).
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Fig. 3. The graph of the single-peaked domain 𝑎𝑏𝑐𝑑 .

Fig. 4. Embedding of the single-peaked domain 𝑎𝑏𝑐𝑑 in the 4-permutohedron.

The following result shows that the single-peaked domain is the only connected maximal Condorcet domain to have these 
two additional properties. The (median) graph of the single-peaked domain 𝑎𝑏𝑐𝑑 is depicted in Fig. 3, its embedding in the 
4-permutohedron is shown in Fig. 4.

Theorem 3.1 (Puppe (2018)). A maximal Condorcet domain  is connected, minimally rich and has maximal width if and only if there 
exists a linear order > on 𝐴 such that  = >.

The idea of the proof of Theorem 3.1 is simple. All three properties of connectedness, maximal width and minimal richness 
are inherited from a domain  to its restrictions on every triple. But the only domain on a triple that has these properties is the 
single-peaked domain (see Fig. 2, left). Hence, the restriction of  to every triple is single-peaked, i.e., satisfies a (unique) never-

bottom condition; the maximal width condition guarantees that these never-bottom conditions are satisfied with respect to a common 
spectrum.

A similar argument implies that there is a unique maximal connected Condorcet domain  that has maximal width and has the 
property that every alternative occurs at least once at the bottom of the orders in , namely the single-dipped domain (cf. Fig. 2, 
right).

A different description of the single-peaked domain in terms of ‘sign representations’ of single-peaked orders has been given by 
Zhan (2022). To describe it, consider 𝐴 = {1, 2, … , 𝑛} and the class of all single-peaked orders > with respect to the natural order 
> on {1, 2, ..., 𝑛}. Let 𝑣 = 𝑎1… 𝑎𝑛 be a single-peaked order with peak 𝑎1. If the second ranked alternative 𝑎2 is such that 𝑎2 > 𝑎1, then 
the first sign in the sequence corresponding to 𝑣 is a +; if 𝑎2 < 𝑎1, then it is a −. Now, suppose that we have already constructed a 
string of 𝑘 − 1 signs from the set {+, −} for the suborder 𝑎1… 𝑎𝑘. The next ranked alternative 𝑎𝑘+1 either satisfies 𝑎𝑘+1 > 𝑎𝑗 for all 
𝑗 = 1, … , 𝑘, in which case the 𝑘th sign in the sequence is +, or it satisfies 𝑎𝑘+1 < 𝑎𝑗 for all 𝑗 = 1, … , 𝑘, in which case the 𝑘th sign is −. 
Continuing this way we obtain a sequence of + and − of length 𝑛 − 1 that uniquely encodes 𝑣.

On the other hand, if we have a sequence of + and −, then counting the number of + signs gives us the top alternative of the 
corresponding order: if there are 𝑘 plusses, then the top preference is 𝑛 − 𝑘. From the top alternative, the sequence of + and −
determines then the entire order in a straightforward manner. For example, with 𝑛 = 5, the single-peaked orders 34251 and 43251
can be encoded as + −+− and − −+−, respectively. Conversely, + +−+ denotes the single-peaked preference 23415. Specifically, 
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Fig. 5. Graph of a locally single-peaked domain without maximal width.

Proposition 3.1 (Zhan (2022)). The domain of single-peaked orders > on a set 𝐴 of cardinality 𝑛 is in a bijective correspondence with 
the set of strings of signs + and − of length 𝑛 − 1. In particular, we have |>| = 2𝑛−1.

3.2. Locally single-peaked domains

While the property of minimal richness has a clear economic meaning, the maximal width condition is arguably less attractive in 
applications. It is thus natural to ask what happens if we drop the maximal width condition in the characterization result stated in 
the previous subsection.

Call a non-empty domain  locally single-peaked if  satisfies a complete set of never-bottom conditions; equivalently, a domain 
 is locally single-peaked if {𝑥,𝑦,𝑧} is single-peaked with respect to some spectrum on {𝑥, 𝑦, 𝑧} for all triples 𝑥, 𝑦, 𝑧 ∈ 𝐴. It has 
long been known that the condition of single-peakedness on all triples does by itself not imply single-peakedness with respect to 
a common spectrum (cf. Sen, 1970).10 The following result shows that the maximal locally single-peaked domains are exactly the 
maximal connected Condorcet domains that are minimally rich. Fig. 5 shows the (median) graph of a maximal, locally single-peaked 
Condorcet domain without maximal width.

Theorem 3.2 (Slinko (2019)). A maximal Condorcet domain is connected and minimally rich if and only if it is locally single-peaked.

In Slinko (2019) it is also shown that all maximal locally single-peaked domain are copious (i.e. maximal on triples) and have 
cardinality 2|𝐴|−1. Unlike the classical maximal (globally) single-peaked domains which are unique up to an isomorphism for each 
number of alternatives, the number of locally single-peaked domains grows rapidly. In an unpublished paper, Leversidge (2019)

showed that the number LSP(𝑛) of locally single-peaked maximal Condorcet domains for 𝑚 ∈ {3, … , 8} is given by the following 
Table 1:

Table 1

The number of maximal locally single-peaked do-

mains depending on the number of alternatives.

𝑚 3 4 5 6 7 8

LSP(𝑚) 1 2 6 40 560 17024

3.3. Connected domains with maximal width

In this subsection, we study the class of connected maximal Condorcet domains that are not necessarily minimally rich but still 
satisfy the maximal width condition. For this it will often be convenient to identify 𝐴 with the set {1, 2, … , 𝑚}. The two most 
prominent examples of such domains, besides the single-peaked domain, are the single-crossing domains and the so-called Fishburn’s 
alternating scheme domains.

3.3.1. Maximal Condorcet domains that are single-crossing

A frequently useful sufficient condition for transitivity of the majority relation is the ‘single-crossing property;’ it requires that 
the orders in a domain can be put in a sequence so that along this sequence the relative positions of any pair of alternatives is 
reversed at most once.11 Roberts (1977) and Gans and Smart (1996) provide a number of economic applications of this property. 
Single-crossing domains have a number of attractive characteristics. For instance, in every group with an odd number of voters with 
preferences from a single-crossing domain there is always a voter whose preference coincides with the majority relation — this fact 
is known as the ‘Representative Voter Theorem’ (Grandmont, 1978; Rothstein, 1991). Moreover, the collective choice prescribed by 
the majority relation can be implemented in dominant strategies through a simple mechanism (Tohmé and Saporiti, 2006), among 
the many social choice functions implementable in dominant strategies on single-crossing domains (Saporiti, 2009).

Recent research has revealed that understanding single-crossing domains could be crucial to understanding Condorcet domains 
in general. Indeed, Galambos and Reiner (2008) proved that any connected maximal Condorcet domain of maximal width is a union

10 The characterization given by Ballester and Haeringer (2011) identifies the additional property on quadruples needed for this implication.
11 According to Monjardet (2009, p. 145), single-crossingness has been introduced in the literature by Blin (1973) under the name of multidimensional consistency. 
435

We are grateful to an anonymous referee for pointing this out to us.



Games and Economic Behavior 145 (2024) 426–450C. Puppe and A. Slinko

of single-crossing domains. An important question then is: under which conditions is a single-crossing domain by itself already a 
maximal Condorcet domain? We will provide two (related) answers to this question in this subsection.

Let us start with the formal definition of single-crossingness.

Definition 13. A domain  ⊆ (𝐴) is said to be a single-crossing domain if the orders from  can be written in a sequence 
(≻1,… ,≻||) so that 𝑖 ≻1 𝑗 implies either 𝑖 ≻𝑠 𝑗 for every 𝑠, or there is an integer 𝑘 such that 𝑖 ≻𝑠 𝑗 for every 𝑠 ≤ 𝑘 and 𝑗 ≻𝑠 𝑖

for every 𝑠 > 𝑘. Simply put, traveling along ≻1, ≻2, … the relative positions of 𝑖 and 𝑗 swap at most once. If  is not a proper subset 
of another single-crossing domain, then we say it is a maximal single-crossing domain.12

As an example, let us consider the domain  on 𝐴 = {1, 2, 3, 4} whose orders are represented as columns of the following matrix

⎡⎢⎢⎢⎣
1 2 2 2 2 4 4
2 1 3 3 4 2 3
3 3 1 4 3 3 2
4 4 4 1 1 1 1

⎤⎥⎥⎥⎦
. (6)

Observe that each order can be obtained from its immediate predecessor by swapping exactly one pair of neighboring alternatives: 
the second order is obtained from the first by swapping the pair (1, 2), the third from the second by swapping (1, 3), the fourth from 
the third by swapping (1, 4), the fifth from the fourth by swapping (3, 4), the sixth from the fifth by swapping (2, 4), and finally the 
seventh from the sixth by swapping (2, 3). Consequently, the graph corresponding to this domain is a line graph.

The following result summarizes the basic properties of single-crossing domains. Say that a domain  has the representative voter 
property if, for all profiles (≻1, … , ≻𝑛) with odd 𝑛, there exists 𝑘 ∈ {1, … , 𝑛} such that the pairwise majority relation corresponding 
to the profile coincides with ≻𝑘.

Proposition 3.2.

a) Every single-crossing domain has the representative voter property. In particular, every single-crossing domain is a Condorcet domain.

b) Every maximal single-crossing domain is connected and has maximal width.

c) A domain on a set of 𝑚 alternatives is a maximal single-crossing domain if and only if its associated graph is a line graph of length 
1
2𝑚(𝑚 − 1) + 1.

d) Every single-crossing domain on at least four alternatives that is a maximal Condorcet domain is a ‘proper’ peak-pit domain (i.e., it is 
copious and satisfies some never-bottom as well as some never-top conditions but no never-middle ones).

Parts a) - c) of Proposition 3.2 follow from the analysis in Puppe and Slinko (2019).13 Part d) follows from two observations. 
First, every connected domain of maximal width is a peak-pit domain and copious. Second, if only never-top or only never-bottom 
conditions were satisfied, the domain would be either single-peaked or single-dipped; however, it can be neither of these (this 
follows at once from a comparison of their sizes). Moreover, Slinko et al. (2021) characterize exactly the set of never conditions that 
a single-crossing maximal Condorcet domain satisfies.

Every maximal single-crossing domain on a set of 𝑚 alternatives has 𝑘 = 1
2𝑚(𝑚 − 1) + 1 elements14 and is characterized by a 

sequence of 𝑘 − 1 pairs of swapped alternatives

(𝑖1, 𝑗1), (𝑖2, 𝑗2), … , (𝑖𝑘−1, 𝑗𝑘−1) (7)

from the set {(𝑖, 𝑗) ∣ 1 ≤ 𝑖 < 𝑗 ≤ 𝑛}. The pair (𝑖𝑠, 𝑗𝑠) in this sequence means that 𝑖𝑠 and 𝑗𝑠 are neighbors in ≻𝑠 and ≻𝑠+1, with 𝑖𝑠 ≻𝑡 𝑗𝑠
for 𝑡 = 1, … , 𝑠, and 𝑗𝑠 ≻𝑡 𝑖𝑠 for 𝑡 = 𝑠 + 1, … , 𝑘, while all other relations between alternatives in ≻𝑠 and ≻𝑠+1 are identical. Roughly 
speaking, the passage from ≻𝑠 to ≻𝑠+1 is a swap of neighbors 𝑖𝑠 and 𝑗𝑠. For instance, as already noted above, the swapping sequence 
for the domain (6) is (1, 4), (1, 3), (1, 4), (3, 4), (2, 4), (2, 3).

The following result can be inferred from (Galambos and Reiner, 2008, Th. 2) and is explicitly stated as Theorem 9 in Puppe and 
Slinko (2019).

Theorem 3.3. A maximal single-crossing domain  is a maximal Condorcet domain if and only if the swapping sequence (7) characterizing 
 satisfies the following ‘pairwise concatenation’ property15:

{𝑖𝑠, 𝑗𝑠} ∩ {𝑖𝑠+1, 𝑗𝑠+1} ≠ ∅ for every 𝑠 ∈ {1,2,… , 𝑘− 1}. (8)

12 Observe that a maximal single-crossing domain need not be maximal as a Condorcet domain.
13 Theorem 6 in Puppe and Slinko (2019) shows that a maximal Condorcet domain has the representative voter property if and only if it is either single-crossing or 

one of the 4-point domains discussed in Section 4 below.
14 This is the number of pairs to be switched plus one.
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The pairwise concatenation property (8) imposes a very rigid structure on a Condorcet domain that can alternatively be described 
via the notion of a relay introduced in Slinko et al. (2021). Let us use an example to illustrate what a relay looks like. In this example 
𝐴 = {1, 2, … , 7} and the domain is represented by the following matrix where each column corresponds to an order:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 2 2 2 2 2 2 2 2 2 2 7 7 7 7 7 7 7 7 7 7 7
2 1 3 3 3 3 3 3 3 3 7 2 3 3 3 3 3 3 6 6 6 6
3 3 1 4 4 4 4 4 4 7 3 3 2 4 4 4 4 6 3 4 4 5
4 4 4 1 5 5 5 5 7 4 4 4 4 2 5 5 6 4 4 3 5 4
5 5 5 5 1 6 6 7 5 5 5 5 5 5 2 6 5 5 5 5 3 3
6 6 6 6 6 1 7 6 6 6 6 6 6 6 6 2 2 2 2 2 2 2
7 7 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (9)

This domain is a maximal single-crossing domain as it has 7⋅6
2 + 1 = 22 orders. It evidently satisfies the pairwise concatenation 

condition, and is therefore maximal as a Condorcet domain by Theorem 3.3.

In addition, with the help of the red-coloring, it is not difficult to see that the left-to-right procession of preferences follows a 
distinct pattern that leaves behind an undulating trajectory like a damping wave. In particular, focusing on the red-colored alter-

natives, we see that the procession starts with the movement of alternative 1 that keeps going down from the top until it reaches 
the bottom. Then alternative 7, which occupies the bottom just before, as if having received a relay baton from alternative 1 when 
they meet, starts moving up until it reaches the top. As alternative 7 reaches the top, the then top alternative, 2, starts to move 
down. However, instead of stopping at the bottom, alternative 2 stops at second-to-bottom position, handing the baton to the then 
second-to-bottom alternative, 6, which starts to go up until reaching second-to-top position. This to and fro relay run continues, each 
leg ending with the initial 𝑘th-to-top alternative reaching the 𝑘th-to-bottom position, or the 𝑘th-to-bottom alternative reaching the 
𝑘th-to-top position, until, eventually, the initial ranking is completely reversed. The red trajectory is undulating because of the to 
and fro relay motion, and it is damping because a later runner covers a shorter distance than an earlier runner.

The following characterization is due to Slinko et al. (2021); for the precise mathematical definition of a ‘relay representation’ 
we refer to that paper.

Theorem 3.4 (Slinko et al. (2021)). A domain  is single-crossing and maximal Condorcet if and only if it has a relay representation.

Summarizing, most maximal single-crossing domains are not maximal as Condorcet domains; in fact, as shown in Slinko et 
al. (2021), up to isomorphism or flip-isomorphism there is a unique single-crossing domain that is at the same time maximal as 
Condorcet domain; the domain exhibited in (9) is an example. Evidently, among all connected maximal Condorcet domains with 
maximal width the single-crossing is the one with the minimal number of elements (namely |𝐴|(|𝐴| − 1)∕2 + 1). Note finally, that 
the relay representation shows that a single-crossing domain that is maximal as a Condorcet domain is necessarily far from being 
minimally rich. Indeed, it follows from the relay representation that any single-crossing domain that is maximal as a Condorcet 
domain has exactly three distinct top alternatives, of which two occur also at the bottom and no other alternative ever appears at 
the bottom of any order in the domain, cf. (9).

3.3.2. Fishburn’s alternating scheme

In search for ‘large’ Condorcet domains, Fishburn (1997) came up with the following structure of a complete set of never condi-

tions.16

Definition 14. Let 𝐴 = {1, 2, … , 𝑚}. A complete set of never conditions is said to satisfy the alternating scheme, if for all 1 ≤ 𝑖 < 𝑗 <

𝑘 ≤𝑚 either

(i) 𝑗𝑁{𝑖,𝑗,𝑘}1, if j is even, and 𝑗𝑁{𝑖,𝑗,𝑘}3, if 𝑗 is odd, or

(ii) 𝑗𝑁{𝑖,𝑗,𝑘}3, if j is even, and 𝑗𝑁{𝑖,𝑗,𝑘}1, if 𝑗 is odd.

The corresponding domains are maximal Condorcet domains which we denote by 𝐹𝑚 in case (i) and 𝐹𝑚 in case (ii). The second 
domain is flip-isomorphic to the first. In particular, 𝐹2 = {12, 21}, 𝐹3 = {123, 132, 312, 321} and

𝐹4 = {1234,1324,3124,1342,3142,3412,4312,3421,4321}.

The latter has the following graph associated with it (Fig. 6):
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Fig. 6. Graph of Fishburn’s domain 𝐹4 on four alternatives.

Here is an embedding of 𝐹 4 into the permutohedron (Fig. 7):

Fig. 7. Embedding of 𝐹 4 into the permutohedron.

It is easily seen that 𝐹𝑚 and 𝐹𝑚 are connected and have maximal width. Also observe that 𝐹4 has cardinality 9 and is in fact the 
uniquely largest Condorcet domain on a set of four alternatives up to isomorphism or flip-isomorphism (Raynaud, 1982). Further, it is 
known that 𝐹𝑚 has the uniquely largest cardinality among all maximal Condorcet domains for all 𝑚 ≤ 7 (Monjardet, 2009; Galambos 
and Reiner, 2008). Remarkably, despite the fact that 𝐹𝑚 is always strictly larger than the single-peaked domain on 𝑚 alternatives, 
the Fishburn domains are never minimally rich as some alternatives are required not to be first in some triples.

Recently, Karpov (2023) has identified a class of ‘generalized Fishburn’ domains that contains the alternating scheme, and char-

acterized this class in a manner similar to Theorem 3.1 by weakening the minimal richness condition to the requirement that each 
alternative be at the top or at the bottom of some ordering in the domain.

3.3.3. Condorcet domains of the tiling type

In order to characterize the class of all connected maximal Condorcet domains with maximal width, Danilov et al. (2012) intro-

duced the ‘rhombus tiling’ representation of a domain.

Definition 15 (Danilov et al. (2012)). A rhombus tiling (or simply a tiling) is a subdivision into rhombic tiles of a regular 2𝑚-gon 
formed by the points 

∑
𝑖 𝑎𝑖𝜓𝑖, where 0 ≤ 𝑎𝑖 ≤ 1 and 𝜓1, … , 𝜓𝑚 are unit vectors in the upper half-plane (see Fig. 8 where the unit 

vectors are indicated by the numbers 1, 2, 3). This center-symmetric 2𝑚-gon has its bottom vertex at the origin and the top vertex at 
the point 𝜓1 +… + 𝜓𝑚. An 𝑖𝑗-tile is a rhombus congruent to the one formed by the points 𝜆𝜓𝑖 + 𝜇𝜓𝑗 , where 0 ≤ 𝜆, 𝜇 ≤ 1 (e.g., in 
Fig. 8 to the left, the 23-tile is the upper left rhombus, while in Fig. 8 to the right, the 23-tile is the bottom right rhombus). A snake

is a path from the top vertex to the bottom vertex along the boundaries of the tiles which, for each 𝑖 = 1, … , 𝑚, contains a unique 
segment parallel to 𝜓𝑖. Each snake corresponds to a linear order on {1, … , 𝑚} in the following way. If a point traveling from top to 
bottom along a snake passes segments parallel to 𝜓𝑖1 , 𝜓𝑖2 … , 𝜓𝑖𝑚 , then the corresponding linear order will be 𝑖1𝑖2… 𝑖𝑚; e.g., in Fig. 8

the snake that travels from top to bottom along the right border of either hexagon corresponds to the order 123, and the snake that 
travels from top to bottom along the left border corresponds to the completely reversed order 321. The set of snakes of a rhombus 
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tiling, thus, defines a domain which is called a tiling domain.
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Fig. 8. Two tiling domains.

For 𝑚 = 3 we have a hexagon which can be split into rhombus tiles in two different ways as shown in Fig. 8.

These lead to the domains:

{123,213,231,321} and {123,132,312,321},

which are the familiar single-peaked and single-dipped domains, respectively.

Definition 16 (Danilov et al. (2012)). A domain  containing two completely reversed orders 𝑢 and 𝑢 is called semi-connected if it 
contains an entire shortest path in the permutohedron connecting 𝑢 and 𝑢.

The following result can be derived from the analysis in Danilov et al. (2012), which, in turn, is based on combinatorial results 
of Leclerc and Zelevinsky (1998).

Theorem 3.5 (Danilov et al. (2012)). Let  be a maximal Condorcet domain with maximal width. The following statements are equivalent.

a)  is semi-connected.

b)  is connected.

c)  is a peak-pit domain.

d)  is a tiling domain.

By Theorem 3.5, the connected maximal Condorcet domains with maximal width are exactly the peak-pit domains with maximal 
width. Observe, that these domains are all copious and thus satisfy a unique complete set of never conditions. It has been observed in 
Puppe (2016) that these domains are not only connected but even directly connected, i.e., any two orders of a domain are connected 
by a shortest path in the permutohedron that stays within the domain.

3.3.4. Arrangements of pseudolines

We now describe an equivalent geometric representation of connected maximal Condorcet domains with maximal width in terms 
of pseudoline arrangements on the plane. This combinatorial object has by now become folklore in low dimensional topology, the 
study of the Yang-Baxter equation and geometric combinatorics (Humphreys, 1994). Galambos and Reiner (2008) were the first to 
relate this concept to Condorcet domains.

The most intuitive way to think about arrangements of pseudolines is geometrically. On two vertical parallel lines 𝐿 and 𝑅 in 
ℝ2, we mark a set of 𝑚 equidistant points. The points on the left line are labeled 1, … , 𝑚 in downward order and on the right line 
the points are marked also 1 … , 𝑚 but in upward order. The two points with the same label 𝑖 — one on the left and one on the right 
— are joined by a continuous curve which is called pseudoline 𝑖 so that any two pseudolines intersect exactly at one point, called a 
vertex. The arrangement is simple if there is no vertex where three or more pseudolines meet.

An arrangement of pseudolines consisting of piecewise linear ‘wires’ is also called a wiring diagram. The wires (pseudolines) 
are horizontal except for small neighborhoods of their crossings with other wires; see Fig. 9 for an example. There is no loss of 
generality in assuming that our pseudolines are wires. The arrangements we consider are all simple, and often called simple numbered 
arrangements of pseudolines (Björner et al., 1999, Sect. 6.4).

The parallel lines 𝐿 and 𝑅 bound an infinite 𝐿𝑅-strip between them. The complement of the pseudolines in the 𝐿𝑅-strip is split 
into chambers which are the connected parts of this complement (two of them the top and the bottom ones are unbounded). They 
are labeled as follows. For a chamber 𝐶 and any pseudoline 𝑘 we can say if this chamber is above or below the line 𝑘. The label 
of the chamber is the set of numbers of the pseudolines that go above this chamber (see Fig. 9 for an illustration). By convention, 
the label ∅ is attached to the chamber that is above all pseudolines. Every path that connects the upper chamber labeled ∅ with the 
bottom chamber labeled {1, … , 𝑚}, and consequently crosses each pseudoline exactly once, naturally defines an order on {1, … , 𝑚}. 
If it crosses the pseudolines in order 𝑖1, 𝑖2, … , 𝑖𝑚, then we attach the order 𝑖1𝑖2… 𝑖𝑚 to it. The set of all such paths thus defines a 
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domain corresponding to the given simple numbered arrangement of pseudolines. We say that this domain is represented by the just 
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Fig. 9. The wiring diagram corresponding to 𝐹4 .

Fig. 10. The arrangement of pseudolines and its dual tiling for 𝐹4 .

described arrangement of pseudolines. For instance, as is easily verified, the domain represented by the wiring diagram in Fig. 9 is 
Fishburn’s alternating scheme domain 𝐹4.

The representations of connected maximal Condorcet domains of maximal width in terms of rhombus tilings and simple numbered 
arrangements of pseudolines are ‘dual’ to each other. This can be inferred from the canonical bijection between the chambers of an 
arrangement of pseudolines and the vertices of the corresponding rhombus tiling, as indicated in Fig. 10 for the case of 𝐹4 (see 
Elnitsky (1997); Felsner (2012) for more details).

Hence we obtain from Theorem 3.5 the following corollary:

Corollary 3.1. A domain  is a semi-connected maximal Condorcet domain with maximal width if and only if it can be represented by a 
simple numbered arrangement of pseudolines.

3.3.5. Separated ideals

Finally, we present yet another equivalent way to characterize the connected maximal Condorcet domains with maximal width. 
The key to this is the observation that the chambers of a simple numbered arrangement of pseudolines correspond to the initial 
segments of the orders in the represented Condorcet domain. Formally, we introduce the notion of an ideal of a domain, as follows 
(Danilov et al., 2012). For any order 𝑢 = 𝑎1𝑎2… 𝑎𝑚 ∈ (𝐴), denote by 𝑢𝑘 = 𝑎1𝑎2… 𝑎𝑘 the initial segment of length 𝑘 ≤ 𝑚, and set 
Id𝑘(𝑢) = {𝑎1, … , 𝑎𝑘} with Id0(𝑢) = ∅ by convention.

Definition 17. The ideal Id() of a domain  is defined as the collection of all subsets of 𝐴 that are obtained from initial segments 
of the orders in ,

Id() =
𝑛⋃

𝑘=0
Id𝑘(),

where Id𝑘() = {Id𝑘(𝑢) ∣ 𝑢 ∈}.

For instance, in case of the single-peaked domain >, the ideal is given by all intervals of the spectrum >.17
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17 More generally, the ideal corresponds to the ‘spectrum’ of the tiling corresponding to the domain, see Danilov et al. (2012).
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Proposition 3.3. For any connected maximal Condorcet domain  with maximal width, the ideal Id() is given by the family of chambers 
of the corresponding simple numbered arrangement of pseudolines.

For instance, for the Fishburn alternating scheme domain 𝐹4 we obtain the ideal

Id(𝐹4) =
{
∅,{1},{3},{4},{1,2},{1,3},{3,4},{1,2,3},{1,3,4},{2,3,4},{1,2,3,4}

}
,

which consists of the labels of chambers of the arrangement of pseudolines shown in Fig. 9.

The ideals of connected maximal Condorcet domains with maximal width have a particular structure; indeed, they form a family 
of ‘separated sets’ (Leclerc and Zelevinsky, 1998). Specifically, it is said that two sets 𝑋, 𝑌 ⊆ 𝐴 = {1, 2, … , 𝑚} are separated if there 
does not exist a triple {𝑎, 𝑏, 𝑐} ⊆ 𝐴 such that 𝑎 < 𝑏 < 𝑐 and either

(𝑋 ∩ {𝑎, 𝑏, 𝑐} = {𝑏} and 𝑌 ∩ {𝑎, 𝑏, 𝑐} = {𝑎, 𝑐}), or

(𝑋 ∩ {𝑎, 𝑏, 𝑐} = {𝑎, 𝑐} and 𝑌 ∩ {𝑎, 𝑏, 𝑐} = {𝑏}).

A family of subsets is called separated if any two sets in the family are separated.18 For instance, the family of all intervals with 
respect to the natural ordering of {1, 2, … , 𝑚}, and hence the ideal corresponding to the single-peaked domain, is clearly separated. 
The following characterization follows from combining results of Leclerc and Zelevinsky (1998), Danilov et al. (2012) and Li et al. 
(2021).

Theorem 3.6. Let  be a maximal Condorcet domain with maximal width. The following statements are equivalent:

a)  is connected;

b)  is a peak-pit domain;

c) Id() is separated.

A remarkable corollary of Theorem 3.6 and the correspondence between the ideal of a connected maximal Condorcet domain 
with maximal width and the chambers of its pseudoline arrangement is the following.

Corollary 3.2 (Li et al. (2021)). Let  be a maximal Condorcet domain with maximal width on a set of 𝑚 alternatives. Then,

|Id()| = 𝑚(𝑚+ 1)
2

+ 1.

Thus, while the cardinalities of maximal connected Condorcet domains with maximal width on a given number of alternatives 
can be quite different, the cardinality of the associated ideal is constant. In Li et al. (2021) this fact is explored in order to provide 
a complete classification of all connected maximal Condorcet domains with maximal width on five alternatives. It turns out that, 
up to an isomorphism and flip-isomorphism, there are exactly 18 of them with cardinalities ranging from 11 (for the single-crossing 
domain) to 20 (for the Fishburn alternating scheme domain 𝐹5); by Corollary 3.2, their ideals all have the same cardinality of 
(5 ⋅ 6)∕2 + 1 = 16.

3.4. Connected domains without maximal width: a conjecture

The characterization results provided in the previous subsection for the connected maximal Condorcet domains all rely crucially 
on the maximal width assumption. As we have shown, connectedness together with the maximal width assumption implies that the 
corresponding domains are copious, i.e. maximal on triples, and satisfy a unique complete set of peak-pit never conditions. Even 
without the maximal width condition, we still have:

Proposition 3.4. Every connected maximal Condorcet domain satisfies a complete set of peak-pit conditions.

Proof. As is easily verified, the restriction {𝑥,𝑦,𝑧} of a connected domain  to every triple {𝑥, 𝑦, 𝑧} is also connected. Moreover, 
since  is a Condorcet domain, this restriction can contain at most four orders. Then, one easily checks that every connected 
subdomain on three alternatives with no more than four elements satisfies at least one never-bottom or one never-top condition. □

By Theorem 3.2 the converse statement holds for all maximal Condorcet domains that satisfy either a complete set of never-bottom 
conditions (the locally single-peaked domains) or, by symmetric arguments, a complete set of never-top conditions (the locally single-

dipped domains): these domains are connected no matter if they have maximal width or not. Together with Proposition 3.4, this 
observation naturally leads to the following conjecture (which can indeed be verified to hold for all domains on up to 5 alternatives).

18 What we simply call ‘separated’ here, is referred to as ‘strongly separated’ in Leclerc and Zelevinsky (1998) since they also consider a weaker version of that 
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Conjecture 1. A maximal Condorcet domain is connected if and only if it is a peak-pit domain.

For four alternatives, a classification of all peak-pit domains has been carried out in Dittrich (2018) by computerized search. 
There, we encounter the following two previously unseen creatures, which (in accordance with our conjecture) are connected.

1. The ladder domain (see Fig. 11) is defined by the following complete set of never conditions:

3𝑁{1,2,3}1, 4𝑁{1,2,4}1, 1𝑁{1,3,4}3, 2𝑁{2,3,4}3.

It is copious but does not have maximal width (cf. domain 5 in the appendix).

Fig. 11. Graph of the ‘ladder’ domain.

2. The broken ladder domain (see Fig. 12) is defined by the following complete set of never conditions:

3𝑁{1,2,3}1, 1𝑁{1,2,4}3, 1𝑁{1,3,4}3, 2𝑁{2,3,4}3.

It is copious but does not have maximal width (cf. domain 6 in the appendix).

Fig. 12. Graph of the ‘broken ladder’ domain.

Proposition 3.5 (Dittrich (2018)). If 𝑚 = 4, then any maximal connected Condorcet domain is either isomorphic or flip-isomorphic to 
one of the following: the single-peaked domain; the single-crossing domain; the Fishburn’s domain; the locally single-peaked domain without 
maximal width; the ladder domain; the broken ladder domain. Only the first three of these have maximal width.

One difficulty in trying to prove Conjecture in general is that maximal Condorcet domains on more than four alternatives need 
not be copious. Indeed, the phenomenon that maximal Condorcet domains may satisfy different never conditions on the same triple 
of alternatives (and thus induce less than four different restricted orders on that triple) is not limited to ‘small’ domains such as 
the one in (4) above. Here is a non-copious maximal Condorcet domain on five alternatives with cardinality 15 (in the list of all 
688 equivalence classes of non isomorphic or flip-isomorphic maximal Condorcet domains on five alternatives obtained by Dittrich 
(2018) it appears as no. 273).

#273 = {𝑎𝑏𝑐𝑑𝑒, 𝑎𝑐𝑏𝑑𝑒, 𝑎𝑐𝑑𝑏𝑒, 𝑎𝑒𝑏𝑐𝑑, 𝑎𝑒𝑐𝑏𝑑, 𝑎𝑒𝑐𝑑𝑏, 𝑒𝑎𝑏𝑐𝑑, 𝑒𝑎𝑐𝑏𝑑,

𝑒𝑎𝑐𝑑𝑏, 𝑒𝑐𝑎𝑏𝑑, 𝑒𝑐𝑎𝑑𝑏, 𝑒𝑐𝑑𝑎𝑏, 𝑒𝑐𝑑𝑏𝑎, 𝑒𝑑𝑐𝑎𝑏, 𝑒𝑑𝑐𝑏𝑎}.

This domain satisfies the multiple never conditions 𝑑𝑁{𝑐,𝑑,𝑒}1 and 𝑒𝑁{𝑐,𝑑,𝑒}2 on the triple {𝑐, 𝑑, 𝑒}. Note that although the domain 
#273 thus satisfies a never-top condition on the triple {𝑐, 𝑑, 𝑒}, its restriction to this triple is not connected because it also satisfies 
a particular never-middle condition on that triple. In particular, the domain #273 is itself not connected. But it does not represent 
a counterexample to the conjecture because it also satisfies the unique never-middle conditions 𝑒𝑁{𝑏,𝑐,𝑒}2 and 𝑒𝑁{𝑏,𝑑,𝑒}2, hence it is 
not a peak-pit domain.

The domain #273 has maximal width; here is a non-copious maximal Condorcet domain on five alternatives without maximal 
width. It has cardinality 16, and it is the uniquely largest domain on five alternatives that is not copious (No. 332 in the above 
mentioned list).

#332 = {𝑎𝑏𝑐𝑑𝑒, 𝑎𝑏𝑐𝑒𝑑, 𝑎𝑏𝑒𝑐𝑑, 𝑎𝑏𝑒𝑑𝑐, 𝑎𝑐𝑒𝑏𝑑, 𝑎𝑐𝑒𝑑𝑏, 𝑎𝑒𝑐𝑏𝑑, 𝑎𝑒𝑐𝑑𝑏,

𝑏𝑎𝑐𝑑𝑒, 𝑏𝑎𝑐𝑒𝑑, 𝑏𝑎𝑒𝑐𝑑, 𝑏𝑎𝑒𝑑𝑐, 𝑐𝑎𝑒𝑏𝑑, 𝑐𝑎𝑒𝑑𝑏, 𝑒𝑎𝑐𝑏𝑑, 𝑒𝑎𝑐𝑑𝑏}.

This domain satisfies multiple never conditions 𝑎𝑁{𝑎,𝑏,𝑑}3 and 𝑑𝑁{𝑎,𝑏,𝑑}1 on the triple {𝑎, 𝑏, 𝑑}, multiple never conditions 𝑎𝑁{𝑎,𝑐,𝑑}3
and 𝑑𝑁{𝑎,𝑐,𝑑}1 on the triple {𝑎, 𝑐, 𝑑} and multiple never conditions 𝑎𝑁{𝑎,𝑑,𝑒}3 and 𝑑𝑁{𝑎,𝑑,𝑒}1 on the triple {𝑎, 𝑐, 𝑑}; it is not connected 
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because it satisfies a unique never middle condition 𝑏𝑁{𝑏,𝑐,𝑒}2 on the triple {𝑏, 𝑐, 𝑒}.
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4. Symmetric maximal Condorcet domains

We now turn to the remaining class of ‘pure’ Condorcet domains, the maximal Condorcet domains that satisfy a complete set 
of never-middle conditions. These domains turn out to be intimately related to the symmetric domains systematically studied by 
Danilov and Koshevoy (2013).

Definition 18. A domain  is symmetric if 𝑢 ∈ implies 𝑢 ∈.

In other words, the symmetric domains are those that are flip isomorphic to themselves. Of the maximal Condorcet domains 
encountered so far only the group separable domains are symmetric.

Proposition 4.1. Every symmetric Condorcet domain  satisfies a complete set of never-middle conditions. Conversely, every never-middle 
maximal Condorcet domain is symmetric.

Proof. Suppose that  is symmetric and satisfies 𝑎𝑁{𝑎,𝑏,𝑐}3 for some triple 𝑎, 𝑏, 𝑐 ∈𝐴. Then {𝑎,𝑏,𝑐} ⊆ {𝑎𝑏𝑐, 𝑏𝑎𝑐, 𝑎𝑐𝑏, 𝑐𝑎𝑏}. Since 𝑎𝑏𝑐
and 𝑎𝑐𝑏 are not in {𝑎,𝑏,𝑐}, we must in fact have {𝑎,𝑏,𝑐} ⊆ {𝑏𝑎𝑐, 𝑐𝑎𝑏} by symmetry. In that case,  also satisfies 𝑏𝑁{𝑎,𝑏,𝑐}2. A similar 
argument holds if  satisfies 𝑎𝑁{𝑎,𝑏,𝑐}1.

Conversely, suppose  satisfies a complete set of never-middle conditions. Since any never-middle condition is itself symmetric, 
if 𝑢 satisfies a given never-middle condition so does 𝑢. Due to the maximality of , if 𝑢 ∈ then also 𝑢 ∈. □

4.1. Decomposable domains

Symmetric maximal Condorcet domains are frequently ‘decomposable’ in the following sense (Karpov and Slinko, 2023b).

Definition 19. Let  be a Condorcet domain on the 𝑚-element set of alternatives 𝐵 = {𝑏1, … , 𝑏𝑚}. Let also 1, … , 𝑚 be Condorcet 
domains on disjoint sets 𝐶1, … , 𝐶𝑚 of alternatives. Then we define the domain on 𝐶1 ∪… ∪𝐶𝑚 as

(𝑏1 →1,… , 𝑏𝑚 →𝑚) ∶= {𝑢1…𝑢𝑚 ∣ 𝑢𝑗 ∈𝑖𝑗
and 𝑏𝑖1 …𝑏𝑖𝑚 ∈ }.

When it can cause no confusion, we will denote this domain as (1, … , 𝑚). We call  the top-level domain and 1, … , 𝑚 ground 
level domains.

This definition is similar, in spirit, to the definition of the wreath product of permutations introduced in Atkinson and Stitt (2002).

Definition 20. A domain  ⊆ (𝐴) is called decomposable if it is isomorphic to (1, … , 𝑚), where |𝐶𝑖| > 1 for at least one 𝑖

where 𝑖 ∈ {1, … , 𝑚}. Otherwise, if  is not decomposable, it is called indecomposable.

Proposition 4.2 (Karpov and Slinko (2023b)). Let |𝐴| = 𝑚 and  , 1, … , 𝑚 be Condorcet domains on disjoint sets of alternatives 
𝐴, 𝐶1, … , 𝐶𝑚, respectively. Then  = (1, … , 𝑚) is again a Condorcet domain with

|(1,… ,𝑚)| = || 𝑚∏
𝑖=1

|𝑖|. (10)

Moreover,  is a symmetric domain if and only if all domains  , 1, … , 𝑚 are symmetric.

We want to use this construction in order to obtain an alternative description of the group separable domains as those that 
are ‘completely’ decomposable. First, we observe that a partial case of the above construction has already appeared in the literature 
(Raynaud, 1981; Fishburn, 2002; Danilov and Koshevoy, 2013). Indeed, for the case |𝐴| = 2,  = {𝑎1𝑎2, 𝑎2𝑎1} and any two Condorcet 
domains 1, 2, the operation

1 ⋆2 ∶= (1,2) = {𝑢1𝑢2 ∣ 𝑢1 ∈1, 𝑢2 ∈2} ∪ {𝑢2𝑢1 ∣ 𝑢1 ∈1, 𝑢2 ∈2}

was used in Danilov and Koshevoy (2013) in order to construct a series of never-middle maximal Condorcet domains, namely,

𝑎1 ⋆ 𝑎2 ⋆ 𝑎3 ⋆…⋆ 𝑎𝑛 (11)

with some parenthesization,19 where 𝑎𝑖 is identified with the trivial domain on a single alternative 𝑎𝑖. Let us call a domain completely 
decomposable if it is of the form (11) for some parenthesization. Evidently, every maximal completely decomposable domain is 
symmetric. For instance, we have
443
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(𝑎 ⋆ 𝑏)⋆ (𝑐 ⋆ 𝑑) = {𝑎𝑏𝑐𝑑, 𝑎𝑏𝑑𝑐, 𝑏𝑎𝑐𝑑, 𝑏𝑎𝑑𝑐, 𝑐𝑑𝑎𝑏, 𝑐𝑑𝑏𝑎, 𝑑𝑐𝑎𝑏, 𝑑𝑐𝑏𝑎},

𝑎 ⋆ (𝑏 ⋆ (𝑐 ⋆ 𝑑)) = {𝑎𝑏𝑐𝑑, 𝑎𝑏𝑑𝑐, 𝑎𝑐𝑑𝑏, 𝑎𝑑𝑐𝑏, 𝑏𝑐𝑑𝑎, 𝑏𝑑𝑐𝑎, 𝑐𝑑𝑏𝑎, 𝑑𝑐𝑏𝑎}.

These two domains turn out to be the two group separable maximal Condorcet domains on four alternatives (see the domains 8
and 9 and their embeddings in the 4-permutohedron in the appendix). In general, we have:

Theorem 4.1. A maximal Condorcet domain is group separable if and only if it is completely decomposable.

4.2. Indecomposable domains

Danilov and Koshevoy (2013) discovered a series of symmetric maximal Condorcet domains that, for any number of alternatives 
𝑚, have cardinality of just 4. Karpov and Slinko (2023b) call them Raynaud domains, since Raynaud (1981) was the first to discover 
such a domain in the case of four alternatives, calling it ‘configuration 𝐾 .’ The (unique) Raynaud domain on four alternatives is 
given by the symmetric domain {𝑎𝑏𝑐𝑑, 𝑏𝑑𝑎𝑐, 𝑐𝑎𝑑𝑏, 𝑑𝑐𝑏𝑎} (see the domain 7 in the appendix).

Let 𝐴 = {1, 2, … , 𝑚} and define a permutation 𝜎𝑚 on {1, 2, … , 𝑚} by

𝜎𝑚 ∶= 24⋯ (2𝑘)1(2𝑘± 1)⋯53,

where 2𝑘 ±1 is equal to 2𝑘 +1 =𝑚, if 𝑚 is odd, and 2𝑘 −1 =𝑚 −1 if 𝑚 is even. For example, 𝜎6 = 246153 and 𝜎7 = 2461753. Denoting 
𝑒 = 12 … 𝑚, Danilov and Koshevoy (2013) showed that the domains

{𝑒, 𝑒, 𝜎𝑚, 𝜎𝑚}

are symmetric maximal Condorcet domains on {1, 2, … , 𝑚} for every 𝑚 ≥ 4; moreover, these domains are evidently indecomposable.

The permutation 𝜎𝑚 is a special case of what is known as a simple permutation (Albert and Atkinson, 2005):

Definition 21. Let 𝑖1𝑖2… 𝑖𝑚 be a sequence of distinct elements of {1, 2, … , 𝑚}. We say that a subsequence 𝑖𝑘𝑖𝑘+1… 𝑖𝓁 is an interval

of length 𝓁 in the sequence 𝑖1𝑖2… 𝑖𝑚 if the set {𝑖𝑘, 𝑖𝑘+1, … , 𝑖𝑘+𝓁−1} = {𝑎, 𝑎 + 1, … , 𝑎 + 𝓁 − 1} for some 𝑎 ∈ {1, 2, … , 𝑚}. This interval 
is trivial if this subsequence has length 1 or 𝑚. A sequence without non-trivial intervals is called a simple permutation.

For example, 21 is the only non-trivial interval in 521463, and 52463 is the only interval in 152463; the permutations 2413, 41352, 
24153, 2475316, 24683157, and all permutations of the form 𝜎𝑚 are simple.

Definition 22. For any permutation 𝑢 ≠ 𝑒, denote the domain 𝑢 ∶= {𝑒, 𝑢, 𝑢, 𝑒}, and say that 𝑢 is a Raynaud domain if it is a maximal 
Condorcet domain.

The following result highlights the role of simple permutations in our context.

Theorem 4.2 (Karpov and Slinko (2023b)). A domain of the form 𝑢 is a Raynaud domain if and only if 𝑢 is a simple permutation.

All Raynaud domains are indecomposable, and the following conjecture states that these are in fact the only indecomposable 
symmetric maximal Condorcet domains.

Conjecture 2. Every indecomposable symmetric maximal Condorcet domain on 𝑚 ≥ 4 alternatives is a Raynaud domain.

5. Large Condorcet domains

As already noted, the main motivation for the work reported in Fishburn (1997, 2002) was the quest for large Condorcet domains. 
The title of Raynaud’s paper from 1982 describes this motivation in more detail: ‘The individual freedom allowed by the value 
restriction condition.’ Thus, Raynaud (1982) derives the interest in large Condorcet domains from the goal to maximize individual 
preference freedom under the collective rationality constraint of a transitive majority relation.

For 𝑚 ≤ 6, Fishburn himself proved that the alternating scheme 𝐹𝑚 is indeed the Condorcet domain with maximal cardinality, 
and Galambos and Reiner (2008) found that this is true also for 𝑚 = 7. But Fishburn also showed that for sufficiently large 𝑚, the 
alternating scheme does not deliver the largest Condorcet domain; more concretely, he showed that for all 𝑚 ≥ 16 there are Condorcet 
domains that have a larger cardinality than 𝐹𝑚 (Fishburn, 1997). Denoting by 𝑓 (𝑚) the largest cardinality of any maximal Condorcet 
domain on 𝑚 alternatives, Fishburn’s result can be written as 𝑓 (𝑚) > |𝐹𝑚| for all 𝑚 ≥ 16. We now know from Leedham-Green et al. 
(2024) that in fact already 𝑓 (8) > |𝐹8|.

The examples produced by Fishburn to show that 𝑓 (𝑚) > |𝐹𝑚| for large 𝑚 used an operation on Condorcet domains similar to the 
one in Definition 19, in particular the examples were non-connected domains. Galambos and Reiner (2008) thus posed the following 
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Is the alternating scheme domain the largest in the class of

connected domains with maximal width?
(12)

Without the maximal width qualification the answer to this question is ‘no’ already for 𝑚 = 8, because the uniquely largest 
Condorcet domain on eight alternatives discovered recently by Leedham-Green et al. (2024), while connected, does not have maximal 
width; it contains 224 orders, while the alternating scheme 𝐹𝑚 has only 222 orders.

Galambos and Reiner (2008) gave an exact formula for the cardinality of Fishburn’s domains; the following Table 2 lists the first 
13 values of |𝐹𝑚|:

Table 2

Cardinalities of the Fishburn alternating scheme.

𝑚 2 3 4 5 6 7 8 9 10 11 12 13|𝐹𝑚| 1 4 9 20 45 100 222 488 1069 2324 5034 10840

Denoting by 𝑔(𝑚) the size of the largest peak-pit Condorcet domain of maximal width (following Monjardet, 2009), the question 
(12) can be reformulated as: Is it true that 𝑔(𝑚) = |𝐹𝑚|?

This question was finally answered in the negative by Danilov et al. (2012) who showed that 𝑔(42) > |𝐹42|. The tool for the 
construction of an appropriate example was an operation that given two peak-pit Condorcet domains of maximal width produces 
a larger peak-pit Condorcet domain with maximal width. Karpov and Slinko (2023a) improve their analysis by introducing a new 
construction, called ‘concatenation + shuffle scheme.’ The advantage of this composition operation is that given two maximal peak-

pit Condorcet domains with maximal width it produces another peak-pit Condorcet domain with maximal width that is again a 
maximal Condorcet domain (in contrast to the construction used in Danilov et al. (2012)). With the help of this construction Karpov 
and Slinko (2023a) show that already 𝑔(34) > |𝐹34|.

To date, the best known lower bounds for 𝑓 and 𝑔 are (Karpov and Slinko, 2023a):

𝑔(𝑚) ≥ 2.0767𝑚,

𝑓 (𝑚) ≥ 2.1890𝑚.

The issue of identifying large Condorcet domains is a particularly active research topic at the time of the writing of the present 
survey. Most recent contributions include Akello-Egwell et al. (2023), Karpov et al. (2023) and Zhou and Riis (2023). A systematic 
assessment and classification of these contributions is left to future work.

6. Conclusion

Let us conclude with some notes on what we have not covered here. First, in our treatment of the peak-pit domains we have 
left out some (non-elementary) facts and results on inversion triples, reduced decompositions and, more generally, the study of the 
so-called Bruhat lattice on the symmetric group of permutations; for a mathematically rigorous treatment, we refer the reader to 
Galambos and Reiner (2008) and Danilov et al. (2012).

Second, we have confined ourselves to maximal Condorcet domains. While this class is arguably the most relevant and interesting 
class of Condorcet domains, some results hold more generally for the class of closed Condorcet domains (as witnessed, e.g., by 
the analysis in Subsection 2.2 above). Most importantly, as shown in Puppe and Slinko (2019), every closed Condorcet domain 
(whether or not it is connected) naturally induces a median graph, and conversely every median graph defines (non-uniquely) a 
closed Condorcet domain. If a Condorcet domain is connected, the corresponding median graph is a subgraph of the permutohedron. 
Remarkably, some graphs induced by some closed Condorcet domains can never occur in the class of maximal Condorcet domains 
(for instance, trees that are not chains can be the induced median graphs of closed but not of maximal Condorcet domains, see Puppe 
and Slinko, 2019, Th. 7).

Third, the notion of Condorcet domain can be generalized to the case of weak orders, and even to partial orders. Indeed, a result 
analogous to Theorem 3.1 holds for weak orders (Puppe, 2018), and first steps towards an analysis of Condorcet domains of partial 
orders have been undertaken in Dittrich (2018).
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Fig. 13. The three connected maximal CDs with maximal width 1 −3 .

Appendix A. All maximal Condorcet domains on four alternatives

In this section, we present the complete classification of all maximal Condorcet domains (CDs) on four alternatives obtained by 
Dittrich (2018). Up to isomorphism or flip isomorphism there are exactly 18 different maximal CDs on the set {𝑎, 𝑏, 𝑐, 𝑑}.20

A.1. Connected domains

There are in total six connected maximal CDs on four alternatives, all of them are peak-pit domains.

A.1.1. Connected domains with maximal width

There are exactly three connected maximal CDs with maximal width:

1 = {𝑎𝑏𝑐𝑑, 𝑎𝑏𝑑𝑐, 𝑎𝑐𝑏𝑑, 𝑏𝑎𝑐𝑑, 𝑏𝑎𝑑𝑐, 𝑏𝑑𝑎𝑐, 𝑐𝑎𝑏𝑑, 𝑑𝑏𝑎𝑐},

2 = {𝑎𝑏𝑐𝑑, 𝑎𝑏𝑑𝑐, 𝑎𝑐𝑏𝑑, 𝑎𝑑𝑏𝑐, 𝑑𝑎𝑏𝑐, 𝑑𝑏𝑎𝑐, 𝑑𝑏𝑐𝑎},

3 = {𝑎𝑏𝑐𝑑, 𝑎𝑏𝑑𝑐, 𝑏𝑎𝑐𝑑, 𝑏𝑎𝑑𝑐, 𝑏𝑑𝑎𝑐, 𝑏𝑑𝑐𝑎, 𝑑𝑏𝑎𝑐, 𝑑𝑏𝑐𝑎, 𝑑𝑐𝑏𝑎}.

The first of these (1) is the single-peaked domain with respect to the spectrum 𝑑 > 𝑏 > 𝑎 > 𝑐, see Fig. 13 left; the second (2) is a 
single-crossing domain with the pair 𝑎𝑐𝑏𝑑 and 𝑑𝑏𝑐𝑎 of completely reversed orders, see Fig. 13 middle; the third (3) corresponds to 
Fishburn’s alternating scheme and is the (uniquely) largest maximal CD on four alternatives with 9 members, see Fig. 13 right.

The characterizing never conditions are,

for 1 ∶ {𝑎𝑁𝑎𝑏𝑐3, 𝑏𝑁𝑎𝑏𝑑3, 𝑎𝑁𝑎𝑐𝑑3, 𝑏𝑁𝑏𝑐𝑑3},

for 2 ∶ {𝑐𝑁𝑎𝑏𝑐1, 𝑏𝑁𝑎𝑏𝑑1, 𝑐𝑁𝑎𝑐𝑑1, 𝑏𝑁𝑏𝑐𝑑3},

for 3 ∶ {𝑏𝑁𝑎𝑏𝑐3, 𝑏𝑁𝑎𝑏𝑑3, 𝑐𝑁𝑎𝑐𝑑1, 𝑐𝑁𝑏𝑐𝑑1}.

A.1.2. Connected domains without maximal width

There are exactly three connected maximal CDs without maximal width; they all have 8 members:

4 = {𝑎𝑏𝑐𝑑, 𝑎𝑏𝑑𝑐, 𝑎𝑐𝑏𝑑, 𝑎𝑐𝑑𝑏, 𝑏𝑎𝑐𝑑, 𝑏𝑎𝑑𝑐, 𝑏𝑐𝑎𝑑, 𝑏𝑐𝑑𝑎},

5 = {𝑎𝑏𝑐𝑑, 𝑎𝑏𝑑𝑐, 𝑎𝑐𝑏𝑑, 𝑎𝑑𝑏𝑐, 𝑏𝑎𝑐𝑑, 𝑏𝑎𝑑𝑐, 𝑏𝑐𝑎𝑑, 𝑏𝑑𝑎𝑐},

6 = {𝑎𝑏𝑐𝑑, 𝑎𝑏𝑑𝑐, 𝑎𝑐𝑏𝑑, 𝑎𝑑𝑏𝑐, 𝑏𝑎𝑐𝑑, 𝑏𝑎𝑑𝑐, 𝑏𝑐𝑎𝑑, 𝑑𝑎𝑏𝑐}.

The first of these (4) is flip isomorphic to a locally single-peaked domain, see Fig. 14 left; the second (‘ladder’) domain (5) and 
third (‘broken ladder’) domain (6) differ only by one order from each other, see Fig. 14 middle and right, respectively.

The characterizing never conditions are,

for 4 ∶ {𝑐𝑁𝑎𝑏𝑐1, 𝑑𝑁𝑎𝑏𝑑1, 𝑑𝑁𝑎𝑐𝑑1, 𝑑𝑁𝑏𝑐𝑑1},

for 5 ∶ {𝑐𝑁𝑎𝑏𝑐1, 𝑑𝑁𝑎𝑏𝑑1, 𝑎𝑁𝑎𝑐𝑑3, 𝑏𝑁𝑏𝑐𝑑3},

for 6 ∶ {𝑐𝑁𝑎𝑏𝑐1, 𝑎𝑁𝑎𝑏𝑑3, 𝑎𝑁𝑎𝑐𝑑3, 𝑏𝑁𝑏𝑐𝑑3}.

20 Machine readable files with the lists of all maximal CDs on four and five alternatives, respectively, are available upon request from the authors. A list of all 688 
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non-isomorphic maximal CDs on five alternatives can be downloaded at https://nevercondition .de.

https://nevercondition.de
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Fig. 14. The three connected maximal CDs without maximal width 4 −6 .

Fig. 15. The smallest maximal CD with four elements.

A.2. Symmetric domains

A.2.1. The indecomposable Raynaud domain

The smallest maximal CD has four elements (Fig. 15) and is given by

7 = {𝑎𝑏𝑐𝑑, 𝑏𝑑𝑎𝑐, 𝑐𝑎𝑑𝑏, 𝑑𝑐𝑏𝑎}.

7 is one of the type of maximal CDs with four members identified by Danilov and Koshevoy (2013) which exist for any number of 
alternatives; it is characterized by the following set of never conditions:

{𝑐𝑁𝑎𝑏𝑐2, 𝑎𝑁𝑎𝑏𝑑2, 𝑑𝑁𝑎𝑐𝑑2, 𝑏𝑁𝑏𝑐𝑑2}.

A.2.2. Two group separable domains

There are two group separable maximal CDs on a set of four alternatives, see Fig. 16:

8 = {𝑎𝑏𝑐𝑑, 𝑎𝑏𝑑𝑐, 𝑏𝑎𝑐𝑑, 𝑏𝑎𝑑𝑐, 𝑐𝑑𝑎𝑏, 𝑐𝑑𝑏𝑎, 𝑑𝑐𝑎𝑏, 𝑑𝑐𝑏𝑎},

9 = {𝑎𝑏𝑐𝑑, 𝑎𝑏𝑑𝑐, 𝑎𝑐𝑑𝑏, 𝑎𝑑𝑐𝑏, 𝑏𝑐𝑑𝑎, 𝑏𝑑𝑐𝑎, 𝑐𝑑𝑏𝑎, 𝑑𝑐𝑏𝑎}.

The characterizing never conditions are,

for 8 ∶ {𝑐𝑁𝑎𝑏𝑐2, 𝑑𝑁𝑎𝑏𝑑2, 𝑎𝑁𝑎𝑐𝑑2, 𝑏𝑁𝑏𝑐𝑑2},

for 9 ∶ {𝑎𝑁𝑎𝑏𝑐2, 𝑎𝑁𝑎𝑏𝑑2, 𝑎𝑁𝑎𝑐𝑑2, 𝑏𝑁𝑏𝑐𝑑2}.

A.3. Mixed domains

Furthermore, there are nine ‘mixed’ domains, i.e., domains that are characterized by at least one never-middle condition and at 
least one never condition of another type. One of these domains (10) has only seven members; all others (11 −18 listed here in 
447

lexicographic order) have eight members, see Fig. 17.
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Fig. 16. The two group separable maximal CDs 8 and 9 .
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Fig. 17. Mixed maximal CDs 10 −18 (top to bottom from left to right).
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We have:

10 = {𝑎𝑏𝑐𝑑, 𝑎𝑏𝑑𝑐, 𝑎𝑐𝑏𝑑, 𝑎𝑑𝑏𝑐, 𝑏𝑐𝑎𝑑, 𝑐𝑏𝑎𝑑, 𝑑𝑎𝑏𝑐},

11 = {𝑎𝑏𝑐𝑑, 𝑎𝑏𝑑𝑐, 𝑎𝑑𝑏𝑐, 𝑎𝑑𝑐𝑏, 𝑏𝑐𝑑𝑎, 𝑏𝑑𝑐𝑎, 𝑑𝑏𝑐𝑎, 𝑑𝑐𝑏𝑎},

12 = {𝑎𝑏𝑐𝑑, 𝑎𝑏𝑑𝑐, 𝑎𝑐𝑏𝑑, 𝑏𝑎𝑐𝑑, 𝑏𝑎𝑑𝑐, 𝑏𝑐𝑎𝑑, 𝑑𝑎𝑏𝑐, 𝑑𝑏𝑎𝑐},

13 = {𝑎𝑏𝑐𝑑, 𝑎𝑏𝑑𝑐, 𝑏𝑎𝑐𝑑, 𝑏𝑎𝑑𝑐, 𝑏𝑑𝑎𝑐, 𝑐𝑎𝑏𝑑, 𝑐𝑎𝑑𝑏, 𝑐𝑏𝑎𝑑},

14 = {𝑎𝑏𝑐𝑑, 𝑎𝑏𝑑𝑐, 𝑏𝑎𝑐𝑑, 𝑏𝑎𝑑𝑐, 𝑏𝑑𝑎𝑐, 𝑐𝑎𝑏𝑑, 𝑐𝑏𝑎𝑑, 𝑑𝑏𝑎𝑐},

15 = {𝑎𝑏𝑐𝑑, 𝑎𝑏𝑑𝑐, 𝑏𝑎𝑐𝑑, 𝑏𝑎𝑑𝑐, 𝑐𝑎𝑏𝑑, 𝑐𝑎𝑑𝑏, 𝑐𝑏𝑎𝑑, 𝑐𝑏𝑑𝑎},

16 = {𝑎𝑏𝑐𝑑, 𝑎𝑏𝑑𝑐, 𝑏𝑎𝑐𝑑, 𝑏𝑎𝑑𝑐, 𝑐𝑎𝑏𝑑, 𝑐𝑎𝑑𝑏, 𝑐𝑏𝑎𝑑, 𝑐𝑑𝑎𝑏},

17 = {𝑎𝑏𝑐𝑑, 𝑎𝑏𝑑𝑐, 𝑏𝑎𝑐𝑑, 𝑏𝑎𝑑𝑐, 𝑐𝑎𝑏𝑑, 𝑐𝑏𝑎𝑑, 𝑐𝑑𝑎𝑏, 𝑐𝑑𝑏𝑎},

18 = {𝑎𝑏𝑐𝑑, 𝑎𝑏𝑑𝑐, 𝑏𝑎𝑐𝑑, 𝑏𝑎𝑑𝑐, 𝑐𝑎𝑏𝑑, 𝑐𝑏𝑎𝑑, 𝑑𝑎𝑏𝑐, 𝑑𝑏𝑎𝑐}.

The characterizing never conditions are,

for 10 ∶ {𝑎𝑁𝑎𝑏𝑐2, 𝑎𝑁𝑎𝑏𝑑3, 𝑎𝑁𝑎𝑐𝑑3, 𝑏𝑁𝑏𝑐𝑑3},

for 11 ∶ {𝑎𝑁𝑎𝑏𝑐2, 𝑎𝑁𝑎𝑏𝑑2, 𝑎𝑁𝑎𝑐𝑑2, 𝑐𝑁𝑏𝑐𝑑1},

for 12 ∶ {𝑐𝑁𝑎𝑏𝑐1, 𝑑𝑁𝑎𝑏𝑑2, 𝑎𝑁𝑎𝑐𝑑3, 𝑏𝑁𝑏𝑐𝑑3},

for 13 ∶ {𝑐𝑁𝑎𝑏𝑐2, 𝑑𝑁𝑎𝑏𝑑1, 𝑎𝑁𝑎𝑐𝑑3, 𝑑𝑁𝑏𝑐𝑑1},

for 14 ∶ {𝑐𝑁𝑎𝑏𝑐2, 𝑏𝑁𝑎𝑏𝑑3, 𝑎𝑁𝑎𝑐𝑑3, 𝑏𝑁𝑏𝑐𝑑3},

for 15 ∶ {𝑐𝑁𝑎𝑏𝑐2, 𝑑𝑁𝑎𝑏𝑑1, 𝑑𝑁𝑎𝑐𝑑1, 𝑑𝑁𝑏𝑐𝑑1},

for 16 ∶ {𝑐𝑁𝑎𝑏𝑐2, 𝑎𝑁𝑎𝑏𝑑3, 𝑑𝑁𝑎𝑐𝑑1, 𝑑𝑁𝑏𝑐𝑑1},

for 17 ∶ {𝑐𝑁𝑎𝑏𝑐2, 𝑑𝑁𝑎𝑏𝑑2, 𝑑𝑁𝑎𝑐𝑑1, 𝑑𝑁𝑏𝑐𝑑1},

for 18 ∶ {𝑐𝑁𝑎𝑏𝑐2, 𝑑𝑁𝑎𝑏𝑑2, 𝑎𝑁𝑎𝑐𝑑3, 𝑏𝑁𝑏𝑐𝑑3}.
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