
cr
yp

to
da

y
m

at
te

rs
36

(2
02

4)
B

ei
tr

äg
e

vo
m

36
.K

ry
pt

ot
ag

,1
4.

-1
5.

M
Ã

¤r
z

20
24

,R
eg

en
sb

ur
g.

do
i:1

0.
18

42
0/

cd
m

-2
02

4-
36

-3
2

Hidden ∆-fairness: A Novel Notion for Fair Secure

Two-Party Computation

Saskia Bayreuther Robin Berger Felix Dörre
Jeremias Mechler Jörn Müller-Quade

Karlsruhe Institute of Technology

36th Crypto Day, 14/15 March 2024

Secure two-party computation (2PC) allows two mutually distrusting parties
to compute a joint function over their inputs, guaranteeing properties such as
input privacy or correctness.

For many tasks, such as joint computation of statistics, it is important that
when one party receives the result of the computation, the other party also
receives the result. Unfortunately, this property, which is called fairness, is
unattainable in the two-party setting for arbitrary functions Cleve (1986). In
some settings, e.g. when computing only certain functions, complete fairness is
achievable Gordon et al. (2008); Choudhuri et al. (2017); Cohen et al. (2022).
Weaker variants have been proposed such as partial fairness Gordon & Katz
(2010); Bailey et al. (2022), gradual release fairness Blum (1983), and fairness
with penalties Bentov & Kumaresan (2014). All these notions are free from
any measure of time and in case of a premature abort of the adversary, do not
necessarily guarantee output delivery to the honest party.

Another fairness notion, that includes the concept of time to 2PC, proposed
by Pass et al. (2017) is called ∆-fairness. Informally, it guarantees that, even
if the adversary aborts prematurely and receives the output in round r, the
honest party receives the output by round ∆(r). This notion is achieved by using
so-called secure enclaves through the Generalized Universal Composition (GUC)
framework Gatt. In comparison to cryptographic tools like garbeled circuits,
which are commonly used in 2PC, with secure enclaves, most of the complexity
vanishes.

In many settings, ∆-fairness is not sufficient, because a corrupt party is
guaranteed to receive its output before the honest party, giving the corrupt party
an advantage in further interaction. Worse, as ∆ is known to the corrupt party,
it can abort the protocol when it is most advantageous.

We extend the concept of ∆-fairness by introducing a new fairness notion,
which we call hidden ∆-fairness, which addresses these problems. First, under
our new notion, a corrupt party may not benefit from aborting, because it
only learns the result first with a probability of 1/2. Moreover, ∆ and other
parameters are sampled according to a given distribution and remain unknown
to the participants in the computation.

We propose a 2 PC protocol that achieves hidden ∆-fairness, also using
secure enclaves via Gatt, and prove its security in the GUC framework.

https://fg-krypto.gi.de/krypto-tag/
https://dx.doi.org/10.18420/cdm-2024-36-32


References

Bolton Bailey et al. (2022). General partially fair multi-party computation
with VDFs. IACR ePrint.

Iddo Bentov & Ranjit Kumaresan (2014). How to use bitcoin to design
fair protocols. In CRYPTO.

Manuel Blum (1983). How to exchange (secret) keys. TOCS .

Arka Rai Choudhuri et al. (2017). Fairness in an unfair world: Fair multiparty
computation from public bulletin boards. In CCS.

Richard Cleve (1986). Limits on the security of coin flips when half the
processors are faulty. In STOC.

Ran Cohen et al. (2022). From fairness to full security in multiparty computa-
tion. Journal of Cryptology .

S Dov Gordon & Jonathan Katz (2010). Partial fairness in secure two-party
computation. In EUROCRYPT.

S. Dov Gordon et al. (2008). Complete fairness in secure two-party computa-
tion. IACR ePrint.

Rafael Pass et al. (2017). Formal abstractions for attested execution secure
processors. In EUROCRYPT.


