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ABSTRACT
Learning-based components applied to a plethora of use cases
within smart grids are already a reality. Thesemethodswill undoubt-
edly play a key role in future energy systems. This paper addresses
challenges in the field of adversarial attacks against learning-based
models in the context of smart grids. We identify unexplored areas
and potential improvements in current methodologies by categoriz-
ing attacks, and assessing their ability to be reproduced. Our survey
showed a noticeable resistance to distributing experimental code.
Additionally, we propose the integration of explainable artificial
intelligence techniques into adversarial models. We carry out an
initial experiment to showcase the possible effects of this integra-
tion, offering fresh perspectives on the behavior and vulnerabilities
of learning-based models within smart grids. Our initial findings
provide a basis for further investigation into adversarial attacks,
with a special focus on use cases that affect electrical substation
security. Finally, we outline the next steps of our research in this
critical area.
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1 INTRODUCTION
In the realm of critical infrastructure, the traditional approach of
reactive security is often inadequate, because such measures are
implemented after a security incident has already taken place [12].
Fortunately, many cybersecurity researchers and practitioners are
dedicating their efforts to creating proactive cyber defense methods,
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in which future attack strategies are anticipated and these insights
are incorporated into defense designs. As a result, research in of-
fensive security has become crucial. This is particularly true for
Smart Grids (SGs), where the integration of learning-based compo-
nents introduces specific vulnerabilities [52]. These vulnerabilities
must be thoroughly examined following the well-established “three
golden rules” [7] of security in Machine Learning (ML): understand-
ing the adversary, adopting a proactive stance, and implementing
self-protection measures.

Attackers exploit weaknesses in learning models by conducting
adversarial attacks. Such attacks, a refined form of False Data In-
jection (FDI), specifically target the susceptibilities of intelligent
algorithms [38]. Adversarial attacks encompass a broad range of
tactics, each with its own distinct characteristics and implications.

In light of this, eXplainable Artificial Intelligence (XAI) [5] meth-
ods have the potential to play an important role in fostering trust
and clarity in algorithmic decisions in power systems. Despite their
benefits, such as making intelligent systems more transparent and
understandable to humans, the insights provided by XAI could be
misused for nefarious purposes.

SGs represent controlled environments where data-driven tech-
niques are increasingly being adopted as effective solutions for a
variety of operational tasks. Notable applications include short-
term load forecasting [23] and the detection of FDI [21]. Despite
the prevalence of such studies, there remains a lack of detailed
analysis concerning the resilience of these methods to adversar-
ial attacks. Moreover, exploring adversarial attacks in SGs is not
only about understanding attacker’s strategies and goals, but also
about developing and recommending effective defensive measures
to counteract them.

Outside the power systems domain, attacks against learning-
based methods is a wide research area. This field began to evolve
with the influential work of Dalvi et al. [13] in 2004, which explored
methods to circumvent learning-based email spam filters. More
recent research has predominantly focused on adversarial pertur-
bations in visual and auditory data, as seen in studies pertaining to
image [9] and audio [10] domains.

Adversarial strategies against learning-based models vary con-
siderably across different domains. Each domain presents unique
challenges and requires domain-specific expertise and thorough
analysis to understand the feasibility and impact of adversarial ap-
proaches [38]. This requires the development of customized strate-
gies and assessments for every distinct area of application.
Contributions: In this paper, our goal is to enhance the commu-
nity’s comprehension of the challenges, research gaps, and future
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directions concerning adversarial attacks, specifically those applica-
ble to SGs. The main contributions can be summarized as follows.

● We categorize existing work on adversarial attacks against
learning-based components in SGs (34 papers), and conduct
a detailed assessment of the reproducibility of results.
● We show a correlation between the Confidentiality, Integrity
and Availability (CIA) Triad and the Authentication, Autho-
rization, and Accounting (AAA) security framework.
● Additionally, we explore the use of XAI as a potential tool for
attackers, analyzing how it could be misused in the context
of SGs to facilitate adversarial attacks.
● Lastly, we identify current research gaps and future chal-
lenges, paving the way for more robust and secure learning-
based systems for SGs, with special emphasis on use cases
related to electrical substations.

2 TAXONOMY OF ATTACKS
In this section, we describe the different types of adversarial attacks
and their implications on SGs.

2.1 Threat Models
Firstly, it is important to understand the existing threat models of
adversarial attacks.
Attacker’s Goal. In the context of SGs, comprehending the po-
tential objectives of attackers is critical for ensuring robust system
security. The CIA triad, a widely recognized model in informa-
tion technology security, provides a framework for understand-
ing these objectives. Reflecting on these three security violation
grounds: confidentiality could be compromised when an attacker
maliciously interacts with a learning algorithm with the objective
of reverse-engineering it; integrity is compromised when perfor-
mance is impacted without affecting normal operation; compromis-
ing availability refers to making the normal learning-based system
functionalities unavailable to legitimate users.
Attacker’s Knowledge. According to the information available
to the attacker at the time of inception, there exist three main
paradigms. White box: In the context of SGs, this represents an
extreme, worst-case scenario, often linked to insider threats. It is
critical for testing the resilience of learning-based systems against
those who have full access to their inner workings. Grey Box: This
paradigm reflects a more common scenario in real-world applica-
tions, where some system details might be obtained or publicly
known. Black Box: Assessing the resilience of SGs against black box
attacks is crucial, as it represents the common challenge of defend-
ing against external threats with minimal system information. In
SGs, it is important to investigate all three categories, motivated by
the fact that security by obscurity is not reasonable in this context,
i.e., it is not good practice to expect security by code secrecy.
Attacker’s Capability. Depending on the phase that an attacker
influences the algorithm (i.e., during training or test time) there are
different naming conventions to classify approaches. Identifying
available transformations, preserving semantics, ensuring robust-
ness to pre-processing and general plausibility are problem-space
constraints [33] that represent major challenges to attackers. These

constraints outline the boundaries within which attackers oper-
ate, and highlight the complex nature of securing learning-based
systems in the critical infrastructure of SGs.

2.2 Types of Attack
The goal of attacks against integrity is to cause incorrect predictions
that do not compromise normal system operation. These attacks,
primarily in the form of adversarial examples (or evasion attacks)
and data poisoning, pose a significant threat. Adversarial examples,
introduced during the model’s deployment phase, are engineered
to mislead the SG’s decision-making algorithms, which are critical
for real-time monitoring and control. Data poisoning, targeting the
model during its training phase, degrades the model’s performance,
potentially leading to situations such as flawed energy demand
predictions or intrusion detection failures, which could have cas-
cading effects on grid stability. Indeed, an attacker able to tamper
with training data can rely on these manipulations to deceive the
model with carefully crafted elements at inference time. Poisoning
at test time, by targeting test-time adaptation methods that perform
continuous fine-tuning of the target model, is also a possibility.

Attacks on SGs aiming to compromise availability are particu-
larly disruptive. Sponge attacks, executed at the model’s inference
time, strain the computational resources, hindering the SG’s ability
to process legitimate operational data efficiently. These attacks have
the potential to delay critical responses to grid conditions, among
other effects. Indiscriminate poisoning, by corrupting training data,
undermines the model’s predictive accuracy, rendering it less effec-
tive in real-time applications. Sponge poisoning further exacerbates
this by making the model resource-intensive, thus diminishing its
operational efficiency and responsiveness in critical situations.

Confidentiality attacks in SGs involve sophisticated techniques
to extract sensitive information, posing risks to both consumer pri-
vacy and proprietary system data. Model stealing attacks replicate
the functionality of SG models, potentially revealing proprietary
algorithms that are vital for grid security and efficiency. Model
inversion attacks pose a direct threat to data privacy by extract-
ing detailed patterns from the model’s outputs. Likewise, mem-
bership inference attacks can further compromise data privacy by
determining if specific data points were used in training models,
revealing potentially sensitive behavior patterns. These attacks not
only threaten the privacy of the SG’s operational data but also risk
violating consumer trust and regulatory compliance.

2.3 Mapping CIA and AAA
By mapping the attacker’s capabilities and goals, we obtain a com-
prehensive overview of the different attacks against learning-based
methods, as depicted in Table 1. Furthermore, the AAA framework
addresses the main attributes of policy enforcement and access
control to resources. AAA was designed to be applied in network
security, but the principles provide a useful lens in the context of
data governance within data-driven methods in SGs.

Authentication in ML security involves ensuring the legitimacy
of SG data used for training and inference. Authorization relates
to enforcing what data can influence the model and who can ac-
cess the model’s predictions and knowledge. Accounting involves
monitoring and logging model access and usage, which is crucial
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for detecting and responding to attacks. The integration of AAA is
also included in Table 1.

Table 1: Categorization of attacks against learning-based
methods in SGs according to the CIA Triad and AAA Frame-
work. Legend: Authentication (Δ), Authorization (Ω), Ac-
counting (Σ).

Integrity Availability Confidentiality

Test
Data

Evasion/ Adver-
sarial examples,
Test-time Poi-
soning (Δ)

Sponge Attack (Δ) Model Extraction and
Inversion, Membership
Inference (Ω)(Σ)

Training
Data

Poisoning (e.g.,
backdoors or
trojans) (Δ) (Ω)

Indiscriminate Poison-
ing (i.e., DoS), Sponge
Poisoning (Δ) (Ω)

Model Inversion with
Poisoning (Δ) (Ω) (Σ)

For attacks that involve poisoning, an authorization step that
addresses what data can influence the model would increase robust-
ness. In relation to authentication, data governancemeasures should
ensure that input data is legitimate with techniques such as valida-
tion and pre-processing, what would contribute towards increasing
robustness against both evasion and poisoning attacks. Additionally,
resource-aware authentication measures would contribute towards
ensuring availability of learning-based models. Attacks against data
confidentiality should be avoided by authorization policies that con-
trol access to the model’s predictions and knowledge. Furthermore,
these breaches are related to the system’s accountability mecha-
nisms; potential deficiencies in tracking and auditing access to and
usage of the data facilitate attack success.

However, these measures are not always considered in SGs and,
therefore, adversaries take advantage.

3 STATE-OF-THE-ART IN SMART GRIDS
In this section we present our survey, with a focus on works that
made their data available. The complete analysis of the state-of-
the-art of scientific research in adversarial attacks within SGs can
be consulted in Table 2. The reproducibility factors are adapted
from [31].
Reproducibility of Results. We attempted to evaluate the con-
sistency of the claims made in the state-of-the-art by reproducing
their results. In the repository provided in [11] there are files miss-
ing, what prevented us from checking the validity of their results
(e.g., data_all.csv in [11]). In [27] there are missing modules (e.g.,
cleverhans_copy.utils), as well as missing instructions on the exe-
cution order and dissimilarity between files (e.g., attacks.py and
Attacks.py). Code instructions are present for [43] and [29] (while
partially described in [11]). Additionally, errors occur when trying
to import a component from a library that has been relocated or
renamed in a newer version; this would be solved by specifying
library version requirements. Adversarial attack code is provided
in [11, 27, 29, 44]. Works [1, 6, 15–17, 20, 25, 34, 34, 43, 49, 53, 54]
provide pseudo-code of their proposed attack(s) but not an imple-
mentation. In the studies [36] and [29], it is mentioned that the
code and artifacts would be released upon request. Upon obtaining

Table 2: Survey of existing scientific work. Legend:  Fully
met, G#Partially, #Missing, - Not Applicable.
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[25]  # G# # # # - G# - -  # # # W ’19
[11]       G#  # -  #  # W/B ’19
[53]    #  # - G# - -  # # # W ’19
[37]  G# #  # # - - - -  # # # W ’20
[27]       #  # -  #  # W/B ’20
[15]     - # - G# - -  # # # G ’21
[42]      # - # - - #  # # B ’21
[40]      # - # - -  # # # W ’21
[38]      # - # - -  # # # W/B ’21
[19]  G# G# # G# # - # - -  # # # W/B ’21
[36]   G# # # # - # - -  # # # G ’21
[17]    G#  # - G# - -  # # # W/B ’21
[45]    #  # - G# - -  # # # W ’21
[32]      # - # - -  # # # W/B ’21
[34]    # # # - G# - -  # # # W/B ’22
[44]       #  # -  #  # B ’22
[6]      # - G# - -  # # # W/B ’22
[49]    G#  # - G# - -  #  # W/B ’22
[43]     G#   G# # -  # # # G ’22
[41]      # - # - -  # # # W/B/G ’22
[35]  G# G# # # # - # - -  # # # B ’22
[48]      # - # - -  # # # B ’22
[18]  #      # # -  # # # W ’22
[8]     # # - # - -  # # # W ’23
[16]    G# # # - G# - -  # # # B ’23
[39]    #  # - # - - #  # # B ’23
[3]  G#  # # # - # - -  # # # W ’23
[20]    # # # - G# - -  # # # G ’23
[54]     # # - G# - -  # # # G ’23
[1]  G#  G#  # - G# - -  # # # B ’23
[30]  #  # # # - # - -  # # # W ’23
[29]            # #  W ’23
[46]    # # # - # - -  # # # G ’23
[51]     # # - # - -  # # # B ’24

access to the resources from [29] and subsequent execution, it was
observed that their claims were consistent. On the contrary, we
contacted the corresponding author of [36], who was unable to
make data available.

Authors in [43] do not provide in-depth information about target
models due to relying on previous work; we consider this practice
acceptable as far as the referenced work is reproducible. In the
case of [43], it was possible to execute the model used [50] as
a target for adversarial attacks only after several code modifica-
tions for compatibility (keras, tensorflow and matplotlib scripts),
as the library versions used were not specified. Due to the library
issues, results were slightly different although the same random
seed was used. In [44], there are files missing (e.g., 20191014uni-
versal_pert_5000_1_2.0.npy and confusion_matrix_SAA.npy), and
dependencies issues (e.g., cannot import name ’cast’ from partially
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initialized module ’keras.src.backend’). In [18], after following the
specified execution instructions by their cited source [2], pulling
data from the cloud failed.

Several papers [6, 11, 27, 29, 38, 40–42, 44] provide comprehen-
sive details about the training stage of learning-based methods. On
the other hand, papers [18, 25, 30] do not provide information about
training hyperparameters. Papers [1, 3, 19, 35, 37] provide partial
hyperparameter information.
Attack Types.We observed that most published papers investigate
attacks compromising the integrity of models, revealing a potential
research gap in studying adversarial efforts against the availability
and confidentiality of learning-based models.

Authors in [42] and [39] deal with attacks against availability.
In [42], it is a reported an analysis on the impact of indiscriminate
data poisoning attacks, and how to detect them within the topic of
electricity theft. By significantly lowering the accuracy and reliabil-
ity of the learning models, these attacks have the potential to render
the system ineffective for its intended purpose, essentially making
the service unavailable or less available to its users. In [39], we ob-
serve a similar approach, where authors investigate indiscriminate
poisoning through different injection levels in the context of FDI
detection. Works [11, 27, 44, 49] compromise confidentiality via the
use of surrogate models. In these cases, the objective is to enhance
integrity attacks by testing more realistic attacks scenarios (i.e., that
do not require access to the inner workings of the models). This
is achieved via targeting a substitute model, and then transferring
the attacks. However, these approaches assume that attackers have
access to data for training testbed models similar to the real targets.

In terms of the amount of information accessible to the attackers,
authors in [6, 11, 17, 19, 27, 32, 34, 38, 49] provide threat models
based on both white and black box scenarios; most notably, [41]
present white, black and grey box attack approaches. In the rest
of the papers, the focus is solely on a single scenario, i.e., either
white (10), black (8) or grey (6) box.
Learning-based methods. The vast majority of papers leverage
ML and Deep Learning (DL) algorithms, and use tabular data for
training. We encountered a number of papers investigating adver-
sarial attacks against Reinforcement Learning (RL) models in SG
use cases [2, 16, 18, 32, 35, 45, 46, 48]. In RL, an agent learns to
make decisions by interacting with an environment to achieve a
goal; in Table 2, for RL papers the column Dataset Available relates
to the availability of this whole environment. Furthermore, in [51],
authors present an investigation that focuses on attacks against
computer vision applied to SGs, such as object recognition and
defect detection tasks. Another outlier is presented in [15], where
authors employ Natural Language Processing (NLP) and describe a
sentence-level text adversarial attack algorithm, evaluated in the
context of a SG based on industrial Internet-of-Things.
Other Findings. Only one of the surveyed papers consider XAI
in their methodology. Authors in [29] leverage XAI to identify
the two most relevant features used by a learning-based Intrusion
Detection System (IDS). By focusing their adversarial efforts on
adding perturbations exclusively to these features, they attempt to
optimize their evasion capabilities against the IDS.

4 ADVERSARIAL EXPLAINABILITY
XAI techniques are currently used in domains such as computer
vision [24] to detect the presence of adversarial directions in images.
For instance, saliency maps [47] have been long used for detecting
adversarial perturbations in the ML literature. However, we envi-
sion the use of XAI for crafting more powerful adversarial attacks
against learning-basedmodels based on heterogeneous, tabular data
from SGs. This section presents an initial experiment and analysis
of how XAI can be utilized from an adversarial perspective.
Experimental Setup.We explore an attacker’s potential to analyze
a target model, either directly (in a white-box approach) or through
a surrogate model (black-box approach) due to the transferability of
attacks [14]. We use the code and dataset from [29]. The dataset is
fromModbus TCP traffic, used for intrusion detection in a electrical
substation testbed [22]. We focus on the proposed Random Forest
(RF) model, chosen for its complexity compared to linear SVMs.
SHAP Summary Plot.We employ SHapley Additive exPlanations
(SHAP) [26] to produce a summary plot (see Figure 1). This type of
plot is used to show the contribution of each feature to the output
of the model. The plot uses a bee swarm style to display the density
of the points, avoiding overlaps in order to see each point clearly.
Each row represents a feature from the dataset. Features are ranked
by their importance, which can be inferred by the spread and color
intensity of the points. The X-axis represents the SHAP value for
each feature. This value indicates the impact of a feature on the
model’s output. A higher absolute SHAP value means a higher im-
pact on the model output. Points placed to the right of the vertical
line (zero impact) indicate a positive impact on the model output,
while points to the left indicate a negative impact. The color of the
points represents the value of the feature (not the SHAP value). In
Figure 1, High feature values are colored in pink and Low feature
values are colored in blue. This means that high values of a feature
tend to push the model output higher if the SHAP value is positive
or lower if the SHAP value is negative. The spread of the points
along the X-axis shows the distribution of the impacts each feature
has across the data. A wide spread means the feature has varied
effects depending on the context (other feature values in the vector).
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Figure 1: SHAP summary of the RF model from [29].

Adversarial Insights. The SHAP summary plot in Figure 1 pro-
vides insights that can be exploited to craft adversarial examples.
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Figure 2: IDS accuracy under adversarial attack targeting
different pairs of features.

By determining the direction to alter the most relevant feature’s val-
ues, an attacker can optimally steer predictions. In our experiment,
we observe that including higher values of Modbus Address would
lower prediction success. Furthermore, we see that Payload Length
is not as relevant, and should remain unchanged. This is because
higher values of addresses are linked to the learned profile of the
system under normal operation. Therefore, an adversary would
include increased values of modbus addresses deliberately to maxi-
mize evasion probability and stealthiness. The SHAP values give a
sense of how much a feature should be changed. Features with a
wider spread of SHAP values might be more sensitive to changes,
and even small perturbations could lead to significant impacts on
the output. To empirically demonstrate this, we applied the same
perturbation (𝜀 = 2.7, as per the original paper) to all possible pairs
of features. As can be seen in Figure 2, the most impactful manipula-
tion corresponds to features with index 2 and 3 (i.e.,Modbus Address
and PDU Length), which are the most important—and therefore,
vulnerable— ones according to SHAP. The feature that correspond
to each index can be consulted in Figure 1 (on the Y-axis labels).

In summary, the attacker can leverage insights on natural feature
variability to make subtle, hard-to-detect changes, thus crafting
stealthy attacks that can potentially bypass SG security. Neverthe-
less, the trade-off between impact and stealthiness of the attack
must be addressed. In [29], authors attempt to address this by en-
suring that perturbations remain within realistic bounds, that is,
setting minimum/maximum limits for each feature. This is accom-
plished by identifying the smallest/largest values for each feature in
the original dataset and ensuring that the values of the adversarial
examples do not surpass these boundaries. Consequently, these con-
straints ensure that the adversarial modifications maintain feature
values within a practical range. In practice, it may occur that in
order to keep an attack feasible, a combination of features need to
be perturbed to mislead the predictor, not only the most important
one(s). However, authors do not show a realistic implementation
(i.e., end-to-end exploit in the problem space) of the evasion attack,
limiting their study to the feature space.

Through XAI, it is also possible for an attacker to identify spuri-
ous correlations [4] in learningmodels. These occur when unrelated
data artifacts mistakenly guide the model in classifying tasks, lead-
ing it to rely on irrelevant patterns rather than addressing the actual
problem. For instance, in a network intrusion detection scenario,
if most attacks in the training data come from a specific network
region, the model might wrongly focus on identifying attacks based

on IP ranges rather than the true nature of the attacks. This issue
is a ML pitfall [4] exploitable by sophisticated attackers.

5 DISCUSSION AND EXTENDEDWORK
After our analysis, in this section we present challenges and re-
search gaps that we aim to cover in the future.

5.1 Reproducibility Analysis
We found that only 6 out of the 34 papers surveyed provided source
code, constituting approximately 18% of the publications; this is
approximately half compared to the baseline [31], which measures
reproducibility of general ML papers in Tier 1 security conferences,
where authors found that 39% of the papers provided code. A lesson
we learn from this: not sharing the code used in experiments makes
it harder for future researchers to build upon or compare their work
with published techniques. Moreover, starting from scratch to de-
velop complex pre-processing tasks, new analytical methods, and
sophisticated system designs is a challenging task. For instance, we
managed to run further experiments on the code provided by [29],
adding to their investigation. Therefore, making code available not
only enhances reproducibility but also supports further innovation
and development. From the source codes provided, only one worked
out-of-box. This problem also exists in the top tier ML security lit-
erature [31], where 82% of the papers with code required installing
further packages, changing paths or directory structures, or fixing
errors that appear. In our survey, we identified a lack of code in-
structions (e.g., a detailed ReadMe file) in approximately 40% of
the papers with source code, increasing the difficulty of executing
the implementations. Furthermore, 40% of the source codes did not
include the corresponding adversarial attack code, being in most
cases only reported via pseudo-code as a paper figure.

5.2 Confidentiality and Availability
In our survey, we observe a major interest in attacks compromising
the integrity of learning-based models. Confidentiality and avail-
ability attacks are underrepresented in this body of work, but are
equally —or even more— important in the context of critical in-
frastructure. As a potential reason behind the focus on integrity,
particularly through adversarial examples, we consider the exis-
tence of immediate and tangible consequences for performance and
safety. The initial discovery and exploration of adversarial examples
(e.g., in general computer vision) and their effects on integrity in
real world scenarios (e.g., in autonomous driving) opened up a new
research frontier. As scholars dove into the complexities of these
vulnerabilities, a momentum built up around this line of inquiry,
leading to a concentration of effort and resources in understanding
and mitigating integrity attacks across many different domains,
including SGs security. In 2018, Biggio and Roli [7] published a
categorization of a decades worth of research in attacks against
ML, where one can notice that availability attacks via test data, and
confidentiality attacks via training data were still undiscovered.

Nonetheless, the rapid proliferation of new approaches against
confidentiality and availability observed in the broad artificial in-
telligence community will undoubtedly affect the future of attacks
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tailored to learning models in SGs. The arms race between devel-
oping more sophisticated attacks and defenses contributes to this
dynamic and rapidly evolving field of study.

5.3 Focus on Electrical Substations
We observe a lack of investigations in the subtopic of adversarial at-
tacks against electrical substation-related learning-based methods.
Electrical substations are pivotal components of the power grid, act-
ing as nodes where transmission lines are connected, transformed,
and distributed to various consumers. As part of a nation’s critical
infrastructure, ensuring their security is vital to prevent disruptions
that could have wide-ranging consequences on other sectors such
as healthcare, finance, transportation, and water supply.

In consequence, we propose to explore the identified research
challenges within the KASTEL Security lab [22]. Our experimental
environment consists of three key subsystems [28]: a microgrid, a
transmission/distribution substation, and a Software-Defined Net-
work. The transmission/distribution substation is structured into
three layers: the station level, equipped with a substation automa-
tion system and a human-machine interface for overarching control
and surveillance; the bay level, which includes devices for control
and protection; and the process level, designed with a test set that
simulates the actual physical processes. Both physical and virtual
elements are integrated into these subsystems.

5.4 Challenges
To the best of our knowledge, research on these scenarios within
this contextual framework has not been conducted despite their
high potential and importance:
Evasion in the Problem Space. Developing realistic and practi-
cal implementations of proof-of-concepts for adversarial examples
in intrusion detection use cases related to electrical substations.
Specifically, understanding how evasion attacks targeting the prob-
lem space of electrical substation-related systems compromise their
operational integrity, and what advanced mitigation strategies can
be developed to safeguard learning-based components.
Poisoning Training Data. When developers build datasets for
training, it is in their best interest to avoid miss-labeling (if su-
pervised) and/or pollution of the normal profile (if unsupervised).
Additionally, a malicious actor could purposely inject malicious
data to compromise the model’s performance. The goal here is to
maximize classification error1 by injecting poisoning samples into
the training set. Furthermore, these malicious data points can be
tailored to make the model overfit with the objective of facilitating
model inversion.
Sponge Attacks. In SGs, the availability of systems is the most crit-
ical security aspect. Most models that use learning to detect events
and control systems are not installed directly on the components
found in substations. Instead, field data is gathered and consoli-
dated at a utility data center, where there are sufficient computing
resources to process the data, train models, and run applications
that make use of these models. Nevertheless, electrical substations

1The attacker’s goal might extend beyond causing misclassification and include any
type of misprediction. This is important because decision making and control applica-
tions mostly rely on regression models rather than classification models.

can be considered resource-constrained. Future research is war-
ranted to increase our understanding on attacker capabilities when
it comes to compromising the availability of learning-based models
via attacks that soak up resources.
Model Extraction. If an attacker obtains data used to train a given
model, it would be possible to train surrogate models known to be
highly similar to the original. This situation allows an attacker to
generate transferable adversarial attacks. Further investigation is
needed to better understand the impact of model extraction attacks
against learning-based components using data from electrical sub-
stations, and what are the potential risks to the confidentiality of
sensitive information contained in proprietary models.

The objective of proactively testing learning-based models is
to eventually increase resilience against these attacks in SGs . We
envision the application of the following techniques to further
protect electrical substations:
Adversarial Training. Incorporating adversarially generated ex-
amples into the training phase of models helps them recognize and
counteract sophisticated attack patterns. By exposing the model to
these malicious inputs during training, it becomes better equipped
to identify similar threats during operational use, enhancing its
defense capabilities against real-world adversarial attacks in the
SG environment.
Feature Removal. XAI methods can identify vulnerable features
in SG datasets, which could be strategically removed or altered to
strengthen the model’s security (i.e., an adversary-aware feature
selection step). This might result in a performance trade-off, but
enhancing security in critical SG operations could outweigh the loss
in precision, especially in high-stakes scenarios like grid stability
and outage prevention.
Expert Knowledge. Each use case exhibits potential defense direc-
tions that are tightly related to a given subdomain. A throughout
understanding of subdomain technicalities (e.g., IEC 61859 commu-
nication protocols) is critical to understand vulnerabilities prone to
be exploited by adversaries.

6 CONCLUSION AND OUTLOOK
This paper categorizes and evaluateswork on attacks against learning-
based models in smart grids, with a focus on reproducibility. Addi-
tionally, we propose exploring the explainability and interpretabil-
ity of data-driven models to uncover vulnerabilities and develop
countermeasures. We elaborate on the reasons behind the current
limitations and challenges, with the objective of providing further
insights to fill the identified research gaps. Our findings serve as
a roadmap for the research community to develop stronger and
more secure learning-based systems in smart grids, particularly in
use cases related to electrical substations. As future work, apart
from addressing the indicated challenges, we plan to evolve this
survey into a more detailed systematic literature review. This will
include exploring additional aspects, such as identifying the most
frequently used learning models and defensive mechanisms.
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