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Abstract
Measures for balancing the electrical grid, such as peak shaving, require accurate peak
forecasts for lower aggregation levels of electrical loads. Thus, the Big Data Energy
Analytics Laboratory (BigDEAL) challenge—organised by the BigDEAL—focused on
forecasting three different daily peak characteristics in low aggregated load time series. In
particular, participants of the challenge were asked to provide long‐term forecasts with
horizons of up to 1 year in the qualification. The authors present the approach of the
KIT‐IAI team from the Institute for Automation and Applied Informatics at the
Karlsruhe Institute of Technology. The approach to the challenge is based on a hybrid
generative model. In particular, the authors use a conditional Invertible Neural Network
(cINN). The cINN gets the forecast of a sliding mean as representative of the trend,
different weather features, and calendar information as conditioning input. By this, the
proposed hybrid method achieved second place overall and won two out of three tracks
of the BigDEAL challenge.

KEYWORD S
artificial intelligence and data analytics, load forecasting, neural nets

1 | INTRODUCTION

Due to an increasing share of renewable energy sources in the
electricity grid, the energy supply becomes more volatile, and
consequently, balancing the grid and avoiding grid overload
becomes more difficult. Thus, countermeasures such as peak
shaving are needed to balance the grid. These countermeasures
require accurate forecasts. Additionally, depending on the
countermeasure, different characteristics of the forecast are of
particular interest, such as accurate forecasts of the daily peak
load, the peak timing and the peak shave. Thus, the BigDEAL
challenge—organised by the Big Data Energy Analytics Lab-
oratory (BigDEAL)—focused on forecasting these three
characteristics.

Regarding peak load forecasting, various papers focus on
forecasting the peaks directly. For example, there exist

regression models with additional transformation to improve
peak forecasting [1], Generalised Adaptive Models [2], Long
Short‐Term Memory networks (LSTMs) in combination with
Convolutional Neural Networks [3], LSTMs with attention
mechanisms [4], methods that cluster different load curves and
apply specific regression on each group separately to handle
the high variances between different load curves [5], a com-
bination of multivariate empirical mode decomposition, Sup-
port Vector Regression (SVR), and particle swarm optimisation
to provide accurate peak load forecasts [6], combining multi‐
resolution with forecasters (generalised additive models and
neural networks) to predict the magnitude and the timing of
peaks [7]. In contrast to the direct peak forecasting approach,
extracting the peak characteristics from time series forecasts is
also possible. Thus, we provide a short overview of existing
energy time series forecasting methods in the following.
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Regarding energy time series forecasting in general, in the
Global Energy Forecasting Competitions (GEFCom) [8–10]
leaderboards, we observe that often statistical or non‐deep
learning‐based forecasting methods are used. In the load
forecasting task of the GEFCom 2012, the top three teams
used multiple linear regression [11], gradient boosting and
Gaussian processes [12], and splines and ensembles of these
models [13]. In the load forecasting task of GEFCom 2014, the
top three teams used robust additive models [14], semi‐
parametric regression models [15], and a combination of
multiple different forecasting models [16]. Finally, for GEF-
Com 2017, the top 3 teams used different quantile regression
and generalised additive models [17], quantile gradient boost-
ing regression trees, and an ensemble consisting of tree‐based
methods and neural networks [18].

Regarding neural networks for time‐series forecasting,
many recent papers propose new architectures. These archi-
tectures are often Recurrent Neural Networks (RNNs), which
can capture temporal dependencies well and are often used for
energy time‐series forecasting [19–22]. However, RNNs are
computationally expensive. Thus, transformers are proposed
using the self‐attention mechanism instead of recurrent layers
[23]. Popular transformers for time series forecasting are the
temporal fusion transformer [24], Informers [25], and Auto-
formers [26]. Also the first time series foundation model,
which can be used for time series forecasting is based on
transformers [27]. Furthermore, they are also applied for en-
ergy time‐series forecasting [28–31]. Regarding neural
network‐based time series forecasting, hybrid approaches are
especially promising. A popular hybrid network is DeepAR,
which integrates autoregressive ideas into an RNN [32].
Furthermore, methods that exploit time series decomposition
to improve forecasting are also promising. Examples of such
methods are N‐BEATS [33] and N‐HiTS [34], which use an
architecture that learns an additive decomposition of a time
series, and Profile Neural Network (PNN) [35] and Probabi-
listic PNN [36], which use an additive decomposition into
noise, trend, and periodicities, whereby the periodicities are
modelled using rolling statistics. Finally, a hybrid neural
network‐based forecasting model is also the winner of the M4
[37] competition—the Exponential Smoothing RNN [38].

Thus, we also assume that hybrid neural networks may be
beneficial for the BigDEAL challenge. However, due to the
long forecast horizon (up to 1 year in the qualification), the
historical data probably has no impact on most values.
Nonetheless, historical values are an important input of the
mentioned forecasting methods. Considering the long forecast
horizon and the observation that the peak shape forecasting
task rewards methods that create time series indistinguishable
from real time series, we find that the BigDEAL challenge
setting is similar to the time series generation task under
exogenous variables.

In time series generation, popular approaches are often
generative adversarial network [39] based, for example, the
TimeGAN [40] and the COT‐GAN [41]. However, according
to ref. [42], these generation methods can not control the
generation process that we require to create time series with

the correct trend, seasonality, and dependence on the weather;
thus, we use the conditional Invertible Neural Network (cINN)
proposed in ref. [42] for time series forecasting.

The resulting contribution of the present paper is twofold.
First, to the best of the authors' knowledge, we are the first that
apply a cINN on peak forecasting. Second, we make this
approach hybrid by conditioning the cINN with forecasted
rolling averages to control the generation process and generate
time series anticipating the trend and seasonal effects of the
load time series. The results show that this method is prom-
ising. In particular, this method ranked second in the overall
ranking of the BigDEAL challenge and won the timing and
shape tasks of the challenge.

In the following, we introduce our method, including the
cINN, our pre‐ and post‐processing techniques, and our
ensemble approach. Afterwards, we evaluate our models by
introducing the experimental setup and describing the results.
Finally, we discuss the results and conclude our work.

2 | cINN‐BASED PEAK LOAD
FORECASTING

To compete in the BigDEAL challenge, we used an ensemble
whose main component is a cINN. As mentioned in the
introduction, we selected a cINN due to the following three
reasons:

1. In energy time series, values in the near future are correlated
with historical values. However, the BigDEAL challenge
requires forecasts with a forecasting horizon of up to 1 year.
For such a forecasting horizon, we assume that historical
values have almost no impact on most values. Furthermore,
long forecasting horizons either require multi‐step fore-
casting models with a large output dimension, leading to
many parameters or autoregressive forecasting, where the
error terms increase with an increasing forecasting horizon.
To avoid both drawbacks, we applied a generative model
that is non‐autoregressive and has a fixed output length of
only 24 values.

2. The shape task of the BigDEAL challenge is comparing the
shape of the values around the peak without considering
the magnitude. Thus, the shape of the forecasts should be
indistinguishable from real data. This indistinguishability is
a frequently asked requirement for generative models. Thus,
we assume that generative models are well suited for the
shape task.

3. The challenge organisers provided different exogenous
features. Besides that, further exogenous information is
easily extractable from the provided time series. Thus, the
forecasting task in the BigDEAL challenge is comparable
with time series generation for a specific scenario, which is
—in our cases—defined by the exogenous features.

Because of these three reasons, we based our cINN‐based
forecaster on the cINN described in ref. [42], since it is
designed to control the time series generation for specific
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scenarios. In the following, we explain the cINN before
describing the other ensemble members.

2.1 | cINN based forecaster

The used cINN‐based forecaster is visualised in Figure 1. It
mainly consists of three steps—preprocessing, the cINN itself,
and postprocessing. In the following, we explain each of these
steps in more detail. Note that this cINN‐based forecaster will
be made available at sktime.1

2.1.1 | Preprocessing

The preprocessing consists of two parts—the feature extrac-
tion and the sampler.

Feature extraction
The feature extraction's task is to create and extract features
for conditioning the generation process of the cINN. These
extracted features are calendar information, statistical infor-
mation, weather data and additional derived weather features.
To perform the extraction, the feature extraction receives as
input the time index, exogenous weather features, and during
the training also the time series.

The calendar information is extracted from the time index.
This information should support the generation process in
creating time series with the calendar‐driven periodicity
structure. Furthermore, it enables us to aggregate the time
series samples using the merger since this aggregation requires
that each sample corresponds to a controlled and specific date
(compare [42]). More specifically, as calendar information, we
use the sine and cosine encoded month of the year, day of the
week, and hour of the day. Furthermore, we use three flags
indicating if the day is a workday, weekend, or a federal US
holiday.

The challenge organisers provided temperature informa-
tion from six weather stations as exogenous weather features.
We use this temperature information to extract three kinds of
additional weather features. First, we calculate the average,
median, standard deviation, minimum and maximum as extra
features based on six temperature values of the weather sta-
tions for each hour. Second, we transform the temperature
time series. Therefore, we search the saddle point between the
temperature time series and the target time series for each
hour using a fitted polynom between both. Afterwards, we
square the difference of the temperature time series and the
saddle point for each hour. Third, we use a rolling mean of the
average temperature and the linearised temperature time series
to capture the heat inertia of the buildings that contribute to
the time series.

Finally, we use statistical information to control mid‐ and
long‐term trends and periodicities. This information is repre-
sented and obtained by sine‐based functions. In the present
paper, we use two different functions, which are first fitted and
then provide a forecast of the statistics. More specifically, we
use the sliding mean as a statistic. Thus, during the training to
fit this function, these steps require the sliding mean of the
time series as target. During the inference, only the index is
required to perform the prediction of the statistic. The first
function is a simple sine function with three parameters

s1 ¼ sin
�
x ⋅ 4 ⋅ π
365 ⋅ 24

þ p1
�

⋅ l1 þ o2; ð1Þ

where x is the linear input ranging from 1 to the length of
the training data, and p1, l1, and o1 are the parameters that must
be fitted. Thereby, p1 is the phase of the searched periodicity, l1
is the amplitude, and o1 is the offset. We refer to this function
in the following as the sine‐1 statistic. This function can cap-
ture the half‐yearly periodicity of the time series, which we
observe in the data and is probably caused by electric heating in
winter and electric cooling in summer. However, two addi-
tional yearly periodicities with opposite trends of their
magnitude superimpose this basic half‐yearly periodicity. To

F I GURE 1 The conditional Invertible Neural Network (cINN) provides a bijective mapping between the time series and the latent space. To be able to
model a conditional distribution, the cINN gets encoded conditional information via a conditioning network. Moreover, since the cINN works on samples with
a fixed length, we need a sampler and use a merger for the reverse operation. The data flow during the training is indicated with the red dashed lines and the data
flow during the generation with the blue solid lines.

1
Currently, there is an open Pull Request.
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capture this, we introduce the following function as a second
variant:

s2 ¼s1

þ

�

sin
�
x ⋅ π ⋅ 2
365 ⋅ 24

þ 365 ⋅ 24 ⋅ πþ p2
�

þ 1
�

⋅ a2 ⋅ x

þ

�

sin
�
x ⋅ π ⋅ 2
365 ⋅ 24

þ p2
�

− 1
�

⋅ a3 ⋅ x;

ð2Þ

where s1 is described in Equation (1) and models the half‐
yearly periodicities, and the newly introduced sine terms
with the parameters p2, a2, and a3 model the two yearly pe-
riodicities. We refer to this function in the following as the
sine‐3 statistic.

Sampler
The cINN model requires that the input and output size of the
samples is equal and fixed. However, the requested forecasts in
the challenge have differing lengths. Thus, we create over-
lapping samples from the time series. Thereby, we define a
sample starting at ti as follows:

xti ¼
�
xti; xtiþ1;…; xtiþh−1

�
; ð3Þ

where xti the time series' value at index ti, and h is the length2.
Note that to obtain a forecast with arbitrary length from these
samples, the merger performs the reverse operation by
aggregating the generated samples.

2.1.2 | cINN

The used architecture of the cINN is similar to the cINN
presented in refs. [42, 43] and thus also implemented using the
FrEIa framework3. Note that the described hyperparameters
are selected by preliminary studies.

We use 15 GLOW coupling layers [44] with fully connected
subnetworks. The subnetworks' specification is provided in
Table 1. Similar to the previously used cINN, we also use a
conditioning network to encode the conditioning information
into a vector of size 64. The conditioning network's specifi-
cation is provided in Table 2.

The cINN should provide a mapping between the time
series samples and the normal distributed latent space. Thus,
we applied the same loss function as described by the following
[42, 43]:

L ¼ Ei

"
kf
�
xi; ci; θ

��
�2
2

2
− log∣J i∣

#

þ λkθk22; ð4Þ

where f is the cINN, Ji is the Jacobian corresponding to the ith
sample [43], xi is the ith time series samples, ci the corre-
sponding conditioning information and θ the parameters that
should be learnt. The first part of the formula ensures that the
cINN learns to map the input to a normal distribution using
the change‐of‐variable formula, and the second part of the
formula is a regularisation term. We trained the cINN for 50
epochs using Adam with a weight decay of 1e−5 and a learning
rate of 5e−4 as an optimiser.

2.1.3 | Postprocessing

The postprocessing comprises two steps—namely the merging
of the generated time series samples and the derivation of the
submissions.

Merger
To create one time series, we need to merge the overlapping
samples created by the cINN. Therefore, we first align the
samples temporally. For example, the second entry of a sample
generated with the calendar information corresponding to the
time ti is aligned with the first entry of a sample generated with
calendar information corresponding to tiþ1. After this align-
ment, we calculate the median for each time step. More
formally, we apply the following function:

x̂tk ¼median
�
x̂ti j∣iþ j ¼ k

�
; ð5Þ

where i þ j = k corresponds to the alignment process, x̂tk is the
time series values at time tk and x̂ti j is the jth entry of the
sample generated with the calendar information that corre-
sponds to tj.

Derive submissions
Our proposed solution provides a time series forecast instead
of directly predicting the required peak information. Thus, we
derive this peak information from the time series. To derive the
magnitude result, we extract the maximal value of each day. For
the shape, we submit the complete forecast. For the timing
task, we calculate the argmax for each day.

TABLE 2 The architecture of the conditioning network for the
conditional Invertible Neural Network (cINN).

Layer Units Activation

1 128 ReLu

2 64 Linear

TABLE 1 The architecture of the used subnetworks and the
conditioning network for the conditional Invertible Neural Network
(cINN).

Layer Unitss Activation function

1 32 ReLU

2 nout Linear

2
We use h = 24

3
https://github.com/vislearn/FrEIA
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2.2 | Ensembling

To improve the forecast, we also use an ensemble. The
ensemble members are the cINN‐based forecasting model
and the two models used as benchmarks: a SVR and a Fully
Connected Neural Network that are described in more detail
in Section 3.1.3. For each task, the ensemble obtains the
prediction of each ensemble model. It optimises a linear
regression on the training data to form the final forecast.
Note that we restrict the linear regression to have only
positive factors.

3 | EVALUATION

This section describes the experimental setup and the results.

3.1 | Experimental setup

The organisers of the BigDEAL challenge provide the
dataset. It contains three time series with the hourly loads of
three local distribution companies (LDCs 1–3) and the
hourly ambient temperature values for six nearby weather
stations. The ambient temperature values are measurements
for the training period, and for the test period, they are
forecasts.

The evaluation consists of six rounds with rolling training
and test periods. For the first round, the training period is from
January 2015 to December 2017, and the test period contains
January and February 2018. The consecutive rounds test from
March to May 2018 (round 2), June and July 2018 (round 3),
August 2018 (round 4), September and October 2018 (round
5) and November and December 2018 (round 6). Note that the
test period of each round was added to the training period of
the following rounds.

3.1.1 | Metrics

For a given day i, we denote the 24 predicted hourly load

values as a vector ŷi ¼
�
ŷi;1;…; ŷi;24

�
and the actual hourly

load values as a vector yi = (yi,1, …, yi,24). In the following, we
present metrics used by the organisers of the BigDEAL chal-
lenge to evaluate the performance of the forecasting method
regarding the three tasks. Afterwards, we also introduce a
further metric that we use for gaining insights into the pro-
posed cINN‐based forecaster.

Magnitude
The challenge uses the mean absolute percentage error
(MAPE) to evaluate the magnitude predictions. Let n be the
size of the test data, mi = max(yi) the ground truth peak
magnitude and m̂i the predicted peak magnitude for day i. The
MAPE is defined as follows:

MAPEðm̂ ;mÞ ¼
1
n

Xn

i¼1

�
�
�
�
m̂i − mi

mi

�
�
�
� ð6Þ

Timing
A weighted and capped mean absolute error (wMAE) is used
to evaluate the peak timing predictions. The weight for the
error of a day is one if the forecast is off by 1 hour, two if the
forecast is off by two to 4 hours, and the error is capped at 10
if the forecast is off by 5 hours or more. Let pi = argmax(yi) be
the ground truth peak magnitude and p̂i the predicted peak
magnitude for day i. The wMAE is defined as follows:

wMAE¼
1
n

Xn

i¼1

weighted
� �
�p̂i − pi

�
�
�

ð7Þ

with

weightedðxÞ ¼

8
<

:

x for x ∈ f0; 1g
2x for x ∈ f2; 3; 4g
10 for x ∈ f5; 6;…; 23g

ð8Þ

Note that the values of x ∈ {0, 1, …, 23} are discrete.

Shape
The calculation of the shape metric consists of three steps.
First, the predicted loads and ground truth loads are normal-
ised by the daily peaks

yi ¼ yi=max
�
yi
�

ð9Þ

ŷ i ¼ ŷi=max
�
ŷi
�
: ð10Þ

Second, the sum of the absolute errors in the period ranging
from 2 hours before the actual peak to 2 hours after the actual
peak is computed for every day. Third, the daily sums of errors
are averaged across all days to obtain the shape metric:

shape
�
ŷ ; y
�
¼

1
n

Xn

i¼1

Xpiþ2

j¼pi−2

�
�
�ŷ i;j − yi;j

�
�
� ð11Þ

where pi = argmax(yi) is the peak timing of day i.

Mean Percentage Error
To gain insights and analyse our method's bias, we use the
Mean Percentage Error (MPE) as an additional metric. The
MPE measures the average percentage deviation of the
forecast from the ground truth. Thereby, values greater than
zero mean that the forecast overestimates the ground truth,
and values below zero mean that the forecast underestimates
the ground truth. Furthermore, we can interpret the distance
to zero as the severity of the bias. The MPE is defined as
follows:

HEIDRICH ET AL. - 5
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MPEðŷ ; yÞ ¼
100
n

Xn

i¼1

ŷi − yi
yi

: ð12Þ

3.1.2 | Considered cINN implementations

In the following evaluation, we use four different variants of
the cINN‐based forecaster to which we refer as cINN variants.
In particular, we use a cINN with the sine‐1 statistics (cINN‐1)
and with the sine‐3 statistic (cINN‐2). Furthermore, we use
also both variants with and without applying transfer learning
(TL) to both variants. To transfer learn the cINN variants, we
pre‐train them on all time series before fine‐tuning them on
each time series separately.

3.1.3 | Benchmarks

As benchmarks, we use a SVR and a fully connected neural
network. As SVR, we use the implementation provided by
SKLearn [45] and the default hyperparameters. To implement
the fully connected neural network, we use PyTorch [46].
The network comprises three hidden layers with 64, 32,
and 16 neurons and uses ReLU as an activation function.
Both benchmarks take the same exogenous information as
the cINN as input and predict each value of the time series
separately. Thus, similar as for the cINN, from the pre-
dicted time series, the peak position and timing has to be
derived.

3.2 | Results

The present results focus on assessing the performance of the
four different versions of the cINN, gaining insights into how
the cINN works, comparing the cINNs performance with the
benchmarks, and presenting our ranks in the leaderboard of
the BigDEAL challenge.

3.2.1 | cINN variants

To assess and compare the different cINN variants, we use two
evaluations. First, we evaluate how the performance differs
across the six rounds. Finally, we compare their overall
performances.

Performance through the rounds
Figure 2 visualises the cINN variants' performance over the six
rounds using lineplots for each task and time series. In the
following, we discuss the observation for each task separately.

Regarding the shape, we make two observations: First, the
forecast quality of all models fluctuates strongly during the six
rounds. For each time series and model, the best round ach-
ieves a score that is half of the score of the worst round.

Second, the observed fluctuations have seasonal patterns,
at least for LDC1 and LDC3, where the performance during

the summer months is better. For LDC2, we observe that the
performance is constant except for the last round.

Regarding the daily peaks' magnitude, we make two ob-
servations again: First, similar to the first task, the forecast
performance for the daily peaks' magnitude strongly fluctuates
across the six rounds. In contrast to the first task, we cannot
observe a clear seasonal pattern.

Second, for LDC1 and LDC3, the fifth round is worse than
the other rounds. For LDC2, the fifth round behaves similarly
to the other rounds.

Regarding the timing task, we make one observation: Like
in the previous tasks, the performance fluctuates strongly
through the six rounds. The rounds in the summer are better
than the winter months.

Average performance
Table 3 provides each cINN variant's average scores and ranks
for each time series. In the following, we report our observa-
tions for each of the three tasks:

Regarding the shape task, first, methods with TL achieve
the best average rank and score. However, the differences are
minor (the maximum percentage difference is 7% and achieved
on LDC3). Second, when comparing the performance of the
three different time series, the best performance is achieved on
LDC3 and the worst on LDC2.

Regarding the magnitude, first, the best model is the
cINN‐2 with TL. This model is the best for LDC2 and LDC3
but struggles for LDC1. In contrast to the magnitude task, the
differences between the best and worst models are higher (The
maximal deviation is 20%). Second, when comparing the
performance of the different time series, the best scores are
achieved for LDC1. The performances on LDC2 and LDC3
are comparable.

Regarding the timing task, first, the methods that use the
sine‐3 statistic provide better forecasts of the daily peaks'
timing. Second, we also observe that the overall performance
of the four cINN variants fluctuates strongly, with 15% for the
time series LDC3.

Finally, in our last observation for the daily peaks' timing
forecast, we observe that the peak timings for LDC3 are the
easiest to forecast, followed by LDC2 and LDC1.

Wrapping up from the overall performance of the three
tasks, the performance of all cINN variants is similar. How-
ever, it also appears that the cINN‐2 with TL is slightly better
than the other models. Thus, we use this model in the
benchmark section.

3.2.2 | Insights

In this subsection, we gain insights into the proposed method's
performance by analysing its bias using the MPE and visual-
ising the results.

Mean Percentage Error
We use the MPE to quantify the bias of a forecast. An MPE
greater than zero means that the forecast generally

6 - HEIDRICH ET AL.
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underestimates, and an MPE smaller than zero means that the
forecast generally overestimates. For the three tasks, Table 4
provides the MPEs.

Regarding the shape, we make three observations: First,
the bias of our method is the highest for LDC2, followed
by LDC1 and LDC3. Whereby in total, our method
underestimates the consumption of LDC2 and LDC3
and overestimates the consumption of LDC1. Second,
the bias is comparably high for LDC1 and LDC3 in round

5. In this round, all cINN variants overestimate the con-
sumption. Third, for all three time series and all cINN
variants, the bias varies strongly through the different
rounds. However, we can not recognise a seasonal correla-
tion of the bias.

Regarding the magnitude task, we make three observa-
tions: First, the forecasts for LDC2 have the most sub-
stantial bias. Furthermore, similarly to the shape task, the
forecasts for LDC2 and LDC3 underestimate the actual

F I GURE 2 For each task and time series, we provide lineplots over the six different rounds that indicate the performance of the four conditional Invertible
Neural Network (cINN) variants. (a) The performance of the cINN variants on daily peaks' shape. (b) The performance of the cINN variants on daily peaks'
magnitude. (c) The performance of the cINN variants on daily peaks' timing.
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values and for LDC1 overestimate them. Second, we see
strong biases for LDC1 and LDC3 for round 5. Third, in
general, the bias varies between the different rounds. While
for LDC2, we cannot recognise a seasonal pattern, we
can for LDC1 and LDC3. It seems that for LDC1 and
LDC3, the bias during the winter is lower than in the
summer.

Regarding the timing task, we make two observations:
First, our method estimates the timing of the daily peaks
too late for all three time series and all cINN variants. The
overestimation is the strongest for LDC3, followed by LDC1
and LDC2. Second, there are substantial fluctuations of
bias through the six rounds. For example, for the cINN‐1
on LDC3, the MPE fluctuates between 3 and ‐32.
We generally observe that the bias fluctuation is the highest
for LDC3, followed by LDC1 and LDC2.

Visualisation
Figure 3 provides a visualisation of the forecasts for the
overall predicted time series4, for the magnitude and the
timing. In this visualisation, we make two observations: First,
we observe that the prediction is almost narrow to the
ground truth (black line) regardless of the task, except for a
dip in September for LDC35 (last accessed 07.06.2023).
Second, we observe that for LDC2 and LDC3, the overall
prediction and the magnitude appear almost always under-
estimated. For the timing task, we do not observe something
similar.

3.2.3 | Benchmarking

For benchmarking, we compare the results of the SVR model,
the neural network, the cINN, and the ensemble for the three
tasks and the three LDCs (Table 5). Thereby, we make two
observations:

First, we observe that, in total, the cINN is the best single
model for all tasks and LDCs. The ensemble only improves the
magnitude results for LDC2 and LDC3. For all other tasks, the
cINN is better than the ensemble. Note that sometimes the
benchmarks perform better than the cINN for specific rounds.
Second, when examining the distance between the cINN's
performance and the performance of the benchmarks, we
observe that the distances are smaller in the summer than in
the winter.

3.2.4 | Computational effort

With regard to the training times (Table 6), we make three
observations:

First, the proposed cINN‐based method requires more
training time than both benchmarks. Second, when analys-
ing the training times of the different cINNs, we ob-
serve that the variants with TL need more training time
since they use a bigger dataset, and the training time includes
the sum of training on all data and the fine‐tuning.
Comparing cINN‐1 and cINN‐2, we can not see any dif-
ferences. Finally, regarding the different rounds, the training
time increases, since, with each new round, more training
data is available.

3.2.5 | Big Data Energy Analytics Laboratory
challenge

Regarding the challenge's final leaderboard, Table 7 shows
the best five teams for each task6. We want to highlight that,

TABLE 3 The average score and rank for all rounds for each
conditional Invertible Neural Network (cINN) variant and task.

cINN‐1 cINN‐2

No TL TL No TL TL

Shape LDC1 Score 0.062 0.061 0.062 0.061

Rank 3 1 4 2

LDC2 Score 0.088 0.084 0.089 0.084

Rank 3 2 4 1

LDC3 Score 0.055 0.051 0.055 0.051

Rank 3 1 4 2

Average Score 0.068 0.065 0.069 0.065

Rank 3 1.33 4 1.67

Magnitude LDC1 Score 3.462 3.462 3.468 3.694

Rank 1 2 3 4

LDC2 Score 4.260 3.855 3.658 3.525

Rank 4 3 2 1

LDC3 Score 3.890 4.143 4.076 3.857

Rank 2 4 3 1

Average Score 3.871 3.82 3.734 3.692

Rank 2.33 3 2.67 2

Timing LDC1 Score 1.099 1.180 1.159 1.170

Rank 1 4 2 3

LDC2 Score 0.943 0.934 0.899 0.866

Rank 4 3 2 1

LDC3 Score 0.879 0.790 0.762 0.871

Rank 4 2 1 3

Average Score 0.974 0.968 0.94 0.969

Rank 3 3 1.67 2.33

4
Note, we use this instead of the shape visualisation since the shape is scaled for each day.
5
We assume that this dip is caused by Hurricane Florence: https://www.washingtonpost.
com/weather/2018/09/20/land‐transformed‐by‐water‐north‐carolina‐before‐after‐
hurricane‐florence/
6
http://blog.drhongtao.com/2022/12/BigDEAL‐challenge‐2022‐final‐leaderboard.html
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overall, our method achieves second place. Furthermore, our
method wins the most tasks (the shape and the timing task).
Regarding the magnitude, our method achieves fifth place
from 13 competitors in the final.

4 | DISCUSSION

The results show that cINN as a generative method can be
successfully applied to mid‐term peak load forecasting. In the
following, we discuss the results of the BigDEAL challenge,
the insights, the computational effort, and the further potential
of cINNs for time series forecasting.

4.1 | Challenge related

The results of the BigDEAL challenge show that cINNs are
suited for mid‐term daily peak timing and shape forecasting.
However, they struggle to forecast the magnitude and can

have a bias. Thus, future work can solve these issues using
an advanced merger. For example, the merger could try to
learn the aggregation function instead of just using the
median.

4.2 | Insight related

Regarding the insights of the cINNs variants, we discuss two
aspects: First, the cINN's performance fluctuates strongly
across the different rounds. Possibly, this is explainable by
the different consumption patterns during different seasons.
Thus, future work should try to quantify these fluctuations,
for example, by using prediction intervals. Second, we also
observe that the results on the different time series differ
strongly. A possible explanation could be stochastic smearing
effects resulting from the differing numbers of consumers
or producers that belong to the time series. Unfortunately,
we do not have the information to evaluate this in more
detail.

TABLE 4 Mean Percentage Error (MPE) of the conditional Invertible Neural Network (cINN) variants.

Round

LDC1 LDC2 LDC3

cINN‐1 cINN‐2 cINN‐1 cINN‐2 cINN‐1 cINN‐2

Round Time span No TL TL No TL TL No TL TL No TL TL No TL TL No TL TL

Shape 1 01–02.2018 0.46 −0.66 1.30 −0.35 2.02 1.05 −2.20 −0.46 2.11 1.53 0.57 1.23

2 03–05.2018 −0.76 −0.26 −0.36 0.97 1.14 1.71 −0.26 1.64 2.23 2.65 3.33 3.30

3 06–07.2018 −4.69 −0.78 −2.20 −1.26 1.60 2.43 1.25 2.84 2.44 3.31 1.76 2.36

4 08.2018 −0.02 0.47 0.46 −0.08 3.25 3.69 2.04 2.04 2.05 2.96 3.15 1.91

5 09–10.2018 −4.89 −4.23 −6.77 −7.13 0.51 1.18 0.43 1.54 −6.52 −6.39 −7.30 −7.65

6 11–12.2018 −1.44 −0.33 0.83 0.61 5.49 3.19 5.03 3.95 0.35 1.77 0.26 2.20

Total 01–12.2018 −1.89 −0.97 −1.12 −1.21 2.33 2.21 1.05 1.92 0.44 0.97 0.30 0.56

Magnitude 1 01–02.2018 0.39 −0.97 1.48 −0.61 2.08 1.19 −1.14 0.09 1.81 1.27 0.88 0.58

2 03–05.2018 −0.33 0.20 0.15 1.42 1.40 1.61 −0.03 2.06 2.32 2.57 3.46 3.24

3 06–07.2018 −3.76 −0.06 −1.23 −0.68 3.27 3.57 2.60 3.09 3.01 3.68 1.99 2.79

4 08.2018 0.62 1.55 1.27 0.68 5.56 4.93 3.84 3.00 2.13 2.99 3.43 1.82

5 09–10.2018 −3.25 −3.27 −4.83 −6.12 1.61 1.86 1.29 1.85 −3.08 −2.28 −3.00 −4.10

6 11–12.2018 −1.39 −0.36 1.02 0.51 4.34 1.81 3.88 3.02 0.71 1.42 −0.15 1.76

Total 01–12.2018 −1.28 −0.48 −0.35 −0.80 3.04 2.49 1.74 2.19 1.15 1.61 1.10 1.02

Timing 1 01–02.2018 −2.96 −3.02 −1.21 −0.99 3.89 0.39 3.08 2.12 −10.34 3.20 3.78 −9.91

2 03–05.2018 −3.55 −3.52 −3.57 −3.13 −5.66 −4.28 −3.39 −6.68 −0.70 −3.08 −1.60 −3.14

3 06–07.2018 −0.73 0.14 −0.48 −0.30 −0.56 −0.58 −0.74 −0.42 −1.17 −1.02 −1.19 −1.09

4 08.2018 −1.72 −1.58 −2.68 −2.66 0.36 0.21 −0.68 0.02 −1.26 −1.26 −1.07 −2.34

5 09–10.2018 −5.11 −4.41 −3.09 −4.65 −5.04 −7.01 −5.19 −5.43 −32.54 −32.23 −32.60 −32.27

6 11–12.2018 −11.99 −8.08 −19.95 −4.94 −6.75 −9.04 −3.00 −7.35 −18.57 −21.15 −18.44 −21.01

Total 01–12.2018 −4.35 −3.41 −5.16 −2.78 −2.29 −3.38 −1.65 −2.96 −10.77 −9.26 −8.52 −11.63
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4.3 | Computational costs

Regarding the computational costs, we observe that the cINN is
more expensive than the benchmarks. However, a disclaimer is
that we use different frameworks to implement the benchmarks
and the proposed solution, which might cause measurement
distortions. Nevertheless, the computational costs must be
reduced concerning scalability and the high number of time
series in the electrical grid. Perhaps the usage of GPUs instead
of CPUs for training can achieve this. Furthermore, using a
global forecasting model instead of training separate local
cINNs for each time series could save computational costs.

4.4 | Further potential of cINNs

We aim to highlight two aspects regarding the further po-
tential of generative models such as the cINN. First, the ar-
chitecture of the cINN allows to easily create probabilistic
forecasts. Thus, future work can evaluate this approach.
Second, the latent space could contain interesting regions or
directions. For example, there could be a direction that de-
scribes the base load or seasonal variations. Leveraging and
exploiting such directions in the latent space can enhance the
forecast quality and support the usage of cINNs as global
forecasting models.

F I GURE 3 The predicted values of the conditional Invertible Neural Network (cINN) using transfer learning (TL) for the three tasks of each time series for
the year 2018. To visualise each round separately, we provided a different colour to each. The ground truth is in black. Left [Shape], Middle [Magnitude], Right
[Timing]. (a) LDC1. (b) LDC2. (c) LDC3.
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5 | CONCLUSION

This paper presents a peak load forecasting method based on a
cINN. The cINN is conditioned on various exogenous features,
including temperature features, forecasts of statistical features,
and calendar features. The results of the BigDEAL challenge
indicate that this is a promising approach, at least for forecasting
the peak's shape and timing. However, the approach must be
improved to provide better peak magnitude forecasts.

Thus, future work may focus on improving the peak's
magnitude forecast and reducing the forecast bias of the cINN.
Furthermore, future work needs to reduce the computational
effort to enable better scalability of the proposed method. An
interesting approach to improve the scalability would be to
extend the proposed method to a global forecasting model.
Finally, it would also be very interesting to apply the proposed

TABLE 5 Benchmarking. The best values are bold.

Round Time span

LDC1 LDC2 LDC3

SVR NN cINN‐2 TL Ensemble SVR NN cINN‐2 TL Ensemble SVR NN cINN‐2 TL Ensemble

Shape 1 01–02.2018 0.097 0.131 0.073 0.072 0.115 0.108 0.065 0.063 0.088 0.106 0.049 0.057

2 03–05.2018 0.116 0.108 0.070 0.068 0.118 0.099 0.074 0.076 0.098 0.088 0.052 0.062

3 06–07.2018 0.078 0.092 0.051 0.051 0.090 0.077 0.058 0.056 0.068 0.066 0.038 0.043

4 08.2018 0.089 0.077 0.043 0.044 0.101 0.076 0.069 0.069 0.076 0.069 0.033 0.045

5 09–10.2018 0.096 0.102 0.053 0.056 0.122 0.107 0.074 0.074 0.123 0.110 0.061 0.085

6 11–12.2018 0.117 0.119 0.074 0.083 0.190 0.201 0.167 0.169 0.106 0.110 0.072 0.096

Total 01–12.2018 0.099 0.105 0.061 0.062 0.123 0.111 0.084 0.085 0.093 0.091 0.051 0.064

Magnitude 1 01–02.2018 4.789 3.538 3.198 3.183 4.322 3.524 2.630 2.491 6.189 4.403 2.794 2.968

2 03–05.2018 6.212 4.193 3.717 3.655 6.273 4.329 3.498 3.183 6.346 4.461 3.453 4.131

3 06–07.2018 5.074 4.023 3.260 3.290 8.171 4.456 4.491 4.476 2.702 3.722 3.873 3.423

4 08.2018 2.407 1.770 2.152 1.780 5.604 4.303 4.977 3.928 2.113 2.010 3.124 2.296

5 09–10.2018 6.770 5.564 5.101 5.448 5.602 4.744 3.339 3.660 8.819 9.133 8.375 8.062

6 11–12.2018 5.444 5.157 3.346 3.771 6.102 4.903 4.192 4.348 4.940 3.601 3.240 3.434

Total 01–12.2018 5.116 4.041 3.462 3.521 6.013 4.376 3.855 3.681 5.185 4.555 4.143 4.052

Timing 1 01–02.2018 1.797 1.678 1.271 1.471 1.475 1.169 0.898 1.570 0.847 1.119 0.559 0.936

2 03–05.2018 1.326 1.130 0.696 1.253 1.543 0.815 0.848 1.544 0.946 0.804 0.533 1.012

3 06–07.2018 0.967 1.098 0.836 0.821 0.852 0.721 0.656 0.586 0.623 0.852 0.607 0.587

4 08.2018 1.548 1.677 1.226 1.126 1.000 0.613 0.581 0.541 1.258 1.290 0.548 0.693

5 09–10.2018 1.541 1.787 1.279 1.417 1.426 1.164 1.033 1.033 1.820 1.475 1.311 1.653

6 11–12.2018 2.098 2.459 1.770 2.538 2.393 2.197 1.590 2.099 1.738 1.590 1.180 2.038

Total 01–12.2018 1.546 1.638 1.180 1.438 1.448 1.113 0.934 1.229 1.205 1.189 0.790 1.153

TABLE 6 Training times.

Round Time span SVR NN

cINN‐1 cINN‐2

No TL TL No TL TL

LDC1 1 01–02.2018 19 257 962 3607 912 3631

2 03–05.2018 19 96 969 3623 988 3708

3 06–07.2018 21 128 1059 3814 1085 3909

4 08.2018 25 108 1336 4089 1327 4156

5 09–10.2018 25 100 1357 4165 1407 4089

6 11–12.2018 26 80 1443 3648 1285 3721

LDC2 1 01–02.2018 17 246 962 3685 970 3649

2 03–05.2018 20 105 1027 3762 1031 3635

3 06–07.2018 21 101 1056 3431 1016 3656

4 08.2018 23 71 1286 4020 1310 3880

5 09–10.2018 22 143 1303 3764 1300 3870

6 11–12.2018 25 78 1338 4000 1434 4114

LDC3 1 01–02.2018 15 206 753 2637 723 2661

2 03–05.2018 16 91 79 2722 791 2652

3 06–07.2018 18 110 818 2705 807 2677

4 08.2018 19 77 944 2825 925 2767

5 09–10.2018 20 50 965 2782 953 2841

6 11–12.2018 21 98 1004 2846 1000 2829

TABLE 7 First five teams on each task.

Position Overall Magnitude Timing Shape

1 Amperon Amperon KIT‐IAI KIT‐IAI

2 KIT‐IAI Overfitter Amperon Amperon

3 Overfitters Peaky‐finders BelindaTrotta Overfitters

4 Peaky‐fitters Team SGEM‐KIT Overfitters X‐Mines

5 X‐Mines KIT‐IAI X‐Mines SheenJavan
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method to other domains (e.g. traffic planning) in which peak
forecasting is important.
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