
Understanding Degradation Phenomena in
Solid-Oxide Fuel-Cell Anodes by Phase-Field

Modeling and Analytics

Zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften
von der KIT-Fakultät für Maschinenbau

des Karlsruher Instituts für Technologie (KIT)

genehmigte
Dissertation

von

Paul Wilhelm Hoffrogge, M. Sc.

Tag der mündlichen Prüfung: 19. Dezember 2023
Referent: Prof. Dr. rer. nat. Britta Nestler
Korreferent: PD Dr.-Ing. André Weber





Kurzfassung

In der vorliegenden Arbeit werden numerische und analytische Verfahren ange-
wendet, um die quantitative Mikrostrukturmodellierung in Materialsystemen zu
erleichtern, die sowohl Volumendiffusion als auch Grenzflächendiffusion bein-
halten. Dies wird erreicht, indem ein existierendes Multiphasenfeldmodell für
Multikomponentensysteme um einen Term erweitert wird, der Diffusion ent-
lang von Korn- und Phasengrenzen erlaubt. Eine detaillierte analytische Un-
tersuchung der Kombination von Oberflächen- und Volumendiffusion liefert
das Verhalten des Modells für eine verschwindende Grenzflächenbreite. Die
dadurch erhaltene Gesetzmäßigkeit ist mit einer erweiterten Oberflächenbilanz
konsistent und kann quantitativ mit der Oberflächendiffusionstheorie in Einklang
gebracht werden. Zusätzlich werden analytische Vorhersagen hoher Ordnung
vorgestellt, die den Einfluss von Interpolationsfunktionen in Phasenfeldmodellen
des Hindernistyps beleuchten. Die Analyse deckt zum ersten Mal das nichtlin-
eare Modellverhalten in Bezug auf eine Veränderung in der Grenzflächenbreite
und -geschwindigkeit auf. Dieser Effekt kann in numerischen Simulationen re-
produziert werden. Das erweiterte Multiphasenfeldmodell wird auf Nickelver-
gröberung in konventionellen Nickel-YSZ Festoxidbrennstoffzellanoden ange-
wandt. Eine große Anzahl von dreidimensionalen Simulationsstudien werden
durchgeführt, basierend sowohl auf künstlich generierten, als auch experimentell
rekonstruierten Mikrostrukturen. Der Einfluss einer Variation in der initialen
Mikrostruktur wird in Bezug auf zeitliche Veränderungen von mikrostrukturellen
Kenngrößen diskutiert. Die Simulationen der künstlich generierten Strukturen
zeigen, dass eine feine Verteilung des YSZ die Vergröberung des Nickels ein-
schränkt. Dieses mildert schlussendlich die Degradation des Anodenmaterials ab.
Die Simulationen basierend auf einer realistischen, durch FIB-SEM Mikroskopie
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Kurzfassung

rekonstruierten Mikrostruktur, zeigen zusätzlich, dass ein geringfügiger Nick-
elzusatz den Anteil an Nickelinseln reduziert. Es wird gezeigt, dass dies die Lan-
glebigkeit der Anode erhöht. Die räumlich und zeitlich aufgelösten Mikrostruk-
turdaten, welche durch die Phasenfeldsimulationen bereitgestellt werden, kön-
nen als Eingangsgrößen für ein Kettenleitermodell verwendet werden. Dies
ermöglicht eine Abschätzung der elektrochemischen Eigenschaften der Anode
während des Betriebs. Zukunftsperspektiven für die Forschung werden durch
die Oberflächenerweiterung erreicht, da diese nicht ausschließlich für die Ver-
gröberung von Nickel formuliert ist. Dadurch kann eine große Bandbreite von
Systemen genauer beschrieben werden, in denen der Transport entlang von
Grenzflächen eine entscheidende Rolle spielt, was zuvor nicht möglich war.
Die Kombination der Phasenfeldmethode mit Kettenleitermodellen scheint ein
zukunftsträchtiger Werkzeugkasten zu sein, da er leicht erweiterbar ist indem
man beispielsweise die Komplexität des Kettenleiteransatzes erhöht und auf eine
erweiterte Palette von mikrostrukturellen Parametern zurückgreift.

ii



Abstract

The current work combines numerical and analytical techniques to facilitate
quantitative microstructure modeling in material systems which include not only
bulk diffusion but also diffusion along interfaces. This is achieved by extend-
ing an existing multiphase-field model for multicomponent systems with a term
allowing diffusion of species along grain and phase boundaries. A detailed ana-
lytical investigation delivers the sharp-interface limit of the phase-field model for
a combination of surface and bulk diffusion. The obtained governing law is con-
sistent with an extended interfacial balance and can be quantitatively related to
surface-diffusion theory. Additionally, high-order analytical predictions are pre-
sented concerning the effect of a choice of interpolation function in phase-field
models of obstacle type. The analysis unravels for the first time nonlinear model
behavior in terms of variations in interface thickness and velocity. This effect is
shown to be reproducible in numerical simulations. The extended multiphase-
field model is applied to nickel coarsening in conventional nickel-YSZ solid-
oxide fuel cell anodes. A large number of three-dimensional simulation studies
are performed based on artificially generated as well as experimentally recon-
structed microstructures. The influence of variations in the initial microstructure
is discussed concerning the evolution of selected key microstructural properties.
The simulations on artificially generated structures show that a fine YSZ network
can partially suppress the coarsening of nickel which in turn mitigates degrada-
tion of the anode material. The simulations on a realistic FIB-SEM reconstructed
anode show in addition that a slight increase in nickel content reduces the amount
of nickel islands which improves its durability. The spatially and temporally re-
solved microstructural data provided by phase-field simulations can be used as
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input for a transmission-line model providing an estimate of the electrochemi-
cal properties of the anode during operation. Future research perspectives are
enabled by the surface diffusion extension since it is not exclusively formulated
for nickel coarsening. Therefore, a large variety of systems can be accurately
rendered where transport along interfaces plays an important role which was not
possible before. Combining the phase-field method with transmission-line mod-
els seems to be a toolchain with good prospects since it can easily be advanced
further e.g. by increasing the complexity of the TLM and incorporating a larger
amount of microstructural properties.
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Nomenclature

Physical Constants

R Ideal gas constant

ε0 Permittivity of free space

Latin Symbols

A Thermodynamic prefactor / Surface area

a Gradient energy prefactor / Dummy variable

A′ Rate constant for bulk diffusion

B Amount of extensive quantity / Rate constant for surface diffu-
sion

b Potential energy prefactor / Dummy variable

cm
i Concentration of i’th component

ci Composition of i’th component

D Diffusivity

Ds Surface diffusivity

d50 Mean diameter

e Euler’s number

erel Relative error

F Free energy functional

f Free energy density
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Nomenclature

g Auxiliary function

H Height of a domain

h Interpolation function / Height

I Electric current

i Indicating chemical component

Ig Dimensionless prefactor

j Imaginary unit / Scalar flux density

K Number of chemical components

k Dummy variable

L Length of a domain

lc Characteristic length

M Mass / Chemical mobility

m Interface mobility

m0 Groove slope

N Number (of phases)

n Free integer or real / Indicating normal direction

Nref Number of refinements

p Dimensionless parameter relating surface and volume diffusion
/ Spearman coefficient

PN
M Padé approximant of orders M and N

PN Partial sum of order N

Q Electric charge

q Electric charge density

R Electric resistance

r Radial coordinate / Signed distance

Rpol Polarization resistance

s Arc length / Indicating surface quantity
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Nomenclature

T Temperature

t Time

U Voltage

u Moving coordinate

uE Model-specific energy unit

ul Model-specific length unit

ut Model-specific time unit

v Scalar velocity

Vm Molar volume

vn Normal velocity of interface

W Width of a domain

X Macroscopic volume fraction

x First Cartesian coordinate

x0(t) Moving interface location

y Second Cartesian coordinate

z Third Cartesian coordinate

ZTLM Impedance of transmission-line model

Greek Symbols

α Indicating phase α

β Indicating phase β

Γ Gamma function

γ Interfacial energy (parameter)

δ Indicating phase δ / Interface thickness

∆□ Difference

ε Interface thickness parameter

ζ Reaction-related impedance
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Nomenclature

η Dimensionless signed distance

θ Wetting angle

κ Total curvature (twice mean curvature)

λ Langrange multiplier / Penetration depth

µ Chemical potential

π Ratio of a circle’s circumference to its diameter

ρ Mass density

ρs Number of atoms per unit area on the surface

σ Interfacial energy

τ Relaxation constant (inverse of interface mobility)

τ Tortuosity

φ Order parameter ranging from 0 to 1

ϕ Order parameter ranging from −1 to 1

χ1 Specific ionic resistance

Ψ Grand potential functional

ψ Grand potential density

Ω Spatial domain

ω Frequency

Bold Symbols

B Magnetic field vector

E Electric field vector

j Flux density

n Normal vector

qαβ Generalized gradient vector

s Tangential coordinate vector

t Unit tangential vector
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Nomenclature

v Velocity vector

w General vector-valued function

x Position vector

Calligraphic Symbols

B General extensive quantity

G Gibbs function

Superscripts and Subscripts

□̇ Partial time derivative
@
□ Normal time derivative

□b Related to bulk

□m Molar

□α / □α Related to phase α

□bulk Bulk contribution

□b Related to density b / related to bulk

□i Related to component i

□n Normal component

□s Related to a surface

□t Tangential component

□+ / □+ Corresponding to right-hand (positive) side

□− / □− Corresponding to left-hand (negative) side

□αβ / □αβ Related to interface between phase α and β

□el Electric

□ion Ionic

□i j Related to interaction of components i and j

□̃ Dimensionless quantity
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Nomenclature

Operators
dn

dxn Ordinary derivative of order n w.r.t. x
∂ n

∂xn Partial derivative of order n w.r.t. x
δ n

δxn Functional derivative of order n w.r.t. x

∇ Gradient

∇s Surface Gradient

∇· Divergence

∇s· Surface Divergence

∇2 Laplacian

∇2
s Surface Laplacian

Abbreviations

AFL Anode functional layer

ATPB Active triple-phase boundary

CT Charge transfer

FIB-SEM Focused ion beam - scanning electron microscopy

LHS Left-hand side

LSR Line specific resistance

MPF Multiphase field

Ni Nickel

ODE Ordinary differential equation

PF Phase field

PSD Particle size distribution

RHS Right-hand side

SOF Solid-oxide fuel

SOFC Solid-oxide fuel cell
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Nomenclature

TLM Transmission-line model

TPB Triple-phase boundary

TPBL Triple-phase boundary length

YSZ Yttria-stabilized zirconia
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1 Introduction

Since carbon dioxide emissions from fossil fuels are considered as a principal
cause for climate change, countries worldwide committed to implement legal ac-
tions for their reduction through the Paris Agreement from 2015. In this light,
sustainable technologies are required that can meet the ongoing demand for en-
ergy with reduced emission of greenhouse gases such as carbon dioxide.

1.1 Fuel-Cell Technology

Fuel-cell technology is one possible candidate which enables to efficiently gener-
ate electricity from a variety of fuels such as hydrogen. There exist different types
of fuel cells which can be classified based on the used electrolyte and fuels [1].
For instance, a proton exchange membrane fuel cell (PEMFC) utilizes a water-
based electrolyte and its operation temperature is thus limited well below 100 ◦C.
In contrast, solid oxide fuel cells (SOFCs) are based on ceramic electrolytes and
operate at temperatures of up to 1000 ◦C. Each type of fuel cell has its own range
of applicability [2]. Compared to other types of fuel cells, SOFCs are highly effi-
cient but are less flexible in terms of variations in load. In contrast they feature a
high fuel flexibility, which allows utilization of a large number of different fuels
ranging from natural gas over methanol or ethanol to hydrogen. In turn they do
not rely on a hydrogen infrastructure a priori, enabling a smooth shift towards
environmentally friendly fuel sources as they become more and more available.
To date, SOFCs are mostly used for stationary applications. In combination with
cogeneration of power and heat, SOFCs can reach a total efficiency of more than
80 % [3].
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1 Introduction

Therefore, SOFCs constitute a promising alternative to conventional power gen-
eration and are gaining an increasing amount of attention recently.

Due to the typically extended operating times of SOFCs, a long lifetime of SOF
cells is vital for a cost-effective operation. The elevated operating temperatures
of SOFCs lead to high requirements regarding the durability of the materials of
which an SOF cell is comprised. Currently, substantial degradation of the cells
and their components is limiting the lifetime.

One of the major contributions to cell degradation is attributed to microstructural
changes within the SOFC anode functional layer (AFL). Here, nickel coarsening
is one of the dominant mechanisms leading to a continuous decay in performance
with time [4]. In order to mitigate performance losses attributed to nickel coars-
ening, a better understanding of the underlying mechanisms is needed.

Experiments aimed at measuring degradation losses can become lengthy and
costly because they have to be performed over exhaustive time spans of at least
multiple weeks. In addition, detailed in-situ insights at the microscale are often
difficult if not impossible to achieve.

In this regard, phase-field modeling constitutes a suitable tool to obtain in-situ
information at a high level of detail and to accelerate the investigation of mi-
crostructural processes that occur slowly in real time.

1.2 Phase-field Modeling

The phase-field method is a versatile and established tool for modeling mi-
crostructural evolution in material science and engineering [5–7]. A distinctive
feature of a phase-field model is that an interface is treated as a volumetric re-
gion with a small but nonzero thickness (see Fig. 1.1). The advantage of such
a depiction is that an explicit parameterization of the interface is circumvented
which in turn means that the costly and complex construction of a surface mesh
can be avoided.
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α-Phase
φα = 1

β -Phase
φα = 0

Figure 1.1: Sketch of a two-phase system described by a continuosly varying phase field φα (x, t).
The finite volumetric region corresponding to the interface (black) between the α and β
phase is enclosed by gray curves.

This is particularly helpful because the studied interfaces are not simple station-
ary entities but evolve in space in a complex manner. Additionally, a realistic
microstructure comprises of a large number of interconnected particles that may
occasionally break up, coalesce or even disappear. Treating such topological
events requires special care such as by joining previously independent meshes in
a sharp-interface setup. In contrast, such tasks are trivial in a phase-field model,
because they are inherently included in the partial differential equations which
define any such model.

The development of phase-field models is an own field of study and bases on first
works of [8–10]. There are at least three major breakthroughs worth mentioning
in the development of phase-field models.

A first landmark corresponds to the thin-interface corrections proposed in [11–
13] which enabled the quantitative modeling of solidification by removing spu-
rious interface-thickness related terms in the model. The improvement was
achieved by employing a mathematical technique called asymptotic analysis
which allows to gain a deep analytical understanding of the model behavior
without the need to perform numerical calculations.
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The second major advance corresponds to the formulation of multiphase-field
models by [14–17]. These type of models are capable to handle not only two
distinct phases but an arbitrary number of grains or phases. This tremendously
widened the range of applicability of phase-field models.

Lastly, recent developments [18–20] generalized the multiphase-field method to
multicomponent systems. This makes the quantitative modeling of phase trans-
formations in alloys possible. Nowadays, complex materials such as steels can be
handled by such models (see e.g. [21]) which can also be coupled to the evolution
of mechanical stresses and strains [22, 23].

This marks the starting point of the current thesis.

1.3 Research Objectives

The following aims of the thesis are identified:

1. Gain a deeper understanding of both the microstructural processes occur-
ring in a solid-oxide fuel cell anode during operation as well as the phase-
field method.

2. Develop a quantitative phase-field model suitable for but not limited to
nickel coarsening in SOFC anodes.

3. Apply the model to a realistic SOFC-anode microstructure at operating
conditions for a significant amount of time (more than 1000h of operation).

4. Extract key microstructural properties from the time series simulation data
and relate them to the performance of the anode.

5. Formulate suggestions to improve the long-term performance of the anode
based on the gained insights.

4



1.4 Key Novelties

1.4 Key Novelties

The current thesis provides advancements on the following aspects.

Firstly, the grand-potential model could successfully be extended for surface dif-
fusion. Since it rests on the incorporation of any surface diffusion coefficient,
it makes this model not only suitable for the treatment of nickel coarsening in
SOFC anodes but can also easily be applied to alloys or other materials.

Asymptotic analysis has been performed to show that the model reduces to the
appropriate sharp-interface problem for a vanishing interface thickness. Here,
the conventional procedure was modified to suit the strictly finite interface width
imprinted in the multiphase-field model at hand.

This enabled a further significant advancement: For a much simpler model the
asymptotic analysis was employed not only until zeroth or first order but up
to eleven orders and could in principle be applied up to arbitrary orders. This
presents a major advancement of one of the landmarks in phase-field modeling
and has great potential to enable deeper analytical insights into many available
phasefield-models.

Thirdly, extensive three-dimensional simulation studies of multiple SOFC an-
ode structures have been performed. The simulations provide new and inter-
esting insights into the mechanisms responsible for anode degradation. Here,
microstructure-property relations have been established by means of an existing
transmission-line model. This enables an estimation of the evolution of the anode
performance with time.

5



1 Introduction

1.5 Structure of the Thesis

The thesis comprises of four main chapters.

Chapter 2 recalls important notions and theories and presents a literature overview
covering state-of-the-art phase-field models for surface diffusion. The theories
and mathematical techniques presented in this chapter are used in the follow-
ing chapters in various ways, e.g. as a reference for the results obtained in the
asymptotic calculations as well as for several derivations.

Chapter 3 presents the developed multiphase-field model applicable for a com-
bination of surface and volume diffusion in multicomponent systems. In this
chapter, asymptotic analysis is performed analyzing the sharp-interface limit of
the model which is a generalization of the derivation presented in [24] where
pure surface diffusion was treated. An additional section shows a comparative
study of thermal (or grain-boundary) grooving, comparing the result from the
multiphase-field model with an analytical solution [25].

Chapter 4 provides analytical travelling-wave solutions of planar interfaces for
phase-field models of obstacle type. This chapter unravels the differences be-
tween different interpolation functions which are a key ingredient in any phase-
field model. It contains both exact results as well as approximate solutions, the
latter being accurate to very high order.

In chapter 5, the developed multiphase-field model is applied to nickel coarsen-
ing in solid-oxide fuel cell anodes under operating conditions. This chapter con-
tains results from a large number of large-scale three-dimensional simulations
of both artificially generated as well as experimentally-based structures. Several
microstructural quantities and their temporal evolution are discussed in detail
using advanced analysis tools. The relation of the microstructural quantities to
performance is discussed.
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2 Theoretical Background

The strangest thing about a hole is its
edge. It’s still part of the Something, but
it constantly overlooks the Nothing—a
border guard of matter. Nothingness has
no such guard; while the molecules at the
edge of a hole get dizzy because they are
staring into a hole, the molecules of the
hole get... firmy? There’s no word for it.
For our language was created by the
Something people; the Hole people speak
a language of their own.

Kurt Tucholsky "The Social Psychology
of Holes"

2.1 Continuum and Microscopic Models

Motivation In designing a mathematical model for a problem at hand, it is of-
ten desirable to work with field quantities, i.e. continuous functions that describe
the local state of the system at each point in space. Such a model is consid-
ered as a continuum model. Possible field quantities are densities of an extensive
quantity, such as the mass density, or concentration of a certain species. As one
zooms into matter with a microscope of sufficient resolution, it is found that the
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Figure 2.1: N = 4×105 particles are randomly placed in a 2D-domain of size L×L. The locations are
picked from a distribution that increases exponentially with x, resulting in a concentration
which ramps up nonlinearly by a factor 5 from x = 0 to x = L. The coarse-graining
procedure with a Gaussian kernel is applied to derive concentration profiles along y=L/2
for different widths of the Gaussian R (b). The limiting behavior is shown for the center
point (x = L/2, y = L/2) in (c).

continuum description is in fact inaccurate, as e.g. a composition or mass den-
sity cannot be assigned to a single atom. Therefore, a continuum model can only
be accurate on length scales that are much larger than interatomic distances, or
it is accurate only in a statistical (average) sense. In contrast, one might con-
sider a microscopic model by assigning specific locations to each of the particles
(atoms or molecules). Then, the interaction of the individual particles governs
the material behavior.

Coarse Graining A connection between the microscopic and the continuum
viewpoint might be established through coarse graining, such a procedure is
schematically shown in Fig. 2.1. In the microscopic model, the position of a
particle p is denoted as xp and the amount B of an extensive quantity B in Ω
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is given by a discrete sum over all the individual amounts Bp associated with a
particle

B = ∑
xp∈Ω

Bp . (2.1)

For instance, let B be the mass M, then Mp denotes the mass of an individual
atom or molecule. Let V be the volume of the domain,

V =
∫

Ω
dV , (2.2)

then one may define a mean density of the extensive quantity by dividing the
amount in the domain by its volume

⟨b⟩= B
V

=
∑xp∈Ω Bp∫

Ω dV
. (2.3)

If one wants to define a density in the continuum sense, a prescription is needed
to assign values of ⟨b⟩ to each point in space. A possible choice among others
(cf. [26, Eq. 1.5]), is choosing a Gaussian convolution kernel centered around the
point x with thickness R:

⟨b⟩(x) =
∑xp∈Ω Bp exp

(
−|x−xp|2

R2

)

∫
y∈Ω exp

(
− |x−y|

2

R2

)
dV

. (2.4)

The field ⟨b⟩(x) in general depends on the choice of R, but already is a continuous
function of space, that is tractable in a continuum model.

Continuum Limit A remaining problem is the missing knowledge of the size
of the coarse-graining cell R, when the solution provided by a continuum model
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is considered. A possible attempt would be to define the density b of an extensive
quantity as a limiting process

b(x)≡ lim
R→R0
⟨b⟩(x) . (2.5)

Unfortunately there is no point of choosing R0 = 0, since then b will be either
zero or undefined, depending whether the point x corresponds to one of the parti-
cle locations xp or not (Fig. 2.1 (b) showcases the typical oscillatory behavior for
a small R = 0.01L). The hypothesis is as follows: If R0 is chosen in a range much
larger than the interatomic distance but small enough to capture the inherent non-
linearities in the corresponding densities, b will only be weakly dependent on R0,
thus the exact choice of R0 needs not be necessarily defined. Then Eq. (2.5) may
be regarded as the continuum limit of ⟨b⟩. In applying a continuum model, one
usually assumes, that such a continuum limit exists.

In this book, it is assumed that the continuum limits exist and coarse-grained
functions can be obtained that do not depend significantly on the choice of [R0].
Balluffi et al. [26, p. 10]

In the continuum model the amount of B in Ω is then defined as a volume integral
of the density

B =
∫

Ω
bdV , (2.6)

which is the continuum equivalent to Eq. (2.1).

In the current work, the viewpoint of a continuum model is mostly adopted,
whereas references to microscopic or atomistic pictures are pointed out when-
ever considered necessary.

Interfaces Gradual changes in the microscopic arrangements of atoms or
molecules can be readily handled with the coarse-graining procedure estab-
lished. However, at interfaces, atomic arrangements change at very short ranges
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Figure 2.2: N = 4×105 particles of two different kinds A and B are randomly placed in a 2D-domain
of size L× L. The locations are picked from piecewise uniform distributions to create
two regions divided at x = 0.5L of differing concentrations. The same coarse-graining
procedure as in Fig. 2.1 is applied to derive concentration profiles for species A along
y = L/2 for different widths of the Gaussian R, which reveals the lack of a continuum
limit at x = 0.5L (b).

on the order of the interatomic distances. These changes might be accompa-
nied by changes in orientation or concentrations (grain and phase boundaries),
crystallinity (solid-liquid interfaces), or density (solid-vapor or liquid-vapor in-
terfaces), or a combination thereof. A change in concentration at an interface
is schematically shown in Fig. 2.2. It is found, that the coarse-grained concen-
tration profile across the interface (Fig. 2.2 (b)) is crucially determined by the
choice of convolution function. This poses a clear restriction on the applicability
of a continuum description, and shows that continuum limits do not always exist.
To overcome the restrictions in a continuum model, an interface in the continuum
description might be associated with a discontinuity in the density b (Eq. (2.5)).
To deal with interfacial phenomena in continuum models is an own field of study
[27, 28], and usually requires special care, as e.g. per the introduction of surface
excess properties (cf. subsection 2.3.4). Points at which discontinuities exist
are commonly called singular points and interfaces in the continuum model are
mathematically treated by so-called singular surfaces (cf. Moeckel [29]).
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2.2 Balance Laws

2.2.1 General Balance

A common observation of nature is that various quantities remain conserved,
such as mass, energy or momentum. These quantities are extensive quantities,
but may be tensors of varying order (mass and energy are scalars, whereas mo-
mentum is a vector quantity). It is customary to start with a general form of a
balance law, as all the above quantities share the same structure of the equation.
This notion is put forward by Müller [30, Ch. 3] and Deen [31, Ch. 2.2]. Balance
laws are independent of the material behavior which is described by additional
constitutive laws Moeckel [29, Ch. 8].

2.2.1.1 Integral Form

Let us consider a possibly time-varying domain Ω with volume V (Eq. (2.2)). Let
dΩ be the surface bounding Ω, then a change in the amount of B in Ω (Eq. (2.6))
may be either through the normal component of a flux density jb (a flux per unit
area) on the surface, a source term1 sb (amount per unit time and volume) inside
the domain, or by a movement of the boundary with velocity vs [31, Eq. 2.2-2]:

d
dt

(∫

Ω
bdV

)
=−

∫

dΩ
jb ·ndA+

∫

Ω
sb dV +

∫

dΩ
bvs ·ndA . (2.7)

For scalar quantities, the flux density jb = bvb may be expressed in terms of a
velocity vb by which the quantity is transported. Here n is the unit normal vector
of dΩ pointing outwards of Ω. A quantity where sb = 0 holds is considered as
conserved. A domain is called a fixed control volume, when vs ·n = 0 holds at
all points on the surface.

1 The source term is often decomposed into a supply and production term, where supply is consid-
ered as an externally controllable quantity.
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2.2.1.2 Differential Form

Assuming b is differentiable in time, and applying the Leibniz rule to the left-
hand side of Eq. (2.7), one finds first that

∫

Ω

∂b
∂ t

dV =−
∫

dΩ
jb ·ndA+

∫

Ω
sb dV (2.8)

holds. Assuming b is differentiable in space, one can convert the remaining sur-
face integral into a volume integral by using the divergence theorem:

∫

Ω

∂b
∂ t

+∇ ·jb− sb dV = 0 . (2.9)

Considering that the choice of Ω is arbitrary, for instance by subdividing the
original domain into smaller and smaller subvolumes, one finds by the mean
value theorem that

∂b
∂ t

+∇ ·jb− sb = 0 (2.10)

has to hold for any point in space where b is differentiable. This is known as the
differential form of balance law.

2.2.2 Balance of Mass

An important application of the general balance law regards to mass. The mass
M of a body in kg

M =
∫

Ω
ρ dV (2.11)

is written in terms of the mass density ρ (units of kg/m3).
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Integral Form The corresponding integral balance law

d
dt

(∫

Ω
ρ dV

)
=−

∫

dΩ
jm ·ndA+

∫

Ω
sm dV +

∫

dΩ
ρvs ·ndA (2.12)

includes the momentum density (units of kg/(m2 s)) jm = ρv that can be ex-
pressed in terms of the mass-averaged velocity v (units of m/s), and the mass
source sm. Mass may be converted into energy by radioactive decay which can
be neglected in most practical applications. Under this assumption, one obtains
conservation of mass (sm = 0).

Differential Form The differential form of mass balance reads

∂ρ
∂ t

+∇ · (ρv) = 0 , (2.13)

assuming conservation of mass.

2.2.3 Balance of Chemical Species

Matter is comprised of atoms and molecules of different species, the correspond-
ing extensive quantity is the number of atoms or molecules Ni in a body in mol

Ni =
∫

Ω
cm

i dV (2.14)

for a species i (e.g. Aluminum) with concentration cm
i as the number of atoms or

molecules per unit volume (units of mol/m3) 2.

2 The superscript m is used to indicate that the concentration is a molar quantity, contrasting the
dimensionless composition ci.
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Integral Form The integral form of the balance of species then writes as fol-
lows

d
dt

(∫

Ω
cm

i dV
)
=−

∫

dΩ
jm

i ·ndA+
∫

Ω
sm

i dV +
∫

dΩ
cm

i vs ·ndA , (2.15)

where jm
i is the flux density of component i in units of mol/(m2 s), and sm

i is the
rate of creation of a certain atom or molecule in mol/(m3 s).

Differential Form The differential form of species balance reads

∂cm
i

∂ t
+∇ ·jm

i − sm
i = 0 . (2.16)

Decomposition of Mass Balance Considering that any molecule or atom
carries a so-called molecular mass Mi = const in units of kg/mol, the balance of
mass can be obtained from the balance of chemical species:

∑
i

d
dt

(∫

Ω
Micm

i dV
)
=−∑

i

∫

dΩ
Mij

m
i ·ndA+∑

i

∫

Ω
Mism

i dV

+∑
i

∫

dΩ
Micm

i vs ·ndA .

(2.17)

Here, summation is over all possible species. By introducing the species mass
density ρi ≡ Micm

i and species mass flux density jm,i ≡ Mij
m
i and the species

mass reaction rate sm,i ≡Mism
i , one may write

d
dt

(∫

Ω
∑

i
ρi dV

)
=−

∫

dΩ
∑

i
jm,i ·ndA+

∫

Ω
∑

i
sm,i dV

+
∫

dΩ
∑

i
ρivs ·ndA .

(2.18)

Since the total mass density is given by the sum over the mass density of all
constituents ρ = ∑i ρi, it can be seen that the mass balance holds and that the
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quantities are related by ρv = ∑i Mij
m
i and sm = ∑i sm,i. Thus, in case of mass

conservation, a restriction on sm
i is found as ∑i Mism

i = 0. Therefore, the species
balance may be seen as a decomposition of the balance of mass.3 A similar
exposition can be found in Müller [30, Sec. 3.2.2].

Example: Chemical Reactions An important example for cases where sm
i

is nonzero pertains to chemical reactions. For instance consider the reaction H2 +
1
2 O2←−→H2O. One may introduce concentrations cm

H2
, cm

O2
and cm

H2O for each of
the molecules involved. The chemical reaction demands that for each creation of
a mole of H2O, a mole of H2 and half a mole of O2 is needed. Hence sm

H2
=−sm

H2O
and sm

O2
=−1/2sm

H2O holds, where sm
H2O is the reaction rate. Therefore, species are

not conserved in case of chemical reactions. To see whether the derived relations
fulfill the conservation of mass, one calculates the sum sm = MH2sm

H2
+MO2sm

O2
+

MH2Osm
H2O = sm

H2
2u+ sm

O2
32u+ sm

H2O18u, which in fact becomes zero according
to the relations between sm

i stated above.

Molar Volume The molar volume may be defined in a mean sense as the vol-
ume of the system divided by the number of particles [34, p. 10]

V m ≡
V

∑i Ni
=

∫
Ω dV∫

Ω ∑i cm
i dV

. (2.19)

Taking the limit as V → 0 by shrinking the control volume down to a point, in
analogy with [35, Eq. (2.3)], the limiting value may be interpreted as the local
molar volume

Vm ≡ lim
V→0

V m =
1

∑i cm
i
. (2.20)

3 Numerous authors use the term mass balance loosely also for the balance of chemical species
(cf. e.g. [17, 32, 33]). A separate treatment that aligns well with the current thesis can be found
in Deen [31, Ch. 2.6] and Müller [30, Sec. 3.2.2].
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Composition (Mole Fractions) The mole fraction corresponding to species
i may be defined again in an integral sense:

ci ≡
Ni

∑i Ni
=

∫
Ω cm

i dV∫
Ω ∑i cm

i dV
. (2.21)

Taking the limit V → 0 one finds a local definition for the mole fraction as

ci ≡ lim
V→0

ci =Vmcm
i , (2.22)

which is a dimensionless quantity in the range 0 ≤ ci ≤ 1. In the current work,
the terms composition and mole fraction are used analogously.

The local sum of all compositions is always unity

∑
i

ci = 1 (2.23)

owing to the definition of the molar volume (Eq. (2.20)).

Special Case 1: Nonreacting Systems For a system, where no chemical
reactions take place, sm

i = 0∀i holds. Under this assumption, Eq. (2.16) simplifies
to:

∂cm
i

∂ t
=−∇ ·jm

i . (2.24)

Special Case 2: Constant Molar Volume In case of a time-invariant Vm,
one finds a constraint on the evolution of cm

i as:

∑
i

∂cm
i

∂ t
= ∑

i
(∇ ·jm

i − sm
i ) = 0 . (2.25)
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Assuming that Vm is also space-invariant, Eq. (2.15) can be multiplied with Vm,
to obtain a balance for the composition

d
dt

(∫

Ω
ci dV

)
=−

∫

dΩ
ji ·ndA+

∫

Ω
si dV +

∫

dΩ
civs ·ndA , (2.26)

where ji ≡ Vmj
m
i is a flux density in m/s and si ≡ Vmsm

i is a source term in
1/(m3 s). The corresponding differential form writes

∂ci

∂ t
+∇ ·ji− si = 0 . (2.27)

Application: Fick’s Laws of Diffusion Fick’s laws of diffusion are often
used to describe the random atomic motion occurring in a bulk material [36].

Fick’s first law is a constitutive relation, relating a flux density of a single species
to the gradient in concentration:

jm
i =−Di∇cm

i . (2.28)

where Di is the diffusion coefficient in m2/s. Fick’s second law

∂cm
i (x, t)
∂ t

=∇ · (Di∇cm
i ) (2.29)

follows from the differential species balance (Eq. (2.16)) assuming a nonreacting
system.

Applying additionally the assumption of spatially and temporally constant molar
volume, multiplying with Vm, Eq. (2.27) yields

∂ci(x, t)
∂ t

=∇ · (Di∇ci) (2.30)

the corresponding evolution equation of the composition. Fick’s law of diffusion
can be generalized to multiple components by introducing interdiffusivities Di j.
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2.2.4 Balance of Electric Charge

The electric charge Q of a body in C

Q =
∫

Ω
qdV (2.31)

is determined from the charge density q in C/m3.

Integral Form Since electric charge is conserved, the corresponding integral
form of balance is given as

d
dt

(∫

Ω
qdV

)
=−

∫

dΩ
jel ·ndA+

∫

dΩ
qvs ·ndA , (2.32)

where jel is the electric current density in A/m2.

Differential Form The differential form of electric charge balance reads

∂q
∂ t

=−∇ ·jel (2.33)

cf. [37, Eq. (13.8)].

2.3 Interface Phenomena

Motivation In studying microstructures, one is often concerned with the ge-
ometry and spatial arrangement of the underlying grains and phases. Grains and
phases are separated by interfaces. A change in the spatial distribution of the par-
ticles in a microstructure requires a movement of these interfaces. By studying
phase transformations in terms of mathematical models, it is necessary to intro-
duce a treatment which allows expressing the partial differential equations from
the viewpoint of a moving interface.
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2.3.1 Surface Parameterization

n
(s
, t
)

x0(s, t)

Figure 2.3: Schematic of a moving curvilinear coordinate system comprising of points x0(s, t) that
are functions of arclength s and time t. Two lines of constant signed distance away from
the curve are additionally depicted.

A two-dimensional surface is illustrated in Fig. 2.3. Here, the points of which the
surface is comprised may be written in terms of a function

x= x0(a1,a2, t) (2.34)

which depends on the surface parameters a1 and a2 and time t. The two for-
mer dependencies allows one to move tangential to the surface at a fixed time,
the latter dependency provides the movement of a surface point holding surface
parameters constant. The vector

si =
∂x0(a1,a2, t)

∂ai
(2.35)

is a vector tangential to the interface. If ai are arclengths, |si|= 1. The normal to
the surface n is a unit vector which depends on the location of the curve and is
perpendicular to si, hence n ·si = 0 holds. Based on the normal vector, one may
write points interior and exterior to the surface in terms of a signed distance r

x(a1,a2,r, t) = x0(a1,a2, t)+ rn(a1,a2, t) . (2.36)
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The interior might be identified by the condition r < 0 and the exterior by r > 0.
Therefore,

n(a1,a2, t) =
∂x(a1,a2,r, t)

∂ r
(2.37)

is a function solely of the location on the basesurface x0(a1,a2, t) at a given time.
The set of points with r = const itself can be identified as a surface with a constant
distance from the basecurve x0(a1,a2, t). Two of such curves are illustrated in
Fig. 2.3. Assuming that the parameterization through Eq. (2.36) is invertible, one
may introduce functions ai(x, t) and r(x, t) that provide for a given point in space
x the location of the nearest point on the surface and the corresponding distance,
respectively.

2.3.2 Derivatives on a Surface

Field quantities are written as functions of the form

φ = φ(x, t) (2.38)

dependent on the location x and time t. The function

φ(r,a1,a2, t) = φ(x(a1,a2,r, t), t) (2.39)

returns the value of the field quantity evaluated in terms of the surface parame-
terization (Eq. (2.36)).

However, surface properties such as the curvature, are only meaningfully defined
on points making up the surface. Therefore, a surface function is identified as a
function of the surface parameters ai

φ = φs(a1,a2, t) . (2.40)
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Based on this description, a normal extension of the function may be defined as
follows

φs,n(x, t) = φs(a1(x, t),a2(x, t), t) (2.41)

which is constant in the normal direction.

Surface Gradient The surface gradient for a scalar surface field is defined as

∇sφs(a1,a2, t)≡
∂φs

∂a1

1

|s1|2
s1 +

∂φs

∂a2

1

|s2|2
s2 (2.42)

for an orthogonal parameterization, i.e. s1 ·s2 = 0. The more general equation
for arbitrary parameterizations is given in [28, Eq. A.2.2-4]. The gradient for a
scalar field φ can be written in a Cartesian coordinate system (s1 · s2 = 0, and
|si|= 1) for points on the surface (r = 0) as

∇φ(x, t) =
∂φ
∂a1

s1 +
∂φ
∂a2

s2 +
∂φ
∂ r

n . (2.43)

Accordingly,

∇φ(x, t) =∇sφ +
∂φ
∂ r

n (2.44)

holds there. Therefore, the surface gradient of a scalar field evaluated at points
on the surface is given by projecting the gradient onto the surface.

Surface Divergence The surface divergence for a vector surface field ws is
defined as

∇s ·ws(a1,a2, t)≡
∂ws

∂a1
· s1

|s1|2
+

∂ws

∂a2
· s2

|s2|2
(2.45)
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for an orthogonal parameterization. A general equation can be found in [28,
Eq. A.5.1-6].

Surface Laplacian The surface Laplacian of a scalar surface field is defined
as

∇2
s φs ≡∇s ·∇sφs (2.46)

[38, Eq. (75.5)] also known as the Laplace-Beltrami operator. It is a scalar which
is invariant with respect to the parameterization of the surface.

n

t t

vCC

S

vn

Figure 2.4: Schematic of a moving surface S bounded by a moving curve C. The unit vector t is
tangential to S and normal to C. vC = vCt is component of the velocity of the curve C
which is normal to C and tangential to S.

Surface Divergence Theorem The surface divergence theorem [28, p. 670]
can be written as follows:

∫

S
∇s ·ws dA =

∫

C
ws · tds+

∫

S
κws ·ndA (2.47)

Here ws is a vector-valued function on the surface S (assumed to be differentiable
along the surface). S is bounded by a simple closed curve C, t is a unit vector
tangential to S and normal to C, pointing outwards of S (cf. Fig. 2.4). s is the
arclength measured along C. κ = ∇s ·n is twice the mean curvature of the
surface.
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vn(t1)
vn(t2)
vn(t3)

xn(t)

vs(s1, t1)

vs(s1, t2)

x(s1, t1)

x(s1, t2)

x(s1, t3)

Figure 2.5: Schematic of an evolving surface comprising of points x(s, t). The parameterization-
dependent velocity vs is shown indicating how points traverse holding arc length s = s1
constant. Additionally, the vector normal velocity vn is shown with the corresponding
normal trajectory xn(t) for a specific location on the curve.

Normal Time Derivative The partial time derivative

φ̇ ≡ ∂φ(x, t)
∂ t

(2.48)

gives the temporal change of the variable φ holding the position in space fixed.
Consider the case of a moving surface, how does the temporal evolution of the
same variable observed by moving attached to the surface relate to the partial
time derivative? For that, one might introduce the quantity

∂φ(r,a1,a2, t)
∂ t

(2.49)

which gives the change of the variable, holding the location and distance to
the surface in terms of parameters ai and r fixed. Employing the chain rule to
Eq. (2.39), one obtains

∂φ(r,a1,a2, t)
∂ t

= φ̇ +vs ·∇φ (2.50)

vs =
∂x(a1,a2,r, t)

∂ t
=

∂x0(a1,a2, t)
∂ t

+ r
∂n(a1,a2, t)

∂ t
(2.51)
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with the surface velocity vs which gives the movement of points holding surface
parameters ai and the distance to the basesurface constant. It is convenient to
split up the surface velocity into tangential and normal components:

vs = vn +vt (2.52)

vn ≡ vnn (2.53)

vt ·n= 0 (2.54)

where

vn(a1,a2, t)≡ vs ·n=
∂x0(a1,a2, t)

∂ t
·n (2.55)

is the scalar normal velocity and n · ∂n(a1,a2,t)
∂ t = 0 can be neglected due to the

constant length of the normal vector. Accordingly

∂φ(r,a1,a2, t)
∂ t

= φ̇ + vn
∂φ(r,a1,a2, t)

∂ r
+vt ·∇sφ (2.56)

holds. An important fact which was highlighted by [39] is that the value of vt

depends on the (somewhat arbitrary) choice of parameterization through ai.

Therefore it is convenient to introduce a normal trajectory xn(r,a0
1,a

0
2, t) corre-

sponding to a reference location parameterized by a0
1, a0

2 and time t0,

xn(r,a0
1,a

0
2, t0) = x(r,a0

1,a
0
2, t0) (2.57)

∂xn(r,a0
1,a

0
2, t)

∂ t
= vn (2.58)

which means one follows the normal movement of the surface at a given point by
accordingly adjusting the surface coordinates a1 and a2. Then the normal time
derivative is defined as

@
φ ≡ dφ(xn(r,a0

1,a
0
2, t), t)

dt
(2.59)
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at r = const which gives the observed temporal change of φ following the normal
movement of the surface. It follows by chainrule that

@
φ = φ̇ + vn

∂φ(r,a1,a2, t)
∂ r

(2.60)

and according to Eq. 2.56 it is obtained that the normal time derivative can be
expressed as

@
φ =

∂φ(r,a1,a2, t)
∂ t

−vt ·∇sφ (2.61)

in terms of the standard partial time derivative on the surface and the surface
gradient and velocity.

Surface Transport Theorem The normal time derivative is useful for the
surface transport theorem ([40, Eq. (21)] and [39, Eq. 3.14]) which reads

d
dt

∫

S
ϕs dA =

∫

S

@ϕs +κvnϕs dA+
∫

C
ϕsvC ds . (2.62)

Here C is the simple closed curve bounding S (see Fig. 2.4), and vC is the compo-
nent of the velocity of the curve C which is tangential to S and normal to C and
positive when the movement is outwards of S. As discussed earlier, the normal
time derivative incorporates changes of the field itself following the normal tra-
jectory. The additional term proportional to the curvature corresponds to changes
in the amount by a local reduction in surface area and the last term incorporates
changes through the temporally changing bounds of integration induced by a mo-
tion of the bounding curve C. It is worth noting that if C moves along the normal
trajectory, vC = 0.
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S−

S

S+
n

C

St

−n

t

t

r−

r = 0

r+

Figure 2.6: Schematic of a control volume which moves with the surface S (r = 0). S is bounded by
a moving simple closed curve C (it moves with scalar velocity vC (cf. Fig. 2.4)). Based
on C, the control volume is bound by signed distances r− < r < r+ along normal lines.

2.3.3 Interfacial Balance

So far balances are presented either in integral form or in its differential (or lo-
cal) form (Sec. 2.2), assuming a spatial differentiability of the density. Often,
certain densities such as the mass density change rapidly at interfaces, as shown
in section 2.1. Therefore, a generalization of the balance for singular surfaces is
needed.

Fig. 2.6 illustrates a control volume Ω which moves with the surface S, bounded
by a moving simple closed curve C (for its velocity vC and the definition of t see
also Fig. 2.4). C is extended along normal lines to signed distances r in the range
r− < r < r+ to form a side surface St . The normal velocity of St is given by vtt

with vt(r = 0) = vC. S± are the top and bottom plane corresponding to r = r±

with normals ±n.
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For this control volume, the integral balance for a conserved quantity reads

d
dt

(∫

Ω
bdV

)
=

−
∫

S+
j+b ·ndA+

∫

S−
j−b ·ndA+

∫

S+
b+vn dA−

∫

S−
b−vn dA

−
∫

St

jb · tdA+
∫

St

bvt dA

(2.63)

where the density is given as

b(x) =

{
b+(x) r > 0

b−(x) r < 0
(2.64)

and be possibly discontinuous at S (r = 0).

In the same manner, the flux density is given by

jb(x) =

{
j+b (x) r > 0

j−b (x) r < 0
. (2.65)

Shrinking down the control volume towards S by letting r±→ 0, one gets S±→ S,
St →C and Ω→ 0 (which is also known as the pillbox argument [41, p. 15]). In
this limit, one obtains

0 =
∫

S

(
j−b −j+b

)
·n+(b+−b−)vn dA . (2.66)

Since the choice of curve C is arbitrary, one localizes the integral and thus

vn(b+−b−) =
(
j+b −j−b

)
·n ∀x= x0(a1,a2, t) (2.67)

holds pointwise on the interface. Here b± and j±b are the limits evaluated as S is
approached from the bulk from either side. This is the interfacial form of balance
also known as the jump balance.
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2.3.4 Surface-Excess Properties

In deriving the interfacial form of the general balance, a vanishing thickness of
the interface was assumed. While this is the most prominent model of interfaces
in the context of continuum theories, its limitations are not directly apparent.
Since a real interface is comprised of atoms, its thickness is never exactly zero
and thus for instance the mass carried by an interface is nonzero. Additionally,
the constitutive relations that hold in the bulk are likely not applicable to the inter-
facial region. While it is difficult to measure for instance the mass density inside
an interface, due to its small thickness, the effect of a deviation from the bulk be-
havior can be quantified by means of excess properties. With excess properties,
one associates a surface excess density bs (amount per unit area) and a surface
excess flux density (flux per unit length) with the surface.

For the control volume shown in Fig. 2.6, the extended integral balance for a
conserved quantity including a surface excess density bs and a surface excess
flux density jb,s reads

d
dt

(∫

Ω
bdV +

∫

S
bs dA

)
=

−
∫

S+
j+b ·ndA+

∫

S−
j−b ·ndA+

∫

S+
b+vn dA−

∫

S−
b−vn dA

−
∫

St

jb · tdA+
∫

St

bvt dA−
∫

C
jb,s · tds+

∫

C
bsvC ds .

(2.68)

On the left-hand side, the balance includes an additional surface integral account-
ing for bs and the last two line integrals incorporate contributions from the influx
through jb,s and the enlargement of S in tangential direction through vC.

Shrinking down the control volume by r±→ 0 as before, one obtains

d
dt

(∫

S
bs dA

)
=
∫

S
j−b ·n−j+b ·n+(b+−b−)vn dA

+
∫

C
bsvC ds−

∫

C
jb,s · tds .

(2.69)
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The surface transport theorem (Eq. (2.62)) can be used to rewrite the left-hand
side of the equation to get

∫

S

@
bs +κvnbs +

(
j+b −j−b

)
·n+(b−−b+)vn dA+

∫

C
jb,s · tds = 0 (2.70)

The remaining line integral is rewritten using the surface divergence theorem
(Eq. (2.47)) to obtain
∫

S

@
bs +κvnbs +

(
j+b −j−b

)
·n+(b−−b+)vn +∇s ·jb,s−κjb,s ·ndA = 0 .

(2.71)

Keeping in mind that the choice of curve C was completely arbitrary, one con-
cludes that the integrand has to vanish and hence

@
bs +κvnbs +

(
j+b −j−b

)
·n+(b−−b+)vn +∇s ·jb,s−κjb,s ·n= 0 (2.72)

is the extended interfacial balance including a surface excess density bs and a
surface excess flux jb,s holding point-wise on the surface (∀x = x0(a1,a2, t)).
For a tangential surface excess flux (jb,s ·n = 0) and in the absence of a fluid
velocity it is equivalent to [39, Eq. 7.5] .

Dividing Surface How are the excess quantities interpreted with respect to
the physical picture of an interface of finite thickness? Following [28, p. 56]
instead of a density b(x) which is given by the bulk behavior everywhere except
with a jump at S, it is assumed that the density in an interfacial region bounded
by r− and r+ is smooth but markedly different from the bulk density, given by
bI(x). bI(x(r > r+) = b+(x) and bI(x(r < r−)) = b−(x). Similarly, the flux
density is given by jb,I(x) for r− < r < r+ and similarly approaches the bulk
such that jb,I(x(r > r+)) = j+b (x) and jb,I(x(r < r−)) = j−b (x).
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With this definitions at hand, the integral form of balance (Eq. (2.7)) for the
control volume shown in Fig. 2.6 is written as

d
dt

(∫

Ω
bI dV

)
=

−
∫

S+
j+b ·ndA+

∫

S−
j−b ·ndA+

∫

S+
b+vn dA−

∫

S−
b−vn dA

−
∫

St

jb,I · tdA+
∫

St

bIvt dA

(2.73)

The following form is obtained by highlighting the difference with respect to a
pure bulk behavior

d
dt

(∫

Ω
bdV +

∫

Ω
bI−bdV

)
=

−
∫

S+
j+b ·ndA+

∫

S−
j−b ·ndA+

∫

S+
b+vn dA−

∫

S−
b−vn dA

−
∫

St

jb · tdA+
∫

St

bvt dA−
∫

St

(
jb,I−jb

)
· tdA+

∫

St

(bI−b)vt dA .

(2.74)

When the thickness of the interface is small compared to the radii of curvature
(|r±κ1|<< 1 and |r±κ2|<< 1, where κn are principal curvatures) which should
be the case for any real interface, one can make the following approximations

vt ≈ vC (2.75)
∫

St

f dA≈
∫

C

∫ r+

r−
f dr ds (2.76)

∫

Ω
f dV ≈

∫

S

∫ r+

r−
f dr dA (2.77)
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to get

d
dt

(∫

Ω
bdV +

∫

S

∫ r+

r−
bI−bdr dA

)
≈

−
∫

S+
j+b ·ndA+

∫

S−
j−b ·ndA+

∫

S+
b+vn dA−

∫

S−
b−vn dA

−
∫

St

jb · tdA+
∫

St

bvt dA

−
∫

C

∫ r+

r−

(
jb,I−jb

)
· tdr ds+

∫

C

∫ r+

r−
bI−bdr vC ds .

(2.78)

By comparing this equation with the extended balance incorporating surface ex-
cess properties (Eq. (2.68)), one can identify the surface excess properties as

bs =
∫ r+

r−
bI−bdr (2.79)

jb,s =
∫ r+

r−
jb,I−jb dr . (2.80)

This means that the surface excess properties can be associated with the deviation
of the densities in the interfacial region for a real interface of finite thickness. It
is worth noting that from the physical point of view, the choice of r = 0 as the
dividing surface was completely arbitrary. Any other choice of contour which
lies within the bounds r− < r0 < r+ might be equally valid. In the sharp-interface
description one associates two distinct phases with either side of the interface, i.e.

b(x) =

{
b+(x) r > r0

b−(x) r < r0
(2.81)

It turns out that the value of bs then depends on the choice of dividing sur-
face through r0. Only if b+(x) = b−(x)∀r− < r < r+, the excess quantity is
uniquely determined. For a more thorough discussion, the reader is referred to
Mavrovouniotis and Brenner [27].
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2.3.5 Surface Diffusion

In crystals, diffusion occurrs in the bulk via the exchange of atoms with vacan-
cies. It is thus clear that at any crystal defect, where atoms are displaced from
their lattice positions, the random movement of atoms - what is known as diffu-
sion - is enhanced. As interfaces are two-dimensional lattice defects, the corre-
sponding effect is known as surface (or interface) diffusion. While on the one
hand, the diffusivity in the interface may be orders of magnitudes higher com-
pared to the bulk, it is confined to the very thin interfacial layer usually compris-
ing only of a few atomic spacings.

A sharp-interface theory for surface diffusion in pure materials was formulated
by [42]. It starts with the Gibbs-Thomson effect, namely the shift of the chemical
potential µ with curvature κ:

µ = µeq +Vmγκ (2.82)

where µeq is the chemical potential in equilibrium with a flat interface. Vm is the
molar volume and γ the interfacial energy.

It is assumed that an excess flux density js acts tangentially to the interface which
is driven against the surface gradient of chemical potential

js =−
Dsρs

RT
∇sµ . (2.83)

Here Ds is introduced as the surface diffusivity (in m2/s and the number of atoms
per unit area ρs (in mol/m2) on the surface is the proportionality factor to convert
the volumetric quantity to a surface-excess property. The denominator RT is the
Einstein relation consisting of the ideal gas constant R and temperature T .

The scalar normal velocity of the interface is given by

vn =−Vm∇s ·js =
V 2

mDsρsγ
RT

∇2
s κ (2.84)
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assuming the quantities to be constant along the surface.

This shows that the interface moves proportionally to the surface laplacian of
curvature. The proportionality rate constant is given by

B≡ V 2
mDsρsγ

RT
(2.85)

and is of unit m4/s.

It is worth noting the assumptions that lead to Eq. (2.84). This equation can
be obtained from the extended interfacial balance (Eq. (2.72)) by the following
assignments:

j+b = j−b → 0 (2.86)

bs→ 0 (2.87)

jb,s→ js (2.88)

b−→ 1
Vm

(2.89)

b+→ 0 (2.90)

The last two identities show that it is a balance of a single chemical species under
constant molar volume by comparing it with the definition of the molar volume
(Eq. (2.20)) which leads to the replacement b→ cm. The concentration in the
vapor cm,+ is assumed to be negligible and the composition in the solid is as-
sumed to be c− = 1 (see Eq. (2.22)). Additionally vanishing bulk flux densities
are assumed both in the solid and in the vapor. A negligible surface excess con-
centration cm

s is assumed and js is a non-vanishing surface excess flux of solid
atoms along the surface.
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2.3.6 Rate-Reaction Theory

While surface diffusion dealt with the atomic transport tangential to the interface,
the thermally activated jumps of atoms normal to an interface can cause a net flux
away or towards the interface, leading to a reduction or increase of surface area,
respectively. This may occur when one of the sides of the interface is energet-
ically favored according to the rate-reaction theory by [43]. This well known
theory is recalled in two famous textbooks for grain-boundary migration ([44,
p.154] and [45, p.137]). In this theory, the interface normal velocity is directly
proportional to a driving force ∆ f

vn = m∆ f (2.91)

with the proportionality factor m which is a mobility of unit m4/(Js). The driving
force is of unit J/m3 and can be seen either as an energy density or a pressure
that acts normal to the interface. Note that Eq. (2.91) is not a balance equation
but a constitutive relation relating the normal velocity of the interface to a driv-
ing force. For an overview of possible driving forces, including capillary forces
intrinsic to the interface as well as bulk effects, the interested reader is referred
to Gottstein and Shvindlerman [45, p. 141].

2.3.7 Surface Diffusion and Attachment Kinetics

A theory which combines the atomic movement normal to the interface according
to rate-reaction theory with surface diffusion in tangential direction is presented
in Cahn and Taylor [46]. Here, the normal velocity is defined by the following
equation

vn =−∇2
s

(
1
m

∇2
s −

γ
B

)−1

κγ . (2.92)
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Two separate processes are retrived as limiting cases of the above equation, i.e.
motion limited by the rate-reaction theory (also known as attachment kinetics)
and motion solely according to surface diffusion. The length scale

lc ≡
√

B
mγ

(2.93)

is a characteristic length scale set by the material parameters of the interface.
At length scales much smaller than lc, attachment kinetics is the rate-limiting
factor. In contrast, when the length scale largely exceeds lc, diffusion along the
tangential direction of the interface is the rate-limiting factor.

When the interface is highly mobile (m→ ∞), the effect of attachment kinetics
can be neglected (lc → 0) and the interface dynamics are given by Eq. (2.84).
When the surface diffusivity is comparably large (B→ ∞), so-called motion by
the difference of mean curvature is retrieved (lc → ∞). Rätz et al. [47] showed
that Eq. (2.92) can alternatively expressed by the following two coupled second-
order equations

vn =
B
γ

∇2
s µ (2.94)

µ = µeq +κγ +
vn

m
. (2.95)

2.4 Phase-field Models

Phase-field models are used particularly because they efficiently circumvent the
complex task of continuously parameterizing and tracking a moving interface.
In such a model, the evolution is governed by a spatially and temporally vary-
ing function and the interface is associated with a finite volumetric region where
this function exhibits large gradients. This function, mostly denoted as φ(x, t),
is often referred to as a phase field or alternatively, as a so-called order parame-
ter. While the former naming reflects its use to separate a domain into coexisting
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thermodynamic phases, the latter is rooted in its original use to distinguish be-
tween an ordered (crystalline) and a disordered (liquid) phase in the context of
solidification. The order parameter is dimensionless and tends towards a finite
value far away from the interface which is associated with bulk material.

2.4.1 Two-Phase Models

In the most simplest case, a single (or scalar) order parameter is used to distin-
guish two separate phases. The construction of a phase-field model usually starts
with the formulation of a free-energy functional F based on the order parameter
in the domain Ω of volume V . In its simplest form it can be written as

F =
∫

Ω
f (φ)+a|∇φ |2 dV . (2.96)

Here f (φ) is an energy density (in J/m3) written as a function of φ that defines
the potential energy landscape of the model and the second term is a gradient
energy that can be scaled with a constant factor a (in J/m). The interplay of these
two terms is crucial for a working phase-field model. The potential term defines
minima to provide stable bulk states whereas the gradient energy penalizes sharp
transitions between these degenerate states. Two important forms of f (φ) exist,
the choice f (φ) ∝ φ 2(1−φ)2 is called the double well potential, whereas f (φ) ∝
φ(1− φ) is known as the obstacle potential4. Both forms are written such that
φ = 0 and φ = 1 are the corresponding stable bulk states5.

Now that the energy functional is constructed, two main classes of phase-field
models can be distinguished based on the way the evolution of the order param-
eter is postulated.

4 The additional Gibbs simplex constraint is omitted here for the sake of brevity.
5 Typical bulk values correspond either to −1 and 1 or to zero and 1, respectively. While this is

a matter of mathematical convenience, the latter formalism is easier to generalize to multiphase
materials as will be shown in the following subsection. For this reason, the choice of zero and
unity is mostly preferred in the current work.
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2.4.1.1 Allen-Cahn Model

In phase-field models of Allen-Cahn type [10], the evolution of the order param-
eter is proportional to the functional derivative of the free energy F :

ε
∂φ(x, t)

∂ t
=−m

δF
δφ

=−m
(

d f (φ)
dφ

−2a∇2φ
)
. (2.97)

Here, m is a mobility parameter and has units of m4/(Js) and ε > 0 is a param-
eter related to the interface thickness. A positive mobility is necessary for the
evolution to be locally towards a minimum of the free energy.

2.4.1.2 Cahn-Hilliard Model

In phase-field models of Cahn-Hilliard type [9], the functional derivative is inter-
preted as a chemical potential

µ =
δF
δφ

=
d f (φ)

dφ
−2a∇2φ (2.98)

(here of unit J/m3) which causes a flux density j directed against the chemical
potential gradient

j =−M∇µ (2.99)

where the mobility M > 0 is the proportionality constant.

Based on this flux density, it is assumed that the order parameter behaves like
a composition under constant molar volume (Eq. (2.27)) and is thus conserved
leading to the balance equation

∂φ(x, t)
∂ t

=−∇ ·j =∇ · (M∇µ) = M∇2µ (2.100)
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where the last equality holds when M is simply a constant which corresponds to
equal bulk diffusivities in both phases.

2.4.1.3 Equilibrium phase-field profiles

An interesting insight into the phase-field models at hand is to consider the equi-
librium case for a planar interface ∂φ(x, t)/∂ t = ∂φ(x, t)/∂ t = 06. Here a one-
dimensional treatment with the x-coordinate suffices.

It results in the condition

d2φ(x)
dx2 =

1
2a

d f (φ)
dφ

(2.101)

which is an ordinary second-order differential equation for φ(x). It can be trans-
formed into a first-order differential equation by multiplying with φ ′(x) and per-
forming integration by substitution to both sides of the equation. Assuming that
at some point x− one side of the bulk is reached, i.e. φ(x−) = 0 and φ ′(x−) = 0
one obtains

φ ′(x) =
√

f (φ(x))
a

(2.102)

if the potential vanishes in the bulk f (0) = 0 which holds both for well and
obstacle potential. Additionally, the positive sign branch is selected to disregard
negative values in the order parameter. This is a first-order separable differential
equation. Dividing through the right-hand side and integrating by substitution
yields

∫ φ(x)

1
2

√
a

f (φ(x))
dφ = x (2.103)

6 Strictly speaking, for the Cahn-Hilliard model one would have to impose µ = 0.
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where the boundary condition φ(0) = 1/2 has been applied. One obtains

x =

{
−
√ a

b arcsin(1−2φ(x)) f (φ) = bφ(1−φ)

−2
√ a

b arctanh(1−2φ(x)) f (φ) = bφ 2(1−φ)2
. (2.104)

Inverting this in favor of φ , the equilibrium order parameter profile is obtained as

φ(x) =





1
2 +

1
2 sin

(√
b
a x
)

f (φ) = bφ(1−φ)

1
2 +

1
2 tanh

(√
b
4a x
)

f (φ) = bφ 2(1−φ)2 .
(2.105)

Please note that the phase-field profiles for a moving interface correspond to the
non-equilibrium case. Therefore, the phase-field profiles need not necessarily be
equal to the equilibrium profiles. Chapter 4 addresses this point in detail and
quantifies deviations from the equilibrium profiles.

Interface Thickness The equilibrium solutions are plotted in Fig. 2.7 as a
function of the dimensionless coordinate

√
b/ax. It can be seen that for both

potential formulations, the transition between the two bulk states occurs within a
layer proportional to the length

√
a/b. Thus, the equilibrium interface thickness

results from a competition of the magnitudes of the gradient and potential energy
terms. Increasing the contribution of the potential term by increasing b leads to
a lowering of the interfacial width, while the increase of the magnitude of the
gradient term through an increased value of a facilitates the inverse.

If one defines the interface thickness as δ ≡ x+− x−, only the obstacle poten-
tial leads to a finite thickness of the interface. In contrast, the well potential
approaches the values of 0 and 1 at x± = ±∞. For the former, its value can
be determined as δ =

√
a/bπ . To compare the apparent thicknesses of the two

solutions, instead it is more meaningful to compare the slopes at the center of
the interface φ = 1/2. This can directly be obtained from Eq. (2.102) leading
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Figure 2.7: Equilibrium phase-field profiles for a planar interface in a two-phase model for both the
obstacle and well potential. x is the signed distance from the location φ = 1/2, whereas
a and b are the prefactors of the gradient and potential term in the energy functional,
respectively. The straight lines indicate the interface width derived from the slope at
x = 0.

to φ ′(0) =
√

b/(2
√

a) and φ ′(0) =
√

b/(4
√

a) for the obstacle and well poten-
tial, respectively. Thus, with this definition, the obstacle potential leads to half
of the interface width compared to the well potential if all prefactors are chosen
identically.

Interfacial Energy The interfacial energy σ of such a planar and equilibrated
interface can be calculated as the excess free energy given through

σ =
∫ x+

x−
f (φ(x))+a(φ ′(x))2 dx . (2.106)

Making use of the first order ODE (Eq. (2.102)) one obtains

σ =
∫ x+

x−
2 f (φ(x))dx = 2

∫ φ(x+)

φ(x−)

f (φ(x))
φ ′(x)

dφ = 2
√

a
∫ φ(x+)

φ(x−)

√
f (φ)dφ

(2.107)
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Inserting a condition for the interfacial endpoint at the right end, i.e. φ(x+) = 1
and inserting φ(x−) = 0, one obtains

σ =

{
π
4

√
ab f (φ) = bφ(1−φ)

1
3

√
ab f (φ) = bφ 2(1−φ)2

(2.108)

which shows that the interfacial energy is proportional to the square-root of the
product of the prefactors of both the gradient and potential term. Such a deriva-
tion can be found for instance in Plapp [48, cf. Eq. (15.28)]. With this result at
hand, it is straightforward to re-express a and b in terms of σ and an interface
thickness parameter ε , giving these prefactors a more physically sound meaning.
For this, one has to choose a ∝ σε and b ∝ σ/ε .

2.4.2 Multiphase-Field Models

Multiphase-field models extend the phase-field technique by replacing the scalar
order parameter by a tuple ϕ = {φα ,φβ , . . . ,φN} to describe an arbitrarily sized
set of N phases. In these class of models, first introduced by Steinbach et al. [14],
a sum constraint is imposed to ensure that the order parameter φα corresponding
to phase α can be interpreted as a local volume fraction of this phase:

N

∑
α=1

φα = 1 . (2.109)
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A generalization of the gradient and potential terms to multiple phases is needed.
The formulations in [14, 15, 17, 33, 49] express the free energy (or entropy)
functional in terms of α-β combinations

F =
∫

Ω

N

∑
α=1

N

∑
β=α+1

γαβ

(
16G (ϕ)

π2ε
φα φβ + ε|qαβ |2

)

+
N

∑
α=1

N

∑
β=α+1

N

∑
δ=β+1

γαβδ φα φβ φδ +
N

∑
α=1

hα(ϕ) fα dV ,

(2.110)

and the additional bulk free energy densities fα appear in Nestler et al. [17],
Garcke et al. [33] and are interpolated by means of an interpolation function
hα(ϕ) for each phase.

The interpolation function fulfills the condition

hα(φα = 1,φβ ̸=α = 0) = 1 (2.111)

hα(φα = 0, . . .) = 0 (2.112)

In Choudhury [50, Appendix C] it has been emphasized, that the sum constraint
should also hold for the interpolation function, i.e.

N

∑
α=1

hα(ϕ) = 1 , (2.113)

which becomes important when N > 2. With this constraint in place, the last term
in Eq. (2.110) becomes a weighted average of the bulk free energy densities. The
Gibbs function

G (ϕ) =

{
1 ∑N

α=1 φα = 1∩φα ≥ 0∀1≤ α ≤ N

∞ else
(2.114)
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ensures that all order parameters remain within the following bounds

0≤ φα ≤ 1 ∀1≤ α ≤ N . (2.115)

The term φα φβ reduces to φ(1−φ) in a two-phase model while qαβ = φα∇φβ −
φβ∇φα is a so-called generalized gradient vector, that replaces the gradient in the
two-phase model and reduces to the gradient ∇φβ =−∇φα in a binary interface
where φα = 1−φβ holds. Accordingly, the functional in Eq. (2.110) corresponds
to the choice of prefactors a = γαβ ε and b = 16γαβ/(π2ε) in Eq. (2.96) for the
gradient term and the obstacle potential, respectively. Thus, it can be seen that
the interfacial energy is equally σ = π/4

√
16γ2

αβ/(π
2) = γαβ which shows that

γαβ is the interfacial energy parameter for the interface between the α and the
β phase. Similarly, the equilibrium interface thickness δ of a binary interface
is given by δ = π

√
π2ε2/(16) = π2ε/4 and thus ε is a parameter that indepen-

dently controls the interface width.

The additional triplet term scaled by γαβδ is used to remove spurious third phases
that may appear at triple or higher-order junctions (i.e. only relevant for N > 2).
For more details, the interested reader is referred to Hötzer et al. [51].

Following the notation of Nestler et al. [17], the evolution equation for the N
order parameters is commonly written as

τ(ϕ)ε
∂φα(x, t)

∂ t
=− δF

δφα
−λ (2.116)

where λ is a Lagrange multiplier to ensure the sum constraint (Eq. (2.109)). τ(ϕ)
is a relaxation time (the inverse of the mobility) and can be expressed by means
of an arithmetic interpolation over the relaxation times of the binary interfaces

τ(ϕ) =
∑N

α=1 ∑N
β=α+1 ταβ φα φβ

∑N
α=1 ∑N

β=α+1 φα φβ
(2.117)
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cf. e.g. Choudhury et al. [52]. The implications of the interpolation form (har-
monic/arithmetic) was later discussed in detail in Enugala [53, Section 4.3.2] and
it was shown that the arithmetic interpolation of the relaxation times can lead to
pinning at junctions in practical simulations if ταβ are varying at order of mag-
nitudes.

An alternate formulation of the evolution equation from Steinbach and Pezzolla
[16] writes

ε
∂φα(x, t)

∂ t
=

1
Ñ

N

∑
β=1

mαβ

(
δF
δφβ
− δF

δφα

)
(2.118)

and avoids any interpolation of the mobilities or relaxation times by expressing
it completely by means of binary mobilities mαβ . In addition, it also gets rid of
the Lagrange multiplier since the form implicitly ensures the sum constraint if
the initial condition complies. Here Ñ is the number of local active phases.

Note that both formulations reduce to the two-phase Allen-Cahn model (Eq. (2.97))
in the binary (N = 2) case.

2.4.3 Models to Couple Diffusion and Phase
Transformation

Historical Notes Up to this point, only model formulations that can treat ei-
ther a two-phase or binary problem, as well as the multiphase case have been
mentioned. In the past, a variety of phase-field formulations were established
to study problems where the diffusion of a chemical species as well as the evo-
lution of a non-conserved order parameter are coupled. Such problems usually
arise in the solidification of an alloy, where the phase transformation from liquid
to solid accompanies diffusion towards the solidifying front from the melt. Early
attempts either assumed equal compositions of both the solid and the liquid in the
interfacial region Wheeler et al. [54], or a constant partition coefficient was as-
sumed Tiaden et al. [15]. For the former it has been shown by Kim et al. [55] that
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the assumption of equal compositions of both phases leads to a strong limitation
in the choice of interface width. This is rooted in an excess energy contribution
to the interfacial energy σ which then also depends on the chemical contribution
to the free-energy (for a review on the topic see Nestler and Choudhury [56]).

Kim-Kim-Suzuki and Eiken-Böttger-Steinbach Model The first ap-
proach to circumvent such problems was introduced by Kim et al. [55], where
analogies between the sharp-interface laws of a pure material and an alloy were
identified to establish the chemical potential as the intensive properties which is
continuous across an interface (in contrast the composition usually shows a jump
discontinuity). Their model for the first time introduces an explicit partitioning
by phase-wise compositions cα based on a local equilibrium condition of the
following form

µ =
∂ fα(cα)

∂cα
=

∂ fβ (cβ )

∂cβ
. (2.119)

This condition ensures equal chemical potentials µ of both liquid and solid at
each point in space. The composition was written as an interpolation between
the liquid and solid compositions

c = h(φ)cα +(1−h(φ))cβ (2.120)

by means of the interpolation function h(φ) which depends on the order parame-
ter φ . The evolution equations are derived in a non-variational way directly from
a free-energy density of the form

f (c,φ) = h(φ) fα(cα)+(1−h(φ)) fβ (cβ )+wg(φ) (2.121)
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and read

∂φ(x, t)
∂ t

= M
(

ε2∇2φ − ∂ f (c,φ)
∂φ

)
(2.122)

∂c(x, t)
∂ t

=∇ · D(φ)
∂ 2 f (c,φ)/∂c2∇µ (2.123)

where g(φ) = φ 2(1− φ)2 is the double-well potential. Applying the chain rule
yields

∂ f (c,φ)
∂φ

= h′(φ)
(

fα(cα)− fβ (cβ )−µ(cα − cβ )
)
+wg′(φ) (2.124)

and it can be seen that the driving force is given by the well-known double tangent
construction. It is worth noting that this follows from the equilibrium condition
(Eq. (2.119)) without imposing it from the start.

An almost identical model has been introduced later by Eiken et al. [18]. It gener-
alizes the Kim-Kim Suzuki model to multiple phases (by employing Eq. (2.118)
and using a multi-obstacle potential) and to multiple components. Also, it derives
the governing equations from a free-energy functional that includes dependencies
of the order parameters φα and the phase-inherent compositions cα .

Grand-Potential Model The grand-potential model was derived indepen-
dently by Plapp [19] and Choudhury and Nestler [20] with only minor differ-
ences: While Plapp proposed a two-phase model for the non-conserved order
parameter using a double-well potential, the model of Choudhury et al. is based
on the multi-phase framework and accordingly used an obstacle potential. Ad-
ditionally, while Plapp proposed an antitrapping current in analogy to the dilute
case [57], Choudhury et al. performed a thin-interface asymptotic analysis to
calibrate the antitrapping current which enables to run simulations at vanishing
kinetic coefficients even at large interface widths. This was previously only avail-
able for the solidification of dilute alloys [57, 58].

47



2 Theory

Instead of a free-energy functional, the model formulation starts with a grand
potential functional, written as7

Ψ(µ,ϕ) =
∫

Ω

N

∑
α=1

N

∑
β=α+1

γαβ

(
16

π2ε
φα φβ + ε|qαβ |2

)
+ψ(µ,ϕ)dV . (2.125)

It directly includes a dependence on the chemical potential tuple µ= {µ1, . . . ,µK−1}
for a multicomponent system of K components. The difference to the free-energy
functional lies in the chemical contribution formulated as a grand-potential den-
sity

ψ(µ,ϕ) =
N

∑
α=1

hα(ϕ)ψα(µ) (2.126)

interpolated in terms of phase-inherent contributions

ψα(µ) = fα(c
α(µ))−

K−1

∑
i=1

µicα
i (µ) (2.127)

which results in a driving force that can be graphically obtained by means of the
double-tangent construction. Thus, in contrast to the Kim-Kim Suzuki model, the
double tangent construction is assumed from the start instead of being obtained
by means of the chain rule.

It is worth noting that by expressing the phase-wise composition tuple cα explic-
itly as a function of the chemical potential, its invertibility is directly assumed.

Furthermore, a quasi-equilibrium condition similar to the one in [18, 55] is im-
posed on the chemical potential

∂ f α(cα)

∂cα
i

=
∂ f β (cβ )

∂cβ
i

= · · ·= µi ∀{i,α} . (2.128)

7 For the sake of brevity, the exposition here is limited to the multiphase formulation of Choudhury
and Nestler [20].
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By performing the derivative of ψ(µ,ϕ) with respect to the chemical potential of
the i’th component µi, the equivalent of the partitioning in the Kim-Kim Suzuki
model (Eq. (2.120)) results:

ci(µ,ϕ) =
N

∑
α=1

hα(ϕ)cα
i (µ) (2.129)

This rests on the thermodynamic relation ∂ψ(µ,ϕ)/∂ µi =−ci.

The evolution equation for the order parameters is formulated based on Eq. (2.116)
and writes

τ(ϕ)ε
∂φα(x, t)

∂ t
=−δΨ(µ,ϕ)

δφα
−λ (2.130)

which shows that the bulk driving force is governed by the grand-potential den-
sities ψα instead of free-energy densities fα .

In absence of any anti-trapping flux, the evolution of the i’th composition is for-
mulated as

∂ci(x, t)
∂ t

=∇ ·
K−1

∑
j=1

Mi j(ϕ)∇µ j (2.131)

where Mi j(ϕ) are the mobilities relating the flux density to the gradients in chem-
ical potential. They are formulated as an interpolation of the phase-wise mobili-
ties

Mi j(ϕ) =
N

∑
α=1

hα(ϕ)Mα
i j (2.132)
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that are defined by means of a Darken relation Darken [59] to hold phase-wise
diffusivities constant8

Mα
i j ≡ Dα

i j
∂cα

i (µ)

∂ µ j
. (2.133)

The important feature of the grand-potential model is that an evolution equa-
tion for the chemical potential can be derived by applying the chain rule to
Eq. (2.129). Accordingly, the evolution of the chemical potential is obtained
by solving the following linear system of equations

∂c j(µ,ϕ)

∂ µi

∂ µi(x, t)
∂ t

=
∂c j(x, t)

∂ t
−

N

∑
α=1

cα
j (µ)

∂hα(x, t)
∂ t

(2.134)

written in Einstein notation for the K−1 unknowns ∂ µi(x, t)/∂ t.

It is worth stressing, that the results obtained from the grand-potential model in
its simplest form (well-potential and two-phase, single component) and the Kim-
Kim Suzuki model are identical. The differences are twofold: Firstly, the grand-
potential model is directly derived from a grand-potential functional. Secondly,
the evolution equation of the composition is replaced by an evolution equation of
the chemical potential, which simplifies the numerical treatment.

2.4.4 Phase-Field Models for Surface Diffusion

Motivation All of the hitherto mentioned models incorporate bulk diffusion
in such a way that a smooth interpolation between the corresponding bulk mo-
bilities applies. This means that an additional surface flux is not incorporated
into these models. The current subsection is meant to summarize the historical
development of phase-field models for surface diffusion. The current subsection

8 This form seems to be meaningful only for pure diagonal entries in both Dα
i j and ∂cα

i /∂ µ j . It
was generalized later in [60].
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is based mostly on the exposition given in Hoffrogge et al. [24] but is written in
a more explanatory way.

2.4.4.1 Cahn-Hilliard Based Two-Phase Models (Fourth order)

First ideas to incorporate an additional surface flux in phase-field models were
formulated based on a mobility function which depends on the order parameter
M(φ) in the Cahn-Hilliard model, i.e.

∂φ(x, t)
∂ t

=∇ · (M(φ)∇µ) (2.135)

where the chemical potential is given by Eq. (2.98)). Such a form was first sug-
gested in [46]. The idea is that M(φ) depends on the order parameter in such a
way that the mobility vanishes in the bulk. Since µ includes the Laplacian of the
order parameter and M is free of any gradients, the differential equation contains
a fourth order spatial differential operator.

Most common formulations (e.g. [61–66]) employ well potential together with
a quadratic mobility M(φ) ∝ φ(1− φ), while only few have used a biquadratic
form M(φ) ∝ φ 2(1−φ)2 (e.g. [67]).

It is worth noting some subtleties in employing such mobility functions. In any
case, the construction of the mobility function is motivated by the equilibrium
phase-field profile for a flat interface (Eq. (2.105)) which tends to zero and unity
in the bulk, respectively. This makes the mobility tending to zero at both sides
which ensures that diffusion only occurs in within the interface. However, there
is a shift of the chemical potential for a curved interface reflecting the Gibbs-
Thomson effect and hence bulk compositions move slightly away from zero and
unity for a well potential. While a biquadratic mobility remains positive by de-
sign, a quadratic mobility may lead to negative mobilities, which is thermody-
namically inconsistent and causes instabilities [68]. To circumvent this, either
the mobility function is forced to remain positive by truncation [61], or replaced
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by its absolute value [65, 68] (i.e. M(φ) ∝ |φ(1−φ)|). Nevertheless, a remain-
ing caveat is that the mobility may still be positive in the bulk due to such shifts,
leading to an unwanted additional bulk diffusion.

This has been the focus of the rigorous asymptotic treatments in [68–70]. They
pointed out that the Cahn-Hilliard equation together with a well potential and a
quadratic mobility does not lead to pure surface diffusion in the sharp interface
limit but includes a nonlinear bulk contribution that scales with the curvature. For
a biquadratic mobility, such a bulk diffusion term is not occurring in the sharp-
interface limit, but appears as a first-order correction [70–72]. The problematic is
twofold: Firstly, the Gibbs-Thomson shift of the bulk compositions compromises
volume conservation and secondly, it leads to non-vanishing mobilities in the
bulk.

An approach which effectively shuts out the Gibbs-Thomson shift in the bulk was
first introduced by Rätz et al. [47] using an additional stabilizing function. While
the evolution equation (Eq. (2.135)) remains unchanged, the chemical potential
is defined by the following formula

g(φ)µ =
δF
δφ

=
d f (φ)

dφ
−2a∇2φ (2.136)

with the stabilizing function g(φ) ∝ φ 2(1− φ)2. It can be easily seen that a
nonzero chemical potential does not anymore imply a significantly nonzero right-
hand side when φ is near its equilibrium bulk values. This in turn means that in
the bulk, where |∇2φ | → 0, the term f ′(φ) still remains very much near zero,
keeping bulk compositions near zero and unity even for a curved interface. This
implies, that an additional bulk flux is not occurring according to the form of the
mobility function. This approach, also known as the doubly degenerate model
referring to the degeneracy in both the mobility and the stabilizing function has
been used in a variety of works [73–75]. It has been shown to be numerically
more efficient [76, 77] and has been generalized and extended towards a varia-
tional form in the latter work.
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2.4.4.2 Coupled Allen-Cahn and Cahn-Hilliard Models

In many cases, the coupled motion of an interphase boundary which evolves
according to surface diffusion and migrating grain boundaries is of particular in-
terest. Such problems have been often tackled by means of two types of coupled
equations, one that evolves conservatively by means of the Cahn-Hilliard equa-
tion with a degenerate mobility and an Allen-Cahn non-conservative equation.
The governing equations can be derived from a free-energy functional

F =
∫

Ω
f (ϕ,c)+a|∇c|2 +

N

∑
α=1

aα |∇φα |2 dV , (2.137)

written in terms of a non-conserved order parameter tuple ϕ and a conserved
order parameter c Wang [78], Moelans et al. [79]. f (ϕ,c) is an energy density
which includes minimas for characteristic values of both φα and c. Similar forms
of this model employing only a single non-conserved order parameter φ can be
found in [80, 81]. The chemical potential is derived as in the Cahn-Hilliard model

µ ≡ δF
δc

=
∂ f (ϕ,c)

∂c
−2a∇2c (2.138)

and its gradient drives a flux for the evolution of the conserved order parameter:

∂c(x, t)
∂ t

=∇ · (M(ϕ,c)∇µ) (2.139)

Here the dependency of the mobility on both φ and c allows to separately ad-
just contributions along the free surface and the grain boundaries. The evolution
equation of the non-conserved fields reads

ε
∂φα(x, t)

∂ t
=−m

δF
δφα

= m
(

2aα ∇2φα −
∂ f (ϕ,c)

∂φα

)
(2.140)

in its simplest form, employing a constant mobility m.
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2.4.4.3 Alternative Formulations

A formulation which is intrinsically different from the above mentioned formu-
lations can be found for instance in Amirouche and Plapp [82]. The major differ-
ence of this model with respect to the Cahn-Hilliard based models is that the free-
energy functional does not contain gradients in the concentration c and writes as

F =
∫

Ω

Hc

2
(c−g(ϕ))2 +Hp fTW(ϕ)+

3

∑
α=1

aα |∇φα |2 dV , (2.141)

where the notation is adjusted to fit that of Eq. (2.137). In contrast, the definition
of the chemical potential (µ ≡ δF/δc) still holds and Eq. (2.139) remains invari-
ant. The novelty is given by the term proportional to Hc which introduces a func-
tion g(ϕ) coupling the composition to the order parameter. The function fTW is a
triple-well to adjust the energy landscape for the three phases considered in that
work (N = 3) which can be considered as a minor difference. The major differ-
ence, i.e. the missing gradient term, makes Eq. (2.139) a second order equation
in terms of c, while the original coupled Allen-Cahn and Cahn-Hilliard model
is of fourth-order regarding this variable. This seems to simplify the computa-
tional complexity of the model significantly. However, the authors of the work
discussed several difficulties to relate the model to the existing sharp-interface
theories.

A formulation which also leads to a second-order diffusion equation is given by
the grand-potential model. Hötzer et al. [83] included an additional enhanced dif-
fusion in the interfacial region by using pairwise terms of the form φα φβ similar
to those introduced in the Cahn-Hilliard based surface diffusion model. Although
their work did not include an analytical calibration of the prefactors, they showed
that the introduction of such terms seem to qualitatively reproduce the expected
growth laws. The following chapter provides a model formulation following a
similar spirit, but focuses on a more rigorous and quantitative incorporation of
the surface diffusion terms closely related to the sharp-interface theories intro-
duced earlier.
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Surface and Bulk Diffusion

My files are bursting with important
material that I plan to include in the final,
glorious, third edition of Volume 3,
perhaps 17 years from now. But I must
finish Volumes 4 and 5 first, and I do not
want to delay their publication any more
than absolutely necessary.

Knuth [84]

Remarks In order to develop a model well suited for the modeling of nickel
coarsening at typical SOFC operating temperatures of 700 ◦C to 800 ◦C, a first
literature review regarding volume and surface diffusion coefficients [85–90] re-
vealed that the atomic transport of Ni is dominant along its free surface.

Therefore, a model needed to be developed that accurately handles surface dif-
fusion phenomena. In addition, the model should be general enough to be appli-
cable also to other materials and systems in order to ensure reusability and sus-
tainability and enable future research perspectives. The grand-potential model
[19, 20] constituted a promising choice since it was already applicable to mul-
tiphase and multicomponent systems. However, a term incorporating surface
diffusivities was still missing in this model. The model modification and exten-
sion, first presented in [24] by the current author and coworkers, is recalled in
the following. This publication also included asymptotic analysis of the pure
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surface diffusion case and the governing rate constant for surface diffusion could
successfully be derived and validated.

The model equations are briefly listed in the following. A systematic asymptotic
treatise follows, concerning concomitant atom transport along interfaces and in
the bulk, which was still lacking in the aforementioned work. To this end, a
multiphase-field simulation study is conducted to benchmark the model in com-
parison to the analytical solution presented by Srinivasan and Trivedi [25]. This
work combines two seminal works of Mullins ([42, 91]) where the pure surface
and volume diffusion case were treated, respectively.

3.1 Model Formulation

The model formulation starts with the grand-potential functional according to
[20]

Ψ(ϕ,∇ϕ,µ) =
∫

V
fint(ϕ,∇ϕ)+ψ(ϕ,µ) dV . (3.1)

Here ϕ= {φα ,φβ , . . . ,φN} is the order parameter tuple (dimensionless) for a set
of N distinct phases and µ = {µ1, . . . ,µK−1} in J/m3 is the set of independent
diffusion (or chemical) potentials of the multicomponent system of K compo-
nents.

The interfacial energy density

fint(ϕ,∇ϕ)≡
N

∑
α=1

N

∑
β=α+1

γαβ

(
G (ϕ)

16φα φβ

π2ε
− ε∇φα ·∇φβ

)
(3.2)

comprises of a multiobstacle potential and a gradient term following [16] in-
corporating interface energies γαβ in J/m2 and fulfills the Gibbs constraint
(Eq. (2.115)) through the Gibbs function (Eq. (2.114)).

56



3.1 Model Formulation

The gradient term, a replacement for the norm of the generalized gradient vector
qαβ according to [17], constitutes a minor difference to the original model for-
mulation (Eq. (2.125)). In a recent work [92], coauthored by the current author,
it could be shown to prevent the formation of spurious third phases which in turn
improves the accuracy of the model in cases where unequal interfacial energies
γαβ exist. In this form, the model does not require the additional triplet term
included in Eq. (2.110).

The grand-potential density ψ(ϕ,µ) remains identical to Eq. (2.126) and the
summation constraint (Eq. (2.113)), ∑N

α=1 hα(ϕ) = 1) is enforced on the interpo-
lation functions.

The evolution equation of the phase-field is given by

ε
∂φα(x, t)

∂ t
=

1
Ñ

N

∑
β=1

mαβ

(
δΨ
δφβ
− δΨ

δφα

)
(3.3)

in analogy to Eq. (2.118) which avoids an interpolation of the interface mobilities
in contrast to the original work. This evolution equation is consistent with the
sum constraint of the order parameters in Eq. (2.109) without introducing an
additional Lagrange multiplier.

The major extension is formulated by modifying the evolution equation of the
composition (Eq. (2.131)) which now reads

∂ci(x, t)
∂ t

=−∇ ·ji (3.4)

ji ≡ jb
i +js

i (3.5)

containing not only a bulk flux density jb
i but also an additional interface flux

density js
i . The evolution equations for the chemical potentials still hold (Eq. (2.134)).
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3 Multiphase-Field Model for Surface and Bulk Diffusion

The bulk flux density is chosen identical to the original formulation by interpo-
lating the phase-inherent flux densities

jb
i ≡

N

∑
α=1

hα(ϕ)j
α
i (3.6)

A minor generalization [60] may be applied by insisting on the following equality

jα
i ≡−

K−1

∑
j=1

Mα
i j∇µ j =−

K−1

∑
j=1

Dα
i j∇cα

j (3.7)

where Dα
i j denote the phase-inherent interdiffusivities.

This condition yields a prescription by means of chain rule to relate the chemical
mobilities to the interdiffusivities in each phase

Mα
i j =

K−1

∑
k=1

Dα
ik

∂cα
k (µ)

∂ µ j
(3.8)

using the Darken factors [59] ∂cα
k /∂ µ j.

The new interface flux density, postulated as

js
i ≡−

1
ε

N

∑
α=1

N

∑
β=α+1

K−1

∑
j=1

Mαβ
i j (ϕ)∇µ j (3.9)

Mαβ
i j (ϕ)≡ M̄αβ

i j gαβ (ϕ) (3.10)

rests on a superposition of all possible binary interface contributions through
interfacial chemical mobilities M̄αβ

i j in m4/(Js).

The inverse scaling with the interface width through the factor 1/ε is an important
feature of the model. A preliminary argument is as follows: When the interface
thickness is reduced, less material is contained in the interfacial region and thus,
the total flux associated with the interface (excess flux density) would be reduced
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3.1 Model Formulation

if the flux density were kept unchanged. Therefore, if the factor 1/ε were miss-
ing, the interface kinetics would be largely dependent on the arbitrarily chosen
interface thickness. This notion is also reflected in the following asymptotic treat-
ment, since it makes the surface diffusion term dominant in the interfacial region
as the interface thickness is reduced to zero. Note that the interface flux density
js

i becomes singular for ε → 0 which ensures that an excess term remains even
for a vanishing interface thickness parameter.

An additional point worth noting is that a direct relation of the parameter M̄αβ
i j to

surface interdiffusivities is not possible without employing some sort of interpo-
lation (involving at least the Darken factors). Moreover, since the compositions
are usually subject to jumps at the interface and the thermodynamic properties
of the phases in contact might be completely different, such a relation does not
convey much meaningful information. Therefore, the relation to interface diffu-
sivities is not performed for the general multicomponent case.

Instead, the model parameters M̄αβ
i j can be used to individually control the rate

at which atoms are transported along each α−β interface.

The dimensionless function gαβ is proposed as a generalization of the established
two-phase formulations in the following multiphase form:

gαβ (ϕ) =

{
> 0 φα > 0∩φβ > 0

0 φα = 0∪φβ = 0
. (3.11)

This ensures that the additional interface flux density is vanishing in the bulk.

A natural choice is

gαβ (ϕ) = φ n
α φ n

β (3.12)

with some exponent n > 0, n ∈ R.
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3 Multiphase-Field Model for Surface and Bulk Diffusion

This completes the formulation of the grand-potential model with coupled inter-
face and volume diffusion. The sharp-interface limit of the model is now to be
determined analytically.

3.2 Sharp-Interface Limiting Behavior

Motivation In the current section, the governing laws of the grand-potential
model including both surface and volume-diffusion are derived by performing
asymptotic analysis. Asymptotic analysis is commonly conducted [12, 13, 93–
95] to derive the sharp-interface limiting behavior of phase-field models. It
therefore bridges the gap between the diffuse-interface formalism and the more
broadly accepted notion of continuum descriptions, where singular surfaces sep-
arate distinct domains of varying properties. The asymptotic treatment helps to
show, that the model is capable of recovering important physical aspects if the
interface thickness were to vanish. In a numerical simulation, interface thickness
must always be finite owing to the discretization which does not permit a discon-
tinuous variation of the solution variable. In contrast, the asymptotic treatment is
a purely analytical procedure and the sharp interface case can be approached as
a limiting case. As such, the asymptotic treatment allows to rigorously validate a
model that was initially constructed purely out of intuition.

The asymptotic derivation for the grand-potential model with pure volume diffu-
sion was presented in [20]. The asymptotic analysis under pure surface diffusion
was presented in [24] by the current author and coworkers. The current analysis
is an extension of this derivation for combined surface and volume diffusion. For
the derivation, a binary two-phase system is considered and therefore, composi-
tion subscripts i are omitted in the following and a single order parameter φα is
considered. The derivation is also restricted to a two-dimensional setup.
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3.2 Sharp-Interface Limiting Behavior

3.2.1 Preliminaries

Governing Equations The governing equations for a two-phase binary sys-
tem are given based on Eqs. (3.3) and (2.134). Accordingly, one obtains

ε
mαβ

φ̇α = εγαβ ∇2φα −
8γαβ

επ2 (1−2φα)−
ψα −ψβ

2
∂hα

∂φα
(3.13)

∂c
∂ µ

µ̇ =∇ · (M(φα)∇µ)−
(

cα(µ)− cβ (µ)
)

ḣα . (3.14)

Here, according to Eq. (3.5) and in contrast to [24], the chemical mobility

M(φα ,µ) =
Ms(φα)

ε
+Mb(φα ,µ) (3.15)

comprises of a surface

Ms(φα) = M̄g(φα) (3.16)

and bulk contribution

Mb(φα ,µ) = Mα(µ)hα(φα)+Mβ (µ)(1−hα (φα)) . (3.17)

3.2.1.1 Solution in the Bulk

Order Parameter In a two-phase setup, there are two possible bulk regions
satisfying |∇φα | = 0 and the Gibbs-simplex constraint (Eq. (2.115)). These are
φα = 0 and φα = 1. Inserting these two constants into the governing equations
yields two results, one for the order parameter and one for the chemical potential.
For the phase-field equation (3.13), one obtains

ε
mαβ

φ̇α =−8γαβ

επ2 (1−2φα)−
ψα −ψβ

2
∂hα

∂φα
(3.18)
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which evalutes to

ε
mαβ

φ̇α =−8γαβ

επ2 +
ψα −ψβ

2
∂hα

∂φα

∣∣∣∣
φα=0

(3.19)

ε
mαβ

φ̇α =+
8γαβ

επ2 +
ψα −ψβ

2
∂hα

∂φα

∣∣∣∣
φα=1

(3.20)

for φα = 0 and φα = 1 as initial condition, respectively. In the case that the
derivative of the interpolation function vanishes at the respective bulk values, i.e.
∂hα/∂φα |φα∈{0,1} = 0, which is the case for most of the commonly employed
interpolation functions (cf. the following Chapter 4) of order larger equal unity,
we can omit the second term on the RHS. Then it is observed that φ̇α < 0 for
φα = 0 and positive for φα = 1, given that all physical parameters mobility, inter-
facial energy and interface width are positive constants (mαβ > 0, γαβ > 0 and
ε > 0). In turn, in the very next moment, the Gibbs-simplex constraint would be
violated. As this cannot be the case, φ̇α = 0 in the bulk since the Gibbs simplex
is imposed here. We refer to this as stable bulk states since the evolution of the
order parameter in the bulk cannot become a part of the interface globally and
instantaneously. This is only possible in a special case when ∂hα/∂φα |φα∈{0,1}
evaluates to nonzero constants. Then, depending on the driving force ψα −ψβ ,
the bulk might become instable when the sign of the right-hand side switches
accordingly. However, as ε is reduced down to zero in the sharp-interface limit,
the first term on the right hand side blows up and in turn dominates the right hand
side for any finite driving force. Therefore, considerations have to be restricted
to a region of small enough ε where stable bulk states can be maintained (which
should be the case for reasonably large driving forces). For a more detailed ex-
position of the influence of large driving forces, the reader is referred to the next
chapter (cf. Section 4.6.1).
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3.2 Sharp-Interface Limiting Behavior

Chemical Potential The governing equation for the chemical potential in the
two bulk regions is obtained by inserting the bulk solution of the order parameter
into Eq. (3.14)

∂cα

∂ µ
µ̇ =−∇ ·jα at φα = 1 (3.21)

∂cβ

∂ µ
µ̇ =−∇ ·jβ at φα = 0 , (3.22)

taking into account Eq. (3.6), Eq. (2.129) as well as equations (2.111)-(2.112).
Writing this in terms of the bulk compositions, one obtains the classical Fick’s
law of diffusion for a constant molar volume (Eq. (2.30))

ċα =∇ · (Dα∇cα) at φα = 1 (3.23)

ċβ =∇ · (Dβ∇cβ ) at φα = 0 . (3.24)

3.2.1.2 Moving Curvilinear Coordinates

The two partial differential equations (3.13) and (3.14) are written in terms
of moving curvilinear coordinates, i.e. applying the surface parameterization
introduced in Section 2.3.1. Since the current analysis is restricted to a two-
dimensional problem, only a single surface parameter s ≡ a1 needs to be con-
sidered. The subscript is also omitted for the tangential vector, i.e. s ≡ s1. An
arclength-parameterization is conducted which results in |s| = 1. The spatial
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3 Multiphase-Field Model for Surface and Bulk Diffusion

differential operators are expressed in curvilinear coordinates according to [96]
as

∇= n
∂
∂ r

+s
1

1+ rκ0

∂
∂ s

(3.25)

∇ · (a∇b) =
∂
∂ r

(
a

∂b
∂ r

)
+

1

(1+ rκ0)
2

∂
∂ s

(
a

∂b
∂ s

)

+a

(
κ0

1+ rκ0

∂b
∂ r
− r ∂κ0

∂ s

(1+ rκ0)
3

∂b
∂ s

) (3.26)

∇2 =
∂ 2

∂ r2 +
κ0

1+ rκ0

∂
∂ r

+
1

(1+ rκ0)
2

∂ 2

∂ s2 −
r ∂κ0

∂ s

(1+ rκ0)
3

∂
∂ s

. (3.27)

Here, κ0(s, t) is the signed curvature of the basesurface x0 (Eq. (2.34)) and the
scaling with r reflects how the curvature increases or decreases for surfaces of
constant distance from the basesurface. As a sign convention, the curvature is
positive if n points from the center of curvature to a point on the basesurface.

The time derivative is written in terms of the normal time derivative, i.e.

φ̇α =
@
φα − vn

∂φα(r,s, t)
∂ r

(3.28)

µ̇ =
@µ− vn

∂ µ(r,s, t)
∂ r

(3.29)

which completes the coordinates transformation.

3.2.1.3 Moving Boundary Conditions

As the viewpoint of a moving coordinate system is established, it is now straight-
forward to apply appropriate boundary conditions. In the coordinate system at
hand, they do not appear any different from a conventional boundary condition.
However, in a fixed coordinate system they appear as moving in space. Thus, the
movement of the coordinate surface is still a degree of freedom which is neces-
sary to acquire any interesting result from the derivation.
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3.2 Sharp-Interface Limiting Behavior

Phasefield BCs In this spirit, it is assumed that the phase-field approaches
the bulk values corresponding to the two phases α and β at signed distances
r = r± with r− < 0 and r+ > 0. Without loss of generality the coordinate r = 0
corresponds to the φα = 1/2 contour by means of a boundary condition. By this
specific choice, all properties of the basesurface such as its normal velocity vn

or its curvature κ0 become properties of this contour. Thus they can be seen as
important properties associated with the physical problem at hand. For instance,
they may reflect the geometry and movement of a phase boundary in space that
is parameterized by means of the order parameter.

The corresponding equations read

φα(0,s, t) =
1
2

(3.30)

φα(r+,s, t) = 0 (3.31)

φα(r−,s, t) = 1 . (3.32)

It is important to note, that r± are not necessarily constants but may well be
varying along the surface and with time, i.e. r± = r±(s, t). Thus the current
derivation does not a priori assume a uniform interface thickness or any symmetry
of the order-parameter profile.

As it turns out, the above conditions are not sufficient to obtain a unique solution.
Therefore, additional boundary conditions are imposed on the spatial derivative.
It is assumed that the first derivative of the order parameter is continuous at the
endpoints of the interface. Since in the bulk |∇φα |= 0 holds, the corresponding
boundary condition writes

∂φα(r,s, t)
∂ r

∣∣∣∣
r=r±

= 0 . (3.33)

This assumption may also be justified by the Gibbs-simplex 2.115 which ensures
that φα = 0 and φα = 1 are global minima and maxima of the order parameter
function.
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Chemical Potential BCs In contrast to the derivation for pure surface diffu-
sion, given in [24], we assume continuity of the chemical potential at the interfa-
cial endpoints.

µ(r±,s, t) = µ± . (3.34)

Here µ± denotes the limiting value of the chemical potential from the bulk at r±.

This is justified due to the assumption of non-vanishing bulk diffusivities which
should in turn remove any discontinuity instantaneously.

In order to derive appropriate boundary condition for the first derivative of the
chemical potentials, the contours of the interfacial endpoints r = r±(s, t) are con-
sidered as a moving surface. Since the evolution equation of the composition
in the current model (Eq. (3.4)) fulfills the species mass balance under constant
molar volume (Eq. (2.27)), the corresponding interfacial balance can be deduced
from Eq. (2.67).

According due to the continuity of the chemical potential, the left-hand side van-
ishes and thus

j− ·n±(s, t) = jα,− ·n±(s, t) (3.35)

j+ ·n±(s, t) = jβ ,+ ·n±(s, t) (3.36)

results. Here j± denotes the flux density inside the interface as r± is approached
and jα,−, jβ ,+ the corresponding bulk limits at either side. Note that, the normals
n±(s, t) on the r±(s, t) curves are not necessarily equal to n(s, t) since r± might
depend on the arclength s. However, since the chemical potential is a continuous
function of arclength, and due to the aforementioned BC (Eq. (3.34)) as well as
the continuity of the chemical mobilities, the tangential component of the flux
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3.2 Sharp-Interface Limiting Behavior

density must also be continuous across r±. Therefore, continuity of the normal
flux demands

(
M

∂ µ(r,s, t)
∂ r

)∣∣∣∣
r=r±

=− jn,± (3.37)

jn,+ ≡ jβ ,+ ·n(s, t) =−Mβ (µ+)∇µ+ ·n(s, t) (3.38)

jn,− ≡ jα,− ·n(s, t) =−Mα(µ−)∇µ− ·n(s, t) (3.39)

also with respect to the normal n(s, t) on the φα = 1/2 contour. Here ∇µ±
indicates the bulk limit of the chemical potential gradient as r± is approached.

3.2.1.4 Interface Width Expansion

Remarks As interface thickness is reduced, it is expected that the phasefield
exhibits a growing magnitude of the gradient in the interfacial region to maintain
the respective bulk values. Therefore, it is not meaningful to write the solution in
terms of the radial distance r, as we expect it to become singular in terms of r. To
obtain a useful set of mathematical equations, it is required to rescale the radial
coordinate such that we zoom into the diffuse interface at a rate which keeps
solutions regular as a vanishing thickness is approached. For that, the rescaled
and dimensionless normal coordinate η ≡ r/ε is introduced.

Additionally, as we expect the solution to approach a sharp-interface limit, Taylor
expansion about ε = 0 of the differential equations is performed. Once this is
done and assuming that such an expansion exists, it is sufficient to consider all
terms of equal power with respect to ε and equate them. As we will see, this
simplifies the partial differential equations drastically. It therefore replaces a hard
problem, i.e. solving a partial differential equation being difficult or impossible
to solve in general, into an infinite number of much simpler problems. And as
we are interested in the sharp-interface limiting behavior only, there is no need to
solve all of the simple problems but just the very first ones, already revealing the
model behavior for vanishing small interface thickness.
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Expanding Unknowns The unknowns of the differential equation at hand
are the phasefield φα and the chemical potential µ . Additionally, the normal
velocity vn of the φα = 1/2 contour is unknown since in a fixed coordinate system
it is a part of its partial time derivative φ̇α . Furthermore, the interfacial endpoints
r± are initially unknown.

Therefore, all these four quantities are written as expansions in terms of the in-
terfacial width parameter ε:

φα(η ,s, t) = φ 0
α(η ,s, t)+ εφ 1

α(η ,s, t)+ ε2φ 2
α(η ,s, t)+O(ε3) (3.40)

µ(η ,s, t) = µ0(η ,s, t)+ εµ1(η ,s, t)+ ε2µ2(η ,s, t)+O(ε3) (3.41)

vn(s, t) = v0
n(s, t)+ εv1

n(s, t)+ ε2v2
n(s, t)+O(ε3) (3.42)

η±(s, t) = η0
±(s, t)+ εη1

±(s, t)+ ε2η2
±(s, t)+O(ε3) (3.43)

Expanding Functional Quantities Some quantities are functions of the
above mentioned unknowns and are therefore expanded by means of chain rule.
For instance, the chemical mobility expands as

M(φα ,µ) =
1
ε

M0 +M1 + εM2 +O(ε2) (3.44)

M0 = M̄g(φ 0
α) (3.45)

M1 = M̄g′(φ 0
α)φ

1
α +Mb(φ 0

α ,µ
0) (3.46)

M2 = M2
s +M2

b (3.47)

M2
s =

1
2

(
M̄
(

2φ 2
α g′(φ 0

α)+g′′(φ 0
α)
(
φ 1

α
)2
))

(3.48)

M2
b = µ1

(
Mα ′(µ0)hα(φ 0

α)+Mβ ′(µ0)
(
1−hα(φ 0

α)
))

+h′α(φ
0
α)φ

1
α

(
Mα(µ0)−Mβ (µ0)

)
.

(3.49)
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Similarly, the interpolation function and its derivative

hα(φα) = h0
α + εh1

α +O(ε2) = hα(φ 0
α)+ εh′α(φ

0
α)φ

1
α +O(ε2) (3.50)

h′α(φα) = h′0α + εh′1α +O(ε2) = h′α(φ
0
α)+ εh′′α(φ

0
α)φ

1
α +O(ε2) (3.51)

as well as chemical properties

ψα(µ)−ψβ (µ) = ψα(µ0)−ψβ (µ0)+ εµ1
(

ψ ′α(µ
0)−ψ ′β (µ

0)
)
+O(ε2)

(3.52)

cα(µ)− cβ (µ) = cα(µ0)− cβ (µ0)+ εµ1
(

cα ′(µ0)− cβ ′(µ0)
)
+O(ε2)

(3.53)

can be expanded.

Expanding Differential Operators Since the spatial differential operators
from Eqs. (3.26)-(3.27) itself include a dependency on ε , they are written in terms
of η and an ε-expanded form, yielding

∇ · (a∇b) =
1
ε2

∂
∂η

(
a

∂b
∂η

)
+

aκ0

ε
∂b
∂η
−aηκ2

0
∂b
∂η

+
∂
∂ s

(
a

∂b
∂ s

)
+O(ε)

(3.54)

∇2 =
1
ε2

∂ 2

∂η2 +
κ0

ε
∂

∂η
−ηκ2

0
∂

∂η
+

∂ 2

∂ s2 +O(ε) . (3.55)

Accordingly, the partial time derivative is expanded which gives

ϕ̇ =−1
ε

v0
n

∂ϕ0

∂η
− v0

n
∂ϕ1

∂η
− v1

n
∂ϕ0

∂η
+

@ϕ0 +O(ε) . (3.56)
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Expanding Boundary Conditions The first boundary condition of the
phasefield based on Eq. (3.30) can be written in expanded form as

φ 0
α(η = 0) =

1
2

(3.57)

φ n
α(η = 0) = 0 ∀n > 0 . (3.58)

Incorporating the expansion of the interfacial endpoints from Eq. (3.43), as
shown in [24], into the boundary condition of the phasefield (Eqs. (3.32)-(3.31)),
one obtains the following equations for zeroth order

φ 0
α(η

0
−) = 1 (3.59)

φ 0
α(η

0
+) = 0 , (3.60)

first order

∂φ 0
α(η)

∂η

∣∣∣∣
η0
±

η1
±+φ 1

α(η
0
±) = 0 , (3.61)

and second order

∂ 2φ 0
α(η)

∂η2

∣∣∣∣
η0
±

(
η1
±
)2

+2
∂φ 0

α(η)

∂η

∣∣∣∣
η0
±

η2
±+2

∂φ 1
α(η)

∂η

∣∣∣∣
η0
±

η1
±+2φ 2

α(η
0
±) = 0 .

(3.62)

Analogously, the derivative boundary conditions from Eq. (3.33) require at lowest
order that

∂φ 0
α

∂η

∣∣∣∣
η0
±

= 0 (3.63)

and at first order

∂ 2φ 0
α(η)

∂η2

∣∣∣∣
η0
±

η1
±+

∂φ 1
α

∂η

∣∣∣∣
η0
±

= 0 , (3.64)

70



3.2 Sharp-Interface Limiting Behavior

as well as second order

∂ 3φ 0
α(η)

∂η3

∣∣∣∣
η0
±

(
η1
±
)2

+2
∂ 2φ 0

α(η)

∂η2

∣∣∣∣
η0
±

η2
±+2

∂ 2φ 1
α(η)

∂η2

∣∣∣∣
η0
±

η1
±+2

∂φ 2
α

∂η

∣∣∣∣
η0
±

= 0 .

(3.65)

To account for the continuity of the chemical potential, firstly, the bulk limit is
written in an expanded form

µ± = µ0
±+ εµ1

±+ ε2µ2
±+O(ε3) (3.66)

which is equated with the the LHS of equation (3.34) and expanded to obtain

µ0
± = µ0(η0

±) (3.67)

µ1
± =

∂ µ0(η)

∂η

∣∣∣∣
η0
±

η1
±+µ1(η0

±) (3.68)

for the lowest two orders.

The endpoint bulk flux is expanded

jn,± = j0
n,±+ ε j1

n,±+ ε2 j2
n,±+O(ε3) (3.69)

and equated with the LHS of equation (3.38). Afterwards, to obtain a Taylor-
expandable form in the zoomed coordinate η , both sides are multiplied with ε2

to obtain
(

εM
∂ µ
∂η

)∣∣∣∣
η=η±

=−ε2 j0
n,±+O(ε3) . (3.70)

To simplify the writeup, we first denote a negative rescaled flux as

J ≡ εM
∂ µ
∂η

(3.71)
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which according to expansions (Eq. (3.41) and Eq. (3.45)) writes as

J = J0 + εJ1 + ε2J2 +O(ε3) (3.72)

J0 ≡M0 ∂ µ0

∂η
(3.73)

J1 ≡M1 ∂ µ0

∂η
+M0 ∂ µ1

∂η
(3.74)

J2 ≡M2 ∂ µ0

∂η
+M1 ∂ µ1

∂η
+M0 ∂ µ2

∂η
. (3.75)

By incorporating the dependence of η± on ε , one obtains

0 = J0(η0
±) (3.76)

0 =
∂J0

∂η

∣∣∣∣
η0
±

η1
±+ J1(η0

±) (3.77)

0 =
∂ 2J0

∂η2

∣∣∣∣
η0
±

(
η1
±
)2

+2
∂J0

∂η

∣∣∣∣
η0
±

η2
±+2

∂J1

∂η

∣∣∣∣
η0
±

η1
± +2J2(η0

±)+2 j0
n,± .

(3.78)
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Evolution Equations Based on equation (3.13) and the expansions for the
differential operators derived so far, the evolution equation for the phasefield in
expanded form writes

(−v0
n− εv1

n

mαβ γαβ
−κ0

)(
∂φ 0

α
∂η

+ ε
∂φ 1

α
∂η

)
+ εηκ2

0
∂φ 0

α
∂η

+ ε
@
φ 0

α

=
1
ε

∂ 2φ 0
α

∂η2 +
∂ 2φ 1

α
∂η2 + ε

∂ 2φ 2
α

∂η2 + ε
∂ 2φ 0

α
∂ s2

− 8
π2

(
1
ε
−2
(

1
ε

φ 0
α +φ 1

α + εφ 2
α

))

− ψα(µ0)−ψβ (µ0)

2γαβ

(
h′α(φ

0
α)+ εh′′α(φ

0
α)φ

1
α
)

− εµ1h′α(φ
0
α)

ψ ′α(µ0)−ψ ′β (µ
0)

2γαβ
+O(ε2) .

(3.79)

Additionally, the evolution equation for the chemical potential, expanded up to
zero order writes as

1
ε3

∂
∂η

(
(
M0 + εM1 + ε2M2) ∂

(
µ0 + εµ1 + ε2µ2

)

∂η

)

+
M0κ0

ε2
∂ µ0

∂η
+

M0κ0

ε
∂ µ1

∂η
+

1
ε

∂
∂ s

(
M0 ∂ µ0

∂ s

)

+
M1κ0−M0ηκ2

0 + v0
n ∂c/∂ µ|φ0

α ,µ0

ε
∂ µ0

∂η

+
(

cα(µ0)− cβ (µ0)
) v0

n

ε
∂hα(φ 0

α)

∂η
+O(1) = 0 .

(3.80)

These two equations serve as a basis for the derivation performed order by order
in the following section.
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3.2.2 Derivation

3.2.2.1 Lowest Order Phase-Field Profile

Statement of the Differential Equation For the phase-field evolution,
terms at the lowest order 1/ε are collected from equation (3.79) and hence

∂ 2φ 0
α

∂η2 +
16
π2 φ 0

α =
8

π2 . (3.81)

To obtain a unique solution, this differential equation with respect to η is sub-
jected with the derived boundary conditions. For the current order, they read
φ 0

α(0)= 1/2, φ 0
α(η0

−)= 1, φ 0
α(η0

+)= 0 (Eqs. (3.59)-(3.60)) as well as ∂φ 0
α/∂η

∣∣
η0
±
=

0 (Eq. (3.63)).

Solving the Equation The solution to the above differential equation satis-
fying φ 0

α(0) = 1/2 (which rules out a possible cosine term), reads

φ 0
α(η) =

1
2
+C1 sin

(
4
π

η
)

(3.82)

with a constant C1. At first sight, it is not clear at which point the interfacial
endpoints are located, since φ 0

α(η0
−) = 1 and φ 0

α(η0
+) = 0 can hold at any point

for arbitrary values of C1. For that, we turn our attention to the first derivative

∂φ 0
α

∂η
=

4C1

π
cos
(

4
π

η
)
, (3.83)

because the derivative BC ∂φ 0
α/∂η

∣∣
η0
±
= 0 demands roots of the above equations

which is entirely independent of C1. The roots of the equation are periodically
placed at π2/8+ nπ2/4, ∀n ∈ Z. Here, it is necessary to rule out some of the
possibilities to obtain a unique solution for η0

±. To obtain only a single interface
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with a monotonous φ 0
α and demanding that η0

+ > 0, the only choice that remains
is that

η0
± =±π2

8
. (3.84)

This means that in the sharp-interface limit, an interface thickness of επ2/4 in-
dependent of arclength and time is approached.

Now, the conditions φ 0
α(η0

−) = 1 and φ 0
α(η0

+) = 0 are satisfied if the constant
C1 =−1/2 and thus

φ 0
α(η) =

1
2
− 1

2
sin
(

4
π

η
)

(3.85)

is the solution for the order parameter at lowest order.

Remarks Equation (3.85) is identical to the form usually obtained when find-
ing an equilibrium solution for a planar interface, as done in [97, Section 3.1.3].
Therefore, the current analysis shows that the sinusoidal profile is the sharp-
interface limiting interface profile also for a curved interface. It is no surprise,
that this is also identical to [24, Eq. (68)] in the derivation with pure surface
diffusion, as the chemical potential is not affecting the phase-field equation at
lowest order. Another point worth mentioning is that φ 0

α does neither depend on
the arclength s or time t which in turn leads to ∂φ 0

α/∂ s = 0 and
@
φ 0

α = 0 according
to Eq. (2.61).

3.2.2.2 Lowest Order Chemical Potential

At lowest order in Eq. (3.80) only a single term exists, which reads

∂
∂η

(
M0 ∂ µ0

∂η

)
= 0 (3.86)
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and is subject to the BCs
(
M0∂ µ0/∂η

)∣∣
η0
±
= 0 from Eq. (3.76). Integrated with

respect to η from η0
− to η taking into account the BC, one obtains

M0 ∂ µ0

∂η
= 0 , (3.87)

satisfying also the other BC
(
M0∂ µ0/∂η

)∣∣
η0
+
= 0. Since M0(η) = M̄g(φ 0

α)

is a known function and according to the zeroth order phasefield, M0(η) > 0
everywhere except at η0

±, it must be that

∂ µ0

∂η
= 0 (3.88)

and hence µ0 = µ0(s, t) is constant with respect to η . The continuity of the
chemical potential at the endpoints (Eq. (3.67)) shows that in the sharp-interface
limit,

µ0
+ = µ0

− = µ0(s, t) (3.89)

holds implying that the bulk chemical potential is continuous at the interface. As
it turns out, the value of µ0(s, t) is still unknown and needs to be fixed at higher
orders.

3.2.2.3 Next to Lowest Order Phase-Field

Statement of the Differential Equation Collecting terms of order ε0 in
equation (3.79), the following differential equation results:

∂ 2φ 1
α

∂η2 +
16
π2 φ 1

α =

( −v0
n

mαβ γαβ
−κ0

)
∂φ 0

α
∂η

+
ψα(µ0)−ψβ (µ0)

2γαβ
h′α(φ

0
α) . (3.90)

If the explicit form of h′α(φ 0
α) was given, the dependence of the right-hand side

on η would be completely known. To keep the analysis general, it is attempted
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to solve the equation in an integral way such that important physical quantities
can be deduced without having to explicitly give the formula for φ 1

α(η).

Multiplication and Integration For that, Eq. (3.90) is multiplied by the
known function ∂φ 0

α/∂η and integrated

∫ η0
+

η0
−

(
∂ 2φ 1

α
∂η2 +

16
π2 φ 1

α

)
∂φ 0

α
∂η

dη =

∫ η0
+

η0
−

( −v0
n

mαβ γαβ
−κ0

)(
∂φ 0

α
∂η

)2

+
ψα(µ0)−ψβ (µ0)

2γαβ
h′α(φ

0
α)

∂φ 0
α

∂η
dη .

(3.91)

To incorporate the boundary conditions for φ 1
α and ∂φ 1

α/∂η , the LHS is inte-
grated by parts, which yields

∫ η0
+

η0
−

(
∂ 2φ 1

α
∂η2 +

16
π2 φ 1

α

)
∂φ 0

α
∂η

dη =

[
∂φ 1

α
∂η

∂φ 0
α

∂η

]η0
+

η0
−

+
16
π2

[
φ 1

α φ 0
α
]η0

+

η0
−

−
∫ η0

+

η0
−

∂φ 1
α

∂η

(
∂ 2φ 0

α
∂η2 +

16
π2 φ 0

α

)
dη .

(3.92)

Repeating this procedure for the remaining integral, one obtains

∫ η0
+

η0
−

∂φ 1
α

∂η

(
∂ 2φ 0

α
∂η2 +

16
π2 φ 0

α

)
dη =

[
φ 1

α

(
∂ 2φ 0

α
∂η2 +

16
π2 φ 0

α

)]η0
+

η0
−

−
∫ η0

+

η0
−

φ 1
α

(
∂ 3φ 0

α
∂η3 +

16
π2

∂φ 0
α

∂η

)
dη .

(3.93)
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First it is noted, that the remaining integral vanishes since 0 = ∂ 3φ 0
α/∂η3 +

16/π2∂φ 0
α/∂η according to the differential equation for the zeroth order phase-

field (Eq. (3.81)). Therefore one obtains the initial integral only in terms of the
BCs for φ 1

α and its first derivative as well as the known function φ 0
α , i.e.

∫ η0
+

η0
−

(
∂ 2φ 1

α
∂η2 +

16
π2 φ 1

α

)
∂φ 0

α
∂η

dη =

[
∂φ 1

α
∂η

∂φ 0
α

∂η

]η0
+

η0
−

−
[

φ 1
α

∂ 2φ 0
α

∂η2

]η0
+

η0
−

. (3.94)

The first term on the RHS of the above equation vanishes since ∂φ 0
α(η)/∂η

∣∣
η0
±
=

0 and from the BC of the phasefield at lowest order (Eq. (3.61)),

φ 1
α(η

0
±) =−

∂φ 0
α(η)

∂η

∣∣∣∣
η0
±

η1
± = 0 (3.95)

and hence also the second term vanishes. Therefore, the left-hand side of
Eq. (3.92) is identically zero.

For the right-hand side of Eq. (3.92), the first term can simply be integrated from
the known solution

∫ η0
+

η0
−

(
∂φ 0

α
∂η

)2

dη =
1
2
, (3.96)

whereas the second term can be deduced by means of integration by substitution

∫ η0
+

η0
−

h′α(φ
0
α)

∂φ 0
α

∂η
dη =

[
hα(φ 0

α(η))
]η0

+

η0
−
= hα(0)−hα(1) =−1 (3.97)

taking into account the conditions imposed on the interpolation function through
Eq. (2.111)-(2.112).
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Gibbs-Thomson Condition The resulting equation turns out to be the Gibbs-
Thomson effect relating the difference in grand-potential densities of the two
phases to curvature

ψβ (µ0)−ψα(µ0) = γαβ κ0 +
v0

n

mαβ
. (3.98)

The additional kinetic term reflects the attachment kinetics due to a finite inter-
face mobility mαβ . An important special case pertains to grain boundaries, where
the two grains at either side of the interface have identical chemical properties,
i.e. ψα(µ0) = ψβ (µ0). Then, the movement of the GB is governed by curvature,
such that

v0
n =−mαβ γαβ κ0 for GBs (3.99)

holds. An interesting point is that in this case, the value of µ0 is not affixed by
the model equations.

In contrast, for chemically distinct phases, we may expand the grand-potential
difference for small deviations from equilibrium as follows

ψα(µ0)−ψβ (µ0) = ψα(µeq)−ψβ (µeq)

+(µ0−µeq)
(

cβ (µeq)− cα(µeq)
)
+O

(
(µ0−µeq)

2)

(3.100)

since ψ ′α(µ) = −cα(µ). Additionally, since ψα(µeq) = ψβ (µeq) per definition
of µeq,

µ0−µeq =
γαβ κ0 +

v0
n

mαβ

cα(µeq)− cβ (µeq)
+O

(
(µ0−µeq)

2) (3.101)

holds. Therefore, the value of µ0 is fixed depending on the curvature and the
movement of the interface.
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3.2.2.4 Next to Lowest Order Chemical Potential

Terms at order ε−2 are collected from Eq. (3.80) to obtain

∂
∂η

(
M0 ∂ µ1

∂η

)
+

∂
∂η

(
M1 ∂ µ0

∂η

)
+M0κ0

∂ µ0

∂η
= 0 . (3.102)

and since ∂ µ0/∂η = 0, simplifies to

∂
∂η

(
M0 ∂ µ1

∂η

)
= 0 . (3.103)

The flux BC from Eq. (3.77), simplifies to J1(η0
±) = M0∂ µ1/∂η

∣∣
η0
±
= 0 since

J0 = 0. Integrating from η0
− to η0

+ and taking these conditions into account it
results that

∂ µ1

∂η
= 0 (3.104)

for the same reason as for the zero order chemical potential µ0.

3.2.2.5 Second Order Chemical Potential

The differential equation derived from Eq. (3.80) at order ε−1 is expressed as

0 =
∂

∂η

(
M0 ∂ µ2

∂η
+M1 ∂ µ1

∂η
+M2 ∂ µ0

∂η

)
+M0κ0

∂ µ1

∂η
+M0 ∂ 2µ0

∂ s2

+
∂M0

∂ s
∂ µ0

∂ s
+

(
M1κ0−M0ηκ2

0 + v0
n

∂c
∂ µ

∣∣∣∣
φ0

α ,µ0

)
∂ µ0

∂η

+ v0
n

(
cα(µ0)− cβ (µ0)

) ∂hα(φ 0
α(η))

∂η
.

(3.105)

80



3.2 Sharp-Interface Limiting Behavior

Since ∂ µ0/∂η = 0 and ∂ µ1/∂η = 0 as well as ∂M0/∂ s = 0 (since ∂φ 0
α/∂ s = 0)

hold, the equation can be drastically simplified, resulting in

∂
∂η

(
M0 ∂ µ2

∂η

)
=−M0 ∂ 2µ0

∂ s2 −
(

cα(µ0)− cβ (µ0)
)

v0
n

∂hα(φ 0
α(η))

∂η
. (3.106)

Integrating with respect to the interval η0
− to η0

+ gives

[
M0 ∂ µ2

∂η

]η0
+

η0
−

=−∂ 2µ0

∂ s2

∫ η0
+

η0
−

M0 dη + v0
n

(
cα(µ0)− cβ (µ0)

)
(3.107)

where the already known equation (3.97) has been utilized. The flux BC at second
order, taking into account J0 = 0 and J1 = 0, yields J2(η0

±) =
(

M0 ∂ µ2

∂η

)∣∣∣
η0
±
=

− j0
n,±. Hence,

v0
n

(
cα(µ0)− cβ (µ0)

)
= M̄Ig

∂ 2µ0

∂ s2 +
(
jα −jβ

)
·n (3.108)

is the governing law in the sharp-interface limit. Ig ≡
∫ η0

+

η0
−

g(φ 0
α)dη is the in-

tegral of the dimensionless surface diffusion function across the interface with
respect to the rescaled normal coordinate η . Equation (3.108) is identical to the
extended interfacial balance (Eq. (2.72)) where the density b corresponds to the
composition c such that

b−→ cα (3.109)

b+→ cβ . (3.110)

The excess surface flux density is given by replacing

jb,s→−M̄Ig∇sµ (3.111)
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which is very much in the spirit of Mullins’ surface-diffusion theory (cf. Eq. (2.83)).
Interestingly, the prefactor Ig has a form equivalent to the excess surface flux den-
sity defined through Eq. (2.80). Additionally, a vanishing excess surface density

bs→ 0 (3.112)

is obtained which is in agreement with the same theory.

Table 3.1: Normal integral of the dimensionless surface diffusion function Ig for several choices of g
[24, Table I]. Γ(x) denotes the gamma function.

g(φα) Ig√
φα (1−φα) π/4

φα (1−φα) π2/32
φ 2

α (1−φα)
2 3π2/512

φ n
α (1−φα)

n π3/2Γ(n+1/2)/(4n+1Γ(n+1))

The prefactor Ig is identical to the term obtained in the asymptotic treatment for
pure surface diffusion [24, Table I] and is tabulated in Table 3.1 for functions of
the form φ n

α(1−φα)
n.

Comparing Eq. (3.108) with the evolution equation of the surface diffusion the-
ory (Eq. (2.84)), the rate constant B is extracted by taking the limit of the bulk
diffusivities as Dα = Dβ → 0 which results in

B =
M̄Igγαβ(

cα(µeq)− cβ (µeq)
)2 (3.113)

taking into account Eq. (3.101) in the limit of infinite attachment kinetics (mαβ →
∞).
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γs

d
ys(x, t)

γs

y = 0
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θw

x = 0

y

x

h

Figure 3.1: Sketch of a symmetric thermal groove and the corresponding quantities: Height h, depth
d and width w of the groove. The groove geometry for the right-hand side is given by
function ys(x, t) and the grain boundary is located at x = 0. The original flat surface
corresponds to y = 0.

3.3 Thermal Grooving Study

Motivation Thermal grooving also known as grain-boundary grooving is a
phenomenon occurring in polycrystalline materials at triple lines where a grain
boundary intersects the free surface of the crystal. It is driven by the minimization
of the grain-boundary energy by reducing its corresponding surface area. This
results in a deepening at the triple junction which is due to mass transport away
from the groove. Thermal grooving is a suitable benchmark case for the proposed
multiphase-field model since at least three different grains or phases need to be
distinguished. This is not possible with a simple two-phase model. Moreover, it
is particularly well understood since analytical solutions are available for thermal
grooving under a variety of transport mechanisms. The analytical solutions have
been presented in two early works, [42] and [91], valid for pure surface diffusion
and pure volume diffusion, respectively. Moreover, the solutions are valid in the
so-called small-slope limit which corresponds to the case that the grain-boundary
energy is much smaller than the energy of the free surface. A numerical exten-
sion to finite surface slopes was presented in [98] for surface-diffusion governed
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grooving. For this case it could be demonstrated in a first work [24] that the
current model is able to reproduce the more broadly applicable numerical solu-
tions for finite slopes with a high level of accuracy. However, the combination of
surface and volume diffusion was not included in the comparative study. There-
fore, a demonstration of the accuracy of the current model for combined surface
and volume diffusion is still missing. Although exact solutions for finite surface
slopes are not available under the combined action of surface and volume dif-
fusion to the best of the authors knowledge, a generalization of the analytical
solutions by Mullins was presented in [25] for this case, valid for small slopes.
Therefore, a comparison between the phase-field results and the sharp-interface
solution is possible as long as small surface slopes can be maintained. The fol-
lowing study compares characteristic dimensions of the surface groove and the
corresponding grooving kinetics between the developed multiphase-field model
and the analytical solution presented in [25].

3.3.1 Sharp-Interface Solution

A sketch of a typical thermal groove is shown in Fig. 3.1, where a vertical grain
boundary intersects the free surface at x = 0 corresponding to the root of the
groove. A symmetry is assumed such that the groove has identical shapes for
x < 0 and x > 0, corresponding to identical surface energies γs at each of the
free surfaces. The grain-boundary energy is given by γGB. Due to the symmetry,
the groove can be completely described by function ys(x, t) corresponding to the
right-hand side of the groove. An equilibrium angle θ is assumed at x = 0 such
that a constant slope m0 results (∂ys(x, t)/∂x|x=0 = m0 = tanθ holds).

The groove slope at the triple junction is given by [24, Eq. (127)]

m0 =

(
4
(

γs

γGB

)2

−1

)− 1
2

(3.114)

in terms of the involved interfacial energies, known as Young’s law.
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There are three characteristic dimensions of the groove: A depth d = −ys(0, t)
which corresponds to the deepening of the groove at the GB, a height h corre-
sponding to the maximal elevation of the groove above the originally flat position
y = 0 and a width w which is the x-coordinate of this maximum. These dimen-
sions can be calculated as functions of time as soon as the solution to the function
ys(x, t) is known.

The small-slope solution provided in [25] can be written as

ys(x, t) = m0(Bt)
1
4 zs (u(x, t), p(t)) (3.115)

u(x, t) =
x

(Bt)
1
4

(3.116)

including the rate constant B from Eq. (2.85). Moreover, u(x, t) is a dimensionless
rescaled x-coordinate, zs (u, p) is a dimensionless function to provide a rescaled
y-coordinate of the groove and p(t) is a dimensionless parameter given by

p(t) =
A′t

1
4

B
3
4
. (3.117)

It is a parameter indicating the relative contribution of volume diffusion with
respect to surface diffusion. The rate constant for volume diffusion governed
grooving is given by Eq. (A.13) as

A′ ≡ Dcm
0 γsV 2

m

RT
. (3.118)

When p = 0, the surface geometry is completely determined by surface diffusion
and becomes identical to the solution given in [42]. On the contrary, when p
approaches ∞, the groove shape is identical to the solution of [91]. Therefore,
the groove growth is initially (at early times where p(t) << 1) dominated by
surface diffusion and the relative contribution of volume diffusion increases with
time and becomes eventually dominant for late times where p(t)>> 1. When p
is in the order of unity, an interplay of both contribution governs the evolution.
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For pure surface diffusion or pure volume diffusion, the groove shape evolves
with time as a similarity solution. This means that all the dimensions of the
groove remain identical up to a time-dependent scaling. For surface diffusion the
scaling is given by an exponent of 1/4, whereas for volume diffusion an exponent
of 1/3 is obtained. Therefore, a groove under pure surface diffusion doubles its
size when the time is increased by a factor of sixteen, while for volume diffusion
this factor is reduced to eight. For the combination of both effects, no constant
exponent is maintained but the variation in the rescaled shape is incorporated
through the extra dependence on the parameter p.

The dimensionless groove shape can be written as a Fourier-cosine transform in
the following way

zs (u, p) =
2
π

∫ ∞

0

exp
(
−k4− pk3

)
−1

k2 cos(ku) dk . (3.119)

For practical calculations, the Maclaurin series representation

zs (u, p) = u+
1

2π

∞

∑
k=0

ak(p)u2k (3.120)

ak(p) =
∞

∑
l=0

(−1)k+l

(2k)! l!
Γ
(

3l +2k−1
4

)
pl (3.121)

can be used by computing partial sums. Here Γ(x) denotes the gamma function.

The corresponding rescaled groove geometries are depicted in Fig. 3.2. In the
case of pure surface diffusion (p = 0) the groove assumes its global minimum at
the root (x = 0) with a rescaled depth of about zs(0,0) =−0.78 and the function
increases with increasing distance from the grain boundary. At u ≈ 2.3, a max-
imum is reached with the height of zs ≈ 0.19. In addition, the curve assumes a
local minimum between 5 < u < 6 (a so-called dip) that has a relatively small
magnitude but can be considered as a characteristic qualitative feature. As p in-
creases, the rescaled depth of the groove increases almost linearly with p such
that at p = 1 the depth of the groove is approximately zs(0,1) ≈ −1. Similarly,
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Figure 3.2: Small-slope sharp-interface solutions of the groove geometry in non-dimensional form
zs(u, p) from [25], where the parameter p is varied. The contribution of volume diffusion
relative to surface diffusion increases with p.

the distance of the grooves maximum from the GB increases with p, while the di-
mensionless height of the groove remains relatively constant (at p = 1, zs ≈ 0.21
at the maximum). In addition, the characteristic dip becomes less pronounced
with increasing p and is absent for p ≥ 1 such that the groove function remains
positive for distances larger than its maximum location.

3.3.2 Phase-Field Simulation

In the following, a multiphase-field simulation is conducted for thermal grooving
under combined surface and volume diffusion.

3.3.2.1 Simulation Setup

The simulation setup for the MPF simulation is sketched in Fig. 3.3. Three dif-
ferent order parameters φα , φβ and φδ are considered (i.e. N = 3) and a single
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Figure 3.3: Two-dimensional simulation setup for the multiphase-field simulation of thermal groov-
ing under a combination of surface and volume diffusion.

composition variable (K = 2) is utilized. The α and β phase correspond to two
distinct grains with identical chemical properties and the δ phase corresponds to
a solvent with a different equilibrium composition.

The domain has a total width of W = 250ul and a height of H = 500ul (ul denotes
an arbitrary length unit). The size of the domain is chosen firstly to keep enough
space in the y-direction for the far composition field that develops due to volume
diffusion and secondly to ensure that the groove surface remains flat far away
from the grain boundary. The two grains are located on the bottom of the domain
and are of equal size each covering half of the vertical and horizontal dimensions.
Accordingly, the solvent covers the area with y > H/2.

Zero-Neumann boundary conditions are imposed on each order parameter such
that ∇φα ·n = 0∀α ∈ {α,β ,δ} for all boundaries. This ensures that firstly
the grain boundary remains perpendicular to the bottom plane and secondly that
the groove surface approaches the side planes orthogonally. No-flux boundary
conditions are imposed on the composition field at each boundary ensuring that
no matter enters the domain. Therefore, the boundary conditions are chosen in
order to approximate the infinite domain considered in the analytical solutions.
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Table 3.2: Parameter set utilized for the simulations performed in the current work.

Parameter Symbol Value Parameter Symbol Value

Equil.-comp. left cα
eq 1 Interface mobility (left) mαδ

1u4
l

uE ut

Equil.-comp. right cβ
eq 1 Interface mobility (right) mβδ

1u4
l

uE ut

Equil.-comp. solvent cδ
eq 0 Interface mobility (GB) mαβ

1u4
l

uE ut

Interpolation function hα (ϕ) φα Surface energy (left) γαδ
1uE
u2

l

Surface diff. function gαβ (ϕ)
32φα φβ

π2 Surface energy (right) γβδ
1uE
u2

l

Surface diff. prefactor left M̄αδ 0.1u6
l

uE ut
Grain boundary energy γαβ

0.5uE
u2

l

Surface diff. prefactor right M̄βδ 0.1u6
l

uE ut
Thermodynamic prefactor A 20uE

u3
l

GB diff. prefactor M̄αβ 0 Interface thickness param. ε 2ul

Bulk diffusivity D 0.2u2
l

ut
Grid spacing ∆x = ∆y 0.125ul

Although an effect of the finite domain cannot fully be avoided, this strategy
should minimize the influence of the finite domain on the simulation results.

3.3.2.2 Model Parameterization

Simple parabolic free-energy densities are assumed for each phase, such that
fα(cα) = A(cα − cα

eq)
2∀α ∈ {α,β ,δ}. The prefactor A = 20uE/(u3

l ) is chosen
identical for all phases. For this choice of free energy, the chemical potential
is derived as µ = f ′α(c

α) = 2A
(
cα − cα

eq
)
∀α ∈ {α,β ,δ} and the composition

of each phase can be written as cα = cα
eq + µ/(2A)∀α ∈ {α,β ,δ}. There-

fore, the Darken factors are all constant and identically dcα/dµ = 1/(2A) =
1/40u3

l /uE ∀α ∈ {α,β ,δ}.

With this choice, cα
eq is the flat-interface equilibrium composition of any phase

α . The chemical potential corresponding to the flat-interface equilibrium is
µeq = 0. As initial condition, the chemical potential is set to this equilibrium
value µ(x,0) = µeq which corresponds to cα(x,0) = cα

eq∀α ∈ {α,β ,δ}. This
ensures that the far-field composition values of the analytical solution are met and
that the chemical potential matches the equilibrium condition at the initial stage

89



3 Multiphase-Field Model for Surface and Bulk Diffusion

where flat interfaces exist. To keep the system as simple as possible, equal bulk
diffusivities are assumed for all phases, i.e. D = Dα = Dβ = Dδ = 0.2u2

l /ut .
Furthermore, the surface diffusion prefactor for each side is chosen identical
M̄αδ = M̄βδ = 0.1u6

l /(uEut) and a vanishing grain-boundary diffusion is as-
sumed M̄αβ = 0. In combination with identical surface energies (γs = γαδ =

γβδ = 1uE/u2
l ) for each grain this ensures that the groove develops in a sym-

metric manner. The grain-boundary energy is set to half the value of the surface
(γαβ = γGB = γs/2) in order to remain close enough to the small-slope limit but
still allow a measurable evolution of the groove. This choice yields a slope of
m0 = 1/

√
15 ≈ 0.26 by means of Eq. (3.114) which corresponds to an angle

θ ≈ 14.5◦. All model parameters are summarized in Table 3.2.

Of particular importance are the rate constants appearing in the sharp-interface
solution presented above. The rate constant for surface diffusion is given by
Eq. (3.113) and its value can be computed by inserting the values from Table 3.2.
Since the current choice of surface diffusion function satisfies Ig = 1 and the
equilibrium compositions are either unity or zero, it results B = 0.1u4

l /ut from
M̄αδ /M̄βδ and γαδ /γβδ for each surface.

In order to obtain an equation for the volume diffusion rate constant A′, a deriva-
tion is presented in Appendix A.1. The corresponding resulting expression for
the current setup reads

A′ =

(
Dα +Dδ )γαδ

2A
(
cα

eq− cδ
eq
)2 = 0.01

u3
l

ut
. (3.122)

3.3.2.3 Simulation Results

Groove Evolution The evolution of the groove in the MPF simulation is cal-
culated by taking the φδ = 1/2 contour and is shown in Fig. 3.4 for three distinct
snapshots corresponding to an early time (7.5% of total simulation time), in-
termediate time (50% of simulation time) and the final state. Please note that
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Figure 3.4: Evolution of the thermal groove evaluated by means of the φδ = 1/2 contour under com-
bined surface and volume diffusion in the MPF simulation. Three consecutive snap-
shots are shown corresponding to an early time t = 1.5× 104ut , an intermediate time
t = 1×105ut and the final state t = 2×105ut .

the y-coordinate spans a much smaller range than the x-coordinate which corre-
sponds to an overall shallow geometry of the groove. It is clear that this is caused
by the small slope of the groove and indicates that the approximation applied in
the analytical solution is reasonably valid. Overall, the groove shows the same
qualitative characteristics as the analytical solution: Deepening occurs at the GB
(x = 0) and the maximum of the groove shifts away from the root. In the initial
period of time the growth is very fast, since after a comparably small timespan
of t = 1.5×104ut , the groove already reaches almost half of the dimensions ob-
served after an order of magnitude larger timespan in the final state. This seems
to align well with the expected power-law growth of a relatively small exponent
in the order of 1/4→ 1/3. The groove also shows the expected symmetry, since
the shape for x < 0 is a mirrored picture of the groove corresponding to the right-
hand grain (x > 0).

A clear discrepancy to the analytical shape is the blunt at the root which is origi-
nated from the interface of finite thickness inherent to the PF model. Therefore,
it can be considered as an artifact of practical PF simulations.
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3 Multiphase-Field Model for Surface and Bulk Diffusion

Growth Dynamics In order to investigate the dynamics of the groove in a
more quantitative fashion, the height h, width w and depth d are determined from
the simulation (see Fig. 3.1 for their definition). These quantities are also avail-
able from the analytical solution as a function of time and are therefore suitable
for a quantitative comparison. While the determination of the height and width is
straightforward by locating the grooves maximum, the depth of the groove is not
directly available due to the mentioned blunt which is expected to lead to a clear
underestimation of the depth. In order to obtain a more accurate value for the
depth, sixth-order polynomials are fitted to the groove curve up to its maximum
and evaluated at x = 0 which corresponds to an extrapolation of the groove sur-
face towards the GB. This method has also been used in the first study on surface-
diffusion governed grooving [24]. In the fit, points near the GB (|x|< 1.1επ2/8)
are excluded from the fit. The chosen value corresponds to half of the interface
width of the sinusoidal interface profile plus ten percent which is chosen due to
the nonzero slope of the groove.
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Figure 3.5: Growth kinetics of characteristic groove dimensions in the MPF model: Height h (a),
width w (b) and depth d (c). Additionally, the analytical growth kinetics correspond-
ing to pure surface diffusion with rate constant B [42], corresponding to pure volume
diffusion with rate constant A′ as well as the analytical solution including both effects
concomitantly [25] are shown.
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The growth kinetics of these characteristic dimensions are summarized in Fig. 3.5.
In addition to the curves extracted from the simulation, analytical solutions cor-
responding to the pure surface diffusion case [42], pure volume diffusion case
[91] and the general solution [25] applicable to the current simulation parameter
set are shown. All curves show the same qualitative behavior, i.e. an initially
rapid growth that decays strongly with time. In general, the analytical growth
kinetics taking both surface and volume diffusion into account are faster com-
pared to either effect in insulation. This is expected since the consideration of an
additional mass transfer mechanism should facilitate the growth of the groove.
However, the dimensions of each case are not simply additive which means that
a preliminary estimation of the grooving kinetics from the solutions provided in
[42] and [91] is not straightforward.

In general, the MPF simulation matches best the solution considering both effects
[25]. Furthermore, an overall very well match is achieved. This shows that the
MPF model is capable of quantitatively handling a combination of surface and
volume diffusion. The relative error taking the L2-norm is calculated for each
quantity by means of the formula

L2
rel( f ) =

√(∫ tend

t=0
( fMPF(t)− fSI(t))2 dt

)
/

(∫ tend

t=0
f 2
SI(t)dt

)
(3.123)

where fMPF denotes the dimension corresponding to the MPF simulation and
fSI is the sharp-interface solution from [25], tend is the total simulation time
(2× 105ut ). It results L2

rel(w) ≈ 2%, L2
rel(h) ≈ 2% and L2

rel(d) ≈ 0.4% which
demonstrates the high accuracy obtained.

Groove Geometries In order to compare the groove geometries of the sharp-
interface solution and the numerical MPF simulation in a more thorough form,
φδ = 1/2 contours are rescaled into the coordinate system (u,z) at three se-
lected snapshots. For the comparison, the calculation of the parameter p is
needed. Since the simulation snapshots are discretely placed at a time spacing
of ∆t = 2.5× 103ut , the first simulation frame corresponds to p ≈ 0.4 and the
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Figure 3.6: Comparison of rescaled groove geometries from the analytical solution [25] and the MPF
simulation at three different times. Early time corresponds to t = 7.5× 103ut and p =
0.523, intermediate state corresponds to t = 6× 104ut and p = 0.880 and the final time
corresponds to t = 2×105ut and p = 1.189.

final simulation frame (t = 2×105ut ) corresponds to p≈ 1.2. This firstly means
that the simulation has been performed in the regime where both surface and vol-
ume diffusion contributions are relevant and secondly that the regime where p
is small is not available from the simulation. Please also note that even if more
simulation frames were written out, the initial period of time where the groove
has a very small dimension is not well resolved by the discrete simulation grid
due to its small slope. Furthermore, in the surface-diffusion dominant regime
p << 1, the groove has a size smaller than the interfacial thickness which clearly
shows that the current parameterization of the model does not permit accurate
solutions at these length scales. Therefore, the region of interest for the current
simulation corresponds to 0.5 < p < 1.2. It is stressed that a different parame-
terization of the model with a smaller bulk diffusivity would allow investigating
the surface-diffusion dominant regime, since the values of p corresponding to the
same simulation times are modified accordingly.
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Fig. 3.6 contains the rescaled groove geometries of both the MPF simulation
and the analytical solution at times t = 7.5× 103ut , t = 6× 104ut and the final
state t = 2×105ut corresponding to p≈ 0.5, p≈ 0.9 and p≈ 1.2. It is observed
that the blunt near the root due to the finite interface thickness causes a significant
deviation from the analytical solution only when the groove has a relatively small
dimension, i.e at early times where p is small. Apart from the blunt, the deviation
of the simulation and analytical solution is most apparent for u smaller than the
(rescaled) width of the groove. In general, the disappearance of the dip at the
tail of the groove is recovered as p increases by the simulation. Therefore, the
qualitative characteristics of the change in the groove geometry which is due to
the increasing dominance of volume diffusion as p increases, can be reproduced.

The overall L2 relative error of the MPF and SI solution is calculated by means
of the formula

L2
rel( f , p)≡

√∫ 10
u=umin

( fMPF(u, p)− fSI(u, p))2 du
√∫ 10

u=umin
f 2
SI(u, p)du

(3.124)

umin ≡ u(1.1
επ2

8
, t) (3.125)

where umin disregards the triple junction region. It results L2
rel(zs,0.5) ≈ 8%,

L2
rel(zs,0.9)≈ 4% and L2

rel(zs,1.2)≈ 2% for increasing simulation times. There-
fore, the deviation of the curves decreases with time.

In order to check whether the magnitude of the difference might be explained
by the limitation of the small-slope approximation, the L2 relative error of the
numerical finite slope solution [98] and the small-slope approximant [42] is cal-
culated. Although these solutions correspond to the pure surface diffusion case,
the deviation can be considered as an estimate for the admissible deviation for
the current study. At the current value of m0 this results in about 2% of relative
error. Therefore, the solution at late times can be considered as an exact match.
However, at early times additional error sources are contributing to the mismatch.
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Error sources attributed to the phase-field model may be explained by its nonzero
interface thickness: While the asymptotic analysis presented in the previous sec-
tion showed that the phase-field model at hand converges towards the sharp-
interface problem when ε tends to zero, practical simulations are always per-
formed at finite interface widths. It is clear that there exist interface-thickness
dependent terms which were not investigated in the sharp-interface limit. Ac-
cordingly, it is expected that the deviations caused by these terms are most rele-
vant when the groove has a small size relative to the interface width. In addition
it seems that the nonzero grain-boundary thickness causes a slight shift of the
groove away from the GB. This would also explain a time-dependent error since
the width of the GB becomes less relevant as the groove widens. These points
might partially explain the mismatch at early times, but the following point may
hint at an additional error source rooted in the limitations of the sharp-interface
solution.

It is worth re-examining the additional assumptions introduced in [91] for the
volume-diffusion case (cf. Appendix A.1). Not only a vanishing slope of the
groove was assumed, but also a fully developed concentration field which means
that a transient in the bulk concentration field is neglected. In contrast, the
multiphase-field simulation starts with a constant chemical potential field and
thus, the composition field in the bulk is not divergenceless in general. Mullins
[91] considered the assumption of a vanishing divergence of the concentration to
be valid when the width of the groove satisfies the following condition 2wD/A′ ≥
103. For the current simulation setup, estimating w ≈ 2.5(Bt)1/4 one finds that
2wD/A′ = 100(Bt)1/4/ul . This yields the condition (Bt)1/4 ≥ 10ul or t ≥ 105ut

and thus, the condition is not satisfied for early times where p < 1. This cor-
responds to one half of the total simulation time. Therefore, an additional con-
tribution to the temporally decaying deviations can reasonably be attributed to
the limitations of the sharp-interface solution due to the assumption of a quasi
steady-state concentration field. In order to estimate the magnitude of this er-
ror, an additional simulation was performed including only the early time result
(t = 7.5×103ut ) with a higher diffusivity of D = 1.0u2

l /ut and an adjusted ther-
modynamic prefactor A = 100uE/u3

l in order to ensure the same rate constant A′.
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A relative error of L2
rel(zs,0.5)≈ 6% is obtained. This shows that the steady-state

assumption is responsible for about a quarter of the error at early time.

Chemical Potential In the asymptotic treatment the chemical potential be-
comes a constant function with respect to the interface normal direction in the
sharp (and thin) interface limit. It is worth checking whether the predictions of
the analytic treatment valid for small interface thicknesses are recovered in the
simulation. Fig. 3.7 shows the chemical potential field after half of the simulation
time in the vicinity of the groove root. First of all, it is apparent that the chemi-
cal potential has a characteristic far-field character since even far away from the
groove, a non-vanishing chemical potential established. In addition, the chemi-
cal potential approximately shows a symmetry with respect to the y-axis which is
in-line with the applied small-slope approximation (cf. Appendix A.1). The iso-
value contours of the chemical potential at different levels reveal the orientation
of the chemical potential gradients since they are always orthogonally related. It
is observed that within the interface region where 0 < φδ < 1, the iso-contours
are almost perfectly aligned with the surface normal. This means that the gradi-
ent in the normal direction is negligible and hence, a constant chemical potential
in the interfacial region is maintained. In addition, the φδ profile is indistinguish-
able from the sinusoidal sharp-interface profile. Therefore, the result seems to
suggest that the simulation is overall performed at least near the sharp-interface
limit.
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Figure 3.7: Chemical potential field µ(x, t) (its unit uE/u3
l is omitted) at half the simulation time (t = 105ut ) in the vicinity of the grain

boundary (x = 0). Contours of constant chemical potential are shown representing the orientation of the chemical potential
gradients. Dotted lines are iso-contours of the order parameter φδ to indicate the surface location and thickness. Arrows indicate
normals on the φδ = 1/2 contour and the black dashed line is a normal cross-section of the interface.
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Figure 3.8: Chemical potential µ , order parameter φδ (both (a)) and chemical mobility (b) of the
MPF simulation in normal direction at a point close to the triple-junction region (dashed
line in Fig. 3.7). The time corresponds to t = 105ut . Corresponding quantities from
the asymptotic derivation are additionally shown. The mobility is calculated as M =
M̄βδ gβδ (ϕ)/ε +Mβ φβ +Mδ φδ .

Only in a region very near the groove root, a slightly curved iso-contour is found
(µ = 0.011 contour in Fig. 3.7). This means that the chemical potential is also
slightly varying in the normal direction. In this regard, chemical potential, order
parameter of the solvent φδ and the corresponding chemical mobility are plotted
as a function of the dimensionless normal coordinate η = r/ε in Fig. 3.8. It is
seen that the chemical potential is a continuous function which approaches the
interface with a well defined slope which in turn causes a non-constant chem-
ical potential near the ends of the interface η0

±. However, in an interval near
the φδ = 1/2 contour, i.e. the center of the interface, the chemical potential
is virtually constant. It is worth noting that the maximal relative variation of
the chemical potential in the normal direction is small (about 3%) and can thus
be considered insignificant. Moreover, by applying a local quadratic fit to the
φδ = 1/2 contour to calculate its curvature κ0, it is found that the chemical po-
tential function is on average very closely resembling the Gibbs-Thomson rela-
tion of the asymptotic treatment through Eq. (3.101) (the deviation at r = 0 is
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approximately +0.5% and roughly −2% at r = εη0
±). In order to explain the

deviation from the constant chemical potential, it is worth considering the vari-
ation of the chemical mobility in the normal direction (Fig. 3.8b). The mobility,
which is symmetric with respect to r = 0 varies from the bulk value of M(r <
εη0
−) = Mβ = Ddcβ/dµ = 0.005u5

l /(uEut) towards a maximum at r = 0 until
the δ -phase is approached with the identical value of M(r > εη0

+) = Mδ = Mβ .
For the current choice of ε , the mobility in the center of the interface is given by
M(r = 0)=Mβ +8M̄βδ/(π2ε)≈ 0.0455u5

l /(uEut) since the φβ φδ term evaluates
to 1/4. Thus, the chemical mobility in the interface is roughly an order of mag-
nitude larger than the bulk mobility and is maximal at its center. This means that
gradients of the chemical potential in the interfacial region are most dominantly
suppressed in the center of the interface. It is important to note that as ε is re-
duced, M(η0

−<η <η0
+) increases by the same factor and in the limit ε→ 0 an in-

finitely large mobility in the interface results everywhere even near the endpoints
η0
±. Accordingly, it is expected that the remaining chemical potential gradients in

the normal direction can be removed by reducing the interface thickness (which
is actually what the asymptotic derivation showed more formally). A quantity
which can be considered as a heuristic to assess the deviation from the sharp-
interface limit can be deduced along these lines. It is demanded that the following
conditions are fulfilled for each αβ -interface: M(φα = 1/2,φβ = 1/2)/Mα >> 1
and M(φα = 1/2,φβ = 1/2)/Mβ >> 1. In other words, the local value of the
chemical mobility in the center of the interface is much larger than the bulk mo-
bility of any adjacent phase. If this is ensured, an almost constant mobility in
normal direction can be expected.

3.4 Conclusion

In the current chapter, a multiphase-field model for a combination of surface and
bulk diffusion in multicomponent systems is presented. This model was first
published and analyzed for the case of vanishing bulk diffusivities in [24], but a
rigorous analysis and validation of concomitant surface and bulk diffusion was
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still missing. Within this chapter, asymptotic analysis is conducted for a combi-
nation of surface and volume diffusion in this model. It is shown that the model
recovers the extended interfacial balance with an excess surface flux accounting
for the additional interface diffusion in tangential direction when the interface
thickness vanishes. The chemical potential, which becomes a constant function
in normal direction in this limit, fulfills the Gibbs-Thomson condition with a
term reflecting attachment kinetics at the interface. In addition to the analytical
treatment, a simulation study of thermal grooving is conducted to compare the
simulation result with an analytical solution valid in the so-called small-slope ap-
proximation. The simulation and analytical results show a very good quantitative
agreement, with respect to both the grooving kinetics and the geometry of the
groove at various times. In addition it is shown that the chemical potential is in
fact approximately constant within the interface in this study. Remaining small
deviations from the ideal sharp-interface limiting behavior are discussed and a
heuristic condition is proposed to deduce regions where the model ensures an
almost constant chemical potential in normal direction.
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4 Regarding the Choice of
Interpolation Function

When you learn mathematics, whether in
books or in lectures, you generally only
see the end product – very polished,
clever and elegant presentations of a
mathematical topic.
However, the process of discovering new
mathematics is much messier, full of the
pursuit of directions which were naïve,
fruitless or uninteresting.

Terry Tao “Ask yourself dumb questions
– and answer them!”

4.1 Introduction

4.1.1 Motivation

A core element in a phase-field model is the interpolation function used to in-
corporate bulk driving forces. This function for instance can be of mechanical
or chemical type. The name interpolation refers to the notion that the densities
of extensive quantities in the smoothed out interfacial region have a contribution
calculated as a weighted average of the respective bulk energy densities. The
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4 Regarding the Choice of Interpolation Function

interpolation function for a two-phase model hα(φα) is constructed to fulfill the
criteria hα(0) = 0 and hα(1) = 1 (see e.g. [17, p. 2]). This ensures that the
free-energy densities of each phase are approached in the bulk. As an additional
constraint, a vanishing derivative of the interpolation h′α(φα) = 0 is often de-
manded for the bulk states φα = 0 and φα = 1. For a well-type potential this
ensures that the bulk states constitute equilibrium points of the partial differential
equation, i.e. lead to ∂φα/∂ t = 0 when φα = 0 or φα = 1 and ∇2φα = 0 (cf. [6,
p. 171]).

Karma [13] imposed a symmetry condition on the interpolation function of the
order parameter ϕ = 2φα − 1, when ϕ = ±1 represent bulk states. This means
that both phases are treated symmetrically (in the current notation expressed as
hα(φα) = 1−hα(1−φα)).

While all of the above conditions may be satisfied by a whole class of inter-
polation functions, it is currently unclear, which of the available interpolation
functions is more accurately describing the physical problem at hand. Some
light has been shed on this problem in a review article Steinbach [7, Appendices
A.1 and A.2]. Here specific choices of interpolation functions were highlighted.
They lead to travelling-wave solutions identical to the well-known equilibrium
solutions (tanh or sin profiles, for both well-type and obstacle-type potentials,
respectively) for driving forces of arbitrary magnitude. For obstacle potentials
such a form of interpolation function was first appearing in the antisymmetric
approximation presented in [18]. Nevertheless, it is still unclear if either at all or
up to which extent the more established forms of interpolation functions deviate
therefrom. It would be important to figure out which of the conditions usually
imposed on interpolation functions are really crucial and which of them are not.
This clarification is one aim of the current chapter.

In various works [12, 13, 20, 94], thin-interface limits of phasefield models are
commonly derived to show that the governing equations of the phase-field model
recover the sharp-interface laws up to first order corrections in the interface thick-
ness. By this method, the accuracy of phase-field models for solidification could
be significantly improved. The derivation of the thin-interface limit is based on
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4.1 Introduction

a Maclaurin expansion of the time-dependent partial differential equations with
respect to the interfacial thickness that is truncated after first order. So far, higher
order corrections are usually not discussed. It is however clear that the expan-
sion has higher order terms whose influence on the simulation results remains
completely hidden. The original asymptotic derivation in [93, cf. e.g. Eq. (62)]
considered a first-order correction in the interface velocity. Although the deriva-
tions in [12, 13] are based thereon, this term was dropped in these works without
discussing its limitations. In this regard, the work of Almgren [94] is worth men-
tioning since it included first-order corrections in the interface velocity.

To be more rigorous and thorough in the following treatments, the role of the
interface velocity corrections is explicitly outlined by considering higher-order
corrections v2, v3 and so forth. As such, the current chapter is meant to generalize
the derivations for higher orders, but in contrast to the work of Karma and co-
workers, an obstacle-type potential is studied. Although the asymptotic treatment
has recently been advanced for well-potentials in [99, 100] – by either studying
early time regimes or by considering triple-junction dynamics – such a procedure
is so far not available for obstacle-type models.

On the one hand, the treatment of an obstacle potential complicates the deriva-
tion, since piecewise order parameter functions are obtained as a result rooted in
the Gibbs-simplex used to hold the order parameter function within meaningful
bounds. Therefore, the standard matched asymptotic expansion which is based
on limits towards infinity cannot be used. On the other hand, once the asymptotic
method has been adjusted for these type of models following first ideas in Hof-
frogge et al. [24], the analytical structure of the corresponding ODEs that appear
at each order seem not be too demanding and can often be solved exactly.

The current chapter presents a framework to generalize the asymptotic treatment
for obstacle potentials to arbitrary orders and a computer algebra system is uti-
lized to perform the tedious and lengthy derivations.
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4 Regarding the Choice of Interpolation Function

Table 4.1: Considered interpolation functions and corresponding derivatives. Two common choices
for order parameters are considered: φα ranges from 0 to 1, whereas ϕ = 2φα −1 ranges
from −1 to 1 in the interfacial region.

Symbol hα(φα) h′α(φα) h(ϕ) h′(ϕ)

h0 φα 1 ϕ+1
2

1
2

h1 φ 2
α (3−2φα ) 6φα (1−φα )

(2−ϕ)(ϕ+1)2

4
3
4 (1−ϕ2)

h2 φ 3
α (6φ 2

α −15φα +10) 30φ 2
α (1−φα )

2 (8−9ϕ+3ϕ2)(ϕ+1)3

16
15
16 (1−ϕ2)2

hd

1
2 +

1
π asin(2φα −1)

+ 2
π
√

φα (1−φα )

(2φα −1)

8
π
√

φα (1−φα )
1
2 +

1
π asin(ϕ)

+ ϕ
π
√

1−ϕ2
2
π
√

1−ϕ2

4.1.2 Considered Interpolation Functions

The considered interpolation functions h(ϕ) = hα(φα) and the corresponding
derivatives that enter the evolution equations are listed in Table 4.1 both in terms
of an order parameter ranging from zero to unity (φα ) or one that ranges from
−1 to 1 (ϕ = 2φα − 1). The interpolation functions written as hn with some
integer n are simple polynomials of φα or ϕ . Moreover, they lead to h′α(φα) ∝
(φα(1−φα))

n (or, equivalently to h′(ϕ)∝ (1−ϕ2)n), where the prefactor ensures
that the interpolation function recovers the constraints hα(0) = 0 and hα(1) =
1. In contrast, hd is an interpolation function that has a more complex form.
Nevertheless, in comparison with hn, it leads to a similar form of the derivative
h′α(φα), where n is replaced by the non-integer power 1/2.

All interpolation functions satisfy the symmetry hα (1/2+φα)= 1−hα (1/2−φα),
or in terms of ϕ : h(ϕ) = 1− h(−ϕ). The interpolation functions can also be
distinguished in terms of their bulk behavior by considering the first and second
derivatives h′α(0), and h′′α(0). For n > 0 (i.e. excluding h0), all interpolation
functions satisfy h′α(0) = 0. The second derivative h′′α(0) is zero for h0 and h2,
assumes a finite value of 6 for h1 and tends to infinity for hd .
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Figure 4.1: Different choices of interpolation functions a and their corresponding derivatives b that
enter the evolution equation of the order parameter.

In phase-field models employing a well-potential, h1 is used for instance in [101].
In obstacle-potential models, h0 has been used e.g. in [18], h1 was used in [102,
103] and h2 has been applied in [104, 105] without providing a reasoning to
explain why one of the above formulations is chosen. The following analysis is
meant to shed some light on the intricacies and subtleties between the different
interpolation functions in obstacle-type models.

4.2 Problem Formulation

4.2.1 Statement of the PDE for a Two-Phase System

The free-energy functional for a two-phase system with constant bulk free energy
densities fα (in J/m3) writes as

F =
∫

V
γ
(

16
π2ε

φα(1−φα)+ ε|∇φα |2
)
+hα(φα) fα + fβ (1−hα(φα))dV

(4.1)

where hα(φα) is the interpolation function which satisfies the criteria hα(0) = 0
and hα(1) = 1, γ is the interfacial energy parameter in J/m2, ε is the interface
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4 Regarding the Choice of Interpolation Function

thickness controlling parameter in m. Based on the functional above, the evolu-
tion equation for the order parameter is formulated as

∂φα(x, t)
∂ t

=− m
2ε

δF
δφα

=
m
ε

(
8γ

π2ε
(2φα −1)+ εγ∇2φα +

h′α(φα)

2
∆ f
)

(4.2)

by introducing the mobility parameter m in m4/(Js) and the driving force is given
as ∆ f ≡ fβ − fα . The above equation is a partial differential equation for φα .

4.2.2 Transformation to an Ordinary Differential
Equation

One-dimensional Travelling Wave Ansatz It is expected, that due to the
presence of a bulk driving force difference ∆ f , a time-invariant movement of
the interface results. Furthermore, neglecting the effect of curvature, a one-
dimensional setup (x-coordinate) is considered. Therefore, the following travelling-
wave ansatz for the evolution of the phase-field

φα(x, t) = φα(u(t)) (4.3)

u(t) = x− x0(t) (4.4)
dx0

dt
= v (4.5)

is used, introducing the moving reference location x0 and interface velocity v
(in m/s). Applying the chain rule which yields ∂φα(x, t)/∂ t = −vdφα/du one
obtains an ordinary differential equation (ODE) in the moving coordinate u

8γ
π2ε

(2φα(u)−1)+ εγ
d2φα(u)

du2 +
vε
m

dφα

du
+

h′α(φα(u))
2

∆ f = 0 (4.6)

for the phasefield.
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4.2 Problem Formulation

Boundary Conditions In order to obtain unique solutions to the differential
equation, boundary conditions are needed. First it is assumed, that the bulk is
approached at either side of the interface, i.e.

φα(u−) = 1 (4.7)

φα(u+) = 0 (4.8)

for some finite locations u− and u+ and an ordering is assumed such that u+> u−.
The interface thickness is denoted as δ = u+−u−.

Additionally, it is assumed that the first derivative of the order parameter is con-
tinuous at the interfacial endpoints, i.e.

∂φα

∂u

∣∣∣∣
u±

= 0 (4.9)

holds.

Gibbs Constraint Additionally, since φα represents the local volume fraction
of phase α , the Gibbs constraint

0 < φα < 1 ∀u− < u < u+ (4.10)

is enforced.

Interfacial Energy In a one-dimensional system, the interfacial energy σ for
a two-phase system is defined as the integral of the potential and gradient term,
as follows

σ ≡
∫ u+

u−
γ

(
16

π2ε
φα(u)(1−φα(u))+ ε

(
dφα(u)

du

)2
)

du . (4.11)

109



4 Regarding the Choice of Interpolation Function

Note that this is just one possible definition rooted in the way the free-energy
functional is constructed by introducing the notion of the interfacial energy pa-
rameter γ in Eq. (4.1). Another point of view is obtained by following the notion
of the Gibbs dividing surface (cf. Sec. 2.3.4). In the current context where fα

and fβ are constants this means that the location of the dividing surface, denoted
here as u0 is given by calculating the excess energy through

∫ u+

u−
γ

(
16

π2ε
φα(u)(1−φα(u))+ ε

(
dφα(u)

du

)2
)
+hα(φα) fα

+ fβ (1−hα(φα))du = σ + fα(u0−u−)+ fβ (u+−u0)

(4.12)

which implies, according to the definition in Eq. (4.11) that the location of the
Gibbs dividing surface corresponding to σ has to be chosen as

u0 = u−+
∫ u+

u−
hα(φα(u))du . (4.13)

This does not necessarily equal the natural contour, i.e. φα(u0) = 1/2 might not
be fulfilled. However, if hα(φα) is bound between 0 and 1 which is the case
for all common interpolation functions and since Eq. (4.10) holds, u− ≤ u0 ≤
u+ is always fulfilled which means that the Gibbs dividing surface is located
somewhere inside the interfacial region. This fact justifies the definition through
Eq. (4.11).

4.2.3 Non-Dimensionalization

Dimensionless Spatial Coordinate At this point, a lot of physical con-
stants remain in equation (4.6). It is therefore convenient (but not necessary)
to non-dimensionalize the equation to simplify the mathematical treatment. The
dimensionless coordinate

η ≡ 4u
πε

(4.14)
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and rescaled order parameter

ϕ ≡ 2φα −1 (4.15)

as well the interpolation function

h(ϕ) = hα

(
ϕ(η)+1

2

)
(4.16)

h′(ϕ) =
1
2

h′α

(
ϕ(η)+1

2

)
(4.17)

are introduced. The interpolation function satisfies h(−1) = 0 and h(1) = 1,
since ϕ = ±1 correspond to the bulk states φα = 0 and φα = 1. Moreover,
dnφα(u)/dun =(1/2)(4/(πε))ndnϕ(η)/dηn holds for n> 0 and a relatively sim-
ple form of equation (4.6) is obtained:

ϕ(η)+
d2ϕ(η)

dη2 +
πvε
4γm

dϕ(η)

dη
+

π2ε∆ f
16γ

2h′(ϕ) = 0 (4.18)

Now all terms in the above equation are dimensionless.

Dimensionless Driving Force and Velocity An interesting fact is that
there are two lengths involved, namely γm/v and γ/∆ f that relate to the chosen
interface thickness parameter ε . A possible choice which only includes known
input parameters, in contrast to the unknown velocity v, is to define the dimen-
sionless interface width as

ε̃ ≡ π2ε∆ f
16γ

(4.19)

which might also be regarded as a dimensionless driving force.
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4 Regarding the Choice of Interpolation Function

To compare the interface velocity with the sharp-interface relation from Eq. (2.91),
a dimensionless interface velocity is defined as

ṽ≡ v
m∆ f

(4.20)

and in case the sharp-interface relation holds, ṽ = 1.

Dimensionless Interfacial Energy The dimensionless interfacial energy σ̃
is defined as the ratio of the actual interfacial energy σ and the interfacial energy
parameter γ based on Eq. (4.11). Inserting the identities φα(1−φα) = (1−ϕ2)/4
and dφα(u)/du = 2dϕ(η)/dη/(πε), one obtains

σ̃ ≡ σ
γ
=

1
π

∫ η+

η−
1− (ϕ(η))2 +

(
dϕ(η)

dη

)2

dη . (4.21)

Due to the Gibbs-constraint (Eq. (4.10)), and since η+ > η−, the interfacial en-
ergy is always positive, i.e. σ̃ > 0.

Final Set of Equations Inserting the above quantities into the ODE, one
obtains a remarkably simple form of the differential equation

ϕ(η)+
d2ϕ(η)

dη2 +
4ε̃ ṽ
π

dϕ(η)

dη
+2ε̃h′(ϕ) = 0 (4.22)

ϕ(η±) =∓1 (4.23)

dϕ(η)

dη

∣∣∣∣
η±

= 0 (4.24)

|ϕ(η)|< 1 ∀η− < η < η+ (4.25)

with corresponding boundary conditions (Eqs. (4.7)-(4.9)) and the Gibbs con-
straint, where η± = 4u±/(πε) and the ordering η+ > η− applies. The dimen-
sionless interface thickness is denoted as δ̃ = η+−η−. Note that η± are un-
knowns and remain part of the problem. Moreover, the prescription through
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4.3 Exact Solutions

Eqs. (4.22)-(4.25) does not yield a unique solution ϕ(η). This can be seen by
the following argument: Suppose a solution ϕ(η) satisfying all equations above
exists, then a shifted variant ϕs(η) = ϕ(η +K) with some constant K also com-
pletely satisfies the same equations with shifted endpoints ηs,± = η±−K. There-
fore it is possible to remove this ambiguity for instance by demanding that either
one of η± be zero or by setting ϕ(0) = 0. Appropriate reshifting may be done to
obtain more convenient forms of the solutions.

4.3 Exact Solutions

4.3.1 General Properties

4.3.1.1 Positivity of the Interface Velocity

Suppose that a solution satisfying Eqs. (4.22)-(4.25) exists, then one may multi-
ply the ODE with dϕ(η)/dη and integrate from η− to η+, resulting in

∫ η+

η−
ϕ(η)

dϕ(η)

dη
dη +

∫ η+

η−

d2ϕ(η)

dη2
dϕ(η)

dη
dη

+
4ε̃ ṽ
π

∫ η+

η−

(
dϕ(η)

dη

)2

dη +2ε̃
∫ η+

η−
h′(ϕ)

dϕ(η)

dη
dη = 0 .

(4.26)

The last integral can be integrated by substitution and is identically h(ϕ(η+))−
h(ϕ(η−))= h(−1)−h(1)=−1 according to the order parameter BCs (Eq. (4.23)).
The first term is integrated by parts, raising dϕ(η)/dη which yields

2
∫ η+

η−
ϕ(η)

dϕ(η)

dη
dη =

[
(ϕ(η))2

]η+

η−
= 0 (4.27)
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4 Regarding the Choice of Interpolation Function

applying the same BCs. The second term is different only in a higher degree
of differentiation, and is therefore integrated by parts by raising d2ϕ(η)/dη2,
yielding

2
∫ η+

η−

d2ϕ(η)

dη2
dϕ(η)

dη
dη =

[(
dϕ(η)

dη

)2
]η+

η−

= 0 (4.28)

according to the differential BCs (Eq. (4.24)). Therefore, the first two terms can
be neglected and one finds after trivial manipulations and dividing through ε̃

ṽ =
π/2

∫ η+
η−

(
dϕ(η)

dη

)2
dη

. (4.29)

Thus, ṽ can be determined from the solution to the ODE and is not a free param-
eter. Furthermore, an important property is the positivity ṽ > 0 since η+ > η−.
This means that the interface moves towards a lowering of the total free energy,
which in some sense resembles the second law of thermodynamics. It is stressed
that h(0) = 0 and h(1) = 1 are the only constraints required from the interpolation
function to yield this property. Thus, this result holds independent of the choice
of herein discussed interpolation functions.

Note however, that the ODE itself is a function of ε̃ and ṽ and thus the solution

and as well
∫ η+

η−

(
dϕ(η)

dη

)2
dη may vary with ε̃ and ṽ. It follows that Eq. (4.29)

may be a (nonlinear) relation between ṽ and ε̃ that needs to be inverted to obtain
ṽ(ε̃).

4.3.1.2 Exploiting the Symmetry of the Interpolation Function

Symmetry of the Interface Velocity It is assumed that Eq. (4.29) can be
inverted and a unique relation ṽ(ε̃) is obtained. This, in particular means that
Eqs. (4.22)-(4.25) can only be satisfied for a single value of ṽ for each choice of
driving force, i.e. ε̃ .
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4.3 Exact Solutions

For further analysis, it is necessary to use a more rigorous notation1 for the solu-
tion by letting

ϕ(η) = ϕ(ε̃,η) (4.30)

be the solution to Eqs. (4.22)-(4.25) for ε̃ .

Commonly, a phase-field model should be designed such that identical results
are obtained independent of the order of labeling of the phases (here α and β ).
In view of the other phase (here β ), any driving force is identical in magnitude
but has opposite sign. Therefore, it is interesting to study the solution ϕ̄(η)

satisfying the same equations for a driving force in the opposite direction but
equal magnitude, i.e.

ϕ̄(η) = ϕ(−ε̃,η) . (4.31)

For this, the following ODE needs to be fulfilled:

ϕ̄(η)+
d2ϕ̄(η)

dη2 − 4ε̃ ṽ(−ε̃)
π

dϕ̄(η)

dη
−2ε̃h′(ϕ̄) = 0 (4.32)

One may try the solution ϕ̄(η) = −ϕ(−η) which, by construction, satisfies
ϕ̄(−η+)=−ϕ(η+)= 1 and ϕ̄(−η−)=−ϕ(η−)=−1. Thus, all BCs (Eqs. (4.23)-
(4.24)) are satisfied at the points η̄− = −η+ and η̄+ = −η− with the correct
ordering η̄− < η̄+.

1 In the initial problem formulation through Eqs. (4.22)-(4.25), the dimensionless driving force is
treated just as a constant. However, since the ODE changes as ε̃ is varied, this implies that ϕ
changes with ε̃ as well. In most of the current chapter, the shorthand notation ϕ(η) is used for
the sake of brevity, keeping in mind that a more rigorous form would be ϕ(ε̃,η) and the ordinary
derivatives have to be replaced with partial derivatives.
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It remains to show that Eq. (4.32) is satisfied. Inserting the trial solution into the
left-hand side of the ODE, one obtains

−ϕ(−η)− d2ϕ(η)

dη2

∣∣∣∣
−η
− 4ε̃ ṽ(−ε̃)

π
dϕ(η)

dη

∣∣∣∣
−η
−2ε̃h′(−ϕ(−η)) = 0 . (4.33)

The first two terms can be replaced according to the ODE for ϕ which yields

(ṽ(ε̃)− ṽ(−ε̃))
4ε̃
π

dϕ(η)

dη

∣∣∣∣
−η

+2ε̃
(
h′(ϕ(−η))−h′(−ϕ(−η))

)
= 0 . (4.34)

If h′(ϕ) is an even function, i.e. h′(ϕ) = h′(−ϕ), the last term vanishes and
hence the problem given by Eqs. (4.22)-(4.24) for −ε̃ is satisfied by ϕ̄(η) if the
dimensionless velocity is chosen as ṽ(−ε̃) = ṽ(ε̃). According to the assumption
of a unique relation of ṽ(ε̃), this means that ṽ(ε̃) is an even function.

In this case

ϕ(−ε̃,η) =−ϕ(ε̃,−η) (4.35)

solves the ODE.

It is stressed that this holds only if h′(ϕ) = h′(−ϕ), and taking into account
that h(−1) = 0 and h(1) = 1, this implies that the interpolation function has
to be symmetric, or more precisely h(ϕ) = 1− h(−ϕ) and hα (1/2+ϕ) = 1−
hα (1/2−ϕ) according to Eq. (4.16).

Symmetry of the Interface Thickness The choice of solution implies that
the interface thickness is even, since δ̃ (−ε̃) = η̄+− η̄− = δ̃ (ε̃).

Symmetry of the Interfacial Energy Moreover, since ϕ̄2(η) = ϕ2(−η)

and ϕ̄ ′(η) = ϕ ′(−η) it follows according to Eq. (4.21) that the dimensionless
interfacial energy also possesses an even symmetry with respect to the driving
force, i.e. σ̃(ε̃) = σ̃(−ε̃).
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Symmetry of the Maclaurin Coefficients of the Order Parameter In
section 4.4, approximate asymptotic solutions are derived relying on a Maclaurin
expansion of the order parameter ϕ(ε̃,η). Please note that Eq. (4.35) can be made
to comply with the shift constraint ϕ(ε̃,0) = 0, which is enforced in the same
section. In other words, when ϕ(0) = 0 also ϕ̄(0) = −ϕ(−0) = 0 is ensured.
Now, one can determine the Maclaurin coefficients in the usual way

ϕn(η) =
1
n!

∂ nϕ(ε̃,η)

∂ ε̃n

∣∣∣∣
ε̃=0

. (4.36)

This identity can be used for differentiating Eq. (4.35) n times yielding

(−1)nϕn(η) =−ϕn(−η) (4.37)

after applying the chain rule n times to the left-hand side. This equality can be
written in a more instructive form

ϕn(η) =

{
−ϕn(−η) evenn

ϕn(−η) oddn
, (4.38)

revealing an interesting and quite satisfactory pattern: ϕn(η) is an odd function
if n is even and vice versa.

4.3.2 Solution for h0

In the general case, Eq. (4.22) is a nonlinear second order ODE, where the non-
linearity stems from the derivative of the interpolation function h′(ϕ). Thus, the
ODE cannot be exactly solved for arbitrary interpolation functions. However, for
the special choice h0, an exact solution is possible, because h′(ϕ) is simply a
constant. The considered ODE is

ϕ(η)+
d2ϕ(η)

dη2 +
4ε̃ ṽ
π

dϕ(η)

dη
+ ε̃ = 0 . (4.39)
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which can be solved by performing the Laplace transform. The choice η− = 0
helps applying the BCs as initial conditions (ϕ(0) = 1 and ϕ ′(0) = 0) therein.

Let a≡ 2ε̃ ṽ/π and s≡
√

a2−1, then the obtained solution reads

ϕ(η) =
1+ ε̃

2
exp(−aη)

((
1+

a
s

)
exp(sη)+

(
1− a

s

)
exp(−sη)

)
− ε̃

(4.40)

ϕ ′(η) =
1+ ε̃

2s
exp(−aη)(exp(−sη)− exp(sη)) . (4.41)

Thus s ̸= 0 needs to be fulfilled if ε̃ ̸= −1. Now it is necessary to ensure
that ϕ ′(η+) = 0 for some η+ > 0. So either exp(−aη+) = 0 or exp(−sη)−
exp(sη) = 0. Since a ∈ R, the former can only be satisfied for a > 0 and
η+ → ∞, which is excluded as a possibility since it is demanded that η+ and
η− be finite. If s ∈R, the latter can only be satisfied at η+ = 0 and hence, no so-
lution exists in this case that satisfies η+ > η−. So the only possibility left is that
s ∈ C and Im(s) ̸= 0. Since s =

√
a2−1 and a ∈ R this implies that a2 < 1 and

s = i
√

1−a2, i is the imaginary unit and
√

1−a2 ∈ R, furthermore Im(s) > 0.
According to Euler’s formula and since sin is an odd and cos is an even function
it follows

exp(±sη) = cos
(√

1−a2η
)
± isin

(√
1−a2η

)
(4.42)

exp(sη)+ exp(−sη) = 2cos
(√

1−a2η
)

(4.43)

exp(sη)− exp(−sη) = 2isin
(√

1−a2η
)

(4.44)

and accordingly

ϕ(η) = (1+ ε̃)exp(−aη)

(
cos
(√

1−a2η
)
+

a√
1−a2

sin
(√

1−a2η
))
− ε̃

(4.45)

ϕ ′(η) =− 1+ ε̃√
1−a2

exp(−aη)sin
(√

1−a2η
)
. (4.46)
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Possible endpoints need to fulfill ϕ ′(η+) = 0 according to the derivative BCs
(Eq. (4.24)). This is fulfilled when

√
1−a2η+ = nπ , n ∈ Z. To ensure η+ > 0,

η+ = nπ/
√

1−a2 with n ∈ N. Furthermore, Eq. (4.23) demands that ϕ(η+) =

−1 is satisfied. This is the case if (−1)n (1+ ε̃)exp
(
−anπ/

√
1−a2

)
− ε̃ =−1

which is a relation between the interface velocity (through a) and the driving
force (through ε̃). Since a ∈ R, and a2 < 1, the exponential term is positive and
hence, solutions only exist if |ε̃|< 1 for odd n and |ε̃|> 1 for even n.

A remaining problem is the non-uniqueness of the solution since it is not clear
which n should be picked. This can be resolved by considering the Gibbs con-
straint (Eq. (4.25)). Since ϕ ′(ηk) = 0 provides possible extrema locations ηk =

kπ/
√

1−a2 between η− and η+, where 0 < k < n with k ∈ N, it is sufficient to
consider |ϕ(ηk)| < 1∀k. For n = 1 there exists no such k, and accordingly, the
Gibbs-constraint is fulfilled. Then ϕ(η) is a monotonous function in the interval
η− ≤ η ≤ η+. For odd n ≥ 3 there are at least a single odd and an even k and
it turns out, that at least one of them does not comply with the Gibbs constraint
(i.e. the order parameter overshoots or undershoots the physically valid range).
For even n there is at least a single odd k with |ϕ(ηk)| ≥ 1 and therefore, the only
valid choice is n = 1. This implies that no solution exists for |ε̃| ≥ 1.

The main result of the current analysis are the dimensionless interface thickness
and interface velocity as a function of dimensionless drivingforce ε̃ .

δ̃ (ε̃) = η+(ε̃) =

√
π2 + ln2

(
1+ ε̃
1− ε̃

)
(4.47)

ṽ(ε̃) =
πa(ε̃)

2ε̃
=

π
2ε̃

ln
( 1+ε̃

1−ε̃
)

δ̃ (ε̃)
(4.48)

Additionally, the interfacial energy σ can be derived as

σ̃(ε̃) =
1
π

(
4ε̃ ln

( 1+ε̃
1−ε̃
)

δ̃ (ε̃)
+
(
1− ε̃2) δ̃ (ε̃)

)
. (4.49)
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0 0.25 0.5 0.75 1
1

1.2

1.4

4/π

π/2
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(a) interface velocity and energy
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Figure 4.2: Dimensionless interface velocity ṽ and interfacial energy σ̃ (a) as well as dimensionless
interface thickness δ̃ (b) as a function of the dimensionless drivingforce ε̃ in the range
0 < ε̃ < 1 for the interpolation function h0. ṽ and σ̃ tend to π/2 and 4/π for ε̃ → 1,
respectively, whereas the interfacial thickness tends to infinity. No solution exists for
|ε̃| ≥ 1.

It is easy to see, that all three quantities are even functions of ε̃ , i.e. δ̃ (ε̃) =
δ̃ (−ε̃), ṽ(ε̃) = ṽ(−ε̃) and σ̃(ε̃) = σ̃(−ε̃) hold. This can be traced back to the
symmetry of the interpolation function (cf. section 4.3.1.2). Therefore, it is
sufficient to discuss the behavior for positive ε̃ of these three quantities, which
are plotted in Fig. 4.2. First of all, the sharp interface limit corresponds to ε̃→ 0.
In this limit, ṽ→ 1 and σ̃ → 1 which means that the sharp-interface relation
v = m∆ f (Eq. (2.91)) is recovered and also the interfacial energy σ tends to the
prescribed interfacial energy parameter γ . As can be seen in Fig. 4.2a, for larger
driving forces however, the interface moves faster than demanded by the physical
law. The deviation increases with increasing ε̃ and shows a very high slope as
ε̃ approaches unity. Finally ṽ(1) = π/2, i.e. a maximal acceleration of about
60% is reached. Therefore, the simulation result deviates significantly from the
expected governing law. The behavior of the interfacial energy is qualitatively
similar but since σ̃(1) = 4/π , it deviates less significantly (at max about 30%)
from the sharp-interface value.

The interfacial thickness δ̃ , shown as a function of ε̃ in Fig. 4.2b approaches the
conventional interface thickness of δ = π2ε/4 for vanishing driving forces which
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4.3 Exact Solutions

similarly as for ṽ and σ̃ constitutes its minimum. δ̃ remains near this value for
the interval 0 < ε̃ < 1/2 but increases significantly afterwards which corresponds
to an artificial thickening of the interfacial region. Furthermore, in contrast to ṽ
and σ̃ no finite limit is reached for ε̃ → 1, but rather δ̃ → ∞. This shows why
no solution exists for |ε̃| ≥ 1, the interfacial thickness is out of any bounds and
is therefore untractable. The no-solution means that the interface is not able to
reach a travelling-wave form for |ε̃| ≥ 1. Therefore, the obvious conjecture is
that a transient solution exists which never reaches a steady state.

−0.5 −0.25 0 0.25 0.5
−1

−0.5
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1/2
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3/4
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η/δ̃

ϕ
(η

)

Figure 4.3: Rescaled order parameter ϕ(η) in terms of the dimensionless moving coordinate η for
various choices of ε̃ . The increase in dimensionless interfacial thickness δ̃ with ε̃ is
compensated by an appropriate scaling of the horizontal axis.

Finally, the order parameter function ϕ(η) is presented in a shifted form (i.e.
replacing ϕ(η) with ϕ(η +η+/2)) and writes

ϕ(η) =

(
1− ε̃
1+ ε̃

) η
δ̃ (ε̃) √

1− ε̃2

(
ln
( 1+ε̃

1−ε̃
)

π
cos
(

πη
δ̃ (ε̃)

)
− sin

(
πη

δ̃ (ε̃)

))
− ε̃ .

(4.50)

121



4 Regarding the Choice of Interpolation Function

The shift has been introduced in order to make the symmetry with respect to the
sign of ε̃ more apparent. The shifted endpoints now correspond to η± = ±δ̃/2.
In this form, Eq. (4.50) reduces in the sharp-interface limit (ε̃ → 0) to the well-
known sinusoidal solution ϕ(η) =−sin(η). The order parameter profile ϕ(η) is
plotted for various values of ε̃ > 0 in Fig. 4.3 as a function of η/δ̃ . It can be seen
that the initially (ε̃ = 0) odd function ϕ(η) is distorted for finite ε̃ and thereby
looses the symmetry. The deviation increases as ε̃ comes closer to unity. Near
the right endpoint η/δ̃ = 1/2, a flat valley is formed, that extends over a wider
interval as ε̃ increases.

This completes the presentation of the solution for h0 which is of closed form.

4.3.3 Solution for hd

The solution for hd has to fulfill the following ODE

ϕ(η)+
d2ϕ(η)

dη2 +
4ε̃ ṽ
π

dϕ(η)

dη
+

4ε̃
π

√
1−ϕ2(η) = 0 . (4.51)

The solution is simply found by inserting the known equilibrium solution ϕ(η) =

−sin(η) in analogy to [7] satisfying the BCs (Eqs. (4.23)-(4.24)) at η± =±π/2
and the Gibbs constraint (Eq. (4.25)). Then, the first two terms vanish and one
obtains

−4ε̃ ṽ
π

cos(η)+
4ε̃
π
|cos(η)|= 0 . (4.52)

Since cos(η)≥ 0 for −π/2≤ η ≤ π/2, it follows that the ODE is fulfilled when

ṽ = 1 (4.53)

independent of ε̃ . Moreover, evaluating equation (4.21), one obtains

σ̃ = 1 . (4.54)
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Thus, this interpolation function exactly recovers all physics for a planar inter-
face. This is the important feature of this interpolation function and explains why
it is used more frequently recently.

4.4 Approximate Asymptotic Solutions

4.4.1 Solution Framework

The asymptotic expansion employed here is an extension of the derivation in the
previous chapter to arbitrary orders. However, for the one-dimensional treatment
in the current chapter, the curvature influence can be neglected.

It is worth recalling how the expansion in the interface thickness parameter ε
worked. To obtain equations at each order it was important to expand all (pos-
sibly nonlinear) dependencies on ε in the form of a polynomial in order to cor-
rectly compute the limit ε → 0 at each order and match terms of equal power.
By performing the limiting process, all other quantities were assumed to remain
constant, i.e. independent of ε such as the interfacial energy parameter γ or the
curvature. In the current chapter this means that an expansion in ε is identical to
an expansion in ε̃ , because the driving force ∆ f and γ are simply constants and
an expansion in terms of ε̃ can be easily rewritten as an expansion in terms of ε
by including these constants 2.

Expanding Unknowns Therefore, the solution to the ordinary differential
equation (4.22) is assumed to be Maclaurin-expandable as follows:

ϕ(η) =
∞

∑
n=0

ε̃nϕn(η) (4.55)

2 Although using asymptotic expansions would be more rigorous, for the sake of readability, the
more established notion of Taylor series is used.
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4 Regarding the Choice of Interpolation Function

Here, ϕn(η) is simply the nth Taylor coefficient of ϕ(η) and ϕ0(η) corresponds
to the sharp-interface limiting solution.

This expansion implies an expansion of the dimensionless interfacial energy σ̃

σ̃ =
∞

∑
n=0

ε̃nσ̃n (4.56)

where the coefficients σ̃n can be determined from Eq. (4.21).

The exact solutions derived so far showed that the interface velocity may vary as
a function of dimensionless interface width ε̃ . Accordingly, the ansatz

ṽ =
∞

∑
n=0

ε̃nṽn (4.57)

is chosen. The same has to be done for the interfacial endpoints

η± =
∞

∑
n=0

ε̃nηn
± (4.58)

where the superscript n in ηn
± simply acts as a label. From the expansion of

dimensionless interface thickness

δ̃ =
∞

∑
n=0

ε̃nδ̃n =
∞

∑
n=0

ε̃n (ηn
+−ηn

−
)

(4.59)

the coefficients are related as δ̃n = ηn
+−ηn

−.
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4.4 Approximate Asymptotic Solutions

ODEs at Each Order Now as the expanded forms are written down, it is
necessary to insert them into the ODE (Eq. (4.22)) which yields

∞

∑
n=0

ε̃n
(

ϕn(η)+
d2ϕn(η)

dη2

)

+
4ε̃ ∑∞

n=0 ε̃nṽn

π

∞

∑
n=0

ε̃n dϕn(η)

dη
+2ε̃h′

(
∞

∑
n=0

ε̃nϕn(η)

)
= 0 .

(4.60)

Let L denote the left-hand side of the above equation, then differential equations
at each order of ε̃ can now be obtained by demanding that the ODE has to hold
for arbitrary ε̃ which results in the following recipe

lim
ε̃→0

∂ nL
∂ ε̃n = 0 . (4.61)

At lowest order, this leads to

ϕ0(η)+
d2ϕ0(η)

dη2 = 0 (4.62)

which is a linear second order differential equation for ϕ0. At first and second
order, one obtains

ϕ1(η)+
d2ϕ1(η)

dη2 =−4ṽ0

π
dϕ0(η)

dη
−2h′(ϕ0(η)) (4.63)

ϕ2(η)+
d2ϕ2(η)

dη2 =− 4
π

(
ṽ0

dϕ1(η)

dη
+ ṽ1

dϕ0(η)

dη

)
−2ϕ1(η)h′′(ϕ0(η)) .

(4.64)

Note that the right-hand side for the ODE of order n is a known function of η
once the ODEs of orders 0, . . . ,n− 1 have been successfully solved. Therefore,
it is already apparent, that the nonlinearity in the original ODE could efficiently
be removed by replacing it with an infinite number of linear ODEs each for the
Taylor coefficient of the order parameter ϕn. Differential equations at higher
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4 Regarding the Choice of Interpolation Function

orders can be obtained in the same way but become lengthy and are thus omitted
here.

Expanding Boundary Conditions The expansion of the boundary condi-
tions is analogous to Sec. 3.2.1.4. Eqs. (4.23)-(4.24) rewritten in the expanded
form and again demanding to hold for arbitrary ε̃ yields

lim
ε̃→0

∂ n

∂ ε̃n ϕ

(
∞

∑
n=0

ε̃nηn
±

)
=

{
∓1 n = 0

0 n≥ 1
(4.65)

lim
ε̃→0

∂ n

∂ ε̃n ϕ ′
(

∞

∑
n=0

ε̃nηn
±

)
= 0 . (4.66)

Both equations are identical in the sense that all require the application of the
generalization of the chain rule to n-th order. This relation is known as Faà di
Bruno’s formula. For the first few orders, it can be performed manually, but
becomes tedious for higher orders as more and more terms accumulate.

One obtains

ϕ0(η0
±) =∓1 (4.67)

ϕ ′0(η
0
±) = 0 (4.68)

ϕ1(η0
±) =−ϕ ′0(η

0
±)η

1
± (4.69)

ϕ ′1(η
0
±) =−ϕ ′′0 (η

0
±)η

1
± (4.70)

ϕ2(η0
±) =−

1
2

ϕ ′′0 (η
0
±)
(
η1
±
)2−ϕ ′0(η

0
±)η

2
±−ϕ ′1(η

0
±)η

1
± (4.71)

ϕ ′2(η
0
±) =−

1
2

ϕ ′′′0 (η0
±)
(
η1
±
)2−ϕ ′′0 (η

0
±)η

2
±−ϕ ′′1 (η

0
±)η

1
± (4.72)

and so forth. Interestingly, this provides boundary conditions for each ϕn at the
zeroth order endpoints η0

± which underlines their importance.
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Additional Shift Condition As mentioned earlier, the obtained solution is
unique only up to a shift in η . Therefore an additional shift condition ϕ(0) = 0
is imposed for the current section. This results in

ϕn(0) = 0 ∀n . (4.73)

It is important to guarantee that the location η = 0 is part of the interfacial region
by demanding that η− < 0 < η+. If this was not the case, it might be that the
solution, as an analytical continuation, is artificially constraint in regions which
belong to the bulk. Note that the boundary conditions (Eq. (4.23)) together with
the intermediate-value theorem ensure that a point exists in between η− and η+

where ϕ = 0. Thus, the above condition can be imposed without loss of general-
ity.

Remark Regarding the Gibbs-Constraint Unfortunately, there is no straight-
forward way to ensure that the Gibbs-simplex (Eq. (4.25)) is fulfilled by the ex-
panded form without knowing all of the infinite number of Taylor coefficients ϕn.
Therefore, the current strategy is that Eq. (4.25) is imposed on the zeroth-order
ϕ0(η) by demanding that the Gibbs simplex must be fulfilled in the sharp inter-
face limit. From there on, it can only be hoped that the expansion yields solutions
that smoothly follow the right branch of the solution which ensures Eq. (4.25).

4.4.2 Solution at Low Orders

The relations obtained in the previous subsection are now applied to solve for the
first few orders to obtain some insights that hold for large classes of interpolation
functions. The goal is to identify certain conditions that must be met by the
interpolation function to obtain certain properties of e.g. the interface velocity.
Furthermore, the herein developed solutions show how one can proceed at higher
orders.
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4.4.2.1 Lowest Order Solution

The solution to Eq. (4.62) satisfying Eq. (4.73) reads ϕ0(η) = Asin(η) with
some prefactor A. Eq. (4.68) is evaluated to obtain the lowest order interfacial
endpoints as η0

± = π/2+nπ for some n ∈ Z. The shift-constraint demands that
η0
− < 0 < η0

+. Therefore, η0
− = π/2−nπ with n ∈N and ϕ0(η0

−) = (−1)nA = 1
which implies A = (−1)n. If n > 1, the Gibbs simplex cannot be fulfilled since
there exists a point ηk = π/2− kπ with 0 < k < n, k ∈ N, where |ϕ0(ηk)| = 1.
Accordingly, η0

− =−π/2 which implies

ϕ0(η) =−sin(η) (4.74)

and the only choice for η0
+ that ensures the Gibbs simplex is η0

+ = π/2. This
result holds independent of the choice of interpolation function.

4.4.2.2 Integral Properties

Motivation The solution for ϕn, n > 0 (cf. Eqs. (4.63)-(4.64)) depend on the
form of interpolation function, e.g. h′(ϕ), h′′(ϕ) and so forth. Therefore, the
solution cannot be presented without solving each of the interpolation functions
separately. However, one can approach the ODE and integrate it to obtain some
properties that hold without detailed knowledge over the order-parameter func-
tion.

Generalized Integration Since it appears that the differential operator for
ϕn in Eq. (4.61) is always the same, one can in analogy to Eq. (3.91), multiply
the ODE with dϕ0/dη and integrate within the lowest order endpoints to obtain
for the LHS:

∫ η0
+

η0
−

dϕ0(η)

dη

(
ϕn(η)+

d2ϕn(η)

dη2

)
dη =

[
ϕ ′n(η)ϕ ′0(η)

]η0
+

η0
−
+[ϕn(η)ϕ0(η)]

η0
+

η0
−

(4.75)
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where the zero order ODE has been used to cancel the remaining integral from
the partial integration. Incorporating Eqs. (4.67)-(4.68) it follows

∫ η0
+

η0
−

dϕ0(η)

dη

(
ϕn(η)+

d2ϕn(η)

dη2

)
dη =−

(
ϕn(η0

+)+ϕn(η0
−)
)
. (4.76)

Sharp-Interface Velocity In order to derive the value of the sharp-interface
velocity ṽ0, Eq. (4.63) is multiplied by dϕ0(η)/dη and integrated using the rela-
tion from Eq. (4.76). By applying the BC from Eq. (4.69), one obtains

0 =
4ṽ0

π

∫ η0
+

η0
−

(
dϕ0(η)

dη

)2

dη +2
∫ η0

+

η0
−

h′(ϕ0(η))
dϕ0(η)

dη
dη (4.77)

The first integral on the RHS can be integrated from the known solution (Eq. (4.74))
and is equally π/2. The second integral can be performed by substitution and is
thus equal to h(−1)−h(1) which is identically −1 due to the interpolation con-
straint. It follows that the sharp-interface limiting velocity recovers the physical
law, i.e.

ṽ0 = 1 (4.78)

which holds independent of the choice of interpolation function.

Thin-Interface Velocity The first-order correction to the interface velocity is
given by ṽ1. In analogy to the previous step, its value is derived by multiplying
the second order ODE (Eq. (4.64)) with dϕ0(η)/dη and subsequent integration.
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Incorporating the BCs from Eq. (4.71) into the LHS given by Eq. (4.76), one
obtains

1
2

[(
dϕ1(η)

dη

)2
]η0

+

η0
−

=
4
π

∫ η0
+

η0
−

dϕ0(η)

dη
dϕ1(η)

dη
dη +2ṽ1+

2
∫ η0

+

η0
−

ϕ1(η)h′′(ϕ0(η))
dϕ0(η)

dη
dη .

(4.79)

The last integral on the RHS can be integrated by parts by raising h′′(ϕ0(η))ϕ ′0(η)

to h′(ϕ0(η)) and incorporating the BC from Eq. (4.69). To evaluate the remain-

ing integral
∫ η0

+

η0
−

h′(ϕ0)ϕ ′1(η)dη , one has to express h′(ϕ0(η)) in terms of ϕ1 by

rearranging the ODE for ϕ1 (Eq. (4.63)). Then, two terms can be integrated by
substitution and one of them vanishes by making use of the vanishing value of
ϕ1 at η0

±. The other term cancels the LHS of equation (4.79). Finally, ṽ1 can be
expressed as

ṽ1 =−
4
π

∫ η0
+

η0
−

dϕ0(η)

dη
dϕ1(η)

dη
dη . (4.80)

Interestingly, this result can also be obtained by expanding the more general
equation (4.29) using Leibniz rule. Unfortunately it seems that no progress could
be made since ϕ1(η) is unknown.

Some progress can be made by redoing the integration from the previous para-
graph but changing the bounds of integration from 0 to η0

±. Then, the integration
of the LHS of Eq. (4.63) is given by

∫ η0
±

0

dϕ0(η)

dη

(
ϕ1(η)+

d2ϕ1(η)

dη2

)
dη = ϕ ′1(0) (4.81)
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which follows from the BCs (Eqs. (4.68)-(4.69)) and the shift-constraint (Eq. (4.73))
as well as the zero-order ODE (Eq. (4.62)). The corresponding RHS is given by

− 4
π

∫ η0
±

0

(
dϕ0(η)

dη

)2

dη−2
∫ η0

±

0
h′(ϕ0(η))

dϕ0(η)

dη
dη = 2h(0)−1 . (4.82)

Here, the first integral is simply found by Eq. (4.74) as ±π/4 and the second
integral has been performed by substitution. Equating LHS and RHS yields

ϕ ′1(0) = 2h(0)−1 . (4.83)

For the special case of an even symmetry of h′(ϕ), h(0) = 1/2 and thus

ϕ ′1(0) = 0 . (4.84)

Based on this result, the implications of the even nature of h′(ϕ) can be exploited
more thoroughly. Accordingly, note that the RHS in Eq. (4.63) becomes an even
function with respect to η . This implies that its odd coefficients in a Maclaurin
series with respect to η are zero. When the ODE is seen as a recurrence relation
for the Maclaurin coefficients of ϕ1, one can state by differentiating Eq. (4.63)
2n+1 times (n ∈ Z, n≥ 0) that

d2n+3ϕ1(η)

dη2n+3

∣∣∣∣
η=0

=− d2n+1ϕ1(η)

dη2n+1

∣∣∣∣
η=0

(4.85)

which means that by induction

d2n+1ϕ1(η)

dη2n+1

∣∣∣∣
η=0

= (−1)nϕ ′1(0) = 0 , (4.86)

where the last equality follows from Eq. (4.84). This result is remarkable, as
it shows that ϕ1(η) is an even function. Thus, the more general result shown
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in Eq. (4.38) is rediscovered. Furthermore, this is enough to conclude that the
interface velocity is first-order accurately recovered, i.e.

ṽ1 = 0 (4.87)

by evaluating the integral in Eq. (4.80). It is stressed that this follows from the
symmetry of the interpolation function.

Thin-Interface Thickness It is worth multiplying the ODE for ϕ1 with a
different test function, namely ϕ ′′0 (η), before integration. In analogy with the
steps to derive Eq. (4.76) (performing partial integration and using Eq. (4.62))
yields

η1
+−η1

− =
4
π

∫ η0
+

η0
−

dϕ0(η)

dη
d2ϕ0(η)

dη2 dη +2
∫ η0

+

η0
−

h′(ϕ0(η))
d2ϕ0(η)

dη2 dη .

(4.88)

Here, BCs from Eqs. (4.67)-(4.70) have been used. If h′(ϕ0) is an even function
and since ϕ0(η) is odd, the right-hand side vanishes and thus

δ̃1 = η1
+−η1

− = 0 , (4.89)

i.e. the interface thickness is first-order constant.

Summary This completes the derivation exploiting certain properties of the
interpolation function h(ϕ). To summarize, it was shown that the interpolation
constraint h(1) = 1 and h(−1) = 0 is sufficient to warrant that the interface veloc-
ity is given by v0 = m∆ f in the sharp-interface limit. Furthermore, it was shown
that if the interpolation function is symmetric, i.e. h(ϕ) = 1−h(−ϕ) this result
keeps holding considering first-order corrections in the driving force. Since the
property h(ϕ) = 1− h(−ϕ) is fulfilled by all interpolation functions commonly
used in phase-field models of the obstacle type (cf. Table 4.1), this is a quite
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general result. Interestingly, in this case, also the interface thickness remains
unchanged incorporating first-order corrections.

4.4.3 Solution at Higher Orders

Motivation It turned out, that for the first two orders, all interpolation func-
tions lead to an identical model behavior. On the one hand, it shows that the
design of the interpolation functions has been performed with a portion of fore-
sightedness. On the other hand, it is a bit disappointing that so far no subtleties
could be identified to explain differences between the interpolation functions re-
garding the effort to derive the results from the previous section. In order to
extract useful information at higher orders, the most straightforward approach
is to solve the corresponding ODEs for the order parameter, i.e. derive explicit
functions ϕn(η), n > 1. As this is a tedious task to do manually, a significant ef-
fort has been put into automating the procedure using modern computer algebra
systems. The software Wolfram Mathematica 13.1 is being used to perform the
following derivations.

Solution Algorithm The solution procedure can be described as an algorithm
in pseudo-code and is shown in Listing 4.1.
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Listing 4.1: Asymptotic solution procedure for higher orders

Prescribe ϕ0(η) =−sin(η) from Eq. (4.74).
Set η0

± =±π/2.
f o r n ∈ {1, . . . ,N} do

Solve ϕn(η) from Eq. (4.61) subject to BC ϕn(0) = 0 from Eq. (4.23) and BC from
Eq. (4.65) at order n and at η0

+ .
Determine the interfacial velocity coefficient ṽn−1 by evaluating the solution ϕn

through BC Eq. (4.65) at order n and at η0
− .

Insert the value of ṽn−1 into the solution to ϕn(η) .
Determine interfacial endpoints ηn

± by evaluating BCs from Eq. (4.66) at order n.
Determine interfacial energy coefficients σ̃n by expanding Eq. (4.21) according to

Eq. (4.56) at current order.
end

The lowest order phase-field profile can be solved manually, as given by Eq. (4.74)
which also leads to η0

± = ±π/2. Alternatively, this result can be re-obtained by
the computer algebra system by subjecting it with appropriate assumptions. The
main part of the algorithm consists of a loop which iterates over the orders n
from 1 to N in increasing order, where N is the maximal order considered. The
maximal order was chosen as 11 since solutions at high orders become very
time consuming. Within the loop, the first step is to derive ϕn(η) subject to two
boundary conditions in order to obtain a unique result. The solution ϕn(η) con-
tains ṽn−1 as a free parameter that is determined in a next step by incorporating
an additional boundary condition. Accordingly, there is no need to determine
it by integration, as done manually. This was only necessary because the exact
form of ϕn(η) could not be derived without selecting one of the h-variants.

After inserting the determined interface-velocity coefficient into the solution
ϕn(η), the interfacial endpoint coefficients ηn

± can be similarly determined by
evaluating additional boundary conditions. As a last step, the dimensionless in-
terfacial energy coefficient at order n can be determined from Eq. (4.21) and
Eq. (4.56).
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4.4 Approximate Asymptotic Solutions

Once the computer algebra system has successfully completed the algorithm, the
phase-field equations ϕn(η)∀0 ≤ n ≤ N and the interfacial velocity coefficients
ṽn(η)∀0 ≤ n ≤ N − 1 as well as the interfacial endpoint corrections ηn

±∀0 ≤
n ≤ N are readily available in symbolic (and thus exact) form. This makes this
methodology so valuable.

Derived Order-Parameter Profiles The resulting order-parameter func-
tions are tabulated in Table 4.2 for the first order and in Table 4.3 for the second
order.

Table 4.2: First order correction to the phase-field profile ϕ1(η) for all common interpolation func-
tions used in PF-models of the obstacle type.

h-Type ϕ1(η)

h0
2η sin(η)

π + cos(η)−1
h1

2η sin(η)
π + cos(η)

2 + cos(2η)
4 − 3

4

h2
2η sin(η)

π + 3cos(η)
8 + 5cos(2η)

16 + cos(4η)
64 − 45

64
hd 0

Firstly, it is apparent that all interpolation functions lead to even functions ϕ1(η)

and odd functions ϕ2(η). For the first order, this resembles the derivation of
the previous section shown in Eq. (4.86). The first two orders suggest that this
pattern might continue for higher orders. It can be proven, that this holds indeed
true for symmetric interpolation functions (i.e. ϕn(η) is an even function if n is
odd and vice versa) – see section 4.3.1.2. In accordance with the exact solution
for hd , all corrections ϕn(η) = 0 for n ≥ 1. The solutions for integer-power
interpolation function hn can be written as a sum of products of polynomials in η
and trigonometric functions of the form sin(zη) and cos(zη) with some integer
z ∈ Z. In general, the higher the exponent n in hn, the more terms appear. For
instance, the second-order correction ϕ2(η) for h2 comprises of sixteen different
terms and is thus already difficult to tabulate. As the number of terms increases
with order, solutions at orders n > 2 in ϕn(η) – although available – are not listed
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4 Regarding the Choice of Interpolation Function

Table 4.3: Second order correction to the phase-field profile ϕ2(η) for all common interpolation
functions used in PF-models of the obstacle type.

h-Type ϕ2(η)

h0
(2−2π+π2−2x2)sin(η)+2(1−π)η cos(η)

π2

h1

(107π2−64π+128−128η2)sin(η)

64π2 +
(32−16π−21π2)η cos(η)

16π2

− 3
π η +

( 1
4 +

2
3π
)

sin(2η)+ 3
64 sin(3η)− η cos(2η)

π

h2

(32768(1−η2)+23393π2−12288π)sin(η)

16384π2 − 15
8π η

+
(4096−1536π−1365π2)η cos(η)

2048π2 +
( 15

64 − 5
6π
)

sin(2η)− 1065sin(3η)
8192

+
( 3

128 +
1

20π
)

sin(4η)+ 105sin(5η)
8192 + 5sin(7η)

16384 −
η cos(4η)

8π
hd 0
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Figure 4.4: The first six corrections ϕn(η), 1 ≤ n ≤ 6 to the interface profile as a function of the
rescaled interface normal coordinate η . Three different interpolation functions h0 (solid),
h1 (dashed) and h2 (dashdotted) are shown. The order increases from (a) to (f).
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4.4 Approximate Asymptotic Solutions

herein for the sake of brevity. However, the functions ϕ1(η) to ϕ6(η) are plotted
in the range −π/2≤ η ≤ π/2 in Fig. 4.4. This figure highlights the rich variety
of functions obtained by performing higher-order asymptotics. For instance, the
even and odd symmetry of the functions can be observed visually by mirroring
the functions about the plane η = 0.

2 4 6 8 10

−0.1

0

0.1

0.2

n

ṽ n

h0

h1

h2

Figure 4.5: Even interface velocity coefficients ṽn for three different interpolation functions of inte-
ger type.

Derived Interface Velocities In deriving the interface velocity coefficients
ṽn through the presented algorithm for the first eleven orders, it is seen that all odd
coefficients vanish (independent of the choice of interpolation function). This
is in line with the derivation performed earlier for the general case (cf. sec-
tion 4.3.1.2). Therefore, it is sufficient to take even powers into account. Ta-
ble 4.4 tabulates all even interface velocity coefficients.

Additionally, these coefficients are plotted against the order n in Fig. 4.5. It can
be seen that for h0 all coefficients are positive and decaying with order. This
means that for this interpolation function, the interface velocity is monotonously
increasing with the magnitude of the driving force. This is no surprise since the
velocity coefficients can alternatively be derived as the Maclaurin coefficients of
the exact solution derived earlier (Eq. (4.48)). As this check has explicitly been
performed, it shows that the current expansion works correctly and is able to
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4 Regarding the Choice of Interpolation Function

Table 4.4: Dimensionless interface velocity coefficients up to order ten for all common interpolation
functions. Results are given in symbolic form except lengthy expression which are shown
as numerical values accurate to 14 significant digits. The odd coefficients are equally zero
for all interpolation functions.

Symbol h0 h1 h2 hd

ṽ0 1 1 1 1
ṽ2

1
3 − 2

π2
83
96 − 82

9π2
24263
24576 − 2434

225π2 0

ṽ4
1
5 − 2

π2 +
6

π4 − 6793
2560 +

234479
21600π2 +

4130
27π4

− 1164005201
335544320 +

179711871821
5245599744π2 +

25942
5625π4

0

ṽ6

1
7 − 28

15π2 +
10
π4 − 20

π6

13847837
2293760 − 358602673

14515200π2

− 151322221
4860000π4− 83612

27π6

−0.031353620256855 0

ṽ8 0.024574396386496 0.0031878895228450 0.023020558168523 0
ṽ10 0.018351125315404 −0.0016441767901692 −0.018405432524639 0

reproduce exact solutions successfully. The same is true for the special case of
hd , where all coefficients in the current framework are zero for positive orders. In
contrast, for the interpolation functions where no exact solution is known, namely
h1 and h2, coefficients have alternating signs that also decay in magnitude. Thus,
a clear trend cannot be deduced only from the sign of the coefficients. The first
non-zero correction ṽ2 is negative, which indicates that for small driving forces,
the interface moves more slowly than expected from the physical law. Since the
magnitude of the coefficients are smaller for h1 compared to h2 it seems that the
former choice produces results closer to this law.

Derived Interface Thicknesses In the same fashion as the interface veloc-
ity coefficients, the interfacial thickness coefficients δ̃n are non-vanishing only
for even powers. This is another consequence of the symmetry of the interpola-
tion function (cf. section 4.3.1.2). The values of the interface thickness coeffi-
cients corresponding to even powers are tabulated in Table 4.5. The lowest order
coefficient δ̃0 is equal among all interpolation functions which reflects the identi-
cal sharp-interface limiting profile ϕ0(η). Figure 4.6 reveals the same qualitative
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Figure 4.6: Even interface thickness coefficients δ̃n for three different interpolation functions of in-
teger type.

pattern for δ̃n compared with the velocity coefficients ṽn: For h0 all coefficients
are positive and decaying, whereas for h1 and h2, alternating signs are observed.
This means that h0 leads to an increasing thickness with driving force that was
already discovered earlier (cf. Eq. (4.47)). In general, the magnitude of the coef-
ficients of h0 are much larger compared to either h1 or h2. Comparing the latter
two shows that the coefficient h1 are smaller in magnitude compared to h2, indi-
cating that the interface thickness is less perturbed for h1. The negativity of δ̃2

in both cases shows that these interpolation functions tend to a sharpening of the
interface as a first correction.

Derived Interfacial Energies By considering the dimensionless interfacial
energy σ̃ as a Maclaurin series with respect to the driving force ε̃ , once again only
even coefficients are relevant, as proven in section 4.3.1.2. The corresponding
values are tabulated in Table 4.4.

The plot shown in Fig. 4.7 reveals a different pattern compared to the two quan-
tities discussed in the two previous paragraphs. In particular, the first non-
vanishing correction σ̃2 is positive for all interpolation functions. This means
that the sharp-interface solution ϕ0 corresponds to a minimum in the interfacial
energy function. This is at the heart of variational calculus which demands that
the ODE for ϕ0, namely Eq. (4.62), minimizes the free-energy functional given
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4 Regarding the Choice of Interpolation Function

Table 4.5: Dimensionless interface thickness coefficients up to order ten for all common interpolation
functions. Results are given in symbolic form except lengthy expression which are shown
as numerical values accurate to 14 significant digits. The odd coefficients are equally zero
for all interpolation functions.

Symbol h0 h1 h2 hd

δ̃0 π π π π
δ̃2

2
π

38
3π − 21π

16
94

15π − 1365π
2048 0

δ̃4
4

3π − 2
π3 − 2422

27π3 − 8567
720π + 2185π

1024

1572898
3375π3 + 876077341

28385280π

− 265037755π
33554432

0

δ̃6
46

45π − 8
3π3 +

4
π5

318092
243π5 − 40640209

54000π3 −
1112521
46080π + 432929π

49152

−0.024325894233315 0

δ̃8 0.19500067118787 0.0040557348420294 0.017427708396088 0
δ̃10 0.15912944627703 −0.0020566481533696 −0.013722716819636 0
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Figure 4.7: Even interface energy coefficients σ̃n for three different interpolation functions of integer
type.

by Eq. (4.1) in the absence of driving forces, i.e. fα = fβ = 0, which then is
nothing but the definition for σ . The value of σ̃2 shows that for small perturba-
tions, h1 remains closest to the physical law, followed by h0 and h2. Apart from
this very first correction, the pattern of the coefficients is qualitatively identical
to that of the other quantities ṽ and δ̃ in the sense that the coefficients for h0 are
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4.4 Approximate Asymptotic Solutions

positive and decaying and both h1 and h2 have coefficients of alternating signs.
Also the magnitudes relate as before.

Table 4.6: Dimensionless interfacial energy coefficients up to order ten for all common interpolation
functions. Results are given in symbolic form except lengthy expression which are shown
as numerical values accurate to 14 significant digits. The odd coefficients are equally zero
for all interpolation functions.

Symbol h0 h1 h2 hd

σ̃0 1 1 1 1
σ̃2

10
π2 −1 14

3π2 − 15
32

18
5π2 − 2835

8192 0

σ̃4
2

π2 − 18
π4 − 5729

1024 +
13370
27π4 + 1817

360π2

− 424758505
33554432 − 276638

375π 4 +

4407630973
22077440π2

0

σ̃6
52
π6 − 50

3π4 +
58

45π2

54781219
983040 − 7361284

243π6 +

87947393
27000π4 − 131107427

230400π2

0.0017364639640677 0

σ̃8 0.010553941380702 0.00012769279975424 −0.0010521810743562 0
σ̃10 0.0085010899147613 −0.000072938112294313 0.0007415407539526 0

4.4.4 Summation Strategy

Limitations of Maclaurin Series As a lot of Maclaurin coefficients regard-
ing several quantities are now known, one might think that it is straightforward
to obtain meaningful information by simply constructing the approximation cor-
responding to some quantity a(ε̃) as a partial sum

PN(a, ε̃)≡
N

∑
n=0

anε̃n , (4.90)

where the coefficients an are fixed by demanding that the derivatives at x = 0 are
equal up to order N, i.e. ∂ nPN/∂xn|x=0 = ∂ na/∂xn|x=0 ∀0≤ n≤ N.
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4 Regarding the Choice of Interpolation Function

However, as it turned out, this seems to give awkward results that do not comply
with some of the general bounds derived (e.g. the positivity of the dimensionless
velocity is not fulfilled) for large arguments (e.g. ε̃ > 1).

It seems that a common problem with the summation of Taylor series is en-
countered, namely the limited radius of convergence. A typical example is the
Maclaurin series for f (x) = 1/(1+ x) which writes as

PN( f ,x) =
N

∑
n=0

(−1)nxn . (4.91)

This series has a radius of convergence equal to 1 and trying to evaluate its value
at x = 1, which is equally 1/2, results in values of alternating signs crucially
determined by the choice of N.

PN( f ,x) = 1−1+1−1+ · · ·=
{

1 N even

0 N odd
(4.92)

Thus, the result does not get closer to the correct value by incorporating an in-
creasing number of coefficients. More drastically, for arguments larger than 1
something quite remarkable happens: The more coefficients one incorporates,
the farther away is the result from the actual value. This is a serious concern
because it means that all the effort so far to derive more and more coefficients
(which was a hard task) is completely worthless.

Padé Summation Fortunately, this troublesome situation can be improved
by using a different summation strategy, i.e. using a different prescription to in-
corporate the Maclaurin coefficients. In the field of perturbation theory, divergent
series are commonly encountered and, as shown in [106], a versatile method to
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obtain more accurate approximations is by means of Padé summation. Padé ap-
proximants are a generalization of Taylor approximation to rational functions and
can be written as

PN
M(a,x)≡ ∑N

n=0 pnxn

∑M
n=0 qnxn

, (4.93)

where pn and qn are the Padé coefficients corresponding to the numerator and
denominator, respectively. Two orders of the approximant, namely N and M have
to be prescribed, the special case M = 0 corresponds to the Maclaurin series. In
analogy to the way the Maclaurin coefficients are fixed, pn and qn are uniquely3

determined by insisting that the Maclaurin coefficients of both the approximation
and the exact function are identical up to order M +N, i.e. ∂ nPN

M/∂xn
∣∣
x=0 =

∂ na/∂xn|x=0 ∀0≤ n≤M+N.

The superiority of Padé approximants is best apparent for the simple example
above ( f (x) = 1/(1+ x)). Any Padé approximant with M > 0 exactly recovers
the function.

Stieltjes-like Behavior As outlined in [106, Ch. 8.4] Padé summation is dis-
cussed with respect to Stieltjes-functions, where they demonstrate some inter-
esting properties namely the diagonal and the first off-diagonal Padé approxi-
mants monotonically decrease and increase, respectively for real and positive
arguments, i.e.

PN+1
N+1 ( f ,x)≤ PN

N ( f ,x) ∀x ∈ R,x > 0 (4.94)

PN+1
N+2 ( f ,x)≥ PN

N+1( f ,x) ∀x ∈ R,x > 0 (4.95)

3 One degree of freedom can be removed by demanding that q0 = 1. This always works when the
Maclaurin expansion to a(x) exists. Then N + 1 unknown coefficients for the numerator and M
unknowns for the denominator remain, thus in total M+N +1 unknowns.
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4 Regarding the Choice of Interpolation Function

cf. [106, Eq. 8.6.6] and assuming that they converge to the same limit, i.e.
limN→∞ PN

N ( f ,x) = limN→∞ PN
N+1( f ,x) provide error bounds on f (x):

PN
N+1( f ,x)≤ f (x)≤ PN

N ( f ,x) . (4.96)

Moreover, for this special class of functions, all poles of PN
N ( f ,x) and PN

N+1( f ,x)
lie on the negative real axis.

The conditions given by Eqs. (4.94)-(4.95) and the location of the poles can be
tested for the derived coefficients. In the current work, a function is denoted as
Stieltjes-like if these conditions are satisfied.

For h1 and h2, in performing these checks on the approximants for ṽ, δ̃ and σ̃ ,
it turned out that at least for ṽ and δ̃ , all conditions are fulfilled if one constructs
the approximant with respect to ε̃2, exploiting the even nature proven in sec-
tion 4.3.1.2. Thus it seems, that ṽ and δ̃ behave Stieltjes-like with respect to
ε̃2.

Although σ̃ seems not to be exactly Stieltjes, the error bounds (Eq. (4.96)) are
exploited for all three scalar quantities by calculating an average as

f (ε̃2)≈ 1
2
(
PN

N ( f , ε̃2)+PN
N+1( f , ε̃2)

)
, (4.97)

where f is one of ṽ, δ̃ and σ̃ . This approximation is used in the following nu-
merical comparison and completes the analytical treatments.

4.5 Numerical Comparison

Preface After the analytical derivations are thoroughly presented, it is now
required to relate them to the numerical results obtained in a typical phase-field
simulation. The main question to be addressed is whether the derived equations
are able to explain deviations between the simulation results where all parameters
are kept identical except the choice of interpolation function.
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4.5 Numerical Comparison

It is worth stressing that a numerical study of the problem without the previous
analytical derivations can become cumbersome. First note that the model con-
tains five model parameters: m, fα , fβ , γ and ε . This corresponds to a five param-
eter space which requires a large number of simulations in order to fully cover all
the possible combinations. The performed non-dimensionalization revealed that
the parameter space can be reduced to a single non-dimensional driving force ε̃ .
This clearly simplifies the comparison since it reduces the computational effort
tremendously.

The following study can be considered as a cross-validation: If any one of either
the numerical or analytical solutions are erroneous, it is expected that a mismatch
can be observed. On the contrary, if a good match is observed, this would increase
the confidence in both the analytical and numerical solutions.

4.5.1 Setup and Parameterization

Table 4.7: Parameter set used for the driving force simulations in terms of the model units for length
ul , energy uE and time ut . A range of possible dimensionless drivingforces ε̃ is set through
fβ .

Parameter Symbol Value
Interface Width ε 4ul

Interfacial Energy γ 3 uE
u2

l

Interface Mobility m 1
2

u4
l

uE ut

Grid Spacing ∆x 0.125ul

Energy density α-phase fα 0
Energy density β -phase fβ > 0, varying

For the simulations, a one-dimensional setup is considered in order to match the
flat-interface analytical treatment. A thin layer of α-phase is applied on the left-
hand side of the simulation domain by setting φα = 1, the remaining domain is
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4 Regarding the Choice of Interpolation Function

filled with a β -phase by setting φα = 0 in order to ensure the same ordering as
imposed in the analytics through BCs in Eqs. (4.7)-(4.8). The initial condition
corresponds to a sharp interface between the two phases. In the simulations, the
full partial differential equation is solved, i.e. Eq. (4.2), using a forward Euler
timestepping and using second-order accurate finite differences. This means that
a travelling-wave solution is not imposed from the outset. Since the initial condi-
tion is not appearing in the travelling-wave form assumed in the previous section,
one has to ensure that any initial transient building up the interface profile can be
neglected. This is done by setting the runtime of the simulations significantly
larger than the diffusion time (mγ is essentially a diffusivity) in Eq. (4.2) through
t ≥ 100ε2/(mγ). Velocities v are computed by comparing interface locations by
means of φα = 0.5 contours at an early and a late time. The interface width δ is
deduced by extrapolating within the interfacial region towards the bulk to obtain
locations x± where ∂φα/∂x = 0 is fulfilled. In order to exclude discretization
issues as a possible source of error, a relatively fine resolution of the interface is
maintained by choosing ε/∆x = 32.

The parameterization of the model is presented in Table 4.7. Interface width,
energy and mobility are assigned values near but not identical to 1 in order to
make sure that all nonlinearities in the parameters are correctly captured. The
energy density for the alpha phase is assigned a vanishing value and the driving
force ∆ f is controlled by varying fβ . Values of fβ are chosen in a range such
that both relatively small and large dimensionless drivingforces are covered, i.e.
0< ε̃ ≤ 10. The size of the domain is dynamically adjusted for each driving force
to ensure that the interface is not hitting the end of the domain during runtime (a
maximal interface velocity of v = 2m∆ f is assumed for that). At the end of the
domain, zero-Neumann boundary conditions are applied.
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Figure 4.8: Rescaled order parameter ϕ(η) obtained from the numerical simulation (solid lines) and
the analytical treatments (dashed lines) at a dimensionless driving force of ε̃ = 3/4 for all
studied interpolation functions. Within the interfacial region, the analytical and numeri-
cal results are indistinguishable. The exact analytical solution for h0 is shifted such that
ϕ(0) = 0. For the interpolation functions h1 and h2, Maclaurin partial sums P11(ϕ, ε̃) are
utilized in the analytical case.

4.5.2 Results

4.5.2.1 Order Parameter Profile

To check whether the derivation is able to quantify the distortion of the inter-
face at a finite driving force, order parameter functions ϕ are plotted in terms of
the rescaled moving coordinate at a dimensionless driving force of ε̃ = 3/4 in
Fig. 4.8. It can be seen, that independent of the choice of interpolation function,
the analytical and numerical solutions are indistinguishable which corresponds
to an exact match. It is stressed that although the numerical solution is a piece-
wise function which has discontinuous second derivatives, the first derivative at
the interfacial endpoints always seemingly remains continuous. This justifies
the assumption needed to obtain interfacial endpoints in the analytical treatment.
To make the comparison, it is important to truncate the analytical solutions at
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4 Regarding the Choice of Interpolation Function

η = η±, since the values of ϕ evaluated at η > η+ or η < η− are only the
analytical continuation of the interfacial profile in the bulk. For the asymptotic
analytical solutions (applicable for h1 and h2) it is worth noting that deviations for
larger dimensionless driving forces are expected, since simple Maclaurin partial
sums P11(ϕ, ε̃) are used. Although the deviation might be reduced by using Padé
approximants, it is a considerable effort since the construction of the approximant
has to be performed for each η . For this reason, why no further considerations
have been performed at higher ε̃ .

Instead, the scalar quantities, namely interface velocity v, interface thickness δ
as well as interfacial energy σ are compared for a small and large driving-force
regime in the following. This tremendously reduces the effort while there is still
provided enough information to assess differences between the analytical and the
numerical results.

4.5.2.2 Interface Velocities
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ṽ
=

v/
(m

∆
f)

sim/analytical
/ h0 / h1
/ h2 / hd

(a) small driving forces

0 2 4 6 8 10
0.4

0.8

1.2

π/2

ε̃ = π2ε∆ f/(16γ)

ṽ
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Figure 4.9: Comparison between dimensionless interface velocity obtained from the analytic treat-
ment and numerical simulations in the small (a) and large driving-force regime (b). Solid
lines correspond to the analytics, either exact (for h0 and hd ) or in terms of Padé ap-
proximants 1/2
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2 (ṽ, ε̃
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)

(for h1 and h2). Symbols represent the numerical
solutions.
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Dimensionless interface velocities corresponding to the simulation and analytics
are plotted in Fig. 4.9 for both a small and large-driving-force regime, character-
ized by ε̃ < 1 and ε̃ < 10, respectively. In general, the match between the analytic
results and the numerical simulations is remarkable. This is in particular true for
the small-driving force regime. In the numerical simulations, the behavior of the
interpolation function h0 is very well reproduced. For ε̃ > 1, the simulations with
h0 showed an immediate transformation towards the α-phase, i.e. φα = 1 every-
where in the domain at the final time step. Thus, no finite interface velocity could
be deduced and hence, the points are missing in the plots. This seems to reflect
the non-existence of a travelling-wave solution derived earlier. For h1 and h2, the
numerical results show slowly decaying velocities that are significantly below
the sharp-interface limit ṽ = 1 only for large driving forces. They also remain
positive, as predicted by the analytics. The Padé approximants used to describe
the analytical relation for ṽ for these two choices reproduce the numerical results
extremely well, except for very small deviations at large driving forces (ε̃ > 5)
that may either be rooted in the limited order of the approximant or in remaining
numerical uncertainties.

The latter is likely explaining a small mismatch for hd in the same regime which
is of a similar magnitude. Here, the interface velocity in fact remains independent
on ε̃ , which is the superior feature of this interpolation function.

4.5.2.3 Interface Thickness

For the interface thickness, the corresponding comparisons are shown in Fig. 4.10
in the same two driving force regimes. In general, the match is remarkable, but
not as striking as for the interface velocities. While the exact solutions for h0

and hd can be nearly exactly reproduced, the Padé-approximated choices h1 and
h2 show slight deviations in the large-interface regime which increase with ε̃ .
Therefore, it is concluded that this is a remaining limitation of the limited order
of the approximants. The qualitative behavior of the interface thickness function
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Figure 4.10: Comparison between dimensionless interface width obtained from the analytic treat-
ment and numerical simulations in the small (a) and large driving-force regime (b).
Solid lines correspond to the analytics, either exact (for h0 and hd ) or in terms of Padé
approximants 1/2

(
P2

2 (δ̃ , ε̃
2)+P2

3 (δ̃ , ε̃
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)

(for h1 and h2). Symbols represent the nu-
merical solutions.

is similar as for ṽ for these two cases, namely slowly decaying with increas-
ing driving forces. However, the order is reversed, in contrast to the interface
velocity (where h1 remained closer to ṽ0), namely the deviation from the sharp-
interface limit is slightly larger for h1 for most of the interval 0 < ε̃ < 10, com-
pared to h2, although this is not apparent from the values of the coefficients alone.
This fact highlights the counterintuitive behavior of diverging Maclaurin series
and demonstrates the power of Padé approximation in unraveling the underlying
functional dependence.

4.5.2.4 Interfacial Energy

The comparison for the interfacial energies is presented in Fig. 4.11 which com-
pletes the numerical studies. For the small interface regime in Fig. 4.11a, an
excellent match is found. In general, the interfacial energies are increasing with
driving force. The deviation is negligible for hd , and among those that deviate,
smallest for h1, followed by h2 and h0 in increasing order, respectively. Thus,
the qualitative behavior is completely different from the previous two quantities.
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Figure 4.11: Comparison between dimensionless interfacial energies obtained from the analytic
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Moreover, the numerical results seem to show that the functional dependence of
σ̃(ε̃) for h1 and h2 are asymptotic to a linear function with positive slope for
large driving forces (see Fig. 4.11b). The Padé approximants, which are signifi-
cantly deviating from this behavior for ε̃ > 5 especially for h2, are seemingly not
effective in approximating such a behavior very well.

4.6 Discussion

4.6.1 Origin of No-Solutions

In the analytical derivation for h0, it was found that travelling solutions are exist-
ing only if |ε̃|< 1. This poses a severe limitation to the application of this interpo-
lation function. Although the non-existence of travelling-wave solution does not
necessarily imply that the partial differential equation has no solution, numerical
experiments showed that at |ε̃|> 1, a rapid transient phase transformation occurs
including intractable interface widths. Accordingly, it seems important to ensure
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that travelling-wave solutions exist for arbitrary |ε̃|. While a complete proof for
arbitrary interpolation functions might be too involved, the following argument
provides a necessary condition for the existence of travelling-wave solutions for
planar interfaces.

For this, take a look at the ODE and corresponding boundary conditions given
through equations (4.22)-(4.25). The trick is to evaluate the ODE at η± by in-
serting the boundary conditions ϕ(η±) = ∓1 and ϕ ′(η±) = 0. It is somewhat
surprising, but without solving the ODE for arbitrary η , one obtains the second
derivative at the endpoints

ϕ ′′(η±) =±1−2ε̃h′(∓1) (4.98)

only in terms of the derivative of the interpolation function evaluated at the bulk
values h′(∓1) (which is a known value). Now, in order to ensure the Gibbs-
constraint (Eq. (4.25)) it is important that ϕ(η−) = 1 and ϕ(η+) = −1 are a
local maximum and minimum, respectively. Thus, since a necessary condition
ϕ ′(η±) = 0 is already satisfied, additional requirements are ϕ ′′(η−) ≤ 0 and
ϕ ′′(η+)≥ 0. It follows that

ε̃h′(−1)≤ 1
2

(4.99)

ε̃h′(1)≥−1
2

(4.100)

have to be fulfilled. For h′(±1) = 0, this is always fulfilled, but for non-vanishing
derivatives, one obtains a restriction on ε̃ that reads

− 1
2h′(1)

≤ ε̃ ≤ 1
2h′(−1)

. (4.101)

For h0, since h′0(ϕ) = 1/2 this exactly yields the found restriction |ε̃| ≤ 1. This
result shows that a vanishing derivative of the interpolation function at the bulk
values h′(±1) = 0 is a necessary condition for the existence of travelling wave
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solutions for arbitrary driving forces. As this is ensured by all interpolation func-
tions studied herein that are different from h0, this is a possible explanation why
they performed much superior.

Note that this condition is not restricted to interpolation functions: Any additional
term that does not vanish as the bulk is approached may lead to non-existence of
travelling wave solutions. In designing new models with an increasing number
of terms, it is important to be aware of this result.

4.6.2 Separation of Numerical and Analytical Errors

In the comparative study, numerical and analytical solutions were found to show
a good agreement. One might think that the current analytical treatment might
not reveal much interesting news, since the obtained relations could be alterna-
tively obtained in a purely numerical study. While this is true to some extent,
there are usually certain pitfalls that one has to face. One of these is related to
the inaccuracies of numerical schemes. Such a phenomenon is observed for in-
stance in the case when h0 was used near ε̃ = 1 and at a lower resolution ∆x:
The dimensionless interface velocity seemed to deviate less significantly from its
expected value of 1, i.e. numerical and analytical errors canceled to some extent
which would have led to a completely wrong conclusion.

Therefore, in order to study the same phenomenon numerically, it would be nec-
essary to perform extensive grid convergence studies, largely increasing the effort
to obtain useful information. More drastically, even if one performs such a costly
procedure, it may occur that convergence towards the exact solution is not at all
guaranteed [53, Ch. 4].

Accordingly, the current analytical results can serve as a benchmark to assess the
accuracy of a given numerical scheme.
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4.6.3 Remaining Challenges

In the current chapter it has been shown that higher order asymptotics are capa-
ble of extracting a considerable amount of information about the nonlinear model
behavior, that is usually completely inaccessible. However, there are certain sim-
plifications employed that helped keeping the effort to an absolute minimum. To
mention the first one, a travelling wave solution was assumed, which completely
removed the time derivative from the problem. This is possible, since a planar in-
terface was studied and all quantities remained time-invariant such as the driving
force. In a realistic scenario, the interface boundary is curved and may be subject
to driving forces that vary with time as a complex microstructure is swept by the
boundary. These effects can all be considered, as shown in the previous chapter,
however, automating the procedure with a computer algebra system might not be
as straightforward, as performed herein.

Nevertheless, many available asymptotic treatments such as the one presented by
Choudhury and Nestler [20], are also restricted to a flat interface and do only
consider thin-interface corrections. However, in contrast to the current chapter, a
system of two coupled equations has been studied. In order to derive higher order
corrections for such problems one has to include additional boundary conditions
at the interfacial endpoints in the current framework in order to match with the
outer unknowns. For the phasefield, the outer value is simply constant, but for
any other field such as the composition, this is not the case, complicating the
procedure accordingly.

Another point worth noting is that for certain models such as the surface diffusion
model studied by the current author in Hoffrogge et al. [24] or in the previous
chapter, the second order chemical potential blows up as the interfacial endpoints
are approached. It is still necessary to regularize this phenomenon in order to
obtain tractable limits in a possibly more involved matching procedure. Once
this problem has been solved, higher order asymptotics can also be employed for
such more complex models revealing nonlinear intricacies.
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4.7 Conclusion and Outlook

In the current chapter, analytical solutions are presented for all common inter-
polation functions used in phase-field models of obstacle type for a flat-interface
subject to a constant driving force. The influence of the interpolation function on
the simulation results could be successfully quantified by means of the derived
formulas. While exact solutions are derived only for two special interpolation
functions, the general nonlinear equations are solved employing Maclaurin ex-
pansions in the interface width. The solutions are presented up to eleventh order
using a computer algebra system, largely extending the common treatments that
consider first-order corrections at maximum. It is shown that the interface veloc-
ity is varying with the interface thickness parameter, which is usually neglected
in most of the available derivations. It could be proven that for a planar interface,
the first-order velocity vanishes if the interpolation function satisfies a certain
symmetry, which applies to all common interpolation functions.

A numerical comparison is employed for both a small driving force and a large
driving force regime, revealing mostly excellent agreements between the analyt-
ics and simulations. Padé approximants are established as a suitable tool to in-
corporate Maclaurin coefficients, improving the convergence in contrast to Taylor
partial sums. By this method, the analytical results match well also in the regime
far away from the sharp interface limit with only a few exceptions.

In a future work, the current framework might be applied to modern model ex-
tensions, such as the mechanical jump conditions introduced in [22], highlighting
their computational advantage, although the sharp-interface limit is likely identi-
cal with more traditional formulations.
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5 Nickel Coarsening in SOFC
Anodes

Since all models are wrong the scientist
must be alert to what is importantly
wrong. It is inappropriate to be
concerned about mice when there are
tigers abroad.

Box [107]

The current chapter aims to provide insights into the coarsening mechanism re-
sponsible for the degradation of SOFC anodes by means of multi-phase field
simulations of both artificially created and experimentally reconstructed anode
microstructures. For this, the extended multiphase-field model presented in the
previous chapter is utilized. Numerous simulations of nickel coarsening in Ni-
YSZ SOFC anodes are performed and characteristic microstructural properties
are extracted from the simulation results. After the working principle of SOFCs is
briefly outlined, the analysis tools are described and validated which are used for
the extraction of these microstructural properties. Subsequently, the multiphase-
field simulation studies are presented. The chapter concludes with a summary of
the findings.
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Figure 5.1: Sketch of the electrochemical processes occurring in a solid-oxide fuel cell (SOFC).

5.1 Working Principle of SOFCs

An SOF cell is schematically depicted in Fig. 5.1. In the cathode (bottom), oxy-
gen ions are formed by the reaction of electrons with oxygen:

O2 +4e− −−→ 2O2− . (5.1)

These oxygen ions are diffusing through the solid electrolyte and react with the
fuel gas (here hydrogen) at the anode side by means of the reaction

H2 +O2− −−→ H2O+2e− (5.2)

to generate electrons and exhaust gas (here gaseous H2O). The electrons which
move back to the cathode side are used to power a load.

A microstructural view of the anode functional layer, where the fuel gas reaction
takes place, is shown in Fig. 5.2. The anode layer comprises of a porous metal-
ceramic compound usually made of yttria-stabilized zirconia (YSZ) as the ion
conductor, nickel (Ni) as the electron conductor and pores which are used for gas
transport.
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Figure 5.2: Schematic microstructural view on the transport processes occurring in the porous anode
functional layer of an SOFC. Oxygen ions diffuse through the ion conducting phase (here
YSZ), electrons are transported through the metallic phase (here nickel). Hydrogen and
steam (not shown) are transported through the pores. The fuel-gas reaction takes place at
the triple-phase boundary (E-symbol).

Since the fuel gas reaction in equation (5.2) involves a total of four reactants and
products, the following transport processes are identified for a working SOFC
anode:

1. Transport of hydrogen through the pores towards the reaction site

2. Transport of oxygen ions from the electrolyte towards the reaction site

3. Transport of steam through the pores away from the reaction site towards
the outlet

4. Transport of electrons away from the reaction site to the load

Based on these transport processes, it is clear that the reaction can only take place
at the triple-phase boundary where all of the three phases are in contact. As a high
number of reaction sites is required for an efficient operation of the SOF cell, and
since the triple-phase boundary corresponds to triple lines in three dimensions,
the corresponding quantity is referred to as the triple-phase boundary length. A
detailed definition of triple-phase boundary length is provided in section 5.2.2.
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In addition, an efficient transport of each of the reactants and reaction products
listed above is needed to achieve a good performance of the SOF cell. To quantify
the transport efficiency in each of the phases, a so-called tortuosity is utilized in
the current chapter. Details regarding the calculation of tortuosities are given in
section 5.2.1.

5.2 Analysis Tools

5.2.1 Tortuosity Calculation

5.2.1.1 Preliminaries

Tortuosity is a quantity that can be used to assess the efficiency of transport
through a certain phase or material Joos et al. [108], Joos [109]. Its name refers
to the tortuous nature of transport pathways that occur in percolated microstruc-
tures. The tortuosity is calculated by measuring the electrical resistance of a cer-
tain phase in the microstructure when a voltage is applied, assuming a constant
electrical conductivity within the phase.

Underlying Assumptions To derive the equation needed to solve, one be-
gins with Maxwell’s equations for electrostatics [37, Eq. (4.5),(4.6),(4.27)]

∇ ·E =
q
ε0

(5.3)

E =−∇U (5.4)

where E is the electric field in V/m, U is the electric potential in V, q denotes
the charge density in C/m3 and ε0 in F/m is the permittivity of free space. This
equation follows from electrodynamics assuming a steady state of the electric
and magnetic field (∂E/∂ t = 0 and ∂B/∂ t = 0, B denotes magnetic field).
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Let Ωα denote the domain occupied by phase α , then Ohm’s law [110, p. 296]
is assumed therein (i.e. ∀x ∈ Ωα ) as constitutive relation for the electric flux
density:

jel = σelE =−σel∇U . (5.5)

Here, σel is the electric conductivity in S/m and the last equality follows from
Eq. (5.4). Assuming a constant value of σel, one obtains from the balance of
electric charges (Eq. (2.33)) and a steady state assumption for the charge density
(∂q/∂ t = 0) that

∇2U = 0 ∀x ∈Ωα (5.6)

has to hold. Therefore, Laplace equation is obtained in the steady state for the
electrostatic potential U .

Note that, instead of starting with electrostatics, the same field equation as for
U can be obtained for other transport phenomena. E.g. this Laplace equation
is obtained for the velocity potential in irrotational flow, or for the concentra-
tion field assuming a constant diffusivity (cf. Eq. (2.28)). In these cases, the
electric current density is replaced by momentum ρv or the species flux density
jm

i , respectively. The same applies to heat conduction (Fourier’s law) for a con-
stant thermal conductivity assuming a steady-state solution of the temperature
field (then temperature T replaces U). Thus, the tortuosity is a general quantity
characterizing transport phenomena not restricted to electric currents.

Boundary Conditions To solve the Laplace equation uniquely, boundary
conditions are needed. In order to enforce a nonzero current through the struc-
ture, a voltage difference ∆U = 1V is applied between two opposite sides of
the microstructure. This corresponds to boundary conditions U(x ∈ dΩ−) = 0
and U(x ∈ dΩ+) = 1V, where dΩ± are the domain boundaries perpendicular
to the d-coordinate. When the microstructure has periodic boundaries, all other
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flat sides of the simulation domain are treated periodically, otherwise, a vanish-
ing electric flux density is applied which corresponds to zero-Neumann boundary
conditions

∇U ·n= 0 ∀x ∈ dΩ\ (dΩ−∪dΩ+) . (5.7)

In addition, when a specific phase is considered, the interfaces between distinct
phases are treated as isolating boundaries, i.e.

∇U ·nα = 0 ∀x ∈ (dΩα \ (dΩ−∪dΩ+) (5.8)

where nα is the normal on the surface of phase α .

Definition Once the solution to the Laplace equation (Eq. (5.6)) under the
above boundary condition is known, the total electric current that enters the do-
main can be calculated as

Iα,d ≡−
∫

dΩ+

jel ·ed dA =−
∫

dΩ−
jel ·ed dA (5.9)

where the equality follows from the Laplace equation in combination with the
boundary condition and reflects that the currents entering and leaving the domain
must equal each other. Here, the unit vector ed is the Cartesian base vector
pointing towards increasing d.

Based on the calculated current, the tortuosity in direction d is then defined by
the relation

τα,d ≡
Iideal
α,d

Iα,d
(5.10)
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where Iideal
α,d is a current related to an ideally conducting structure. The ideally

conducting structure corresponds to the case when the electric current is unidi-
rectional due to channels of constant thickness aligned along the d-direction. In
this case U is a linear function

U(x) =U−+
(U+−U−)d

Ld
(5.11)

and one gets for the ideal current the relation

Iideal
α,d =

σel∆UXαV
L2

d
(5.12)

where Xα is the volume fraction of phase α . Ld is the length of the domain in the
d-direction and V its volume.

In the current work, tortuosities are measured in all three sample directions x, y
and z. Accordingly, the mean tortuosity

τα ≡
1
3
(τα,x +τα,y +τα,z) (5.13)

is used in conjunction with the standard deviation

∆τα ≡
√

1
3 ∑

d∈{x,y,z}

(
τα,d−τα

)2
. (5.14)

Subsequently, τα ±∆τα is shown in the form of error bars in several plots.

5.2.1.2 Validation

The tortuosity tool is implemented in the C programming language as a part of the
PACE3D in-house software. It uses finite differences on an equidistant grid and
solves the Laplace equation with a matrix-free conjugate-gradient (CG) method.
In order to validate the solver, it is compared with the open-source finite-element
software DEALII [111].
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Figure 5.3: Geometries used for the validation of the tortuosity tool. Dirichlet boundary conditions
are applied on the top and bottom plane (U = 1V∀x ∈ dΩ+ and U = 0V∀x ∈ dΩ−),
whereas the other boundaries are treated as isolating.

Considered geometries The comparison is performed both for a two-
dimensional and a three-dimensional setup (see Fig. 5.3). For the 2D setup, a
plate with a hole is used, as sketched in Fig. 5.3a. Here, the ratio of the hole
radius to the width of the plate 2R/W is varied while the ratio of height to width
is kept at a constant H/W = 3/2. The 3D setup comprises of a cylindrical shape
with a bottleneck (Fig. 5.3b). Here, the ratio of the neck radius to the outer ra-
dius R1/R2 is varied while the ratio of the outer radius to the height of the object
is kept at R2/H = 1/2. The height of upper and lower segment, as well as the
height of the neck are chosen identically H/3.

High resolution results Results for the 2D-setup obtained by the PACE3D
solver at a high resolution are shown in Fig. 5.4 for various hole radii along with
the obtained tortuosities. It can be seen that the tortuosities increase from the
ideal case of a plate without a hole (R = 0) with increasing hole radius. Due to
the Neumann boundary conditions, the corresponding electric streamlines (lines
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Figure 5.4: Solutions to the Laplace equation obtained by means of the in-house tortuosity solver for
a plate with a hole of varying radius. The streamlines (lines parallel to jel) are colored
according to the magnitude of the current density. The electrostatic potential is addition-
ally shown in the background in grayscale. The corresponding ratios of the radius of
the hole to the width of the plate are shown above, whereas the obtained tortuosities are
shown below.

parallel to jel) are forced towards the side of the plate and thus exhibit an elon-
gated pathlength as compared to the ideal case. Within the narrow channel at the
side, the magnitude of the electric flux density assumes its maximum which can
be seen from the coloring scheme. This effect is enhanced when the radius of the
inner circle approaches half the width of the plate.

Results corresponding to the 3D-setup are shown in Fig. 5.5 for varying neck
radii. Here, the ideal geometry corresponds to a pure cylinder, where again the
value of τx = 1 is reached. Geometries with decreasing neck diameters lead
to increasing tortuosities, while the streamlines are forced towards the narrow
channel in the center. Compared to the two-dimensional setup, the tortuosities are
seemingly more sensitive to the variation of the neck diameter, as their magnitude
is generally higher when compared with the 2D-setup.

To see whether all these results can be reproduced with the finite-element solver,
the tortuosities of both solvers are plotted as a function of the hole ratio 2R/W
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Figure 5.5: Solutions to the Laplace equation obtained by means of the in-house tortuosity solver for
a cylinder with a neck. The streamlines (lines parallel to jel) are colored according to the
magnitude of the current density. The electrostatic potential is additionally shown below.
The corresponding ratios of the radius of the neck to the outer radius are shown at the
top, whereas the obtained tortuosities are shown on the bottom.

and the neck ratio R1/R2 for the 2D and 3D-solver in Fig. 5.6a and Fig. 5.6b, re-
spectively. It can be seen, that the match between the developed PACE3D-solver
and the FEM solver is remarkably good for a wide range of possible geometries,
both in 2D and 3D.

Grid Convergence The accuracy of the obtained tortuosity values depends
on the resolution of the underlying grid. Fig. 5.7 shows the tortuosities obtained
for three different geometries for each of the two used setups as the resolution
of the grid is varied. In general, it can be seen that the DEALII-solver converges
rapidly to a unique value. Therefore, the finest result (number of refinements
equal 3) is used as a reference for the in-house solver and is additionally shown as
a gray horizontal line. The corresponding relative errors in percent are tabulated
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Figure 5.6: Comparison between tortuosities obtained with the developed PACE3D tool and the FEM
software DEALII for two-dimensional (a) and three-dimensional (b) geometries.

Table 5.1: Relative errors erel =
(
τx−τfine

x
)
/τfine

x in percent for various refinement steps of the 2D
plate at three selected hole radii. τfine

x refers to the tortuosity value obtained by the DEALII
solver at the finest resolution and Nref denotes the number of refinements.

Nref

erel 2R/W PACE3D DEALII

0.5 0.75 0.9 0.5 0.75 0.9

0 8.2 −0.88 ∞ −0.34 −1.3 −4.4
1 4.1 1.3 −9.8 −0.090 −0.33 −1.2
2 1.5 8.2 20 −0.019 −0.069 −0.24
3 −0.31 1.0 2.6 0 (ref) 0 (ref) 0 (ref)
4 −0.18 1.1 4.2
5 0.35 0.58 0.94
6 0.16 0.43 1.4
7 0.060 0.089 0.46

in Table 5.1 and Table 5.2. The tortuosities obtained from the PACE3D tool with
equidistant grids converge to the same value, with an accuracy of less then a
percent at a high resolution, but require more refinements to achieve the same
level of accuracy compared with the FEM solver.
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Figure 5.7: Tortuosities at different grid refinement levels for both the PACE3D tool and the FEM
software DEALII for two-dimensional (a) and three-dimensional (b) geometries.

For the plate with a hole, cf. Fig. 5.7a and Table 5.1, the convergence of the values
obtained with the PACE3D tool is enhanced when the hole has a relatively small
radius. A similar observation can be made for the cylindrical setup (Fig. 5.7b
and Table 5.2), where high tortuosities (implying a thin neck) are less accurately
recovered at coarse grids.

Table 5.2: Relative errors erel =
(
τx−τfine

x
)
/τfine

x in percent for various refinement steps of the 3D
cylinder at three selected neck radii. τfine

x refers to the tortuosity value obtained by the
DEALII solver at the finest resolution and Nref denotes the number of refinements.

Nref

erel R1/R2 PACE3D DEALII

0.15 0.3 0.6 0.15 0.3 0.6

0 48 −0.041 5.2 1.3 0.10 −0.074
1 −1.8 5.0 −0.75 0.52 0.17 0.063
2 4.2 −1.8 −0.030 0.16 0.070 0.034
3 −2.0 0.063 0.14 0 (ref) 0 (ref) 0 (ref)
4 −0.080 0.098 0.081
5 −0.010 0.033 −0.010
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Figure 5.8: Three consecutively refined grids in a top view at x = H/2 of the cylinder with neck for
R1 = R2/2. The top row shows the equidistant grid used in the in-house tool, whereas the
bottom row shows the finite elements used in the FEM solver. Circles are additionally
shown to illustrate the exact shape of the cylindrical segments.

The reason can be identified from the different shapes of the grids for each type
of solver, shown in Fig. 5.8. The DEALII solver uses an irregular mesh which
is capable of approximating spherical shapes more accurately at a comparatively
small number of elements. In contrast, for the equidistant grid employed in the
PACE3D tool, it is clear that the neck is represented only by a very low number
of cells if its radius is small, which explains the behavior observed in Fig. 5.7.

While the convergence is superior for the FEM solver, the PACE3D tool can
still yield accurate results. Additionally, it provides some advantages over the
FEM solver. In this regard, the practical experiments show that the in-house
solver is computationally advantageous since the usage of the equidistant grid
and the finite-difference implementation requires less sophisticated algorithms
compared to the finite-element method. In addition, the complex meshes used by
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the DEALII-software are not as easily constructed for complex microstructures.
In contrast, the PACE3D tool is tailored for voxel data which is widely avail-
able both from microscopy or the multiphase-field method. For this reason, the
PACE3D tool is used for all the following studies.

5.2.2 Triplephase-Boundary Detection

5.2.2.1 Preliminaries

Voxel datasets are commonly available from microscopy or the multiphase-field
method such that each voxel is mapped to a certain phase or material. One
can identify voxels based on their neighboring cells when at least three dif-
ferent phases are present in the neighborhood. The obtained subset of vox-
els still represents a volumetric region belonging to the vicinity of the triple-
phase boundary. The current subsection describes the tool developed within the
PACE3D framework to convert this volumetric information into a network of
curved line segments which enables an accurate determination of triple-phase
boundary lengths1.
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Classification Thinning

Figure 5.9: Skeletonization procedure for the detection of the triplephase-boundary for a three-phase
system (each phase different color, one phase is shown transparent). Triple-junction
voxels are first extracted to channels of a non-vanishing thickness (left to center) and
then thinned (center to right).
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5.2.2.2 Developed Algorithm

Listing 5.1: Algorithm for the detection of the triple-phase boundary network.

foreach v o x e l in d a t a s e t do
number = the number of distinct phases within the 3×3×3 neighborhood
r e s u l t [ v o x e l ] = 1 i f number >= 3 e l s e 0

end
s k e l e t = Skeletonization according to [113] on r e s u l t
Create g raph with node positions corresponding to the centers all active voxels in

s k e l e t .
Establish edges between the nodes in graph by subsequently:

1 . Connecting nodes via voxel faces.
2 . Connecting nodes via voxel edges if no connection via at most two edges exists.
3 . Connecting nodes via voxel vertices if no connection via three edges exists.

Perform a smoothing of g raph according to Eq. (5.15) for several iterations.
Remove spurious short loops and end segments in g raph

The developed algorithm for the triple-phase boundary detection is listed in List-
ing 5.1. The first step is the classification of voxels through a neighborhood test.
An example dataset comprising of three phases is shown in Fig. 5.9.

After the classification step, interconnected channels of a thickness of several
voxels remain. In order to avoid spurious contributions from the nonzero thick-
ness, it is necessary to reduce the thickness of these channels. In the field of
image processing, such a procedure is known as skeletonization and efficient al-
gorithms exist. For the current work, the algorithm according to Palàgyi and
Kuba [113] is selected and implemented within the in-house software toolchain.
This algorithm ensures that the topology (i.e. interconnectivity of the line seg-
ments) remains conserved. For the example dataset, the corresponding skeleton
is shown on the right-hand side of Fig. 5.9.

1 Alternative methods that directly work on the voxel data exist, see for instance [112]. The current
algorithm, which is suitable for an arbitrary number of phases, might be extended with a modified
version of such methods in the future as well.
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Graph Creation Smoothing

Figure 5.10: Conversion of the thinned voxel skeleton to curved line segments within the three-phase
boundary detection algorithm. Firstly, the voxel centers are connected by straigh lines
(left to center) and then smoothed by the prescription given in Eq. (5.15).

In the next step, an undirected graph is constructed by connecting the voxel cen-
ters of neighboring voxels with straight lines. The construction proceeds as fol-
lows: First, lines are drawn between voxels that are connected via faces. After-
wards, connections via edges are established if the two voxels are not yet con-
nected via two faces. Thirdly, vertex-connected cells are directly connected if
a connection is not yet existing via at max three straight segments. Addition-
ally, artifacts such as short line segments and short loops can be detected and are
accordingly removed.

The resulting line network includes individual segments that can be distinguished
and separately colored. For the example dataset, such a resulting line network is
depicted in the center of Fig. 5.10.

While this is already close to the initial goal, a zoomed inset reveals a spurious
roughness of the graph which originates from the finite grid spacing. It is clear
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Figure 5.11: Overlay of the initial classified channels with the detected and smoothed TPB (left).
Input raw data with one phase removed and the corresponding smoothed TPB network
(right).

that this overestimates the length of the graph and the length becomes sensitive
to the resolution (i.e. finer grids may lead to a pronounced roughness and thus to
a significant overestimation of the line length).

Therefore, an additional smoothing step is performed, where the vertices of the
lines are moved towards their center of curvature. The direction (unit vector
n, pointing towards the center of curvature) and magnitude of curvature κ are
approximated from three consecutive line vertices. The smoothing operation at
each iteration can be expressed as

xi+1 = xi +aκ2n (5.15)

where xi denotes the position of a curve vertex at the i’th smoothing step and the
factor κ2 is chosen such that highly curved regions are more strongly smoothed
compared to nearly straight segments. a is a user-defined smoothing factor which
can be used to control the amount of smoothing together with the number of
iterations. Vertices belonging to segment joints are kept unchanged during the
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smoothing step. For the example dataset, the resulting smoothed graph is shown
on the right-hand side of Fig. 5.10.

The final line network for the example dataset is shown in conjunction with the
input voxel data in Fig. 5.11. It can be seen that the resulting network approx-
imates the three-phase boundary quite well since it remains within the initially
classified channels (left-hand side of this figure).

5.2.3 Particle Size Distributions

5.2.3.1 Preliminaries

For the quantification of nickel coarsening, a particle size distribution is to be de-
termined from the microstructure. However, a typical structure does not comprise
solely of disconnected individual particles but rather an interconnected network
of particles of varying sizes. Thus, the determination of a classical particle size
distribution is not easily possible. Münch and Holzer [114] presented an algo-
rithm which delivers a well-defined particle size distribution even for network-
like or porous structures. This algorithm is based on Euclidean distance trans-
forms, similar as the method proposed by Ender [115, p.98]. In contrast to the
latter alternate, it avoids a user-defined threshold radius, and is thus more easily
reproducible and directly provides a continuously varying particle size distri-
bution. Due to these advantages, this algorithm is selected for implementation
within the PACE3D toolchain. The algorithm is briefly described in the follow-
ing.

5.2.3.2 Definition

The working principle of the algorithm to determine the continuous particle-size
distribution (PSD) is schematically shown in Fig. 5.12. The domain correspond-
ing to a certain phase is filled with overlapping spheres of a particular radius r. It
is observed that only a subvolume V fill

α (r) corresponding to the union of all such
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r
d

Figure 5.12: Schematic highlighting the determination of the continuous particle-size distribution by
means of overlapping spheres of a certain radius r or diameter d. Each phase is shown
with a different color. The phase under consideration corresponds to a shade of gray.

spheres can be filled. This procedure is repeated by increasing the radius until
eventually no sphere can be placed within the domain without touching the phase
boundary. This radius may be denoted as rmax. The continuous PSD is defined
as the ratio of the filled volume divided by the total volume of the phase:

PSDα(r)≡
V fill

α (r)
Vα

(5.16)

For a vanishing radius, all fine features can be filled and hence PSDα(0) = 1. The
maximal feature size is reached when PSDα(rmax) = 0. It is usually suitable to
define a mean particle radius r50 or diameter d50 by demanding that PSDα(r50) =

1/2 and d50 = 2r50.

5.2.3.3 Validation

The continuous PSD algorithm has been implemented in the PACE3D toolchain
making use of the Euclidean distance transform algorithm according to Saito
and Toriwaki [116]. The Euclidean distance transform implementation has been
extended for periodic boundary conditions and is validated by comparing it with
the Matlab® function bwdist.
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r/rmax = 0.2 0.4 0.6 0.8

2r/H = 0.2 0.4 0.6 0.8

unfilled filled

Figure 5.13: Filled volumes detected during the PSD calculation for a 2D and 3D geometry at varying
radii. The top row shows the two-dimensional star-like shape from [114]. The bottom
row shows axial cross sections of the cylinder with neck at R1/R2 = 0.6.

In addition to the underlying distance transforms, the validation of the PSD calcu-
lation requires well-defined geometries as no reference implementation is avail-
able. In the following, two example geometries are considered: A star-like shape
which was presented in graphical form in the original paper of Münch and Holzer
[114] in conjunction with a plot of the corresponding continuous PSD. Secondly,
simple geometrical arguments are given to derive an analytical equation for the
continuous PSD of a cylinder with neck (already presented in subsection 5.2.1).
The derivation is outlined in Appendix A.2.

Fig. 5.13 shows the filled volumes obtained by the implemented tool for both the
2D and 3D geometries as the radius is varied. It can be seen that the numerical
calculations can very well reproduce the expected circular or spherical segments
and a decrease of the filled volume with an increase of the radius.
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(a) 2D-setup – star-like shape.
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(b) 3D-setup – cylinder with neck.

Figure 5.14: Plots of the continuous particle-size distribution for well-defined 2D and 3D geometries.
PSDs calculated in [114] and by the PACE3D implementation are shown for the star-
like shape in (a). Numerical calculations of PSDs for cylinder with necks of varying
radii are shown in (b) in conjunction with the analytic equations derived (Eqs. (A.25)-
(A.33)).

Fig. 5.14 compares the corresponding obtained PSD functions of the PACE3D
tool and the literature as well as the analytical derivations according to Eqs. (A.25)-
(A.33) for a number of neck radii. It can be seen that the match is overall very
good. The remaining differences in Fig. 5.14b are due to discretization errors. In
summary, very good agreement is found in both example cases and thus the PSD
tool is successfully validated.

5.3 Simulation Studies

In the following, simulation studies employing the developed multiphase-field
model (Section 3.1) are presented. This section contains two parts: First, a large
number of simulations are performed using Voronoi-type artificially generated
AFL microstructures as initial condition (Section 5.3.2). Here, the influence of
a variation in the YSZ microstructure and a modification of nickel content is
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analyzed. This study includes statistical analysis regarding correlations between
the input parameters and microstructural properties.

An additional study is conducted using an experimental FIB-SEM reconstructed
microstructure as reference for analyzing the influence of an increase in nickel
content (Section 5.3.3). Differences and similarities between the results from the
Voronoi structures and the experimentally-based structures are discussed.

Furthermore, the relation of the simulation results to the anode performance and
degradation is established based on an existing transmission-line model in sec-
tion 5.4.

5.3.1 Model Setup

For the modeling of nickel coarsening in the AFL, the model as described in
Section 3.1 is employed. Three distinct order parameters (N = 3) are utilized
ϕ = {φNi,φYSZ,φPore} to distinguish between the metallic nickel phase, the zir-
conia structure and the voids. Two composition variables cNi and cYSZ implying
K = 3 are introduced to allow the species transport of each substance. Nickel re-
distribution is assumed to be governed by diffusion along its surface only, hence
its evolution can be written as

∂cNi(x, t)
∂ t

=∇ ·
(

32MNiPore
Ni

π2ε
φNiφPore∇µNi

)
(5.17)

and the YSZ is assumed invariant

∂cYSZ(x, t)
∂ t

= 0 . (5.18)

which is motivated from experiments [117, 118].

According to equation (5.17), the nickel flux density is given by

jNi =−
32MNiPore

Ni
π2ε

φNiφPore∇µNi (5.19)
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which corresponds to the choice of

gNiPore(ϕ) =
32
π2 φNiφPore (5.20)

in Eq. (3.10) with prefactor M̄ = MNiPore
Ni . Taking the results from Table 3.1, one

finds that for this specific choice, Ig = 1 is obtained. Therefore, the rate constant
for surface diffusion of the nickel surface B is given according to Eq. 3.113 as

B =
MNiPore

Ni γNiPore(
cNi

Ni,eq− cPore
Ni,eq

)2 , (5.21)

where cNi
Ni,eq and cPore

Ni,eq denote the model-specific Ni-equilibrium compositions of
the nickel and the pore phase, respectively.

In order to capture the correct real-life microstructural kinetics, it is crucial to
equate this rate constant to the one measured in experiments. In this regard,
Eq. (2.85) is recalled here

B =
VmDsδsγ

RT
(5.22)

including the physical interface thickness δs ≡Vmρs.

Therefore, the calibration of the model yields the chemical mobility prefactor

MNiPore
Ni =

VmDsδs

(
cNi

Ni,eq− cPore
Ni,eq

)2

RT
(5.23)

in terms of measurable quantities. This is the relation provided in Hoffrogge et al.
[119, Eq. (13)]. Please note, that γ = γNiPore is needed for this equation to hold.
Therefore, it is important to set the model parameter γNiPore equal to that of the
surface energy of nickel.
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The free-energy densities for each phase α are assumed as simple parabolas of
the form:

fα(cα
Ni,c

α
YSZ) = ANi

(
cα

Ni− cα
Ni,eq

)2
+AYSZ

(
cα

YSZ− cα
YSZ,eq

)2
. (5.24)

Here, the equilibrium compositions cα
i,eq are so chosen such that the composition

is relatively high when α corresponds to the component i and low when the op-
posite is true. The following values are chosen: cα

i̸=α = 0.1 and cα
i=α = 0.9 where

i ∈ {Ni,YSZ} and α ∈ {Ni,YSZ,Pore}. By this one achieves a clear separation
of the phases and an overall sufficient volume conservation of each phase given
sufficiently large prefactors Ai.

All simulations are performed at a temperature of T = 750 ◦C and the molar vol-
ume of nickel is Vm = 6.59×10−6 m3/mol. The surface diffusivity is taken from
recent measurements obtained by means of grain-boundary grooving experiments
[120, 121] at the same temperature. Since the surface diffusivity varied strongly
depending on the orientation of the surface, it is assumed that the isotropic value
Ds inherent to the current model corresponds to the surface orientation with the
lowest diffusivity. This is considered reasonable because first of all, the slow
{100}-surfaces occupy a significant portion of the surface in the equilibrium
crystal shape (also known as Wulff shape) [122, 123]. Furthermore, in order
for an overall change in morphology, diffusion needs to occur along all surfaces
concomitantly. Hence it is expected that these surface are the rate-limiting factor.
Therefore, the four values in [120, Figure S3.2] near {100}-surfaces are collected
to obtain an average of Dsδs = 3.75×10−22 m3/s. Accordingly, one obtains

MNiPore
Ni = 1.86×10−31 m6/(Js) . (5.25)

This finalizes the calibration of the surface-diffusion kinetics of the model.
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5.3.2 Voronoi Structures

5.3.2.1 Simulation Setup
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Figure 5.15: Two-dimensional cross-sections of the Voronoi-constructed anode structures. The top
row highlights a variation in nickel content and the bottom row illustrates a variation in
the mean particle size of the YSZ network at constant XNi = 33%.

For a systematic study of a variation in the microstructural properties, artifi-
cial three-dimensional structures have been generated based on the well-known
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Voronoi method2. The spatial discretization corresponds to an equidistant Carte-
sian grid. The height, width and depth of the structure are chosen all equal to
25 µm and the resolution of the structure is equally 400× 400× 400 grid cells.
The structures are periodic with respect to all three spatial directions and peri-
odic boundary conditions are also enforced for all solution variables during the
simulations.

As a first step, a YSZ skeleton is constructed to decompose the whole domain into
YSZ and non-YSZ by a single Voronoi diagram. Here, the ratio of the number
of cells assigned to YSZ is set according to the desired volume fraction of YSZ.
The total number of seeds has been varied by which a modification of the YSZ
particle size can be accomplished. In a next step, Voronoi seeds are placed into
the domain corresponding to non-YSZ and distributed among the nickel and pore
phase according to their predefined volume fractions. Here, the total number of
seeds is manipulated until a desired initial particle size d50 of nickel is reached.
To study the influence of the YSZ particle size independently, this particle size
is held constant among the various structures corresponding to a certain volume
fraction of nickel.

Volume fractions of nickel of XNi = 0.2, XNi = 0.25 and XNi = 0.33 have been
considered and a set of six different YSZ particle sizes are generated for each
case. This results in a total number of eighteen different structures. The volume
fraction of the pore phase is maintained equal to that of the YSZ phase for each
structure. Periodic boundary conditions are chosen to minimize the influence of
the finite size of the simulation domain. Cross-sections of a subset of the initial
structures are shown in Fig. 5.15.

An analysis of the structure yields PSDs of the initial state shown exemplarily in
Fig. 5.16 for XNi = 0.33. It can be seen in Fig. 5.16a that although the nickel par-
ticles are completely randomly placed and their locations are not identical among
the structures with varying YSZ particle sizes, their initial continuous PSDs are

2 Generation of the structures and performing of the corresponding simulations was done in a
Master’s thesis by Fengcheng Cai [124], conceptualized and supervised by the current author.
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Figure 5.16: Initial particle size distributions of Voronoi-based structures at a variation of YSZ par-
ticle diameter and at constant XNi = 33%. The continuous PSD of the nickel phase is
shown in (a) which shows negligible changes. The change in mean YSZ diameter is
reflected in a clear shift of the corresponding PSD (b).

indistinguishable. This shows that the mean particle size of nickel could suc-
cessfully be held constant. In addition, the similarity of the PSDs implies that
differences in the coarsening evolution observed in the simulations can reason-
ably be attributed to the difference in YSZ particle size. In contrast to the PSD
of nickel, the corresponding YSZ particle size distributions shown in Fig. 5.16b
are shifted towards larger particle sizes, as desired.

5.3.2.2 Model Parameters

The utilized model parameters are tabulated in Table 5.3. All model parameters
are expressed in a model unit system. Here ul denotes the unit of length, uE the
unit of energy and ut the time unit. The length unit is set by the resolution of
∆x = 62.5nm. As already mentioned earlier, the mobility parameter MNiPore

Ni is
set in order to capture the measured surface diffusivity. The surface energy of

184



5.3 Simulation Studies

Table 5.3: Parameter set utilized for the MPF simulations based on the artificially constructed
Voronoi AFL-microstructures. The model unit system is given by uE = 8.95× 10−15 J,
ut = 3.58s and ul = 62.5nm.

Parameter Symbol Value (model units) Value (SI units)

Ni-surface chem. mobility MNiPore
Ni 0.1 u6

l /(uE ut) 1.86×10−31 m6

Js
Interfacial energy Ni-Pore γNiPore 1.0 uE/u2

l 2.29 J
m2

Interfacial energy Ni-YSZ γNiYSZ 1.0 uE/u2
l 2.29 J

m2

Interfacial energy Pore-YSZ γPoreYSZ 1.0 uE/u2
l 2.29 J

m2

Interface mobility Ni-Pore mNiPore 0.1 u4
l /(uE ut) 4.76×10−17 m4

Js

Interface mobility Ni-YSZ mNiYSZ 0.1 u4
l /(uE ut) 4.76×10−17 m4

Js

Interface mobility Pore-YSZ mPoreYSZ 0.1 u4
l /(uE ut) 4.76×10−17 m4

Js
Interface width parameter ε 2.0 ul 125 nm
Grid spacing ∆x = ∆y = ∆z 1.0 ul 62.5 nm
Thermodynamic pref. Nickel ANi 5 uE/u3

l 1.83×108 J
m3

Thermodynamic pref. YSZ AYSZ 50 uE/u3
l 1.83×109 J

m3

nickel is set to γNiPore = 2.29J/m2 according to [125, Fig. 1. (a)]. All other in-
terfacial energies are set to the same value, which means that a 90◦ wetting angle
is assumed between the YSZ substrate and the nickel particles. This choice may
underestimate the coarsening kinetics compared to realistic wetting angles in Ni-
YSZ anodes [119]. However, since the evolution of the triple-phase boundary
length was found to be invariant under a change in wetting angle, the following
simulations still provide reasonably valid outcomes. The only quantities which
are significantly changed by a modified wetting angle is the tortuosity τNi and
the active fraction of TPB length. Since the current study focuses on a mutually
comparison of different microstructures, it is thought that although the quanti-
tative outcome might be modified under a slight change in wetting angle, the
relative influence of the microstructure properties remains mostly unchanged.

The mobilities mαβ are not governing significantly the simulation but are chosen
in such a way that attachment kinetics is subdominant and to avoid any pinning
effects. The characteristic length for attachment kinetics can be computed from
Eq. (2.93). For the current parameter set, one obtains B = 0.15625u4

l /ut accord-
ing to Eq. (5.21) and taking mNiPore into account lc = 1.25ul holds. Since this
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value is much smaller than the interface thickness π2ε/4≈ 5ul , the length scale
where attachment kinetics are relevant is not resolved in the current simulation.
Therefore, the simulations are performed near infinite attachment kinetics which
means that surface diffusion is the sole mechanism driving nickel coarsening.
This implies |vn|<< |mαβ κγ| which inserted into Eq. (3.98) results in

|∆ f |<< |γαβ κ| (5.26)

where ∆ f ≡ ψβ −ψα − γαβ κ is the total driving force acting on the interface.

The interpolation function is chosen as hα = φα . Based on the insights from
the previous chapter, it is important to ensure that one operates near the sharp-
interface limit by |ε̃|<< 1. To see that this follows from the relation in Eq. (5.26),
one has to into insert it into the definition for the dimensionless driving force.
This yields

|ε̃|= π2ε|∆ f |
16γ

<<
π2

16
εκ (5.27)

Writing this in terms of the interfacial thickness δ = π2ε/4 of the equilibrium
sinusoidal profile, and estimating a maximal mean curvature by a sphere of radius
R as |κmax|= 2/R, one obtains

|ε̃|<<
δ
2R

. (5.28)

In order to resolve a particle properly, it is demanded that R > δ/2 and hence one
obtains

|ε̃|<< 1 (5.29)

as the sought relation which guarantees small driving forces. This is only an
estimate assuming that the curvature driving force is included through hα . For
a more rigorous derivation, one has to solve the higher order corrections of the
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phase-field profile including curvature terms. In this regard, the interested reader
is referred to Hoffrogge et al. [24, Sec. 2.G].

5.3.2.3 Results and Discussion
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Figure 5.17: Two-dimensional cross-section of the evolution of the microstructure at XNi = 25% and
dYSZ

50 = 0.92µm.

Microstructure Evolution A typical evolution of the anode microstructure
is shown in Fig. 5.17. It can be seen that the nickel particles, which initially are
dominated by planar faces due to the Voronoi tesselation, agglomerate quickly
by forming smooth surfaces. The microstructural evolution seems to occur pre-
dominantly at early times less than 500h of annealing at T = 750 ◦C. During
the simulated annealing, the YSZ structure remains invariant. In some areas the
nickel particles are encapsulated by the YSZ network which poses a constraint on
their further evolution. It is clear that this is rooted in the fact that self-diffusion
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of nickel is limited along the free nickel surface in the model. Thus, the first vi-
sual impressions suggest that the nickel particle evolution is strongly influenced
by the characteristics of the YSZ phase.
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Figure 5.18: Evolution of the mean nickel diameter with time for MPF simulations of artificially
generated SOFC-anode structures at three different nickel content of 20 % (a), 25 % (b)
and 33 % (c). For each nickel content, six different simulations are shown where the
mean YSZ particle diameter increases from to .

Particle-size Evolution To test this hypothesis, quantitative analysis by
means of the continuous PSD of the nickel phase is conducted to derive the
evolution of the mean nickel diameter shown in Fig. 5.18. Here, simulations
corresponding to different volume fractions of nickel are shown in three separate
figures, while the variation of YSZ particle size can be deduced from the line
style of each plot. First of all, it can be seen that as a commonality among all
the different microstructures, the mean nickel diameter increases as a function of
time. Generally, the coarsening rates (i.e. slopes of the dNi

50(t) curves) are very
high in the first few hundred hours. At later times, the rate at which the nickel
diameter increases is significantly lower. This is in-line with the qualitative im-
pression gained from the micrographs shown in Fig. 5.17.
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5.3 Simulation Studies

Additionally, each plot shows a clear correlation between the mean YSZ particle
diameter and the particle size evolution. Here, irrespective of the nickel content,
nickel coarsening is enhanced when the YSZ network comprises of larger par-
ticles. This is true with only one exception for XNi = 0.25 (Fig. 5.18b) where
the order is exchanged between dYSZ

50 = 0.92µm( ) and 0.94µm ( ). It is ex-
pected that this is due to the small difference of the particle size between the two
microstructures and remaining uncertainties or inaccuracies as well as statistical
error due to the finite size of the simulation domains. Relating nickel diameters
from the finest and the coarsest YSZ structure, the relative increase is +36%,
+42% and +47% for increasing nickel content. Therefore, the effect of the YSZ
diameter on the particle diameter is significant and increases slightly with nickel
content. This supports the visually motivated hypothesis of a strong influence of
the YSZ network on the microstructural evolution.
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Figure 5.19: Evolution of the nickel tortuosity with time for MPF simulations of artificially generated SOFC-anode structures at three different
nickel content of 20 % (a), 25 % (b) and 33 % (c). For each nickel content, six different simulations are shown where the mean
YSZ particle diameter increases from to .
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Figure 5.20: Streamlines of the electric current (lines parallel to jel) in the tortuosity calculation
for generated SOFC-anode structures at varying nickel content (increasing from left to
right). All results correspond to the final state (t = 1463h) of simulations shown as

in Fig. 5.19. The streamlines are colored according to the magnitude of the current
density. The corresponding volume fractions of nickel are shown at the top, whereas
the obtained tortuosities are shown on the bottom.

Tortuosity Evolution While the knowledge of particle-size evolution is use-
ful to gain a first understanding of the microstructural dynamics, it is not clear
how it relates to the key microstructural parameters with respect to the perfor-
mance of the anode. One such parameter is the tortuosity of the nickel phase. It
is expected that when the nickel tortuosity is high, since this corresponds to an
inefficient electric conduction, the formation of local electrochemically inactive
regions becomes more likely.

Fig 5.19 shows the evolution of the nickel tortuosity for all generated struc-
tures, grouped with respect to the nickel content. The occasionally shown error
bars represent the standard deviation obtained from the tortuosity values in each
sample direction. First of all, it is directly apparent that the nickel tortuosity is
strongly determined by the nickel content. For a nickel content of 20%, tortuosi-
ties range roughly from a value of τNi = 10 to 40, for XNi = 25% from τNi = 5 to
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5 Nickel Coarsening in SOFC Anodes

10, and for XNi = 33% in the range τNi = 3 to 4. Therefore, a high nickel content
improves the percolation of the nickel phase significantly.

When the nickel content is low (i.e. XNi = 20%, Fig. 5.19a), a significant increase
in tortuosity with increasing mean YSZ diameter is observed. In this case, not
only the magnitude of the tortuosity but also its relative increase with time seem
to be correlated to the fineness of the YSZ structure in such a way that finer YSZ
structures lead to a stabilization of τNi. For higher nickel content (Fig. 5.19b-
Fig. 5.19c), the correlation is significantly weaker and a decrease in YSZ particle
size does not necessarily lead to a lowering in τNi or its relative increase with
time. For the structures with the largest amount of nickel of 33% (Fig. 5.19c),
the tortuosity value is almost invariant in time taking into account the scatter
observed for varying sample directions.

The results suggest that at high nickel content, nickel conduction is sufficiently
warranted such that the constraints imposed by the YSZ structure become unim-
portant for maintaining a good percolation of the nickel phase. In contrast, when
manufacturing constraints do not permit large nickel content for any possible rea-
son, an alternative route to ensure a good percolation of nickel is to maintain a
sufficiently fine YSZ structure.

An additional observation can be made regarding the magnitude of the directional
deviations in τNi: When τNi is high, the errors are usually large as well. To
gain an understanding of all these peculiarities, the corresponding streamlines
for the tortuosity calculation in the z-direction are shown in Fig. 5.20 for the
final state of the simulations shown as in Fig. 5.19 (dYSZ

50 = 1.13, 1.10 and
1.07 for increasing nickel content, respectively). It can be seen that when the
nickel content is low (implying high tortuosity), only a low number of transport
pathways govern the electric current through the structure. This means that the
statistics underlying the value of τNi,d in any given direction d is low, explaining
the large scatter encountered. In contrast, when the tortuosity is low, the number
of transport pathways is tremendous and the simulation domain can be considered
as statistically representative. It is stressed that this is a feature solely caused by
the limited size of the simulation domain and thus a microscale-phenomenon not
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5.3 Simulation Studies

apparent in macroscopic measurements of the same material. This shows that
in a microscale setup it is important to make measurements of the tortuosities
in different directions in order to be capable of assessing the reliability of the
calculated tortuosity values.
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Figure 5.21: Evolution of the relative triple-phase boundary length with time for MPF simulations
of artificially generated SOFC-anode structures at three different nickel content of 20 %
(a), 25 % (b) and 33 % (c). For each nickel content, six different simulations are shown
where the mean YSZ particle diameter increases from to .

Table 5.4: Initial TPB lengths (lTPB(0)) corresponding to the evolution shown in Fig. 5.21. The
coloring and linestyles are such that the mean YSZ particle diameter increases from
to (from left to right).

XNi (1/µm2) (1/µm2) (1/µm2) (1/µm2) (1/µm2) (1/µm2)
0.2 0.76 0.90 0.92 0.91 0.88 0.80
0.25 1.04 1.09 1.07 1.10 1.03 0.93
0.33 1.05 1.12 1.10 1.10 1.03 0.94
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5 Nickel Coarsening in SOFC Anodes

Triple-phase Boundary Length Evolution A reduction in triple-phase
boundary is typically considered as a major cause for degradation as it corre-
sponds to a reduced number of available reaction sites in the anode. For each
nickel content, calculating the lTPB of the initial structures reveals that these are
subject to variations even though the initial nickel particle sizes are held constant.
This complicates the comparison and hence, this quantity has been normalized
with respect to the initial TPB length of each structure. The corresponding rela-
tive TPBL (lTPB(t)/lTPB(0)) is shown in Fig. 5.21 as a function of time for each
of the simulations. For the sake of completeness, the corresponding initial TPB
lengths are tabulated in Table 5.4.

In general it can be observed that the TPBL evolution is qualitatively inversely
related to the temporal behavior of the mean nickel diameter. In particular, a
decrease of TPBL with time is observed that is rapid at early times. Over the
simulation time of about 1500h, lTPB reduces by at least 20% and thus, the re-
duction in TPB length is significant. A clear influence of the YSZ particle size is
obtained independent of the nickel content: All of the curves are ordered such that
finer YSZ particle sizes correspond to a less pronounced relative decay of lTPB.
This means that fine YSZ particles promote a stabilization of the TPB length and
hence a less pronounced degradation of the anode material is expected.

Only a fraction of the total TPB length is relevant for the electrochemical per-
formance of the anode material. When any of the particles (Ni/YSZ/pore) is
disconnected from its network, the fuel gas reaction (Eq. (5.2)) cannot take place
at the corresponding TPB line segments. Therefore, in addition to a reduction in
total TPB, the breakup or coalescence of particles during the coarsening process
may alter the active fraction of the TPB. Fig. 5.22 shows the active fraction of the
TPB (lATPB/lTPB) in percent as a function of time for the simulations at varying
nickel content and YSZ particle size.

First of all, a clear influence of the nickel content is apparent. When the nickel
content is high (XNi = 0.33, Fig. 5.22c), almost the entire TPB is connected
(lATPB/lTPB > 0.9) and fluctuations with time can be considered as almost in-
significant (the active fraction drops only slightly). For a nickel content of 25%,
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Figure 5.22: Evolution of the relative triple-phase boundary length with time for MPF simulations
of artificially generated SOFC-anode structures at three different nickel content of 20 %
(a), 25 % (b) and 33 % (c). For each nickel content, six different simulations are shown
where the mean YSZ particle diameter increases from to .

the active fraction of the TPB shows a clear negative trend with time and features
a clearly discontinuous behavior. For this case, the active fraction of the TPB
varies roughly between 80% and 95%. Here, smaller YSZ particle sizes seem to
have a positive effect on the active fraction of the TPB, although the correspon-
dence is not as clear as for the temporal behavior of the total TPB length. When
the nickel content is low (20%), in certain cases mostly corresponding to large
YSZ particle sizes a fatal drop to a vanishing active TPB may occur. Despite the
low nickel content, when the YSZ particle size is small, such drops in TPB can
be avoided and a high fraction of more than 75% can be sustained.

This means that at high nickel content, the YSZ structure is only relevant for
ensuring a small decay of lTPB with time. However, when the nickel content is
low, significant portions of the TPB may become isolated during operation of the
SOFC and then a fine YSZ network may help to mitigate this phenomenon.
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5 Nickel Coarsening in SOFC Anodes

Correlation Analysis The simulation studies performed so far deliver a
tremendous amount of information. Each simulation corresponds to about sev-
enty temporal snapshots at which data about each quantity (i.e. mean nickel
diameter dNi

50 , nickel tortuosity τNi, lTPB, . . . ) are available. Collecting all sim-
ulation snapshots of the eighteen simulations, an ensemble of more than one
thousand data points are available for all of these quantities. Therefore, the ob-
tained data are suitable for a statistical analysis.

The advantage of a statistical analysis is that noise and discontinuous variation in
certain quantities owing to the finite size of the simulation domain can (at least
to some extent) efficiently be removed. In addition, the vast amount of data can
be compressed to a much lower number of quantities containing the essential
correlations between various parameters.

As input (or prescribed) parameters, the nickel content XNi and YSZ particle
size dYSZ

50 are considered. The question is how strong these are correlated to the
measured microstructural parameters.

To quantify the correlation, Spearman correlation coefficients are determined.
The Spearman correlation coefficient p(a,b) between two quantities a and b and
their corresponding data pairs {(a1,b1), . . . ,(aN ,bN)} is given as

p(a,b)≡ ∑N
i=1(n

a
i − n̄a)(nb

i − n̄b)√
∑N

i=1(n
a
i − n̄a)2

√
∑N

i=1(n
b
i − n̄b)2

(5.30)

n̄a ≡ 1
N

N

∑
i=1

na
i (5.31)

where na
i is the rank corresponding to ai obtained by sorting the entries ai in in-

creasing order (equal values are assigned the average of their integer rank). p is
dimensionless and always ranges between−1 and 1, where p = 1 corresponds to
a perfect positive correlation (if a increases, so does b) and −1 to a perfect neg-
ative correlation (if a increases, b decreases) between the two quantities. When
p = 0, the two quantities are uncorrelated.
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Table 5.5: Spearman correlation coefficients for the MPF simulation studies of nickel coarsening in
artificially generated SOFC anode structures.

b
XNi dNi

50 τNi lTPB lATPB lATPB/lTPB

p(dYSZ
50 ,b)





0.2 0.92 0.83 −0.60 −0.78 −0.86
0.25 0.87 0.50 −0.78 −0.80 −0.72
0.33 0.93 0.33 −0.83 −0.84 −0.70

p(XNi,b) all 0.44 −0.93 0.31 0.57 0.90

In the current analysis, all available data pairs are collected together. Since the
data points are distributed equidistant in time, the obtained correlations can be
considered as an average over the total simulation time of roughly 1500h3 .

The calculated correlation coefficients are tabulated in Table 5.5. It can be seen
that independent of the volume fraction, the mean nickel diameter dNi

50 almost
always increases with dYSZ

50 since the corresponding correlation coefficients are
about 0.9. The correlation analysis also supports the visual impression of a de-
creasing positive correlation between dYSZ

50 and the nickel tortuosity as the nickel
content increases. When the nickel content is low, this correlation is quite strong
(p(dYSZ

50 ,τNi) ≈ 0.83). lTPB is negatively correlated to the mean YSZ diameter
but the correlation is not always very strong. However, the correlation of dYSZ

50
to the active TPB length lATPB is also negative but stronger. This is rooted in a
strong negative correlation to the active fraction of the TPB (lATPB/lTPB).

Furthermore, the correlation analysis shows that the influence of the nickel con-
tent is strongest with respect to the nickel tortuosity. Here, a negative coefficient
of more than 0.9 means that the tortuosity is almost entirely determined by the
nickel content. All other correlations with respect to XNi are much weaker except
the active fraction of TPB length (lATPB/lTPB). The coefficient has the opposite

3 It can be considered corresponding to the case that someone randomly picks a sample with lack-
ing knowledge of the annealing time and sole access to the value of XNi and/or dYSZ

50 .
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sign which seems to suggest that the active ratio of TPB is somehow inversely
related to the nickel tortuosity. This is in fact what one would expect as the
isolation of nickel particles should result in an increase of the nickel tortuosity.

5.3.3 Experimentally-Based Structures

Motivation The hitherto performed simulation studies on artificial generated
Voronoi structures provide first insights on the microstructural evolution in the
anode functional layer. It is clear that real anode microstructures can only roughly
be approximated by such idealized geometries. Therefore, it is interesting to
perform coarsening simulations using experimentally reconstructed structures as
initial condition.

Focused ion beam (FIB) milling [126] is commonly combined with scanning
electron microscopy (SEM) [127, 128] to enable a detailed three-dimensional
reconstruction of multiphase materials on the microscale. Resolutions down to
5 nm can be reached.

FIB-SEM technique is widely applied for the reconstruction of SOFC materials
and has also been conducted in a joint research project for the reconstruction
of the SOFC-anode functional layer [118, 129, 130]. The corresponding recon-
structed volume has been used in a first multiphase-field simulation study [119],
where the simulations were performed with the herein presented model by the
current author. Here, a variation in the wettability of Ni on YSZ was studied to
span a range of possible operation conditions. It was found that the wetting con-
dition influences the coarsening behavior decisively and that an improper wetting
of nickel on YSZ increases both the coarsening rate dNi′

50 (t) and the loss in active
TPB length. Therefore, a high wettability is desired in order to reduce the degra-
dation of the anode functional layer. However, changing the wetting conditions is
not easily possible without changing the composition of the underlying materials.

Alternate routes must be taken in order to mitigate the degradation in the AFL. A
possible solution suggested by the coarsening behavior of the artificial Voronoi
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structures is to increase the nickel content. It is of interest whether this trend
observed for the artificial structures is also present for more realistic structures.
Therefore, based on the original FIB-SEM reconstructed anode structure, struc-
tures are generated with increased amount of nickel. The modification is done
by a small dilation of the nickel particles towards the pore phase, while the YSZ
structure is held invariant. This ensures that an influence of the YSZ structure,
which was found to be quite significant, can be excluded as a possible source to
modify coarsening dynamics.

5.3.3.1 Simulation Setup

Ly
Lx

Lz

2µm

XNi = 29%
Ly

Lx

Lz

2µm

XNi = 33%
YSZNi Pore

Figure 5.23: Initial anode structures with increased nickel content based on the FIB-SEM recon-
structed structure from [119].

The two modified anode structures are shown in Fig. 5.23 and correspond to
XNi = 29% and XNi = 33%, respectively, whereas the original structure contained
only 25% of nickel. Each structure has dimensions of Lx = Ly = 15µm and the
layer height is given by Lz = 9.2µm. At first sight, the structures seem to look
almost identical owing to the way additional nickel is added at its surface.

Visualizing the microstructure by a cross section at z = L/2 (Fig. 5.24), one can
identify the differences between the structures which are reflected in enlarged
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Figure 5.24: Cross-sections of the initial anode microstructures for the multiphase-field simulation
studies at varying nickel content. The original FIB-SEM reconstructed microstructure
is shown left, and structures of increasing nickel content are shown in the center and
right, respectively.

nickel particles. It can be seen that the overall morphology of the nickel par-
ticles is preserved. The fine YSZ network is completely kept unmodified, as
desired. The microstructural features of the structure are clearly different from
the structures generated by means of the Voronoi method. The pore phase is
finely dispersed but additionally comprises of large abnormal crater-like voids
with an almost spherical shape. From the three-dimensional picture (Fig. 5.23)
it is deduced that similar holes are nearly entirely filled with nickel. However,
most nickel particles are distributed between the YSZ and pore phase with no
clear correlation.

The phase-field model is identically chosen as in the case of the Voronoi-based
structures, i.e. two compositions Ni and YSZ are chosen and three order pa-
rameters are used. For the simulation, no-flux boundary conditions are imposed
on each chemical potential (∇µi ·n = 0) at the outer boundaries, leading to a
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Table 5.6: Parameter set utilized for the MPF simulations based on the experimental FIB-SEM mi-
crostructures. The model unit system is given by uE = 1.43× 10−15 J, ut = 9.2× 10−2 s
and ul = 25nm.

Parameter Symbol Value (model units) Value (SI units)

Ni-surface chem. mobility MNiPore
Ni 0.1 u6

l /(uE ut) 1.86×10−31 m6

Js
Interfacial energy Ni-Pore γNiPore 1.0 uE/u2

l 2.29 J
m2

Interfacial energy Ni-YSZ γNiYSZ 1.25 uE/u2
l 2.87 J

m2

Interfacial energy Pore-YSZ γPoreYSZ 1.0 uE/u2
l 2.29 J

m2

Interface mobility Ni-Pore mNiPore 0.1 u4
l /(uE ut) 2.97×10−16 m4

Js

Interface mobility Ni-YSZ mNiYSZ 1.0 u4
l /(uE ut) 2.97×10−15 m4

Js

Interface mobility Pore-YSZ mPoreYSZ 1.0 u4
l /(uE ut) 2.97×10−15 m4

Js
Interface width parameter ε 2.0 ul 50 nm
Grid spacing ∆x = ∆y = ∆z 1.0 ul 25 nm
Thermodynamic pref. Nickel ANi 5 uE/u3

l 4.58×108 J
m3

Thermodynamic pref. YSZ AYSZ 50 uE/u3
l 4.58×109 J

m3

vanishing influx of matter into the system. For the order parameters, zero Neu-
mann boundary conditions are imposed (∇φα ·n= 0). This leads to a 90◦ angle
between the surface of each phase and the boundary.

5.3.3.2 Model Parameters

The model parameters in the model unit system are chosen almost identical to the
case of the Voronoi-based structures (Table 5.3) and are tabulated in Table 5.6.
The major difference lies in the higher resolution in SI units of 25 nm. This
results in modified SI values of the thermodynamic prefactors Ai and the interface
mobilities mαβ which is needed in order to compensate for the higher curvatures
that can be resolved. In addition, the wetting angle of Ni on YSZ is modified
towards a more realistic value by adjusting γNiYSZ and is given by θ = 104◦

(cf. [119]). Very importantly, the interfacial energy of the nickel surface γNiPore

and the surface chemical mobility of nickel remain unchanged. This means that
the kinetics are still governed by the experimentally obtained surface diffusivity
and the surface energy (cf. Section 5.3.1).
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5.3.3.3 Results and Discussion

t = 0 t = 564h t = 1127h
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Figure 5.25: Cross-sections of the anode microstructure at XNi = 29% at initial (left), intermediate
(center) and final state (right).

Microstructure Evolution The evolution of the microstructure is exemplar-
ily shown for the intermediate case of XNi = 29% as a 2D-cross section in
Fig. 5.25. It can be observed that most of the particles reach a virtually in-
variant shape after roughly 500h of annealing time (cf. inset in the figure). Only
relatively large nickel particles show a significant change in morphology at late
times. This is qualitatively consistent with the coarsening dynamics observed in
the artificially constructed Voronoi structures.

Evolution of Ni Particle Size A more quantitative measure for the mi-
crostructural dynamics is given by the nickel particle size evolution shown in
Fig. 5.26 for all three Ni-YSZ structures. It can be seen that the mean nickel
diameter increases in the initial period of time relatively quickly and slows sig-
nificantly down for times more than 500 h. This feature becomes slightly more
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Figure 5.26: Mean nickel diameter evolution for experimentally-based SOFC anodes for a variation
in nickel content.

pronounced as the amount of nickel is increased (for XNi = 0.33, the curve is
almost discontinuous corresponding to a very rapid initial growth and a subdom-
inant late-time coarsening). It is worth noting that even though the initial particle
size increases slightly with nickel content, Ni particles have a smaller average
size at late times for higher nickel content. While the former clearly corresponds
to the way nickel was added at its free surface, the latter shows that at high nickel
content further growth is prohibited. Although the decrease in nickel size with
nickel content is in the order of maximal 10% in the studied range of compo-
sitions, such a negative correlation of the particle size to nickel content was not
observed in the Voronoi-based structures (cf. Table 5.5). A possible explanation
might be given based on the differences in composition: While in the Voronoi-
based study, YSZ and pore phase are assigned equal amounts, contrarily, in the
current study, YSZ content is held constant. This means that as nickel content
is increased in the current treatment, the YSZ content increases relative to the
porosity. Therefore, a low porosity (or high solid content) counteracts the coars-
ening of nickel which is likely due to the encapsulation of particles in the fine
YSZ network.
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Figure 5.27: Tortuosity evolution of the nickel phase for experimentally-based SOFC anodes for a
variation in nickel content.

Tortuosity Evolution The evolution of nickel tortuosity is shown for the
three structures in Fig. 5.27. It can be seen that the nickel tortuosity is strongly
dependent on the nickel content. At low nickel content the nickel tortuosity in-
creases significantly from roughly 20 to 40 in total, i.e. a nearly doubling of the
tortuosity value is observed during the total simulation time of 1127 h. In con-
trast, when the nickel content is higher, the tortuosity of Ni is significantly lower
and shows a qualitative different behavior over time. The tortuosity curve for
the intermediate case XNi = 0.29, which is initially already lower than that of the
experimental structure, shows a drop at early time and increases only slowly and
insignificantly over time such that a tortuosity value near roughly 10 can be main-
tained during the whole simulation. Qualitatively similar is the behavior of the
structure with the highest amount of nickel, i.e. XNi = 0.33. Here, the tortuosity
of nickel can be maintained at a level half as high, i.e. τNi ≈ 5 is achieved.

The clear negative correlation of tortuosity to nickel content is consistent with the
findings obtained by means of the artificially generated Voronoi structures (see
Table 5.5 and Fig. 5.19). Therefore, a quite pervasive observation is that a slight
increase in nickel content can strongly stabilize electron conduction and improve
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the percolation in the nickel phase even over long operating times. Nevertheless,
the tortuosity values obtained are significantly higher than those of the Voronoi
structures at the same nickel content (compare e.g. Fig. 5.19c with XNi = 0.33
in Fig. 5.27). This seems to be related to the microstructural differences between
the idealized Voronoi geometries and the experimental structures.

The Voronoi structures likely comprise of a more uniform distribution of particle
sizes due to the randomized placement of particles compared to the experimentally-
based structure which contains a few large abnormal nickel clusters. It is sought
that these large particles consume significant amounts of nickel without being
necessarily well connected and thus promote the formation of bottlenecks and
isolated nickel regions. Another point worth mentioning is the lower wettability
of nickel on YSZ assumed for the experimentally-based structures, which can
drastically increase tortuosity values as shown in [119]. Nevertheless, comparing
the FIB-SEM reconstructed structure at XNi = 0.25 from this work at θ = 90◦,
the corresponding tortuosities in the Voronoi-based structures (with the same
wetting angle) are still at least a factor of two lower. This seems to suggest that a
uniform distribution of nickel is a desired property to improve the percolation of
the microstructure.
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Figure 5.29: Triple-phase boundary evolution for experimentally-based SOFC anodes for a variation
in nickel content. The evolution of the total TPB length is shown in (a) and the active
fraction evolution is shown in (b).

Triple-phase Boundary Evolution Fig. 5.29 shows the evolution of the
TPB length and its active fraction during the simulation run. A significant reduc-
tion in TPB length is observed in all three cases during the annealing (Fig. 5.29a).
The reduction in lTPB occurs mainly in the first few hundred hours of annealing
time and the final amount of TPB is almost invariant under a modification of Ni
volume fractions.

However, it is stressed that the initial TPB length is not identical among the three
cases but reduces slightly with nickel content. Therefore, an increased nickel
content might lead to an initially reduced TPB length which is however compen-
sated by a lower relative decrease with time. A clearer picture is obtained by
considering the active fraction of the TPB (Fig. 5.29b). While the active percent
can be maintained at an identical and almost constant level of roughly 75% for
the structures with XNi ≥ 0.29, at low nickel content, the active ratio is signif-
icantly reduced. The corresponding large differences in lATPB are also clearly
visible by visualizing the corresponding line network (Fig. 5.28). It can be seen
that the active TPB comprises of a complex interconnected network of line seg-
ments. Moreover, it can be seen that the length is clearly reduced after the total
simulation time and that more line segments remain at high nickel content.
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5 Nickel Coarsening in SOFC Anodes

A point worth mentioning is that the curve in Fig. 5.29b for XNi = 25% drops
below 50% after three hundred hours of coarsening. This drop in active percent
is caused by a sudden breakup of a large nickel particle within the microstruc-
ture [119, Fig. 6] and is therefore caused by an insufficient percolation of the
nickel phase. Although this drop is reversed after 800h of annealing, it shows
the susceptibility of the material at low nickel content to small local perturba-
tions imposed by coarsening. This positive correlation of the active fraction to
nickel content is also backed by the preliminary studies on Voronoi-based mi-
crostructures (Table 5.5). However, active percents close to 90 %, as observed
in the Voronoi-based systems (cf. Fig. 5.22b-Fig. 5.22c), cannot be reached for
the experimentally-based microstructures. This means that the percolation in the
idealized structures is more optimal but likely difficult to reach in any real mi-
crostructure without a significant change in the manufacturing conditions. More-
over, the simulations for the experimental structures show that after a certain
nickel content is exceeded, the active fraction cannot necessarily be further in-
creased. This was not occurring in the Voronoi structures. This shows that the
Voronoi method cannot capture certain peculiarities in the microstructure of a real
anode. In this regard, more advanced techniques are promising (cf. e.g. Westhoff
et al. [131]) that allow a higher degree of freedom for the generation of electrode
microstructures.

5.4 Relation to Performance

The rich variety of obtained microstructural parameters which are available as a
time series, are suitable input for microstructural based electrode models such as
a simplified transmission-line model (TLM) according to Dierickx et al. [132].
Therefore, the multiphase-field simulations deliver valuable data for an estima-
tion of the performance of the anode.

208



5.4 Relation to Performance

1 2 3

0.15

0.2

0.25

lATPB in 1/µm2

R
po

l
in

Ω
cm

2

L = 10µm
L = 12µm
L = ∞

(a) Polarization resistance.

1 2 3

4

6

8

lATPB in 1/µm2

λ
in

µm

(b) Penetration depth.

Figure 5.30: Relation of the active triple-phase boundary length lATPB to polarization resistance Rpol
(a) for the experimentally-based structures (Eq. (5.36)). The AFL thickness is varied
from L = 10µm to ∞ in order to analyze its effect on the polarization resistance, all
other microstructural properties held constant. The increasing importance of L at low
lATPB are due to a concomitant increase in the electrochemically active AFL thickness
(b).

The derivation of the TLM is outlined in Appendix A.3 to give the equation
defining the TLM which can be written as an impedance (Eq. (A.56))

ZTLM =
√

ζ χ1 coth
(√

χ1

ζ
L
)

(5.32)

with the ionic specific resistance χ1 ≡ 1/(σion,effA) in Ω/m and reaction-related
impedance ζ ≡ zLSR/(lATPBA) in Ωm. Here A denotes the electrode area, L the
thickness of the AFL, σion,eff is the effective ionic conductivity in S/m and zLSR

in Ωm is an impedance specific to the active TPB length.

The effective ionic conductivity is given by the relation

σion,eff =
XYSZσion

τYSZ
(5.33)

in terms of the intrinsic ionic conductivity σion (a material constant) [132, Eq. (6)-
(7)].
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5 Nickel Coarsening in SOFC Anodes

The reaction-related complex impedance is modeled by an RQ-element

zLSR(ω)≡ LSRCT

1+( jωτCT)n (5.34)

which makes this quantity dependent on the frequency ω in 1/s ( j is the imagi-
nary unit) and includes a charge-transfer resistance LSRCT in Ωm and a (mean)
relaxation time τCT in s combined with an exponent 0 < n < 1 to allow a smooth
distribution of relaxation times.

This model could successfully fitted to experimental electrochemical impedance
spectroscopy (EIS) data of Ni-YSZ anodes and thus, the model parameters such
as LSRCT can be experimentally determined. This means that the model provides
a microstructure-property linkage relating the microstructural parameters to the
macroscopically measurable electrochemical performance of the anode.

The electrochemical losses in the Ni-YSZ anode can be expressed in terms of the
polarization resistance defined as

Rpol ≡ AZRe
TLM(ω = 0))−A lim

ω→∞
ZRe

TLM(ω) = AZRe
TLM(ω = 0) (5.35)

with ZRe
TLM≡Re(ZTLM) and the last equality holds since limω→∞ Re(ZTLM(ω)) =

0 for this type of TLM. It follows that

Rpol =

√
LSRCT

lATPBσion,eff
coth

(
L
λ

)
(5.36)

λ ≡
√

σion,effLSRCT

lATPB
, (5.37)

where λ is a so-called penetration depth. The thickness of the electrochemical
active zone in the AFL is roughly 2λ since coth(2) = 1.04≈ 1.

One can insert the material constants from [119], i.e. LSRCT = 158.14Ωm, layer
thickness L = 10µm and σion = 2.84S/m. Furthermore, since XYSZ and τYSZ are
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time-invariant quantities, Rpol varies with time solely due to a change in active
TPB length.

Fig. 5.30 shows the relation between polarization resistance and active TPB
length for the experimentally-based anodes (i.e. XYSZ = 0.32 and τYSZ = 2.7) as
well as the corresponding effective AFL thickness. It is seen that the polarization
resistance for the experimentally based samples ranges in between 0.12Ωcm2

and 0.25Ωcm2 as well as being a monotonously decreasing function of lATPB.
This means that a reduction in lATPB is directly related to an increase in polar-
ization resistance and thus a decrease in performance results. The preliminary
analysis shows that the TLM is a viable tool to quantify the influence of the
coarsening kinetics obtained in the MPF model to a degradation of the anode
material. This technique has been used in a first collaborative work [119] and
can be applied to the herein presented data in the same straightforward manner
to derive the temporal evolution of Rpol

4.

Furthermore, by means of the transmission-line model, it is possible to analyze
the influence of the AFL thickness on the polarization resistance. The additional
curves included in Fig. 5.30a show that when coarsening leads to a low lATPB

(i.e. low nickel content and late times), the increase in polarization resistance
can be partially compensated by increasing the AFL thickness. This is due to an
increase of the active AFL thickness λ at low lATPB (cf. Fig. 5.30b).

Therefore, even if a change in composition is impossible, using the combination
of MPF simulations and the TLM, one can suggest an optimized layer thickness
to mitigate degradation of the anode.

4 A publication along these lines is prepared for publication.
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5 Nickel Coarsening in SOFC Anodes

5.5 Conclusion

In the current chapter, multiphase-field simulation studies of nickel coarsening
in Ni-YSZ solid-oxide fuel cell anodes are performed at typical operating condi-
tions of T = 750◦ and over a total annealing time of more than thousand hours.
Voronoi-based artificially generated as well as experimentally-based structures
are considered.

The large number of Voronoi-based structures cover a range of YSZ particle sizes
and nickel content to analyze their effect on the microstructural evolution. In the
study, which is also accompanied by statistical analysis, it is observed that a fine
YSZ network reduces the magnitude of nickel coarsening and a high nickel con-
tent is vital for a sufficient percolation of the nickel phase. Although nickel coars-
ening is always accompanied with a reduction in triple-phase boundary length
over time, a fine YSZ network is efficient in minimizing this effect. Furthermore,
a good percolation of nickel (which corresponds to a low tortuosity), can only
be achieved when its content is sufficiently high. If this is not the case, isolated
nickel particles lead to a lowering of the active fraction of the TPB which might
occasionally lead to a local dysfunction of the AFL.

The influence of an increased nickel content in the experimentally-based struc-
tures similarly leads to a drastic improvement in the percolation of the nickel
phase. The simulations suggest that an amount of about 30% of nickel seems
to be an optimal choice since a further increase in nickel content did not yield a
further increase in the active TPB length.

The obtained microstructural time-series data can be used in an existing transmission-
line model to obtain a quantitative relation to the polarization resistance of the
anode functional layer. The analysis gives a nonlinear monotonous relation be-
tween the polarization resistance and the active TPB length and shows that the
reduction in lATPB observed is the main driver for a degradation of the anode
material. Based on the TLM an optimized AFL layer thickness for low nickel
content is suggested to improve the performance of the anode after long operating
times.
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5.5 Conclusion

In summary, this chapter shows that the combination of multiphase-field sim-
ulations and application of a transmission-line model is a promising toolchain
to obtain in-depth knowledge of the underlying microstructural mechanisms and
their effect on the electrochemical performance of the anode.
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6 Conclusion

6.1 Summary

The current work provides interesting insights into degradation phenomena in
solid-oxide fuel cells at the microscale and in addition delivers so far unavailable
analytical insights into certain ingredients in state-of-the art phase-field models.
Multiphase-field simulation studies on nickel coarsening in SOFC anodes have
been successfully conducted in three dimensions and on realistic time scales of
more than thousand hours of operation providing a very high level of detail.

To achieve a quantitative interpretation of the simulations, the developed model
has been carefully validated, firstly analytically using a technique called asymp-
totic analysis. This derivation delivered the sharp-interface limit of the model for
the general case of a combination of surface and volume diffusion. The recov-
ered law is consistent with an extended balance of chemical species accounting
for an excess surface flux reflecting the additional interface diffusion term. An
additional numerical validation study on thermal grooving under both surface
and volume diffusion showed that the analytically derived physical law is appli-
cable to practical simulations since the simulation results matched very well with
an analytical solution to this problem. This marks the first achievement of the
current thesis.

In addition to the sharp-interface limit of the presented multiphase-field model,
high-order analytical derivations are performed to unravel the implications of a
choice of interpolation functions in phase-field models of obstacle type. Since the
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different interpolation functions are not distinguishable by state-of-the art thin-
interface asymptotics, this theoretical study provides for the first time quantita-
tive predictions regarding the nonlinear model behavior for large driving forces
which occur far away from the sharp-interface limit. The match of the obtained
travelling-wave solutions with one-dimensional numerical solutions are overall
excellent. These results provide an estimate which warrants operation in the
small driving force regime in the subsequent three-dimensional simulation stud-
ies for anode degradation. More importantly, the travelling-wave solutions can
be used to gain a deep and sound analytical understanding of the limitations of
current phase-field model formulations.

The simulation studies on SOFC anode degradation explore the influence of
variations in nickel content and overall microstructural configuration on key mi-
crostructural properties as they evolve with time. The simulations not only de-
liver the evolution of the three-dimensional microstructure graphs with time but
also quantitative data due to the implementation and utilization of advanced mi-
crostructure analysis tools. The simulations show that the degradation in the
anode functional layer is related to a fast coarsening at early times that reduces
the triple-phase boundary length significantly. In addition, certain microstruc-
tural conditions could be identified that either promote degradation or can help
to mitigate it. Therefore, the gained insights are valuable in order to accompany
material design decisions aimed at an improvement of the functional material of
state-of-the-art Ni-YSZ anodes.

6.2 Outlook

In the course of the generation of this work, a lot of effort has been put into keep-
ing the developed methods and tools as general as possible to facilitate reusability
and expandability.

For instance, the multiphase-field model extension allows arbitrary combinations
of volume and interface diffusion and thus can be applied to a vast range of
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materials such as multicomponent metallic alloys. The model can also easily be
modified to allow an investigation of modern Ni-GDC SOFC anode structures.

In addition, the microstructure analysis tools developed are available within the
PACE3D framework and thus can be directly applied to materials with similar
microstructures, such as porous battery electrode materials or nanoporous battery
cathode particles. Another application regards to membrane structures used in
medical lateral flow tests [133].

The high-order asymptotic treatment, applied herein to analyze the role of driv-
ing forces to great detail, can be applied to more complex models in the future,
quantifying their higher order terms. It is thought that this method has great
potential to improve the accuracy of phase-field models in the future because it
makes the unintuitive interplay of nonlinear terms in the model visible and may
enable removal of spurious terms.
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A Appendix

A.1 Rate Constant for Volume Diffusion

Underlying Assumptions Let the surface between a solid and a solvent be
parameterized by a function y = ys(x, t) where x is the distance from a vertically
aligned grain boundary (x = 0) and y is the vertical coordinate.

In addition, the following assumptions are employed in [91]:

1. The surface energy γs is isotropic, i.e. independent of the orientation of the
surface.

2. Diffusion in the solid is negligible and the diffusivity in the solvent is given
by D.

3. The concentration field cm(x,y, t) in the solvent, which is in contact with
the solid from above (y > ys(x, t)), is steady state, i.e. divergenceless
(∇2cm = 0).

4. The surface is nearly flat, implying a relatively small slope |∂ys/∂x|<< 1.

a) The surface concentration can be evaluated at y = 0, i.e. is given by
cm(x,0, t).

b) The curvature of the surface is given by κs(x, t)≈−∂ 2ys(x, t)/∂x2.

c) The normal vector points towards increasing y.

i. The normal velocity of the surface is given by vn(x)≈ ∂ys(x, t)/∂ t.
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ii. The gradient of the concentration normal to the surface is given
by ∇cm ·n≈ ∂cm(x,y, t)/∂y|y=0.

Corresponding Balance Law The starting point in Mullins’ theory for bulk
(or volume) diffusion governed thermal grooving is the Gibbs-Thomson effect in
terms of a shift of the concentration at the interface due to its curvature [91,
Eq. 4]:

cm(x,0, t) = cm
0

(
1+

γsVm

RT
κs(x, t)

)
(A.1)

Here cm
0 is the concentration in equilibrium with a planar surface, γs the interfacial

energy of the free surface, Vm denotes molar volume and R and T are the ideal
gas constant and temperature, respectively. All of these quantities are assumed
to be constants.

An additional statement relates the motion of the surface function to the influx of
material from the solvent

∂ys(x, t)
∂ t

=VmD
∂cm(x,y, t)

∂y

∣∣∣∣
y=0

. (A.2)

From the above listed assumptions it is clear that this is the small-slope approxi-
mated version of the following formulas

vn =−Vmj
m ·n (A.3)

jm =−D∇cm (A.4)
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It is easy to see that this is equivalent to the standard interfacial balance (Eq. (2.67))
under the following assignments:

b+→ 0 (A.5)

b−→ 1
Vm

(A.6)

j+b → jm (A.7)

j−b → 0 (A.8)

Thus, the balance corresponds to a binary system where the composition in the
solid is assumed to be a constant of unity c−1 = 1 and the composition in the
solvent to be negligibly small. In addition, a vanishing flux density in the solid is
assumed.

Rate Constant In order to derive the rate constant as Mullins did, first the
solution to the Laplace equation subject to the boundary condition Eq. (A.1) is
stated in form of a Fourier transformation (Eq. 5 therein):

cm(x,y, t) = cm
0 + cm

0
γsVm

RT
2
π

∫ ∞

0
cos(ωx)e−ωyK(ω, t)dω (A.9)

K(ω, t)≡
∫ ∞

0
κs(x, t)cos(ωx)dx (A.10)

By differentiating Eq. (A.2) twice with respect to x

∂κs(x, t)
∂ t

=−DVm
∂ 2

∂x2
∂cm(x,y, t)

∂y

∣∣∣∣
y=0

(A.11)

and inserting the solution for c(x,y, t), one obtains

∂κs(x, t)
∂ t

=−Dcm
0 γsV 2

m

RT
2
π

∫ ∞

0
ω3 cos(ωx)K(ω, t)dω (A.12)
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which is equivalent to [91, Eq. 7] up to a change in sign1. The contained prefactor

A′ ≡ Dcm
0 γsV 2

m

RT
(A.13)

is the rate constant in m3/s for volume diffusion governed grooving appearing in
the solutions for ys(x, t) provided by Mullins.

Relation to the PF Model The corresponding rate constant in the phase-
field model at hand can be obtained by analogy from the sharp-interface limiting
equations. A binary two-phase system is considered where α and β phase are the
phases below and above the surface, respectively.

Therefore, in the sharp-interface representation one may write:

c(x,y, t) =

{
cα(x,y, t) = cα(µ(x,y, t)) y < 0

cβ (x,y, t) = cβ (µ(x,y, t)) y > 0
(A.14)

An equivalent expression to Eq. (A.1) can be obtained as a first correction by
expanding cα from equilibrium:

cα(µ)≈ cα(µeq)+
dcα(µ)

dµ

∣∣∣∣
µeq

(
µ−µeq

)
α ∈ {α,β} (A.15)

The next step is to insert Eq. (3.101) which yields

cα(µ(x,0, t))≈ cα(µeq)+
dcα(µ)

dµ

∣∣∣∣
µeq

γαβ κs(x, t)

cα(µeq)− cβ (µeq)
α ∈ {α,β}

(A.16)

the composition for each phase at the interface under the assumption that attach-
ment kinetics can be neglected.

1 Based on Eq. A3 in Mullins’ work it can be shown that Eq. 7 has a wrong sign.
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The bulk flux in each phase is given by

jα =−Dα∇cα α ∈ {α,β} (A.17)

From the governing law of the phase-field model (Eq. (3.108)), neglecting the
additional surface contribution and under the assumption that the composition
shifts are small, one obtains

v0
n(c

α(µeq)− cβ (µeq)) =
(
jα −jβ

)
·n (A.18)

and hence the corresponding small-slope approximated version reads

∂ys(x, t)
∂ t

(cα(µeq)− cβ (µeq)) = Dβ ∂cβ (x,y, t)
∂y

∣∣∣∣∣
y=0

− Dα ∂cα(x,y, t)
∂y

∣∣∣∣
y=0

(A.19)

Assuming that Laplace equation holds for cα and cβ in their respective subdo-
mains, in analogy to Eq. (A.10), one obtains

cα(x,y, t) =cα(µeq)+
dcα(µ)

dµ

∣∣∣∣
µeq

γαβ

cα(µeq)− cβ (µeq)
×

(
2
π

∫ ∞

0
cos(ωx)eωyK(ω, t)dω

) (A.20)

cβ (x,y, t) =cβ (µeq)+
dcβ (µ)

dµ

∣∣∣∣∣
µeq

γαβ

cα(µeq)− cβ (µeq)
×

(
2
π

∫ ∞

0
cos(ωx)e−ωyK(ω, t)dω

) (A.21)

taking into account the boundary condition (Eq. (A.16)) and the far-field limits
(limy→∞ cβ (x,y, t) = cβ (µeq) and limy→−∞ cα(x,y, t) = cα(µeq)).
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Differentiating Eq. (A.19) twice with respect to x yields

∂κs(x, t)
∂ t

=−

(
Mα

eq +Mβ
eq

)
γαβ

(
cα(µeq)− cβ (µeq)

)2
2
π

∫ ∞

0
ω3 cos(ωx)K(ω, t)dω (A.22)

Mα
eq ≡ Dα dcα(µ)

dµ

∣∣∣∣
µeq

α ∈ {α,β} (A.23)

Therefore, the rate constant for volume diffusion in the PF model at hand is given
by

A′ =

(
Mα

eq +Mβ
eq

)
γαβ

(
cα(µeq)− cβ (µeq)

)2 (A.24)

which is the final result.

A.2 Derivation of PSD for Cylinder with Neck

A schematic of the cylinder with neck and the included spherical shapes are
shown in Fig. A.1.

Firstly, the volume which can be filled with a sphere of certain radius r can be
expressed as a solid of revolution:

V fill
α (r) = 2π

∫ H/2

0
R2(r,h)dh (A.25)

where R(r,h) is the maximal radius corresponding the envelope of all overlapping
spheres that fit into the cylinder with neck. h is the vertical coordinate and the
symmetry of the cylinder at h = H/2 is exploited.
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Figure A.1: Schematic for the derivation of the continuous PSD for a cylinder with neck. Note that
the top and bottom plane are removed as a boundary condition and the center of the
spheres are forced to remain within the domain. The volume that can be filled with
overlapping spheres of radius r is given by the solid of revolution with R(r,h). Roman
numbers depict the different regimes considered for the bottom part of the cylinder.

The spherical shapes leave circular traces in the cylindrical coordinate system,
such that

R(r,h) =





0 h > hmax(r)∩ r ≥ R1

R1 h > hmax(r)∩ r < R1

R0(r,h)+
√

r2− (h−h0(r,h))2 hmin < h < hmax

R2 h < hmin(r)

(A.26)

where cutoffs hmin and hmax are taken according to Fig. A.1.

The location of a sphere’s centroid is given as

R0(r,h) =

{
Rbot

0 (r) h < Hbot

Rneck
0 (r) h≥ Hbot

(A.27)

distinguishing the bottom and neck part of the cylinder.
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Similarly the vertical location of the sphere’s midpoint is given as

h0(r,h) =

{
hbot

0 (r) h < Hbot

hneck
0 (r) h≥ Hbot

. (A.28)

Then hmin(r) = hbot
0 (r).

For the neck, the centroid location is given as

hneck
0 (r) = Hbot−

√
r2−R2

1 r > R1 (A.29)

Rneck
0 (r) = 0 (A.30)

and the cutoff reads

hmax =

{
hneck

0 (r)+ r r > R1

Hbot r ≤ R1
(A.31)

according to the radial symmetry and the intersection with the corner at h = Hbot

and R = R1.

For the bottom part of the cylinder, three regimes can be distinguished (cf. Fig. A.1):

I. A sphere touches both the hull of the cylinder and the horizontal plane
when r ≤ Hbot and r ≤ R2−R1.

II. A sphere touches the hull of the cylinder and intersects with a corner at
h = Hbot and R = R1 when r > R2−R1 and h0 > 0.

III. A spheres centroid is located on the bottom plane (h0 = 0) and interects
the corner at h = Hbot and R = R1.
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Additional constraints apply to keep the sphere center located within the cylinder.
The corresponding solutions for h0 and R0 write

hbot
0 (r) =





Hbot− r r < R2−R1∩ r < Hbot

Hbot−
√

2(R2−R1)r− (R2−R1)2 r ≥ R2−R1∩hbot
0 > 0

0 r > Hbot∩Rbot
0 > 0

(A.32)

and

Rbot
0 (r) =





R2− r r < R2−R1∩ r < Hbot

R2− r r ≥ R2−R1∩hbot
0 > 0

R1−
√

r2−H2
bot r > Hbot∩Rbot

0 > 0

(A.33)

where the last condition is only evaluated when the other two are not fulfilled in
each case. If none of the conditions are satisfied, or R0 + r > R2, then V (r) = 0.
This completes the analytical solution for the continous PSD for a cylinder with
neck.

A.3 Transmission-Line Model

The utilized transmission-line model can be drawn as an equivalent circuit with
impedance ZTLM as shown in Fig. A.2a. The circuit network underlying the
transmission-line model is illustrated in Fig. A.2b. For an overview regarding
the equations of such a type of transmission-line model see [134]. The deriva-
tion of the equation impedance ZTLM is outlined below for the special case of an
Ni-YSZ anode according to [132].

The anode functional layer of thickness L is represented with a single x-coordinate,
where x = 0 corresponds to the plane in contact with the electrolyte and x = L is
the free surface of the anode functional layer where electric contact is established.
The functional layer is subdivided into N segments.
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Iin(t) ZTLM

Uin(t)

(a) Equivalent circuit of the transmission-line model.

Uin(t)

I1 R1 I2 R2 I3 R3 IN ∞U2

J2

Z2

U3

J3

Z3

U4

J4

Z4

UN

JN

ZN

Iin(t)

x2 x3 x4x = 0 xN L

(b) Circuit network underlying the transmission-line model.

Figure A.2: Electric circuits representing the transmission-line model: Equivalent circuit element (a)
and underlying circuit network (b).

The electrically conducting phase (Ni) is assumed to be an ideal conductor and
hence is modeled with a vanishing ohmic resistance (bottom row in Fig. A.2b).
The ion counductor in each segment i is modeled with an ohmic resistance Ri and
the reaction occuring at the three-phase boundary is modeled with an impedance
Zi.

The impedance of the TLM is given by Ohm’s law by relating the input voltage
and the total current entering the TLM:

ZTLM ≡
Uin(t)
Iin(t)

(A.34)
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In order to obtain an equation related to the circuit elements of the TLM, the
following equations hold for each segment i ∈ {1, . . . ,N−1}:

Ui−Ui+1 = RiIi Ohm’s law in YSZ (A.35)

Ii− Ii+1 = Ji+1 Kirchhoff’s law YSZ/TPB (A.36)

Zi+1Ji+1 =Ui+1 Ohm’s law at TPB (A.37)

for the voltages Ui, currents Ii and impedances Zi.

Additionally, the following boundary conditions apply

U1 =Uin(t) (A.38)

I1 = Iin(t) (A.39)

IN = 0 (A.40)

where the last equation means that a vanishing ion flux is assumed at the free
surface (equivalent to RN = ∞).

This is a linear system of 3N − 1 equations that can be solved exactly for the
unknowns U1...N , I1...N and J2...N . The solution for ZTLM then depends on the
number of segments N and becomes tedious to solve as N becomes large.

However, keeping in mind that this is just a discrete representation of the elec-
trode layer, one may associate positions with each of the nodes in the network
and interpret each segment given by functions

Ui =U(xi) (A.41)

Ii = I(xi) (A.42)

Ji = J(xi) (A.43)

Ri = R(xi) (A.44)

Zi = Z(xi) (A.45)

that depend on the layer depth x.
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Placing the segments at equidistant positions, such that x1 = 0 and xi = (i+1)∆x
as well as ∆x = L/(N +2), one obtains

U(x)−U(x+∆x) = R(x)I(x) (A.46)

I(x)− I(x+∆x) =
U(x+∆x)
Z(x+∆x)

. (A.47)

Let A be the area of the anode orthogonal to the x-direction. It is expected that
if the electrode is sufficiently homogeneous that the resistance Ri of the YSZ
segments is proportional to the distance between the nodes ∆x and inversely pro-
portional to the area A. Thus

Ri ≈
∆x

σion,effA
= χ1∆x (A.48)

where σion,eff in S/m denotes the effective conductivity of the ions within YSZ
and χ1 (in Ω/m) is the corresponding ionic resistance of YSZ specific to the
thickness of the AFL.

In contrast, the current J flows orthogonal to x and the corresponding impedance
Zi should scale inversely with the length of the TPB contained within the segment
of thickness ∆x. This length may be expressed by the active TPB length per unit
volume lATPB multiplied by the volume of a segment ∆V = A∆x and hence

Zi ≈
zLSR

lATPBA∆x
=

ζ
∆x

. (A.49)

with some line-specific impedance zLSR in Ωm and a corresponding impedance
ζ (also in Ωm) inversely specific to the thickness of the AFL. Dividing equations
(A.46)-(A.47) by ∆x and going to the limit of an infinite number of segments
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(N→ ∞, ∆x→ 0) this discrete equations turn out to be differential equations for
the unknown functions U(x) and I(x)

U ′(x) =−χ1I(x) (A.50)

I′(x) =−U(x)
ζ

(A.51)

that may be expressed solely in terms of the voltage

U ′′(x) =
χ1

ζ
U(x) (A.52)

as a second order ordinary differential equation.

Thus, the 3N−1 unknown constants turned into a single unknown function U(x)
which clearly simplifies the problem.

The boundary conditions (Eq. (A.38)-(A.40)) now write as

ZTLM =
U(0)
I(0)

=−χ1U(0)
U ′(0)

(A.53)

I(L) = 0 =U ′(L) . (A.54)

Solving Eq. (A.52) subject to these boundary condition, one obtains

U(x) =
U(0)

2

((
1−

√
ζ χ1

ZTLM

)
e
√ χ1

ζ x
+

(
1+

√
ζ χ1

ZTLM

)
e
−
√ χ1

ζ x

)
(A.55)

with the impedance of the TLM

ZTLM =
√

ζ χ1 coth
(√

χ1

ζ
L
)

(A.56)

which is the final result.
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