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1 Introduction

1.1 Motivation

Dynamic asset pricing theory based on the constraints of equilibrium and arbitrage pro-

vides a unifying principle to determine the functional relationship between asset prices

and fundamental economic characteristics, such as state variables, structural parameters,

and market prices of risk. Continuous-time stochastic processes, which are used to model

fluctuations in asset prices, play a central role in this approach because of their analytical

tractability. As a general class of multivariate stochastic processes, affine jump diffusions

(AJDs) have demonstrated unprecedented success over the past three decades due to their

superior flexibility and tractability. By selecting proper building blocks for volatility and

jumps, the AJD processes can accommodate a broad range of statistical features that are

consistent with many empirically observed patterns. The analytical tractability stems

from the fact that the conditional characteristic function of the selected processes can be

derived by solving a set of ordinary differential equations (ODEs). The use of dynamic

asset pricing models with AJDs (AJD models1) dates back to the 1970s, as discussed

by Piazzesi (2010) and Garcia et al. (2010). There is an extensive literature on term

structure models that begins with the work by Vasicek (1977), who proposes a one-factor

model for short-rate in order to obtain a closed-form formula for bond yields. In the con-

text of pricing equity options, the seminal work by Black and Scholes (1973) (BS) uses

geometric Brownian motion as the dynamic of the underlying asset price to establish the

closed-formula for pricing European options. As empirical evidence resoundingly rejects

the assumption of constant volatility in the BS model, Heston (1993) proposes a stochas-

tic volatility (SV) model while still providing an analytical option pricing formula. Duffie

and Kan (1996) discover that the SV model by Heston is a special case of the AJD model,

1For notational simplicity, the AJD models are restricted to dynamic asset pricing models with AJD
processes within this thesis.

1



1. INTRODUCTION 2

for which a similar analytical pricing formula can be obtained. Thereafter, the general

class of AJD models is subsequently examined by Duffie et al. (2000), who establish a

framework for determining the price of equity and fixed income derivatives. By using

the general solution from Duffie et al. (2000)’s work, advanced specifications of volatility

and jumps can be added to the equity derivative pricing models to further ameliorate

their empirical fit. For the volatility part, many studies use multiple volatility factors

beyond Heston’s SV model (see, e.g., Chernov et al. (2003), Andersen et al. (2015b),

among others). More recently Gruber et al. (2021) uses a matrix state process to model

volatility. As a result of the work of Merton (1976), jumps in the return dynamic are

often defined as a compound Poisson process with a normal distribution of jump sizes and

a constant jump intensity. Nevertheless, Kou (2002) proposes a specification of separate

positive and negative jumps to fit the tails on both sides of the return dynamics. Thus,

there are two jumps with exponentially distributed sizes and constant intensities in both

directions. Moreover, stochastic jump intensity can be used to capture the phenomenon

of self-existing jump clustering, which has been shown to be critical in modeling the 2008

crash. (see, e.g., Fulop et al. (2015), Andersen et al. (2015b) and Andersen et al. (2020)).

It is noteworthy to stress that the aforementioned AJD models for the equity indices are

mainly used in determining the price of derivatives written on this index.

Following Pan (2002), Eraker (2004) and Broadie et al. (2007), among others, this thesis

uses a well-established approach in the literature to specify market prices of risk for

dynamic asset pricing models based on the no-arbitrage framework. In this approach,

the pricing kernel does not directly enter the state variables, while it is derived from

a pre-defined functional relationship to a group of relevant risk factors which includes

the risk-free rate, diffusive return shocks, volatility shocks and jumps. Moreover, risk

premiums are defined as a set of parameters that determine compensation for various

risk factors. Then, a vector of structural parameters of interest for asset pricing can be

assembled by adding the risk premium parameters together with the statistical parameters

for the dynamics of the risk factors under physical measure (P). As the other side of the

coin, the “fundamental theorem of asset pricing” proposed by Harrison and Kreps (1979),

implies the equivalence between the existence of an equivalent martingale measure (Q)

and the absence of arbitrage. By assuming that the dynamics of asset pricing models

under P and Q follow the same structure, the risk premium parameters can be interpreted

as the “difference” between the statistical parameters of the dynamics under P and Q. In

the context of derivative pricing, statistical observations of option prices provide insight
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into the underlying equivalent martingale measure. Therefore, option surfaces allow

researchers to perform some statistical inference about the parameters under Q.

The aim of an empirical analysis of dynamic asset pricing models is usually to extract

information about state variables, structural parameters, and market prices of risk from

observed prices. In many cases, state variables are intrinsically latent in the context of

underlying asset prices, even when the latter are sampled at ultra-high frequency. More

specifically, the centrepiece of the empirical analysis conducted with AJD models is to

estimate the models with observed prices, which entails two major tasks: the inference

of static statistical parameters and the recovery of time-varying dynamic states. One

popular statistical solution to estimation problems in the literature is to use filtering

methodologies based on a state-space model (SSM) representation. In general, the SSM

describes the probabilistic dependence between the latent state variables and the ob-

served measurements. By using standard discretization methods, the dynamics of AJD

models can be transformed from continuous-time stochastic processes into discretized

transition equations. When coupled with an error assumption for the observed mea-

surements, one can translate the continuous-time models into an SSM interpretation.

Therefore, the issue that measurements are only sampled discretely, whereas theoret-

ical models stipulate that prices and state variables fluctuate continuously in time, is

resolved. After that, one can use the appropriate filtering method to obtain the latent

state estimates and the likelihood of the SSM given the observations from the market.

By assuming Gaussian measurement errors and a Gaussian approximation of transition

densities, the term structure models with AJD processes can be translated into a linear

Gaussian SSM that can be tackled via Kalman filtering. The Kalman filter, on the other

hand, cannot be directly applied to an empirical analysis of the option market, as latent

states are connected to pricing models nonlinearly or even only in a semi-closed form.

Therefore, particle filters, which are simulation-based filtering methods, are required for

nonlinear and non-Gaussian SSMs. Furthermore, a number of studies use higher order

moments of risk-neutral densities as additional informative measurements in the SSM-

based approaches, including Feunou and Okou (2018) and Fulop and Li (2019). As an

alternative to the SSM-based solution, Andersen et al. (2015a) leverage the rich informa-

tion from the option surfaces to address the inference problem via a penalized nonlinear

least squares (PNLS) approach that estimates the risk-neutral parameters and recovers

the latent states. In this thesis, inspired by the PNLS approach in the work by Ander-

sen et al. (2015a), I present a Kalman filtering-based quasi-maximum likelihood (QML)
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approach. Using this approach, it is possible to estimate AJD models in the empirical

analysis of the option market rapidly and efficiently by incorporating linear observations

of higher order moments from the risk-neutral density.

In the last three decades, AJD models have been used in numerous empirical studies

across various asset classes. In particular, AJD models can accurately identify the risk-

neutral density implied by derivatives written on equity index (see, e.g., Broadie et al.

(2007), Bardgett et al. (2019), among others). In recent empirical studies, Andersen

et al. (2015b) and Andersen et al. (2020) investigate the relationship between the left

tail factor and the equity risk premium using the AJD model with a stochastic negative

jump intensity. Using forward-looking information from option surfaces, they find that

the left tail factor is strongly correlated with equity premiums in the U.S. and European

markets. In particular, negative jump intensity, as the left tail factor, can predict future

equity returns over the medium- and long-term. In addition, they argue that the left tail

factor provides economic information that is distinct from the regular volatility factor.

This is because the volatility factor is only a potent predictor of actual future return

variations, but does not explain future equity returns. Recently, the increased liquidity

of derivatives markets for single stocks makes it possible to accurately estimate the cross-

sectional risk-neutral densities of underlying asset returns as well as to identify the time-

varying factors that represent the key statistical characteristics of complex fluctuations

in the conditional risk-neutral density. In this thesis, the empirical analysis of options

written on single stocks is conducted using an AJD model with specifications similar to

the model of Andersen et al. (2020), who employ a separate process specifying stochastic

negative jump intensity as the left tail factor. To the best of my knowledge, Bégin et al.

(2020) are the only researchers, who have conducted a parametric study of cross-sectional

option surfaces. Nevertheless, in their analysis, the positive and negative jumps are not

modeled separately. Hence, the empirical study in this thesis not only demonstrates the

robustness and efficiency of the Kalman filter-based QML estimation approach, but also

fills a gap in the empirical analysis of the left tail risk embedded in cross-sectional option

data using a parametric model.

1.2 Structure of the Thesis

This thesis begins with a review of the mathematical fundamentals of dynamic asset

pricing models with AJDs. Then, a discussion of the inference methods used in the
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literature for AJDs follows. In addition to the discussion, a Kalman filter-based QML

estimation approach that integrates existing techniques for inference of AJD processes in

the empirical analysis of dynamic asset pricing models is introduced. Finally, an empirical

analysis of dynamic asset pricing models based on AJDs with application to index and

stock options is carried out. In more detail, this thesis is structured as follows:

Chapter 2 first introduces the general definition of AJD processes. Using the results of

Duffie et al. (2000), a general transformation of the discounted characteristic function of

AJD processes can be obtained by solving a set of ordinary differential equations (ODEs).

Furthermore, the higher order moments of AJD-implied densities can be determined by

solving additional sets of ODEs. Within the arbitrage-free framework, one can retrieve

the fair market price of a derivative contract by calculating its expectation of discounted

future payoff under the risk-neutral measure. Using the inverse Fourier transformation,

one can compute the expectation since the characteristic function of the model dynamics

is feasible based on the results from Duffie et al. (2000). In accordance with Andersen

et al. (2015b) and Bardgett et al. (2019), the methodology from Fang and Oosterlee

(2008) for computing the inverse Fourier transformation via cos-expansions is reviewed.

Furthermore, several essential model dynamics are discussed in detail, which can be

viewed as building blocks for later empirical analysis. Finally, the non-parametric risk-

neutral moments embodied in the option surfaces are discussed.

Chapter 3 reviews the widely used methodologies for inferring AJD processes in the

literature. This chapter focuses on the SSM-based inference approach. First, a general

definition of SSM is introduced. A discussion of two types of filtering techniques follows,

namely the Kalman filter and the particle filter. As the most critical technique for

subsequent empirical analysis, the Kalman filter is explained in detail. Furthermore, the

PNLS approach by Andersen et al. (2015a) is discussed as it serves as an inspiration for

the approach in the empirical study later. Finally, the inference methods from different

resources are combined, resulting in a Kalman filter-based QML approach. By using

higher order moments, this approach replaces the minimization-based estimates of the

latent states in the PNLS approach with the posterior estimates from Kalman filtering.

Chapter 4 validates the soundness of the aforementioned QML approach in extracting

latent states and estimating parameters under Q. The validation is based on synthetic

data obtained from a Monte Carlo simulation.

Chapter 5 performs an empirical analysis of an AJD model with a left tail factor. The
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first application uses the surfaces of options written on the S&P 500 index as input data.

Numerous researchers have explored this application in the literature using various esti-

mation techniques. In order to validate the aforementioned QML approach empirically,

several diagnostics following the literature are conducted in this application. The ex-

tracted trajectories of the negative jump intensity are consistent with the results from

Andersen et al. (2015b) and Andersen et al. (2020). In the subsequent application, option

surfaces written on single stocks from the S&P 500 index are used. The purpose of this

study is to fill a gap in the literature regarding parametric approaches aimed at charac-

terizing the economic implications of the cross-section of left tail factors. Furthermore,

it demonstrates that the cross-section of left tail factors contains information about the

equity risk premium. The application also entails decomposing both spot variance and

left tail factors into systematic and idiosyncratic components. This analysis reveals that

the idiosyncratic components of these factors primarily drive the equity risk premium.

Finally, Chapter 6 summarizes the main results of this thesis and briefly discusses future

research directions.



2 Mathematical Fundamentals

It is widely recognized that empirical facts do not support the widely used Black-Scholes

option pricing model among academicians and investment professionals because it as-

sumes constant volatility and log-normality of future risk-neutral return distributions.

Bates (2000), for instance, shows that the post-crash risk-neutral return distributions of

1987 are negatively skewed and leptokurtic. Therefore, the single Brownian motion is

inadequate for modeling asset returns in the equity derivatives markets. To overcome

this challenge, one needs more advanced tools in econometrics. In particular, stochastic

volatility and jumps are integrated into model dynamics as natural extensions of asset

return modeling in a multivariate setting. These extensions lead to a general class of

stochastic processes known as affine jump-diffusions, which play a key role in dynamic

asset pricing models. According to the literature on empirical asset pricing, AJDs are

commonly used to build dynamic asset pricing models in reduced form based on the

absence of arbitrage constraints on asset prices. The reduced models, as discussed by

Garcia et al. (2010), do not directly establish a link between the representative agent’s

preference and the risk premiums associated with various risks. Researchers usually treat

these risk premiums as free parameters in order to capture the empirical facts reflected

in the data.

This chapter presents the mathematical fundamentals of AJDs for building the reduced-

form dynamic asset pricing model and relevant technicalities for the empirical analysis

of option markets. More specifically, this chapter is organized as follows: Section 2.1

discusses the general definition of AJDs and their transformations for derivative pricing.

Section 2.2 illustrates the popular AJD models for option pricing in reduced form. Sec-

tion 2.3 discusses the model-free risk-neutral moments, as derived by Bakshi et al. (2003),

and their transformation into cumulants.

7
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2.1 The Affine Jump-Diffusions

In general, AJDs are a class of stochastic processes, consisting of affine stochastic pro-

cesses with jumps, in a continuous-time setting. Following Duffie et al. (2000), the general

definition of AJDs is that the process Xt exists in some state space D ⊆ Rn and is given

by the solutions to the stochastic differential equations (SDEs) as follows:

dXt = µ (Xt) dt+ σ (Xt) dWt + dJt , (2.1)

where the drift term µ (Xt), the volatility term σ (Xt), and the jump term Jt preserve

a certain affine relation to the state Xt. The detailed definition can be found in Defini-

tion A.1

For a concrete example of an AJD model for option pricing, please refer to Illustration A.1,

which shows the data generating processes of the model proposed by Bates (1996). This

example illustrates how to establish a connection between the theoretical definition of

AJD and its application in practice. For more details, see Appendix A.3.1.

2.1.1 Transform Analysis

Following Definition A.1, the (conditional) “discounted” characteristic function ψ with

instantaneous riskless short-term rate r(Xt) : Cn ×D × [0,+∞) × [0,+∞) → C, which

determines the expectation of a transformation of Xt+τ conditional on Ft is given with

τ > 0, as follows:

ψ(u,Xt, t, τ ; θ
X ) := E

[
exp

(
−
∫ t+τ

t

r (Xs) ds

)
eu·Xt+τ

∣∣∣∣Ft] . (2.2)

Using an AJD model as a basic structure is appealing because the discounted conditional

characteristic function is log-affine in the state vector.

Following Duffie et al. (2000) and Chen and Joslin (2012), among others, the key to the

transform analysis for the “discounted” characteristic function ψ is that

ψ(u,Xt, t, τ ; θ
X ) = eα(τ)+β(τ)·Xt , (2.3)

where α : [0, τ ] → C and β : [0, τ ] → Cn are the deterministic functions satisfying the
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complex-valued ODEs with2:

α̇(s)
!
= −r0 + k0 · β(s) +

1

2
β(s)⊤h0β(s) + c0(ςν(β(s))− 1),

β̇(s)
!
= −r1 +K⊤

1 β(s) +
1

2
β(s)⊤H1β(s) + C1(ςν(β(s))− 1),

(2.4)

with initial values: α(0) = 0, β(0) = u. and s ∈ [0, τ ]. In addition, the functions with

a dot above are defined as the derivative with respect to time, i.e., α̇(s) = ∂α(s)
∂s

and

β̇(s) = ∂β(s)
∂s

across this thesis.

As a special case, the definition of the (conditional) characteristic function3of Xt+τ in

probability theory is given without “discounting” by setting r0 = 0 and R1 = 0 in

Definition A.1, as follows:

ψ0(u,Xt, t, τ ; θ
X ) := E

[
eu·Xt+τ

∣∣Ft] . (2.5)

Furthermore, without loss of generality, the ODEs can be formulated as initial value

problems (IVP) with t = 0, as researchers often refer to t = 0 as the current time point

and τ as the time to maturity of certain financial instruments (see examples: zero-coupon

bonds and European vanilla options in Section 2.1.3). Therefore, the corresponding

“discounted” characteristic function is

ψ(u,X0, 0, τ ; θ
X ) = E

[
exp

(
−
∫ τ

0

r (Xs) ds

)
eu·Xτ |F0

]
= eα(τ)+β(τ)·X0 .

Nevertheless, if one follows the original notation of Proposition 1 in Duffie et al. (2000)

closely, we have the “discounted” characteristic function ψ that

ψ(u,Xt, t, τ ; θ
X ) = eα(t)+β(t)·Xt ,

where α : [t, t+ τ ]→ C and β : [t, t+ τ ]→ Cn are the deterministic functions satisfying

2In this set-ups, the ODEs are interpreted as derivative of time to maturity τ instead of time t.
3For the general definition of characteristic function, see Definition A.2
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the complex-valued ODEs :

α̇(s)
!
= r0 − k0 · β(s)−

1

2
β(s)⊤h0β(s)− c0(ςν(β(s))− 1),

β̇(s)
!
= r1 −K⊤

1 β(s)−
1

2
β(s)⊤H1β(s)− C1(ςν(β(s))− 1),

(2.6)

with terminal values: α(t+τ) = 0, β(t+τ) = u and s ∈ [t, t+τ ].4 It is clear that this ODE-

based approach has the advantage that, except for the non-affine case, we can use the

whole toolkit of numerical methods for ordinary differential equations (e.g. Runge-Kutta

methods) for computing the expectation. Further, this benefit indicates that when jumps

are taken into account, the jump transform should have at least a quasi-analytical form.

Otherwise, the system appears neat, but it will be computationally expensive to solve. In

Duffie et al. (2000) (particularly Proposition 1, page 1351), additional information and

technical details are provided in order to enable the Itô formula to be applied and to

ensure that the Itô integral is a martingale with respect to Fs.

Once again, in order to better connect transformation analysis to practice, Illustration A.1

demonstrates its use in formulating Eq. (2.4), i.e., ODEs with IVP. For more details,

please refer to Appendix A.3.2.

2.1.2 Extended Transformations and Implied Cumulants

Loosely speaking, the distribution of a random variable X can be fully determined by

its moments in probability theory. As alternative quantities, the cumulants of a random

variable X are also used. The cumulants generating function KX(w) and the moments

MX(w) generating function of a random variable X5are defined as

KX(w) = lnE
[
ewX

]
, w ∈ R, (2.7)

and

MX(w) = E
[
ewX

]
, w ∈ R, (2.8)

respectively.

4The key difference between these two formulations lies in the derivative’s direction in time, intuitively
meaning that the ODEs in Eq. (2.6) characterize α(s) and β(s) evolving backward from t+ τ to t along
the time axis, while in Eq. (2.4), α(s) and β(s) evolve forward along the time axis. This leads to a sign
flip on the right-hand side, if one compares Eq. (2.4) with Eq. (2.6).

5The definition can be extended to a multivariate version, where X is a multivariate random vector.
KX(u) = lnE

[
eu·X

]
and MX(u) = E

[
eu·X

]
, u ∈ Rn.
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The n-th cumulants Kn,X is obtained by differentiating the above function n times and

evaluating the result at zero:

Kn,X = K(n)
X (0) =

∂nXK
∂wn

∣∣∣∣
w=0

. (2.9)

Similar to n-th cumulants, the n-th raw moments Mn = E [Xn] are defined as follows:

Mn,X =M (n)(0)X =
∂nM

∂wn

∣∣∣∣
w=0

. (2.10)

Furthermore, the relationship between Kn,X and Mn,X until n = 4 can be summarized as

follows:

K1,X =M1,X ,

K2,X =M2,X −M2
1,X ,

K3,X =M3,X − 3M2,XM1,X + 2M3
1,X ,

K4,X =M4,X − 4M3,XM1,X − 3M2
2,X + 12M2,XM

2
1,X − 6M4

1,X .

(2.11)

Technically, the cumulant Kn,X and moment Mn,X differ from each other. Nevertheless,

these quantities contain similar information, especially when they are used to tackle the

inference problem. Therefore, in later chapters, both terms are treated interchangeably,

especially when one refers to the information embedded in these two quantities.

As discussed in Illustration A.1, many econometric option pricing models (reduced mod-

els)6assume a primary process that directly models the underlying return. Additionally,

the other accompanying processes capture additional empirical characteristics of the un-

derlying return distribution, while the underlying return dynamic has no impact on the

other dynamic factors. Additionally, the cumulants of the underlying return process also

play a crucial role in the estimation procedure in this thesis. Therefore, the following

part of this subsection focuses on the derivation of the cumulants for this special case

within the AJD class.

Definition 2.1.

Let XY
t be a special case of AJDs. As in this case, the first entry does not enter into the

dynamics of the rest of the elements in the state vector. Following Definition A.1, XY
t is

6A detailed discussion of the econometric option pricing models in reduced form is provided in
Section 2.2.
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defined as follows:

XY
t := (Yt, X

(2,n)
t ) ∈ D ⊆ Rn, (2.12)

where the element Yt ∈ R locates at the first entry, and the rest elements X
(2,n)
t :=

(X
(2)
t , . . . , X

(n)
t ) ∈ Rn−1. The θX

Y
, which specifies the parameters of the XY

t ’s dynamic,

follows Definition A.1 with additional fixed specifications: k1 = 0, h1 = 0, c1 = 0 and

r1 = 0 7.

Following Eq. (2.5), the characteristic function of Yt+τ is given via

Et
[
eu1Yt+τ

]
= ψ0((u1, 0, . . . , 0), X

Y
t , t, τ ; θ

XY

)

= eα(τ)+u1Yt+β2,n(τ)·X
(2,n)
t ,

where the function β2,n : [0, τ ]→ Cn−1 represents the scale-valued functions correspond-

ing to the second through nth entries in β, as defined in Eq. (2.3).8 Then, the character-

istic function of Yt+τ − Yt is

Et
[
eu1(Yt+τ−Yt)

]
= eα(τ)+β2,n(τ)·X

(2,n)
t . (2.13)

Therefore, given the definition in Eq. (2.7), the cumulants generating function of random

variable ∆Yt,τ := Yt+τ − Yt with β1(0) = u1 and β2,n(0) = 0 is obtained as follows:

K∆Yt,τ (u1) = lnEt
[
eu1∆Yt,τ

]
2.13
= α(τ) + β2,n(τ) ·X(2,n)

t

⇐⇒ K∆Yt,τ (u1;x2,n) = α(u1, τ) + β2,n(u1, τ) · x2,n,

(2.14)

where u1 ∈ R and x2,n ∈ Rn−1.

Furthermore, the mth-cumulants Km,ψ0 can be obtained by differentiating the

ψ0(u,XY , t, τ ; θX
Y
) as discussed in Eq. (2.3), as follows,

Km,∆Yt,τ (x2,n) =
∂mK∆Yt,τ (u1, t, τ ;x2,n)

∂um1

∣∣∣∣
u1=0

2.14
=

∂mα(u1, τ)

∂um1

∣∣∣∣
u1=0

+
∂mβ2,n(u1, τ)

∂um1

∣∣∣∣
u1=0

· x2,n

=: F
(m)
0,τ + F

(m)
1,τ · x2,n,

(2.15)

7This definition indicates that Yt only impacts itself and does not have any impact on the dynamics
of any other elements in the state vector.

8i.e., β(τ) = (β1(τ), β2,n(τ)
⊤)⊤, where β2,n(τ) = (β2(τ), . . . , βn(τ))

⊤.
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where ∂mβ2,n(u1,τ)

∂um1
=
(
∂mβ2(u1,τ))

∂um1
, . . . , ∂

mβn(u1,τ))
∂um1

)⊤
, F

(m)
0,τ and F

(m)
1,τ are constant coeffi-

cients, which depends only on τ and the order m implying the linear relationship between

the cumulants and the states at time t.

In Feunou and Okou (2018), the constant coefficients with respect to the model specifica-

tion from Andersen et al. (2015b) are calculated analytically up to the fourth order. As

described in Feunou and Okou (2018), the cumulants can be obtained by solving several

new ODEs for different orders analytically (see Appendix of Feunou and Okou (2018)).

As an alternative approach, it is possible to obtain the derivatives of the cumulant gener-

ating function by solving additional sets of ODEs in a more general way. The next part

of this subsection demonstrates how the derivatives can be computed via the approach

of solving ODEs. The first-order derivative can be obtained from the extended version of

the characteristic function proposed by Duffie et al. (2000).

The definition of the “extended” transformation function ψ̃ : Rn × Cn ×D × [0,+∞)×
[0,+∞)→ C is

ψ̃(v, u,Xt, t, τ ; θ
X ) := E

[
exp

(
−
∫ t+τ

t

r (Xs) ds

)
(v ·Xt+τ )e

u·Xt+τ |Ft
]
. (2.16)

The ψ̃ can be obtained via the extension of discounted characteristic function ψ in

Eq. (2.3), as follows,

ψ̃(v, u,Xt, t, τ ; θ
X ) = ψ(u,Xt, t, τ) (∂1α(τ) + ∂1β(τ) ·Xt)

= eα(τ)+β(τ)·Xt (∂1α(τ) + ∂1β(τ) ·Xt) ,
(2.17)

where ∂1α : [0, τ ] → R and ∂1β : [0, τ ] → Rn are the deterministic functions satisfying

the ODEs 9:

˙∂1α(s)
!
= k0 · ∂1β(s) + ∂1β(s)

⊤h0β(s) + c0∇ςν(β(s)) · ∂1β(s),
˙∂1β(s)

!
= K⊤

1 ∂1β(s) + ∂1β(s)
⊤H1β(s) + C1∇ςν(β(s)) · ∂1β(s),

(2.18)

with initial values ∂1α(0) = 0, ∂1β(0) = v and s ∈ [0, τ ]. In addition, ∇ςν(β(s)) is the

gradient with respect to β(s).

Similar to Eq. (2.5), the corresponding extended version of characteristic function without



2. MATHEMATICAL FUNDAMENTALS 14

discount is defined, as follows,

ψ̃0(v, u,Xt, t, τ ; θ
X ) = E

[
(v ·Xt+τ )e

u·Xt+τ |Ft
]
,

= ψ0(u,Xt, t, τ) (∂1α(t) + ∂1β(t) ·Xt) .
(2.19)

Following the definition in Proposition A.1 and Eq. (2.19) with v = d1 := (1, 0 . . . 0)⊤

and u = 0,

Et [Yt+τ ] = E
[
(d1 ·Xt+τ )e

0·Xt+τ
∣∣Ft]

= ψ̃0(d1, 0, X
Y
t , t, τ ; θ

X )

= eα(τ)+β(τ)·Xt (∂1α(τ) + ∂1β(τ) ·Xt) .

(2.20)

Since β(0) = u = 0, we have α(τ) = 0, β(τ) = 0. In addition, since ∂1β1(0) = 1, we have

∂1β1(τ) = 1. Therefore, we have

Et [Yt+τ ] = ∂1α(τ) + Yt + ∂1β2,n(τ) ·X(2,n)
t

⇐⇒ Et [∆Yt,τ ] = ∂1α(τ) + ∂1β2,n(τ) ·X2,n
t ,

where ∂1α(τ) and ∂1β2,n(τ) satisfy Eq. (2.18) with initial values: ∂1α(0) = 0 and

∂1β2,n(0) = 0. Therefore, we have F
(1)
0,τ = ∂1α(τ), F

(1)
1,τ = ∂1β2,n(τ) following the defi-

nition in Eq. (2.15) and first-order of cumulant with the notation in cumulant generating

function as follows:

K1,∆Yt,τ (x2,n) = ∂1α(τ) + ∂1β2,n(τ) · x2,n (2.21)

Moreover, for further the m-th higher-order derivatives m ≥ 2 can be computed recur-

sively. Following Theorem 1 in Chen and Joslin (2012), we have ODEs for the m-th

higher order deviates as follows:

˙∂mα(s)
!
= k0 · ∂mβ(s) +

1

2

m∑
i=0

(
m

i

)
∂iβ(s)

⊤h0∂m−iβ(s)

+ ∂m−1 (c0∇ςν(β(s)) · ∂1β(s)) ,

˙∂mβ(s)
!
= K⊤

1 ∂mβ(s) +
1

2

m∑
i=0

(
m

i

)
∂iβ(s)

⊤H1∂m−iβ(s)

+ ∂m−1 (C1∇ςν(β(s)) · ∂1β(s)) ,

(2.22)

with initial values: ∂mα(0) = 0, ∂mβ(0) = 010and s ∈ [0, τ ]. In addition,

9See the heuristic derivation of “extended” characteristic function for the special case of XY
t in

Appendix A.2
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∂m−1 (C1∇ϑ(β(s)) · ∂1β(s)) is the (m − 1)-th derivative of C1∇ϑ(β(s)) · ∂1β(s) with re-

spect to β(s). Then, following the same idea of first-order cumulant in Appendix A.2,

we have

Km,∆Yt,τ (x2,n) = ∂mα(τ) + ∂mβ2,n(τ) · x2,n. (2.23)

For illustrative purpose, the example with dynamics of Bates model can be found in

Appendix A.3.3.

2.1.3 Risk-Neutral Pricing

According to the “fundamental theorem of asset pricing” proposed by Harrison and Kreps

(1979), who establish the link between the existence of an equivalent martingale measure

and the absence of arbitrage, the fair market value of a “regular” contingent claim -

which is a random variable in the form of function H(Xt+τ ), at time t is determined

by its discounted expectation under the equivalent martingale measure under technical

conditions.11 LetQ be the equivalent martingale associated with the risk-free rate r(Xt) =

r0 + R1 ·Xt from Definition A.1 The fair market value of payoff H(Xt+τ ) at time t with

maturity τ is defined, as follows:

H(t, τ) = EQ
[
exp

(
−
∫ t+τ

t

r(Xs)ds

)
H(Xt+τ ) |Ft

]
. (2.24)

In the case that zero-coupon bonds pay one at the maturity t + τ , using risk-neutral

pricing, the fair market value of the zero-coupon bonds at time t is

B(t, τ) = EQ
t

[
exp

(
−
∫ t+τ

t

r(Xs)ds

)]
= EQ

t

[
exp

(
−
∫ t+τ

t

r(Xs)ds

)
e0·Xt+τ

]
= eα(τ)+β(τ)·Xt ,

(2.25)

where α(τ) and β(τ) are the solution of ODEs in Eq. (2.6) with initial values α(0) = 0

and β(0) = 0.

10For β1(u1, 0) = u1 in the case of XY
t , we have the higher order derivatives ∂mβ1(u1,0)

∂um
1

= 0 with

u1 ∈ R and m ≥ 2.
11For more illustrative discussions in details about the relationship between the absence of arbitrage

and equivalent martingale, see Duffie (2010)
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Furthermore, the yield-to-maturity is

yld(t, τ) = − lnB(t, τ)
τ

= −α(τ) + β(τ) ·Xt

τ

(2.26)

Due to the focus of the empirical application being on the option market, the payoffs of

European call: C (t, τ,K) and put: P (t, τ,K) options written on stocks with moneyness

m at maturity T = t+ τ are defined in terms of strike K, as follows:

C (T, 0, K) := (ST −K)+ = max(ST −K, 0) (2.27)

and

P (T, 0, K) := (K − ST )+ = max(K − ST , 0), (2.28)

respectively. Following Definition A.1, let the log underlying price be the first element

of the process, i.e., Xt = (lnSt, · · · )⊤. Therefore, the market fair value of a call option

contract is, by definition,

C (t, τ,K) = EQ
t

[
exp

(
−
∫ t+τ

t

r(Xs)ds

)
(St+τ −K)+

]
= EQ

t

[
exp

(
−
∫ t+τ

t

r(Xs)ds

)
(ed1·Xt+τ −K)+

]
,

(2.29)

where d1 := (1, 0, · · · , 0)⊤ ∈ Rn. In contrast to bond pricing, it is not possible to obtain

the fair market value of an option contract directly by solving ODEs. The next subsection

explains the essential technicalities of pricing European options.

2.1.4 Inverse Fourier Pricing Techniques

2.1.4.1 Inverse Fourier Method

Chen and Joslin (2012) propose a generalized version of the transform for AJD processes,

which is defined as follows:

G(f, a, b, t, τ ; θX ) = E
[
exp

(
−
∫ t+τ

t

r(Xs)ds

)
ea·Xt+τf(b ·Xt+τ )

∣∣∣∣Ft]
=

1

2π

∫ ∞

−∞
f̂(ν)ψ(a+ iνb,Xt, t, τ ; θ

X )dν,

(2.30)
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where ψ(a + iνb,Xt, t, τ ; θ
X ) is defined in Eq. (2.3), and f̂ is the Fourier transform of f

(see Definition A.3).

The general transformation can be further derived as follows:

G(f, a, b, t, τ ; θX ) =
1

2π

∫ ∞

−∞
f̂(ν)ψ(a+ iνb,Xt, t, τ ; θ

X )dν

=
1

2π

∫ ∞

−∞
f̂(ν)eα(τ)+β(τ)·Xtdν,

(2.31)

where α(τ) and β(τ) are the solution from Eq. (2.4) with initial values α(0) = 0 and

β(0) = a+ iνb.

By using the risk-neutral pricing framework and Eq. (2.29), one can calculate the fair

value of a European call option via Eq. (2.30), as follows:

C (t, τ,K) = EQ
t

[
exp

(
−
∫ t+τ

t

r(Xs)ds

)
(St+τ −K)+

]
= EQ

t

[
exp

(
−
∫ t+τ

t

r(Xs)ds

)(
ed1·Xt+τ −K

)+]
,

= G(f(b ·Xt+τ ) =
(
elnST −K

)+
, a = 0, b = d1, 0, t+ τ, θX ),

(2.32)

where Xt = (lnSt, . . .)
⊤ and d1 = (1, 0, . . . , 0)⊤.

It is possible to adjust f to f̃ by selecting a and b differently, which is useful when

considering option payouts. The f̃ is still applicable to Eq. (2.30). The adjustment is as

follows:

ea·Xt+τf(b ·Xt+τ ) = e(a−cb)·Xt+τ f̃(b ·Xt+τ ), c ∈ R, (2.33)

where f̃(b ·Xt+τ ) := ec(b·Xt+τ )f(b ·Xt+τ ).

In the case of pricing a European call option, assuming a = 0, c = −w and b = d1, it

implies:

(St+τ −K)+ = ea·Xt+τf(b ·Xt+τ )

12

= e(a−cb)·Xt+τ f̃(b ·Xt+τ ),
(2.34)
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where f = ewd1·Xt+τ f̃ with f̃ = e−wd1·Xt+τ
(
ed1·Xt+τ −K

)+
.

Therefore, we have

C (t, τ,K) = EQ
t

[
exp

(
−
∫ t+τ

t

r(Xs)ds

)
ewd1·Xt+τ e−wd1·Xt+τ

(
ed1·Xt+τ −K

)+]
,

= G(f̃(b ·Xt+τ ) = e−wd1·Xt+τ
(
ed1·Xt+τ −K

)+
, a = wd1, b = d1, t, τ, θ

X ).

Prior to applying Chen and Joslin (2012)’s generalized transform to the price of a Euro-

pean call option, a result from Filipovic (2009) should be taken into account.

Let

f̃(y) := e−wy(ey −K)+, w > 1, (2.35)

where w is a pre-chosen small constant. Filipovic (2009) shows that the Fourier transfor-

mation of f̃(y) is given as follows:

ˆ̃f(ν) =

∫
R
e−(w+iν)y(ey −K)+dy,

=
K−(w−1+iν)

(w + iν)(w − 1 + iν)
, w > 1.

(2.36)

Moreover, by setting y = lnSt+τ = d1 · Xt+τ the Fourier transformation of f̃ =

e−wd1·Xt+τ
(
ed1·XtG+τ −K

)+
is given in Eq. (2.36). Following Chen and Joslin (2012)’s

general transformation (see Eq. (2.30)), we have

C (t, τ,K) = G(f̃(b ·Xt+τ ) = e−wd1·Xt+τ
(
ed1·Xt+τ −K

)+
, a = wd1, b = d1, t, τ, θ

X )

=
1

2π

∫ ∞

−∞

ˆ̃f(ν)ψ((a+ iνb), Xt, t, τ ; θ
X )dν

=
1

2π

∫ ∞

−∞

ˆ̃f(ν)ψ((w + iν)d1, Xt, t, τ ; θ
X )dν

=
1

2π

∫ ∞

−∞

K−(w−1+iν)

(w + iν)(w − 1 + iν)
ψ((w + iν)d1, Xt, t, τ ; θ

X )dν

.

12

e(a−cb)·Xt+τ f̃(b ·Xt+τ )

=e(0+wd1)·Xt+τ f̃(d1 ·Xt+τ )

=e(0+wd1)·Xt+τ e(−wd1)·Xt+τ (ed1·Xt+τ −K)+

=ew lnSt+τ e−w lnSt+τ (St+τ −K)+
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Finally, the European call price coincides with

C (t, τ,K) =
1

2π

∫ ∞

−∞

K−(w−1+iν)

(w + iν)(w − 1 + iν)
eα(τ ;ν)+β(τ ;ν)·Xtdν (2.37)

where α(τ ; ν) and β(τ ; ν) are the solutions of ODEs in Eq. (2.4) with initial values

α(0) = 0 and β(0) = (w + iν)d1 = (w + iν, 0, . . . , 0)⊤. By using standard numerical

integration methods, one can evaluate the integration in Eq. (2.37).

2.1.4.2 Cosine Method13

The numerical integration in Eq. (2.37) is computationally expensive, especially when

the latter estimation approach directly incorporates the observations of options from the

market. This requires evaluation of a large amount of option prices at the same time.

Therefore, a faster numerical approach is desired. Along with the literature (see e.g.,

Andersen et al. (2015b) and Bardgett et al. (2019), among others), the cosine method

proposed by Fang and Oosterlee (2008) delivers outstanding performance in both speed

and accuracy. This part discusses the main idea of the cosine method and how it can be

applied to AJD models. Following the general idea of risk-neutral pricing in Section 2.1.3,

we have the fair value of contingent claim v(t+ τ, 0;Yt+τ ) at t, as follow:

v(t, τ ;x) = e−rτEQ [v(Yt+τ , t+ τ)|Yt = x]

= e−rτ
∫
R
v(y, t+ τ)f(y;x) dy,

(2.38)

where

• Yt takes the “initial” value x with the information at t;14

• y is the realization of Yt+τ with the information at t+ τ ;

• f(y;x) is the (conditional) density function under Q;

• for simplicity, the interest rate is assumed constant, i.e., rt ≡ r.

A key aspect of preventing the calculation of the expectation analytically is the unknown

(conditional) density function of the underlying asset price at maturity t + τ . Once

again, the solution lies in the Fourier duality between the density function f and its

13This part is mainly based on the results of research projects with C-RAM students. I would like to
thank Maximilian Kübler and Julian Meyer for their assistance.

14For simplicity, we assume Yt is a scale value.
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Fourier transformation f̂ , as follow:

f̂(t) =

∫
R
f(y;x) · e−itydy = φ (−t) , t ∈ R.

Before discussing the main idea of the cosine method, the following proposition of Fourier

cosine expansion is presented:

Furthermore, we will explain several intermediate steps in order to motivate the final

result of the cosine method. A key intermediate step is to truncate the domain of the

integral in equation Eq. (2.38) at some point. The existence of the integral ensures

that this is feasible. According to Proposition Proposition A.2, the density is essentially

expanded into an infinite sum of cosines whose coefficients are known up to an integral.

While the original support of the function being expanded is on [0, π], the result can be

applied to any function f whose support is on a finite domain [a, b] given g : [0, π] →
R, θ 7→ f

(
b−a
π
θ + a

)
.

By using Proposition A.2 we have

f(y;x) = g

(
y − a
b− a

π

)
=
∑́∞

k=0
Ak cos

(
k
y − a
b− a

π

)
, (2.39)

where

Ak =
2

π

∫ π

0

g(θ;x) cos (kθ) dθ
θ= y−a

b−a
π

=
2

b− a

∫ b

a

f(y;x) cos

(
k
y − a
b− a

π

)
dy.

Since cos
(
k y−a
b−aπ

)
= Re

(
eik

y−a
b−a

π
)
, the coefficient Ak can be further transformed into the

following form:

Ak =
2

b− a

∫ b

a

f(y;x)Re
(
eik

y−a
b−a

π
)
dy =

2

b− a
Re

[
e−i

kaπ
b−a ·

∫ b

a

f(y;x)ei
kπ
b−a

ydy

]
≈ 2

b− a
Re

[
e−i

kaπ
b−a ·

∫
R
f(y;x)ei

kπ
b−a

ydy

]
=

2

b− a
Re

[
e−i

kaπ
b−a · φ

(
kπ

b− a

)]
=: Fk,

(2.40)

where φ is a function related to the (conditional) characteristic function of Yt+τ .

By its definition the infinite series
∑́∞

k=0Ak cos
(
k x−a
b−aπ

)
(= f(·;x)) is convergent, i.e.,

the expansion into an orthonormal basis in L2 (R) gives a converging sum. So is the



2. MATHEMATICAL FUNDAMENTALS 21

approximating series ∑́∞

k=0
Fk cos

(
kπ
x− a
b− a

)
,

because the approximation error is primarily due to the extension of [a, b] to R. In view

of the fact that the decay rate of the density is dominated by the (superlinear) decay rate

of the density, we are on the safe side by selecting appropriate a and b.15 Accordingly, the

convergence of the sum suggests that only the first N coefficients need to be computed.

As far as we are aware, roughly 102 coefficients are sufficient to provide a sufficiently

accurate result, depending on maturity (influencing the length of [a, b]) and moneyness.

Replacing f(·;x) in Eq. (2.38) and limiting the sum to the first N + 1 coefficients, we

have

v(x, t, τ) = e−rτ
∫ ∞

−∞
v(y, t+ τ)

∑́∞

k=0
Ak cos

(
k
x− a
b− a

π

)
dy

≈ e−rτ
∫ b

a

v(y, t+ τ)
∑́∞

k=0
Ak cos

(
k
x− a
b− a

π

)
dy

≈ e−rτ
∫ b

a

v(y, t+ τ)
∑́N

k=0
Ak cos

(
k
x− a
b− a

π

)
dy

≈ e−rτ
∑́N

k=0
Fk(x)Vk =: ṽ(x, t, τ),

where Fk(x) stems from the expansion of f(·;x) into a cosine series (dependent of x) and

Vk :=

∫ b

a

v(y, t+ τ) cos

(
kπ
y − a
b− a

)
dy

are the payoff coefficients (independent of x).

The final result of ṽ(x, t, τ) contains three approximation steps:

1. The final result of expectation under risk-neutral measure is approximated by a trun-

cated integral of [a, b] instead of the integral over R.

2. The infinite series is no longer, not even by computing the infinite sum, the true

option’s value, but an approximation until N .

3. The approximation of the coefficients Ak in Eq. (2.40) is done by approximating the

integral by the full, characteristic function (which initially was true, but no longer is

15In fact, the truncation relies on the computation of the first, second and fourth cumulants (see
Eq. (2.9)) of the risk neutral distribution at time T implied by f (·|x) by which we then choose

[a, b] :=

[
K1,Yt+τ

− L

√
K2,Yt+τ

+
√
K4,Yt+τ

,K1,Yt+τ
+ L

√
K2,Yt+τ

+
√
K4,Yt+τ

]
. (2.41)
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for the truncated density function f |[a,b]).

On the other hand, the advantage of the cosine basis is that analytical results can be

derived for several common payoff functions (either European or Digital) without intro-

ducing extra noise for their approximation as follows:

For European options defined in the log space of ratio between underlying and strike

Yt+τ = ln
(
St+τ

K

)
, the payoff function is given in following form

vcall(y, t+ τ) = K (ey − 1) , y > 0

and

vput(y, t+ τ) = K (1− ey) , y < 0.

Thus, we obtain the following payoff coefficients for European call and put

V call
k = K (χk (ā, b)−Ψk (ā, b))

and

V put
k = K

(
Ψk

(
a, b̄
)
− χk

(
a, b̄
))
,

for ā := max(a, 0), b̄ := min(b, 0) and only if b > ā, a < b̄ respectively. Otherwise, the

integration would take place over an area where the call (put) is never in-the-money and

the cosine method approximation for ṽ (x, t) is simply 0.

For the last point in this part, we would like to present another “trick” for the cosine

method. It is especially useful for performing multiple option valuations simultaneously.

By its definition, the coefficients Vk have to be computed from scratch each time when the

strikeK changes. Thanks to the transformation of the payoff into the log-space ln
(
St+τ

K

)
,

the nonlinear relation between the payoff coefficients and the strike is now linear:

V call
k = K (χk (ā, b)−Ψk (ā, b))︸ ︷︷ ︸

=:Ucall
k

and V put
k = K

(
Ψk

(
a, b̄
)
− χk

(
a, b̄
))︸ ︷︷ ︸

=:Uput
k

.

Hence, plugging in the form of Fk from (2.40) we get for European options

v (x, t) ≈ ṽ (x, t) =
2K

b− a
e−rτ

∑́N

k=0
Re

[
e−i

kaπ
b−aφ

(
kπ

b− a
;x

)]
Uk.

Therefore, for different strikes with identical underlying values: St, the payoff coefficients
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only have to be calculated once. Due to the K dependent definition in φ(·), changing K
also requires the evaluation of N+1 ODEs. Nevertheless, for the AJDs models (especially

for the dynamics of the underlying asset according to Proposition A.1), we can show that

the strike dependency of the characteristic function can be separated. Consider XY
t in

Definition 2.1 with Yt = ln
(
St

K

)
= x ∈ R, then following Proposition A.1, we have

φ(ν1;Yt = x) = Et
[
eiν1Yt+τ

]
= Et

[
eiν1d1·X

Y
t+τ

]
= ψ0(iν1d1, X

Y
t , t, τ ; θ

XY

)

= eα(τ)+iν1x+β2,n(τ)·X
(2,n)
t

= eiν1xψ0(0, XY
t , t, τ ; θ

XY

),

(2.42)

where ν1 ∈ R and d1 := (1, 0, · · · , 0)⊤ ∈ Rn. Finally, the fair price via cosine method is

given as follows:

v (x, t) ≈ 2K

b− a
e−rτ

∑́N

k=0
Re

[
eikπ

(x−a)
b−a ψ0(0, XY

t , t, τ ; θ
XY

)

]
Uk, Yt = ln

(
St
K

)
. (2.43)

On the other hand, the dynamics of later concrete models are typically assumed to

be X Ỹ = (lnSt, . . . )
⊤ instead of XY

t = X Ỹ − d1 lnK = (lnSt − lnK, . . . )⊤. Their

transformations of characteristic functions16are

ψ0(ν1, X
Ỹ
t , t, τ ; θ

X Ỹ

) = eα̃(τ)+β̃(τ)·X
Ỹ
t ,

and

ψ0(ν1, X
Y
t , t, τ ; θ

XY

) = eα(τ)+β(τ)·X
Y
t

respectively. By using Itô lemma we immediately obtain

dX Ỹ
t = dXY

t .

As a result, both processes generate the same set of ODEs to solve, and since the solution

is unique, we do, in fact, have α (s) = α̃ (s) , β (s) = β̃ (s) , ∀s ∈ [0, τ ] .

16Here we only need the general transformation of AJD.
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2.2 Reduced-Form Models

This section reviews several widely used concrete examples within the general class of

AJD models (see Definition A.1) for the task of pricing equity derivatives17in the empirical

asset pricing literature. For options and other derivatives, these models are designed to

accommodate various statistical features of asset return dynamics under the risk-neutral

measure. In contrast to equilibrium models, investors’ preferences are absorbed in risk

premiums, and it is difficult to establish a direct link between their preferences and

risks. Thus, researchers usually leave the risk premium as free parameters in the models.

Following Garcia et al. (2010), this section provides an overview of both the empirical

and technical aspects of option pricing models based on AJDs. Furthermore, this section

also reviews a number of state-of-the-art models that appear in recent literature.

In general, those reduced-form AJD models consist of one factor capturing the fluctuation

of the underlying asset price and some additional aggregate risk factors. These factors

include heteroscedastic volatility, stochastic jump intensity, and so on. Additionally, the

underlying asset return factor is assumed to be directly observable, while the other factors

are assumed to be latent.

The discussion in this section is organised according to building blocks of statistical

features for the return dynamic. For reduced-form models, researchers often assume that

the model structure remains the same under the physical measure P and risk-neutral

measure Q. As a result, it appears intuitively that risk premiums originate from the

“difference” between P and Q. If model structures are assumed to be the same under P

andQ, the parameterization under P and parameterization underQ and their “difference”

are determined by the two of them. When either P or Q is to be considered, only the

corresponding parameterization needs to be specified. The last example in this section

illustrates the case of specifying only model dynamics under Q when focusing on option

pricing.

This section is organized as follows: Section 2.2.1 introduces the building block for

stochastic volatility. The illustrative example is introduced by Heston (1993), who devel-

ops a closed-form for option pricing. Section 2.2.2 reviews the different jump specifications

in return. The jump sizes are either normally distributed or exponentially distributed.

17Loosely speaking, the methodology of risk-neutral pricing is relatively general, which means the
validity of the model is not dependent upon asset class, so long as the AJD model can provide a reasonable
fit to the corresponding empirical risk-neutral return density.
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Section 2.2.3 discusses models with jumps in volatility and stochastic jump intensity.

2.2.1 Stochastic Volatility

Cox et al. (1985) propose a stochastic process, which contains mean-reversion and self-

exciting volatility. This process is often used as the dynamic of interest rates in term-

structure models. The definition is given as follows:

Definition 2.2. Cox–Ingersoll–Ross (CIR) model

dαt = κ (θ − αt) dt+ σ
√
αtdWt, (2.44)

where

κ and θ denote the mean-reversion speed and long-run mean, respectively;

σ corresponds to volatility;

Wt is the standard Wiener process.

As a natural extension of the standard BS model, Heston (1993) proposes a stochastic

volatility model, in which a second separate process governs the dynamic of volatility by

using the CIR process in Definition 2.2. Thereafter, the CIR process becomes a popular

choice for modeling stochastic volatility. The Heston model is defined as follows:

Illustration 2.1. Heston model

To account for volatility clustering and the leverage effect on the return dynamic (see

page 3142 Christoffersen et al. (2010)). The price process St and volatility process Vt

under physical and risk-neutral measures are defined, respectively, as follows:

under P:
dSt
St

= µtdt+
√
VtdWt

dVt = κ (θ − Vt) dt+ σ
√
VtdBt;

(2.45)

under Q:
dSt
St

= (rt − qt)dt+
√
VtdW

Q
t

dVt = κQ
(
θQ − Vt

)
dt+ σ

√
VtdB

Q
t ,

(2.46)

where

µt denotes the drift in return under physical measure;

rt and qt denotes the risk-free rate and dividend rate, respectively;
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κ, θ and σ are given as in Definition 2.2 under P;

Wt and Bt are standard Wiener processes, which are correlated with coefficient ρ ∈
[−1, 1]. One can rewrite the Wiener process Wt with another Wiener process W̃t, which

is independent of Bt, as follows:

dWt =
(
ρdW̃t +

√
1− ρ2dBt

)
; (2.47)

(
κQ, θQ

)
are the corresponding values for the process under risk-neutral measure. The σ

is the same under both measures.

Furthermore, the variance risk premia is defined as

ηv = κ− κQ; (2.48)

the θQ is restricted as follows:

θQ =
κθ

κQ
, (2.49)

This restriction is imposed due to θQκQ = κθ;

Finally, µt can be rewritten as

µt = rt − qt + γt, (2.50)

where γt = ηsVt.

2.2.2 Jumps in Return

The Black-Scholes model can be further extended by incorporating a jump process, which

captures large, infrequent movements caused by rare extreme events. The jump-diffusion

model proposed by Merton (1976) includes jumps using the compound Poisson process.

For the illustrative purpose, only the definition under physical measure is given, as follows:

Definition 2.3. Merton’s jump-diffusion model

dSt
St

= µtdt+ σdWt +
(
eZ

s
t − 1

)
dNt − c(t)µ̄sdt, (2.51)

where

µt denotes the drift in return under physical measure;

σ denotes the constant volatility;
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Wt is standard Wiener processes with the same setting as in Illustration 2.1;

Nt is Poisson process for counting jump activities with constant instantaneous intensity

c(t) = c0;

ZS
t denote the random variable of jump size, when jump happens, and Zs

t ∼ N (µs, σs),

and µ̄s = E
[
eZt
]
− 1 = eµs+

1
2
σ2
s − 1;

By adding jumps to the return dynamic of the Heston model, Bates (1996) proposes

a stochastic volatility jump model. The jumps are modeled as a compounded Poisson

process, which is composed of a normally distributed jump size and a constant jump

intensity. The dynamics of the Bates model are defined as follows:

Illustration 2.2. Bates model

under P
dSt
St

= µtdt+
√
VtdWt +

(
eZ

s
t − 1

)
dNt − c(t)µ̄sdt

dVt = κ (θ − Vt) dt+ σ
√
VtdBt;

(2.52)

under Q
dSt
St

= (rt − qt)dt+
√
VtdW

Q
t +

(
eZ

s
t − 1

)
dNQ

t − c(t)Qµ̄Q
s dt

dVt = κQ
(
θQ − Vt

)
dt+ σ

√
VtdB

Q
t ,

(2.53)

where

µt, rt and qt denote the same terms as in Illustration 2.1;

κ, θ and σ are given as in Definition 2.2 under P;

Wt and Bt are standard Wiener processes with the same setting as in Illustration 2.1;

Nt, c(t) and Zs
t follow the same definition of the Poisson process, jump intensity and

random jump size as in the Merton model (see Definition 2.3);(
κQ, θQ

)
are the corresponding values for the volatility process under risk-neutral measure

and σ is the same under both measures as in Illustration 2.1;(
µ̄Q
s , σ

Q
s , c

Q
0

)
18 are the corresponding values for jump part under risk-neutral measure;

µt is defined in a similar manner as in Illustration 2.1, whereas γt contains a additional

jump part, as follows,

γt = ηsVt + c0µ̄− cQ0 µ̄Q. (2.54)

18In Illustration 2.2, these three terms are specified differently under both measures. As in literature,
however, the same settings for jump in return impose that c0 = cQ0 and σs = σQ

s .
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WQ
i,t, B

Q
i,t, N

Q and ZQ are the corresponding risk-neutral Wiener processes, Poisson pro-

cesses and jump sizes.

The Bates model (Illustration 2.2) only includes a two-sided Gaussian random jump size,

but it is widely observed that large infrequent price movements happen differently in

both directions, which causes the tails to differ. In order to accommodate this feature,

Kou (2002) proposes a model with double exponential jumps in return. For simplicity

only the dynamic under physical measure of Kou’s model is discussed. The definition is

given by

Definition 2.4. Double exponential jump model

under P
dSt
St

= µtdt+ σdWt +
(
eZ

+
t − 1

)
dN+

t − c+(t)µ̄+dt

+
(
eZ

−
t − 1

)
dN−

t − c−(t)µ̄−dt,

(2.55)

where

µt, σ and Wt are defined in the same manner as in Illustration 2.1;

Z+
t and Z̃t

−
(Z−

t := −Z̃t
−
)19are exponentially distributed jump size with mean 1/λ+ and

1/λ− respectively;

µ̄+ = E
[
eZ

+
t

]
− 1 = (1− (λ+)−1)−1 and µ̄− = E

[
eZ

−
t

]
− 1 = (1− (−λ−)−1)−1;

N+
t and N−

t are Poisson processes for counting jump activities for positive and negative

jumps with instantaneous intensities c+(t) = c0 and c−(t) = 1− c0 respectively.

2.2.3 Jumps in Volatility and Stochastic Jump Intensity

A model that incorporates jumps improves the statistical fit of the tails of the return

distribution in. One may, however, wonder whether the independent Poisson process

with constant intensity is able to capture the empirical patterns of large price movements.

Using constant jump intensity remains limited, especially in the case of time-invariant

crash risk, where the likelihood of another crash occurrence remains the same as if there

had been one the day before. In order to resolve this potential misfit, Bates (2000) and

Pan (2002) propose an approach to model the stochastic jump intensity, as follows:

c(t) = c0 + c1Vt,
20 (2.56)

19Specifically, the probability density function of Z−
t is f(x;λ−) =

{
0, if x > 0

λ−e−λ−|x|, if x ⩽ 0
.
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where Vt denotes the volatility term the same as in Illustration 2.1. Based on this style of

link between jump intensity and volatility, high volatility follows high jump probability.21

Even so, there is still a potential misfit if the probability of the occurrence of a jump is tied

to volatility in the linear relationship. In the literature, realized volatility is similar before

and after the 1987 market crash, but the time-invariant probability of jumps, which is

derived from a linear relationship between jump intensity and volatility, is misspecified.

Fulop and Li (2019), among others use the self-exciting jump, which means the large

price movement is followed by a second large price movement. As a result, AJD models

are extended to include another process that governs the dynamic of jump intensity. In

addition, recent empirical studies indicate that an increase in asset prices is related to an

increase in asset volatility, indicating a co-jump between price and volatility.

Fulop and Li (2019) uses several models22 that accommodate the aforementioned empir-

ical patterns for their study on S&P 500 index and its variance swaps. Following the

definition of their AJD models, the same definition of dynamic of underlying stock price,

volatility and jump intensity are given as follows:

Illustration 2.3. SVUJ

under P
dSt
St

= µt dt+
√
VtdW1,t +

(
eZ

s
t − 1

)
dNt,−c(t)µ̄sdt,

dVt = κv (θv − Vt) dt+ σv
√
VtdB1,t + Zv

t dNt,

dUt = κu (θu − Ut) dt+ σu
√
UtdW2,t + βdNt,

(2.57)

under Q
dSt
St

= (rt − qt) dt+
√
VtdW

Q
1,t +

(
eZ

S,Q
t − 1

)
dNQ

t

− c(t)µ̄Q
s dt,

dVt = κQv
(
θQv − Vt

)
dt+ σv

√
VtdB

Q
1,t + Zv,Q

t dNQ
t ,

dUt = κQu
(
θQu − Vt

)
dt+ σu

√
UtdW

Q
2,t + βQdNQ

t

(2.58)

where

µt denotes the drift in return under physical measure;

rt and qt denotes the risk-free rate and dividend rate, respectively;

20In Bates (2000), the relationship is given as c(t) = c0+c1V1,t+c2V2,t due to the multi-factor setting
for volatility in his model.

21The relationship is true, when c1 is assumed to be positive.
22Both affine and non-affine models are used in their paper.
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κv, θv and σv are given as in Definition 2.2 under P for the factor Vt;

κu, θu and σu are given as in Definition 2.2 under P for the factor Ut;

W1,t, W2,t and B1,t are standard Wiener processes. The processes W1,t, W2,t are indepen-

dent. The processes W1,t and B1,t are correlated with coefficient ρ ∈ [−1, 1];

Nt is Poisson process with the jump intensity c(t) = Ut;

Zs
t is the jump size with normal distribution with mean µs and variance σs(= σQ

s ) and

µ̄s = E
[
eZt
]
− 1 = eµs+

1
2
σ2
s − 1;

Zv
t is the random jump size with exponentially distribution with mean 1/λv;

β denotes the constant jump size in jump intensity process;(
κQv(,u), θ

Q
v(,u), µ̄

Q
s , β

Q
)
are the corresponding values for the process risk-neutral measure.

WQ
1,t,W

Q
1,t, B

Q
1,t, N

Q
t , Z

s,Q
t and Zv,Q

t are the corresponding Wiener processes, Poisson pro-

cess and random jump sizes under risk-neutral measure.

In addition, for the risk premium of variance and jump intensity one has ηv(,u) = κQv(,u)−
κv(,u) , θ

Q
v(,u) =

κv(,u)θv(,u)

κQ
v(,u)

. This risk-premia specification imposed a restriction κv(,u)θv(,u) =

κQv(,u)θ
Q
v(,u) (see Broadie et al. (2007)). The risk-neutral model, as mentioned above, has

exactly the same structure as the one that is under the physical measure. Finally, based

on the specification of risk premiums for different risks, µt = rt − qt + γt with

γt = ηsVt + Ut
(
µ̄s − µ̄Q

s

)
.23

In addition, there is another series of multi-factor AJD models under Q proposed by

Andersen et al. (2015b) and Andersen et al. (2020) 24, who use information from option

surfaces to characterize the dynamics of the underlying return and extract latent factors.

In Andersen et al. (2015b), they show that their three-factor model provides a superior

out-of-sample fit to implied volatility skew and term structure.25 Following Kou (2002),

their models include two separate exponentially distributed jumps in the return dynamic.

23In Fulop and Li (2019), they leave µt unspecified, but constant.
24With the help of the estimation methodology by Andersen et al. (2015a), they avoid specifying

the return dynamic physical measure P, as the task is only to extract latent states and estimate static
parameters under Q.

25Specifically, the IV skew measures the IV gap between short-dated OTM put and OTM call options,
whereas the skew term structure is obtained from the difference between the IVs computed from long-
and short-dated options (see Andersen et al. (2015b), page 561).
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Moreover, there is a separate process that determines jump intensity: Ut, a pure jump

process without diffusion risk in it. Based on the estimation results for S&P 500 in-

dex option surfaces, it is evident that only the coefficient of negative jump intensity is

significantly different from zero. As a result, they allow only negative jumps associated

with stochastic jump intensity. When volatility remains constant, as demonstrated in the

aforementioned empirical situation, the intensity of jumps can change dramatically.

Meanwhile, the random jump sizes in volatility and jump intensity are deterministically

related to the negative jump size in the return process. Additionally, the model proposed

by Andersen et al. (2015b) is equipped with two different volatility factors and a jump

intensity factor. Andersen et al. (2020), on the other hand, confine their model to a single

volatility factor and a single jump intensity factor. Furthermore, they demonstrate that

the restricted version of the model can produce nearly the same results for state recovery

as Andersen et al. (2015b)’s model.

In this regard, I present only the lean version of their models. The model dynamics are

defined as follows:

Definition 2.5. AFTQ

under Q:

dSt
St

= (rt − qt) dt+
√
VtdW

Q
1,t +

(
eZ

+,Q
t − 1

)
dN+,Q

t − c+ (t) µ̄+,Qdt

+
(
eZ

−,Q
t − 1

)
dN−,Q

t − c− (t) µ̄−,Qdt

dVt = κQv
(
θQv − Vt

)
dt+ σv

√
VtdB

Q
1,t + µv

(
Z−,Q
t

)2
dN−,Q

t

dUt = −κQuUtdt+ µu

(
Z−,Q
t

)2
dN−,Q

t ,

(2.59)

where

κQv , θ
Q and σv are given as in Definition 2.2 under Q for the factor Vt;

κQu and σu are given as in Definition 2.2 under Q for the factor Ut;

WQ
1,t, W

Q
2,t and B

Q
1,t are standard Wiener processes. The processes WQ

1,t, W
Q
2,t are indepen-

dent. The processes WQ
1,t and B

Q
1,t are correlated with coefficient ρ ∈ [−1, 1];

N+,Q
t andN−,Q

t are Poisson processes for counting jump activities for positive and negative

jumps with instantaneous intensities c+(t) = c+0 and c−(t) = Ut respectively;

Moreover, the identity of N−,Q
t in all the factors implies that St shares the negative
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exponential jump, Vt and Ut, i.e., the jump in St, Vt and Ut arises at the same time with

the same realization of jump size;

Z+,Q
t and Z̃t

−,Q
(Z−,Q

t := −Z̃t
−,Q

)26are exponentially distributed jump size with mean

1/λ+ and 1/λ− respectively;

µ̄+,Q = E
[
eZ

+,Q
t

]
− 1 = (1− (λ+,Q)−1)−1 and µ̄−,Q = E

[
eZ

−,Q
t

]
− 1 = (1− (−λ−,Q)−1)−1;

As a final step, the previously discussed building blocks are blended together. This creates

a “new” model that will serve as the primary concrete working model in subsequent

chapters. The model accommodates stochastic volatility and stochastic negative jump

intensity. Additionally, its specifications of jump sizes in return, volatility, and jump

intensity are similar to that of Andersen et al. (2020). Therefore, following Andersen et al.

(2020) , Bardgett et al. (2019)27, Gruber et al. (2021) and the assumption of equivalence

of model structure under the physical measure (P) and the risk-neutral measure (Q), the

data generating processes for the stock price St, the instantaneous diffusive variance Vt,

and the negative jump intensity Ut under both measures are defined as follows:

Illustration 2.4. SVNUJ

under P:
dSt
St

= µtdt+
√
VtdW1,t +

(
eZ

+
t − 1

)
dN+

t − c+(t)µ̄+dt

+
(
eZ

−
t − 1

)
dN−

t − c−(t)µ̄−dt

dVt = κv (θv − Vt) dt+ σv
√
VtdB1,t + µv

(
Z−
t

)2
dN−

t

dUt = κu(θu − Ut)dt+ σu
√
UtdW2,t + µu

(
Z−
t

)2
dN−

t ,

(2.60)

The log return process for the stock price lnSt has the form via applying Itô.

d lnSt =

(
µt −

1

2
Vt

)
dt+

√
VtdW1,t + Z+

t dN
+
t − c+(t)µ̄+dt+ Z−

t dN
−
t − c−(t)µ̄−dt.28

26Specifically, the probability density function of Z−,Q
t is f(x;λ−,Q) =

{
0, if x > 0

λ−,Qe−λ−,Q|x|, if x ⩽ 0
.

26Based on Definition 2.5, the dynamic of Ut under Q has the form:

dUt = −κQ
uUtdt+ µu

(
Z−
t

)2
dN−,Q

t ,

which is equivalent to specifying θu = 0 and σu = 0 in Eq. (2.60) or Eq. (2.61)
27According to Bardgett et al. (2019), the dynamic of Ut under P and Q is defined as follows:

dUt = κu(θu − Ut)dt+ σu

√
VtdW2,t,

where jumps are excluded.
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under Q:

dSt
St

= (rt − qt) dt+
√
VtdW

Q
1,t +

(
eZ

+,Q
t − 1

)
dN+,Q

t − c+ (t) µ̄+,Qdt

+
(
eZ

−,Q
t − 1

)
dN−,Q

t − c− (t) µ̄−,Qdt

dVt = κQv
(
θQv − Vt

)
dt+ σv

√
VtdB

Q
1,t + µv

(
Z−,Q
t

)2
dN−,Q

t

dUt = κu,Q(θ
Q
u − Ut)dt+ σu

√
UtdW

Q
2,t + µu

(
Z−,Q
t

)2
dN−,Q

t ,

(2.61)

where

W1,t, W2,t and B1,t are standard Wiener processes. The processes W1,t, W2,t are indepen-

dent. The processes W1,t and B1,t are correlated with coefficient ρ ∈ [−1, 1];

N+
t and N−

t are Poisson processes for counting jump activities for positive and negative

jumps with instantaneous intensities c+(t) = c+0 and c−(t) = Ut respectively;

The identity of N−
t and N−,Q

t imply the same pattern as in Definition 2.5 for both

measures;

Z+
t and Z̃t

−
(Z−

t := −Z̃t
−
)29are exponentially distributed jump size with mean 1/λ+ and

1/λ− respectively;

µ̄+ = E
[
eZ

+
t

]
− 1 = (1− (λ+)−1)−1 and µ̄− = E

[
eZ

−
t

]
− 1 = (1− (−λ−)−1)−1;(

κQv , θ
Q
v , κ

Q
u , θ

Q
u

)
are the corresponding values for the process risk-neutral measure;(

λ+,Q, λ−,Q, µ̄+,Q, µ̄−,Q) are the corresponding values for the process risk-neutral mea-

sure, meaning that the the decay parameters of jump sizes can be different by following

Bardgett et al. (2019) and Gruber et al. (2021);

WQ
1,t,W

Q
2,t, B

Q
1,t, N

+(,−),Q and Z+(,−),Q are the corresponding risk-neutral Wiener processes,

Poisson processes and exponential jump sizes. Moreover, one follows the literature (see

Broadie et al. (2007), Bardgett et al. (2019) and Gruber et al. (2021)) by assuming that

both P and Q are associated with the same jump intensities.

28In the implementation we have

d lnSt =
(
rt − qt + (ηt − 0.5)Vt − c+(t)µ̄+,Q − c−(t)µ̄−,Q) dt+√VtdW1,t + Z+

t dN+
t + Z−

t dN−
t

29Specifically, the probability density function of Z−
t is f(x;λ−) =

{
0, if x > 0

λ−e−λ−|x|, if x ⩽ 0
.
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The drift in return µt = rt − qt + γt under P , with excess return γt, which is defined of

the form

γt = ηsVt + c+(t)(µ̄+ − µ̄+,Q) + c−(t)(µ̄− − µ̄−,Q). (2.62)

As mentioned among Bates (2000), Broadie et al. (2007), Bardgett et al. (2019), Fulop

and Li (2019) and Gruber et al. (2021), the “differences” between parameters under P and

Q are interpreted as risk premiums in arbitrage-free dynamic asset pricing models. Let

1/λ+ − 1/λ+,Q (resp.
(
−1/λ− − (−1/λ−,Q)

)
) denote the mean of the jump risk premium

for a positive (resp. negative) jump. The diffusive volatility risk premium 30 and the

negative jump intensity premium 31 are defined as ηi = κi − κQi , i ∈ {v, u} respectively.
Furthermore, the market risk premium for volatility is assumed to be linear. Finally, ρ,

σi and κiθi, i ∈ {v, u} are restricted to be the same under P and Q32.

2.3 Model-free Risk-neutral Moments and Cumu-

lants

As mentioned in Bakshi et al. (2003), any payoff function with bounded expectation

can be spanned by a continuum of out-of-the-money European calls and puts based on

the results of Bakshi and Madan (2000). Therefore, the entire set of twice-continuously

differentiable payoff functions, H(S), can be spanned as follows:

H(S) = H(S∗) + (S − S∗)HS(S
∗) +

∫ ∞

S∗
HSS(K)(S −K)+dK

=

∫ S∗

0

HSS(K)(K − S)+dK.
(2.63)

Assuming the risk-free rate rf is constant between t and t + τ , the fair market value of

the contingent-claim H(S) is as follows:

EQ
t

[
e−rf τH(S)

]
= e−rf τ (H(S∗)− S∗HS(S

∗)) +HS(S
∗)St

+

∫ ∞

S∗
HSS(K)C (t, τ,K) dK

+

∫ S∗

0

HSS(K)P (t, τ,K) dK.

(2.64)

30In Bates (2000), he restricts κQ
v − κv < 0. It implies negative variance risk premium.

31In Bardgett et al. (2019) they restrict κQ
u −κu = 0, while in Fulop and Li (2019) ηu =

(
κQ
u − κ

)
/σu.

32These identity restrictions are imposed in the literature. For further explanation, see Broadie et al.
(2007)
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The log return of stock price is defined as Rs(t, τ) := lnSt+τ−lnSt in the previous section,

and Mn,Rs(t,τ) = EQ
t [R

n
s (t, τ)] follows from the definition of raw moments in Eq. (2.10).

Furthermore, Bakshi et al. (2003) defines the fair market value of raw moments from the

second-order to fourth-order: V(t, τ) = EQ
t [e

−rf τR2
s(t, τ)], W(t, τ) = EQ

t [e
−rf τR3

s(t, τ)],

and Z(t, τ) = EQ
t [e

−rf τR4
s(t, τ)]. Based on equation Eq. (2.64), those fair values are

observable weighted portfolios of OTM option contracts:

V(t, τ) =
∫ ∞

St

2
(
1− ln

(
K
St

))
K2

C (t, τ,K) dK

+

∫ St

0

2
(
1 + ln

(
St

K

))
K2

P (t, τ,K) dK,

W(t, τ) =

∫ ∞

St

6 ln
(
K
St

)
− 3

(
ln
(
K
St

))2
K2

C (t, τ,K) dK

−
∫ St

0

6 ln
(
St

K

)
+ 3

(
ln
(
St

K

))2
K2

P (t, τ,K) dK,

Z(t, τ) =
∫ ∞

St

12
(
ln
(
K
St

))2
− 4

(
ln
(
K
St

))3
K2

C (t, τ,K) dK

+

∫ St

0

12
(
ln
(
St

K

))2
+ 4(ln

(
St

K
)
)3

K2
P (t, τ,K) dK.

(2.65)

Following Bakshi et al. (2003)33, we have the µ(t, τ) := EQ
t [Rs(t, τ)], which can be derived

as follows:

µ(t, τ) = erf τ − 1− erf τ

2
V(t, τ)− erf τ

6
W(t, τ)− erf τ

24
Z(t, τ).

In addition, it is popular to characterize the density using a normalized version of central

moments. It is worth stressing that the second-order normalized central moments are the

same as the second cumulant. In Bakshi et al. (2003), the second, third, and fourth nor-

malized central moments are defined as variance, skewness, and kurtosis, respectively34:

Var(Rs(t, τ)) := EQ
t

[(
Rs(t, τ)− EQ

t [Rs(t, τ)]
)2]

= erf τV(t, τ)− µ(t, τ)2,
(2.66)

33Proof of Theorem 1. in Appendix of Bakshi et al. (2003)
34Vilkov (2021) provides implementation details for the various versions of risk-neutral moments.
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skew(Rs(t, τ)) :=
EQ
t

[(
Rs(t, τ)− EQ

t [Rs(t, τ)]
)3]

EQ
t

[(
Rs(t, τ)− EQ

t [Rs(t, τ)]
)2] 3

2

=
erf τW(t, τ)− 3µ(t, τ)erf τV(t, τ) + 2µ(t, τ)3

(erf τV(t, τ)− µ(t, τ)2)
3
2

,

(2.67)

and

kurt(Rs(t, τ)) :=
EQ
t

[(
Rs(t, τ)− EQ

t [Rs(t, τ)]
)4]

EQ
t

[(
Rs(t, τ)− EQ

t [Rs(t, τ)]
)2]2

=
erf τZ(t, τ)− 4µ(t, τ)erf τW(t, τ)− 6erf τµ(t, τ)2V(t, τ) + 3µ(t, τ)4

(erf τV(t, τ)− µ(t, τ)2)2
.

(2.68)

The relationships between cumulants and normalized central moments are

K2,Rs(t,τ) = E
[
(Rs(t, τ)− E [Rs(t, τ)])

2] = Var(Rs(t, τ)),

K3,Rs(t,τ) = E
[
(Rs(t, τ)− E [Rs(t, τ)])

3] ,
K4,Rs(t,τ) = E

[
(Rs(t, τ)− E [Rs(t, τ)])

4]− 3Var(Rs(t, τ))
2.

(2.69)

Thus, the model-free cumulants can be obtained as follow:

K2,Rs(t,τ) = Var(Rs(t, τ)),

K3,Rs(t,τ) = skew(Rs(t, τ))Var(Rs(t, τ))
3
2 ,

K4,Rs(t,τ) = (kurt(Rs(t, τ))− 3)Var(Rs(t, τ))
2.

(2.70)



3 Inference Methods

In this chapter, the essential technicalities and methodologies involved in performing

inference tasks for latent affine jump-diffusions are discussed. As mentioned in the in-

troduction, one of the primary objectives of this thesis is to provide an overview of how

to estimate AJD models in empirical studies with limited computational capabilities. A

review of several essential techniques and methodologies for tackling estimation tasks in

the literature is presented in this chapter. The methods related to or used in the subse-

quent empirical application will be explained in more detail. The rest of this chapter is

organized as follows: Section 3.1 discusses the primary task of estimating AJD models

within the no-arbitrage setting and gives a brief survey of literature about various estima-

tion approaches. Section 3.2 discusses general methods for translating AJD models into a

state-space model. Section 3.3 reviews the two widely used filtering techniques used in the

literature. Section 3.4 presents the penalized nonlinear least squares method proposed

by Andersen et al. (2015a). Finally, Section 3.5 discusses likelihood-based estimation

methodologies.

3.1 Review of the Literature

Affine jump-diffusions are widely used to model the dynamics of asset returns and the

associated statistical factors, as discussed in Section 2.1. In particular, logarithmic equity

price movements are typically modeled using AJDs in the empirical analysis of dynamic

asset pricing models. The processes are composed of one primary process which rep-

resents the return dynamic, and a number of accompanying processes which describe

the persistent time-varying statistical factors that characterize conditional distributions.

The accompanying processes often represent hidden factors, such as stochastic volatility

terms, jump intensities, and long-run means. For example, the Heston model for option

pricing - an affine jump-diffusion version of modeling stochastic volatility of logarithmic

37
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equity returns, is discussed in Illustration 2.1. In addition, the stochastic jump intensity

(see, e.g., Fulop and Li (2019) and Andersen et al. (2015b)) and stochastic long-run mean

35 (see, e.g., Bardgett et al. (2019)) are used in the literature. Moreover, in the litera-

ture on term structure models (see, e.g., Dai and Singleton (2000), Duan and Simonato

(1999), among others), the dynamics of interest rates are also modeled by AJDs. Based

on the discussion in Section 2.1 concerning the reduced form dynamic asset pricing mod-

els, the actual density of state transitions between sampling points is determined under

the physical measure, while the fair prices in the no-arbitrage setting are determined

by the state-dependent time-varying conditional density under Q. Thus, observations

of forward-looking quantities36 can be viewed as information about the state-dependent

conditional density at each sampling time point. Meanwhile, the trajectories of persis-

tent time-varying latent states can be viewed as a realization of latent factors’ dynamics

over the entire timeframe. Hence, forward-looking quantities can be used both to de-

termine static parameters under risk-neutral measures and to identify the trajectories

of latent states simultaneously. Due to the discrete sampling interval and the state-

dependent model implied conditional distribution, the estimation procedure involves two

steps, namely, the calibration of static parameters as well as the inference of persistent la-

tent states at every sampling point. Thus, the task of inference for AJDs (more precisely,

the latent AJDs) is in general twofold, as follows:

• First, given static model parameters, the recovery of latent states is performed by

using information from the observed data for each time point. This filtering step

can be seen as a function that returns the trajectories of latent states, given the

static parameters of the AJDs.

• Second, parameter calibration is carried out in order to obtain the “best” static pa-

rameters for fitting the state-dependent model’s implied quantities to the observed

data over the entire time span with the filtering function in the first step.

In general, the estimation procedures discussed below follow the twofold approach out-

lined above. Target models are not necessarily limited by the dynamics modeled by AJD

processes. Using rich observations to estimate AJD models, Broadie et al. (2007) are the

first to apply a nonlinear least squares approach to estimate static parameters under the

risk-neutral measure (Q). They assume that the parameters under the physical measure

35To model the term structure of interest rates, Chen (1996) proposes an interest rate model with a
stochastic long-run mean.

36Quantities include the prices of forward-looking derivatives or their transformations.
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(P) are known. Andersen et al. (2015a) develop another novel procedure similar to the

nonlinear least square approach. They avoid imposing a parametric transition density

for the latent states under P. According to Andersen et al. (2015b) and Andersen et al.

(2020), rich observations from option markets can be used to identify the static param-

eters of the models under Q and the latent states. By incorporating rich observations

from the option market, this procedure is capable of estimating static parameters under

Q and inferring latent states.

Suppose the parametric assumption is imposed on the transition of states under P. In

that case, the state-space model provides the framework within which standard filtering

techniques (e.g., the Kalman filter and particle filter, among others) can be applied to

infer latent states. For parametric models in a continuous-time setting, one can apply

discretization techniques to obtain the corresponding state-space model. Johannes et al.

(2009) initialize a particle filtering-based approach to estimate the trajectories of the la-

tent states for AJD models with asset returns. Christoffersen et al. (2010) use a particle

filter and observed return time-series to perform the recovery of latent states, while the

static parameters under Q are calibrated by means of a nonlinear least-square approach.

It is also popular in the literature to estimate static parameters and latent states simul-

taneously by a particle filter. In contrast to the approach of Christoffersen et al. (2010),

Bardgett et al. (2019) incorporate index options, VIX options and the underlying’s re-

turns in the filtering step inside each particle. The static parameters are calibrated by

maximizing the implied likelihood calculated from the particle filter. As an alternative to

applying option prices, in Fulop and Li (2019), variance-swaps, which provide information

about the second moment of conditional density, are used in each particle.

In contrast to the universality of the particle filter, the Kalman filter is only applicable

when the state-space model is linear and Gaussian. Therefore, the Kalman filter is typi-

cally used to estimate the term structure model with AJDs in the literature. The linear

relationship between bond yield and latent states is concluded in Eq. (2.26). In this case,

the Gaussianity of measurement holds if the measurement errors are Gaussian. Transition

density with AJDs, however, does not always fulfill the Gaussianity requirement. Duan

and Simonato (1999) propose the corresponding approximation for the state equations

and make the Kalman filter applicable to the affine term structure model. Furthermore,

Feunou and Okou (2018) use the risk-neutral cumulants of return density in the filtering

step, since these cumulants are similar to bond yields, which have a linear relationship

to the latent states. As discussed in Section 2.1.2, these risk-neutral cumulants can be
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obtained from observed option prices in a model-free way. In general, if the primary

task is to estimate the risk-neutral density implied by AJDs and infer the trajectories of

the latent states for the option market, it is not necessarily necessary to use the index

return density under physical measure. With the aid of rich information gathered from

option markets, Andersen et al. (2015b) and Andersen et al. (2020) demonstrate that it

is possible to estimate the static parameters of their AJD models accurately. As part of

the estimation, latent states can be successfully recovered as well.

3.2 State-Space Model and Discretization

3.2.1 State-Space Model

In order to estimate affine term structure models, Duan and Simonato (1999) propose

a quasi-maximum likelihood approach based on the Kalman filter. For the estimation

task of AJD models using the Kalman filter, these continuous-time models must first

be converted into discrete-time models through some discretization methods, and then

converted into state-space models.

Let T 37 > 0, N ∈ N,∆t = T/N38 and tn = n∆t. A state-space model contains two

discrete time series, which are

Xt0:tN := (Xt0 , . . . , XtN ) ∈ X and Yt0:tN := (Yt0 , . . . , YtN ) ∈ Y, (3.1)

where X and Y are multi-dimensional Euclidean spaces.

For notational simplicity, Xt0:tN and Yt0:tN are redefined as

X0:T := (X0, . . . , XT ) and Y0:T := (Y0, . . . , YT ) (3.2)

respectively, assuming that the time step between t− 1 and t is always ∆t. In general,

the process Y0:T is assumed to be observed, whereas the process X0:T is not. Moreover, for

the processes X0:T and Y0:T , y0:T = (y0, . . . , yT ) and x0:T = (x0, . . . , xT ) denote the their

realizations, respectively. The static parameters, which specify the concrete dynamics of

the models, are summarized in the vector θ ∈ Θ.

Definition 3.1. Following Chopin et al. (2020), the definition of a general state-space

37In this thesis, all the models are offline models, the last time point T is assumed always given.
38In this thesis, the time steps are assumed always to be homogeneous.
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model is given as follows:

Yt = G (Xt, εt; θ) , 0 ≤ t ≤ T

Xt = F (Xt−1, ϵt; θ) , 1 ≤ t ≤ T

X0 = F̃0 (ϵ0; θ) ,

(3.3)

where G, F denote the deterministic functionals of the measurement equation and state

equation, respectively, F̃0 is the deterministic functional for the initialization of state

variables, and ε, ϵ denote the noise in terms of series of i.i.d random variables.

The state-space model can be interpreted in another form with density functions:

µ0(x0; θ)
T∏
t=0

g(yt|xt; θ)
T∏
t=1

f(xt|xt−1; θ), (3.4)

where g(yt|xt; θ) and f(xt|xt−1; θ) denote the density function of measurement equation

in terms of Yt|Xt, given (xt, θ) and density function of state equation in terms of Xt|Xt−1,

given (xt−1, θ), respectively. µ0(x0; θ) denotes the density function of initial distribution.

If there was perfect identification of the observations with their hidden states, it would

be possible to evaluate the data distribution. The decomposition

p (y0:T ; θ) = p (y0; θ)
T∏
t=1

p (yt|y0:t−1; θ)
39 (3.5)

requires the predictive likelihood

p (yt|y0:t−1; θ) =

∫
g (yt|xt; θ) f (xt|xt−1; θ) p (xt−1|y0:t−1; θ) dxtdxt−1. (3.6)

Among others, Duan and Simonato (1999), De Jong (2000) and Duffee and Stanton (2012)

suggest a Kalman filter-based approach for estimation of affine term structure models,

since bond yields in the context of multi-factor affine models are linear with respect to

latent factors by translating them into a linear Gaussian state-space system. In order to

fit the AJD models for empirical applications in equity option markets, it is natural to

use the option prices, underlying prices, and other observable quantities aggregate from

the option panels as observable quantities from the market, whereas the volatility terms,

stochastic jump intensities, and other statistical factors can be treated as latent states

39p(·) denotes a density function in general.
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in the models. As discussed extensively in Section 2.2, for the AJD models, the data

generating processes for modeling state equations are assumed under physical measure

P and the measurement equations are modeled under risk-neutral measure Q. Loosely

speaking, within the current estimation task, the parameters under P are tied to state

equations, which relate more to state variables as they evolve forward in time, and the

parameters under Q relate more to all observable forward-looking quantities presented

by the market. To illustrate the state-space model, its definition is concluded in the

Fig. 3.1.

Nevertheless, as demonstrated by Andersen et al. (2015a), if the rich information of

Figure 3.1: The structure of an SSM for a dynamic asset pricing model represented as
a graphical model.

forward-looking measurements under risk-neutral measure is taken into account, the tra-

jectories of the latent states over time can also be extracted accurately.

3.2.2 Discretization

Technically the discretization technique shares the essentially same spirit of simulating

the trajectories of SDE, i.e., it is equivalent to solving SDE numerically. In accordance

with the literature, simulation can be carried out by means of numerical schemes, e.g., the

Euler-Maruyama scheme (see Fulop and Li (2019) and Christoffersen et al. (2010)) or the

Milstein scheme (see Bardgett et al. (2019)). For pure diffusive SDE, both schemes exhibit

a weak order of convergence40of γ = 1 but our aim is to get consistent estimators for the

trajectories necessary for parameter estimations. While the Milstein scheme exhibits a

strong order of convergence γ = 1 as opposed to γ = 1
2
for the Euler-Maruyama scheme

(see Kloeden and Platen (1992)), it involves the numerical approximation of a derivative.

This makes it impractical for the AJD models where the runtime increases when options
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are incorporated. Throughout this thesis, the Euler-Maruyama scheme is used. Based

on Platen and Bruti-Liberati (2010)’s general definition of the Euler-Maruyama scheme

with jumps, the descretization of the Merton model under P can be derived as

lnSt = lnSt−1 + (µt −
1

2
σ − c0µ̄)∆t+ σ∆Wt + Zs

t∆Nt, (3.7)

where

∆Nt = Nt −Nt−1 ∼ Bernoulli(λ∆t) (3.8)

and

∆Wt = Wt −Wt−1 ∼ N (0, ∆t). (3.9)

The static parameters are defined precisely the same as in Definition 2.3.

Moreover, as another illustrative example, the descretization of the Heston model in

Illustration 2.1 can be derived as follows:

lnSt = lnSt−1 + (µt −
1

2
Vt−1)∆t+

√
Vt−1

(
ρ∆W1,t +

√
1− ρ2∆W2,t

)
Vt = Vt−1 + κ(θ − Vt−1)∆t+ σ

√
Vt−1∆W1,t,

(3.10)

where

{µt, ρ, κ, θ, σ} denote the same terms as in the Heston model ( As shown in Illustration 2.1,

and especially for the definition of µt see Eq. (2.50). );

∆W1,t and ∆W2,t are independent random variables, which follows the same definition in

Eq. (3.9).

Following the concrete example from Fulop and Li (2019), the discretization of the pri-

mary objective model (see Illustration 2.4) can be done by using the Euler-Maruyama

40Let T > 0 and set up the partition ([ti−1, ti])i=1,...,N for t0 := 0, tN := T and let δ := maxi=1,...,N |ti−
ti−1| the maximum time increment. A discrete-time process Xi ≈ X (ti) is said to converge

• strongly with order γ > 0 if there is a constant C > 0 independent of δ with

max
i=0,...,N

E
[
|X (ti)−Xi|

]
≤ Cδγ .

• weakly with order γ > 0 w.r.t. a function F : R → R if there is a constant C > 0 independent of δ
with

max
i=0,...,N

|E
[
F (X (ti))

]
− E

[
F (X (ti))

]
| ≤ Cδγ .

Strong convergence means pathwise convergence while weak convergence means the convergence of mo-
ments (F (x) = x) or probabilities.



3. INFERENCE METHODS 44

scheme, as follows:

lnSt = lnSt−1 + (µt −
1

2
Vt−1 − c+0 µ̄+ − Ut−1µ̄

−)∆t

+
√
Vt−1

(
ρ∆W1,t +

√
1− ρ2∆W2,t

)
+ Zs,+

t ∆N+
t + Zs,−

t ∆N−
t

Vt = Vt−1 + κv(θu − Vt−1)∆t+ σv
√
Vt−1∆W1,t + µv(Z

s,−
t )2∆N−

t

Ut = Ut−1 + κu(θu − Ut−1)∆t+ σu
√
Ut−1∆W3,t + µu(Z

s,−
t )2∆N−

t ,

(3.11)

where{
µt, µ̄

+, µ̄−, c+0 , ρ, σv, σu, Z
s,+
t , Zs,−

t

}
are defined in the same as in the definition of the

SVNUJ model (see Illustration 2.4, and especially for the definition of µt see Eq. (2.62));

∆N+
t ∼ Bernoulli(c+0 ∆t) and ∆N−

t ∼ Bernoulli(Ut−1∆t);

∆W1,t, ∆W2,t and ∆W3,t are independent normally distributed random variables, which

follows the same definition in Eq. (3.9).

3.2.3 Linear Gaussian Approximation

Due to the outstanding tractability and ease of implementation, the Kalman filter (see

the discussion in Section 3.3.1) is extensively used in the task of estimating the modern

affine term structure model, which is equipped with affine processes defined in Defini-

tion A.1. However, the pre-requirement of applying the Kalman filter lies in the fact

that the state-space model must fulfill the linear Gaussian structure in both the mea-

surement equation and state equation from Definition 3.1. Naturally, within the affine

set-up, the term structure model implied bond yields to be linear w.r.t. latent states

(see Eq. (2.26)). Thus, for estimating the term structure model, the state-space model

has a linear Gaussian measurement equation if the measurement error is assumed to be

Gaussian and addictive. While the actual limitation lies in the state equation, which

is linear, but non-Gaussian in affine term structure models that accommodate stochstic

volatility. To fit the pre-requirement of Gaussian transition density, Duffee and Stanton

(2012) and Monfort et al. (2017) proposed an approximation of state equation by using

Gaussian density with the same first two moments of the original conditional transition

density. When approximation is applied, the parameter estimates obtained directly from

maximum likelihood estimation based on the Kalman filter are not consistent. However, a

Monte Carlo study shows that the inconsistency may be of limited significance in practice

when the underlying state-space model is linear but with heteroskedastic volatility.
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In general, a linear Gaussian state equation can be expressed as follows:

Xt = Φ0 + Φ1Xt−1 + ϵt, ϵt ∼ N (0,Σt) , (3.12)

where N denotes a multi-variant normal distribution.

Similarly to term structure models, the Heston model (see Illustration 2.1) with dis-

cretization under P is defined as in Eq. (3.10). The state equations are given as follows:

Vt = κθ∆t+ (1− κ∆t)Vt−1 + σ
√
Vt−1∆Wt. (3.13)

As a result of fitting the first two moments of the conditional density, one can obtain a

linear Gaussian approximation that involves the following coefficients:

Φsv
0 = κθ∆t, Φsv

1 = (1− κ∆t),

Σsv
t = σ2Vt−1∆t.

(3.14)

Furthermore, for Illustration 2.4 with discretization as stated in Eq. (3.11), we have

Vt = κvθv∆t+ (1− κt∆t)Vt−1 + σv
√
Vt−1∆W1,t + µv(Z

s,−
t )2∆N−

t ,

Ut = κuθu∆t+ (1− κ∆t)Ut−1 + σu
√
Ut−1∆W2,t + µu(Z

s,−
t )2∆N−

t ,
(3.15)

Since ∆W1,t,∆W2,t, Z
s,− and ∆N−

t are independent, by applying the same idea the linear

Gaussian approximation can be obtained as follows:

Φnuj
0 =

κvθv∆t
κuθu∆t

 , Φnuj
1 =

1− κv∆t µvλ̄
−∆t

0 1− κu∆t+ µuλ̄
−∆t

 (3.16)

and

Σnuj
t =

σ2
vVt−1∆t+ µ2

vσ
2
λ−Ut−1∆t µvµuσ

2
λ−Ut−1∆t

µvµuσ
2
λ−Ut−1∆t σ2

uUt−1∆t+ µ2
uσ

2
λ−Ut−1∆t

 . (3.17)

The λ̄− and σλ− are defined with the help of random variable Z̃t := (Zs,−
t )2 as follows,

λ̄− := E[Z̃t] =
2

(λ−)2
, σλ− :=

√
E[Z̃2

t ] =

√
24

(λ−)4
.41 (3.18)

41In general, for compounded Poisson process Yt =
∑Nt

i=1 Zi, where Nt with t ≥ 0 is a Poisson
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Further, in later simulation studies and empirical analyses, a zero covariance term42is

used to simplify the variance matrix:

Σ̃nuj
t =

σ2
vVt−1∆t+ µ2

vσ
2
λ−Ut−1∆t 0

0 σ2
uUt−1∆t+ µ2

uσ
2
λ−Ut−1∆t

 . (3.20)

3.3 Filtering Methods 43

In this section, filtering algorithms for state-space models are discussed. In the literature,

various filtering algorithms are applied in the empirical studies of dynamic asset pricing

models, including the Kalman filter, the extended Kalman filter, the particle filter, and

so forth. In order to perform the empirical analysis of cross-sectional option panels in

this thesis, the Kalman filter will be discussed in detail for handling the inference of the

corresponding AJD models. To round out the review, a brief introduction is provided to

the particle filter, which is a widely used method to estimate models for equity derivatives

markets.

process with rate λ and Zi with i ≥ 1 are independent and identically distributed random variables.
Approximating the mean and variance of a compounded Poisson process can be described as follows:

E [Yt] = E [Z1 + · · ·+ ZNt ] = E [Nt]E [Z1] = λtE [Z1]

Var [Yt] = E [Var [Yt|Nt]] + Var [E [Yt|Nt]]

= E [NtVar [Z1]] + Var [NtE [Z1]]

= E [Nt] Var [Z1] + Var [Nt] (E [Z1])
2

= λtVar [Z1] + λt (E [Z1])
2

= λtE
[
Z2
i

]
.

(3.19)

42Since we use the Kalman filter as an approximation for our model, we need to choose how we
approximate the variance in the state equation. One can treat a covariance matrix with zero covariance
terms as another choice of approximation. In general, it is also a reasonable choice. In the variance
matrix, only the jump part enters the covariance term and it is almost zero, when λ− gets larger.
Overall, the variance matrix is dominated by the variance coming from diffusion terms for many sets of
practical parameters. As a result, the effect of covariance terms with only jump parameters is negligible.

43This part is mainly based on the results of a research project with a C-RAM student. I would like
to thank Maximilian Kübler for his assistance.
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3.3.1 Kalman Filter

Following Durbin and Koopman (2012), the linear Gaussian state-space model (SSM)

takes the form
yt = Ztαt + ϵt, ϵt ∼ N (0, Ht) ,

αt+1 = Ttαt +Rtηt+1, ηt+1 ∼ N (0, Qt+1) .

At any time t+1, we want to determine which information should be used for updating. As

we know from our SSM, the current state αt directly reflects the distributional properties

of αt+1. Observations at time t + 1 will also reveal further information about αt+1. As

a result of the linear Gaussian structure, any observation and any state are normally

distributed, potentially in multiple dimensions. Therefore, it is justified to update both

the expectation and covariance structure each time a new observation is introduced.

Based on the observations, the states are bound by the following laws:

αt ∼ N
(
at|t, Pt|t

)
and αt+1 ∼ N (at+1, Pt+1) , (3.21)

where at|t is used to highlight the additional information yt (compared to at). Assuming

information up to t+1, the one-step ahead prediction error of yt helps us find a relationship

between at and at and at+1 at this particular time. The prediction error is as follows:

vt+1 = yt+1 − E (yt+1|Yt) = yt+1 − E (Zt+1αt+1 + ϵt+1|Yt) = yt+1 − Zt+1at+1,

since at+1 is the conditional expected state at time t+1 and the error ϵt+1 is independent

of previous observations. Considering the normality of the observations, vt+1 is also

normally distributed. In addition, at+1 and at|t have a linear relationship, as follows:

at+1 = E [Ttαt +Rtηt+1|Yt] = Tt E [αt|Yt] = Tt at|t.

As a result of an affine-linear operation, Pt+1 can be derived from Pt|t, as follow:

Pt+1 = Var [Ttαt +Rtηt+1|Yt]

= TtVar [αt|Yt] T⊤
t +RtQt+1R

⊤
t = Tt Pt|t T

⊤
t +RtQt+1R

⊤
t .

In order to establish a relation between at+1 and at, we must find relationships between

at and at|t, i.e., It is critical that we determine the additional information that yt provides
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in relation to the observations passed. By expressing at|t in terms of at, we have

at|t = E [αt|Yt] = E [αt|Yt−1, vt] = E [(αt|vt) |Yt−1] ,

since knowledge of the actual observation yt is equivalent to knowing the explicit value of

the one-step ahead prediction error. Using the regression lemma (Lemma 1 in subsection

4.2 of Durbin and Koopman (2012)), we are able to reach at|t, and therefore we need to

verify that αt and vt (given Yt−1) are both normally distributed. It suffices to show that

the projection c⊤αt + d⊤vt is normally distributed ∀c ∈ Rm, ∀d ∈ Rp:

c⊤αt + d⊤vt =
(
c⊤ + d⊤Zt

)
αt − Ztαt + ϵt

D∼
(
c⊤ + d⊤Zt

)
N (at, Pt)−N (Ztat, Ht) .

The two normal distributions are conditionally independent. Finally, using the regression

lemma, we can derive

at|t = E [αt|Yt−1] + Cov [αt, vt|Yt−1] (Var [vt|Yt−1])
−1 vt. (3.22)

The first summand is at, according to the notation defined in (3.21). By noting that

E [vt|Yt−1] = 0, the covariance can be computed directly:

Cov [αt, vt|Yt−1] = E
[
αt (Zt (αt − at) + ϵt)

⊤ |Yt−1

]
= E

[
αt (αt − at)Z⊤

t |Yt−1

]
= Pt Z

⊤
t .

In the case of the conditional variance of vt, we obtain a similar result:

Ft := Var [vt|Yt−1] = Var [Zt (αt − at) + ϵt|Yt−1] = Var [Ztαt + ϵt|Yt−1] = Zt Pt Z
⊤
t +Ht.

All in all, we have

at|t = at + Pt Z
⊤
t F

−1
t vt.

Similarly, we must do the same for the variance-covariance matrix Pt|t, whose structure

is also derived from the regression lemma.

Pt|t = Var [αt|Yt−1]− Cov [αt, vt|Yt−1] (Var [vt|Yt−1])
−1 Cov [αt, vt|Yt−1]

⊤

= Pt − Pt Z⊤
t F

−1
t Zt P

⊤
t .

(3.23)

Based on knowledge of prior observations, the Kalman filter is based on the error we make
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in predicting yt, and takes this error into account for the next prediction. Outliers that

deviate from their respective local mean values are therefore potential pitfalls. Fig. 3.2

illustrates the sequential prediction-correction process.

Figure 3.2: Schematic structure of the classical Kalman filter for linear systems.
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The matrix Ft is of dimension p × p and typically observations are low-dimensional (if

not real-valued), so the inversion of Ft is cheap in terms of computational effort. Due

to the fact that the matrix Ft has a dimension of p × p and most observations are low-

dimensional, the inversion of Ft is relatively simple from a computational perspective.

Overall, it would suffice to update the distribution of states at time t + 1. The Kalman

filtering step from t to t+ 1 requires only two initializations

at+1 = Tt at|t and Pt+1 = Tt Pt|t T
⊤
t +RtQt+1R

⊤
t . (3.24)

In many cases, the recursion (3.24) is reformulated by using the Kalman gain Kt =

TtPt Z
⊤
t F

−1
t (see Eq (4.22) of Durbin and Koopman (2012)). We end up with

at+1 = Tt at +Kt vt and Pt+1 = Tt Pt (Tt −KtZt)
⊤ +RtQt+1R

⊤
t .

Furthermore, the log-likelihood of observations y0, . . . , yT is defined as follows:

ℓ(Y0:T ) = log p(y0) +
⊤∑
1

log p(yt|Yt−1). (3.25)

Based on the results of the linear Gaussian system in this section, we have E(yt|Yt−1) =

Ztat. Putting vt = yt−Ztat, Ft = Var(yt|Yt−1) and substituting N (Ztat, Ft) for p(yt|Yt−1)

in Eq. (3.25), we obtain

ℓ(Y0:T ) = −
(T + 1)p

2
log 2π − 1

2

T∑
0

(
log |Ft|+ v⊤t F

−1
t vt

)
.44 (3.26)

44For initialization at t = 0, F0 = Var(Y0). In addition, it is assumed that a0 and P0 are given for
α0 ∼ N (a0, P0).
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Algorithm 1: Kalman filter for state inference

Input : Observations y0, . . . , yT , initial distribution µ0 (x0).
Parameters: Coefficients of linear Gaussian SSM Z0:T , T0:T , R0:T , H0:T and Q1:T .
Returns : Vector {at|t}t=0,...,T as best guess for the latent states at time

t = 0, . . . , T .
while t ≤ T do

if t = 0 then
Initialization: Set a0 ← E [µ0] , P0 ← Var [µ0].

end
Compute the a-priori measurement error: vt ← yt − Ztat.
Compute the Kalman gain at time t: Kt ← TtPtZ

⊤
t F

−1
t , where

Ft := Var [vt|Yt−1] = Zt Pt Z
⊤
t +Ht.

Update state distribution:

at|t ← at + T−1
t Ktvt

Pt|t ← Pt − T−1
t KtZtP

⊤
t .

Prediction for next time:

at+1 ← Ttat|t

Pt+1 ← TtPt|tT
⊤
t +RtQt+1R

⊤
t .

t← t+ 1
end
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3.3.2 Particle Filter

As discussed in the previous section, under certain assumptions and given structural pa-

rameters, the latent states embedded in the AJD model can be extracted via a standard

filtering algorithm within a SSM framework. The AJD model in continuous-time can be

transformed into an SSM using Euler-Maruyama scheme. If the SSM from the trans-

formation is linear and with Gaussian noise, one can use the Kalman filter (see Kalman

(1960)) to infer the trajectories of the latent states in the AJDs. However, literature

shows that if we want to identify and characterize relatively complicated patterns in

the financial market, one needs models with stochastic diffusion and jump components.

Therefore, in many cases the SSM, which is transformed from the AJD model, is no

longer a linear Gaussian SSM. As a result of the nonlinear and non-Gaussian nature of

such a system, it is necessary to use a more general filtering algorithm known as particle

filtering (see Doucet and Johansen (2009)) in order to infer the trajectories of the latent

states. As a type of filtering algorithm, the particle filter casts latent state variables

as “particles” into a probability space and re-sample them according to predetermined

weights. When the number of particles used approaches infinity, the algorithm provides

exact filtering.45

In the empirical dynamic asset pricing literature, particle filtering is a widely used method

when dealing with nonlinear and non-Gaussian state-space models. In particular, for

equity derivatives, there are several existing empirical studies employing particle filtering

for the inference task. Christoffersen et al. (2010) apply the particle filter to infer latent

states for the Heston model for asset returns. Johannes et al. (2009) use particle filtering

to extract latent states from asset returns assuming the static parameters in their AJD

model are known. For calibrating the static parameters as well as recovering latent states,

Fulop and Li (2019) and Bardgett et al. (2019) use a particle filter with derivatives based

on equity indexes along with asset returns.

In general, the particle filter is a more powerful tool to use for tackling inference tasks.

However, generality always comes at a price. Since it is a sequential simulation method,

the particle filter is typically computationally intensive and has a slow convergence rate,

when model dynamics become complex. In particular, when nonlinear relationships ap-

pear in the measurement equations, normally only the bootstrap version of the particle

filter can be directly used. This is typically not very effective when observations are not

45More specifically, particle filtering is an effective Sequential Monte Carlo (SMC) method of estimat-
ing state.
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informative about the corresponding states. For the subsequent empirical analysis of the

cross-sectional option panels, one can use the raw option prices as nonlinear measure-

ments for the corresponding AJD models with stochastic negative jump intensities. This

approach, however, leads to an ineffective particle filter. On the other hand, to perform

the subsequent empirical analysis on the cross-sectional option panels, they can be trans-

formed into higher order cumulants and then a set of measurements is constructed that

contains a linear relationship to the latent states. The particle filter is not an appropriate

choice for the inference task, especially when linear measurement equations can be used.

The empirical analysis of this thesis does not employ particle filtering, so the details of

the algorithm are not discussed here. For readers who are interested in the details, please

refer to Appendix A.5.

3.4 Penalized Nonlinear Least Squares

This section explains and presents an inspiring estimation approach, which is considered

as the basis of building the Kalman-filtered based quasi-maximum likelihood approach

employed in the empirical analysis in this thesis. Andersen et al. (2015a) propose a novel

approach to estimate static parameters under the risk-neutral measure and infer the latent

states, based on penalized nonlinear least squares (PNLS) to fit the rich data from the

option market, as well as an additional penalty for the deviation of estimated volatility

from its model-free counterpart. In their approach, BS implied volatility (BSIV) is used

instead of the option price. A discussion of the advantages of BSIV over an option contract

can be found in Definition A.6. Following the basic idea of the least squares approach,

one needs to solve an optimization problem - minimizing the squared errors between the

model implied BSIV and the observed BSIV - with respect to the static model parameters

under risk-neutral measure and the time-varying latent states Lt. For instance, consider

the model dynamic from Illustration 2.4, then we have latent states: Lt := {Vt, Ut}. In

contrast to estimation methods using state-space models, their approach avoids making

parametric assumptions regarding the transition density of underlying asset returns. The

inference of latent states turns out to be another optimization problem by fitting option

surfaces within a fixed time interval given the static model parameters. Therefore, the

estimation approach is essentially an optimization task that involves a series of many

minor low-dimensional optimizations that can be solved independently. In the rest of

this section, this method and its connection to other state-space model-based methods
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are discussed in more detail.

The time horizon of the total observations is assumed to be T with a daily frequency of

observations. The observations are indexed from 0 to T . Furthermore, Nt denotes the

total number of option contracts at each time point. Each individual option at time t is

characterised by log-forward moneyness in Eq. (A.8). Since the BSIV is used to represent

the option price alternatively, the task of fitting the observed option prices becomes

a matter of fitting the model-implied BSIV IVmodel
(
Lt, θ; τ,m

k
)
to the corresponding

observed BSIV IV data
t,τ,m. In general, in the no-arbitrage dynamic asset pricing models

the diffusion “coefficients” stay invariant for P → Q, meaning that the realized spot

variance should be the same under P and Q. Thus, loosely speaking an estimate of latent

states, which generates larger deviation between model-implied spot variance, is “worse”

than the one generating smaller deviation. In the optimization problem, this intuition

results in the penalty term. As mentioned at the beginning of this section, the PNLS

approach only uses information from the option market, that is, only information from

the risk-neutral density.

Following equation (6) of Andersen et al. (2020), the final optimization problem is defined

as follows46:

min
L0:T ,θ

T∑
t=0

{
BSIV Fitt +Volatility Fitt

}
,

BSIV Fitt =
1

Nt

Nt∑
j=1

(
IVmodel

(
Lt, θ; τj,m

k
j

)
− IVdata

t,τj ,mj

)2
,

Volatility Fitt =
ξn
Nt

(√
V̂ n
t −

√
V (Lt, θ)

)2

V̂ n
t /2

,

(3.27)

where V̂ n
t

47 denotes a nonparametric estimator of the spot variance at time t, which

can be obtained by using high-frequency observations to deduce a consistent estimator.

A detailed approach is explained in section A.3 of Andersen et al. (2019). Eq. (3.27)

indicates that the final joint estimates of time-varying latent states and static model

45The time horizon notation follows the same definition as that in Section 3.2.1.
46For notational simplicity, the Q is omitted.
47n denotes the number grids for the intraday time span (see Andersen et al. (2019)).
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parameters are given by

{L⋆0:T , θ⋆} = argmin
L0:T ,θ

T∑
t=0

{
BSIV Fitt +Volatility Fitt

}
, (3.28)

where the BSIV Fit and Volatility Fit are defined in Eq. (3.27). In the BSIV Fit part, all

the option’s observations within one time point are treated equally, which may lead to

overfitting in the final result. There is a possibility that the estimation result will shift

volatility to an unrealistic level. Therefore, as argued by Andersen et al. (2015a) using the

volatility part of the optimization problem as a penalty term can help rule out potential

ill-behavior of estimators. Furthermore, the ξn is fixed at 0.05 in the applications of

Andersen et al. (2020).

Andersen et al. (2014) highlights another point with regarding to solving the ultimate op-

timization problem efficiently, namely without restriction of the transition density under

P, the recovery of latent stats for each time point are independent to each other. Given

parameters of model under risk-neutral measure Q, the “filtering” of latent states can be

defined as following function for each time point t as follows:

ft (Lt; θ) :=
1

Nt

Nt∑
j=1

(
IVmodel

(
Lt, θ; τj,m

k
j

)
− IVdata

t,τj ,mj

)2
+
ξn
Nt

(√
V̂ n
t −

√
V (Lt, θ)

)2

V̂ n
t /2

.

(3.29)

Using the exchangeability of the minimum (see Proposition A.6) the final two-level opti-

mization problem can be formulated as follows:

min
L0:T ,θ

T∑
t=0

ft (Lt, θ) = min
θ

min
L0:T

T∑
t=0

ft (Lt, θ)

= min
θ

[
min
L0

f0 (L0, θ) + · · ·+min
LT

fT (LT , θ)

]
= min

θ

T∑
t=0

f̂(θ)

(3.30)

where

f̂(θ) = f(L̂min
t , θ) with L̂min

t = argmin
Lt

ft (Lt, θ) , ∀t ∈ {0, . . . , T}.

Hence, jointly estimating the parameters and the latent trajectory is equivalent to an

optimization task of a function whose value itself is determined by optimization. Fig. 3.3
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Figure 3.3: Visualization of PNLS.
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illustrates the process of solving the two-level optimization problem. The main benefit of

collapsed minimization is that the nested inner optimization tasks can be tackled simulta-

neously. In particular, the original high-dimensional minimization problem is translated

into multiple low-dimensional problems. Furthermore, as discussed in Andersen et al.

(2015c), the inner minimization problems can be implemented with standard paralleliza-

tion techniques, e.g., Open MPI (Messages Passing Interface) from an implementation

point of view. In general, parallelization can reduce the time required for estimation

significantly when a High Performance Computing System is available.

As shown in the Monte Carlo study by Andersen et al. (2015a) and empirical studies by

Andersen et al. (2015a) and Andersen et al. (2020), the PNLS estimation procedure can

estimate the parameters and recover the trajectories of the latent states accurately, which

means that the rich information about the risk-neutral density embedded in the option

panels makes the inference of AJD models possible. It appears that this finding generally
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supports the soundness of the inference of AJD models under risk-neutral measure and

the recovery of latent state trajectories when option panels are considered.

3.5 Likelihood-Based Methods

3.5.1 Particle Metropolis-Hastings 48

We assume that the structural parameters in AJD models are known in the filtering

step discussed above. In many empirical analyses, learning static parameters is also a

necessary step to study the relationship between asset price, risk and the market price of

risk. Thanks to the filtering step, we can obtain an approximation of the log-likelihood

(LLK) function given static parameters and observed measurements within the SSM

framework. For estimation of the static parameters, of course, one can directly put

the approximated LLK function into some mathematical optimization algorithm (e.g.,

Bardgett et al. (2019)). On the other hand, we can also follow the idea of Bayesian

inference, which incorporates the Metropolis-Hastings algorithm to achieve the estimation

task. Due to the fact that this type of Bayesian inference involves a particle filtering step,

it is called particle Metropolis-Hastings (PMH) in the literature. As the particle filter

is not used in the subsequent empirical analysis. For readers who are interested in the

details, please refer to Andrieu et al. (2010) and Dahlin and Schön (2015) for more

details.

3.5.2 Quasi-Maximum Likelihood

According to Durbin and Koopman (2012), a linear Gaussian state-space model can be

estimated using the Kalman filter with maximum likelihood. The transition density in

the state-space model based on the discretized version of the models in the AJD family is

not necessarily Gaussian. Thus, the linear Gaussian approximation in Section 3.2.3, i.e.,

substituting the theoretical transition density with a Gaussian one, is able to match the

conditional mean and variance. If there are observations for linear Gaussian measurement

equations available, one can obtain an approximation of the likelihood function based on

the approximation in the state equations.

Inspired by the PNLS method in Section 3.4, we can add filtering independent measure-

48This part is mainly based on the results of research projects with aC-RAM students. I would like
to thank Maximilian Kübler for his assistance.
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ments to the likelihood evaluation. The filtering independent measurements are denoted

as exogenous measurements in the following context. In many cases, due to the nonlinear

and non-Gaussian nature of those measurement equations, they only meet the require-

ments of applying the particle filter, which is a simulation-based filtering technique with

a high computation cost. In the empirical studies of AJD models on option markets, the

BS implied volatility is a nonlinear mapping of latent states.

Furthermore, the PNLS method is a two-level minimization approach. The inner min-

imization stage can be viewed as a model-free 49 filtering stage, which is similar to ob-

taining estimates of latent states based on the posterior distribution in standard filtering

methods. When measurement errors are properly assumed, observations of exogenous

measurements can contribute to the likelihood function using the estimates of latent

states obtained from the filtering step. Furthermore the second stage of the inference

procedure shares the same concept as the outer minimization stage in PNLS. Hence,

the quasi-maximum likelihood approach with w = 1 is equivalent to the PNLS method,

since it replaces the minimization problem with Kalman filter-based minimum variance

50 estimations.

As discussed above, we can have two types of measurement equations in the state-space

model. Thus, the likelihood function used in the MLE-based estimation approach is

twofold. In particular, the first component is the likelihood delivered by the filtering

approach, and the second component is based on observations, which are independent

of the filtering step. Typically the errors of observations of exogenous measurements

are assumed to be normal random variables uncorrelated with errors in the filtering

measurement equations. Christoffersen et al. (2010), Ornthanalai (2014), Bégin et al.

(2020), Gruber et al. (2021) and others, employ a similar log-likelihood function for the

quasi-maximum likelihood approach. The general form of the log-likelihood function is

49The model-free refers to the fact that no transition density under P is assumed.
50The minimum variance idea in the Kalman filter refer to the Eq. (A.27)
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defined as follows:

ℓ(Θest;w) = (N f
total +N e

total)

(
(1− w)ℓf (Θ

est)

N f
total

+ w
ℓe(Θ

est; X̂0:T )

N e
total

)
, 0 ≤ w < 1

ℓf := ℓ(Θest, {Y f}0:T ) in Eq. (3.26),

ℓe := −
1

2

T∑
t=0

Ne
t∑

i=1

(
log
(
2π(σe,relt,i )2

)
+

(εet,i)
2

(σe,relt,i )2

)
,

εet,i :=
Y e,model
t,i − Y e,data

t,i

Y e,data
t,i

, i = 1, . . . , N e
t ,

(3.31)

where

X0:T is the time series of latent states and X̂0:T is its corresponding posterior estimates

in Eq. (3.22) from Kalman filter;

N f
total is the total number of observations used in filtering step across the whole time-

period;

N e
total is the number of observations of exogenous measurements at each sampling time

point, and N e
total :=

∑T
t=0N

e
t is the total number of observations of exogenous measure-

ments across the whole time-period;

Y e,model
t,i is the model implied exogenous measurements. It uses the estimates of the latent

states X̂0:T , which are obtained as side results from evaluation of ℓe;

σe,relt,i is the standard deviation of the measurement error for the observations of exogenous

measurements.

The weight w is specified differently in the literature. Christoffersen et al. (2010) have two

different specifications with w = 0 and w = 1. Similarly, Bégin et al. (2020) specifies w

= 0.5. Both of them use only asset returns as measurements in the filtering step. Feunou

and Okou (2018) set w = 0, which means that only the likelihood from the filtering step

is considered in the final evaluation. As opposed to the two previous examples, they use

cumulants in the filtering step.

50In Christoffersen et al. (2010), the maximum likelihood estimation with return in the filtering step
is specified with w = 0. The specification with w = 1 corresponds to their nonlinear least squares
estimation, which leaves out σ2

e .



4 Monte Carlo Study

For the purpose of assessing fairly the selected methods and providing guidance for sub-

sequent empirical applications, this chapter examines the performance of previously pro-

posed methods using synthetic data generated from Monte Carlo simulations. The title

of this thesis indicates that estimation approaches should be evaluated in conjunction

with AJD model dynamics. In line with the discussion of the pros and cons of various

estimation approaches in the previous chapter, I focus on the most promising methodol-

ogy in this simulation study, that is, the Kalman filter-based quasi-maximum likelihood

approach which is also applied in subsequent empirical applications. To evaluate the

implemented methods concretely, one must have a representative example from the AJD

models. Ideally, the model should be able to capture the statistical characteristics of as-

set returns, which are widely accepted in the literature on dynamic asset pricing models.

Therefore, the SVNUJ model is selected, which nests many popular AJD models in the

literature, for the simulation study in this chapter. In order to apply the Kalman filter-

based quasi-maximum likelihood approach, it requires a linear Gaussian relationship in

the state equations and measurement equations. Therefore, I first examine how the filter-

ing step with approximated Gaussian state equations behaves if informative observations,

such as risk-neutral cumulants of the return dynamic, are available. Following this, the

performance of the QML approach to estimating static parameters is evaluated. This

chapter is structured as follows: Section 4.1 introduces the state-space representation

and the parameters considered in the Monte Carlo study. Section 4.2 explains how the

various synthetic data used in the simulation study are generated. Section 4.3 introduces

the concrete Kalman filter-based QML approach based on observations from the option

markets. Section 4.4 presents the results of estimation using synthetic data. In addition,

the performance of filtering methods is discussed for the chosen model, as well as the

performance of static parameter estimation.

60
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4.1 The Model

4.1.1 Model Dynamic

This simulation study makes use of the dynamics of the SVNUJ model, which is given

below:

under P:
dSt
St

= µtdt+
√
VtdW1,t +

(
eZ

+
t − 1

)
dN+

t − c+(t)µ̄+dt

+
(
eZ

−
t − 1

)
dN−

t − c−(t)µ̄−dt

dVt = κv (θv − Vt) dt+ σv
√
VtdB1,t + µv

(
Z−
t

)2
dN−

t

dUt = κu(θu − Ut)dt+ σu
√
UtdW2,t + µu

(
Z−
t

)2
dN−

t ,

(4.1)

under Q:

dSt
St

= (rt − qt) dt+
√
VtdW

Q
1,t +

(
eZ

+,Q
t − 1

)
dN+,Q

t − c+ (t) µ̄+,Qdt

+
(
eZ

−,Q
t − 1

)
dN−,Q

t − c− (t) µ̄−,Qdt

dVt = κQv
(
θQv − Vt

)
dt+ σv

√
VtdB

Q
1,t + µv

(
Z−,Q
t

)2
dN−,Q

t

dUt = κQu (θ
Q
u − Ut)dt+ σu

√
UtdW

Q
2,t + µu

(
Z−,Q
t

)2
dN−,Q

t .

(4.2)

For simplicity, only the dynamics of the model are presented here. For a detailed expla-

nation of the parameters, see Illustration 2.4.

4.1.2 State-Space Model Representation

The Monte Carlo simulation study carried out in this chapter focuses on the SVNUJ

model, which nests many other popular models in the literature. It is necessary to

translate continuous-time model dynamics into a state-space representation in order to

apply standard filtering techniques. Following the discussion in Section 3.2, the state

equation can be obtained from Eq. (3.11) under P, as follows:

Vt = κvθv∆t+ (1− κt∆t)Vt−1 + σv
√
Vt−1∆W1,t + µv(Z

s,−
t )2∆N−

t ,

Ut = κuθu∆t+ (1− κ∆t)Ut−1 + σu
√
Ut−1∆W2,t + µu(Z

s,−
t )2∆N−

t ,
(4.3)
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As discussed in the last chapter, this type of state equation is not linear Gaussian. As

a result, a linear Gaussian approximation is required in order to apply the Kalman filter

to the above state equations. Based on the results from Section 3.2, we can have the

following linear Gaussian representation:

Xt = Φnuj
0 + Φnuj

1 Xt−1 + εt, εt ∼ N
(
0,Σnuj

t

)
, (4.4)

where

Φnuj
0 =

κvθv∆t
κuθu∆t

 , Φnuj
1 =

1− κv∆t µvλ̄
−∆t

0 1− κu∆t+ µuλ̄
−∆t

 (4.5)

and

Σnuj
t =

σ2
vVt−1∆t+ µ2

vσ
2
λ−Ut−1∆t µvµuσ

2
λ−Ut−1∆t

µvµuσ
2
λ−Ut−1∆t σ2

uUt−1∆t+ µ2
uσ

2
λ−Ut−1∆t

 . (4.6)

The λ̄− and σλ− are defined with the help of random variable Z̃t := (Zs,−
t )2 as follows,

λ̄− := E[Z̃t] =
2

(λ−)2
, σλ− :=

√
E[Z̃2

t ] =

√
24

(λ−)4
.51 (4.7)

Further, a zero covariance term52is used to simplify the variance matrix that is employed

in the implementation, as follows:

Σ̃nuj
t =

σ2
vVt−1∆t+ µ2

vσ
2
λ−Ut−1∆t 0

0 σ2
uUt−1∆t+ µ2

uσ
2
λ−Ut−1∆t

 . (4.8)

Feunou and Okou (2018) and Fulop and Li (2019) demonstrate that, for the measure-

ment equations, the moment information of the return dynamics facilitates estimation,

especially during the filtering step. The aggregate information collected from the op-

tion market, such as variance swaps or model-free cumulants of the return density, can

provide valuable insight into the risk-neutral density. However, variance swaps are not

51See the derivation in Eq. (3.19).
52Since we use the Kalman filter as an approximation for our model, we need to choose how we

approximate the variance in the state equation. One can treat a covariance matrix with zero covariance
terms as another choice of approximation. In general, it is also a reasonable choice. In the variance
matrix, only the jump part enters the covariance term and it is almost zero, when λ− gets larger.
Overall, the variance matrix is dominated by the variance coming from diffusion terms for many sets of
practical parameters. As a result, the effect of covariance terms with only jump parameters is negligible.
In addition, this further simplification of the variance matrix does not have any impact on the generation
of data in simulations.
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easily accessible due to the fact that they are OTC contracts. Usually one can only use

the cumulants Kn,Rs(t,τ), which are derived from option surfaces in a model-free way, as

informative observations for the measurement equations. Another benefit of employing

model-free cumulants as measurement equations is their linear relationship to the latent

states. As a result of this feature, the Kalman filter can be applied with the previously

introduced linear Gaussian approximation for AJD models.

Cumulants, which form the basis of the likelihood function and the filtering step, are not

directly tradeable on the market. It is thus necessary to compute the momentsMn,Rs(t,τ),

which can be evaluated using Eq. (2.65) as an intermediate step. Then, model-free esti-

mates of the cumulants can be derived from the moments. For notational simplification,

I further use Kt,τ,n (Mt,τ,n) for the n-th cumulant (moment) of Rs(t, τ) at time t. On

the other hand, the model-free estimates of the cumulants can only be obtained with

noise, and the bias is caused by two factors: First, the option contracts are observed

with noise, and second, model-free estimates of the moments are obtained with errors

due to the limited and discrete sampled observations of option surfaces. On the other

hand, it should be noted that model-free estimates of cumulants for higher orders can be

inaccurate, which may result in less informative observations. Consequently, I limit the

cumulants to third order in this simulation study.

As an amelioration of the input information, I use option contracts as the second part

of measurement equations that only enter the likelihood evaluation in order to correct

any potential bias from model-free estimates of the cumulants. As discussed in Defini-

tion A.6, rather than using price values, the BS implied volatility of option contracts is

used. Finally, I define the state-space representation for MLE-based estimation with the

Kalman filter, as follows:

Definition 4.1. SSM representation of SNVUJ for Kalman filter

• Measurement equation:

Kdata
t,τ,n = Kmodel

t,τ,n +Kdata
t,τ,nε

K
t,τ,n, τ > 0, n ∈ {2, 3},

IVdata
t,i = IVmodel

t,i + IVdata
t,i εIVt,i , i = 1, . . . , NIV,t,

(4.9)

where τ is the maturity and n is the order of cumulants and NIV,t is the num-

ber of contracts available in the input data. Moreover, the error terms in both
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measurement equations are assumed to be independent normally distributed:

εKt,τ,n =
Kdata
t,τ,n −Kmodel

t,τ,n

Kdata
t,τ,n

∼ N (0, (σK,rel
t,τ,n )

2), (4.10)

εIVt,i =
IVdata

t,i − IVmodel
t,i

IVdata
t,i

∼ N (0, (σIV,rel
t,i )2), (4.11)

where variance of errors in the measurement equation of cumulants is assumed to

be maturity and order dependent and the variance of errors in option contracts is

contract-wise dependent. Both terms are reserved for heteroscedasticity in general.

It is also possible to set both variances to be homogeneous within the same notation

at a later stage.

• State equation:

Xt = Φnuj
0 + Φnuj

1 Xt−1 + ϵt, ϵt ∼ N
(
0,Σnuj

t

)
, (4.12)

where Xt = (Vt, Ut)
⊤ and all the coefficients and variance of shocks in state equation

are the same as in Eq. (4.5) and Eq. (4.8), respectively.

4.1.3 Parameters

Based on the dynamics of the SVNUJ model (see Illustration 2.4), Θnuj denotes the

vector of static parameters for the data generating processes. The Θnuj is summarized

as follows:

Θnuj = {ΘP
nuj,Θ

Q
nuj,Θ

P,Q
nuj,Θ

rp
nuj}, (4.13)

where ΘP
nuj denotes the collection of all parameters under P:

ΘP
nuj = {κv, θv, κu, θu, λ+, λ−};

ΘQ
nuj denotes the collection of all parameters under Q:

ΘQ
nuj = {κQv , θQv , κQu , θQu , λ+,Q, λ−,Q};

ΘP,Q
nuj denotes the collection of all parameters, which share the same values under P and

Q:

ΘP,Q
nuj = {σv, σu, ρ, µv, µu, c+0 };
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Θrp
nuj denotes the collection of all parameters related to risk premiums:

Θrp
nuj = {ηs, ηv, ηu}.

Due to the restriction of κiθi = κQi θ
Q
i with i ∈ {v, u}, we have

θQi = κiθi/κ
Q
i = κiθi/ (κi − ηi) ,

when κi, θi and ηi are given. In particular, it means that with this restriction the parame-

ters: {κQv , θQv , κQu , θQu } can be directly inferred, when the parameters: {κv, θv, ηv, κu, θu, ηu}
are known53.

The parameters under Q (including the parameters with the same values under P and

Q) are chosen based on the estimation results of Andersen et al. (2020). For instance,

c+0 varies from 1.5 to 12.879 across different markets in their estimation results. The

value of c+0 is selected from their results for the S&P 500 option market. The rest of the

parameters under Q are selected in a similar way. For the values of jump size parameters

under P, I follow the numerical relationship from estimation results from Bardgett et al.

(2019) and Broadie et al. (2007).

Finally, ηv and ηu are selected based on the estimation results from Fulop and Li (2019).

The concrete values are listed in Table 4.1.

Furthermore, subsequent empirical applications focus on the option market and its im-

plied risk-neutral density. The following simulation study is carried out using synthetic

option data without including underlying price fluctuations. If lnSt is excluded from

estimation, it is not possible to identify {ηs, λ+} with the current model setup. Thus,

there are in total 15 free parameters left, as follows:

Θest
nuj = {Θ

est,P
nuj ,Θ

est,Q
nuj ,Θ

est,rp
nuj },

Θest,P
nuj = {κv, θv, κu, θu, λ−},

Θest,Q
nuj = {λ+,Q, λ−,Q, σv, σu, ρ, µv, µu, c+0 },

Θest,rp
nuj = {ηv, ηu}.

(4.14)

53Alternatively, as in Bardgett et al. (2019), free parameters can be specified as κQ
i , κi, θ

Q
i with i ∈

{v, u}. ηi and θi with i ∈ {v, u} can be inferred from the risk premium definition and identity restriction.
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Table 4.1: Parameters used in the Monte Carlo simulation.

under P under Q

Parameter Value Parameter Value

κv 10.0000 κQv 9.2000

θv 0.0200 θQv 0.0217

κu 2.0000 κQu 1.5000

θu 1.8000 θQu 2.4000

λ+ 80.0000 λ+,Q 60.0000

λ− 40.0000 λ−,Q 20.0000

Risk Premia under P & Q

Parameter Value Parameter Value

ηs 2.5 σv 0.4000

ηv 0.8000 σu 1.5000

ηu 0.5000 ρ -0.9000

µv 12.0000

µu 200.0000

c+0 7.5000

This table presents the selected values of parameters, which are used to generate synthetic
data for simulation study. Those values of parameters for the data generating process in the
simulation study are adapted from different literature.

4.2 Synthetic Data Generation

The primary objective of the simulation is to closely mimic the features of real-world

data to be used in subsequent empirical studies. Therefore, the parameters for the data-

generating process in the simulation study are adapted from different literature sources.

The following discussion will refer to these parameters as true parameters. Table 4.1

summarizes the selected values of the static parameters.

Algorithm 2 provides details for generating synthetic data using the discretization

methodology described in Eq. (3.11). In this simulation study, daily observations are

generated over a period of eight years (252 sampling points per year). Section 4.2 il-

lustrates the simulated time-series of log-return lnSt, volatility Vt and negative jump

intensity Ut.

54µt,n = rt − qt + γt,n, with excess return γt,n, which is defined of the form

γt,n = ηsVt,n + c0(µ̄
+ − µ̄+,Q) + Ut,n(µ̄

− − µ̄−,Q). (4.15)
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Algorithm 2: Data generation for SVNUJ

The for-loop for the operations with involving index n are ignored due to

simplicity. They must be executed ∀n ∈ {1, ..., N}.

Input : t = 1, ∆t ∈ R, T > 1 ∈ N, N ∈ N, lnS0 ∈ R, V0 ∈ R+, U0 ∈ R+

Parameters: {ΘP
nuj,Θ

P,Q
nuj,Θ

rp
nuj} in Eq. (4.13)

Returns : lnS1:T,n, V1:T,n, U1:T,n

while t ≤ T do

ϵ
(1)
t,n ∼ N (0, 1), ϵ

(2)
t,n ∼ N (0, 1), ϵ

(3)
t,n ∼ N (0, 1)

∆W
(1)
t,n ← ∆tϵ

(1)
n , ∆W

(2)
t,n ← ∆tϵ

(2)
n , ∆W

(3)
t,n ← ∆tϵ

(3)
n

∆N+
t,n ∼ Bernoulli(c0∆t), ∆N

−
t,n ∼ Bernoulli(Ut∆t)

if ∆N+
t,n == 1 then

Zs,+
t,n ∼ exp(λ+)

end

if ∆N−
t,n == 1 then

Zs,−
t,n ∼ exp(λ−)

end

lnSt,n ← lnSt−1,n + (µt,n
54 − 1

2
Vt−1,n)∆t+

√
Vt−1

(
ρ∆W

(1)
t,n +

√
1− ρ2∆W (2)

t,n

)
+ Zs,+

t,n ∆N
+
t,n + Zs,−

t,n ∆N
−
t,n

Vt ← Vt−1 + κv(θu − Vt−1)∆t+ σv
√
Vt−1∆W

(1)
t,n + µv(Z

s,−
t )2∆N−

t,n

Ut ← Ut−1 + κu(θu − Ut−1)∆t+ σu
√
Ut−1∆W

()
t,n + µu(Z

s,−
t )2∆N−

t,n

Vt ← max(Vt, 0), Ut ← max(Ut, 0)

t← t+ 1

end

Besides the generation of latent states, for the validation of the whole estimation ap-

proach, we need “observed” option prices. Specifically the option surface contains twenty

option prices distributed equally over m ∈ [−6, 2] at every sampling time point55, where

m denotes the standardized log-forward moneyness as in Eq. (A.9) for each maturity. The

maturities τ are are 1 week, 1, 2, 3, 6 months(s) and 1 year. To obtain the annualized

estimation result, the maturities are transformed into values with the unit of one year,

55Andersen et al. (2015a) chose m ∈ [−4, 1] for their simulation study.
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i.e., the set: {1/52, 1/12, 0.25, 0.5, 1}.

In order to simulate the real-world scenario, shocks must be applied to the simulated true

option prices. For the option error, I assume the same as in Eq. (4.11) as follows:

εIVt,i =
IVmodel

t,i − IVdata
t,i

IVdata
t,i

∼ N (0, (σIV,rel
t,i )2), i = 1, . . . , NIV,t. (4.16)

The noise ZIV
t,i typically follows a standard normal distribution that is independent of time,

moneyness, and maturity. Due to the set-up of relative errors in the option contracts, we

have

εIVt,i = σIV,rel
t,i ZIV

t,i . (4.17)

Therefore, after generating the synthetic errors, the simulation target IVdata
t,i can be com-

puted as follows:

IVdata
t,i =

IVmodel
t,i

1 + εIVt,i
, (4.18)

where IVmodel
t,i is the “true” IVt,i, which can be computed by using cosine method explained

in Section 2.1.4.2 with the simulated latent states {Vt, Ut}. As this simulation study is

designed to investigate the performance of the Kalman filter with the linear Gaussian

approximation and its quasi-maximum likelihood estimation approach on the behavior

of the SVNUJ model, the impact of measurement errors is not that critical, as long

as they are within a reasonable range. For simplicity, I use a single fixed σrel
t,τ,i of 0.05

that is constant across time, moneynesses and maturities. As a result, this measurement

error specification requires only one parameter. In this case, heteroscedasticity remains

at the absolute level of measurement errors. With the choice of 0.05, the errors are

approximately 5% of the level of simulated “observed” implied volatility. The value of

0.05 is selected based on the magnitude of the estimated error from Andersen et al.

(2015a).

After constructing synthetic observations of BS implied volatilities with errors, we can

obtain observations of cumulants based on option observations, as discussed in Chapter 2.

Due to the noisy inputs of option observations and the limited number of observed con-

tracts, model-free estimates of the cumulants are subject to errors. Unlike observations of

options, the true distribution of measurement error is unknown. For simplicity, I assume
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the relative errors of cumulant observations are standard normally distributed as follows:

εKt,τ,n =
Kdata
t,τ,n −Kmodel

t,τ,n

Kdata
t,τ,n

∼ N (0, (σ
Kτ,n,rel
t )2), (4.19)

where the standard deviation of the relative measurement error is assumed to be homo-

geneous over time, but maturity- and order-dependent, i.e., σ
Kτ,n,rel
t = σKτ,n,rel. Finally

I take the sample standard deviation of the cumulants in each group as estimates of

σKτ,n,rel.

Figure 4.1: Simulated trajectories of latent states for the SVNUJ model.
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Note: This figure illustrates the simulated trajectories for dynamics of Eq. (2.60) with the
corresponding parameters from Table 4.1.This figure is divided into three panels: the top panel
shows the time series of the log return, the middle panel shows the time series of Vt, and the
bottom panel shows the time series of Ut.
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4.3 Quasi-Maximum Likelihood Estimation

Based on the SSM representation in Definition Definition 4.1, the Kalman filter-based

quasi-maximum likelihood approach can be applied. In the literature, MLE-based esti-

mation is extensively used since it is easy to access, if the likelihood or its approximation

is available. In this simulation study, I use the quasi-maximum likelihood approach pro-

posed in Section 3.5.2. Following the general definition of the log-likelihood function in

Eq. (3.31), we have

ℓ(Θestnuj ;w) = (NK
total +N IV

total)

(
(1− w)ℓK(Θ

est)

NK
total

+ w
ℓIV(Θ

est; X̂0:T )

N IV
total

)
, 0 ≤ w ≤ 1,

ℓK := ℓ({yK}0:T ) in Eq. (3.26)

= −(T + 1)p

2
log 2π − 1

2

T∑
0

(
log |FK

t |+ (vKt )
⊤(FK

t )
−1vKt

)
,

ℓIV := −1

2

T∑
t=0

N IV
t∑

i=1

(
log
(
2πσ2

IV,rel

)
+

(εIVi )2

σ2
IV,rel

)
,

εIVt,i :=
IVmodel

t,i

(
Θestnuj ; V̂t, Ût

)
− IVdata

t,i

IVdata
t,i

, i = 1, . . . , N IV
t ,

(4.20)

where

X0:T = {U0:T , V0:T} is the time series of latent states and X̂0:T is its corresponding poste-

rior estimates in Eq. (3.22) from the Kalman filter;

NK
total is the total number of observations used in the filtering step across the whole

time-period;

vKt = yKt −
(
ZK,nuj

0 + ZK,nuj
1 anujt

)
, FK

t = Var(yKt |Y K
t−1);

56

N IV
t is the number of observations of BS implied volatility at each sampling time point,

and N IV
total :=

∑T
t=0N

IV
t is the total number of observations of BS implied volatility across

the whole time-period;

56For example, if we have observations of cumulants following the order of yKt =

(K60,2,K60,3,K90,2,K90,3)
⊤

with m ∈ {2, 3} and τ ∈ {60, 90} days, then we define ZK,nuj
0 :=(

F 2
0,60, F

3
0,60, F

2
0,90, F

3
0,90,

)⊤
, ZK,nuj

1 :=
(
F 2
1,60, F

3
1,60, F

2
1,90, F

3
1,90,

)⊤
. These are linear coefficients from

Eq. (2.15). anujt = Φnuj
0 + Φnuj

1 anujt|t , where Φnuj
0 and Φnuj

1 are linear coefficients in Eq. (4.5),

anujt|t = {Vt|t, Ut|t} is the posterior mean of the latent states at each time point of t.
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IVmodel
t,i

(
Θestnuj ; V̂t, Ût

)
is the function of BS implied volatility. It uses the estimates of

the latent states X̂0:T , which are obtained as side results from evaluation of ℓK;

σIV,rel is the standard deviation of the measurement error for the observations of BS

implied volatility. For simplicity, the same constant value is used as in previous data

generation.

4.4 Estimation Results

4.4.1 Latent States Inference

In this section, validation of the inference of latent states is performed. The estimates

of latent states are obtained from the filtering step in the Kalman filter. The state

equations are derived from a linear Gaussian approximation on the discretized dynamics

of the SVNUJ model, as discussed in Definition 4.1. Additionally, to mimic the real-world

scenario the cumulants used in the measurement equations are obtained from model-free

estimates. Here, I evaluate exclusively the performance of the Kalman filter with linear

Gaussian approximation on the SVNUJ model with cumulants, assuming that the static

parameters are known. In essence, the task consists of running a Kalman filter with

measurement equations for cumulants. The potential failure to infer latent states can be

attributed to two sources of bias. In the first instance, the linear Gaussian approximation

of state equations can result in bias. In addition, the cumulants, which are computed in

a model-free way, may not provide sufficient information to assist the filter in identifying

latent states correctly.

Fig. 4.2 displays a visual comparison between the filtered states and the true states

by plotting the filtered latent states {V̂0:T , Û0:T} and the true simulated latent states

{V0:T , U0:T}. From visual comparison, it is clear that accurate estimates of the latent

states can be obtained from the filtering step of the Kalman filter. In addition, it indicates

that the potential bias resulting from the linear Gaussian approximation has a negligible

impact on the accuracy of filtering. Therefore, model-free estimates of cumulants, which

provide aggregate information on the risk-neutral density of the underlying return, are

highly informative regarding persistent latent states in AJD models.
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Figure 4.2: Filtered trajectories vs simulated trajectories given the true parameters.

0 500 1000 1500 2000

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 500 1000 1500 2000
0

1

2

3

4

5

6

The top panel plots the time series of the filtered volatility term {V̂t}0:T in blue and the time
series of the true simulated volatility term {Vt}0:T in grey. The bottom panel plots the time
series of the filtered negative jump intensity term {Ût}0:T in blue and the time series of the true
simulated negative jump intensity term {Ut}0:T in grey.

4.4.2 Static Parameters Estimation

The optimization library Pygmo developed by Biscani and Izzo (2020) is used in my

implementation. For the estimation task in the simulation study, the SADE (Self-adaptive

Differential Evolution) global optimizer from the library is used. As a result of the

high computational burden associated with calculating the implied option prices for the

model57, a large portion of the computation time is spent in the filtering-independent

step of the calculation. The following described practice experience is based on the Monte

Carlo simulation study in this chapter. In general, the optimization converges well after

57OpenMP is used to parallelize the option pricing code.
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3 × 103 iterations with a population of 20.58 For the final runs in the simulation study

5× 103 iterations with a population of 20 are performed. Each run takes approximately

six hours on an Intel Xeon Gold 6230. Table 4.2 presents the estimation results for static

parameters based on synthetic data, which is generated from the values of the parameters

in the column of true value.

Table 4.2: Estimation results of static parameters for simulation study.

True Mean Median Std. RMSE
Parameters

Free to estimate θu 1.8000 1.8692 1.8767 0.4383 0.4394
θv 0.0200 0.0176 0.0167 0.0016 0.0029
ρ -0.9000 -0.8917 -0.8908 0.0526 0.0528
ηu 0.5000 0.5558 0.4245 0.5126 0.5105
ηv 0.8000 2.2454 2.8318 0.9644 1.7322
κu 2.0000 2.0128 1.8717 0.5210 0.5160
κv 10.0000 11.8179 12.3831 1.0180 2.0786
λ+,Q 60.0000 64.0045 63.8071 1.3969 4.2366
λ−,Q 20.0000 20.7002 20.7093 0.1898 0.7250
λ− 40.0000 41.4503 43.0402 7.7193 7.7782
µu 200.0000 218.7066 217.8206 9.4844 20.9307
µv 12.0000 13.1350 13.1238 0.1762 1.1483
σu 1.5000 1.4097 1.4259 0.1060 0.1384
σv 0.4000 0.4147 0.4134 0.0273 0.0308
c+0 7.5000 8.5627 8.5093 0.5013 1.1728

Inferred θQu 2.4000 2.4341 2.4276 0.0501 0.0602
θQv 0.0217 0.0215 0.0215 0.0003 0.0004
κQu 1.5000 1.4570 1.4664 0.0612 0.0743
κQv 9.2000 9.5725 9.5448 0.2019 0.4228

Note: This table presents the results of the simulation study designed to demonstrate the
quality of quasi-maximum likelihood estimation for the SVNUJ model. Parameters in the “Free
to estimate” section are the ones that are actually optimized during the estimation process.
Those parameters in the “Inferred” part have been directly derived from the estimation results.
Column “True” provides the values of the parameters used in the simulation process. Statistics
derived from repeated estimations of 50 sets of simulated data sequences are presented in the
remaining columns.

58The LLK function is evaluated approximately 6×104 times during 3×103 iterations of optimization.
As a default, the population is set to 20.



5 Empirical Applications

Based on the results of the simulation study reported in Chapter 4, this chapter examines

the empirical performance of the aforementioned procedure for parameter estimation and

inference of latent states. In particular, by using aggregate information from the option

market, it is possible to estimate the risk-neutral parameters of AJD models, which are

designed to model equity return dynamics.59 In this chapter, the empirical validation

of the Kalman filter-based QML approach, which is tested in the simulation study, is

carried out with options on the S&P 500 index. The estimation results based on index

options are further used to validate the future return predictability of the left tail factor

modeled by the SVNUJ model. Moreover, with increased liquidity of single stock options,

it is possible to estimate the model on a cross-sectional level by analyzing the options

written on the constituents of the S&P 500 index. Continuing the empirical study on

index options, this chapter examines the economic implications of the cross-sectional left

tail factors. The rest of this chapter is organized as follows: In Section 5.1, the model is

estimated with S&P 500 index options, in order to validate the Kalman filter-based QML

estimation approach empirically. In Section 5.2, an empirical analysis of options written

on the constituents of the S&P 500 index is conducted and its economic implications are

discussed.

5.1 Application to S&P 500 Index Options

5.1.1 Introduction

In this section, we validate the estimation procedure empirically by applying it to a

sample of options written on the S&P 500 index. In general, the performance of the

59In addition to the option prices, the future value of the underlying asset must also be considered in
order to determine the moneyness of the option contract. If it is not directly feasible, researchers (see
Bardgett et al. (2019), among others) often estimate it from the Put-Call-Parity (see Proposition A.5).

74
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Kalman filter-based QML procedure proposed in Eq. (4.20) is examined by replicating

the empirical findings about the left tail factor embedded in the risk-neutral S&P 500

return dynamics, which are extensively studied in the literature (see, e.g., Andersen et al.

(2015b) and Andersen et al. (2020)). Furthermore, this empirical application compares

the performance of estimation approaches with different specifications. Specifically, the

question about whether raw options can contribute to improving the identification of

static parameters and inference of latent states is addressed. Moreover, it is confirmed

that the constant error in the cumulant measurement equations exhibits better perfor-

mance.

5.1.2 The Model

5.1.2.1 Model Dynamic

This empirical analysis uses the same SVNUJ model as in the simulation study for the

S& P 500 index options (see Section 4.1.1). Its dynamics under P and Q are defined

exactly the same as in Eq. (4.1) and Eq. (4.2), respectively.

5.1.2.2 State-Space Model Representation

For the state-space representation in the filtering step, it is natural to follow the same

convention as in Section 4.1.2. The same variance matrix with zero covariance terms is

used, as follows:

Σ̃nuj
t =

σ2
vVt−1∆t+ µ2

vσ
2
λ−Ut−1∆t 0

0 σ2
uUt−1∆t+ µ2

uσ
2
λ−Ut−1∆t

 . (5.1)

5.1.2.3 More on Measurement Errors

In the literature on empirical applications based on the framework of state-space models,

measurement errors in each scale-valued measurement equation are typically considered

to be Gaussian with zero mean. The errors between different measurement equations

are often assumed to be independent. Variances of measurement errors can be assumed

to be either homogeneous (see, e.g., Fulop and Li (2019) and Bégin et al. (2020)) or

heteroskedastic (see, e.g., Bardgett et al. (2019)) over time. Throughout this section, we

assume that the measurement errors are independent Gaussian with zero mean and vari-

ances are exogenously given parameters. Let εKt,τ,n denote measurement error for observa-
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tions of cumulants with maturity τ at time point t, and σKn
t,τ denote the standard deviation

of the measurement errors. Model-free estimates of implied risk-neutral moments exhibit

errors due to the integration of the estimators from Bakshi et al. (2003) which can only be

calculated numerically based on limited observations. As discussed in Ammann and Feser

(2019), linear extrapolation of option surfaces is applied for reaching the truncation point

of the numerical integration. Accordingly, different configurations of linear extrapolation

result in different point estimates for model-free moments. The CRAM-Database60 pro-

vides two additional versions of model-free moment estimates. Loosely speaking, those

two estimates approximate the upper and lower bounds of risk-neutral moments, which

are denoted as Mmax
t,τ,n and Mmin

t,τ,n, respectively.
61 Given that the moments and the cumu-

lants of the same distribution are interchangeable, the “boundaries” of cumulants Kmax
t,τ,n

and Kmin
t,τ,n are available as well. Thus, the relative spread between Kmax

t,τ,n and Kmin
t,τ,n with

respect to Kt,τ,n is defined as follows:

st,τ,n :=
Kmax
t,τ,n −Kmin

t,τ,n

Kt,τ,n
. (5.2)

Loosely speaking, one can obtain an approximation of the standard deviation of measure-

ment errors σ̂
Kτ,n

t = st,τ,n
2

based on the relative spread st,τ,n, for each sampling point t.

Therefore, if the measurement errors are assumed to be heteroskedastic, then the variance

of measurement errors (σ̂
Kτ,n

t )2 can directly be used in the estimation approach as a time-

varying variance in the error of the corresponding measurement equations. Furthermore,

the sample mean σ̄Kτ,n of the whole time series of σ̂
Kτ,n

t can be used as a point estimate

for the standard deviation of homogeneous measurement errors.

5.1.3 Data

The model is estimated by using cumulants of the risk-neutral S&P 500 index re-

turn density and option prices on that index. The end-of-day risk-neutral cumulants

are computed from their model-free estimates of risk-neutral moments provided by the

CRAM-Database, while the end-of-day prices of S&P 500 index options are collected

directly from CBOE with the raw maturities. Furthermore, the risk-neutral moments in

the CRAM-Database have been standardized. For the analysis, a sample of data with

60A large part of the data used in this thesis is provided by the CRAM research group at the Chair
of Financial Economics and Risk Management. I would like to thank them.

61For the sake of simplicity, the return density indicator Rs(t, τ) at t is dropped, and only the time
index t and maturity τ are retained for moments and cumulants.
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maturities of 30, 60, 91, and 365 days is selected. The corresponding observations of cu-

mulants can be computed directly from the moments. Through the empirical applications

presented in this Chapter 4, the second and third cumulants are used as components of

the measurement equations.

The sample period is from January 2nd, 2004 to August 21st, 2019, for a total of 3,936

business days. These data cover the global financial crisis of 2008 as well as the European

debt crisis of 2010-2012. Moreover, in order to allow for an out-of-sample evaluation of

the illustrative model, these 3,936 observations are divided into an in-sample period

from January 2004 to December 2017, with 3,524 observations and an out-of-sample

period from January 2018 to August 2019, with 412 observations. In Fig. 5.1, the top

panel displays the time series for the second cumulants of risk-neutral S&P 500 index

return dynamics with maturities of 30, 60, 91, and 365 days. The bottom panel of

Fig. 5.1 displays the time series of the third cumulants with the same maturities. In

addition, Table 5.1 reports the descriptive statistics of the second cumulants and the

third cumulants.

Table 5.1: Summary statistics for the risk-neutral cumulants of the S&P 500 index
return.

Second cumulant

Days to maturity Mean Std. Min. Max. ACF

30 0.003570 0.004968 0.000671 0.056632 0.963249
60 0.007446 0.008893 0.001721 0.098159 0.980639
91 0.011807 0.012587 0.003006 0.139756 0.986859
365 0.061382 0.043153 0.018731 0.373113 0.993751

Third cumulant

Days to maturity Mean Std. Min. Max. ACF

30 -0.000620 0.001576 -0.028649 0.000017 0.902393
60 -0.001855 0.003664 -0.047096 -0.000138 0.961815
91 -0.003583 0.006128 -0.074538 -0.000327 0.976384
365 -0.037807 0.036131 -0.290106 -0.005025 0.989830

Note: This table presents summary statistics of the cumulants used for model estimation. These
data include the risk-neutral second cumulant and third cumulant of S&P 500 return, which are
computed based on risk-neutral moments derived from standardized option observations, with
30-, 60-, 91-, and 365-day maturities. The period covered by this study ranges from January
2004 to August 2019, for a total of 3,936 working days.

In accordance with Definition A.6, option prices are transformed into BS implied volatil-

ities for use in estimation. Moreover, to ensure the robustness of the estimation, the
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Figure 5.1: Time series of the risk-neutral cumulants of the S&P 500 index return.
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(b) Third cumulant
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This figure displays the cumulants used for model estimation. The data include the second (in
Fig. 5.1a) and third cumulants (in Fig. 5.1b) of the risk-neutral density of the S&P 500 index,
computed based on the risk-neutral moments derived from standardized option observations,
with 30-, 60-, 91-, and 365-day maturities. The time period ranges from January 2004 to August
2019 for a total of 3,936 business days.

quotes that are used in estimation are selected based on the following criteria:

1. Option contracts are limited to maturities between ten days and one year.62

2. Option contracts are limited to OTM contracts (see Definition A.8).63

62Andersen et al. (2017) demonstrate that to fit options with ultra-short maturity one needs a model
with time-varying jump parameters. This is beyond the scope of this application. Due to a lack of
liquidity, all options with a maturity of more than one year are dropped.

63Normally, in an empirical application there is no exact ATM option (i.e., m = 0).
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3. Option contracts must have a positive open interest.

4. Option contracts are restricted to standardized log-forward moneyness m ∈ [−8, 2].

5. Call options and put options are included only if their prices exceed 0.5 and 0.1,

respectively.

As a final step, the remaining option contracts are divided into five maturity bins which

are {9 days < τ ≤ 14 days, 14 days < τ ≤ 30 days, 30 days < τ ≤ 90 days, 90 days <

τ ≤ 180 days, 270 days < τ ≤ 365 days}.64 To maintain the tractability of the estima-

tion, at most twenty contracts are used, equally spaced within the range of moneynesses

for each maturity within the chosen maturity bin. Additionally, if more than one ma-

turity is available within the same maturity bin, the shortest maturity within the bin is

retained at every sampling time point (i.e., every business day).

Table 5.2 presents descriptive statistics for option quotes grouped by moneyness and

maturity. For the in-sample period, 272,437 observations of option contracts are used as

inputs when the option-related part of the likelihood is active. Fig. 5.2 illustrates at-the-

money implied volatility for options on the S&P 500 index in three different maturity bins

of {14 days < τ ≤ 30 days, 90 days < τ ≤ 180 days, 270 days < τ ≤ 365 days}, which
represent short-term, medium-term and long-term maturities. Furthermore, Fig. 5.3 plots

the time series of relative error spreads for cumulants with maturities of 30-, 60-,91- and

365 days.

5.1.4 Quasi-Maximum Likelihood Estimation

As discussed in Section 5.1.2, the state-space model representation of the SVNUJ model

and the data introduced in Section 5.1 provide all the ingredients necessary for current

empirical application to the options on the S&P 500 index. Nevertheless, there are a num-

ber of open issues regarding the concrete specification of the quasi-maximum likelihood

approach that still need to be addressed.

In the simulation study, the weight w = 1 is used in the log-likelihood function from

Eq. (4.20), which means that raw BS implied volatilities are taken into account in the

estimation approach. During estimation, the main computation burden is caused by

evaluating the model-implied option prices. In the likelihood function, specifying w = 0

(i.e., using only cumulants as measurements) allows for a more efficient estimation in

64τ denotes days to maturity.
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Table 5.2: Number of contracts for the index options and average BS implied
volatilities of the index options.

Number of contracts

9 < τ ≤ 14 14 < τ ≤ 30 30 < τ ≤ 90 90 < τ ≤ 180 270 < τ ≤ 365 All

m ≤ −3 9,533 17,462 23,554 24,927 21,011 96,487
−3 < m ≤ −1 10,908 18,058 20,892 19,298 18,323 87,479
−1 < m ≤ 1 11,077 18,277 21,695 21,254 22,846 95,149
m > 1 3,893 6,717 8,374 7,664 7,023 33,671
All 35,411 60,514 74,515 73,143 69,203 312,786

Average implied volatility

9 < τ ≤ 14 14 < τ ≤ 30 30 < τ ≤ 90 90 < τ ≤ 180 270 < τ ≤ 365 All

m ≤ −3 0.270 0.298 0.324 0.346 0.370 0.322
−3 < m ≤ −1 0.194 0.220 0.239 0.257 0.274 0.237
−1 < m ≤ 1 0.138 0.154 0.164 0.179 0.189 0.165
m > 1 0.121 0.131 0.133 0.132 0.137 0.131
All 0.181 0.201 0.215 0.228 0.242 0.213

Note: This table presents descriptive statistics for option quotes grouped by maturity and
moneyness. The data are collected from CBOE. The time period ranges from January 2004 to
August 2019 for a total of 3,936 working days.

Figure 5.2: BS implied volatilities of ATM options written on the S&P 500 index.
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This figure plots at-the-money BS implied volatilities of options written on the S&P index within
three different maturity bins of {14 days < τ ≤ 30 days, 90 days < τ ≤ 180 days, 270 days <
τ ≤ 365 days}. The time period ranges from January 2004 to August 2019 for a total of 3,936
working days.

terms of computational time. Arguably the specification of w = 1 tends to outperform

the specification of w = 0 in terms of option pricing performance. Nevertheless, if the
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Figure 5.3: Time series of the relative spread of the boundaries on cumulants.
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This figure plots the time series of relative spreads between the lower bounds and upper bounds
of the cumulants st,τ,n defined in Eq. (5.2). The data include the risk-neutral second cumulant
and third cumulant of the S&P 500 index returns, which are computed based on risk-neutral
moments derived from standardized option observations, with maturity at 30-, 60-, 91-, and 365-
days. The time period ranges from January 2004 to August 2019 for a total of 3,936 business
days.

primary objective of the estimation task is solely to obtain the filtered trajectories of

the latent states, the specification of w = 0 may be able to perform similarly to the

specification of w = 1.65

Furthermore, unlike the simulation study, the true values of the cumulants are unknown.

Therefore, it is still an open issue about how to specify measurement errors properly. The

relative spread between the lower and upper estimates of the cumulants demonstrates

the uncertainty of the model-free estimates of the cumulants. Intuitively the wider the

65For the hypothesis to be valid, the model-free cumulants must be accurate, i.e., the option panels
must be liquid enough.
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relative spread, the less informative the cumulants are with regard to the latent states.

Based on the time-varying relative spreads displayed in Fig. 5.3, a specification of time-

varying standard deviations in measurement errors of cumulants is therefore possible.

With this specification, the time-varying standard deviations of measurement errors may

provide guidance to the Kalman filter regarding the informativeness of the corresponding

cumulants. Alternatively, one can use the mean of the relative spreads to obtain a

constant standard deviation for the measurement errors in the cumulants.

Based on the two groups of specification choices, we can have four different specifications

which are a combination of the previous discussion, as follows:

I. time varying relative errors in the filtering step and w = 0 in the log-likelihood

function (i.e., only cumulants are used);

II. time varying relative errors in the filtering step and w = 1 in the log-likelihood

function (i.e., both cumulants and options are used);

III. constant relative errors in the filtering step and w = 0 in the log-likelihood function

(i.e., only cumulants are used);

IV. constant relative errors in the filtering step and w = 1 in the log-likelihood function

(i.e., both cumulants and options are used).

Finally, the actual estimations are carried out on the bwUniCluster 2.0. For each specifi-

cation, the estimation is performed with 3.5× 103 iterations in the optimization with the

SADE (Self-adaptive Differential Evolution) global optimizer from the same optimization

library used in the simulation study. The SADE algorithm employs a population of 20.

Thus, there are in total 7 × 104 evaluations of the log-likelihood function in the entire

optimization approach.

5.1.5 Estimation Results

5.1.5.1 Estimates of Static Parameters

Table 5.4 presents the estimation results for the static parameters of the SVNUJ model for

the four specifications considered for the quasi-maximum likelihood approach discussed

in the previous section. Due to the fact that the SVNUJ model used in this empirical

study differs from the AJD models used in the literature, it is not possible to establish

reference values for many of the parameters estimated. Even so, in the option pricing
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literature for options on the S&P 500 index, there is also “common knowledge” about

the values of parameters that are shared among the various estimated AJD models.

For example, the ρ indicates a negative correlation between returns and volatilities (see,

e.g., Broadie et al. (2007)). In the Spec I, ρ = 1 is estimated, which is inconsistent with

the empirical features of underlying index returns in general. Additionally, the estimated

κ differs significantly from the rest of the specifications. Spec I may not be able to

capture the empirical features of the index returns, based on the estimation results of

static parameters. Thus, measurement errors with time-varying standard deviation may

represent a poor choice of specification in this empirical study, even though the initial

notion of this sort of measurement error is appropriate. In contrast, Spec II, which

has the same error specification, provides a more reasonable fit of static parameters

when compared to Spec I. Therefore, if there is a potential bias in the filtering step, the

additional filtering independent measurement of BS implied volatilities may correct for it.

Moreover, the closest model to the SVNUJ model is the 2FU model from Andersen et al.

(2020), but they only specify the dynamics of index return under Q (see Definition 2.5).

They assume that the stochastic process of Ut only contains jumps, and has a long run

mean of zero, i.e., σQ
u = 0 and θQu = 0. Interestingly, the values of σQ

u = 0 and θQu = 0 are

very close to zero in the results of Spec IV. This is consistent with the model assumption

of index return from Andersen et al. (2020). Thus, this provides an indirect evidence

that the Kalman filter-based QML approach can be a viable alternative to Andersen

et al. (2015a)’s PNLS approach. Furthermore, in both Spec II and Spec III, there are no

obvious flaws in the estimation results. Therefore, in order to verify the quality of these

two specifications, it is necessary to conduct further analyses.

5.1.5.2 Inference of Latent States

As discussed previously, further assessments are needed to evaluate the accuracy of the

estimation results. In the SVNUJ model, all jumps are compound Poisson processes.

By definition, jumps modeled by compound Poisson processes are random variables,

containing jump intensity and jump size at each sampling point. Considering that jump

risks cannot be traded on the market directly, it is difficult to distinguish between the

final impact of jump intensity and jump size on model-implied density. Thus, there are

always trade-offs between these two components in jumps. This can result in multiple

possible combinations of jump parameters yielding similar impacts on the evaluation

of the likelihood for the same data input. As a result, Ut as one of the latent states
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Table 5.4: Estimation results of static parameters using index options.

Spec I Spec II Spec III Spec IV
Parameters

Free to estimate ηu 1.871070 3.487719 0.091833 1.968787
ηv 0.000000 11.451380 9.969258 3.027268
κu 6.627896 5.448218 2.147148 2.860269
κv 100.000000 25.496293 15.324954 8.774694
λ+,Q 139.824486 103.066571 794.396653 162.129886
λ−,Q 9.604448 26.074150 33.315375 19.206782
λ− 6.924542 137.844590 43.770451 10.995742
µu 128.728216 659.058700 1137.304645 164.280137
µv 36.989211 29.082117 24.344695 17.004407
ρ 1.000000 -1.000000 -1.000000 -1.000000
σu 0.171105 0.207742 1.795734 0.000100
σv 0.800000 0.524919 0.376289 0.465119
θu 0.331705 0.489239 0.758610 0.000100
θv 0.010556 0.005416 0.004628 0.012330
c+0 39.457550 9.263435 0.004988 26.703292

Inferred κQu 4.756826 1.960499 2.055315 0.891482
κQv 100.000000 14.044912 5.355696 5.747426
θQu 0.462179 1.359593 0.792505 0.000321
θQv 0.010556 0.009832 0.013243 0.018824

Note: This table presents the results of different specifications for the Kalman filter-based
QML estimation approach using cumulants and BS implied volatilities from the S&P 500 index
options. Parameters in the “Free to estimate” section are the ones that are actually being
optimized during the estimation process. Those parameters in the “Inferred” part are directly
derived from the estimation results. There are in total four different specifications for this
empirical analysis. Spec I represents the specification of time varying relative errors in the
filtering step and w = 0 in the log-likelihood function; Spec II represents the specification of
time varying relative errors in the filtering step and w = 1 in the log-likelihood function; Spec
III represents the specification of constant relative errors in the filtering step and w = 0 in the
log-likelihood function; Spec IV represents the specification of constant relative errors in the
filtering step and w = 1 in the log-likelihood function.

that drives the negative jump intensity can vary widely in magnitude between different

specifications. Following Andersen et al. (2020), to bring the factor representing the

negative jumps in the return dynamics to the same magnitude across all specifications,

the negative jump variation is used instead of Ut itself as the left tail factor. The negative

jump variation is defined as follows:

JVneg
t :=

2

(λQ,−)2
Ut, (5.3)

Fig. 5.4 plots the filtered trajectories of model implied spot volatilities and negative
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jump variations which are extracted based on the estimated parameters from the four

specifications. Comparing the results from Spec I with the rest of the specifications, it

is evident that the results differ significantly in terms of volatility and negative jump

variation. We can also see that spot volatilities and negative jump variations are well

identified in the other three specifications. In line with the empirical findings of Fulop

and Li (2019) and Feunou and Okou (2018), the trajectory of jump intensities can be

identified correctly by using aggregate information from the option market, i.e., the risk-

neutral cumulants.

Moreover, the trajectories of spot volatilities and negative jump variations from spec-

ifications with constant measurement errors in cumulants follow very similar patterns

to the trajectories that are inferred by Andersen et al. (2020). To further confirm the

informativeness of cumulants in terms of pinning down the trajectory of negative jump

variations. The correlation coefficients between the trajectories of spot volatilities and

negative jump variations between different specifications are reported in Table 5.5. Ac-

cording to the correlation coefficients for both spot volatility and negative jump variation,

Spec III performs almost as well as Spec IV in this empirical analysis with a correlation

coefficient higher than 0.99. Therefore, the results of the filtering step with only cumu-

lants suggest that aggregate information from the option market can also deliver reliable

performance in pinpointing the evolution of spot volatility and jump intensity for this

application.
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Table 5.5: Correlations between filtered trajectories of latent states.

√
Vt

Spec I Spec II Spec III Spec IV
Spec I 1.000000 - - -
Spec II 0.821071 1.000000 - -
Spec III 0.731190 0.948609 1.000000 -
Spec IV 0.744234 0.953622 0.996205 1.000000

JVneg
t

Spec I Spec II Spec III Spec IV
Spec I 1.000000 - - -
Spec II 0.931655 1.000000 - -
Spec III 0.846658 0.944911 1.000000 -
Spec IV 0.882495 0.963885 0.995198 1.000000

Note: This table presents the correlation coefficients between the trajectories extracted by
using different specifications for the quasi-maximum likelihood estimation approach with the
cumulants and BS implied volatilities of S&P 500 index options. The top panel shows the
correlation between

√
Vt, and the bottom panel shows the correlation between JVneg

t . There
are in total four different specifications for this empirical analysis. Spec I represents for the
specification of time varying relative errors in the filtering step and w = 0 in the log-likelihood
function; Spec II represents the specification of time varying relative errors in the filtering
step and w = 1 in the log-likelihood function; Spec III represents the specification of constant
relative errors in the filtering step and w = 0 in the log-likelihood function; Spec IV represents
the specification of constant relative errors in the filtering step and w = 1 in the log-likelihood
function.
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Figure 5.4: In-sample filtering results for the different specifications.
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This plot shows the results of filtering steps based on the estimated parameters from four
different specifications. Panel (a) displays the trajectories of latent states estimated from Spec
I, which represents the specification of time varying relative errors in the filtering step and w = 0
in the log-likelihood function; Panel (b) displays the trajectories of latent states estimated from
Spec II, which represents the specification of time varying relative errors in the filtering step
and w = 1 in the log-likelihood function; Panel (c) displays the trajectories of latent states
estimated from Spec III, which represents the specification of constant relative errors in the
filtering step and w = 0 in the log-likelihood function; Panel (d) displays the trajectories of
latent states estimated from Spec IV, which represents the specification of constant relative
errors in the filtering step and w = 1 in the log-likelihood function.
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5.1.5.3 Option Pricing Performance

A discussion of the model’s performance on pricing options is provided in the following

section in order to further examine the estimation results. Following Ornthanalai (2014)

and Bégin et al. (2020), the pricing errors are reported in the BS implied volatility root-

mean-square errors (IVRMSE)), and its relative value (RIVRMSE), based on the same

idea of the loss function used in the quasi-maximum likelihood estimation. The IVRMSE

and RIVRMSE are defined as

IVRMSE =

√√√√ 1

N IV
total

N IV
total∑
k=1

(
IVmodel

k − IVdata
k

)2 (5.4)

and

RIVRMSE =

√√√√ 1

N IV
total

N IV
total∑
k=1

(
IVmodel

k − IVdata
k

IVdata
k

)2

. (5.5)

Table 5.6 reports the in-sample pricing performance of the estimated model with Spec III

and Spec IV. Clearly Spec IV outperforms Spec III in this assessment. However, this is not

surprising, as Spec III only employs risk-neutral cumulants during estimation. In general,

the cumulants as aggregate surface characteristics provide less information in comparison

to the original surface. In comparison to option pricing literature, Spec III provides

a fairly realistic calibration result for the option pricing task, despite outperforming

Spec IV in current assessments. For example, Bégin et al. (2020) report that their in-

sample IVRMSE and RIVRMSE are 3.086% and 14.391%, respectively.66 Therefore,

when computational resources are limited, the estimation approach with only cumulants

is an appealing alternative, even if the model is intended for option pricing.

5.1.6 Return Predictability

Andersen et al. (2015b) demonstrate a novel insight regarding the left tail factor Ut of

the risk-neutral return dynamics for the S&P 500 index, namely that the left tail factor

forecasts equity returns over medium- and long-term horizons.67 Fig. 5.5 presents the

returns of the S&P 500 index over different time horizons. Furthermore, Andersen et al.

(2020) show that the left tail factor can also be used to predict equity returns in European

markets as well. Hence, in this part of the analysis, the return predictability of the left

66As a matter of fact, the current model dynamic differs from that of Bégin et al. (2020)’s model
assumption.

67In their 3F model, there are two volatility factors and a negative jump intensity factor.
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tail factor estimated in the previous section is examined. This can be viewed as indirect

evidence of the quality of the left tail factor that is extracted from the Klaman filter-based

QML approach. To examine predictability, the same set-up of predictive regressions as

in Andersen et al. (2020) is used, as follows:

rlogt,t+h
68 = lnSt+h − lnSt = αh + βv,h · Vt + βu,h · JVneg,⊥V

t + ϵt,t+h, (5.6)

where JVneg,⊥V
t denotes the orthogonal component of the risk-neutral expected negative

jump variation, as defined in Eq. (5.8), relative to the spot variance Vt. In the current

regression analysis, the t-statistic is computed based on Newey-West SEs with a lag length

of 1.3
√
T in accordance with the specification of Andersen et al. (2020). 5.6 presents the

results of the predictive regression Eq. (5.6). Over forecasting horizons ranging from

12 weeks to 30 weeks, the results from both specifications indicate substantial return

predictability. As compared to Andersen et al. (2020), the quasi-maximum likelihood

estimation approach provides very similar evidence of return predictability for the left

tail factor. Accordingly, the left tail factor can explain future returns of the S&P 500

index, which is the same conclusion reached by Andersen et al. (2020). Furthermore,

the t-statistic and R2 from Spec III follow the same pattern as the results from Spec IV.

Thus, this result implies that cumulants, as aggregate information derived from option

surfaces, are sufficient for inferring latent states in the case of options on the S&P 500

index. As an additional illustration, Fig. B.1 presents predicted returns and realized

returns at different time horizons. The predicted returns are obtained from predictive

regressions based on the estimation results from Spec IV.

68To align with Andersen et al. (2015b), log returns is used in this study.
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Figure 5.5: S&P 500 index returns.
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The top panel of this figure plots cumulative returns of the S&P 500 index between January
2004 and August 2019. The rest panels report the daily, monthly and six-monthly returns of
the S&P 500 index with sampling frequency 1-day, 1-month and 6-month.
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Table 5.6: Pricing errors on the options used for the estimations.

Spec III

Overall IVRMSE and RIVRMSE Sorting by year
IVRMSE RIVRMSE IVRMSE RIVRMSE

All 2.485 9.357 2004 1.204 8.475
2005 1.093 8.917

Sorting by maturity 2006 1.309 9.708
2007 1.743 9.277

m ≤ −3 3.273 6.594 2008 5.539 11.819
−3 < m ≤ −1 1.615 5.152 2009 3.567 9.054
−1 < m ≤ 1 1.893 9.822 2010 2.516 9.356
m > 1 3.469 19.457 2011 3.500 11.395

2012 1.635 8.959
Sorting by moneyness 2013 1.336 7.454

2014 1.904 8.429
9 days < τ ≤ 14 days 2.931 11.437 2015 2.800 9.729
14 days < τ ≤ 30 days 3.096 10.875 2016 1.932 9.690
30 days < τ ≤ 90 days 2.811 9.242 2017 1.285 8.626
90 days < τ ≤ 180 days 1.922 7.406
270 days < τ ≤ 365 days 1.746 8.934

Spec IV

Overall IVRMSE and RIVRMSE Sorting by year
IVRMSE RIVRMSE IVRMSE RIVRMSE

All 2.066 7.852 2004 1.080 6.674
2005 0.846 5.822

Sorting by maturity 2006 1.015 6.702
2007 1.528 7.772

m ≤ −3 2.633 6.076 2008 4.706 10.804
−3 < m ≤ −1 1.570 5.482 2009 2.609 7.282
−1 < m ≤ 1 1.687 8.693 2010 2.067 7.776
m > 1 2.495 13.156 2011 2.664 8.602

2012 1.734 8.044
Sorting by moneyness 2013 1.359 6.272

2014 1.610 6.891
9 days < τ ≤ 14 days 2.480 10.016 2015 2.274 7.893
14 days < τ ≤ 30 days 2.488 8.897 2016 1.642 8.577
30 days < τ ≤ 90 days 2.193 7.554 2017 1.298 9.097
90 days < τ ≤ 180 days 1.509 6.057
270 days < τ ≤ 365 days 1.817 7.806

Note: This table reports the pricing errors on the options used for the estimations. The
IVRMSEs and RIVRMSEs are the implied BS volatility root-mean-square errors, and its relative
values, respectly. The top panel shows the errors of Spec III. Spec III represents the specification
of constant relative errors in the filtering step and w = 0 in the log-likelihood function. The
bottom panel reports the errors of Spec IV. Spec IV represents the specification of constant
relative errors in the filtering step and w = 1 in the log-likelihood function. IVRMSEs and
RIVRMSEs are given in percentages.
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Figure 5.6: Predictive regressions for returns of the S&P 500 index.
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(c) w = 1 with constant error
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(d) w = 1 with constant error
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This plot reports the results from prediction regression based on the extracted negative jump
variation from Spec III and Spec IV. (a) shows the t-statistics from the result with Spec III and
(b) shows the corresponding R2. (c) shows the t-statistics from the result with Spec IV and (d)
shows the corresponding R2. Spec III represents the specification of constant relative errors in
the filtering step and w = 0 in the log-likelihood function; Spec IV represents the specification
of constant relative errors in the filtering step and w = 1 in the log-likelihood function.
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5.1.7 Summary

In this subsection, an empirical analysis of the options written on the S&P 500 index is

carried out. In terms of estimated parameters, except for Spec I, the Kalman filter-based

QML estimation approach with the rest of specifications can yield reasonable realistic

results for estimating the risk-neutral parameters in comparison to the results from An-

dersen et al. (2020). With regard to the results about inference of latent states, specifica-

tions with constant relative errors (i.e., Spec III and Spec IV) show better performance.

If the goal of estimation is to extract the trajectories of latent states, a constant relative

error is a preferred choice. As a result of the investigation of option pricing and return

predictability, both the results from Spec III and Spec IV demonstrate positive perfor-

mance in both of these assessments. The estimated model can capture the key empirical

features of the option-implied risk-neutral distribution of the underlying return dynamic.

Furthermore, the assessment of return predictability also highlights that the estimation

approach solely based on cumulants obtained from a liquid option market delivers decent

results. In cases where there are limited computational resources, this approach may be

useful for tackling the inference problem.



5. EMPIRICAL APPLICATIONS 94

5.2 Application to Single Stock Options

5.2.1 Introduction

As demonstrated in the empirical application in Section 5.1, the left tail factor, extracted

from forward-looking information of equity indices that is not spanned by regular volatil-

ity factors, represents tail risk premiums. In more detail, the trajectory of this left tail

factor is strongly linked with equity premiums, meaning that the extracted negative jump

intensity included in the forward-looking information from the option market can be used

to predict medium- and long-term performance. Andersen et al. (2015b) show that the

left tail factor differs economically from the regular volatility factor.

Aside from parametric approaches, the relationship between cross-sectional equity returns

and forward-looking information in option surfaces has been extensively studied as well.

The study by Conrad et al. (2013) examines the relationship between risk-neutral mo-

ments and realized returns. Their study finds that there is a negative association between

risk-neutral variance and subsequent stock returns, but it is not statistically significant.

An et al. (2014) find that changes in Black–Scholes implied volatilities contain the ex-

pansionary power of future returns. Furthermore, based on the results of Martin and

Wagner (2019), the expected return of a stock is derived from the risk-neutral variance

of the market, each stock’s risk-neutral variance, and the value-weighted average of their

risk-neutral variances.

Other researchers work with the forward-looking information and attempt to demonstrate

the relationship between tail risk embedded in the forward-looking information and equity

risk-premium. Based on a non-parametric approach, Bollerslev and Todorov (2011) find

that jump risk pricing implied by option data accounts for a significant fraction of equity

risk premiums. Additionally, these findings are confirmed using the options on equity

indices from U.S. and European markets in a parametric manner in Andersen et al.

(2015b) and Andersen et al. (2020). In more recent work, Bégin et al. (2020) demonstrate

that idiosyncratic risk contributes to the equity premium only when it arises from jump

risk. Tail risk thus plays a central role in idiosyncratic risk pricing.

In light of the findings in the literature, a natural follow-up question arises, namely

whether the cross-sectional left tail factor in option markets is capable of predicting

cross-sectional future equity returns? In general, answering this question will provide

insight to a key issue in financial economics, namely which kind of information drives
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the equity risk premium. Initially, this question may appear trivial, or one may merely

assume that it holds true due to the relationship between the market index and the single

stocks. This is not yet even theoretically proven, since index options and options on its

constituents are traded separately. This is different from an index that is directly derived

from its constituents’ price levels. Furthermore, with large amounts of cross-sectional

data, a parametric framework is also challenging from a technical point of view for the

estimation of an advanced model.

To capture the cross-sectional dynamics of equity option surfaces and to quantify the

cross-sectional left tail risk, we again use the SVNUJ model, which is used in the em-

pirical study on the index options. Based on widely documented empirical evidence,

this model incorporates stochastic volatility and stochastic negative jump intensity. The

model is based on the idea presented in Andersen et al. (2020). The complexity of option

pricing and the large number of samples collected from cross-sectional option surfaces

present a technical challenge for existing estimation methodologies with limited comput-

ing resources.

We use the same Kalman filter-based QML approach as in the previous section to resolve

this bottleneck in cross-sectional estimation. As demonstrated previously, the key step

of this approach is using the linear relationship between the latent states and estimates

of conditional moments from option surfaces to facilitate the filtering step (see, e.g.,

Feunou and Okou (2018) and Fulop and Li (2019)), since the linear relationship between

the non-parametric version of risk-neutral moments is not only informative about the

latent states, but also facilitates the filtering step through Kalman filtering under certain

assumptions and approximations of transition density.

The key research questions for this empirical application are twofold. First, we would

like to examine whether the model can be estimated accurately with cross-sectional data

using the Kalman filter-based QML approach. Second, we would like to investigate if

future returns can be predicted by the target variable in a cross-sectional manner. With

the extracted negative jump intensity, we are able to perform the analysis. In this appli-

cation, we estimate the model on 254 firms that are or were constituents of the S&P 500

index. To accomplish this, we use the option surfaces of each individual firm between

2004 and 2021. Using a direct comparison to the extensively studied risk-neutral return

density of the S&P 500 index, we assess the estimation results from our approach. We

confirm that the estimation results deliver a high quality of fit to the cross section of

risk-neutral return densities in terms of option pricing performance. Finally, we explore
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the implications of the left tail risk factor extracted from the cross-sectional option data.

As shown by our empirical results, negative jump intensity is a predictor, confirming the

hypothesis regarding the relationship between left tail risk and equity premium. The rest

of this section proceeds as follows: Section 5.2.2 introduces the cross-sectional model.

Section 5.2.3 reviews the input data. Section 5.2.4 explains the estimation approaches.

Section 5.2.5 presents the estimation results. Section 5.2.6 presents the empirical find-

ings, i.e., the cross section of left tail risk factors and its return predictability. Finally,

Section 5.2.8 concludes.

5.2.2 The Model

5.2.2.1 Model Dynamic

The same SVNUJ model used in the simulation study and application to index options

(see Section 4.1.1) is also employed for the model setups of single stock options. Its

dynamics under P and Q are defined identically to those in Eq. (2.61).

5.2.2.2 State-Space Model Representation

For the filtering step in the estimation, it is natural to follow the same transformation as

in Section 4.1.2. The same variance matrix with non-zero covariance approximation as

Eq. (4.6) is used, which takes the form

Σnuj
t =

σ2
vVt−1∆t+ µ2

vσ
2
λ−Ut−1∆t µvµuσ

2
λ−Ut−1∆t

µvµuσ
2
λ−Ut−1∆t σ2

uUt−1∆t+ µ2
uσ

2
λ−Ut−1∆t

 . (5.7)

Furthermore, as shown in Section 5.1.5.2, constant relative errors for the measurement

errors result in a more robust performance in the filtering step. Therefore, we adopt the

same convention for the application of single stock options.

5.2.3 Data

Through out this application, we use daily option surfaces on the constituents of the S&P

500 index from January 2nd, 2004 to December 31st, 2021. We further select the time

interval from January 2004 to December 2017 as the in-sample period for the estimation

step in the application of cross-sectional data, and the rest as the out-of-sample period.

The end-of-day option prices are collected directly from CBOE with raw maturities.
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The end-of-day standardized model-free estimates of risk-neutral moments, which are

obtained from the option surfaces, are provided directly by the CRAM-Database. The

daily returns of individual stocks are obtained from Yahoo Finance for the purpose of

further empirical analysis.

On the other hand, due to the fact that individual stock options are American style rather

than European style, one needs to account for the early exercise premium. The European

option price for single stocks is formed by subtracting the early exercise premium from

the American option price. Following the discussion in the literature, the prices of option

contracts are transformed into Black-Scholes implied volatilities that are actually used

in the estimation. The resulting volatility surfaces are available in the CRAM-Database

as well. Moreover, to ensure the robustness of the estimation, we select quotes that are

used in estimation based on the following criteria:

1. Option contracts are limited to maturities between ten days and one year.69

2. Option contracts are restricted to OTM option contracts.

3. Option contracts must have a positive open interest.

4. Options costs more than 50 cents, irrespective of it being a call or put option.

The remaining option contracts are divided into five maturity bins which are {9 days <

τ ≤ 14 days, 14 days < τ ≤ 30 days, 30 days < τ ≤ 90 days, 90 days < τ ≤
180 days, 270 days < τ ≤ 365 days}.70 We only keep the shortest maturity within each

bin. Furthermore, we keep a maximum of twenty contracts for each remaining maturity,

which represent the volatility surfaces well. These contracts are evenly distributed within

the range of moneynesses for each maturity.71 The end-of-day standardized risk-neutral

cumulants are computed from model-free estimates of the risk-neutral moments provided

by the CRAM-Database. We omit these outliers in the data of risk-neutral moments that

violate the no-arbitrary condition for the dynamic asset-pricing model in general, since

the cross section of option surfaces contains several ill-behavioral outliers due to the po-

tential liquidity issue.72 Due to the fact that the risk-neutral moments are standardized,

we select data with time-invariant forward-looking horizons across the entire time period

69Andersen et al. (2017) demonstrate that to fit the options with ultra-short maturity one needs a
model with time-varying jump parameters. This is beyond the scope of this application. All options
with a maturity of more than one year are dropped due to a lack of liquidity.

70τ denotes days to maturity.
71The grids are created equally distributed within the moneyness range of the remaining contracts.

We use the nearest neighbourhood approach to select contracts.
72The procedure follows the same idea of monotonously property of SVIX from Martin (2017).
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of 30, 60, 91, and 365 days. The corresponding observations of cumulants then can be

computed directly from the moments.

Since the S&P 500 index constituents change from time to time, the cross-sectional op-

tions and cumulants do not always cover enough time periods for the estimation approach

to produce a stable estimation result. Thus, we only use stocks with data available for

90% of the time spans within the sample period. Additionally, certain firms may expe-

rience challenges during the subsequent empirical analysis. There may be issues during

the estimation procedure, during the out-of-sample period latent state filtering step, or

due to the lack of return data from Yahoo Finance. As a result, 254 stocks remain for the

final empirical analysis.73 Although we have an estimation approach designed to techni-

cally ease estimation, we are still constrained by the issue of speed, when the raw option

surfaces are included in the log-likelihood function.74 Therefore, in addition to the data

filtering criteria outlined above, only six raw options across the log-moneyness at each

remaining maturity for each Wednesday in the sample are considered for estimation.75

5.2.4 Quasi-Maximum Likelihood Estimation

Following Ornthanalai (2014) and Bégin et al. (2020), we use the same quasi-maximum

likelihood approach used in estimation with index option data. The likelihood function

defined in Eq. (4.20) is written so that different weights can be applied to the likelihood

of filtering-dependent part with cumulants versus the likelihood of filtering-dependent

part with option surfaces. Clearly, by setting w = 0 one can get the fast variant of the

likelihood function, which is first introduced in Feunou and Okou (2018). This version

of the likelihood function benefits from a pure Kalman filter based approach. It may,

however, have the risk that only a limited amount of information about risk-neutral

density is utilized. On the other hand, one can specify w = 1 using cumulants for

extracting latent states and use the rich option surfaces as the filtering independent

observations in the estimation procedure. The estimation procedure can be viewed as a

light weight version of estimation approach proposed by Andersen et al. (2015a).

73For the purpose of clarity, we have classified the firms into different categories in the appendix. See
Table C.1 for the firms used, Table C.2 for the firms excluded, and Table C.3 for the firms that fail
during the estimation process.

74Due to the limited resources on the cluster, we cannot estimate over two hundred individual stocks
in a reasonable amount of time.

75The moneynesses are selected based on four equally distributed OTM put options and two OTM
call options across all the remaining contracts at each maturities for each data sampling time point.For
illustrative purposes, a figure demonstrating this for Apple Inc on December 19, 2012, can be found in
Fig. B.2.
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Furthermore, the following practical expert choices are based on the experience from a

simulation study and an application of the estimation procedure to option surfaces on

the S&P 500 index. First of all, we choose w = 1 in our estimation of cross-sectional

option surfaces based on the experience we obtained from our simulation study. Finally,

the actual estimations are carried out on the bwUniCluster 2.0. For this empirical appli-

cation, a certain amount of computational resources is required. In order to perform the

maximization of Eq. (4.20), we use the optimization library Pygmo developed by Biscani

and Izzo (2020). We select the SADE (Self-adaptive Differential Evolution) global op-

timizer from the library. As a result of the high computational burden associated with

calculating the implied option prices for the model, a large portion of the computation

time is spent on the option pricing step of the calculation.76 In general, the optimization

converges well at 3×103 iterations with a population of 20. For the empirical application

of the cross-sectional data we perform the maximization with 3 × 103 iterations with a

population of 20. Thus, there are in total 6×104 evaluations of the log-likelihood function

in each optimization approach.

5.2.5 Estimation Results

5.2.5.1 Estimates of Static Parameters

In Table 5.7, the results of a QML estimation of the S&P 500 index and its constituents are

presented, displaying both optimized and directly inferred parameters. A variety of results

are presented, including individual estimates, overall averages, and specific quantiles.

Moreover, Table 5.8 reports the average standard errors as well as their quantiles. The

similar model 2FU in Andersen et al. (2020) includes only the specification of the dynamic

of returns under Q. In their model, the negative jump intensity process contains only

jumps, and has a long-run mean of zero, i.e., σQ
u = 0 and θQu = 0. Interestingly in our

estimation results of index option data, the values of σQ
u and θQu in the estimation results

are very close to zero in the results. This is consistent with their model assumption of

the return process. On the other hand, based on our results, the average values of these

two parameters estimated with data from single stocks in the negative jump process

differ significantly from zero. Despite the substantial variation across cross-sections, the

variance and negative intensity process parameters are comparable to those in the index

model. It is interesting to note that the mean reversion speeds of both latent factors

76The option pricing code is parallelized with OpenMP.
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are greater than those estimated by the index. Additionally, the average of the long-

run mean parameters of the negative jump intensity process is higher than the estimate

based on market indexes. Therefore, we expect the latter in the inference of negative

jump intensity to be higher on average based on cross-sectional data. Hence, we conclude

that the cross-sectional risk-neutral dynamics on average show significant differences as

compared to the index dynamics, confirming that option trades on single stocks contain

different information than option trades on the market index.

Table 5.7: Summary statistics of estimated parameters for S&P 500 index and its
constituents.

SPX Mean 5% 25% 50% 75% 95%

Free ηu 1.9942 1.1989 0.0101 0.5438 1.3281 1.9472 2.0000
ηv 0.2316 5.2983 0.0100 1.0450 5.1392 9.9455 10.0000
κu 2.5074 5.3372 2.6376 4.0374 4.9156 5.8634 8.2744
κv 4.7967 32.5541 8.6329 18.9716 33.7861 49.0509 50.0000
λ+,Q 54.9081 45.2323 1.2686 7.2837 21.8321 70.9701 164.7940
λ−,Q 13.7135 30.1629 20.5597 26.2629 29.3011 33.7043 41.3518
λ− 6.2378 215.9363 28.7672 104.2367 174.1366 294.1800 500.0000
µu 48.2347 1333.3134 579.5812 1322.2566 1496.4831 1499.9998 1500.0000
µv 10.5777 30.1845 1.0000 3.1544 11.6263 33.9188 111.5239
ρ -1.0000 -0.3997 -1.0000 -1.0000 -0.9854 0.3602 1.0000
σu 0.0222 0.6497 0.0001 0.0001 0.2197 0.7739 3.3412
σv 0.4518 0.1377 0.0005 0.0139 0.0572 0.1886 0.5062
θu 0.0001 3.0234 0.7726 1.8498 2.6030 4.1276 6.4950
θv 0.0213 0.0139 0.0001 0.0054 0.0124 0.0196 0.0374
c+0 2.2106 10.2245 0.0026 0.1226 1.7900 19.6653 39.7083

Inferred κQ
u 0.5132 4.1383 2.0878 2.8437 3.5548 4.2807 7.8742

κQ
v 4.5650 27.2559 1.2605 12.3221 29.9090 41.9997 49.9897

θQu 0.0005 4.1242 1.0341 2.4632 3.3341 5.1530 9.1450
θQv 0.0224 0.0182 0.0008 0.0078 0.0153 0.0234 0.0498

Note: This table reports the results of the QML estimation approach using the cumulants and
Black-Scholes implied volatilities of S&P 500 index and its constituents. Parameters in the upper
panel are QML optimized, while parameters in the lower panel are inferred from the parameters
of the upper panel and no-arbitrage restrictions. Parameters for each stock are estimated using
daily cumulants and weekly out-of-the-money options. Parameters for each stock are estimated
using daily cumulants and available weekly cross-sections of out-of-the-money options, with in-
sample period from January 2004 to December 2017. The “Mean” column reports the arithmetic
average of each parameter estimated from the cross-sectional samples individually. The “SPX”
column reports the corresponding estimated results with data of S&P 500 index. The 5%, 25%,
50%, 75% and 90% columns report the corresponding quantile for the point estimates across
the firms.

5.2.5.2 Inference of Latent States

Further assessments of the inference of latent states are presented in this section. As

discussed in Section 5.1.5.2, Ut as one of the latent states that drives the negative jump
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Table 5.8: Standard errors of point estimates from QML estimation for S&P 500’s
constituents.

Mean 5% 25% 50% 75% 95%

ηu 0.0368 0.0154 0.0237 0.0301 0.0410 0.0727
ηv 0.3708 0.0204 0.0919 0.2975 0.5526 0.8894
κu 0.0474 0.0171 0.0267 0.0350 0.0489 0.1025
κv 0.6887 0.0222 0.1403 0.6762 1.0779 1.7349
λ+,Q 3.6204 0.0080 0.0802 0.2642 0.7133 6.3226
λ−,Q 0.1129 0.0327 0.0573 0.0895 0.1339 0.2805
λ− 24.2788 1.6344 3.4408 5.1458 10.3406 151.3489
µu 15.0897 4.1201 7.8436 11.4792 16.3760 34.2491
µv 0.9792 0.0258 0.2332 0.5408 1.2340 3.1516
ρ 6.0961 0.0240 0.1313 0.3266 0.9558 6.4910
σu 0.1121 0.0020 0.0121 0.0342 0.1138 0.4957
σv 0.0059 0.0002 0.0009 0.0028 0.0081 0.0188
θu 0.0885 0.0251 0.0444 0.0678 0.1053 0.2104
θv 0.0002 0.0001 0.0001 0.0002 0.0003 0.0006
c+0 0.5660 0.0001 0.0039 0.0495 0.5068 3.1134

Note: This table presents the standard errors of point estimates resulting from the QML esti-
mation approach using the cumulants and Black-Scholes implied volatilities of the S&P 500’s
constituents. The “Mean” column reports the arithmetic average of standard errors of each
parameter, as estimated from the cross-sectional samples individually. The 5%, 25%, 50%, 75%
and 90% columns report the corresponding quantile for the standard errors.

intensity can vary widely in magnitude between different specifications. By following

Andersen et al. (2020), again to bring the factor, which represents the negative jumps in

the return dynamics, to the same magnitude across all different specifications, we use the

negative jump variation,

JVneg
t :=

2

(λQ,−)2
Ut, (5.8)

instead of Ut itself as the left tail factor.

Fig. 5.7 plots the average of spot volatilities and negative jump variations based on the

estimated parameters from individual stock data and the derived factors from market

index data. One can clearly observe that the results from the average of the cross section

of the factors differ considerably in terms of volatility and negative jump variation com-

pared to values from index data. We observe that the average of cross-sectional volatility

is higher than the volatility extracted from the market index in non-crisis time periods.

This is consistent with the empirical fact that the implied volatilities of options on single

stocks tend to be higher than the implied volatilities of options on the market index.



5. EMPIRICAL APPLICATIONS 102

The average cross-sectional volatility terms in general follow a very similar pattern to

the volatility terms of market indexes during the financial crisis. As mentioned above,

the jump intensity and size parameters can have certain trade-off effects among them-

selves, so the negative jump variation will act as a total tail part, which can be used to

compare among estimates. The average cross-sectional negative jump variation, however,

differs considerably from the jump variation level of the market index. In light of this,

we conclude that the tail information embedded in the cross section of the market is not

redundant. This empirical pattern is consistent with Bégin et al. (2020), who find that

idiosyncratic jump risk matters for the equity risk premium.77

5.2.5.3 Option Pricing Performance

The goal of this section is to assess the performance of calibrated models in option pric-

ing. Following Ornthanalai (2014) and Bégin et al. (2020), we report price performance

using the BS implied volatility root-mean-square errors (IVRMSE), and its relative value

(RIVRMSE), based on the same idea of the loss function used in the quasi-maximum like-

lihood estimation. The IVRMSE and RIVRMSE are calculated in the same way as in the

application to the index data (see Eq. (5.4) and Eq. (5.5)). In principle, the IVRMSE is

an absolute measure of implied-volatility pricing error, while the RIVRMSE is a relative

measure that is likely to be more effective when comparing pricing errors over time.

Table 5.9 summarizes the in-sample pricing performance of the estimated model with

options on the S&P 500 index and options on single stocks across different dimensions of

maturity, moneyness and time. The estimated model in the current assessment provides

a reasonably realistic calibration result for option pricing compared to results found in

the option pricing literature. Using the S&P index option surfaces, we obtain an overall

IVRMSE of 2.05%, which is similar to the best performing 3F model in Andersen et al.

(2015b) with 1.77% of error. The 3F model is slightly more complicated than our model.78

Furthermore, from our estimation results, the IVRMSE and RIVRMSE error metrics for

the stocks are 6.81% and 10.76%, respectively. Closer to our study, Bégin et al. (2020)

is the only study to use a parametric model to characterize risk-neutral density with

cross-sectional option data in the literature. In their estimation, they have an IVRMSE

of 7.36% and a RIVRMSE of 17.24% for the single stocks.79 Therefore, our estimated

77This holds, if we can show that the cross-sectional left tail factors are correlated with cross-sectional
equity return premiums.

78In their 3F model, there are two volatility factors and a negative jump intensity factor.
79In addition, our results with the S&P 500 index options outperform the corresponding results from
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Figure 5.7: Filtering results for index and cross-sectional average.
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This figure plots the results of filtering steps based on the estimated parameters with data from
single stocks and market index. Panel (a) displays the trajectories of volatility extracted with
cumulants from risk-neutral density and the optimized parameters from estimation with option
data. The black line reports the average volatility level across 254 single stocks. The dashed
gray line depicts the volatility level of the market index. Panel (b) displays the trajectories
of negative jump variation 2

(λQ,−)2
Ut extracted with cumulants from risk-neutral density and

the optimized parameters from estimation with option data. The black line reports the average
negative jump variation level across 254 single stocks. The dashed gray line depicts the negative
jump variation level of the market index. The grey areas in all the panels indicate the results
of the out-of-sample period. In Panel (b), the left y-axis shows the scale for the cross-sectional
average, while the right y-axis shows the scale for the market index.

models perform similarly in the error metric at the absolute level and perform better

in the relative error metric in comparison to the results in Bégin et al. (2020). As a

result of a comparison with the two closest studies in the literature, we conclude that our

estimation procedure provides an empirically credible estimate of the risk-neutral density

and the conditional realization of latent states with respect to the option pricing task.

An out-of-sample pricing error is reported in Table 5.10. As can be seen from the relative

Bégin et al. (2020) as well.
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pricing errors with respect to maturity and moneyness buckets, they are similar to the

in-sample errors, indicating that the model is able to capture salient features of the data.

Table 5.9: In-sample pricing errors for S&P 500 and single stock options.

SPX

Overall IVRMSE and RIVRMSE Sorted by year
IVRMSE RIVRMSE IVRMSE RIVRMSE

All 2.049 7.425 2004 1.444 6.737
2005 0.851 5.606

Sorting by maturity 2006 1.085 6.683
2007 1.578 7.804

14 days < τ ≤ 30 days 2.517 8.873 2008 4.847 10.538
30 days < τ ≤ 90 days 2.215 7.287 2009 2.496 7.420
90 days < τ ≤ 180 days 1.544 6.209 2010 2.140 7.845
270 days < τ ≤ 365 days 1.877 7.401 2011 2.375 8.055

2012 1.763 7.801
Sorting by moneyness 2013 1.309 6.073

2014 1.515 6.314
m ≤ −3 2.596 5.953 2015 1.979 7.113
−3 < m ≤ −1 1.753 5.262 2016 1.487 7.520
−1 < m ≤ 1 1.661 8.448 2017 1.226 7.663
m > 1 2.125 11.630

Single stocks

Overall IVRMSE and RIVRMSE Sorted by year
IVRMSE RIVRMSE IVRMSE RIVRMSE

All 6.812 10.758 2004 6.655 9.631
2005 4.063 9.143

Sorting by maturity 2006 6.957 9.690
2007 9.173 11.768

14 days < τ ≤ 30 days 7.779 14.631 2008 9.889 12.674
30 days < τ ≤ 90 days 6.746 9.721 2009 7.474 10.318
90 days < τ ≤ 180 days 6.294 9.965 2010 6.481 10.553
270 days < τ ≤ 365 days 7.724 11.321 2011 5.537 9.729

2012 5.472 11.138
Sorting by moneyness 2013 6.076 10.104

2014 6.336 9.451
m ≤ −3 24.020 19.844 2015 5.894 10.826
−3 < m ≤ −1 4.816 10.828 2016 8.264 11.498
−1 < m ≤ 1 5.248 10.051 2017 5.295 11.470
m > 1 18.435 17.151

Note: This table reports aggregated and disaggregated pricing errors of the option pricing model
for S&P 500 (top panel) and single stock options (bottom panel). IVRMSE and RIVRMSEs
are in percentage terms and stand for implied volatility and relative implied volatility RMSE,
respectively. The time horizon is 2004 to 2017.
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Table 5.10: Out-of-sample pricing errors for S&P 500 and single stock options.

SPX

Overall IVRMSE and RIVRMSE Sorted by year
IVRMSE RIVRMSE IVRMSE RIVRMSE

All 3.686 9.413 2018 2.847 8.181
2019 0.974 5.468

Sorting by maturity 2020 5.707 12.571
2021 3.592 10.028

14 days < τ ≤ 30 days 4.295 10.875
30 days < τ ≤ 90 days 3.505 9.453
90 days < τ ≤ 180 days 3.727 7.847
270 days < τ ≤ 365 days 3.088 9.224
Sorting by moneyness
m ≤ −3 4.370 6.918
−3 < m ≤ −1 2.442 5.239
−1 < m ≤ 1 2.854 13.149
m > 1 3.335 15.027

Single stocks

Overall IVRMSE and RIVRMSE Sorted by year
IVRMSE RIVRMSE IVRMSE RIVRMSE

All 7.234 14.566 2018 4.436 10.633
2019 5.356 11.546

Sorting by maturity 2020 10.247 18.623
2021 6.509 14.611

14 days < τ ≤ 30 days 10.276 22.345
30 days < τ ≤ 90 days 5.936 11.266
90 days < τ ≤ 180 days 5.792 10.969
270 days < τ ≤ 365 days 7.006 12.673
Sorting by moneyness
m ≤ −3 17.919 24.741
−3 < m ≤ −1 6.170 11.228
−1 < m ≤ 1 6.441 14.752
m > 1 10.674 17.465

Note: This table reports out-of-sample fitting errors of single stock’s option-implied volatility.
IVRMSE and RIVRMSE are in percent and stand for Black-Scholes implied volatility and
Black-Scholes implied relative implied volatility RMSE, respectively.

5.2.6 Return Predictability: Cross-Sectional Panel Regressions

5.2.6.1 Spot Volatility and Orthogonal Tail Risk

In this section, we examine the most critical implication in this empirical analysis, i.e.,

the return predictability of negative jump variation extracted from data of single stocks.

Andersen et al. (2015b) present a novel insight regarding the left tail factor Ut of risk-
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neutral return dynamics for the S&P 500 index, namely that the left tail factor forecasts

equity returns over the medium- and long-term.80 Furthermore, Andersen et al. (2020)

show that the left tail factor can be used to predict equity returns on European markets

as well. Consequently, in this part of the analysis, we examine the return predictability of

the left tail factor estimated in Section 5.2.5.2. To examine the predictability, we follow

the set-up of predictive regression for cross-sectional data from the literature (see An et al.

(2014), Lewellen et al. (2015), Martin and Wagner (2019), among others). We run panel

regressions of realized returns at horizon 1, 3, 6, 9 and 12 months onto the extracted

latent factors. Since we intend to examine medium- and long-term predictability, we

sample our data on a monthly basis. The panel regression can be summarized, as follows:

rsimple
i,t,t+h

81 =
St+h − St

St
= αh+βv,h ·Vi,t+βu,h · JVneg,⊥V

i,t + ϵi,t,t+h, ∀i ∈ {1, ..., 254}, (5.9)

where JVneg,⊥V
t denotes the orthogonal component of the risk-neutral expected negative

jump variation for firm i, as defined in Eq. (5.8), relative to the spot variance Vt. Due to

the overlapping observations of returns with horizons longer than one month, the widely

used Newey-West standard errors are underestimated in the most extreme cases. Follow-

ing Martin and Wagner (2019), we employ bootstrap standard errors as a conservative

procedure, which accounts for both the time-series and the cross-sectional dependencies

in the overlapping cross-sectional observations. Since computation of bootstrap standard

errors requires considerable computational power, the procedure is carried out on the

bwUniCluster 2.0 and bwForCluster Helix.

Table 5.11 reports the coefficients for the panel regressions of cross-sectional stock returns

onto lagged volatilites and orthogonal negative jump variations extracted from option

surfaces. All of the coefficients from the regression of stock returns on lagged volatility

states are positive and increase with forecasting horizons. A t-statistic of 2.49 at the 9-

month forecast horizon suggests relatively weak statistical validity for estimates of βV,h.

It’s not until the 12-month horizon that the t-statistic increases to 2.74, surpassing the

threshold of 2.5 and thereby emphasizing its predictive ability for returns. Furthermore,

the coefficients associated with orthogonal negative jump variation are positive as well

across all forecasting zones. Based on the bootstrap procedure, the t-statistics obtained

are 3.14 for the 6-month forecasting horizon, 3.98 for the 9-month forecasting horizon,

and 4.56 for the 12-month forecasting horizon, which exceed the critical threshold of 2.5.

80In their 3F model, there are two volatility factors and a negative jump intensity factor.
81To align with Martin and Wagner (2019) and others, simple returns are used in this study.
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Both factors show substantial relevance in explaining the cross-sectional variation in U.S.

equity premiums, but orthogonal negative jump variation shows greater significance in

t-statistics than Vt.

Table 5.11: Cross-sectional panel predictability regressions of spot volatility and
orthogonal negative jump variation.

1-month 3-month 6-month 9-month 12-month

Intercept
0.0087 0.0291 0.0509 0.0777 0.1052
(2.7355) (3.8069) (4.0752) (4.0689) (3.9331)

Vi
0.0332 0.0684 0.2005 0.2945 0.4055
(0.9373) (0.8214) (1.7353) (2.4855) (2.7441)

JVneg,⊥V
i

0.0582 0.2104 0.5131 0.7269 0.8836
(1.0127) (1.7889) (3.1370) (3.9788) (4.5606)

Adjusted R2 (%) 0.6635 1.6453 5.0340 6.6092 7.7379

Note: This table presents panel regression results for the regressing of future returns on single
stocks onto their respective lagged filtered state vector; i.e., ri,t,t+h = αh + βv,h · Vi,t + βu,h ·
JVneg,⊥V

i,t +ϵi,t,t+h. The returns are sampled on a monthly basis from January 2004 to December
2021.The column labels indicate the forecasting horizons, which range from 1 month to 1 year.
The coefficients are listed in the table without parentheses, and the parentheses underneath
represent the corresponding t-statistics, which are calculated using standard errors obtained
through the block bootstrap procedure described in Martin and Wagner (2019). The row
labelled “Adjusted R2(%)” reports adjusted R2 values, which are presented in percentage terms.

5.2.6.2 Conventional Surface-Related Risk Measures

We investigate whether various conventional surface-related risk measures can cross-

sectionally predict future returns. If these measures can indeed forecast future returns,

we seek to determine whether the information they carry overlaps with tail risk. The aim

of this analysis is to verify whether the cross-sectional return predictability in the U.S.

equity market–primarily driven by Ut as per our prior empirical findings–can be readily

replicated, or if certain conventional surface-related risk factors can effectively span the

factor Ut.

Adopting the methodology of Bakshi et al. (2003), we obtain the risk-neutral variance

and skewness, denoted as Bakshi variance (VarBakshi
t ) and Bakshi skewness (SkewBakshi

t ) for

each single stock. To explore if Ut can be spanned by the first two risk-neutral moments,

we perform the following panel regression:

JVneg
i,t = γ0 + γbv · VarBakshi

i,t + γbs · SkewBakshi
i,t + ϵi,t, ∀i ∈ {1, ..., 254}. (5.10)
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In this regression, the negative jump variation JVneg
i,t is regressed onto the Bakshi variance

and Bakshi skewness. The estimated intercept coefficient is 0.02 with a t-statistic of 2.45.

The estimate of γbv (γbs) is 2.42 (0.00) with a t-statistic of 4.49 (−2.40). In addition, the

adjusted R2 is 37.99%. We conclude, therefore, that a certain portion of the negative

jump variation can be explained by the Bakshi variance.

To investigate conventional surface-related risk measures embedded in implied volatility

surfaces, we employ Black-Scholes implied volatilities of raw ATM options (ATM implied

volatilities) with the nearest maturity to 30 days, as well as the implied volatility surface

skewness (IV skew) measurement to perform an analysis similar to that in the previous

subsection. In alignment with Andersen et al. (2015b), the IV skew (SkewIV
t ) is defined

as the difference between the Black-Scholes implied volatilities of short-term OTM put

and call options. We select the put options with deltas of −0.25 and the call options with

deltas of +0.25, both with maturities similar to those of the ATM implied volatilities.We

regress negative jump variation onto risk measures:

JVneg
i,t = γ0 + γiv · IVatm

i,t + γskew · SkewIV
i,t + ϵi,t, ∀i ∈ {1, ..., 254}. (5.11)

In summary, we obtain the following results: the intercept yields an estimate of −0.07
with a t-statistic of −3.79. The estimated slope coefficient of IVatm

i,t (SkewIV
t ) is 0.41 (0.10)

with a t-statistic of 5.22 (3.54). In this model, the adjusted R2 is 50.96%, indicating that

these two factors account for approximately half of the variation in JVneg
t .

For further investigation into the explanatory power of future returns related to those

conventional risk measures, the study repeats panel regressions similar to the predictive

regression with forecasting horizons h ∈ {1, 3, 6, 9, 12}, as previously done:

ri,t,t+h = αh + βbv,h · VarBakshi
i,t + βbs,h · SkewBakshi

i,t + ϵi,t,t+h, ∀i ∈ {1, ..., 254}; (5.12)

ri,t,t+h = αh + βiv,h · IVatm
i,t + βskew,h · SkewIV

i,t + ϵi,t,t+h, ∀i ∈ {1, ..., 254}. (5.13)

Based on the results presented in Table 5.13, the IVatm
t demonstrates its ability to predict

cross-sectional returns. Specifically, for forecasting horizons of 9 and 12 months, the t-

statistics for the βiv,h estimates are 2.65 and 2.96, respectively, indicating a significant

level of predictability. Conversely, the βskew,h estimates, which are nearly zero, imply

little to no predictive power for the SkewIV
t . Additionally, in the predictive regression

analysis, the Bakshi moments do not exhibit statistical significance at either horizon.
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Table 5.12: Panel regression of alternative measures on negative jump variation.

JVneg
i,t

Intercept
0.0156 -0.0749
(2.4537) (-3.7906)

VarBakshi
i

2.4159
(4.4854)

SkewBakshi
i

-0.0050
(-2.4026)

IVatm
i

0.4142
(5.2190)

SkewIV
i

0.1041
(3.5399)

Adjusted R2 (%) 37.9919 50.9589

Note: This table presents the results of panel regression analyses that regress the NJV
on two sets of alternative measures. The first set consists of Bakshi moments, which
include Bakshi variance (VarBakshi

i ) and Bakshi skewness (SkewBakshi
i ). The second set

is referred to as the practitioner’s measures and contains ATM BSIV (IVatm
i ) and IV

Skew (SkewIV
i ). The coefficients are listed in the table without parentheses, and the

parentheses underneath represent the corresponding t-statistics, which are calculated
using standard errors obtained through the block bootstrap procedure described in Martin
and Wagner (2019). The row labelled “Adjusted R2(%)” reports adjusted R2 values,
which are presented in percentage terms.

Table 5.13: Cross-sectional panel predictability regressions of ATM implied volatility
and IV skew.

1-month 3-month 6-month 9-month 12-month

Intercept
-0.0010 -0.0014 -0.0199 -0.0212 -0.0264
(-0.0948) (-0.0584) (-0.5495) (-0.5361) (-0.5552)

IVatm
i

0.0481 0.1412 0.3352 0.4697 0.6219
(1.1494) (1.5018) (2.1340) (2.6472) (2.9624)

SkewIV
i

-0.0225 -0.0455 -0.0256 0.0087 0.0311
(-1.0242) (-0.9965) (-0.3338) (0.0911) (0.2567)

Adjusted R2 (%) 0.5926 1.7810 4.5487 5.7462 7.0327

Note: This table presents panel regression results for the regressing of future returns on single
stocks onto their ATM implied volatility and IV skew; i.e., ri,t,t+h = αh + βiv,h · IVatm

i,t +

βskew,h · SkewIV
i,t + ϵi,t,t+h. The returns are sampled on a monthly basis from January 2004

to December 2021. The column labels indicate the forecasting horizons, which range from 1
month to 1 year. The coefficients are listed in the table without parentheses, and the parentheses
underneath represent the corresponding t-statistics, which are calculated using standard errors
obtained through the block bootstrap procedure described in Martin and Wagner (2019). The
row labelled “Adjusted R2(%)” reports adjusted R2 values, which are presented in percentage
terms.
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The last two analyses reveal the measure: IVatm
t and SkewIV

t , which exhibit substantial

explanatory power for JVneg
t . Notably, among these two dependent variables, IVatm

t have

the greatest predictive power for future cross-sectional returns and may overlap with

JVneg
t . While the return predicting ability of IVatm

t is not surprising, given its role as part

of the input data in our estimation procedure, it is important to understand whether the

realization of the tail risk factor can once again play a substantial role in the regression.

To address this issue, we perform three separate groups of panel regression analyses, each

based on a different set of dependent variables.

First, we incorporate JVneg
t into the panel regressions with forecasting horizons h ∈

{1, 3, 6, 9, 12} months as an additional factor, along with IVatm
i,t and SkewIV

t , yielding the

following equation

ri,t,t+h = αh + βiv,h · IVatm
i,t + βskew,h · SkewIV

i,t + βU,h · JVneg
i,t

+ ϵi,t,t+h, ∀i ∈ {1, ..., 254}.
(5.14)

Table 5.14 presents the results, indicating that the estimates of βiv,h is no longer statis-

tically significant. Meanwhile, the estimates of βU,h begins to show significance starting

from a 9-month forecasting horizon. Furthermore, the estimates of βskew,h remains consis-

tently insignificant and close to zero. However, due to the high correlation and potential

co-linearity between IVatm
i,t and JVneg

t , we cannot conclusively state that JVneg
t is the only

driver of the predictability among these three factors. To further investigate the relation-

ship between IVatm
i,t and JVneg

t , we continue to perform two additional sets of regression

analyses.

In the second regression analysis, we orthogonalize a stock’s JVneg
t with regard to its IVatm

t

to attach all common movements to the IVatm
i,t . The panel regressions with forecasting

horizons h ∈ {1, 3, 6, 9, 12} months take the form

ri,t,t+h = αh + βiv,h · IVatm
i,t + βU⊥iv ,h · JVneg,⊥IV

i,t + ϵi,t,t+h, ∀i ∈ {1, ..., 254}. (5.15)

Table 5.15 summarizes the results. Here, JVneg,⊥IV
i,t represents the orthogonal component

with respect to IVatm
t . The results show that the estimates of βU⊥iv ,h become significant

starting from a 6-month forecasting period, whereas the estimates of βiv,h do not.

In the third regression analysis, we perform the orthogonalization in the other direction;

i.e., we orthogonalize a stock’s IVatm
t with regard to its JVneg

t to attach all common move-

ments to the JVneg
t . The panel regressions with forecasting horizons h ∈ {1, 3, 6, 9, 12}
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Table 5.14: Cross-sectional return predictability: panel regression of ATM implied
volatility, IV skew and negative jump variation.

1-month 3-month 6-month 9-month 12-month

Intercept
0.0025 0.0077 0.0089 0.0215 0.0232
(0.2664) (0.4351) (0.3026) (0.6379) (0.5495)

IVatm
i

0.0293 0.0924 0.1779 0.2366 0.3500
(0.7379) (1.3332) (1.3645) (1.4361) (1.6581)

SkewIV
i

-0.0266 -0.0565 -0.0619 -0.0446 -0.0315
(-1.1609) (-1.3288) (-0.7737) (-0.4318) (-0.2438)

JVneg
i

0.0421 0.1095 0.3557 0.5247 0.6140
(0.6779) (0.8563) (2.2856) (3.1750) (2.9760)

Adjusted R2 (%) 0.6726 1.9730 5.4882 7.0129 8.2481

Note: This table presents panel regression results for the regressing of future returns on single
stocks onto their ATM implied volatility, IV skew and negative jump variation; i.e., ri,t,t+h =
αh+βiv,h ·IVatm

i,t +βskew,h ·SkewIV
i,t +βU,h ·JVneg

i,t +ϵi,t,t+h. The returns are sampled on a monthly
basis from January 2004 to December 2021. The column labels indicate the forecasting horizons,
which range from 1 month to 1 year. The coefficients are listed in the table without parentheses,
and the parentheses underneath represent the corresponding t-statistics, which are calculated
using standard errors obtained through the block bootstrap procedure described in Martin and
Wagner (2019). The row labelled “Adjusted R2(%)” reports adjusted R2 values, which are
presented in percentage terms.

Table 5.15: Cross-sectional return predictability: panel regression of ATM implied
volatility and negative jump variation orthogonal to ATM implied volatility.

1-month 3-month 6-month 9-month 12-month

Intercept
0.0026 0.0081 0.0086 0.0230 0.0261
(0.2733) (0.4478) (0.2855) (0.6888) (0.6260)

IVatm
i

0.0367 0.1122 0.2568 0.3517 0.4834
(0.9214) (1.3608) (1.8098) (2.1342) (2.3713)

JVneg,⊥IV
i

0.0530 0.1434 0.4547 0.7078 0.8489
(0.7318) (0.9409) (2.6585) (3.7840) (3.6182)

Adjusted R2 (%) 0.6703 2.0097 5.7601 7.5820 8.8737

Note: This table presents panel regression results for the regressing of future returns on single
stocks onto their ATM implied volatility and negative jump variation orthogonal to ATM implied
volatility; i.e., ri,t,t+h = αh+βiv,h · IVatm

i,t +βU⊥iv ,h ·JV
neg,⊥IV
i,t +ϵi,t,t+h. The returns are sampled

on a monthly basis from January 2004 to December 2021. The column labels indicate the
forecasting horizons, which range from 1 month to 1 year. The coefficients are listed in the table
without parentheses, and the parentheses underneath represent the corresponding t-statistics,
which are calculated using standard errors obtained through the block bootstrap procedure
described in Martin and Wagner (2019). The row labelled “Adjusted R2(%)” reports adjusted
R2 values, which are presented in percentage terms.

months take the form

ri,t,t+h = αh + βiv⊥U ,h · IVatm,⊥JVneg

i,t + βU,h · JVneg
i,t + ϵi,t,t+h, ∀i ∈ {1, ..., 254}. (5.16)
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Table 5.16 presents the summarized results. The results clearly indicate that the estimates

of βiv⊥U ,h are close to zero and their t-statistics fall well below the conservative threshold

of 2.5. However, the estimates of βU,h increase over the forecasting horizons, and their

t-statistics surpass this threshold for horizons of 9 months and longer.

Table 5.16: Cross-sectional return predictability: panel regression of ATM implied
volatility orthogonal to negative jump variation and negative jump variation.

1-month 3-month 6-month 9-month 12-month

Intercept
0.0087 0.0260 0.0552 0.0892 0.1143
(2.0546) (4.0292) (5.2508) (6.4815) (5.8649)

IVatm,⊥JVneg

i

0.0015 0.0134 -0.0368 -0.0824 -0.0650
(0.0538) (0.3455) (-0.6133) (-0.9373) (-0.5540)

JVneg
i

0.0728 0.2179 0.5250 0.7311 0.9683
(1.0575) (1.3695) (2.1000) (2.7551) (3.0649)

Adjusted R2 (%) 0.5384 1.5762 4.9070 6.4497 7.2700

Note: This table presents panel regression results for the regressing of future returns on single
stocks onto their ATM implied volatility orthogonal to negative jump variation and negative
jump variation; i.e., ri,t,t+h = αh+βiv⊥U ,h · IV

atm,⊥JVneg

i,t +βU,h ·JVneg
i,t + ϵi,t,t+h. The returns are

sampled on a monthly basis from January 2004 to December 2021. The column labels indicate
the forecasting horizons, which range from 1 month to 1 year. The coefficients are listed in
the table without parentheses, and the parentheses underneath represent the corresponding
t-statistics, which are calculated using standard errors obtained through the block bootstrap
procedure described in Martin and Wagner (2019). The row labelled “Adjusted R2(%)” reports
adjusted R2 values, which are presented in percentage terms.

Overall, the results indicate that ATM implied volatility loses its predictive power for

future returns when its co-movement with tail risk is removed. Therefore, the independent

information carried by tail risk plays a more significant role than ATM implied volatility.

Based on these findings, we can conclude that JVneg
t exhibits significant explanatory power

over ATM implied volatility, and the information provided by ATM implied volatility is

inherently incorporated within JVneg
t .

5.2.6.3 Systematic vs. Idiosyncratic Components in Risk Factors

In order to understand if either the systematic or idiosyncratic components of Vt and

Ut carry the information for the return predictability found in panel regressions in Sec-

tion 5.2.6.1. Following regressions of the form in Eq. (5.9), we consider the dependent

variables in Vt and JVneg,⊥V
t and decompose them into two components: a systematic com-

ponent and an idiosyncratic component by projecting each firm’s realizations of Vt and

JVneg,⊥V
t onto the corresponding realizations of the market index, respectively. Finally,
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we perform predictive panel regressions using the systematic and idiosyncratic compo-

nents of the single stock’s realizations of Vt and JVneg,⊥V
t . The panel regressions with

forecasting horizons h ∈ {1, 3, 6, 9, 12} months take the form

ri,t,t+h = αh+β
sys
V,h · V

sys
i,t + βidio

V,h · V idio
i,t + βsys

U,h · JV
neg,⊥V,sys
i,t

+βidio
U,h · JV

neg,⊥V,idio
i,t + ϵi,t,t+h, ∀i ∈ {1, ..., 254},

(5.17)

where the V sys
i,t (JVneg,⊥V,sys

i,t ) denotes the systematic component of the corresponding risk

factor Vi,t (JV
neg,⊥V
i,t ) and the V idio

i,t (JVneg,⊥V,idio) denotes the idiosyncratic component of

Vi,t (JV
neg,⊥V
i,t ).

Table 5.17 presents the regression results. We observe that the estimates of βidio
V,h for the

idiosyncratic component of spot variance consistently increase. The t-statistics of βidio
V,h

surpass the threshold of 2.5, starting with a 6-month forecast horizon. Therefore, only

the information carried by the idiosyncratic components of Vt can predict cross-sectional

future returns. In addition, the estimates of βidio
U,h for the idiosyncratic component are

statistically significant at forecasting horizons of 6 and 9 months.

5.2.7 Return Predictability: Portfolio Sorts

By constructing the portfolio according to An et al. (2014)’s long-short investment strat-

egy, we examine the predictive power of JVneg,⊥V .82 We report the results in Table 5.18.

The average raw and risk-adjusted return differences between High JVneg,⊥V and Low

JVneg,⊥V portfolios are statistically significant for 6-, 9- and 12-month holding periods.

There are statistically significant annualized average returns of 5.43%, 5.74%, and 5.39%

for holding periods of 6 months, 9 months, and 12 months, respectively. In summary,

JVneg,⊥V predictability persists for 6, 9 and 12 months, which is in line with the findings

in the previous panel regressions.

Furthermore, we examine whether the portfolio’s sorting results for systematic and id-

82Here we mainly the describe their strategy taken from Jegadeesh and Titman (1993). This involves
sorting the extracted orthogonal negative jump variation in the current month t into quintiles. The
portfolio is designed with overlapping holding periods h. The strategy holds portfolios selected in the
current month and the previous h− 1 months. In this case, h represents the holding period of 1, 3, 6, 9,
and 12 months. At the beginning of every month t, we perform dependent sorts on JVneg,⊥V over the
past month t − 1. As a result of these rankings, five portfolios are created for JVneg,⊥V . Every month
t, the strategy buys stocks in the High JVneg,⊥V quintile, and sells stocks in the Low JVneg,⊥V quintile,
holding the position for h months. In addition, the strategy closes out the position initiated in month
t−h. Therefore, under this trading strategy, we revise the weights on 1/h of all stocks in our portfolio on
a monthly basis. We carry over the rest from the previous month. In this strategy, profits are calculated
as a result of a series of portfolios that are rebalanced on a monthly basis to maintain equal weighting.
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Table 5.17: Cross-sectional panel predictability regressions of idiosyncratic spot
variance, systematic spot variance, idiosyncratic orthogonal jump variation and
systematic orthogonal jump variation.

1-month 3-month 6-month 9-month 12-month

Intercept
0.0064 0.0232 0.0421 0.0692 0.1002
(1.9305) (3.1197) (3.1039) (3.2998) (3.4840)

V sys
i

0.0213 0.0606 0.2190 0.2932 0.3902
(0.4521) (0.6086) (1.6020) (1.7478) (1.8572)

V idio
i

0.0664 0.1165 0.2231 0.3471 0.4598
(2.3366) (2.4150) (2.6029) (4.0128) (4.3062)

JVneg,⊥V,sys
i

0.2991 0.7729 1.2738 1.5110 1.3817
(1.8798) (3.1548) (3.0492) (2.7222) (2.1987)

JVneg,⊥V,idio
i

0.0418 0.1455 0.3864 0.6236 0.8374
(0.8174) (1.4233) (2.3500) (3.4117) (3.8701)

Adjusted R2 (%) 1.6811 3.2620 6.2345 7.4428 7.9925

Note: This table presents panel regression results for the regressing of future returns on single
stocks onto their idiosyncratic spot variance, systematic spot variance, idiosyncratic orthogonal
jump variation and systematic orthogonal jump variation; i.e., ri,t,t+h = αh+βidio

V,h ·V idio
i,t +βsys

V,h ·
V sys
i,t + βidio

U,h · JV
neg,⊥V,idio
i,t + βsys

U,h · JV
neg,⊥V,sys
i,t + ϵi,t,t+h. The returns are sampled on a monthly

basis from January 2004 to December 2021. The column labels indicate the forecasting horizons,
which range from 1 month to 1 year. The coefficients are listed in the table without parentheses,
and the parentheses underneath represent the corresponding t-statistics, which are calculated
using standard errors obtained through the block bootstrap procedure described in Martin and
Wagner (2019). The row labelled “Adjusted R2(%)” reports adjusted R2 values, which are
presented in percentage terms.

iosyncratic components of spot volatility and tail risk align with the predictive regressions.

Table 5.19 shows that portfolio sorts based on idiosyncratic variance yield statistically

significant annualized average returns. These returns are significant, starting from a

holding period of one month, and range between 7.76% and 11.18%. Additionally, this

strategy consistently yields a Sharpe ratio of around 1.0 across all forecasting periods.

Conversely, portfolio sorts based on idiosyncratic left tail risk exhibit annualized average

returns of 4.37% (t-statistic: 2.34), 4.76% (t-statistic: 2.51), and 4.88% (t-statistic: 2.54)

for holding periods of 6, 9, and 12 months, respectively. The Sharpe ratios for these hold-

ing periods are approximately 0.5. However, portfolio sorts focusing on the systematic

components of both risk factors do not yield statistically significant average returns.
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Table 5.18: Portfolio sorts on spot volatility and orthogonal negative jump variation.

1-month 3-month 6-month 9-month 12-month

Vi

Average Return
0.0774 0.0749 0.0838 0.0832 0.0830
(3.0114) (2.8147) (2.7946) (2.8489) (3.0594)

FF5 Alpha
0.0922 0.0834 0.0847 0.0820 0.0839
(3.1286) (2.8290) (2.6579) (2.7148) (3.0936)

Sharpe Ratio 0.4781 0.5083 0.5136 0.5241 0.5477

JVneg,⊥V
i

Average Return
0.0439 0.0598 0.0543 0.0574 0.0539
(1.9114) (2.4832) (2.8460) (3.1139) (3.0480)

FF5 Alpha
0.0497 0.0601 0.0537 0.0570 0.0541
(2.1842) (2.4487) (2.8361) (3.2503) (3.2007)

Sharpe Ratio 0.3195 0.5609 0.5805 0.6939 0.6468

Note: The table showcases the annualized average returns of a long-short strategy, along with
the annualized Sharpe ratios for factors Vi and JVneg,⊥V

i . This strategy involves going long
on a quintile portfolio with the highest corresponding variable value, while going short on a
portfolio with the lowest. The portfolios are maintained over periods of 1, 3, 6, 9, and 12
months, with only monthly rebalancing. The table includes Newey and West (1987) t-statistics,
with the number of lags set equal to 1.3

√
T , and these statistics are reported in parentheses.

Additionally, the table provides the annualized Fama-French 5-factor (see Fama and French
(2015)) alpha, denoted as “FF5 Alpha”. The Fama-French 5-factors are obtained from Kenneth
R.French–Data Library.
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Table 5.19: Portfolio sorts systamatic components and idiosyncratic components.

1-month 3-month 6-month 9-month 12-month

V sys
i

Average Return
0.0368 0.0385 0.0463 0.0478 0.0464
(0.9148) (1.0200) (1.2113) (1.2870) (1.2832)

FF5 Alpha
0.0337 0.0394 0.0445 0.0435 0.0440
(0.9022) (1.0242) (1.1283) (1.1605) (1.2366)

Sharpe Ratio 0.1533 0.1964 0.2182 0.2342 0.2241

V idio
i

Average Return
0.1118 0.0776 0.0829 0.0848 0.0800
(3.4289) (4.3864) (4.9600) (5.0238) (5.0885)

FF5 Alpha
0.1304 0.0880 0.0860 0.0876 0.0835
(4.0717) (4.7496) (5.1075) (5.2741) (5.5258)

Sharpe Ratio 0.9220 0.8273 1.0353 1.0780 1.0502

JVneg,⊥V,sys
i

Average Return
0.0443 0.0683 0.0578 0.0395 0.0285
(1.1536) (1.3841) (1.5868) (1.4583) (1.2700)

FF5 Alpha
0.0655 0.0739 0.0546 0.0360 0.0277
(1.2846) (1.4252) (1.5432) (1.3925) (1.3055)

Sharpe Ratio 0.2042 0.4154 0.4107 0.3301 0.2566

JVneg,⊥V,idio
i

Average Return
0.0268 0.0466 0.0437 0.0476 0.0488
(0.9161) (2.0084) (2.3446) (2.5140) (2.5416)

FF5 Alpha
0.0190 0.0477 0.0450 0.0490 0.0497
(0.6178) (2.0854) (2.4351) (2.6383) (2.6486)

Sharpe Ratio 0.1565 0.4941 0.5242 0.5764 0.5509

Note: This table presents the annualized average returns of a long-short strategy, along with its
corresponding annualized Sharpe ratios for factors of V sys

i , V idio
i , JVneg,⊥V,sys

i and JVneg,⊥V,idio
i .

This strategy involves going long on a quintile portfolio with the highest corresponding variable
value, while going short on a portfolio with the lowest. Portfolios are held for 1, 3, 6, 9,
and 12 month(s), and are rebalanced monthly. The table includes Newey and West (1987)
t-statistics, with the number of lags set equal to 1.3

√
T , and these statistics are reported in

parentheses. Additionally, the table provides the annualized Fama-French 5-factor (see Fama
and French (2015)) alpha, denoted as “FF5 Alpha”. The Fama-French 5-factors are obtained
from Kenneth R.French–Data Library.
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5.2.8 Summary

By combining the strengths of several existing estimation methodologies, we apply an

affine jump-diffusion model to the cross-section of option surfaces in the U.S. market.

According to the literature, the model’s estimated static parameters and latent states are

in line with the empirical characteristics of option-implied risk-neutral density. Further-

more, the calibration model’s option pricing performance assessment confirms not only

the appropriateness of the model’s implied risk-neutral density, but also the accuracy of

the extracted trajectories of spot volatilities and negative jump intensities. When as-

sessing option pricing, the calibrated models yield an overall in-sample root-mean-square

error of 6.81% and a relative root-mean-square error of 10.76%.

In addition to demonstrating the model’s fit, we also establish that the cross-section of left

tail risk factors, represented by the model’s negative jump intensity, can predict future

stock returns over periods spanning from 6 to 12 months. Panel regression analysis yields

statistically significant slope coefficients of 0.51, 0.73, and 0.88 for forecasting horizons of

6, 9, and 12 months, respectively, with corresponding bootstrapped t-statistics of 3.14,

3.98, and 4.56. Furthermore, due to the additional predictive regressions on several

conventional surface-related factors, we demonstrate that left tail risk cannot be spanned

by those conventional risk measures. Additionally, we decompose both spot variance and

tail risk into systematic and idiosyncratic components. Based on the predictive panel

regressions, we find that the idiosyncratic components exhibit predictive power across

various forecasting horizons.

Finally, we underscore our findings with further evidence based on portfolio sorts involving

various factors used in the aforementioned predictive regressions. Specifically, long-short

portfolios constructed by sorting the orthogonal left tail risk factor yield statistically

significant annualized returns of 5.43%, 5.74%, and 5.39% over holding periods of 6, 9, and

12 months, respectively. The annualized Sharpe ratios of the long-short strategy, based

on the left tail risk for these periods, are 0.58, 0.69, and 0.65, respectively. Moreover,

long-short portfolios sorted by the idiosyncratic component of spot variance consistently

yield significant annualized average returns across all forecasting periods. Meanwhile,

portfolios sorted based on the idiosyncratic component of the tail risk factor start to

demonstrate significant annualized average returns for holding periods beginning at 6

months. Therefore, these findings indicate that the idiosyncratic components of both

variance and left tail risks possess predictive power for equity returns.



6 Conclusion and Outlook

This thesis provides an overview of affine jump-diffusions and their applications to

reduced-form dynamic asset pricing models, which are used in the prolific literature on

extracting economic information from derivatives markets. Following a review of related

estimation methodologies, this thesis aims to provide a robust and efficient approach

to estimating static parameters and recovering state variables for AJD models in a no-

arbitrage setting by using moments derived from rich observations from the option market

for the underlying return density. Empirical studies of the AJD models with an empha-

sis on a left tail factor are conducted on options written on the S&P 500 index and its

constituents. Based on the results of the empirical studies, the conclusion regarding the

future return predictability of the left tail factor, which is shown at the index level in the

literature, is extended to the cross-sectional level.

In a first step, Chapter 2 reviews the mathematical fundamentals of AJDs and their

application to dynamic asset pricing models. In particular, the general definition of

AJDs is discussed in light of the seminal work of Duffie et al. (2000). Following their

results, a general transformation analysis for AJDs is presented, which is essential for

the option pricing methods discussed in this section. The derivation of the AJD-implied

moments, which play an instrumental role in the estimation approach, is explained in

detail. Additionally, inverse Fourier techniques are discussed in detail for derivative

pricing, particularly for the cosine method by Fang and Oosterlee (2008). Moreover, this

chapter introduces several essential dynamic asset pricing models based on the arbitrage-

free framework, building up in complexity. To conclude the chapter, several issues related

to the empirical analysis of the option market are addressed.

Chapter 3 reviews the general settings for the inference procedure for AJD models. State-

space models, as a standard tool for estimating discrete-time models with probability

relationships between observations and latent states are first presented in this chapter.

Based on the Euler-Maruyama scheme, the continuous-time AJD models can be trans-
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lated into a discrete-time state-space model. With a state-space modeling framework in

combination with the filtering methods presented in this chapter, a uniform inference

framework is established. The pros and cons of appropriate selection of filtering meth-

ods depending on the concrete dynamics of AJD models are also discussed. Moreover, a

penalized least squares approach proposed by Andersen et al. (2015a) is explained in ad-

dition to the state-space model-based approach. Finally, the aforementioned techniques

are combined to form a quasi-maximum likelihood approach based on the Kalman filter.

In Chapter 4, the Kalman filter-based quasi-maximum likelihood approach for the SVNUJ

model is validated in two steps via Monte Carlo simulation. The filtering step in the ap-

proach is validated via a study assuming the static parameters are known. The validation

of the estimation for static parameters is carried out afterwards, since the recovery of la-

tent states is nested in the likelihood function calculation.

The empirical analysis of the SVNUJ model for the U.S. option market is performed in

Chapter 5. In order to reproduce the results of Andersen et al. (2015b), an empirical

analysis of the options written on the S&P 500 index is conducted. The results from the

Kalman filter-based quasi-maximum likelihood approach are consistent with the results

of Andersen et al. (2015b), namely that the extracted negative jump intensity as a left

tail factor is predictive of future index returns. This chapter additionally extends the

results to a cross-sectional level by applying the SVNUJ model to options written on

single stocks. Empirical findings from panel regressions affirm the cross-sectional return

predictability of the left tail factor. Moreover, by decomposing the spot variance and

left tail factors into systematic and idiosyncratic components, and conducting subsequent

panel regressions and portfolio sorting analysis on these components, the predictive power

of idiosyncratic risk components for cross-sectional returns is established.

Despite the length of the thesis, there are still some issues that remain unattended,

particularly those related to the estimation of static parameters under P. As shown in

the simulation study in Chapter 4, the parameters under P cannot be well identified. The

underlying reason could be that measurements of cumulants dominates the filtering step,

making the dynamics about the evolution of latent states irrelevant. Therefore, one will

need some amelioration of the measurements for the dynamics under P. Numerous studies

in the literature (see, e.g., Fulop and Li (2019), among others) use return data to pin

down the dynamics under P. Mechanically there are two potential issues preventing an

accurate and efficient estimation of the parameters under P, when the underlying returns

are included. First, in the AJD models, if there are jumps in the return dynamics,
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the conditional density of the return is then nonlinear and non-Gaussian. Although

technically possible, approximating measurement equations may have a larger bias than

approximating state equations. Since measurement equations provide direct insight into

state variables, approximation bias could easily be transferred into the recovery of state

variables. Second, the return data itself is in general noisy, which means that the higher

order risk-neutral moments can still dominate the filtering step. Unfortunately, this

potential inefficiency regarding estimating the parameters under P is often ignored in

the literature. Due to the fact that most empirical studies do not include a simulation

study before the empirical analysis is conducted. To my current knowledge, only Fulop

and Li (2019) conduct a simulation study before proceeding to an empirical study. It

appears, however, that the P parameters are not well identified in both the numerical

and simulation studies. One potential amelioration of the measurements would be to

use a nonparametric estimate of the continuous return variation83 derived from the high

frequency return data. Since this measure represents the diffusive variation of the return

process, it provides direct information about the dynamics of volatility in the AJD models

under P. A comprehensive solution to the identification problem under P would require

additional data and the use of particle filtering. Furthermore, there is a potentially

statistical pitfall in the assumption of the model, which is sourced from the literature,

i.e., a structure-wise misspecification of the model dynamics under P. As outlined by

Andersen et al. (2015b), the assumption that model dynamics under P and Q exhibit the

same structure may not hold at all for real data. As a result, the aforementioned solutions

may not resolve the issue either. Therefore, in such a case more advanced econometric

tools are required in order to build the wedge between P and Q for risk premiums.

Building on the findings presented in this thesis, two data sets emerge as particularly

interesting for further extracting useful information embedded in the option market.

Firstly, there is scant research on AJD models focusing on ultra short-term options. To

my current knowledge, only Andersen et al. (2017) employ an AJD model to characterize

the risks implied by weekly options. By using the estimation procedure in this thesis, one

can begin with the weekly options on the index and then proceed to the weekly options

written on the constituents of the index. Mechanically, this study may reveal whether

risk-neutral moment information can improve efficiency in the task of estimating AJD

models for short-term options. Empirically, this study can be used to examine whether

there exists any additional information that is not captured in models estimated based

83See Andersen et al. (2015b) and Andersen et al. (2019) for more details.
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on medium- and long-term options. Secondly, as demonstrated by Bates (2019), a set

of AJD models can capture the statistical features of intraday fluctuations in S&P 500

future prices. Therefore, given the increased liquidity in the option market, incorporating

intraday option surfaces into an empirical study of AJD models presents an interesting

and promising research avenue. With this study, it would be possible to examine whether

intraday option surfaces can improve the empirical fit of AJD models to the intraday

dynamics of underlying returns, since intraday option surfaces should be able to provide

information that cannot be obtained from end-of-day surfaces or intraday future prices.

Furthermore, this study would offer an opportunity to investigate whether economic

news-driven intraday market movements can be explained using state variables extracted

from intraday option surfaces.



A Appendix

A.1 Additional Definitions & Propositions

A.1.1 Additional Definitions

Definition A.1. (Affine jump-diffusions (AJD))84

Let (Ω,F , P ) a probability space on some state space D ⊆ Rn. Consider the SDE

dXt = µ (Xt) dt+ σ (Xt) dWt + dJt , (A.1)

where the building blocks are assumed to satisfy that

• µ : D → Rn,

• σ = (σi,j)i,j=1,...,n : D → Rn×n ,

• Wt is a Brownian motion in Rn, and

• Jt is supposed to be a right-continuous jump process with ςν being a jump transform

that determines the jump distribution on Rn with fixed parameters.

– The jumps arrive with time-varying intensity {c (Xt) : t ≥ 0} for some mapping

c : D → [0,∞).

– Let ςν =
∫
Rn exp(u · z)dν(z) be the mapping : Cn → C for u ∈ Cn, which

determines the distribution of jump sizes.

In this case, the jump can be chosen as a compound Poisson process for Jt.

The timing of jump activity happening, which is the counting process of whether a jump

occurs or not, is assumed to be independent of jump size in Jt. Furthermore, the sudden

84This formulation of definition is based on the results of the research project conducted jointly with
Maximilian Kübler, a student at the C-RAM chair. I would like to extend my thanks to him.
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shocks shall not be affected by “mild” shocks from Brownian motion Wt. Thus, it is

natural to assume the mutual independence of Jt and Wt.

Nevertheless, the critical functional relationship for the term affine is still missing. To

clarify the affinity, consider the dynamics defined in Eq. (2.1), where the stochastic pro-

cesses are affine if and only if ∀x ∈ D:

• µ(x) = k0 + k1 · x1 + · · ·+ kn · xn = k0 +K1x (Drift)

• σ(x)σ(x)⊤ = h0 + h1 · x1 + · · ·+ hn · xn = h0 +H1x (Variance)

• c(x) = c0 + c1 · x1 + · · ·+ cn · xn = c0 + C1 · x (Poisson counter intensity)

• r(x) = r0 + r1 · x1 + · · · + rn · xn = r0 + R1 · x (Instantaneous riskless short-term

rate)

for deterministic and time-independent coefficients k0, k1, . . . , kn ∈ Rn, h0, h1, . . . , hn ∈
Rn×n, c0, c1, . . . , cn ∈ R and r0, r1, . . . , rn ∈ R. Finally, all the dynamic related parameters

are defined as follows,

θX = {k0, K1, h0, H1, c0, C1, r0, R1, ςν}. (A.2)

In most cases, it suggests using a Poisson process for counting jumps. For any time

interval [0, T ], one can approximate the value of the Poisson process at time T by dividing

the interval into N ∈ N subintervals of equidistant lengths and performing independent

Bernoulli experiments with “a success probability” cT
N
. This is important when applying

a Monte Carlo scheme to approximate the true value of Xt at time T .

Definition A.2. (Characteristic function) Let (Ω,F ,P) a probability space on some state

space D ⊆ Rn and let X : Ω → D a random variable with probability density function

f : D → R≥0. The characteristic function φ : Rn → C of X is defined by

φX(t) := E
[
eit·X

]
=

∫
Rn

eit·xf(x) dx, t ∈ Rn.

For a stochastic process X with D ⊆ Rn, n > 2 , the definition is slightly different. We

consider for every t of the time set T = [0,∞) the random variable Xt := X(t, ·) and

define likewise

φXt(s) := E
[
eis·Xt

]
=

∫
Rn

eis·xft(x) dx, s ∈ Rn.



A. APPENDIX 124

Definition A.3. (Fourier transform)

Let f ∈ L (Rn;R) (i.e. f is integrable under the Lebesgue measure). The Fourier

transform f̂ : Rn → C is defined as

f̂(u) :=

∫
Rn

f(x) · e−iu·xdx, u ∈ Rn. (A.3)

The inverse Fourier transform is defined as

f(x) =
1

2π

∫
Rn

f̂(u) · eiu·xdu, x ∈ Rn. (A.4)

Definition A.4. (Equivalent Martingale Measure) Let (Ω,F ,P) be a probability space

with filtration {Ft : t ≥ 0}. A probability measure Q is called equivalent martingale

measure to P if there is a random variable Y > 0 with

• Q (A) = EP [Y · χA] ∀A ∈ F

• Xt exp
(
−
∫ t
0
r (Xu) du

)
is a martingale under Q w.r.t. {Ft : t ≥ 0}.

The first property directly implies P (A) > 0 ⇐⇒ Q (A) > 0 for A ∈ F .

Definition A.5. (Black-Scholes formula)

We make the following assumptions on the market (consisting of at least one risky asset,

the stock S, and one riskless asset, the money market):

1. The risk-free interest rate r is constant over time and the same for borrowing and

lending. The standard deviation of the stock’s returns, the volatility σ, is constant

over time and the stock pays a continuous dividend q > 0 per share.

2. The market is complete, there are no arbitrage opportunities and borrowing/lending

of money at the risk-free interest rate is subject to no restrictions. In particular, it is

allowed to buy or sell any quantity of the stock where transactions take place with no

fees attached.

Let C (t, τ,K) (P (t, τ,K)) denote the price of a European call(put) option on the stock

with maturity τ > 0 and strike K. The prices can analytically be computed to

BSC(τ,K, σ) := C (t, τ,K) = S(t)e−qτΦ (d1)−Ke−rτΦ (d2) ,

BSP (τ,K, σ) := P (t, τ,K) = Ke−rτΦ (−d2)− S(t)e−qτΦ (−d1) ,
(A.5)
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where

d1 :=
log
(
S(t)
K

)
+
(
r − q + σ2

2

)
τ

σ
√
τ

and d2 := d1 −
√
τ .

Definition A.6. Black-Scholes implied volatility

Practice generally dictates that it is more convenient to illustrate the BS-implied volatil-

ity rather than the option price as a function of moneyness in order to facilitate easy

assessment of properly normalized orders of magnitude. In accordance with Garcia et al.

(2010), BS-implied volatility can be defined as follows:

According to the Black-Scholes model, implied volatility is defined as the value of the

volatility parameter σ, under the risk-neutral measure, which determines the observed

European call (or put) option price C (t, τ,K) (or P (t, τ,K)). Therefore, Black-Scholes

implied volatility can be formalized as follows:

IV(τ,K, St) := σimpl(τ,K, St), (A.6)

where σimpl(·) satisfies the Black-Scholes formula (see Eq. (A.5) for more details) as

follows:

C (t, τ,K) = BSC(σ
impl; τ,K, St). (A.7)

Moreover, Bégin et al. (2020) argue that Black-Scholes implied volatility is a better choice

for quoting the option price by referring to the discussion in Renault (1997) on the benefits

of using Black-Scholes as a bijection to work with implied volatility rather than the option

price.

Definition A.7. Moneyness of Options There are two major characteristics of op-

tions: moneyness, which is a strike-related quantity (such as strike: K, log-moneyness:

log(K/St) or log-forward moneyness: log(K/Ft,t+τ )), and time to maturity. In light of

the same maturity, there are distinct patterns of volatility that depend upon the choice

of moneyness. Garcia et al. (2010) argue that the most appropriate choice of moneyness

values against which to plot the volatility smiles is log-forward moneyness:

mk = log(K/Ft,t+τ ), (A.8)

where the Ft,t+τ is the futures price for the underlying asset at time t, referring to date

t+ τ .

Moreover, in order to facilitate the comparison of volatility surfaces across different sam-
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pling points, Andersen et al. (2015b) defines standardized log-forward moneyness as fol-

lows:

m =
log(K/Ft,t+τ )

IVt,ATM ·
√
τ
, (A.9)

where the IVt,ATM denotes the at-the-money BS implied volatility at time t. Using the

standardized log-forward moneyness and risk-neutral pricing, we can define the price

of the European-style out-of-the-money option (OTM option) across all the strikes as

follows:

Definition A.8. OTM Option

O(t, τ,K) =

P (t, τ,K) m <= 0

C (t, τ,K) m > 0
, (A.10)

where C (t, τ,K) (respectively, P (t, τ,K)) denotes the price of a European call (respec-

tively, put) option, τ represents the maturity,K is the strike price, andm is the moneyness

defined in Eq. (A.9).

A.1.2 Additional Propositions

Proposition A.1. (Characteristic function with scale value)

Let states XY
t follows the definition in Definition 2.1. The α(s) and β(s) :=

(β1(s), (β2(s), . . . , βn(s))
⊤)⊤ : [0, τ ]→ C with β2,n(s) := (β2(s), . . . , βn(s))

⊤, are the func-

tions, which solve ODEs in Eq. (2.4), given initial values α(0) = 0 and β(0) = u with

u = (u1, u2, . . . , un) ∈ Cn and u2,n := (u2, . . . , un) ∈ Cn−1. Therefore, the “discounted”

characteristic function with scale value is

ψ(u,XY
t , t, τ ; θ

XY

) = eα(τ)+β(τ)·Xt

= eα(τ)+u1Yt+β2,n(τ)·X
(2,n)
t

(A.11)

In addition, assuming r0 = 0 and the rest of elements in R1: (r1, r2, . . . , rn)
⊤ = 085, the

characteristic function for the definition of Eq. (2.5) is

ψ0(u,XY
t , t, τ ; θ

XY

) = eα(τ)+β(τ)·Xt

= eα(τ)+u1Yt+β2,n(τ)·X
(2,n)
t

(A.12)

85r1 is set to 0 by Definition 2.1, so setting it to 0 is redundant.
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Proof.

Since for the state Yt with k1 = 0, h1 = 0, c1 = 0, Yt implied ODE is β̇1(s) = 0, one obtains

the solution of ODE with initial value β1(0) = u1, based on its initial value β1(τ) = u1.

α(τ) and β2,n(τ) are the corresponding values at τ derived from the solution of ODEs in

Eq. (2.4).

Proposition A.2. (Fourier cosine expansion)[Theorem 2.1.1, Olson (2017)] Let f ∈
L2 ([−π, π];R). It is then possible to represent f(t), t ∈ [−π, π] as an infinite series of

compressed cosines and sines as follows

f(t) =
∑́∞

k=0

[
Ak cos (kt) +Bk sin (kt)

]
, 86

where

Ak =
1

π

∫ π

−π
f(t) cos (kt) dt, Bk =

1

π

∫ π

−π
f(t) sin (kt) dt.

If f is odd (even), then Ak ≡ 0 (Bk ≡ 0) and only sines (cosines) remain.

For any function g ∈ L2 ([0, π];R) we may define f : [−π, π] → R, t 7→ g (|t|) . The
function f ∈ L2 ([−π, π];R) is even and hence we do have for t ∈ [0, π]

g (t) = f (t) =
∑́∞

k=0
Ak cos (kt) , Ak =

2

π

∫ π

0

f(t) cos (kt) dt.

Proposition A.3. (Cosine series coefficients)

Let k ∈ N0 and [c, d] ⊂ [a, b] an arbitrary subinterval of [a, b]. Both functions

χk(c, d) :=

∫ d

c

ey cos

(
kπ
y − a
b− a

)
dy ,

Ψk(c, d) :=

∫ d

c

cos

(
kπ
y − a
b− a

)
dy

have explicit solutions.

Proof.

The function cos
(
kπ y−a

b−a

)
has a known antiderivative for k ̸= 0, namely

b− a
kπ

sin

(
kπ
y − a
b− a

)
.

86The accent over the summation sign indicates that the first summand will be weighted by 1
2 .
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Hence, Ψ0(c, d) = d− c and Ψk(c, d) =
b−a
kπ

[
sin
(
kπ d−a

b−a

)
− sin

(
kπ c−a

b−a

) ]
for k ̸= 0.

For χk(c, d), we apply partial integration twice as follows

χk(c, d) =

∫ d

c

ey cos

(
kπ
y − a
b− a

)
dy

=

[
ed cos

(
kπ
d− a
b− a

)
− ec cos

(
kπ
c− a
b− a

)]
+

kπ

b− a

∫ d

c

ey sin

(
kπ
y − a
b− a

)
dy

= −
(

kπ

b− a

)2

χk(c, d) +

[
ed cos

(
kπ
d− a
b− a

)
− ec cos

(
kπ
c− a
b− a

)]
+

kπ

b− a

[
ed sin

(
kπ
d− a
b− a

)
− ec sin

(
kπ
c− a
b− a

)]
,

from which one gets an explicit representation for χk(c, d).

Proposition A.4. (Lemma of Itô)[Theorem 4.2.1, Øksendal (2003)]

Let

dXt = a(t)dt+ b(t)dBt

a d-dimensional Itô process with the vectorwise drift function a and the matrix-

wise diffusion function b (possibly adapted). Let f : [0,∞) × Rn → Rp, (t, x) 7→
(f1(t, x), . . . , fp(t, x)) with f ∈ C1,2 ([0,∞)× Rn;Rp). Then, the process

Y (t, ω) := f (t,Xt)

is again an Itô process whose k-th component Y (k) follows the SDE

dY
(k)
t =

∂

∂s
fk (t,Xt) dt+

n∑
i=1

∂

∂xi
fk (t,Xt) dX

(i)
t +

1

2

n∑
i,j=1

∂2

∂xi∂xj
fk (t,Xt) dX

(i)
t dX

(j)
t ,

with dB
(i)
t dB

(j)
t = δi,jdt and dB

(i)
t dt = dtdB

(i)
t = 0, i = 1, . . . , n.

Proposition A.5. (Put-Call parity)

Based on the same assumptions from Definition A.5 (where we do not require complete-

ness of the market), consider the existence of a stock S paying dividend at continuous rate

q, a European call C (t, τ,K) and a European put P (t, τ,K) with equal strike K, equal

maturity T and equal underlying St. We can build a riskless portfolio from stock long,



A. APPENDIX 129

put long and call short. If the no-arbitrage principle holds true (e.g. the law of one price

is fulfilled), we can deduce the explicit price relation as follows:

C (t, τ,K)− P (t, τ,K) = Ste
−qτ −Ke−rτ . (A.13)

Proposition A.6. (Exchangeability of the Minimum)

Let X ⊂ Rn, Y ⊂ Rm, M = X × Y and f :M → R. Then we do have

min
(x,y)∈M

f (x, y) = min
x∈X

min
y∈Y

f (x, y) .

A.2 Higher Orders Derivatives

In this section, I heuristically show that the higher-order derivatives of the characteristic

function of XY
t defined in Proposition A.1 are again solutions of a set of ODEs. From

definition Eq. (2.3), we have

lnEt
[
eu1Yt+τ

]
= α(τ) + β(τ) ·XY

t (A.14)

where α(s) and β(s) are defined with initial values α(0) = 0 and β(0) = (u1, 0, . . . , 0)
⊤

in Eq. (2.4) as following:

α̇(s)
!
= −r0 + k0 · β(s) +

1

2
β(s)⊤h0β(s) + c0(ςν(β(s))− 1), α(0) = 0

β̇(s)
!
= −r1 +K⊤

1 β(s) +
1

2
β(s)⊤H1β(s) + C1(ςν(β(s))− 1), β(0) = (u1, 0 . . . , 0)

⊤,

(A.15)

where s ∈ [0, τ ] and β(s) is a function of β(u1, s) depending on the initial values. More-

over, the function ∂1β(s) =
∂β(s)
∂u1

.

Then differentiating on both sides with respect u1 one further can obtain

∂ lnEt
[
eu1Yt+τ

]
∂u1

=
Et
[
eu1Yt+τYt+τ

]
Et [eu1Yt+τ ]

=
∂α(τ)

∂u1
+
∂β(τ)

∂u1
·XY

t

(A.16)
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Based on the definition of function ∂1β := ∂β(u1,s)
∂u1

,

∂1β(u1, s)
87

=

∫
∂β̇(u1, s)

∂u1
ds (A.17)

Furthermore, the first derivative of ∂1β with respect to s is

∂(∂1β(u1, s))

∂s
=
∂β̇(u1, s)

∂u1
(A.18)

∂(∂1β(u1, s))

∂s
=
∂β̇(u1, s)

∂u1
88

=
∂β̇(u1, s)

∂β(u1, s)

∂β(u1, s)

∂u1

=
∂
(
−r1 +K⊤

1 β(u1, s) +
1
2
β(u1, s)

⊤H1β(u1, s) + C1(ςν(β(u1, s))− 1)
)

∂β(u1, s)

∂β(u1, s)

∂u1

= K⊤
1

∂β(u1, s)

∂u1
+

(
∂β(u1, s)

∂u1

)⊤

H1β(u1, s) + C1∇ςν(β(u1, s)) ·
∂β(u1, s)

∂u1

= K⊤
1 ∂1β(u1, s) + ∂1β(u1, s)

⊤H1β(s) + C1∇ςν(β(u1, s)) · ∂1β(u1, s),
(A.20)

with initial values of β(u, 0) = (u1, 0, . . . , 0), we have initial values for ∂1β(u1, 0) are

independent of u1

∂1β(u1, 0) =

(
∂β1(u1, 0)

∂u1
, . . . ,

∂βn(u1, 0)

∂u1

)⊤

= (1, 0, . . . , 0)⊤ = d1

(A.21)

Therefore, the first derivative of the result of Eq. (2.18) can be derived as above.

87

∂1β :=
∂β(u1, s)

∂u1

=

∫ τ

0

∂2β(u1, s)

∂u1∂s
ds

=

∫ τ

0

∂2β(u1, s)

∂s∂u1
ds

=

∫ τ

0

∂ ∂β(u1,s)
∂s

∂u1
ds

=

∫ τ

0

∂β̇(u1, s)

∂u1
ds

(A.19)

88chain rule for multi-variant function
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A.3 The Bates Model

Illustration A.1. The data generating processes Xt contains two factors: log stock price

and volatility {lnSt, Vt}, whose dynamics are given as follows

d lnSt =

(
µ− 1

2
Vt

)
dt+

√
Vt

(
ρdW1,t +

√
1− ρ2dW2,t

)
+ Zs

t dNt,

dVt = κ (θ − Vt) dt+ σ
√
VtdW1,t,

(A.22)

where

{µ, κ, θ, ρ} are constant parameters;

W1,t and W2,t are standard independent Wiener processes;

Nt is Poisson process for counting jump activities with constant instantaneous intensity

c;

Zs
t denote the random variable of jump size with dν(z)

dz
:= 1

σs
√
2π
e−

1
2(

z−µs
σs

)

ςν(w) =

∫
R
ewzν(z)dz = eµsw+

1
2
σsw2

;

A.3.1 Parameters of the Bates Model in AJD Matrix Interpre-

tation

θX for the Bates model in Illustration A.1 is given as follows:

k0 =

 µ

κθ

 , K1 =

0 −1
2

0 −κ

 ,

h0 =

0 0

0 0

 , H1 =

0 0

0 0

 ,

 1 σρ

σρ σ2

 ,

r0 = 0, R1 =

0

0

 , c0 = c, C1 =

0

0

 .

88The further economic implication of the model and its parameters are discussed with Illustration 2.2
with more details
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A.3.2 AJD Interpretation of the ODEs for the Bates Model

For simplicity, the time argument is omitted. The ODEs for the “dicounted” characteristic

function is concretely given, as follows,

α̇ =
(
µ κθ

)β1
β2

+ c

(
exp

(
µsβ1 +

1

2
σ2
sβ

2
1

)
− 1

)

= µβ1 + κθβ2 + c

(
exp

(
µsβ1 +

1

2
σ2
sβ

2
1

)
− 1

)
,β̇1

β̇2

 =

 0 0

−1
2
−κ

β1
β2

+
1

2

0,
(
β1 β2

) 1 ρσ

ρσ σ2

β1
β2

⊤

=

 0

−1
2
β1 − κβ2 + 1

2
(β2

1 + 2β1β2ρσ + (β2σ)
2)

 .

In addition, the following concrete ODEs are obtained:

α̇ = µβ1 + κθβ2 − c
(
exp

(
µsβ1 −

1

2
σ2
sβ

2
1

)
− 1

)
,

β̇1 = 0,

β̇2 = −
1

2
β1 − κβ2 +

1

2

(
β2
1 + 2β1β2ρσ + (β2σ)

2
)
.

(A.23)

To be more specific, in some applications α(0) = 0 and β(0) = (u1, u2)
⊤, the “discounted”

characteristic function is

ψ(u,Xt, t, τ ; θ
X c

) = eα(τ)+u1 lnSt+β2(τ)Vt . (A.24)

A.3.3 Cumulants for Bates Model

By using the dynamic of Illustration A.1 and specifying ∆Yt,τ = lnSt+τ− lnSt := Rs(t, τ)

one have

K1,Rs(t,τ)(Vt) = Et [Rs(t, τ)] = ∂1α(τ) + ∂1β2(τ)Vt, (A.25)

and further with m ≥ 2

Km,Rs(t,τ)(Vt) = ∂mα(τ) + ∂mβ2(τ)Vt. (A.26)
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A.4 (Linear) Minimum Mean Square Estimation

Let (Ω,F ,P) a probability space and X, Y ∈ L2 (Ω,F ,P) two random variables on the

Hilbert space L2.

Define FY := σ
(⋃

A∈B(R) Y
−1 (A)

)
as the σ-algebra generated by Y and the subspace

L2 (Ω,FY ,P) ⊆ L2 (Ω,F ,P). Optimally “predicting” X given Y means to minimize

min
Z∈L2(Ω,FY ,P)

E
[
(X − Z)2 |Y

]
.

The solution makes use of the basic concepts of the conditional expectation E [X|Y ]:

E
[
(X − Z)2 |Y

]
= E

[
(X − E [X|Y ] + E [X|Y ]− Z)2 |Y

]
= E

[
(X − E [X|Y ])2 |Y

]
+ 2E [(X − E [X|Y ]) (E [X|Y ]− Z) |Y ]︸ ︷︷ ︸

(∗)

+ E
[
(E [X|Y ]− Z)2 |Y

]
.

Now, since Z and, by construction, E [X|Y ] are FY -measurable, we may simplify (∗) to

E [(X − E [X|Y ]) (E [X|Y ]− Z) |Y ] = E [X − E [X|Y ] |Y ] (E [X|Y ]− Z)

= (E [X|Y ]− E [X|Y ]) (E [X|Y ]− Z)

= 0 P-a.s.

Hence, what we have in fact is

E
[
(X − Z)2 |Y

]
= E

[
(X − E [X|Y ])2 |Y

]
+ E

[
(E [X|Y ]− Z)2 |Y

]
,

from which the pointwise optimizer is deduced to Z = E [X|Y ].

Assuming that X, Y are together jointly normally distributed, we can show a particular

easy structure of the conditional expectation. Integrating over the respective joint density

is tedious and there is yet another, more systematic way. The r.v.

X − Cov (X, Y )

Var (Y )
Y
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is jointly normal with Y and uncorrelated (and by normality: independent) to Y:

Cov

(
X − Cov (X, Y )

Var (Y )
Y, Y

)
= Cov (X, Y )− Cov (X, Y )

Cov (Y, Y )

Var (Y )
= 0.

Hence, we do have by E
[
X − Cov(X,Y )

Var(Y )
Y |Y

]
= E

[
X − Cov(X,Y )

Var(Y )
Y
]
:

E [X|Y ] = E
[
X − Cov (X, Y )

Var (Y )
Y +

Cov (X, Y )

Var (Y )
Y |Y

]
= E [X] +

Cov (X, Y )

Var (Y )
(Y − E [Y ]) . (A.27)

A.5 Particle Filtering89

In general, the assumption of a linear structure and normally distributed noise represents

a too severe constraint for most time series given, i.e. fitting a model is better done by

allowing a more general structure. Following Dahlin and Schön (2015), we may represent

the nonlinear state-space model as follows

x0 ∼ µ (x0) , xt|xt−1 ∼ f (xt|xt−1) , yt|xt ∼ g (yt|xt) . (A.28)

The initial distribution µ0, the transition and observation functionals f, g might contain

a vector θ of parameters which we assume known90for the moment. In most applications,

however, they need to be estimated concurrently, too. We want to outline the general

idea of a particle filter, orientating ourselves at Doucet and Johansen (2009), Johannes

et al. (2009), and Creal (2012).

In the following, let y0:t = (y0, . . . , yt) and x0:t = (x0, . . . , xt) denote the vector of the

first t + 1 accumulated observations and latent states, respectively. In this Bayesian

context, we are interested in estimating the trajectory of latent states, conditional on the

observations, i.e. the full posterior distribution

p (x0:t|y0:t) =
p (x0:t, y0:t)

p (y0:t)
. (A.29)

89This part is mainly based on the results of research projects with a C-RAM students. I would like
to thank Maximilian Kübler for his assistance.

90In an empirical study, the parameters θ are typically estimated from observed data (y0, . . . , yT ).
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We do have p (x0:t, y0:t) = p (x0:t) p (y0:t|x0:t). Following a markovian setup, we have

p (x0:t) = µ (x0)
t∏
i=1

f (xi|xi−1) and p (y0:t, x0:t) =
t∏
i=0

g (yi|xi) .

However, p (y0:t) =
∫
p (x0:t, y0:t) dx0:t needs to be calculated, too. In most models, the

distributions are not known in closed form and hence, numerical methods are required.

In Bayesian Inference, we aim to compute the expectation as trustable approximation of

the true latent state

E [xt|y0:t] =
∫
xtp (xt|y0:t) dxt.

From a Monte Carlo point of view, we would sample from xt ∼ p (·|y0:t) and approximate

the integral by computing the empirical mean

E [xt|y0:t] ≈
1

m

m∑
i=1

xit,

that converges P-a.s. against E [xt|y0:t] by the strong law of large numbers. However, sam-

pling from the unknown posterior is unfeasible. Instead, we sample from an importance

distribution xt ∼ π (·|y0:t) and approximate with suitable weights ŵit > 0

E [xt|y0:t] ≈
m∑
i=1

ŵitx
i
t.

Since

E [xt|y0:t] =
∫
xtp (xt|y0:t) dxt =

∫ [
xt
p (xt|y0:t)
π (xt|y0:t)

]
π (xt|y0:t) dxt,

the choice of the importance weights ŵit :=
1
m

p(xit|y0:t)
π(xit|y0:t)

> 0 is obvious. By

p
(
xit|y0:t

)
∝ p

(
y0:t|xit

)
p
(
xit
)
,

we can construct unnormalized weights through the definition

w̃it :=
p (y0:t|xit) p (xit)
π (xit|y0:t)

.
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To account for the missing m, we normalize them by letting

wit :=
w̃it∑m
i=1 w̃

i
t

.

General particle filters use sequentially a set of weighted particles {wit, xit}, i = 1, . . . ,m

to approximate the posterior with the discrete Dirac measure δ (·) through

p (xt|y0:t) ≈
m∑
i=1

witδ
(
xt − xit

)
.

We can further derive a recursion for our weights by

p (x0:t|y0:t) ∝ p (yt|x0:t, y0:t−1) p (x0:t|y0:t−1)

= g (yt|xt) p (xt|x0:t−1, y0:t−1) p (x0:t−1|y0:t−1)

= g (yt|xt) f (xt|xt−1) p (x0:t−1|y0:t−1)

The importance weights wit could thus be chosen recursively as

wit =
p (xi0:t|y0:t)
π (xi0:t|y0:t)

∝
g (yt|xit) f

(
xit|xit−1

)
p
(
xi0:t−1|y0:t−1

)
π (xi0:t|y0:t)

.

The update of our importance distribution has to take into account the new observation

coming in and the suggested form of our full posterior distribution

π (x0:t|y0:t) = π (xt|x0:t−1, y0:t) π (x0:t−1|y0:t−1)

is appropriate (prediction of next state based on the next observation). This translates

into the weight recursion

wit ∝
g (yt|xit) f

(
xit|xit−1

)
π
(
xit|xi0:t−1, y0:t

) wit−1, t = 1, . . . , T.

It is non-trivial in a nonlinear setting to compute π
(
xit|xi0:t−1, y0:t

)
. There is a simple

choice, namely π (xt|x0:t−1, y0:t) = f
(
xit|xit−1

)
. Having said this, the problem is that one

gives away the informational content of yt which might lead to sample impoverishment

with degenerate particles. There is no simple way to overcome this deficiency of the
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so-called Bootstrap filter (BPF). Moreover, we can decompose the denominator to

π
(
xit|xi0:t−1, y0:t

)
∝ p

(
yt|xit

)
f
(
xit|xi0:t−1

)
= π

(
yt|xi0:t−1

)
π
(
xt|xi0:t−1, yt

)
p
(
xi0:t−1|y0:t−1

)
∝ wt−1π1

(
yt|xi0:t−1

)
· π2

(
xt|xi0:t−1, yt

) (A.30)

for approximating functionals π1, π2 with suitable support.

Algorithm 3: (Auxiliary) Particle filter for state inference

Input : Observations y0, . . . , yT , m ∈ N particles, initial distribution
µ0 (x0).

Returns : Vector x̂ as best guess for the latent state vector x to drive the
system. x̂T is estimated solely based on a normalized version of
{wiT}i=1,...,m.

while t ≤ T do
if t = 0 then

Initialization: Set π0 = µ0 as initial sampling distribution, x̂ denoting
the vector of state estimates over time. Sample from the proposed
distribution µ0, get a sequence of m particles xi0, i = 1, . . . ,m with
weight wi0 =

1
m

each.

end
1. Weighting: For each particle xit−1 compute the look-ahead weight
τ it = π1

(
yt|xi0:t−1

)
wit−1. Normalize the weights to

τ it =
τ it∑m
l=1 τ

l
t

.

2. Estimation: Compute the mean x̂t−1 =
∑m

i=1 x
i
t−1 · τ it as state estimation.

3. Resampling: Generate new particles - prior propagation - {xit−1}
(multinomial distribution on {τ it}i=1,...,m) and replace the old particles.
4. Propagation: For each particle xit−1 sample a transitioned particle by
letting

xit ∼ π2
(
·|xi0:t−1, y0:t

)
.

5. Importance weighting: For each particle xit, update its weight by

wit =
g (yt|xit) f

(
xit|xit−1

)
τ it · π2

(
xit|xi0:t−1, y0:t

)wit−1. (A.31)

t = t+ 1
end
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In principal, we could repeat this method for each and every observation introduced

into the system. It is clear however that if we don’t resample at the beginning of every

iteration, we lose focus of the important particles, i.e. those with high weight. Scenarios

that are unlikely, i.e. particles xit (i = 1, . . . ,m) with low weight at time tt, still have a

more or less severe impact on the propagated probability distribution at time tt.

We want to get rid of unfit particles and make use of what is called importance sampling

in literature. After sampling from the discrete distribution obtained, we again have m

(not necessarily different) particles at the beginning of the propagation step of iteration

t. It looks like we just deteriorated our local model by reducing the number of atoms

our distribution could carry. Fortunately, the propagation will ensure that we truly have

m different atoms which can lie close to each other but hardly ever coincide (assuming a

continuous transition density).

We visualize the development of the particle set by taking the example of the Bootstrap

filter. The number of particles m ∈ N is constant over time but one or more particles

may occur multiply, i.e. the effective sample size91 (ESS) may be low at times.

Figure A.1: Scheme of the Bootstrap filter over one iteration.

91The ESS is computed as 1 ≤ 1∑m
i=1(wi

t)
2 ≤ m and is low when a few particles dominate p (·|y0:t).
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The Auxiliary particle filter (APF) does essentially the same and differs only to the extent

that the weighting steps 1 & 5 take into account the new observation in order to increase

the adaptiveness to the SSM specifics.

If π1
(
yt|xi0:t−1

)
≡ 1, then the resampling procedure ignores new information that yt brings

into the system and local identification of the true hidden state is in theory much harder.

Second, if π2
(
xit|xi0:t−1, y0:t

)
= f

(
xit|xit−1

)
, then we have the same problematic. If these

two simplifications are used, we again end up with the Bootstrap filter. To be more

precise, one could incorporate new information for instance by

π1
(
yt|xi0:t−1

)
:= g

(
yt|E

[
xit|xit−1

])
,

since f and g are mostly known analytically. For affine jump-diffusions, we may use

the Auxiliary particle filter because it prevents quick sample impoverishment and detects

jumps more efficiently.92

Nevertheless, there is some degree of freedom. Following the SSM set up for the state

evolution, using the expected next particle E
[
xit|xit−1

]
implies zero diffusion in the state

equation. Depending on the correlation between state and measurement innovation, the

expected state diffusion significantly reduces the standard deviation of the measurement.

For near perfect correlation (|ρ| ≈ 1), the measurement is peaked and resembles very

much a dirac distribution. It is then to be feared that most of the particles (if not all) get

assigned a very negative log-weight log
(
π1
(
yt|xi0:t−1

))
. This could hamper identification

of good particles and we need to account for this problem when correlation is reaching

critical extreme values. Entirely neglecting the SSM connection is no choice, so we always

limit the influence of the state innovation to the measurement.

92A classical example is given in Johannes et al. (2009), pages 2767, 2768: Imagine the case of Merton’s
model where at time t+ 1 a positive jump happens. If the jump probability is constant 1%, from 1000
particles, about 10 will be propagated with jump. Typically, the observation distribution p (yt+1|xt+1)
is shifted to the right but the particles where no jump took place will be assigned vanishing weight
since their propagation move does not explain the harsh change at all. The next resampling step will
concentrate the entire particles’ distribution to the few particles that have at least some explanatory
force, thus leading to degeneration.
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Figure B.1: Predicted returns and realized returns.
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This figure illustrates the return predictability of the left tail factor. It plots the time series
of predicted returns (solid blue lines) and realized returns (dashed grey lines) for the S&P 500
index at 6-, 12-, 16-, 20-, 24- and 30-week horizons. The predicted returns are obtained from
the predictive regressions based on the estimation results from Spec IV. Spec IV represents
the specification of constant relative errors in the filtering step and w = 1 in the log-likelihood
function.
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Figure B.2: Implied volatilities used in estimation for Apple Inc. as of December 19,
2012.
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This plot illustrates the Black-Scholes implied volatilities (IVs) used in the estimation for Apple
Inc. as of December 19, 2012. The grey circles denote all available observed IVs subsequent to
the data cleaning step, whereas the blue circles represent the IVs effectively employed in our
estimation approach.
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Table C.1: Firms included in the return predictability analysis.

Symbol Symbol Symbol Symbol

1 AMGN 2 MSFT 3 NKE 4 NOC

5 OMC 6 OXY 7 PNC 8 PPL

9 STT 10 TROW 11 YUM 12 CAT

13 CMA 14 FDX 15 LEN 16 MTB

17 NTRS 18 PENN 19 PFE 20 PRU

21 SEE 22 SLB 23 T 24 TGT

25 VRSN 26 XOM 27 ADBE 28 ADI

29 CCI 30 CL 31 CMI 32 EOG

33 MDT 34 QCOM 35 SHW 36 TXN

37 UNH 38 WAT 39 WY 40 AES

41 AIG 42 ATVI 43 CHRW 44 FDS

45 LH 46 MMM 47 MSI 48 NFLX

49 NSC 50 NVDA 51 NWL 52 PG

53 SWK 54 SYK 55 TAP 56 UPS

57 WFC 58 WYNN 59 CAG 60 FITB

61 ORCL 62 PAYX 63 PHM 64 TRV

65 TXT 66 URI 67 VLO 68 WMT

69 CLX 70 KMB 71 SO 72 SYY

73 TRMB 74 TSN 75 TTWO 76 UHS

77 VFC 78 WDC 79 DUK 80 LMT

81 MRO 82 MS 83 NEE 84 NEM

85 PCAR 86 PPG 87 STZ 88 VMC

89 VRTX 90 CMCSA 91 DRI 92 FFIV

Continued on next page
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Symbol Symbol Symbol Symbol

93 FISV 94 LLY 95 LNC 96 PFG

97 PH 98 TJX 99 TSCO 100 UNP

101 VZ 102 WHR 103 FE 104 MO

105 MRK 106 NTAP 107 NUE 108 PEP

109 PGR 110 STX 111 USB 112 VNO

113 WM 114 ZION 115 ABC 116 ADM

117 AFL 118 AMT 119 BDX 120 CI

121 CNC 122 DHI 123 ETR 124 MCD

125 A 126 AAPL 127 ADP 128 ALL

129 EXPD 130 JPM 131 LRCX 132 RL

133 BWA 134 D 135 LUV 136 AZO

137 CME 138 DHR 139 MCHP 140 RCL

141 ALK 142 AVB 143 EW 144 KLAC

145 MCK 146 APD 147 FAST 148 K

149 LVS 150 CSX 151 CTSH 152 CVX

153 MMC 154 MOS 155 MU 156 NRG

157 AMAT 158 AXP 159 DLTR 160 EXC

161 KMX 162 MCO 163 REGN 164 BAX

165 COO 166 DE 167 FCX 168 KEY

169 ROP 170 ADSK 171 MHK 172 ROK

173 AON 174 BBY 175 CCL 176 CSCO

177 CVS 178 ETN 179 PXD 180 APA

181 BIIB 182 CAH 183 DXC 184 EIX

185 EMR 186 GIS 187 GS 188 HAL

189 HSIC 190 HSY 191 INTC 192 IRM

193 RE 194 AEP 195 AKAM 196 BA

197 BK 198 BMY 199 DGX 200 GD

201 GOOGL 202 HAS 203 HIG 204 HUM

205 INTU 206 ISRG 207 LOW 208 ROST

209 BAC 210 DVN 211 HD 212 HES

213 IBM 214 ITW 215 JCI 216 APH

217 EA 218 EBAY 219 EL 220 GE

221 GPN 222 GRMN 223 GWW 224 HOLX

225 HON 226 JNJ 227 MAR 228 ED

Continued on next page
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Symbol Symbol Symbol Symbol

229 GILD 230 GLW 231 HPQ 232 HST

233 JBHT 234 MAS 235 AAP 236 ACN

237 COP 238 DOV 239 KO 240 MGM

241 DISH 242 KR 243 AMZN 244 CPB

245 ABT 246 BEN 247 COF 248 DVA

249 JNPR 250 MET 251 SBUX 252 COST

253 CTAS 254 EMN

Note: This table lists the symbols of U.S. stocks that have been included in our empirical

analysis, accompanied by completed estimation processes and accessible return series.
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Table C.2: Firms excluded due to insufficient observations.

No. Symbol No. Symbol No. Symbol No. Symbol

1 C 2 FIS 3 MPC 4 MRNA

5 PSA 6 PSX 7 SRE 8 TDG

9 TECH 10 TSLA 11 TYL 12 ANTM

13 DOW 14 DPZ 15 NDSN 16 NI

17 PLD 18 PNW 19 SJM 20 UAA

21 UAL 22 ULTA 23 WST 24 XRAY

25 BXP 26 CFG 27 DFS 28 PYPL

29 SEDG 30 SPG 31 STE 32 SYF

33 TDY 34 TFC 35 TMUS 36 UA

37 WBA 38 WRB 39 XEL 40 XYL

41 ABMD 42 AJG 43 ALLE 44 CEG

45 NOW 46 OKE 47 SIVB 48 SNPS

49 SWKS 50 VRSK 51 WELL 52 ZBH

53 DTE 54 LKQ 55 MOH 56 MTCH

57 NDAQ 58 NWS 59 PKG 60 PTC

61 UDR 62 V 63 VIAC 64 AEE

65 ARE 66 AVY 67 BKNG 68 BRO

69 CRM 70 CTLT 71 EQIX 72 EQR

73 MKC 74 SYMC 75 TT 76 TWTR

77 BLK 78 CDW 79 CF 80 DRE

81 LNT 82 MTD 83 NCLH 84 NLSN

85 O 86 ORLY 87 PEG 88 PNR

89 POOL 90 SPGI 91 TPR 92 WAB

93 WBD 94 WRK 95 ZBRA 96 ZTS

97 MSCI 98 NVR 99 NXPI 100 PAYC

101 PKI 102 PM 103 TEL 104 VTR

105 WTW 106 ALGN 107 BSX 108 LHX

109 LIN 110 MNST 111 NWSA 112 ODFL

113 PEAK 114 PVH 115 PWR 116 SNA

117 TFX 118 TMO 119 WEC 120 ANET

121 BIO 122 CB 123 CMS 124 KEYS

125 KHC 126 QRVO 127 APTV 128 CPRT

Continued on next page
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No. Symbol No. Symbol No. Symbol No. Symbol

129 CZR 130 RJF 131 AMCR 132 ANSS

133 AWK 134 BR 135 CBRE 136 CHD

137 EXPE 138 LUMN 139 RMD 140 CPT

141 AME 142 AMP 143 DIS 144 ETSY

145 EVRG 146 KIM 147 REG 148 AMD

149 AVGO 150 DAL 151 DD 152 CTVA

153 KMI 154 CBOE 155 CMG 156 CNP

157 FBHS 158 LW 159 LYB 160 ROL

161 LYV 162 MPWR 163 ALB 164 DG

165 EPAM 166 LB 167 LDOS 168 CDAY

169 CDNS 170 CTRA 171 BKR 172 CINF

173 DXCM 174 GM 175 GNRC 176 GOOG

177 GPC 178 HCA 179 ICE 180 ILMN

181 IPGP 182 MA 183 BF.B 184 ES

185 ESS 186 FLT 187 FMC 188 FRC

189 FRT 190 FTNT 191 HBAN 192 HRL

193 IT 194 ATO 195 ECL 196 FOX

197 FOXA 198 FTV 199 HLT 200 HPE

201 IDXX 202 MAA 203 RF 204 AOS

205 CHTR 206 HII 207 IEX 208 IFF

209 IP 210 IVZ 211 JKHY 212 RHI

213 ABBV 214 CE 215 CRL 216 ENPH

217 GL 218 INCY 219 IQV 220 FANG

221 RSG 222 AIZ 223 BRK.B 224 EXR

225 MKTX 226 SBAC 227 DLR 228 FB

229 L 230 MLM 231 SBNY 232 AAL

233 EFX 234 MDLZ

Note: This table provides a list of stocks excluded from the empirical analysis due to a deficiency

of more than 10% of data points within the specified timeframe of 2017 to 2021.



C. SUPPLEMENTARY TABLES 147

Table C.3: Firms excluded from empirical analysis for additional reasons.

Symbol Excluded reason

1 WMB estimation failed
2 SCHW estimation failed
3 F estimation failed
4 IPG estimation failed
5 TER filtering failed
6 JEC filtering failed
7 RTN filtering failed
8 BLL no return data
9 CERN no return data
10 CTXS no return data
11 IR no return data

Note: This table enumerates the stocks that are excluded due to failure in the estimation
process, the filtering step, or due to the unavailability of return data from Yahoo Finance. The
stock symbols are listed alongside the reasons for their exclusion.
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