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Abstract

What is the time complexity of matrix multiplication of sparse integer matrices with min nonze-
ros in the input and mout nonzeros in the output? This paper provides improved upper bounds
for this question for almost any choice of min vs. mout, and provides evidence that these new
bounds might be optimal up to further progress on fast matrix multiplication.

Our main contribution is a new algorithm that reduces sparse matrix multiplication to dense
(but smaller) rectangular matrix multiplication. Our running time thus depends on the optimal
exponent ω(a, b, c) of multiplying dense na × nb by nb × nc matrices. We discover that when
mout = Θ(mr

in) the time complexity of sparse matrix multiplication is O(mσ+ϵ
in ), for all ϵ > 0,

where σ is the solution to the equation ω(σ − 1, 2− σ, 1 + r − σ) = σ. No matter what ω(·, ·, ·)
turns out to be, and for all r ∈ (0, 2), the new bound beats the state of the art, and we provide
evidence that it is optimal based on the complexity of the all-edge triangle problem.

In particular, in terms of the input plus output size m = min+mout our algorithm runs in time
O(m1.3459). Even for Boolean matrices, this improves over the previous m

2ω
ω+1+ϵ = O(m1.4071)

bound [Amossen, Pagh; 2009], which was a natural barrier since it coincides with the longstand-
ing bound of all-edge triangle in sparse graphs [Alon, Yuster, Zwick; 1994]. We find it interesting
that matrix multiplication can be solved faster than triangle detection in this natural setting.
In fact, we establish an equivalence to a special case of the all-edge triangle problem.
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1 Introduction

Matrix multiplication is one of the most fundamental and important computational problems.
Countless papers are devoted it (e.g., the surveys [Blä13, GJC+23]), including celebrated algorithms
that bound the famous exponent 2 ≤ ω < 2.3719 of its time complexity on worst-case n × n
matrices [Str69, Pan78, BCRL79, Pan80, Sch81, Rom82, CW82, Str86, CW90, CU03, CKSU05,
Sto10, Wil12, CU13, AW21, DWZ23] as well as some lower bounds [Blä99, Raz03, Shp03, Lan14,
LM18]. Like any other problem, in most applications (theoretical or practical) the input matrices
of interest could be sparse (or could be sparsified without much harm) in the sense that the number
of nonzero entries is min = o(n2). Consequently, the following question has been repeatedly raised
by researchers in various domains, seeking a quantitative understanding of the gains from sparsity:

What is the time complexity of matrix multiplication if the matrices are sparse?

It is natural to expect a fine-grained answer in the form of a bound that depends on min and ω.
However, the answer may not be satisfying if we do not consider the additional parameter mout –
the number of nonzeros in the output matrix.1 This is because even two very sparse matrices with
min = O(n) could, in pathological cases, produce a very dense output matrix with mout = Ω(n2),
giving a trivial lower bound of Ω(m2

in) just to write the output. But this lower bound is too
simplistic: in almost all interesting cases mout is much closer to min. For example, two matrices
with O(n) nonzeros in random locations can be multiplied in O(n) expected time.2 There is a
rich landscape between these two extremes that we cannot capture if we ignore mout. The dream
goal is an “instance optimal” algorithm that achieves the best possible time complexity for any
input matrices, based on their specific properties. Towards that goal, we are seeking a bound that
includes both min and mout.

Considerable effort has gone towards this question, from multiple communities, leading to a state
of affairs with several incomparable and complicated bounds. Some of the bounds are discussed
below and summarized in Table 1. In this paper, we clean up the picture by giving (1) a new
algorithm for sparse matrix multiplication, (2) an upper bound on its complexity for any setting
of min vs. mout, and (3) evidence that the achieved bound is tight no matter what the complexity
of dense (rectangular) matrix multiplication turns out to be.

1.1 Previous Work

We briefly review relevant results for sparse matrix multiplication. Let A,B be n × n matrices,
let min denote the number of nonzeros in A and B, and mout the number of nonzeros in A ·B.

The goal of early works was to achieve bounds for input-sparse matrix multiplication that get as
close as possible to the O(n2) bound, under minimal assumptions on min and ω. The starting point
is a folklore approach, first described in [Gus78], of computing C[i, j] =

∑
k:A[i,k] ̸=0A[i, k] ·B[k, j]

over all i, j in time O(min ·n). An analysis of this approach for uniformly distributed input is given
in [Sch82]. Using fast rectangular matrix multiplication, a seminal algorithm due to Yuster and
Zwick [YZ05] computes A ·B faster than dense matrix multiplication whenever min = O(n

ω+1
2

−ϵ).
Their arguments have been adapted to rectangular input matrices in [KSV06]. Based on recent

1We assume that the matrices are represented as lists of nonzero entries. Logarithmic factors will not matter in
our bounds.

2For any (i, k) such that A[i, k] = 1, in expectation there are only O(1) relevant entries (k, j) such that B[k, j] = 1.
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assumptions from fine-grained complexity, it can be shown that the Yuster-Zwick algorithm is
best-possible; see the discussion in Appendix A.

To obtain further improvements, many subsequent works also exploit sparsity of the out-
put, i.e., take mout into account, and thus could hope to achieve subquadratic running times.
Randomized algorithms are given in [Lin11, Pag13, VGWWZ15, JS15, Roc18] and determinis-
tic algorithms in [AP09, Kut13, GLL+17, Kün18, DHK20]. We give a summary in Table 1.
Even if min,mout = Θ(n), only three of the above algorithms can truly beat quadratic running
time n2±o(1) (achieved by dense matrix multiplication if ω = 2): the Amossen-Pagh bound [AP09]3,
and the bound achieved by van Gucht et al. [VGWWZ15] and Roche [Roc18]4. Since our main
interest is in subquadratic running times, we will only compare our results to these two bounds.

Some works study additional parameters such as the distribution of nonzeros over the rows
and columns [IS09, Roc18]. The closely related setting of error correction for matrix products
has been studied in [GLL+17, Roc18].5 The communication complexity of output-sensitive matrix
multiplication has been studied in [WY14]. Finally, output-sensitive quantum algorithms have been
given, e.g., in [BS06, WW18, Gal12].

Combinatorial Algorithms. There has been interest in “combinatorial” matrix multiplication
algorithms [ADKF70, BW12, WW18, Cha15, Yu18, DKS18] that do not exploit algebraic ideas,
partly because these algorithms can be more efficient in practice. So far, such methods are only
able to save polylogarithmic factors over the naive O(n3) time complexity in the dense case. In
the sparse case, the Õ(mout +

√
moutmin) bound of [VGWWZ15] is combinatorial, and it cannot be

improved by more than no(1) factors without breaking through the cubic bound in the dense case.6

The goal of this paper is to quantify how well non-combinatorial methods perform in the sparse
case.

Rectangular Matrix Multiplication and the ω(a, b, c) Notation. Our algorithms reduce
sparse matrix multiplication to dense (but smaller) rectangular matrix multiplication. The running
times thus depend on the optimal exponent ω(a, b, c) of multiplying dense na × nb by nb × nc

matrices, for certain values of a, b, c ≥ 0 depending on the setting. The square case of ω = ω(1, 1, 1)
implies certain “naive” bounds on ω(a, b, c) in a black-box way by partitioning rectangles into
squares. Much better bounds, however, can be obtained in a non-black-box application of the
techniques. The most important constant related to rectangular matrix multiplication is α ≤ 1
defined as the largest constant such that ω(1, α, 1) = 2. Note that α = 1 if and only if ω = 2.
It has been known for a while that α > 0 [Cop82, Cop97, HP98, Gal12], and the current bound
is α ≥ 0.3138 [GU18]. Other interesting bounds on ω(a, b, c) where a, c are not 1 have also been

3The conference version of this paper claimed a better time bound of O(m
2/3
in m

2/3
out + m0.862

in m0.408
out ) without the

restriction min ≤ mout. On the authors’ website this was corrected to a time bound of O(m
2/3
in m

2/3
out +m0.862

in m0.546
out )

with the restriction min ≤ mout. (This time bound is the same as what we wrote in Table 1 apart from using updated
values for α, ω.) In [DHK20], the analysis of the Amossen-Pagh algorithm was extended to the case mout ≤ min

achieving a running time of min · (mout)
2ω

ω+1
−1+o(1) = O(min ·m0.407

out ).
4Roche gives a more refined bound, involving an additional parameter r. If we only assume that min ≥ n and use

the worst-case choice for r, we obtain the stated bound.
5Over rings, this turns out to be essentially equivalent to sparse matrix multiplication, see [Kün18] and Section 1.5.
6The Combinatorial Boolean matrix multiplication conjecture implies that multiplying an na × nb by an nb × na

matrix requires time n2a+b−o(1). Since for this problem the input size is trivially bounded by na+b and the output
size is bounded by n2a, a combinatorial algorithm for sparse matrix multiplication in time O((

√
moutmin)

1−ϵ) would
imply a combinatorial algorithm for the aforementioned problem in time O(n2a+b−ϵ′); a contradiction.
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Table 1. Overview over sparse matrix multiplication algorithms. We list time bounds t with the understand-
ing that there are algorithms with running time O(t1+ϵ) for arbitrarily small ϵ > 0. For the deterministic
output-sensitive algorithms in [Kut13, Kün18], we assume that a close upper bound on mout is given. We
highlight in italic the only algorithms that run in time O(n2−ϵ) in the natural setting min,mout = Θ(n). To
get the numerical bounds, we plug in the current bounds of ω ≤ 2.3719 [DWZ23] and α ≥ 0.3138 [GU18].
Related results are given by [IS09, WY14, GLL+17, BS06, WW18, Gal12].

Source Running Time Notes

Dense matrix multiplication nω

Gustavson [Gus78] (folklore) n ·min

Yuster and Zwick [YZ05] m
2(ω−2)
ω−1−α

in n
2−αω

ω−1−α + n2

≤ m0.703
in n1.187 + n2

only relevant if ω > 2

Amossen and Pagh3

[AP09, DHK20]
m

2/3
in m

2/3
out + m

(2−α)ω−2
(1+ω)(1−α)

in m
2−αω

(1+ω)(1−α)

out

≤ m
2/3
in m

2/3
out + m0.865

in m0.543
out

only if min ≤ mout, Boolean

Lingas [Lin11] n2m
ω/2−1
out

≤ n2m0.186
out

Boolean, randomized

Pagh [Pag13] min + n ·mout real-valued, randomized

Kutzkov [Kut13] n2 + n ·m2
out real-valued

Jacob and Stöckel [JS15] min + n2(mout

n )ω−2

≤ min + n2(mout

n )0.3719
field-valued, randomized

van Gucht, Williams, Woodruff,
Zhang [VGWWZ15]

mout +
√
moutmin Boolean, randomized

Künnemann [Kün18]
√
moutn

2 + m2
out integer-valued

Roche4 [Roc18] mout +
√
moutmin field-valued, randomized

obtained [Gal12, GU18]. In a sense, the goal of this work is to settle the sparse setting up to further
progress on the rectangular setting, thus reducing the number of research topics by one.

1.2 Our Results: The Fully Sparse Setting

In Section 1.3 we present our general bound for any mout = mr
in in the entire feasible range r ∈ [0, 2],

and evidence that it is optimal. To highlight our contributions as clearly as possible, we focus in
this section on the complexity in terms of the single parameter m := min +mout ≈ max(min,mout)
that represents the size of the input plus the output. We call this the fully sparse setting be-
cause m bounds the sparsity of both input and output. A high-degree/low-degree algorithm
achieves time O(m3/2) and the trivial lower bound is Ω(m); we would like to know the precise
exponent. Note that this is a special case of our general result where r = 1 because in the worst-
case min,mout = Θ(m).

The fully sparse setting is not only elegant from a theoretical point of view (because there is
only one parameter) but it also received special attention due to natural applications for joins in
databases and for transitive closure computation in graphs. See Section 1.5 for more details. Let
us also remark that for the extensively-studied sparse convolution problem [CH02, AR15, CL15,
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Nak20, BFN21, BFN22], which is a one-dimensional analogue of our problem, the fully sparse
setting is the predominantly studied sparse setting.

Boolean Matrix Multiplication: Beating the Triangle Bound. Previous work on sparse
matrix multiplication has beaten the m3/2 bound in the important special case of Boolean ma-
trices over {0, 1}; the state of the art (before our paper) was time m

2ω
ω+1

+ϵ ≤ O(m1.4071), which
becomes m4/3+ϵ if ω = 2 [AP09]. This is a natural barrier because it coincides with the longstand-
ing upper bound for detecting a triangle in a graph on m edges [AYZ97].

Triangle detection and (Boolean) matrix multiplication are intimately connected by fine-grained
reductions [WW18] in the dense case. Also in the sparse case, the triangle detection problem can be
described as a natural subset matrix multiplication problem [GKLP16]: Given two matrices A,B
with m nonzeros, and given a subset S ⊆ [n]× [n] of m entries, determine if any of the entries
in (AB)[i, j] with (i, j) ∈ S are nonzero.

A priori, it is not clear if fully sparse matrix multiplication should be easier or harder than subset
matrix multiplication. On the one hand, it feels harder because we not only need to compute m
entries in AB, we also don’t know their locations. But on the other hand, we are promised that AB
only has m nonzeros whereas in the subset problem AB could be dense.

Our first main result is an algorithm for fully sparse matrix multiplication that beats the
triangle bound, improving the complexity from O(m1.4071) to O(m1.3459). To our knowledge, this is
the first instance of a natural setting where matrix multiplication is faster than triangle detection.
To state the precise running time, we introduce another constant related to rectangular matrix
multiplication: Let µ be the (unique) solution to the equation ω(µ, 1, 1) = 2µ + 1. The currently
best bounds on µ are 1

2 ≤ µ ≤ 0.5286 [GU18], and if ω = 2 then µ = 1
2 . This constant naturally

appears in several algorithms, including various settings of the All-Pairs Shortest Paths (APSP)
problem [Zwi99, Zwi02, AY07, CWX21]—most notably, Zwick’s algorithm for directed, unweighted
APSP in time O(n2+µ+ϵ)—as well as algorithms for dynamic transitive closure [DI05, San04].

Theorem 1.1 (Fully Sparse Boolean Matrix Multiplication). Sparse Boolean matrix multiplication
is in deterministic time O(m

1+ µ
1+µ

+ϵ
) ≤ O(m1.3459), for all ϵ > 0.

Our bound is strictly better than the triangle bound as long as ω > 2; otherwise, both bounds
become m4/3+ϵ which is likely to be the right complexity “at the end of days”. Interestingly, our
algorithm does not need ω = 2 (or equivalently, α = 1 where α is the aforementioned rectangu-
lar matrix multiplication exponent) to achieve exponent 4/3 but already achieves it under the
milder condition that µ = 1

2 (or equivalently, α ≥ 1
2). In particular, while there are strong barrier

results for all currently known approaches to square matrix multiplication (such as the popular
laser method and its generalizations, applied to the Coppersmith-Winograd tensor) that rule out
proving ω < 2.3 [AFG15, BCC+16, BCC+17, AW18a, AW18b, Alm21, CVZ21], the best-known
barriers for rectangular matrix multiplication only rule out proving α > 0.625 [AW18a, CGLZ20].
Thus, it is conceivable that further progress on fast rectangular matrix multiplication, using the
only current set of techniques, leads to sparse Boolean matrix multiplication in time m4/3 via our
Theorem 1.1.

Equivalence. Can our algorithm be improved? That is, can we either (1) get closer to m4/3 with
current ω(·, ·, ·) or (2) break the m4/3 barrier in the future, e.g. if ω = 2? Our next result shows
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that both (1) and (2) are equivalent to making progress on a special case of the all-edge triangle
problem.

Multiple fine-grained complexity conjectures are about triangles in graphs. Underlying all of
them is the fundamental statement that “the only two algorithms for triangle detection are either
two-path enumeration or fast matrix multiplication”. The specific formalization of each hypothesis
depends on the family of graphs and the bound achieved when combining these two algorithms. For
example, the Strong Triangle conjecture [AW14] states that m

2ω
ω+1

−o(1) time is required on m edge
graphs, and the Unbalanced Triangle hypothesis [KW20] states that in a graph on three unbalanced
parts with m1 ≤ m2 ≤ m3 edges between them the time complexity is (m1m2)

1/3m
2/3−o(1)
3 (even

if ω = 2). Hypothesis 1.9 in Section 1.3 considers a bound in terms of nodes and edges in some
natural regime.7

In the all-edge version, defined next, we must answer for each edge whether it is in a triangle.
This version is appealing because (unlike mere detection) we can often prove its hardness based
on other famous conjectures. In particular, reductions from 3-SUM [Pă10, KPP16] and APSP
[WX20] establish an m4/3−o(1) lower bound on m edge graphs and serve as a stepping stone for
many other reductions [ABKZ22, ABF23, JX23].8 In this paper, we need an unbalanced all-edge
triangle version.

Definition 1.2 (AE-Triangle). The AE-Triangle(x, y, z,m) problem is to decide, in a given
tripartite graph G = (X,Y, Z,E) with |X| ≤ x, |Y | ≤ y, |Z| ≤ z and |E| ≤ m, for each edge
(i, j) ∈ (X × Z) ∩ E whether it is part of a triangle in G.

It is known that the 3-SUM and APSP conjectures imply a matching n2−o(1) lower bound for
AE-Triangle(n, n, n, n3/2) [Pă10, KPP16, WX20]. If we restrict the size of one of the three parts
in the tripartite graph to

√
n we get the AE-Triangle(

√
n, n, n, n3/2) problem. Our next theorem

shows that (when µ = 1/2) subquadratic time for this problem is possible if and only if the m4/3

bound for fully-sparse Boolean matrix multiplication can be broken. It is interesting to note that
in the AE-Triangle(

√
n, n, n, n3/2) setting only one of the edge-parts is sparse while the other

two are dense.

Theorem 1.3 (Equivalence with AE-Triangle). The following two statements are equivalent in
terms of deterministic and randomized algorithms:

(1) There is some ϵ > 0 such that sparse Boolean matrix multiplication is in time O(m
1+ µ

1+µ
−ϵ

).

(2) There is some ϵ′ > 0 such that AE-Triangle(nµ, n, n, n1+µ) is in time O(n1+2µ−ϵ′).

Viewed as a hardness result, Theorem 1.3 gives a tight lower bound for sparse matrix multiplica-
tion under a natural hypothesis (discussed below) about AE-Triangle. In the other direction, it
shows that to break the m4/3 barrier for all sparse settings, it is enough to break it in a very specific
case where one input matrix is rectangular and dense, one input matrix is square and sparse, and
the output matrix is rectangular and dense.

7It is possible to unify all of them under a general and formal hypothesis that address all possible choices of the
six parameters for the numbers of nodes and edges between the three parts, but the bound becomes too cumbersome
to state.

8The 3-SUM conjecture states that no O(n2−ε) time algorithm can decide, given a set of n integers, if there are
three that sum to zero. The APSP conjecture states that no O(n3−ε) time algorithm can compute all pair-wise
distances in an edge-weighted graph on n nodes.
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Integer Matrix Multiplication (Or over any Ring). In the matrix multiplication literature,
algorithms for the Boolean case tend to extend seamlessly to handle entries in Z (or any ring,
with arithmetic operations computable in constant time). In the sparse setting, however, prior
work [AP09] that beat m3/2 faces a fundamental challenge when negative numbers are allowed:
Many pairs of nonzero entries A[i, k] and B[k, j] (with the same k) can cancel out, forcing the
algorithm to spend too much time without “gaining” any nonzero in the output. Notably, such
massive cancellations do not only occur in pathological cases, but are actually inherent to interesting
applications of sparse integer matrix multiplication; one example to error correction is discussed in
Section 1.5.

An exciting feature of our new algorithm is that it can handle integers just as well, at the
cost of introducing randomness, giving a dramatic improvement from time Õ(m1.5) [Roc18] to
time O(m1.3459). In fact, our algorithm extends to any ring R. In this case our running time
naturally depends on the complexity of dense matrix multiplication over that ring R; i.e., the
constants ω and µ depend on R (see the discussion in Section 2).

Theorem 1.4 (Fully Sparse Matrix Multiplication). Let R be a ring. Sparse matrix multiplication
over R is in randomized time O(m

1+ µ
1+µ

+ϵ
), for all ϵ > 0 (assuming an oracle for arithmetic

operations over R). For R = Z, this running time becomes O(m1.3459).

Since the integer case is only harder than the Boolean case, the bound in Theorem 1.4 is tight
unless we break the aforementioned bound of all-edge triangle. In Section 5 we strengthen the
equivalence of Theorem 1.3 to show that the integer case is equivalent to a counting version of
all-edge triangle (Theorem 5.4).

1.3 The General Bound

Recall that our motivating question was about identifying the optimal complexity for any choice of
min vs. mout, i.e., mout = mr

in for any r ∈ [0, 2].9 In practice, it would be ideal if there is a single
algorithm that is guaranteed to achieve the optimal complexity when run on matrices with min

nonzeros, no matter what mout turns out to be. With a more intricate analysis and under similar
assumptions, our new algorithm accomplishes this.

We suggest that the time complexity of sparse matrix multiplication is m
σ(r)
in when mout = mr

in,
for the following definition of the exponent σ(r) ∈ [1, 2] that only depends on the optimal exponent
of dense rectangular matrix multiplication. (It is not clear that σ(r) is well-defined but we prove
it in Section 4.3.)

Definition 1.5 (Exponent of Sparse Matrix Multiplication). Let r ∈ [0, 2]. We define σ(r) as the
unique solution σ to the equation ω(σ − 1, 2− σ, 1 + r − σ) = σ.

The following are our two main theorems. They generalize Theorems 1.1 and 1.4 from r = 1 to
any r ∈ [0, 2]; the first gives a deterministic algorithm for the Boolean case and the second gives a
randomized algorithm for integers (or any ring).

Theorem 1.6 (Deterministic Sparse Boolean Matrix Multiplication). Sparse Boolean matrix mul-
tiplication with input size min and output size mout = mr

in is in deterministic time O(m
σ(r)+ϵ
in ), for

all ϵ > 0, r ∈ [0, 2].

9The two extreme examples that show that 0 ≤ r ≤ 2 are the following. If the only nonzero entries are A[1, k] = 1
and B[k, 1] = 1 for all k ∈ [n] then min = n while mout = 1. If the only nonzero entries are A[i, 1] = 1 and B[1, j] for
all i, j ∈ [n] then min = n but mout = n2.
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Figure 1. Plots of the exponent t(r) in the running time O(m
t(r)+ε
in ), for any ε > 0, of sparse Boolean

matrix multiplication where mout = mr
in. The shaded teal region depicts the relevant area between the

trivial Ω(min +mout) lower bound and O(m2
in) upper bound. The black lines depict the O(min

√
mout) upper

bound [VGWWZ15, Roc18]. The blue lines depict the upper bound of [AP09] as analyzed by [DHK20]. The
red lines depict our bounds on σ(r); the thick lines correspond to (1) and the dotted line was obtained via
numerical computations. All lines except the blue hold for randomized integer matrix multiplication as well.

1 1+ 1
1+α

2

1

1 + µ
1+µ

1 + 1
1+α

2

r

t(r)

0

(a) The plots for the current bounds on (rectangular) ma-
trix multiplication [GU18, DWZ23].

1 1.5 2

1

1.5

2

r

t(r)

0

(b) The plots if ω = 2.

Figure 1 plots our new bound against the previous results highlighted in Table 1 (in the Boolean
case) both for (a) the current bounds on σ(r) where we beat the state of the art for all r, and (b)
for ω = 2 in which case we get an improvement for all r > 1 (note that this is the more natural
setting). Let us say a few words about how we bound σ(r) (all the details are in Section 4.3).
If ω = 2 then it is easy to calculate ω(a, b, c) for any a, b, c and we get that σ(r) = max{1 + r

3 , r}.
The situation is more complicated when using the current bounds on ω(a, b, c) [GU18, DWZ23].
First we prove that σ(r) is a convex function of r. Then we apply either of two methods: one
algebraic and the other numeric. In the first one, we evaluate σ(r) at certain strategic values of r,
and then interpolate between these points; the bound we obtain is

σ(r) ≤ max

{
1 + r · µ

1 + µ
,

(2 + α)µ

1 + µ
+ r · 1− αµ

1 + µ
, r

}
, (1)

and it is depicted by the thick red line in Figure 1. In the second method, we feed all known
bounds on ω(a, b, c) [GU18] into a linear program that finds the best bound on σ(r); this bound is
the dotted red line in Figure 1. In any case, further improvements to our bound within the shaded
area are not unconditionally impossible, but would refute the natural hypothesis discussed below.

The next theorem proves that our same bound holds for randomized algorithms in the integer
case despite the cancellations; note that in this case the blue line in Figure 1 does not apply and
our improvements are bigger.
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Theorem 1.7 (Sparse Matrix Multiplication). Let R be a ring. Sparse matrix multiplication
over R with input size min and output size mout = mr

in is in randomized time O(m
σ(r)+ϵ
in ), for

all ϵ > 0, r ∈ [0, 2].

In Section 1.5 we mention one application of Theorem 1.7 that does not follow from the results on
the fully sparse setting (r = 1), namely to error correction. Interestingly, based on this connection,
we discuss that derandomizing our result (for integers) is at least as hard as derandomizing Freivalds’
classical algorithm [Fre79].

Finally, we will isolate a concrete version of the all-edge triangle problem that must be cracked
before our sparse matrix multiplication bound can be improved even for a single r. We call the
following unbalanced version PS-AE-Triangle (“partially sparse” AE-Triangle) because only
one edge-part is sparse while the other two are assumed to be dense (since the restriction on the
number of edges only applies to one edge-part).

Definition 1.8 (PS-AE-Triangle). The PS-AE-Triangle(x, y, z,m) problem is to decide, in
a given tripartite graph G = (X,Y, Z,E) with |X| ≤ x, |Y | ≤ y, |Z| ≤ z and |E ∩ (Y × Z)| ≤ m,
for each edge (i, j) ∈ (X × Z) ∩ E whether it is part of a triangle in G.

Recall from the discussion above Definition 1.2 that the fundamental underlying hypothesis is
that the only two algorithms for triangle detection are either two-path enumeration or fast matrix
multiplication. For any choice of parameters, it is easy to compute the bound achieved by combining
these two algorithms, giving rise to the following hypothesis.

Hypothesis 1.9 (PS-AE-Triangle). For all a, b, c ≥ 0, the PS-AE-Triangle(ma,mb,mc,m)
problem cannot be solved in time O(mmin{1+a, ω(a,b,c)}−ϵ), for any ϵ > 0.

The exponent in Definition 1.5 is the sparse matrix multiplication exponent unless Hypothe-
sis 1.9 fails.

Theorem 1.10 (Hardness under PS-AE-Triangle). Let r ∈ [0, 2]. For any ϵ > 0, sparse Boolean
matrix multiplication with input size min and output size mout = mr

in cannot be solved in time
O(m

σ(r)−ϵ
in ), unless the PS-AE-Triangle hypothesis fails.

Interestingly, we do not even need this assumption for the full range of r to give evidence of
optimality of our algorithm. Indeed, our algorithm runs in almost-linear time O(m1+ϵ

out ) for arbi-
trary ϵ > 0—and thus is unconditionally almost optimal—when mout = Ω(m1.762

in ) = Ω((min)1+
1
1α ).

If ω = 2, the condition simplifies to mout ≥ Ω(m1.5
in ).

1.4 Technical Overview

To ease the readability of this paper, we give a concise technical overview of our results. Our
algorithms draw from a colorful set of techniques, ranging from basic combinatorial heavy/light
decompositions to ideas from sparse recovery, derandomization, and algebra. While none of these
ideas are particularly new to the context of matrix multiplication, we manage to refine and combine
them in a novel way, leading to our results.

To obtain our algorithms for sparse matrix multiplication, we split the task into two major steps.
These steps separately deal with the output- and input-sparsity of the problem. For simplicity we
focus on the fully sparse setting (min + mout ≤ m) in this overview.
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Step 1: Output Densification. In the first step, we design a reduction from fully sparse matrix
multiplication to input-sparse matrix multiplication of x×y×z rectangular matrices. That is, after
step 1 we can assume that xz = O(m), at the small cost of worsening the running time by a lower-
order factor.

The basic idea is to compress A to a thinner matrix A′ such that (1) the product A′B becomes
dense, and (2) we can recover AB from A′B. A natural approach to this task, inspired by sparse
recovery, is to let g = xz

m and to compress the matrix A by randomly grouping columns into
groups of size g. Let A′ be the (x/g)× y matrix obtained by adding all columns in a group. Note
that C ′ = A′B is exactly the matrix obtained from C = AB by applying the same compression.
Since the hashing was random, we expect that many entries (i, j) are isolated in the sense that C[i, j]
is the only nonzero entry in its group in the i-th row. These isolated entries can be efficiently
recovered by some more tricks to identify j. For integer matrices, for instance, we can identify j by
accessing C[i, j] and j · C[i, j] (both of which can be computed by the previous compression) and
taking their quotient.

This main idea—to compress the sparse output matrix to a dense rectangular matrix via sparse
recovery techniques—was employed in several previous works [IS09, Pag13, JS15, VGWWZ15].
See also the detailed treatment in [Stö15], including implementations of this idea in the external
memory model. Unfortunately, this setup is hard to generalize to arbitrary rings and hard to
derandomize. To obtain the full strength of our results, we instead suggest the following twist:

1. First, assume that we know a small superset S of the support supp(C) = {(i, j) : C[i, j] ̸= 0}
of size at most |S| ≤ 2m, say. We apply the same grouping as before, and consider an
entry (i, j) ∈ S as isolated if there is no other entry (i, j′) ∈ S with j and j′ belonging to
the same group. The nice insight is that we can check for all pairs (i, j) ∈ S whether they
are isolated, and for isolated pairs recover the corresponding entries C[i, j] without the need
to identify j. (For the details see Lemma 3.2.)

With some additional effort this step can be derandomized: The key idea is that we
can choose the groups one by one deterministically, following the method of conditional
expectations. We remark that this derandomization is necessary to obtain our deterministic
algorithm for Boolean matrix multiplication (Theorem 1.1).

2. Next, we remove the assumption that S is known in advance. For simplicity in this overview,
we assume that the matrices A and B contain nonnegative integers. Then we can compute S
by recursively calling our sparse matrix multiplication algorithm: Let A′ be the (x/2) × y
matrix obtained from A by merging and adding up pairs of adjacent rows. We compute the
matrix product C ′ = A′B recursively. Then, we select S to be all positions (i, j) that under
the pairing could possibly lead to nonzero entries in C ′. It is easy to check that S ⊇ supp(C)
and that |S| ≤ 2m. Moreover, with each recursive call we half x and therefore the recursion
incurs only a logarithmic factor to the running time. (For the details see Lemma 3.11.)

If we allow randomization, this idea indeed generalizes to integers with polylogarith-
mic overhead (Lemma 3.12) and to arbitrary rings with subpolynomial 2Õ(

√
logm) overhead

(Lemma 3.1).

Step 2: Input-Sparse Matrix Multiplication. Recall that after step 1, we can assume
that xz = O(m). It thus remains to solve an instance of input-sparse rectangular x × y × z ma-
trix multiplication (Lemma 4.2). In previous works, Yuster and Zwick studied the complexity
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of input-sparse x × x × x matrix multiplication [YZ05], and Kaplan, Sharir and Verbin studied
input-sparse x× y × x matrix multiplication [KSV06]. We emphasize that both of these settings
do not suffice in our context, as for many cases we indeed have three distinct parameters x, y, z
(this happens even in the fully sparse case, due to step 1). Nevertheless, we reuse the same simple
algorithmic idea behind their algorithms, namely a heavy/light decomposition. The difficulty here
does not lie in the algorithm, but in the analysis.

We may assume without loss of generality that x ≤ z. Let ∆ be a parameter to be determined
later. We say that a column k in A is light if it contains at most ∆ nonzero entries, and heavy
otherwise. We split the matrix A into two submatrices Alight and Aheavy consisting of the light
and heavy columns, respectively. We similarly split B into Blight and Bheavy where the former
matrix consists exactly of all light rows k. To compute the product AB, it suffices to compute the
products AlightBlight and AheavyBheavy separately.

We compute the light product AlightBlight in time O(m∆) by enumerating, for each nonzero
entry B[k, j], the at most ∆ relevant entries from A. The heavy product AheavyBheavy, on the other
hand, we compute by fast rectangular matrix multiplication. The running time of this algorithm
can be bounded by

O

(
m∆ + max

∆≤x≤m/x
MM(x, m∆ , mx )

)
,

crucially using that after step 1 we have xz = O(m). In [YZ05, KSV06] the authors use coarse
bounds on the complexity of rectangular matrix multiplication [HP98] to bound this expression.
Our goal is an optimal answer though, so we cannot afford to be lossy in the analysis.

So what is the complexity of max∆≤x≤m/x MM(x, m∆ , mx )? The maximum could be attained
at the extreme cases MM(∆, m∆ , m∆ ) or MM(

√
m, m∆ ,

√
m), or anywhere in between. Unfortunately,

these extreme cases seem incomparable and not reducible to each other when we treat dense matrix
multiplication as a black-box algorithm (to reduce between the extreme cases, we would have to
increase one dimension, but decrease another).

As it does not seem possible to us to give a combinatorial answer to this question, we peek
behind the curtain of algebraic matrix multiplication. It turns out that, using light insights
on the matrix multiplication tensor (Fact 2.5), we can indeed prove that the first extreme case
MM(∆, m∆ , m∆ ) is dominating. Therefore, by setting ∆ = m

µ
1+µ where µ is the solution to the equa-

tion ω(µ, 1, 1) = 1 + 2µ, the running time becomes

O(m ·m
µ

1+µ + MM(m
µ

1+µ ,m
1

1+µ ,m
1

1+µ )) = O(m
1+ µ

1+µ + m
ω(µ,1,1)

1+µ ) = O(m
1+ µ

1+µ
+ϵ

),

for any ϵ > 0. We remark that this part of the proof works for any ring R, too: The light case is
purely combinatorial, and in the heavy case we use fast matrix multiplication for that particular
ring R.

Equivalence with All-Edges Triangle. Let us also provide some explanation why sparse
Boolean matrix multiplication is equivalent to AE-Triangle (Theorem 1.3). One direction is
simple: Boolean matrix multiplication can be viewed as the problem of determining, for each pair
of nodes (i, j) ∈ X × Z in a tripartite graph G = (X,Y, Z,E), whether the pair is connected by a
2-path. To solve AE-Triangle we thus report all pairs (i, j) that are connected by a 2-path and
by an edge (which together form a triangle). For the parameters in Theorem 1.3 the computed
Boolean matrix product is indeed sparse.
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The other direction is more interesting; we give some intution: AE-Triangle(∆, m∆ , m∆ ,m) is
essentially equivalent to the hard case in our previously outlined algorithm, when x = ∆. This
does not render our reduction straightforward though, as some other cases for ∆ ≤ x ≤ m/x might
be equally hard. To make the reduction work, we prove that x = ∆ is indeed the hardest case,
which requires very strong numeric bounds on some rectangular matrix multiplication exponents
(Lemma 5.3), based on the recent work by Le Gall and Urrutia [GU18].

1.5 Some Applications

Our algorithm could be an appealing choice for anyone using matrix multiplication on sparse data.
The applications of matrix multiplication are endless, and in each of them one could now claim a
better bound if the input and output happen to be sparse. Let us mention only a few concrete
examples from TCS.

Join-Project Queries in Relational Databases. A natural operation in relational databases
are collapsing join-project queries of two tables (aka composition or set-intersection joins), see
e.g. [AP09, VGWWZ15, DHK20]. Here, we join two tables R(a, b) and S(b, c) on a shared key b,
followed by projection on a and c. As an example, given databases such as DBLP, such queries can
be used to determine all pairs of researchers who co-authored a paper together.

Answering these queries is naturally equivalent to sparse Boolean matrix multiplication [AP09,
VGWWZ15, DHK20]: Here, min denotes the size of the two given tables R and S, while mout

denotes the output size of the query. Exploiting this connection, one can answer join-project
queries faster than naively evaluating a full join, followed by a projection. Our results conditionally
resolve the time complexity of answering these queries.

Transitive Closure in Graphs. Consider the problem of computing the transitive closure of a
directed graph G. Denoting by m the (a priori unknown) number of edges of the transitive closure
of G, previous output-sensitive algorithms solve the problem in time Õ(m3/2) [VGWWZ15, BCH15].
Using the well-known approach of computing a transitive closure via O(log n) Boolean matrix
products and observing that each of the involved matrices have at most m nonzeros, we obtain the
following result as an immediate corollary of Theorem 1.1.

Theorem 1.11 (Transitive Closure). There is a deterministic algorithm computing the transitive
closure of a directed graph in time O(m

1+ µ
1+µ

+ϵ
) = O(m1.3459), for all ϵ > 0, where m is the number

of edges in the transitive closure.

This running time transfers to recognition of comparability graphs, see [BCH15].

Error Correction. The fact that we obtain (randomized) algorithms even for rings can be used
for error correction in matrix products, by a deliberate use of cancellations. In this setting, we are
given matrices A,B and a possibly faulty matrix product C̃ ≈ AB. E.g., erroneous entries may
have been introduced during transmission of the correctly computed result. The task is to compute
the errors AB− C̃ in order to correct C̃ to the true matrix product AB. Let m denote the number
of nonzeros in the input matrices A,B, C̃ and let z denote the number of nonzeros in AB− C̃, i.e.,
the number of errors. If z ≪ m, can we correct C̃ to the true matrix product faster than computing
the product from scratch?
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This setting has been studied explicitly e.g. in [GLL+17, Kün18, Roc18]. Over rings, error cor-
rection can be reduced to sparse matrix multiplication as follows: Given A,B, C̃ with m nonzeros,
we can construct A′, B′ with O(m) nonzeros in time Õ(m) such that A′B′ = AB − C̃, see [Kün18,
Proposition 3.1].10 Thus, correcting z errors over rings reduces to sparse matrix multiplication
with min = m and mout = z. Hence, from Theorem 1.7, we obtain the following corollary.

Theorem 1.12 (Sparse Matrix Product Correction). Consider matrices A,B, C̃ with m nonzeros,
over some ring R. If C̃ differs from AB in at most O(mr) entries, where r ∈ [0, 2], then we can
compute AB in randomized time O(mσ(r)+ϵ), for all ϵ > 0.

Roughly speaking, whenever we have fewer errors in C̃ than nonzeros in A,B,AB, we can
beat computing AB from scratch, even for sparse matrices. In particular, if ω = 2, we obtain a
randomized algorithm correcting up to z ≥ 1 errors in time (z + mz1/3)1+ϵ for all ϵ > 0.

The above reduction from error correction to sparse matrix multiplication also shows why
derandomizing Theorem 1.7 is challenging, as it would derandomize Freivalds’ algorithm even for
sparse matrices: If we could obtain the same running time deterministically, we could in particular
check, given A,B, C̃ with m nonzeros, whether C̃ = AB in almost-linear time m1+ϵ as follows.
Simply start to run the deterministic algorithm on A′, B′ as constructed above (see Footnote 10).
If A′B′ = 0, i.e., C̃ = AB, it returns an answer within some running time bound T (m) = m1+ϵ

guaranteed for z = 0 errors. If the number of steps of the algorithm ever exceeds T (m) or the
result matrix is different from 0, we reject, otherwise we accept. This verifies C̃ in deterministic
time m1+ϵ, for all ϵ > 0.

Note that Freivalds’ algorithm [Fre79] gives a randomized Õ(m)-time solution, however, a de-
randomization is still open even for dense matrices, see, e.g., [KS93, NN93, Kün18].

1.6 Outline

The rest of this paper is structured as follows. We give some formal preliminaries and some facts on
fast matrix multiplication in Section 2. In Sections 3 and 4 we respectively prove the two steps of
our algorithm—the output densification and the input-sparse algorithm. In Section 5 we establish
lower bounds and equivalences with the All-Edges Triangle problem. In Section 6 we then conclude
with some open problems. Finally, in Appendix A we provide an interesting simple lower bound
for Yuster and Zwick’s input-sparse matrix multiplication algorithm.

2 Preliminaries

We denote the integers by Z, the nonnegative integers by N and we write [n] = {1, . . . , n}. We
write Õ(T ) = T (log T )O(1) to suppress polylogarithmic factors. We say that an event happens with
high probability if it happens with probability at least 1 − n−c, where n is the input size of the
problem and c is an arbitrarily large constant. Throughout, by randomized algorithm we mean a
Monte Carlo randomized algorithm that succeeds with high probability.

10We sketch the argument here: As discussed in Section 2, we can assume that A,B, C̃ are m×m matrices. The

desired matrices can be obtained as A′ = (A | −I) and B′ =

(
B

C̃

)
. Note that A′B′ = AB − C̃ and that A′, B′ have

O(m) nonzeros.
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Dense Matrix Multiplication. Let R be a ring. We write MMR(x, y, z) to denote the mini-
mum number of arithmetic operations necessary to multiply an x× y matrix with an y × z matrix
over R (by an arithmetic circuit or an equivalent model [Blä13]). The matrix multiplication expo-
nent ωR(a, b, c) is defined as

ωR(a, b, c) = inf{τ ∈ R : MMR(⌈na⌉, ⌈nb⌉, ⌈nc⌉) = O(nτ )}.

Most of the time the ring R is clear and we omit the subscript R.11 We write ω = ω(1, 1, 1) for the
exponent of square matrix multiplication; for fields of characteristic 0 the current state-of-the-art
bounds are 2 ≤ ω ≤ 2.3719 [DWZ23].

Following standard notation, we define two more constants concerned with the complexity
of rectangular matrix multiplication: Let α = max{α ∈ R : ω(α, 1, 1) ≤ 2} and let µ be the
(unique) solution to the equation ω(µ, 1, 1) = 1 + 2µ. The best known bounds on α and µ are
0.31389 ≤ α ≤ 1 and 1

2 ≤ µ ≤ 0.5286 [Gal12, GU18] (for fields of characteristic 0).12 We routinely
rely on the following well-known facts; for proofs, refer for instance to the survey by Bläser [Blä13]
or classic work such as [LR83].

Fact 2.1. ω(·, ·, ·) is a continuous function.

Fact 2.2. For any a, b, c ≥ 0, we have max{a + b, a + c, b + c} ≤ ω(a, b, c) ≤ a + b + c.

Fact 2.3. For any a, b, c ≥ 0, we have ω(a, b, c) = ω(a, c, b) = ω(b, a, c) = ω(b, c, a) = ω(c, a, b) =
ω(c, b, a).

Fact 2.4. For any a, b, c, λ ≥ 0, we have ω(λa, λb, λc) = λ · ω(a, b, c).

Fact 2.5. Let ai, bi, ci ≥ 0. Then ω(
∑

i ai,
∑

i bi,
∑

i ci) ≤
∑

i ω(ai, bi, ci).

Sparse Matrix Multiplication. This paper is concerned with the sparse matrix multiplication
problem. For parameters x, y, z,min,mout ≥ 0, the input consists of two sparsely-represented ma-
trices A ∈ Zx×y and B ∈ Zy×z such that the total number of nonzero entries in A, B is at most min

and the total number of nonzero entries in the product AB is at most mout (note that we do not
assume that mout is known). The goal is to compute AB. We occasionally write m = min + mout.

Throughout we assume that x, y, z ≤ min for the following reason: Whenever, say x > min, then
there must be a row i in A which does not contain any nonzero entries. We can safely ignore this row
in the multiplication as also the i-th row in AB does not contain any nonzero entries. Therefore,
after possibly relabeling the rows and columns in A and B, we can assume that x, y, z ≤ min.

Machine Model. While for dense matrix multiplication algorithms it is most natural to consider
an algebraic model of computation, in these models it is unclear how to appropriately handle sparse
matrices. Therefore, all of our algorithms assume the word RAM model. For integer matrices, we
assume that the word size is O(log(xyz) + log(∆)), where ∆ is an upper bound on the largest

11While in principle, ωR(a, b, c) can depend on the underlying ring, there is no indication that two rings actually have
different complexities. For fields F , it is known that ωF can only depend on the characteristic of the field F [Sch81].

12It is not necessarily obvious that α and µ are well-defined. For α, we remark that since ω is a continuous function
(Fact 2.1) the set {α : ω(α, 1, 1) ≤ 2} is closed and thus its maximum exists. For µ, we note that both sides of the
equation ω(µ, 1, 1) = 1 + 2µ are continuous functions that must meet in some point due to the trivial bounds on ω
(Fact 2.2). Using Fact 2.5, one can show that the solution is unique.
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entry in the matrices A and B in absolute value. This means that we can perform basic arithmetic
and logical operations on indices and entries in constant time. For matrices over general rings R,
we assume special memory cells storing the ring elements and the ability to perform arithmetic
operations over R by an oracle in constant time. No other information on R is needed.

We remark that we defined ω(a, b, c) in terms of arithmetic circuits, but their complexity trans-
lates to the RAM model. Strictly speaking, however, since ω(a, b, c) is an infimum, we only know
that for all ϵ > 0, there is a RAM algorithm to multiply na × nb by nb × nc matrices in time
O(nω(a,b,c)+ϵ). For convenience, many research papers that apply fast matrix multiplication in
algorithm design ignore this inaccuracy, but we decided to be explicit in this paper.

3 Output Densification

In this section we prove that multiplying input- and output-sparse matrices reduces to multiplying
input-sparse rectangular matrices with dense output. We refer to this reduction as a densification.
Specifically, our goal is to prove the following Lemma 3.1:

Lemma 3.1 (Randomized Densification for Arbitrary Rings). Let R be a ring. Suppose there is
an algorithm A for matrix multiplication over R with input size min in time TA(x, y, z,min). Then
there is a randomized algorithm for matrix multiplication over R with input size min and output
size mout in time:

2Õ(
√
logmin) · max

x′≤x,z′≤z

x′·z′≤mout·2O(
√

logmin)

TA(x′, y, z′,min).

We also derive a deterministic densification lemma for nonnegative matrices (see Lemma 3.11).
Both densification lemmas are proved in two steps: (1) We design the claimed algorithm for

sparse matrix multiplication assuming that we know a small superset S of the support supp(AB) =
{(i, j) : (AB)[i, j] ̸= 0}. We solve this subtask in Section 3.1 based on hashing and using ideas
from sparse recovery. (2) We remove the assumption that S is given by computing S recursively.
We provide the details of this second step in Section 3.2.

3.1 Densification via Sparse Recovery

The goal of this section is to prove the following lemma:

Lemma 3.2 (Densification via Sparse Recovery). Let R be a ring. Suppose there is an algorithm A
for matrix multiplication over R with input size min in time TA(x, y, z,min). Then there is an
algorithm Recover(A,B, S) which, given matrices A ∈ Rx×y, B ∈ Ry×z and a set S ⊆ [x] × [z]
with supp(AB) ⊆ S, computes AB time

Õ

 max
x′≤x,z′≤z
x′·z′≤4|S|

TA(x′, y, z′,min)

.

If A is deterministic, then Recover is also deterministic.
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Algorithm 1 Computes the matrix product C of two sparse matrices A ∈ Rx×y, B ∈ Ry×z over
some ring R, given a small superset S ⊆ [x] × [z] of the support supp(AB); see Lemma 3.2. The
only difference between the randomized algorithm and its derandomization is in Line 6—in the
simple randomized version we use Line 6a and in the deterministic version we use Line 6b.

1: procedure Recover(A,B, S)
2: Initialize C ∈ Rx×z to be all-zeros
3: for ℓ← 0, 1, . . . , ⌊log z⌋ do
4: Let Aℓ ∈ Rxℓ×y denote the restriction of A to indices i with 2ℓ ≤ deg(i) < 2ℓ+1

5: Let zℓ ← 2ℓ+2

6a: Let Hℓ be a set of 10⌈logmin⌉ random hash functions h : [z]→ [zℓ]
6b: Let Hℓ be the set of hash functions h : [z]→ [zℓ] computed by Lemma 3.7
7: for each h ∈ Hℓ do
8: Let B′ ∈ Ry×zℓ denote the matrix defined

B′[k, b] =
∑
j∈[z]
h(j)=b

B[k, j]

9: Compute C ′ ← AℓB
′ with the algorithm A

10: for each isolated support element (i, j) ∈ S (see Definition 3.3) do
11: C[i, j]← C ′[i, h(j)]
12: return C

Consider the pseudocode in Algorithm 1 (and ignore Line 6b for now). Here, for any i ∈ [x], we
define the degree deg(i) = |{j : (i, j) ∈ S}|. The algorithm proceeds in levels ℓ← 0, 1, . . . , ⌊log z⌋
(Line 3). At the ℓ-th level our goal is to recover all entries C[i, j] where i has degree roughly 2ℓ.
More precisely, let Aℓ denote the submatrix of A restricted to indices i ∈ [x] with 2ℓ ≤ deg(i) < 2ℓ+1

and let xℓ denote the number of such indices (i.e., the number of rows in Aℓ). Our goal at the ℓ-th
level is to recover the submatrix AℓB of C.

Simply computing AℓB is too expensive (as the product of the outer dimensions xℓ · z can
be much larger than m). Instead, we will hash the matrix B to a substantially thinner matrix
B′ ∈ Zy×zℓ by a random hash function h : [z] → [zℓ] where zℓ = 2ℓ+2 (in fact, we repeat this step
for several random hash functions in Line 6a and Line 7). We define

B′[k, b] =
∑
j∈[z]
h(j)=b

B[k, j],

and compute the product C ′ ← AℓB
′ by means of the fast algorithm A. To make use of C ′, we

need the following definition:

Definition 3.3 (Isolation). Let h be a hash function. We say that a pair (i, j) ∈ S is isolated
under h if there is no other j′ ̸= j with (i, j′) ∈ S and h(j) = h(j′). For a set of hash functions H,
we say that (i, j) ∈ S is isolated under H if (i, j) is isolated under some h ∈ H.

The algorithm computes the set of isolated pairs (i, j) and for each such pair updates C[i, j]←
C ′[i, h(j)]. We prove the correctness of this approach in the next lemma:
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Lemma 3.4 (Correctness of Algorithm 1). Assume that for all levels ℓ, and for all pairs (i, j) ∈ S
with 2ℓ ≤ deg(i) < 2ℓ+1, (i, j) is isolated under Hℓ. Then Algorithm 1 correctly returns C = AB.

Proof. We prove that the algorithm correctly returns C[i, j] = (AB)[i, j] for all pairs (i, j) ∈ [x]×[z].
If (i, j) ̸∈ S, then we never touch C[i, j] after the initialization to zero. Since S ⊇ supp(C), the
algorithm correctly keeps C[i, j] = 0. For the rest of the proof we therefore focus on pairs (i, j) ∈ S,
for which we prove the statement in two steps:

• Isolated pairs are correctly recovered: Focus on some level ℓ and some iteration of the inner
loop in Line 7 and suppose that (i, j) satisfies 2ℓ ≤ deg(i) < 2ℓ+1. We show that if (i, j) is
isolated under h, then we correctly recover C[i, j] ← C ′[i, h(j)] in Line 11. The proof is a
simple calculation. Recall that by the degree assumption, i is part of the restricted matrix
Aℓ. Therefore:

C ′[i, h(j)] =
∑
k∈[y]

Aℓ[i, k] ·B′[k, h(j)]

=
∑
k∈[y]

Aℓ[i, k] ·
∑
j′∈[z]

h(j)=h(j′)

B[k, j′]

=
∑
j′∈[z]

h(j)=h(j′)

(AℓB)[i, j′].

Since (i, j) ∈ S is isolated, any other pair (i, j′) ∈ supp(AB) ⊆ S must satisfy that h(j) ̸=
h(j′). Therefore, the unique term in the sum is (AℓB)[i, j].

• All pairs are correctly recovered. We use the assumption of the lemma statement: For any
(i, j) ∈ S with 2ℓ ≤ deg(i) < 2ℓ+1 there is some hash function h ∈ Hℓ under which (i, j) is
isolated. By the previous bullet, we correctly recover C[i, j] in this iteration. In all iterations
where (i, j) is not isolated, we do not change C[i, j].

To complete the correctness proof, we need to justify the assumption that all pairs (i, j) ∈ S
are isolated. We devote the following two Sections 3.1.1 and 3.1.2 to this task, and for now focus
on the running time.

Lemma 3.5 (Running Time of Algorithm 1). Algorithm 1 runs in time

Õ

 max
x′≤x,z′≤z
x′·z′≤4|S|

TA(x′, y, z′,min)

.

Proof. We can precompute the degrees in time O(|S|) and then compute the matrices A0, . . . , A⌊log z⌋
in time O(min). We again analyze a fixed level ℓ; the total number of levels is log z ≤ logmin and
can therefore be neglected. As we will see in Sections 3.1.1 and 3.1.2, we can select H in time
Õ(min). Moreover, we store all hash functions explicitly and thus evaluating any hash function
takes constant time. In each of the O(logmin) iterations, we construct the matrix B′ in time
O(min) by a single pass over the nonzero entries of B. To compute the matrix product Aℓ ·B′, we
use the algorithm A. Note that at most a 2−ℓ-fraction of [x] has degree at least 2ℓ, and therefore

16



xℓ ≤ |S|
2ℓ

. It follows that xℓ · zℓ ≤ |S|
2ℓ
· 2ℓ+2 = 4|S| and thus the running time of A can be bounded

by

TA(xℓ, y, zℓ,min) ≤ max
x′≤x,z′≤z
x′·z′≤4|S|

TA(x′, y, z′,min).

In time O(|S|) we can moreover filter the isolated elements in S, and run the recovery loop in
Line 7. In total, the running time becomes

Õ

|S|+ max
x′≤x,z′≤z
x′·z′≤4|S|

TA(x′, y, z′,min)

 = Õ

 max
x′≤x,z′≤z
x′·z′≤4|S|

TA(x′, y, z′,min)

;

here, the term |S| is dominated since in the worst-case Amust return an output of size up to |S|.

3.1.1 Randomized Isolation

We quickly show that it is easy to satisfy the required isolation property if H is a set of logarith-
mically many random hash functions (as sampled in Line 6a).

Lemma 3.6 (Randomized Isolation). Fix any level ℓ and let Hℓ be a set of 10⌈logmin⌉ random hash
functions h : [z]→ [zℓ] (as in Line 6a). With high probability, all pairs (i, j) ∈ S with deg(i) < 2ℓ+1

are isolated under some hash function h ∈ H.

Proof. We first focus on a single pair (i, j) ∈ S and a single random hash function h : [z] → [zℓ],
and argue that (i, j) is isolated under h with probability at least 1

2 . Let J = {j′ : (i, j′) ∈ S} \ {j}
and note that |J | ≤ deg(i) < 2ℓ+1. The error event is that there is some j′ ∈ J with h(j) = h(j′).
For any fixed j, j′ this happens with probability at most 1

zℓ
= 1

2ℓ+2 . Taking a union bound over the
at most 2ℓ+1 elements in J , we obtain that (i, j) is not isolated with probability at most 2ℓ+1

2ℓ+2 = 1
2 .

Since we pick the 10⌈logmin⌉ hash functions in Hℓ independently, it follows that (i, j) is isolated
under Hℓ with probability at least 1− 2−10 logmin = 1−m−10

in . By a union bound over the at most
xz ≤ m2

in many elements in S, we get that all pairs in S are isolated with probability at least
1−m−8

in . (The constant 8 can be chosen arbitrarily larger.)

3.1.2 Deterministic Isolation

In this section we derandomize the previous algorithm. Note that the only place where we use
randomness is to guarantee that each pair (i, j) is isolated (at the appropriate level). We will there-
fore replace the sets Hℓ of random hash functions by hash functions constructed by the following
deterministic algorithm:

Lemma 3.7 (Deterministic Isolation). Let S ⊆ [x] × [z] be such that for all i ∈ [x], |{j : (i, j) ∈
S}| ≤ s (i.e., each row in S has at most s entries). We can compute a set of hash functions H ⊆
{h : [z]→ [2s]} with the following properties:

1. All pairs (i, j) ∈ S are isolated under H.
(That is, there is some h ∈ H such that for all j′ ̸= j with (i, j′) ∈ S, we have h(j) ̸= h(j′)).

2. |H| ≤ log |S|+ 1.
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Algorithm 2 A deterministic algorithm to find a small set of hash functions H isolating the given
set S ⊆ [x]× [z]; see Lemma 3.7.

1: Let H ← ∅
2: while SH ̸= ∅ do
3: Let h be a function returning ⊥ for every input
4: for j ← 1, . . . , z do
5: Find a bucket b∗ with |CH(h[j 7→ b∗])| ≤ Eb∈[2s] |CH(h[j 7→ b])|
6: h(j)← b∗

7: H ← H∪ {h}
8: return H

3. The algorithm to compute H is deterministic and runs in time Õ(z + |S|).

It is easy to verify that by replacing Line 6a with Line 6b in Algorithm 1 (and using Lemma 3.7
in place of Lemma 3.6 in the analysis), we preserve the correctness of the algorithm. For this reason,
in this section we focus on proving Lemma 3.7. At the end of this section we further remark how
the running time of Algorithm 1 is affected.

An Inefficient Algorithm. Lemma 3.7 is proven using the method of conditional expectations.
We pick the set of hash functions H one by one, and for each hash function h we assign the values
h(1), . . . , h(z) one by one. The key idea is that in each step we select the current value h(i) to be at
least as good as what we expect from a random choice. To precisely state what we mean by good,
we start with some terminology.

For a set of hash functions H, let SH ⊆ S denote the subset of pairs (i, j) that are not isolated
under H; we will refer to these pairs as active. In this language our goal is to find a set of hash
functions H with zero active pairs. To this end, we start with H ← ∅ and proceed in several rounds.
In each round, our goal is to select a hash function that halves the number of active pairs.

Next, we describe how to select such a hash function h. Let CH denote the set of all triples
(i, j, j′) with j ̸= j′, (i, j) ∈ SH and (i, j′) ∈ S. For a hash function h : [z] → [2s] ∪ {⊥}, let
CH(h) ⊆ CH denote the subset of triples (i, j, j′) with h(j) = h(j′) ̸= ⊥. We refer to the elements of
CH(h) as the collisions under h. Intuitively, a collision (i, j, j′) is a witness that (i, j) is not isolated
under h. Our approach is to select a next hash function causing at most 1

2 |SH| collisions. More
precisely, we start from a hash function initialized to some dummy value h(1) = · · · = h(z) = ⊥.
Then, we enumerate j ← 1, . . . , z and assign h(j) ← b∗ for some bucket b∗ that causes at most as
many new collisions as a random bucket would cause in expectation, i.e.,

|CH(h[j 7→ b∗])| ≤ E
b∈[2s]

|CH(h[j 7→ b])|.

Here, we write h[j 7→ b] to denote the updated hash function that maps j to b. We summarize this
algorithm in Algorithm 2, ignoring for now how to find such a bucket b∗ (in Line 5). Instead, we
prove that this algorithm indeed leads to the claimed properties 1 and 2.

Lemma 3.8 (Correctness of Algorithm 2). Algorithm 2 returns a set of hash functions H that
satisfies properties 1 and 2 of Lemma 3.7:

1. All pairs (i, j) ∈ S are isolated under H.
(That is, there is some h ∈ H such that for all j′ ̸= j with (i, j′) ∈ S, we have h(j) ̸= h(j′)).
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2. |H| ≤ log |S|+ 1.

Proof. We prove that the number of active elements |SH| halves after each round. From this
statement both properties follow immediately: Since initially |S∅| = |S|, this process stops after at
most log |S| + 1 rounds which proves property 2. Moreover, as soon as the algorithm terminates
we have that SH = ∅ and therefore all pairs in S are isolated under H, by definition.

Focus on any round; we prove that Algorithm 2 selects a hash function h : [z] → [2s] which
causes at most 1

2 |SH| collisions, i.e., |CH(h)| ≤ 1
2 |SH|. As any non-isolated active element leads to

at least one collision, this entails that indeed the number of active elements halves after this round,
i.e., |SH∪{h}| ≤ 1

2 |SH|.
Consider any triple (i, j, j′) ∈ CH; when do we decide whether (i, j, j′) becomes a collision?

We claim that this decision happens in exactly the ℓ = max{j, j′}-th iteration of the inner loop.
Before that iteration we have not yet fixed the hash value h(max{j, j′}) and after that iteration
we will never change the hash values h(j) and h(j′). Let C

(ℓ)
H denote the subset of triples (i, j, j′)

with max{j, j′} = ℓ, and let C
(ℓ)
H (h) = C

(ℓ)
H ∩ CH(h). With this insight in mind, focus on the j-th

iteration of the inner loop. For any bucket b, we have that

|CH(h[j 7→ b])| = |CH(h)|+ |C(j)
H (h[j 7→ b])|.

Therefore, we select a bucket b∗ with

|CH(h)|+ |C(j)
H (h[j 7→ b∗])| ≤ E

b∈[2s]

(
|CH(h)|+ |C(j)

H (h[j 7→ b])|
)

= |CH(h)|+ E
b∈[2s]

(
|C(j)

H (h[j 7→ b])|
)

= |CH(h)|+
|C(j)

H |
2s

.

In the last step we have used that for any triple (i, j, j′) ∈ C
(ℓ)
H , there is exactly one choice for

h(ℓ) which turns this triple into a collision (namely, h(ℓ)← h(min{j, j′})). This calculation shows
that the number of new collisions in the j-th round is at most 1

2s |C
(j)
H |. Thus, the total number of

collisions for the hash function h selected in the current round is

|CH(h)| ≤
z∑

j=1

|C(j)
H |

2s
=
|CH|
2s
≤ |SH| · s

2s
=
|SH|

2
.

This is precisely what we set out to prove.

How To Efficiently Select Good Buckets. In the previous lemma we have completely analyzed
Algorithm 2—except that we left open how to find the good buckets b∗ in Line 5. It is possible to
simply test all options b← 1, . . . , 2s, but this is too inefficient for our purposes. We now describe a
faster approach leading to the claimed running time. The idea is to find b∗ via binary search. We
maintain the following data:

• A matrix M ∈ Nx×2s where M [i, b] = |{(i, j) ∈ S : h(j) = b}|.
(The entry M [i, b] counts for how many pairs (i, j) we have hashed j to the bucket b.)
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• A matrix MH ∈ Nx×2s where MH[i, b] = |{(i, j) ∈ SH : h(j) = b}|.
(The entry MH[i, b] counts for how many active pairs (i, j) we have hashed j to the bucket
b.)

• Moreover, we maintain segment trees on the rows of the matrices M and MH such that,
given i ∈ [x] and an interval B ⊆ [2s], we can compute

∑
b∈B M [i, b] and

∑
b∈B MH[i, b] in

polylogarithmic time.

This data is easy to maintain: As the hash function is initialized to ⊥, we initially set both matrices
to be all-zeros. Whenever we assign h(j)← b∗ we increment all entries M [i, b] where (i, j) ∈ S and
all entries MH[i, b] where (i, j) ∈ SH. We update the segment tree accordingly. The implementation
of the binary search hinges on the following lemma:

Lemma 3.9. Focus on any round of Algorithm 2. In the j-th iteration of the inner loop, we have
that

|CH(h[j 7→ b])| = |CH(h)|+
∑
i∈[x]

(i,j)∈SH

M [i, b] +
∑
i∈[x]

(i,j)∈S

MH[i, b].

Proof. Focus on any round of Algorithm 2. In the ℓ-th iteration of the inner loop we have already
assigned h(1), . . . , h(ℓ− 1) ∈ [2s], but the values h(ℓ), . . . , h(z) are still set to ⊥. The proof is by
the following simple yet tedious calculation:

|CH(h[ℓ 7→ b])| = |CH(h)|+ |C(ℓ)
H (h[ℓ 7→ b])|

= |CH(h)|+ |{(i, j, j′) ∈ C
(ℓ)
H : h(min{j, j′}) = b}|

= |CH(h)|+ |{(i, j, j′) ∈ CH : j′ < j = ℓ, h(j′) = b}|
+ |{(i, j, j′) ∈ CH : j < j′ = ℓ, h(j) = b}|

= |CH(h)|+
∑
i∈[x]

(i,ℓ)∈SH

|{(i, j′) ∈ S : h(j′) = b}|+
∑
i∈[x]

(i,ℓ)∈S

|{(i, j) ∈ SH : h(j) = b}|

= |CH(h)|+
∑
i∈[x]

(i,ℓ)∈SH

M [i, b] +
∑
i∈[x]

(i,ℓ)∈S

MH[i, b].

Lemma 3.10 (Running Time of Algorithm 2). There is an implementation of Line 5 in Algorithm 2
such that the total running time becomes Õ(z + |S|).

Proof. Focus on any round of Algorithm 2, and the j-th iteration of the inner loop. We find a
bucket b∗ satisfying |CH(h[j 7→ b∗])| ≤ Eb∈[2s] |CH(h[j 7→ b])| by binary search as follows. We
maintain a search interval B and the invariant

E
b∈B
|CH(h[j 7→ b])| ≤ E

b∈[2s]
|CH(h[j 7→ b])|.

Initially, B = [2s] and thus the invariant holds trivially. In each step, we split B = B1 ∪ B2 into
roughly equal-sized parts and recur on the half k with the smaller value Eb∈Bk

|CH(h[j 7→ b])|. It is
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clear that this half maintains the invariant. To compute these values, we use that for any interval
we can express

E
b∈B
|CH(h[j 7→ b])| = 1

|B|
∑
b∈B
|CH(h[j 7→ b])|

= |CH(h)|+ 1

|B|
∑
i∈[x]

(i,j)∈SH

∑
b∈B

M [i, b] +
1

|B|
∑
i∈[x]

(i,j)∈S

∑
b∈B

MH[i, b]

by Lemma 3.9. The first term in the sum is the same for both halves B1 and B2 and can be ignored.
The second and third terms can be computed in time |{i : (i, j) ∈ S}| · polylog(s), using that the
inner sums can be evaluated in polylogarithmic time by the segment trees.

Let us analyze the total running time. The algorithm runs for O(log |S|) rounds. In each
round, we run z iterations, where the j-th iteration takes time O(1 + |{i : (i, j) ∈ S}| · polylog(s)).
Therefore, across all iterations the running time is bounded by O(z + |S|polylog(s)) = Õ(z + |S|).
The total number of updates to the matrices M and MH is |S| each, and therefore the overhead
due to maintaining M , MH and the segment tree becomes Õ(|S|), too.

We remark that the application of Lemma 3.7 in the recovery algorithm (Algorithm 1) incurs
a running time overhead of

∑
ℓ Õ(z + xℓzℓ) =

∑
ℓ Õ(z + |S|

2ℓ
· 2ℓ) = Õ(min + |S|). This does not

increase the running time asymptotically.

3.2 Approximating the Support

We are ready to complete the proofs of the densification lemmas. By the previous section it suffices
to compute a small over-approximation of the support supp(AB), and the main goal of this section
is to prove that this approximation can be computed recursively.

Warm-Up: Nonnegative Integer Matrices. We start with the following easy deterministic
densification for nonnegative integer matrices (in particular, for Boolean matrices). The advantage
of nonnegative matrices is that we can conveniently avoid cancellations.

Lemma 3.11 (Deterministic Densification for Nonnegative Matrices). Suppose there is a deter-
ministic algorithm A for nonnegative integer matrix multiplication with input size min in time
TA(x, y, z,min). Then there is a deterministic algorithm for nonnegative integer matrix multiplica-
tion with input size min and output size mout in time:

Õ

 max
x′≤x,z′≤z
x′·z′≤8mout

TA(x′, y, z′,min)

.

Proof. Throughout, let A ∈ Nx×y and B ∈ Ny×z denote the given matrices. Our goal is to compute
their product C = AB by an algorithm MultiplyNonnegative(A,B); see the pseudocode in
Algorithm 3. If x ≤ 1, then the problem deforms to a vector-matrix multiplication that is trivially
solvable in linear time O(min). So assume that x > 1. By Lemma 3.2 it suffices to compute a set
S ⊆ [x]× [z] satisfying the following two properties:
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Algorithm 3 A deterministic algorithm to multiply sparse nonnegative matrices A ∈ Nx×y, B ∈
Ny×z; see Lemma 3.11.

1: procedure MultiplyNonnegative(A,B)
2: if x ≤ 1 then
3: Solve the problem naively in time O(min)
4: else
5: Let A′ be the ⌈x2 ⌉ × y matrix defined by A′[i, k] = A[2i− 1, k] + A[2i, k]
6: Compute C ′ ←MultiplyNonnegative(A′, B) recursively
7: Compute S ← {(2i− 1, j), (2i, j) : (i, j) ∈ supp(C ′)}
8: return Recover(A,B, S)

(i) S ⊇ supp(C), and

(ii) |S| ≤ 2| supp(C)| ≤ 2mout.

We will compute this set S by calling MultiplyNonnegative recursively. Specifically, let A′

be the ⌈x2 ⌉ × y matrix defined by A′[i, k] = A[2i − 1, k] + A[2i, k]. (In case that there is an
overflow and 2i > x, simply treat A[2i, k] as zero.) We recursively compute C ′ = A′B, and let
S = {(2i− 1, j), (2i, j) : (i, j) ∈ supp(C ′)}. The interesting part is to prove the two properties.

(i) By definition we have that

C ′[i, j] =
∑
k∈[y]

A′[i, k] ·B[k, j]

=
∑
k∈[y]

(A[2i− 1, k] + A[2i, k]) ·B[k, j]

= C[2i− 1, j] + C[2i, j].

Hence, whenever (2i − 1, j) ∈ supp(C) or (2i, j) ∈ supp(C) then have C ′[i, j] > 0—here, we
use that the matrices are nonnegative. In this case, it follows that (i, j) ∈ supp(C ′) and that
(2i− 1, j), (2i, j) ∈ S.

(ii) From the same calculation one can see that (i, j) ∈ supp(C ′) only if at least one of the pairs
(2i − 1, j) and (2i, j) is part of supp(C). It follows that |S| = 2| supp(C ′)| ≤ 2| supp(C)| ≤
2mout, which proves property (ii).

It remains to analyze the running time. The running time is dominated by the call to Recover
with running time bounded by

Õ

|S|+ max
x′≤x,z′≤z
x′·z′≤4|S|

TA(x′, y, z′,min)

 = Õ

 max
x′≤x,z′≤z
x′·z′≤8mout

TA(x′, y, z′,min)

,

where the term |S| = O(mout) is dominated by the running time of A. MultiplyNonnegative
reaches a recursion depth of at most O(log x) = O(logmin) which only incurs a logarithmic factor.
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Integer Matrices. This approach is promising to extend to integers and arbitrary rings, but there
is a difficulty: Suppose that in the product matrix C = AB there are two entries C[2i − 1, j] =
−C[2i, j]. Then, if we compute A′ and C ′ as before, these two entries cancel leading to C ′[i, j] = 0.
We have therefore lost the support elements (2i− 1, j), (2i, j) and the set S is incorrect. While it is
hard to deal with these cancellations deterministically, we show how to remedy this state of affairs
by exploiting randomization.

Lemma 3.12 (Randomized Densification for Integer Matrices). Suppose there is an algorithm
A for integer matrix multiplication with input size min in time TA(x, y, z,min). Then there is a
randomized algorithm for integer matrix multiplication with input size min and output size mout in
time:

Õ

 max
x′≤x,z′≤z
x′·z′≤8mout

TA(x′, y, z′,min)

.

Proof. This proof is almost exactly as in Lemma 3.11, except for the following difference: We
define the matrix A′ by A′[i, k] = A[2i− 1, k] + r ·A[2i, k], where r is a random integer in the range
[m10

in ]. The only error event is that there are nonzero entries C[2i − 1, j] and C[2i, j] such that
C[2i− 1, j] + r ·C[2i, j] = 0 (in which case we incorrectly miss the support elements (2i− 1, j) and
(2i, j) in S). For any such pair, there is at most one bad value of r and thus, this event happens
with probability at most m−10

in . Taking a union bound over the at most xz ≤ m2
in pairs, the error

event happens with small probability m−8
in . (The constant 8 can be arbitrarily larger.)

There is a subtle consequence: With each recursive call, we increase the entries in A by a
factor poly(min). Therefore, at the deepest level of the recursion, the numbers have increased by a
factor m

O(logmin)
in . To represent such numbers, we need O(logmin) memory cells per number, which

worsens the time complexity by a polylogarithmic factor.

Matrices over Arbitrary Rings. So far, we have exploited the specific structure of the integers
(namely, that any univariate linear equation has at most one integer solution, which is most likely
not the randomly chosen value r). For arbitrary rings, we can neither assume any structure, nor
that we have access to random ring elements. Densification is still possible, using the following
simple key lemma:

Lemma 3.13. Let R be a ring and let a1, . . . , aw ∈ R at least one of which is nonzero. For a
uniformly random subset I ⊆ [w], the probability that

∑
i∈I ai = 0 is at most 1

2 .

Proof. Without loss of generality, assume that a1 ̸= 0. Writing I1 = I ∩ {1}, I2 = I ∩ {2, . . . , w},
note that the random sets I1 and I2 are independently selected. We therefore consider I2 fixed
and only rely on the randomness of I1. The condition

∑
i∈I ai can be equivalently rewritten as

a1|I1| = −
∑

i∈I2 ai where |I1| is either 0 or 1 with equal probabilities 1
2 . We thus distinguish two

cases: If −
∑

i∈I2 ai = 0, then we succeed in the event that I1 is nonempty, and if −
∑

i∈I2 ai ̸= 0,
then we succeed in the event that I1 is empty.

This lemma leads to the following densification result for arbitrary rings:

Lemma 3.1 (Randomized Densification for Arbitrary Rings). Let R be a ring. Suppose there is
an algorithm A for matrix multiplication over R with input size min in time TA(x, y, z,min). Then
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Algorithm 4 A randomized algorithm to multiply sparse matrices A ∈ Rx×y, B ∈ Ry×z for general
rings R; see Lemma 3.1. In the algorithm, we use the parameter w = 2

√
log x.

1: procedure Multiply(A,B)
2: if x ≤ 1 then
3: Solve the problem naively in time O(min)
4: else
5: for ℓ← 1, . . . , L := 10⌈log(min)⌉ do
6: Sample a random subset Iℓ ⊆ [w]
7: Let Aℓ be the ⌈ xw⌉ × y matrix defined by

Aℓ[i, k] =
∑
i′∈Iℓ

A[(i− 1)w + i′, k]

8: Cℓ ←Multiply(Aℓ, B)
9: Sℓ ← {((i− 1)w + i′, j) : (i, j) ∈ supp(Cℓ), i

′ ∈ [w]}
10: S ← S1 ∪ · · · ∪ SL

11: return Recover(A,B, S)

there is a randomized algorithm for matrix multiplication over R with input size min and output
size mout in time:

2Õ(
√
logmin) · max

x′≤x,z′≤z

x′·z′≤mout·2O(
√

logmin)

TA(x′, y, z′,min).

Proof. The idea is very similar to Lemma 3.11. We design an algorithm Multiply; see the pseu-
docode in Algorithm 4. If x ≤ 1, then the problem is trivially solvable in time O(min), so suppose
otherwise. Let w be a parameter to be fixed later. As before, our goal is to compute a set
S ⊆ [x] × [z] satisfying the following two properties so that the matrix product can be computed
by Recover (Lemma 3.2):

(i) S ⊇ supp(C) with high probability, and

(ii) |S| ≤ w · | supp(C)| ≤ wmout.

To compute S, we repeat the following steps for ℓ← 1, . . . , L := 10⌈log(min)⌉: Sample a uniformly
random subset Iℓ ⊆ [w], and let Aℓ be the ⌈ xw⌉×y matrix defined by A′[i, k] =

∑
i′∈Iℓ A[(i−1)w+i′, k]

(again we ignore overflows and assume that A is zero outside of its bounds). By calling Multiply
recursively, we compute the matrix product C ′ = A′B. Then we pick Sℓ = {((i − 1)w + i′, j) :
(i, j) ∈ supp(C ′), i′ ∈ [w]}. Finally, take S = S1 ∪ · · · ∪ SL. We show that both properties (i) and
(ii) are satisfied by this construction:

(i) Consider any support element from supp(C), written as ((i − 1)w + i′, j) for i ∈ [x], i′ ∈
[w], j ∈ [z]. We prove that with high probability, ((i − 1)w + i′, j) ∈ S. First, focus on any
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repetition ℓ. By the definition of Aℓ and Cℓ, we have

Cℓ[i, j] =
∑
k∈[y]

Aℓ[i, k] ·B[k, j]

=
∑
k∈[y]

∑
i′∈Iℓ

A[(i− 1)w + i′]

 ·B[k, j]

=
∑
i′∈Iℓ

C[(i− 1)w + i′, j].

Recall that Iℓ ⊆ [w] is a uniformly random subset and that at least one of the terms in the
sum is nonzero (namely, C[(i − 1)w + i′, j]). Therefore, by Lemma 3.13, Cℓ[i, j] is nonzero
with probability at most 1

2 . Recall that in this case we include ((i−1) + i′, j) in Sℓ. It follows
that ((i− 1) + i′, j) ∈ S with high probability 1− 2−L ≥ 1−m−10

in .

(ii) From the same calculation we conclude that (i, j) ∈ supp(Cℓ) only if there is some i′ ∈ [w]
such that ((i− 1)w+ i′, j) ∈ supp(C). It follows that all sets S1, . . . , SL (and thus also S) are
contained in a superset of supp(C) of size at most w · | supp(C)| = wmout.

This completes the correctness proof, but it remains to analyze the running time. Ignoring the cost
of the recursive calls, the running time of Multiply is dominated by calling Recover. Each such
call runs in time

Õ

|S|+ max
x′≤x,z′≤z
x′·z′≤4|S|

TA(x′, y, z′,min)

 = Õ

 max
x′≤x,z′≤z

x′·z′≤4wmout

TA(x′, y, z′,min)

.

However, this time the recursive calls are considerably more costly than in Lemma 3.11: The
recursion reaches depth O(logw(x)) = O(logw(min)) and each node in the recursion tree branches
with degree L = O(logmin). It follows that the number of nodes in the recursion tree is bounded
by (logmin)O(logw min). Thus, by setting w = 2

√
logmin , the total running time is

(logmin)O(logw min) · max
x′≤x,z′≤z

x′·z′≤4wmout

TA(x′, y, z′,min)

= 2O(
√
logmin log logmin) · max

x′≤x,z′≤z

x′·z′≤mout·2
√

logmin+2

TA(x′, y, z′,min),

which is as claimed.

4 The Complete Algorithm

In this section we complete our algorithm for sparse matrix multiplication. We structure this
section as follows: We first give the heavy/light algorithm for input-sparse matrix multiplication in
Section 4.1, and combine this algorithm with the densification lemmas to obtain our main results
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in Section 4.2. Both algorithms rely on our sparse matrix multiplication exponent σ(r) as defined
in the following definition:13

Definition 1.5 (Exponent of Sparse Matrix Multiplication). Let r ∈ [0, 2]. We define σ(r) as the
unique solution σ to the equation ω(σ − 1, 2− σ, 1 + r − σ) = σ.

In Section 4.3 we analyze this exponent σ(r) in detail: We argue that σ(r) is well-defined, and
derive readable upper bounds on σ(r).

4.1 Input-Sparse Matrix Multiplication

The goal of this section is to design a heavy/light algorithm for input-sparse matrix multiplication.
The analysis of this algorithm (in the heavy case) hinges on the following lemma:

Lemma 4.1. Let a, b, c ≥ 0 with a ≤ c. Then, for any 0 ≤ δ ≤ c−a
2 , it holds that ω(a+δ, b, c−δ) ≤

ω(a, b, c).

Proof. If a = c, then also δ = 0 and the claim is trivial. So assume that c − a > 0 and let
ϵ = δ

c−a . By Facts 2.3 and 2.4, we have that ω((1 − ϵ)a, (1 − ϵ)b, (1 − ϵ)c) = (1 − ϵ)ω(a, b, c) and
ω(ϵc, ϵb, ϵa) = ϵω(c, b, a) = ϵω(a, b, c). Thus, by Fact 2.5 it follows that

ω(a + δ, b, c− δ) = ω(a + ϵ(c− a), b, c− ϵ(c− a))

= ω((1− ϵ)a + ϵc, (1− ϵ)b + ϵb, (1− ϵ)c + ϵa)

≤ ω((1− ϵ)a, (1− ϵ)b, (1− ϵ)c) + ω(ϵc, ϵb, ϵa)

= (1− ϵ)ω(a, b, c) + ϵω(a, b, c)

= ω(a, b, c),

which proves the claim.

Lemma 4.2 (Deterministic Input-Sparse Matrix Multiplication). Let R be a ring and let r ∈ [0, 2].
Given two matrices A ∈ Rx×y and B ∈ Ry×z with input size min and xz ≤ mr

in, we can compute
their product AB is in deterministic time O(m

σ(r)+ϵ
in ), for any ϵ > 0.

Proof. We assume by symmetry that x ≤ z (otherwise we use the identity AB = (BTAT )T to
compute AB and thereby exchange x and z). Throughout, let σ = σ(r) (and recall that σ ≥ 1).

We apply a heavy-light approach: We say that k ∈ [y] is light if |{i : A[i, k] ̸= 0}| ≤ mσ−1
in , and

heavy otherwise. Let y1 and y2 denote the number of light and heavy indices, respectively. We
subdivide A into submatrices A1 ∈ Zx×y1 and A2 ∈ Zx×y2 , where the light indices participate in A1

and the heavy indices participate in A2. Subdivide B similarly into B1 ∈ Zy1×z and B2 ∈ Zy2×z.
Then the algorithm executes the following two steps:

1. Compute r1 = A1 ·B1 exploiting the sparsities of A1 and B1. Specifically:

– Initialize r1 as an all-zero x× z matrix
– for (k, j) ∈ [y1]× [z] with B1[k, j] ̸= 0 do
– for i ∈ [x] with A1[i, k] ̸= 0 do

13Strictly speaking, σ(r) also depends on the underlying ring. That is, for a ring R we define σR(r) as the unique
solution to the equation ωR(σ− 1, 2− σ, 1+ r− σ) = σ. As for ω, we typically omit the subscript when the ring R is
clear.
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– r1[i, j]← r1[i, j] + A1[i, k] ·B1[k, j]

2. Compute r2 = A2 ·B2 using fast rectangular matrix multiplication (ignoring the assumption
that A2 and B2 are sparse).

We report C = r1 + r2 as the output.

The correctness is fairly obvious: For any subdivision of [y] we have that A·B = A1 ·B1+A2 ·B2.
It is easy to verify that step 1 correctly computes r1 = A1 ·B1 and immediate that step 2 correctly
computes r2 = A2 ·B2.

The interesting part is to analyze the running time. We start with step 1. The outer loop runs
for at most min iterations (since B contains at most min nonzero entries). And for any k, the inner
loop runs for at most mσ−1

in iterations since A1 corresponds to the light indices. Therefore, the
running time of step 1 is bounded by O(mσ

in).
For the second step, we start with some observations: First, if there is no heavy index (i.e.,

y2 = 0) then step 2 is trivial. We may therefore assume that there is at least one heavy index which
implies that x ≥ mσ−1

in . Second, using the assumptions that xz ≤ mr
in and x ≤ z, there is some

0 ≤ δ ≤ 1 + r
2 − σ such that x ≤ mσ−1+δ

in and z ≤ m1+r−σ−δ
in . Third, the number of heavy indices

is bounded by y2 ≤ min/m
σ−1
in = m2−σ

in . Recall that we compute the matrix product r2 = A2 · B2

using fast matrix multiplication. The running time of this step is thus O(m
ω(σ−1+δ,2−σ,1+r−σ−δ)+ϵ
in ),

for all ϵ > 0. This exponent can be bounded using Lemma 4.1:

ω(σ − 1 + δ, 2− σ, 1 + r − σ − δ) ≤ ω(σ − 1, 2− σ, 1 + r − σ) = σ.

In the final step we have applied the definition of σ = σ(r). In summary, the second step runs in
time O(mσ+ϵ

in ), which completes the proof.

4.2 Sparse Matrix Multiplication

We obtain our main results by a combination of the densification technique from the previous
Section 3 with the input-sparse algorithm. Specifically, the proofs of our Main Theorems 1.6
and 1.7 are a straightforward combination of Lemma 4.2 with the densification algorithms from
Lemmas 3.1 and 3.11:

Theorem 1.6 (Deterministic Sparse Boolean Matrix Multiplication). Sparse Boolean matrix mul-
tiplication with input size min and output size mout = mr

in is in deterministic time O(m
σ(r)+ϵ
in ), for

all ϵ > 0, r ∈ [0, 2].

Theorem 1.7 (Sparse Matrix Multiplication). Let R be a ring. Sparse matrix multiplication
over R with input size min and output size mout = mr

in is in randomized time O(m
σ(r)+ϵ
in ), for

all ϵ > 0, r ∈ [0, 2].

We will later argue that these theorems are conditionally optimal, but at this point it is far
from clear how to even interpret the running time m

σ(r)+ϵ
in . Therefore, the next section is devoted

to a detailed analysis of σ(r).
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4.3 The Sparse Matrix Multiplication Exponent

The Sparse Matrix Multiplication Exponent Is Well-Defined. Recall that we define σ(r)
as the unique solution to the equation ω(σ − 1, 2 − σ, 1 + r − σ) = σ. However, it is a priori not
clear that a solution σ to this equation even exists. Therefore, our first goal is to prove that σ(r)
is well-defined in the sense that there indeed exists unique solution (see Lemma 4.4).

Lemma 4.3. For any r ∈ [0, 2], the function σ−ω(σ− 1, 2− σ, 1 + r− σ) is strictly increasing for
σ ∈ [1, 1 + r

2 ].

Proof. Let f(σ) = ω(σ − 1, 2 − σ, 1 + r − σ). To prove the claim it suffices to show that f is
nonincreasing. And indeed, for any σ, σ′ ∈ [1, 1 + r

2 ] with σ ≤ σ′ we have

ω(σ′ − 1, 2− σ′, 1 + r − σ′)

≤ ω(σ′ − 1, 2− σ, 1 + r − σ′)

= ω(σ − 1 + (σ′ − σ), 2− σ, 1 + r − σ − (σ′ − σ))

≤ ω(σ − 1, 2− σ, 1 + r − σ).

Here, in the last step, we have applied Lemma 4.1 with δ = σ′ − σ; note that this choice satisfies
the required condition δ ≤ 1+r−σ−(σ−1)

2 = 1 + r
2 − σ.

Lemma 4.4. For any r ∈ [0, 2], there is a unique solution to the equation ω(σ−1, 2−σ, 1+r−σ) = σ.

Proof. Fix r ∈ [0, 2]. We start with an observation: By the trivial bounds a+b ≤ ω(a, b, c) ≤ a+b+c,
we have the following lower and upper bounds:

1 = σ − 1 + 2− σ ≤ ω(σ − 1, 2− σ, 1 + r − σ) ≤ σ − 1 + 2− σ + 1 + r − σ = 2 + r − σ.

It follows that any feasible solution to the equation ω(σ − 1, 2 − σ, 1 + r − σ) = σ must satisfy
1 ≤ σ ≤ 2 + r − σ and thus lies in the range [1, 1 + r

2 ]. Next, by the previous lemma the function
g(σ) = σ − ω(σ − 1, 2− σ, 1 + r − σ) is strictly increasing on [1, 1 + r

2 ]. Moreover, since ω(·, ·, ·) is
known to be a continuous function (Fact 2.1), it follows that also g is continuous. Finally, using
again the trivial bounds b + c ≤ ω(a, b, c) ≤ a + b + c, we can bound g at

g(1) = 1− ω(0, 1, r) ≤ 1− (1 + r) = −r ≤ 0,

and

g(1 + r
2) = 1 + r

2 − ω( r2 , 1−
r
2 ,

r
2) ≥ 1 + r

2 − ( r2 + 1− r
2 + r

2) = 0.

All in all, we showed that g is continuous and strictly increasing on [1, 1 + r
2 ] and that g(1) ≤ 0

and g(1 + r
2) ≥ 0. It follows that there is some σ ∈ [1 + r

2 ] with g(σ) = 0, or equivalently,
ω(σ − 1, 2− σ, 1 + r − σ) = σ.

Algebraic Upper Bounds for σ(r). We have established that σ(r) is well-defined, but it still
remains hard to grasp how σ(r) behaves as a function of r. For this reason, we will now derive
some explicit upper bounds on σ(r). Our strategy is as follows: We first prove that σ(r) is a convex
function of r. Then, we evaluate σ(r) at certain strategic points and conclude by the convexity
that the linear interpolation between these points is an upper bound on σ.
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Lemma 4.5 (Convexity). The function σ(r) is convex.

Proof. Fix any r1, r2 ∈ [0, 2] and any λ ∈ [0, 1]; we show that

σ(λr1 + (1− λ)r2) ≤ λσ(r1) + (1− λ)σ(r2) =: σ∗.

We start with the following calculation that uses the subadditivity—or equivalently, convexity—of ω
(see Fact 2.5):

ω(σ∗ − 1, 2− σ∗, 1 + λr1 + (1− λ)r2 − σ∗)

= ω(λ(σ(r1)− 1) + (1− λ)(σ(r2)− 1),

λ(2− σ(r1)) + (1− λ)(2− σ(r2)),

λ(1 + r1 − σ(r1)) + (1− λ)(1 + r2 − σ(r2)))

≤ λ · ω(σ(r1)− 1, 2− σ(r1), 1 + r1 − σ(r1))

+ (1− λ) · ω(σ(r2)− 1, 2− σ(r2), 1 + r2 − σ(r2))

= λσ(r1) + (1− λ)σ(r2)

= σ∗.

By Lemma 4.3 the function g(σ) = ω(σ − 1, 2 − σ, 1 + λr1 + (1 − λ)r2 − σ) is strictly increasing.
Since we just proved that g(σ∗) ≥ 0, it follows that the unique zero σ(λr1 + (1−λ)r2) of g satisfies
σ(λr1 + (1− λ)r2) ≤ σ∗.

Lemma 4.6 (Trivial Bounds). max{1, r} ≤ σ(r) ≤ 1 + r
2 .

Proof. Recall that σ(r) = ω(σ(r)−1, 2−σ(r), 1+r−σ(r)). On the one hand, from the trivial lower
bound max{a+b, a+c} ≤ ω(a, b, c) (Fact 2.2), we obtain σ(r) ≥ max{σ(r)−1+2−σ(r), σ(r)−1+
1+r−σ(r)} = max{1, r}. On the other hand, the trivial upper bound ω(a, b, c) ≤ a+b+c (Fact 2.2)
entails that σ(r) ≤ σ(r)− 1 + 2− σ(r) + 1 + r − σ(r) which can be rewritten as σ(r) ≤ 1 + r

2 .

Note that these trivial bounds already imply tight values σ(0) = 1 and σ(2) = 2. We continue to
evaluate σ(r) for more points. For the following two lemmas, recall that we define the rectangular
matrix multiplication constant µ as the unique solution to ω(µ, 1, 1) ≤ 1 + 2µ, and α = max{α :
ω(α, 1, 1) = 2}.

Lemma 4.7. σ(1) = 1 + µ
1+µ .

Proof. Recall that σ = σ(1) is the unique solution to the equation (1) ω(σ − 1, 2 − σ, 2 − σ) = σ
and that µ is the unique solution to the equation (2) ω(µ, 1, 1) = 1 + 2µ, or equivalently (3)
ω( µ

1+µ ,
1

1+µ ,
1

1+µ) = 1+2µ
1+µ . By substituting σ by 1 + µ

1+µ = 1+2µ
1+µ in (1), we find that (1) and (3) are

equivalent.

Lemma 4.8. σ(1 + 1
1+α) = 1 + 1

1+α .

Proof. We have to prove that ω(1 + 1
1+α −1, 2− (1 + 1

1+α), 2 + 1
1+α − (1 + 1

1+α)) = ω( 1
1+α ,

α
1+α , 1) =

1 + 1
1+α . On the one hand, from the trivial lower bound a + c ≤ ω(a, b, c) (Fact 2.2), we get that

ω( 1
1+α ,

α
1+α , 1) ≥ 1 + 1

1+α . On the other hand, by Facts 2.4 and 2.5 we have that

ω

(
1

1 + α
,

α

1 + α
, 1

)
≤ ω

(
1

1 + α
,

α

1 + α
,

1

1 + α

)
+

α

1 + α
=

2

1 + α
+

1

1 + α
= 1 +

1

1 + α
.
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Table 2. Numerical bounds on the sparse matrix multiplication exponent σ(r), based on the dense rectan-
gular matrix multiplication bounds by Le Gall and Urrutia [GU18].

r σ(r)

0.00 1.0000
0.05 1.0171
0.10 1.0342
0.15 1.0513
0.20 1.0684
0.25 1.0855
0.30 1.1026
0.35 1.1197
0.40 1.1368

r σ(r)

0.45 1.1539
0.50 1.1710
0.55 1.1881
0.60 1.2052
0.65 1.2223
0.70 1.2396
0.75 1.2569
0.80 1.2744

r σ(r)

0.85 1.2921
0.90 1.3099
0.95 1.3277
1.00 1.3458
1.05 1.3665
1.10 1.3875
1.15 1.4086
1.20 1.4299

r σ(r)

1.25 1.4513
1.30 1.4728
1.35 1.4943
1.40 1.5199
1.45 1.5476
1.50 1.5761
1.55 1.6060
1.60 1.6378

r σ(r)

1.65 1.6720
1.70 1.7091
1.75 1.7505
1.80 1.8000
1.85 1.8500
1.90 1.9000
1.95 1.9500
2.00 2.0000

In summary, we have the identities σ(0) = 1, σ(1) = 1 + µ
1+µ , σ(1 + 1

1+α) = 1 + 1
1+α , σ(2) = 2

by Lemmas 4.6 to 4.8. By the convexity of σ(r) it follows that σ(r) is upper-bounded by the line
segments that interpolate between these four points:

Lemma 4.9. σ(r) ≤ max{1 + r · µ
1+µ ,

(2+α)µ
1+µ + r · 1−αµ

1+µ , r}, for any r ∈ [0, 2].

Numerical Upper Bounds for σ(r). The previous consideration lead to readable upper bounds
on σ(r), but it is actually possible to improve these upper bounds using the currently best numerical
bounds on the complexity of rectangular matrix multiplication [GU18]. We give our results in
Table 2.

To achieve these results, suppose that we know a set of bounds of the form {ω(ai, bi, ci) ≤ ωi}ni=1.
We take [GU18, Table 3] as the basis for our bounds in Table 2. Then, consider the following linear
program in the variables σ, λ1, . . . , λn:

minimize σ,

subject to
∑n

i=1 λiωi = σ,∑n
i=1 λiai = 1 + σ,∑n
i=1 λibi = 2− σ,∑n
i=1 λici = 1 + r − σ,

σ, λ1, . . . , λn ≥ 0.

Using Fact 2.5, it is easy to show that any solution σ∗ to this linear program yields an upper bound
of the form σ(r) ≤ σ∗.

Bounds when ω = 2. Finally, suppose that ω = 2. In this case, we have ω(a, b, c) = max{a +
b, a+ c, b+ c}. It follows that σ(r) is the unique solution to the equation max{1, r, 3 + r− 2σ} = σ,
and the following lemma is immediate:

Lemma 4.10. If ω = 2, then σ(r) = max{1 + r
3 , r}.
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5 Relation to All-Edges Triangle

In this section we prove conditional lower bounds for sparse (Boolean) matrix multiplication under a
hypothesis (Hypothesis 1.9) about the All-Edges Triangle problem (AE-Triangle, Definition 1.2).
We also prove that in the fully sparse setting (where min + mout ≤ m), sparse (Boolean) matrix
multiplication is equivalent to a certain parameterization of AE-Triangle. We start with a recap
of the relevant definitions.

Definition 1.2 (AE-Triangle). The AE-Triangle(x, y, z,m) problem is to decide, in a given
tripartite graph G = (X,Y, Z,E) with |X| ≤ x, |Y | ≤ y, |Z| ≤ z and |E| ≤ m, for each edge
(i, j) ∈ (X × Z) ∩ E whether it is part of a triangle in G.

Definition 5.1 (#AE-Triangle). The #AE-Triangle(x, y, z,m) problem is to count, in a
given tripartite graph G = (X,Y, Z,E) with |X| ≤ x, |Y | ≤ y, |Z| ≤ z and |E| ≤ m, for each edge
(i, j) ∈ (X × Z) ∩ E how many triangles it is part of.

Definition 1.8 (PS-AE-Triangle). The PS-AE-Triangle(x, y, z,m) problem is to decide, in
a given tripartite graph G = (X,Y, Z,E) with |X| ≤ x, |Y | ≤ y, |Z| ≤ z and |E ∩ (Y × Z)| ≤ m,
for each edge (i, j) ∈ (X × Z) ∩ E whether it is part of a triangle in G.

Hypothesis 1.9 (PS-AE-Triangle). For all a, b, c ≥ 0, the PS-AE-Triangle(ma,mb,mc,m)
problem cannot be solved in time O(mmin{1+a, ω(a,b,c)}−ϵ), for any ϵ > 0.

Recall that this hypothesis morally expresses that the best way to detect triangles (for all edges)
in a graph is to combine two algorithms: Fast matrix multiplication, and enumerating all 2-paths
in the graph. Our hardness result is that, under this hypothesis, sparse matrix multiplication has
exponent σ(r):

Theorem 1.10 (Hardness under PS-AE-Triangle). Let r ∈ [0, 2]. For any ϵ > 0, sparse Boolean
matrix multiplication with input size min and output size mout = mr

in cannot be solved in time
O(m

σ(r)−ϵ
in ), unless the PS-AE-Triangle hypothesis fails.

Proof. Fix r ∈ [0, 2], let σ = σ(r), and suppose that sparse Boolean matrix multiplication is in
time O(mσ−ϵ

in ). We prove that the PS-AE-Triangle(ma,mb,mc,m) problem for a = σ − 1, b =
2− σ, c = 1 + r− σ can be solved polynomially faster than mmin{1+a, ω(a,b,c)}. Let G = (X,Y, Z,E)
be a given instance of PS-AE-Triangle(ma,mb,mc,m). We solve this instance as follows: Let A
be the adjacency matrix of the bipartite subgraph with vertices X ∪Y , and let B be the adjacency
matrix of the bipartite subgraph with vertices Y ∪ Z. We compute the matrix product AB using
the efficient algorithm for sparse Boolean matrix multiplication—note that the input size is at most
xy + m = O(m) and the output size is at most xz = mr which yields the correct input-to-output
ratio (possibly after padding). We report all edges (i, j) ∈ (X × Z) ∩ E with (AB)[i, j].

The correctness is easy: For any pair (i, j) ∈ X × Z we have (AB)[i, j] = 1 if and only if there
is a 2-path in G from i to j via some node k ∈ Y . Thus, the algorithm reports exactly all pairs
(i, j) ∈ X × Z for which there is 2-path (i, k, j) and there is an edge (i, j) ∈ E. This is the set of
pairs involved in a triangle.

Next, we analyze the running time. The dominating step is the sparse Boolean matrix multi-
plication in time O(mσ−ϵ); afterwards, the reporting step runs in negligible time O(yz) = O(m).
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But recall that σ satisfies the equation ω(σ + 1, 2 − σ, 1 + r − σ) = σ, and thus the running time
can be written as

O(mσ−ϵ) = O(mmin{σ, ω(σ+1,2−σ,1+r−σ)}−ϵ) = O(mmin{1+a, ω(a,b,c)}−ϵ),

which contradicts the PS-AE-Triangle hypothesis.

5.1 Equivalence with All-Edges Triangle in the Fully Sparse Setting

In this section we prove that in the fully sparse setting (i.e., when we measure the combined input
plus output sparsity m = min + mout), the sparse matrix multiplication problem is equivalent to a
certain parameterization of AE-Triangle. We start with the following lemmas, based on Le Gall
and Urrutia’s bounds on rectangular matrix multiplication:

Lemma 5.2 ([GU18, Table 3]). ω(1, 1.3, 1) ≤ 2.6217 and ω(1, 1.4, 1) ≤ 2.7085.

Lemma 5.3. For any 0 ≤ δ ≤ 1−µ
2 , it holds that ω(µ + δ, 1, 1− δ) ≤ 1 + 2µ− 0.02δ.

Proof. Let γ = 1− δ
1−µ and note that δ ≤ 1

2 ≤ γ ≤ 1− δ. By the subadditivity of ω (see Fact 2.5),
we have that

ω(µ + δ, 1, 1− δ)

= ω( 1− (1− µ)γ, 1, µ + (1− µ)γ )

≤ ω( (γ − δ)µ, γ − δ, γ − δ )

+ ω( 1− γ − δ, 1− γ − δ, (1− γ − δ)µ )

+ ω( (1 + µ)δ, 2δ, (1 + µ)δ ).

We can bound these three terms by (γ − δ)(1 + 2µ), (1− γ − δ)(1 + 2µ) and (1 + µ)δ · ω(1, 2
1+µ , 1),

respectively. Further, we numerically bound ω(1, 2
1+µ , 1) as follows. Since µ ≥ 1

2 , we have
ω(1, 2

1+µ , 1) ≤ ω(1, 43 , 1). Next, we use that ω(·, ·, ·) is convex and can thus be upper-bounded
by any linear interpolation between two points. Specifically, we can bound

ω(1, 43 , 1) ≤ 2
3 · ω(1, 1.3, 1) + 1

3 · ω(1, 1.4, 1) = 2
3 · 2.6217 + 1

3 · 2.7085 ≤ 2.6507

by the bounds from the previous Lemma 5.2. Therefore:

ω(µ + δ, 1, 1− δ)

≤ (γ − δ)(1 + 2µ) + (1− γ − δ)(1 + 2µ) + (1 + µ)δ · ω(1, 2
1+µ , 1)

≤ 1 + 2µ− 2δ(1 + 2µ) + δ(1 + µ) · 2.6507

= 1 + 2µ− δ(2 + 4µ− 2.6507− 2.6507µ)

= 1 + 2µ− δ(1.3493µ− 0.6507)

≤ 1 + 2µ− δ(12 · 1.3493− 0.6507)

≤ 1 + 2µ− 0.0240δ,

which completes the proof.
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Theorem 1.3 (Equivalence with AE-Triangle). The following two statements are equivalent in
terms of deterministic and randomized algorithms:

(1) There is some ϵ > 0 such that sparse Boolean matrix multiplication is in time O(m
1+ µ

1+µ
−ϵ

).

(2) There is some ϵ′ > 0 such that AE-Triangle(nµ, n, n, n1+µ) is in time O(n1+2µ−ϵ′).

Proof: (1) implies (2). This part is very similar to Theorem 1.10, and due to the similarity we
only sketch this part. We use sparse Boolean matrix multiplication to compute all pairs of nodes
(i, j) ∈ X × Z connected by a 2-path, and return all such pairs that are additionally connected by
an edge (i, j) ∈ E. The time complexity is dominated by the Boolean matrix multiplication with

input size n1+µ and output size n1+µ running in time O((n1+µ)
1+ µ

1+µ
−ϵ

) = O(n1+2µ−ϵ).

(2) implies (1). Assume that there is an algorithm A for AE-Triangle(nµ, n, n, n1+µ) in time
O(n1+2µ−ϵ′) for some ϵ′ > 0. We design an efficient algorithm for sparse Boolean matrix multipli-
cation. Let A ∈ {0, 1}x×y and B ∈ {0, 1}y×z be a given instance. By densification (Lemma 3.11),
we can assume that xz ≤ 8m and by symmetry we assume that x ≤ z.

Let ϵ > 0 be a parameter to be fixed later. In the same spirit as Lemma 4.2, we say that an
index k ∈ [y] is light if |{i : A[i, k] ̸= 0}| ≤ m

µ
1+µ

−ϵ
, and heavy otherwise. We let y1 and y2 denote the

number of light and heavy indices, respectively, and subdivide A into submatrices A1 ∈ {0, 1}x×y1

and A2 ∈ {0, 1}x×y2 , where the light indices participate in A1 and the heavy indices participate in
A2. We similarly subdivide B into B1 ∈ {0, 1}y1×z and B2 ∈ {0, 1}y2×z. Then we run the following
two steps:

1. Compute C1 = A1 · B1 exploiting the sparsities of A1 and B1 exactly as in Lemma 4.2 (by
enumerating all 2-paths (i, k, j) ∈ [x]× [y1]× [z] with A1[i, k] = B1[k, j] = 1).

2. To compute C2 = A2 ·B2, we distinguish the following two cases:

2a. If x ≥ m
µ

1+µ
+300ϵ

, then compute A2 · B2 using fast matrix multiplication (ignoring the
assumption that A2 and B2 are m-sparse).

2b. If x < m
µ

1+µ
+300ϵ

, then we compute A2 · B2 with the help of algorithm A. Let G =
(X,Y, Z,E) be a tripartite graph with vertex parts X,Y, Z of sizes |X| = x, |Y | =
y2, |Z| = z. Add edges in X × Y as specified by A2, add edges in Y × Z as specified by
B2 (i.e., view A2 and B2 as the bi-adjacency matrices for these respective parts), and
add all edges in X ×Z. Run A on this instance G. We let C2 ∈ {0, 1}x×z be the matrix
with C2[i, j] = 1 if and only if the edge (i, j) ∈ X × Z participated in a triangle in G.

Finally, report C = C1 + C2 as the output.

Due to their similarity to Lemma 4.2 we omit the correctness proof of steps 1 and 2a, and only
analyze step 2b. By the construction of the graph G, there is a 2-path between two nodes i ∈ X and
j ∈ Z if and only if there is some node k ∈ Y with A[i, k] = B[k, j] = 1. Since the graph contains
all edges (i, j) any such 2-path can be completed to a triangle. Therefore, G indeed contains a
triangle involving (i, j) if and only if C2[i, j] = 1.

Next, focus on the running time. As before, step 1 runs in time O(m ·m
µ

1+µ
−ϵ

) = O(m
1+ µ

1+µ
−ϵ

).

To bound the running time of step 2, we may assume that x ≥ m
µ

1+µ
−ϵ

(as otherwise there is no
heavy index k which renders step 2 trivial) and that y2 ≤ m/m

µ
1+µ

−ϵ
= m

1
1+µ

+ϵ
.
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We start with step 2a: By the three assumptions that x ≥ m
µ

1+µ
+300ϵ

, that xz ≤ 8m and
that x ≤ z, there must be some constant δ with 300ϵ ≤ δ ≤ 1−µ

2 such that x ≤ m
µ+δ
1+µ

+o(1)
and

z ≤ m
1−δ
1+µ

+o(1)
. Therefore, it takes time O(m

ω(µ+δ
1+µ

, 1
1+µ

+ϵ, 1−δ
1+µ

)+ϵ
), say, to compute C2 by fast matrix

multiplication. Using Lemma 5.3 and Facts 2.4 and 2.5 this exponent can be bounded by

ω

(
µ + δ

1 + µ
,

1

1 + µ
+ ϵ,

1− δ

1 + µ
− δ

)
+ ϵ

≤ ω(µ + δ, 1, 1− δ)

1 + µ
+ 2ϵ

≤ 1 + 2µ− 0.02δ

1 + µ
+ 2ϵ

≤ 1 + 2µ

1 + µ
+−0.01δ + 2ϵ

≤ 1 +
µ

1 + µ
− ϵ.

It remains to analyze the running time of step 2b. Recall that we can assume that y2 ≤ m
1

1+µ
+ϵ

and that x ≥ m
µ

1+µ
−ϵ

and thus z ≤ m
1

1+µ
+ϵ

. By step 2b we further have x < m
µ

1+µ
+300ϵ

. Let
n = m

1
1+µ

+600ϵ
, then these bounds imply that vertex parts in the graph G have sizes |X| = x ≤

nµ, |Y | = y2 ≤ n, |Z| = z ≤ n. Moreover, the number of edges in the graph G is at most m+ xz ≤
O(m) = O(n1+µ). Therefore, the graph G is an instance of AE-Triangle(nµ, n, n,O(n1+µ)) and
can be solved by A in time

O(n1+2µ−ϵ′) = O(m
( 1
1+µ

+600ϵ)(1+2µ−ϵ′)
) = O(m

1+ µ
1+µ

+1800ϵ− 1
2
ϵ′

).

(In the last step we used the trivial bounds 1
2 ≤ µ ≤ 1.) Setting ϵ = ϵ′

3602 , this becomes O(m
1+ µ

1+µ
−ϵ

)
and also the total running time is O(m

1+ µ
1+µ

−ϵ
).

In fact, this equivalence between Boolean matrix multiplication and AE-Triangle can be
adapted to an equivalence between integer matrix multiplication and #AE-Triangle:

Theorem 5.4 (Equivalence with #AE-Triangle). The following four statements are equivalent
in terms of randomized algorithms:

(1) There is some ϵ > 0 such that sparse integer matrix multiplication (with entries bounded by

poly(m)) is in time O(m
1+ µ

1+µ
−ϵ

).

(2) There is some ϵ > 0 such that sparse nonnegative integer matrix multiplication (with entries

bounded by poly(m)) is in time O(m
1+ µ

1+µ
−ϵ

).

(3) There is some ϵ > 0 such that sparse integer matrix multiplication of {0, 1}-matrices is in

time O(m
1+ µ

1+µ
−ϵ

).

(4) There is some ϵ′ > 0 such that #AllEdgesTriangle(nµ, n, n, n1+µ) is in time O(n1+2µ−ϵ′).

Proof: (1) implies (4). This part of the proof is again very similar to Lemma 4.2. The only differ-
ence is that since integer matrix multiplication supports to count the number of 2-paths between
two nodes i and j, we can also count the number of triangles involving (i, j).
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(4) implies (3). This part of the proof is similar to Theorem 1.3. The steps 1 and 2a are already
computing the integer-valued matrices C1 and C2. Since we restrict the matrices to have entries
{0, 1}, in step 2b we can exactly express the matrix multiplication problem as an instance of
#AE-Triangle. We omit further details and instead focus on the new aspects of this proof.

(3) implies (2). Assume that for some ϵ > 0 there is an O(m
1+ µ

1+µ
−ϵ

)-time algorithm for sparse
matrix multiplication of {0, 1}-matrices. We give an algorithm to efficiently multiply two nonneg-
ative matrices A,B with entries bounded by mc for some constant c. Let L = ⌈c log(m)⌉, and
construct the {0, 1}-matrices A0, . . . , AL, where Aℓ[i, j] = 1 if and only if the ℓ-th bit of A[i, j] is
one. We similarly construct B0, . . . , BL. Note that

A =
L∑

ℓ=0

2ℓAℓ, B =
L∑

ℓ=0

2ℓBℓ,

and thus

AB =

(
L∑

ℓ=0

2ℓAℓ

)(
L∑

ℓ=0

2ℓBℓ

)
=

L∑
ℓ1=0

L∑
ℓ2=0

2ℓ1+ℓ2Aℓ1Bℓ2 .

Note that the sparsity of Aℓ1 , Bℓ2 and Aℓ1Bℓ2 does not blow up—more precisely, supp(Aℓ1) ⊆
supp(A), supp(Bℓ2) ⊆ supp(B) and supp(Aℓ1Bℓ2) ⊆ supp(AB) for all ℓ1, ℓ2. Hence, we can compute
the L2 = O(log2m) matrix products Aℓ1Bℓ2 in time Õ(m

1+ µ
1+µ

−ϵ
), and obtain AB by the previous

equation.

(2) implies (1). Assume that for some ϵ > 0 there is an O(m
1+ µ

1+µ
−ϵ

)-time algorithm for sparse
nonnegative matrix multiplication. We give an algorithm to efficiently multiply two integer ma-
trices A ∈ Zx×y and B ∈ Zy×z (with possibly negative entries). By the randomized densification
from Lemma 3.12, we may assume that xz ≤ m1+o(1) at the cost of worsening the running time by
a polylogarithmic factor.

Let ∆ denote the largest entry in A and B in absolute value. We define two nonnegative
matrices A0, A1 as follows:

A0[i, j] =

{
A[i, j] + ∆ if A[i, j] ̸= 0,

0 otherwise,
A1[i, j] =

{
∆ if A[i, j] ̸= 0,

0 otherwise.

Note that A = A0 −A1. For similarly defined nonnegative matrices B0, B1 we have B = B0 −B1.
It follows that

AB = (A0 −A1)(B0 −B1) = A0B0 −A0B1 −A1B0 + A1B1.

Since supp(A0), supp(A1) ⊆ supp(A) and similarly supp(B0), supp(B1) ⊆ supp(B), the number
of nonzero entries in A0, A1, B0, B1 is bounded by m. Additionally, since all four products have
dimensions x×z and we assumed that xz ≤ m1+o(1), the output size is trivially bounded by m1+o(1).

Therefore, we can compute the four matrix products in time m
1+ µ

1+µ
−ϵ+o(1) ≤ O(m

1+ µ
1+µ

−ϵ/2
), and

compute AB by the previous equation.
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6 Conclusions and Open Problems

We conclude with two important open questions.

Almost-Linear Time? If ω = 2 then matrix multiplication can be solved in linear time in the
dense case, but the m4/3 barrier persists in the fully sparse case m = min+mout. The non-existence
of linear-time algorithms for sparse matrix multiplication has been used as hardness assumption
in [BGS20]. Theorem 1.3 shows that future research can focus on a concrete special case, namely the
AE-Triangle(

√
n, n, n, n3/2) problem. Any new techniques either for algorithms or for reductions

(from other famous problems) should be tested against it.

Derandomization. Can we solve integer matrix multiplication in time O(m
1+ µ

1+µ
+ϵ

) determin-

istically? A full derandomization of our O(m
σ(r)+ϵ
in )-time algorithm for mout = Θ(mr

in) for all
r ∈ [0, 2] is certainly challenging, as it would imply a deterministic O(m1+ϵ)-time algorithm for
verifying whether three given matrices A,B,C with m nonzeros satisfy C = AB, see Section 1.5.
Such a derandomization of Freivalds’ algorithm, which even applies to sparse matrices, is per-
haps too strong to hope for. The next best goal is to obtain a derandomization in the relaxed
setting (pursued, e.g., in [Kut13, Kün18]) in which we are given a close estimate b that satisfies
mout ≤ b ≤ O(mout).
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2−αω
ω−1−α

+o(1). For the current values of ω ≤ 2.3719 [DWZ23]
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therefore assume throughout this section that ω > 2. It is easy to check that the Yuster-Zwick
algorithm beats the matrix multiplication time nω in the regime with at most m≪ n

1+ω
2 nonzeros.

For exactly m = Θ(n
1+ω
2 ) nonzeros, their algorithm recovers the matrix multiplication running

time. In this section, based on the previous work of the fine-grained complexity community, we
show that improving upon Yuster-Zwick in the regime m = Θ(n

1+ω
2 ) would contradict some recent

fine-grained assumptions. Consider the following problem:

Definition A.1 (Monochromatic All-Edges Triangle). The Monochromatic All-Edges Triangle
problem is, given an edge-colored graph, to decide for each edge whether it is part of a monochro-
matic triangle (i.e., a triangle in which all three edges have the same color).

The Monochromatic All-Edges Triangle problem can be solved in time n
3+ω
2

+o(1) (this is typically
called an intermediate running time—between fast matrix multiplication and cubic-time brute-
force), and it is a recent conjecture that this time is optimal (up to subpolynomial factors) [LPW20,
VWY06, WX20]:

Hypothesis A.2 (Monochromatic All-Edges Triangle). The Monochromatic All-Edges Triangle
problem cannot be solved in time O(n

3+ω
2

−ϵ), for any ϵ > 0.

Evidence for this hypothesis is that any improvement for Monochromatic All-Edges Triangle

beyond the n
3+ω
2 barrier carries over to other well-studied intermediate problems, including the

(min,max)-Product, ∃Dominance Product, ∃Equality Product, and many more [WX20] (assuming
that ω > 2). While this hypothesis is much more recent than many other well-established con-
jectures in fine-grained complexity (and may therefore seem less believable), it can certainly be
viewed as an important algorithmic barrier that needs to be overcome to make progress on several
interesting problems.

Based on similar reductions as in [LPW20], we prove that the Monochromatic All-Edges Triangle
hypothesis implies that Yuster and Zwick’s algorithm is optimal. The proof is simple, but we are
not aware of any prior references.

Lemma A.3. Assume that ω > 2. Then the Boolean matrix product of two n × n matrices with
at most O(n

1+ω
2 ) nonzero entries cannot be computed in time O(nω−ϵ), for any ϵ > 0, unless the

Monochromatic All-Edges Triangle Hypothesis fails.

Proof. We design a reduction from the Monochromatic All-Edges Triangle problem. We will treat
all colors separately. So fix any color χ, let Gχ denote the subgraph with edges colored with χ, and
let mχ denote the number of edges in Gχ. We distinguish the following three cases, based on the
frequency mχ. Throughout, let δ > 0 be a parameter to be fixed later.

• If n
1+ω
2

+δ ≤ mχ: Solve the All-Edges Triangle problem on Gχ in time nω+o(1) using fast
(Boolean) matrix multiplication.

• If n
1+ω
2

−δ ≤ mχ ≤ n
1+ω
2

+δ: By adding n′ = n1+δ isolated dummy nodes to the graph Gχ, we
obtain a larger graph G′

χ with O(n′) nodes and

mχ ≤ n
1+ω
2

+δ ≤ n(1+δ)· 1+ω
2 ≤ O((n′)

1+ω
2 )

edges. We can use the oracle for input-sparse matrix multiplication to solve the All-Edges
Triangle problem on that graph in time O((n′)ω−ϵ) ≤ O(nω+δω−ϵ) ≤ O(nω+3δ−ϵ).
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• If mχ ≤ n
1+ω
2

−δ: Solve the All-Edges Triangle problem on Gχ in time (mχ)
2ω
ω+1

+o(1) [AYZ97].

This completes the description of the algorithm. It remains to bound the running time. Clearly
there are at most n2/n

1+ω
2

+δ = n
3−ω
2

−δ many colors falling into the first category. Solving each

such color in time nω+o(1) takes time n
ω+3
2

−δ+o(1) in total. Similarly, there can be at most n
3−ω
2

+δ

colors falling into the second category. For each such color we spend time O(nω+3δ−ϵ), and thus
the total time for the second case is O(n

ω+3
2

+4δ−ϵ). Finally, discarding all colors from the first two
categories, the remaining colors satisfy that mχ ≤ n

1+ω
2

−δ and that
∑

χmχ ≤ n2. Thus, the time
for the third case is at most∑

χ

(mχ)
2ω
ω+1

+o(1) =
∑
χ

mχ · (mχ)
ω−1
ω+1

+o(1) ≤ n2 · (n
1+ω
2

−δ)
ω−1
ω+1

+o(1) ≤ n
3+ω
2

− δ
4
+o(1).

All in all, the algorithm runs in time n
3+ω
2

−min(δ,ϵ−4δ, δ
4
)+o(1). The claim follows for 0 < δ < ϵ

4 .
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