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Abstract
We present the study of a fuzzy clustering algorithm for the Belle II electromagnetic calorimeter using Graph Neural Net-
works. We use a realistic detector simulation including simulated beam backgrounds and focus on the reconstruction of both 
isolated and overlapping photons. We find significant improvements of the energy resolution compared to the currently used 
reconstruction algorithm for both isolated and overlapping photons of more than 30% for photons with energies E𝛾 < 0.5 GeV 
and high levels of beam backgrounds. Overall, the GNN reconstruction improves the resolution and reduces the tails of the 
reconstructed energy distribution and therefore is a promising option for the upcoming high luminosity running of Belle II.

Keywords  Calorimeter · Photon reconstruction · Overlapping clusters · High background · Fuzzy clustering · Machine 
learning · Deep learning · Graph neural networks · End-to-end representation spaces

Introduction

The Belle II experiment is located at the high-intensity, 
asymmetric electron-positron-collider SuperKEKB in 
Tsukuba, Japan. SuperKEKB is colliding 4 GeV positron 
and 7 GeV electron beams at a center-of-mass energy of 

around 10.58 GeV to search for rare meson decays and new 
physics phenomena. Many of these decays include photons 
in the final state that are reconstructed exclusively in the 
electromagnetic calorimeter. The experimental program of 
Belle II targets a significantly increased instantaneous lumi-
nosity that ultimately exceeds the predecessor experiment 
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by a factor of 30. This increase in luminosity also leads to a 
significant increase in beam-induced backgrounds [1]. These 
background processes produce both high-energy particle 
interactions that could be misidentified as physics signals, 
but also energy depositions of low-energy particles that 
degrade the energy resolution of the electromagnetic crystal 
calorimeter. The electronics signals from the calorimeter are 
interpreted during a process called reconstruction to deter-
mine the properties of particles that created the signals.

In this paper, we describe a fuzzy clustering algorithm 
based on Graph Neural Networks (GNNs) to reconstruct 
photons. The term fuzzy clustering [2] refers to the partial 
assignment of individual calorimeter crystals to several clus-
tering classes. In our case, these are potentially overlapping, 
different signal photons, but also a beam background class.

The paper is organized as follows: Sect. 2 gives an over-
view of related work on Machine Learning for calorimeter 
reconstruction. Section 3 describes the Belle II electromag-
netic calorimeter. The event simulation and details of the 
beam background simulation are discussed in Sect. 4. The 
conventional Belle II reconstruction algorithm and the new 
GNN algorithm are described in Sect. 5. We introduce the 
metrics used to measure the performance of the GNN algo-
rithm in Sect. 6. The main performance studies and results 
are discussed in Sect. 7. We summarize our results in Sect. 8.

Related Work

Machine Learning is widely used in high energy physics for 
the reconstruction of calorimeter signals both for cluster-
ing [3, 4], energy regression [5, 6], but also particle identi-
fication [7, 8] and fast simulation [9–11]. Most of the recent 
work has been performed in the context of the high-granu-
larity calorimeter (HGCAL) at CMS [12, 13]. For Belle II, 
the use of machine learning utilizing the electromagnetic 
calorimeter is so far limited to image-based particle identi-
fication in the barrel [8, 14].

GNNs are now widely recognized as one possible solu-
tion for irregular geometries in high energy physics [15–17]. 
GNN architectures that are able to learn a latent space rep-
resentation of the detector geometry itself [18, 19] are the 
basis of the work presented in this paper.

Previous work has focused on simplified and idealized 
detector geometries, often approximated as a regular grid 
of readout cells expressed as 2D or 3D images. Addition-
ally, the presence of geometry changes and overlaps between 
barrel and endcap regions, large variations of cell sizes, and 
the presence of very high spatially non-uniform noise lev-
els induced by beam background energy depositions are 
neglected.

For a complete list of works in particle physics that utilize 
machine learning, we refer to the review [20].

The Belle II Electromagnetic Calorimeter

The Belle  II detector consists of several subdetectors 
arranged around the beam pipe in a cylindrical structure that 
is described in detail in Ref. [21, 22]. We define the z-axis of 
the laboratory frame as the central axis of the solenoid. The 
positive direction is pointing in the direction of the electron 
beam. The x axis is horizontal and points away from the 
accelerator center, while the y axis is vertical and points 
upwards. The longitudinal direction, the transverse plane 
with azimuthal angle � , and the polar angle � are defined 
with respect to the detector’s solenoidal axis.

The Belle  II electromagnetic calorimeter  (ECL) con-
sists of 8736 Thallium-doped CsI (CsI(Tl)) crystals 
that are grouped in a forward endcap, covering a polar 
angle 12.4◦ < 𝜃 < 31.4◦ , a barrel, covering a polar angle 
32.2◦ < 𝜃 < 128.7◦ , and a backward endcap, covering a 
polar angle 130.7◦ < 𝜃 < 155.1◦ . The crystals have a trap-
ezoidal geometry with a nominal cross-sectional area of 
approximately 6 × 6 cm2 and a length of 30 cm, providing 
16.1 radiation lengths of material. While crystals in the bar-
rel are similar in cross-section and shape, the crystals in the 
endcaps vary with masses between 4.03 kg and 5.94 kg [23]; 
crystals in the endcaps also have significantly more passive 
material in front of the crystals. Each crystal is aligned in the 
direction of the collision point with a small tilt in polar angle 
� to reduce detection inefficiencies from particles passing 
between two crystals. Crystals in the barrel additionally have 
a small tilt in azimuthal angle � . The scintillation light pro-
duced in the CsI(Tl) crystals is read out by two photodiodes 
glued to the back of each crystal. After shaping electronics, 
the waveform is digitized and the crystal energy Ecrystal

rec  over 
baseline and time tcrystalrec  since trigger time of the energy dep-
osition are reconstructed online using FPGAs [24]. Wave-
forms of crystals with energy depositions above 50 MeV 
are stored for offline processing to allow for electromagnetic 
vs. hadronic shower identification through pulse shape dis-
crimination (PSD) [25]. Available information from PSD is

•	 the fit type ID of a multi-template fit indicating which of 
the possible templates provides the best goodness-of-fit,

•	 the respective �2 value as an indicator of the goodness-
of-fit,

•	 and the ratio of reconstructed hadronic and photon tem-
plate energies, referred to as PSD hadronic energy ratio 
in the following.
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Data Set

In this work, we use simulated events to train and evaluate 
the reconstruction algorithms. The detector geometry and 
interactions of final-state particles with detector materials 
are simulated using Geant4 [26] combined with a dedicated 
detector response simulation. Simulated events are recon-
structed and analyzed using the Belle  II Analysis Soft-
ware Framework (basf2) [27, 28]. We simulate isolated 
photons, with energy 0.1 < Egen < 1.5GeV , and direction 
17◦ < 𝜃gen < 150◦ and 0◦ < 𝜙gen < 360◦ drawn randomly 
from independent uniform distributions in E, � , and � . The 
generation vertex of the photons is x = 0 , y = 0 , and z = 0 . 
For events with two overlapping photons, we first draw ran-
domly one photon with independent uniform distributions 
as outline above. We then simulate a second photon with an 
angular separation 2.9 < Δ𝛼 < 9.7 ◦ drawn randomly from 
uniform distributions in Δ� and in E. This angular separa-
tion covers approximately the distance needed to create two 
overlapping clusters. These two cases are typical calorimeter 
signatures in Belle II that describe the majority of photons. 
We note that the reconstructions of hadrons is a more dif-
ficult task not yet covered by our algorithm.

As part of the simulation, we overlay simulated beam 
background events corresponding to different collision con-
ditions to our signal particles [1, 29]. The simulated beam 
backgrounds correspond to an instantaneous luminosity of 
Lbeam = 1.06 × 1034 cm−2s−1 (called low beam background), 
and Lbeam = 8 × 1035  cm−2s−1 (called high beam back-
ground). Those two values approximately correspond to 
the conditions in 2021, and the expected conditions slightly 
above the design luminosity, respectively. The spatial distri-
bution of beam backgrounds is asymmetric: They are much 
higher in the backward endcap than in the forward endcap, 
and they are slightly higher in the barrel than in the forward 
endcap. Additional electronics noise per crystal of about 
0.35 MeV is included in our simulation as well.

The supervised training and the performance evaluation 
both use labeled information that relies on matching recon-
structed information with the simulated truth information. 
For each of the four configurations, isolated and overlap-
ping photons with low and high beam backgrounds, we use 
1.8 million events for training and 200,000 events for valida-
tion. The performance evaluation is carried out on a large 
number of statistically independent samples simulated with 
various energies and in different detector regions.

We then study the performance of the GNN clustering 
algorithm in all four scenarios and compare it to the baseline 
basf2 reconstruction. Both reconstruction algorithms are 
described in detail in Sect. 5.

Isolated Photon

To study isolated photons, we use the simulated events with 
a generated isolated photon only. For each event, we select 
a region of interest (ROI): We first determine the azimuthal 
angles of the fourth neighbour on either side of the local 
maximum (LM), and the polar angles of the fourth neigh-
bours on either direction of the LM. We then include all 
crystals in that angular range. In the barrel this defines a 
regular 9 × 9 array of crystals centered around a LM, while 
in the endcaps this array is not necessarily regular, but can 
contain a few crystals more or less. The LM is a crystal 
with at least 10 MeV of reconstructed crystal energy, and 
energy higher than all its direct eight neighbors. The LM 
must be the only LM in the ROI, and the matched truth 
particle must be a simulated photon responsible for at least 
20% of the reconstructed crystal energy. Precisely, for the 
LM we require the ratio

here, E�1,crystalLM
dep

 denotes the truth energy deposition of pho-
ton 1 in the LM, and EcrystalLM

rec  the reconstructed crystal 
energy in the LM. The crystals contained in the ROI are 
considered for the clustering by the GNN algorithm and sig-
nificantly extend the 5 × 5 area considered by the baseline 
algorithm (Sect. 5). Furthermore, the ROI represents the 
area of the local coordinate system later used as an input 
feature, with the LM as the origin. Figure 1 (top) shows a 
typical isolated photon event with high beam background.

Overlapping Photons

Two different photons that deposit some of their energy in 
identical crystals are referred to as overlapping photons. 
To study overlapping photons, we use the simulated events 
with two overlapping photons only. We select events that 
have exactly two LMs that must fulfill the following selec-
tion criteria: 

a)	 each LM must have reconstructed crystal energies 
greater than 10 MeV,

b)	 r
�1

LM1
≥ 0.2 and r𝛾1

LM1
> r

𝛾2

LM1
,

c)	 r
�2

LM2
≥ 0.2 and r𝛾2

LM2
> r

𝛾1

LM2
.

(1)r
�1

LM
=

E
�1,crystalLM
dep

E
crystalLM
rec

≥ 0.2.
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We refer to criteria a)-c) as LM separation criteria since 
they ensure that the particles form two separate LMs. 
Additionally, events must meet the overlap criterion: 

d)	 each of the two photons must deposit at least 10 MeV 
energy in shared crystals within a 5 × 5 area around its 
respective LM.

Figure 2 shows the fraction of events accepted by these 
selections as a function of the simulated opening angle. 
In the scope of this paper, we additionally require LMs to 
exclusively originate from simulated particles without addi-
tional LMs, e.g. from beam background, in the ROI, that is: 

e)	 the two LMs must be the only ones in the ROI and they 
must be truth-matched to the simulated photons.

Finally, we remove rare cases of small truth energy deposi-
tions and large backgrounds, by requiring: 

f)	 the crystal with the largest truth energy deposition of 
a photon must be within a 5 × 5 area around its corre-
sponding LM.

We then create a ROI centered at the midpoint between 
the two LMs, calculated using the shortest distance 
between two LMs projected onto the surface of a sphere. 
The crystal closest to the midpoint is defined as the 
ROI center. The LM positions for this are determined 
by interpreting the global LM coordinates of their asso-
ciated crystals as latitude and longitude. Figure 1 (bot-
tom) shows an overlapping photon event with high beam 
background.

(a) Truth assignment, colors indicate
the fraction belonging to each of the
photons and beam background.

(b) Reconstructed time t since trig-
ger time.

(c) Reconstructed PSD hadronic
energy ratio. Gray markers indicate
that no PSD information is available.

Fig. 1   Typical event displays showing (left) simulated truth assign-
ments, (center) input variables time, and (right) PSD hadronic energy 
ratio for (top) isolated and (bottom) overlapping photons for two 
example events with high beam background. The marker centers indi-

cate the crystal centers, the marker area is proportional to the truth 
energy deposition for the left plots; it is proportional to the recon-
structed crystal energy for the other plots
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The truth energy deposition per photon and the recon-
structed crystal energy Ecrystal

rec  , crystal time tcrystalrec  , crys-
tal PSD information (see Sect. 3), and the LM positions 
within the ROI are recorded for each event.

Reconstruction Algorithms

Interactions of energetic photons in the Belle II ECL typi-
cally deposit energy in up to 5 × 5 crystals. The task of 
the clustering reconstruction algorithms is to select a set 
of crystals that contains all the energy of the incoming 
photon, but no energy from other particles or from beam 
background. Low beam background results in approxi-
mately 17% of all crystals in the ECL having significant 
reconstructed energy Ecrystal

rec ≥ 1MeV; for high beam back-
grounds this number is expected to increase to about 40% . 
This increase in the number of crystals to consider in the 
clustering, adds to the complexity of the reconstruction.

Baseline

The baseline algorithm is designed to provide maximum 
efficiency for cluster finding, contain all crystals from the 
incoming particle for particle identification, and select 
an optimal subset of the cluster crystals that provides the 
best energy resolution [21]. The clustering is performed 
in three steps. In the first step, all crystals are grouped into 
a connected set of crystals, so-called connected regions 
starting with LMs, as defined previously. In an itera-
tive procedure all direct neighbors with energies above 

0.5 MeV are added to this LM, and the process is con-
tinued if any neighbor itself has energy above 10 MeV. 
Overlapping connected regions are merged into one.

In the second step, each connected region is split into 
clusters, one per LM. If there is only one LM in the con-
nected region, up to 21 crystals in a 5 × 5 area excluding 
corners centered at the local maximum are grouped into 
a cluster. If there is more than one LM in a connected 
region, the energy in each crystal of the connected region 
is assigned a distance-dependent weight and can be shared 
between different clusters. The distance is calculated from 
the cluster centroid to each crystal center, where the clus-
ter centroid is updated iteratively using logarithmic energy 
weights. This process is repeated until all cluster centroids 
in a connected region are stable within 1 mm.

In a third step, an optimal subset, including the n high-
est energetic crystals of all non-zero weighted crystals 
that minimize the energy resolution, is used to predict the 
cluster energy Ebasf2

rec
 . n depends on the measured noise in 

the event, and on the energy of the LM itself. The noise 
level is estimated by counting the number of crystals in the 
event containing more than 5 MeV that have times t more 
than 125 ns from the trigger time. Ebasf2

rec
 is also corrected 

already within basf2 for possible bias using simulated 
events. This bias includes leakage (energy not deposited 
in the crystals included in the energy sum) and beam back-
grounds (energy included in the sum that is not from the 
signal photon). Ebasf2

rec
 is the estimator for the generated 

energy of a particle.
The basf2 clustering algorithm also returns a cluster 

energy Ebasf2
rec, raw

 that is not corrected for energy bias. Ebasf2
rec, raw

 
is the estimator for the deposited energy of a particle.

Graph Neural Network Architecture

GNN architectures have shown that they are powerful net-
work types to deal with both irregular geometries and vary-
ing input sizes. In this work, all crystals of an ROI with an 
energy deposition above 1 MeV are interpreted as nodes in a 
graph, which leads to variable input sizes and is thus a good 
use case for GNNs. The implementation of this GNN is done 
in PyTorch Geometric  [30].

The input features consist of crystal properties and crys-
tal measurements: The global coordinates � and � of each 
crystal, the local coordinates �′ and �′ with respect to the 
ROI center, the crystal mass, and the LM(s) (in one-hot 
encoding) represent crystal properties. The crystal energy 
E
crystal
rec  in GeV, the time tcrystalrec  in � s, and the PSD fit type, 

PSD �2 , and PSD hadronic energy ratio are crystal meas-
urements used as input features. Pre-processing scales the 
input uniformly before further processing with the GNN: All 
features are min-max normalized to an interval of [0, 1] with 

Fig. 2   Fraction of selected overlapping photon events in the barrel as a 
function of generated opening angle. The orange markers correspond to 
events fulfilling LM separation criteria (a–c); the blue markers corre-
spond to events that additionally pass the overlap criterion (d) (see text 
for details)
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the exception of tcrystalrec  and the PSD hadronic energy ratio 
which are both normalized to the interval [−1, 1] . The global 
coordinates and the crystal masses are normalized based on 
the range of coordinates and masses of all crystals in the 
detector instead of only the ones in the ROI. Additionally, 
we average each input feature over all nodes in the ROI and 
concatenate the averaged input features as additional inputs, 
thus enabling a global exchange of information.

As displayed in Fig. 3, our model is built out of four so-
called GravNet  [19] blocks of which the concatenated out-
puts are passed through three dense output layers with a final 
softmax activation function. Each GravNet block features 
three dense layers at the beginning of the block, the initial 
two of which with ELU [31] activation functions and the 
last one with a tanh activation function. The dense layers 
feed into a GravNet layer and the overall GravNet block is 
concluded by a batch normalization layer [32]. The GravNet 
layer is responsible for the graph building and subsequent 
message passing between the nodes of the graph. It first 
translates the input features into two learned representation 
spaces: one representing spatial information S while the 
other, denoted FLR , contains the transformed features used 
for message passing. In the second step, each node is con-
nected to its k nearest neighbors defined by the Euclidean 
distances in S, thus creating an undirected, connected graph. 
For each node, the input features of connected nodes are then 
weighted by a Gaussian potential depending on the distance 
in S and aggregated by summation. The resulting features 
are concatenated with the GravNet input features and, after 
batch normalization, passed to the next GravNet block and 
to the dense output layers.

The implementation in the present work follows the con-
cept of fuzzy clustering which refers to the partial assign-
ment of individual crystals to several clustering classes. 
Consequently, the GNN predicts weights wX

i
 that indicate 

the proportion of the reconstructed energy Ecrystali
rec  in a crys-

tal i that belongs to a clustering class X. For models used 

with isolated photons, X ∈ {�1, background} , for models 
with overlapping photons X ∈ {�1, �2, background} . As a 
loss function, we then use the Mean Squared Error (MSE) 
between the true and predicted weights summed over all 
classes and crystals. The training is stopped when there 
has been no improvement for 15 epochs in the optimiza-
tion objective. For low beam background models that objec-
tive is the MSE loss on the validation data set, whereas the 
high beam background models employ the more high-level 
FWHMdep (Sect. 6) on the validation data set.

Hyperparameters have been chosen through a hyperpa-
rameter optimization using Optuna [33]. The optimization 
is done with respect to the FWHMdep (Sec. 6) instead of the 
loss function. We optimize the two models trained for high 
beam backgrounds and use the respective hyperparameters 
also for the corresponding low beam background models. 
The final hyperparameters for both the isolated photon mod-
els and the overlapping photon models are shown in Table 1.

The learning rate, the number of dense layers in each 
GravNet block, and all dimensions of the output layers have 
been manually optimized by testing a reasonable range of 
values. The learning rate is set to 5 × 10−3 and is subject to 
a decay factor of 0.25 after every five epochs of stagnating 
validation loss. We did not observe significant over-training 
and as a consequence, we do not use dropout layers or other 
regularization methods but rely on the large data set.

The GNN algorithm yields the weights wX
i

 per crystal 
for all crystals in the ROI with an energy deposition above 
1 MeV. In order to reconstruct the total cluster energy EGNN

rec
 

associated with a certain particle, we then sum over all spe-
cific weights multiplied by the reconstructed energies per 
crystal, EGNN

rec
=
∑

wX
i
E
crystali
rec .

Figure 4 shows how the GNN and the basf2 algorithms 
behave in clustering a typical case of overlapping photons.

Table 1   Optimized hyperparameters of the isolated photon, and over-
lapping photon GravNet models

The hyperparameters are the result of an optimization of the 
FWHMdep on the respective high background validation data set

Hyperparameter Isolated 
photon 
models

Overlap-
ping photon 
models

Width of the dense layers, F 
IN
,F

OUT
22 24

Feature space dimension F 
LR

16 16
Spatial information space dimension S 6 6
Connected nearest neighbors k 14 16
Batch norm momentum 0.01 0.4
Stacked GravNet blocks 4 4
Batch size 1024 512

Fig. 3   An illustration of the GNN architecture. Each pair of gray, 
square brackets represents one GravNet block consisting of dense 
layers, a GravNet layer and a batch norm layer. The input features 
describe the feature vector of one node. The global exchange denotes 
appending the average each input features over all nodes in the ROI
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Metrics

For performance evaluation, the reconstructed energy of a 
particle is compared with two different truth targets: the total 
deposited truth energy Edep per photon in the ROI, and the 
generated truth energy Egen per photon. This results in two 
variants of relative reconstruction errors. The reconstruction 
error on the deposited energy

gives access to the energy resolution ignoring leakage and 
other detector effects. It is a direct evaluation of the cluster-
ing performance of an algorithm.

On the other hand, the reconstruction error on the gener-
ated energy

factors in all detector and physics effects and quantifies how 
much of the improvements to the underlying clustering carry 
over to downstream physics object reconstruction.

Evaluating both algorithms on a large number of 
simulated photons yields peaking distributions in both 
reconstruction errors �dep and �gen . Both distributions 

(2)
�
basf2
dep

=
Ebasf2
rec, raw

− Edep

Edep

and

�
GNN
dep

=
EGNN
rec

− Edep

Edep

(3)

�
basf2
gen

=
Ebasf2
rec

− Egen

Egen

and

�
GNN
gen

=
EGNN
rec

− Egen

Egen

are potentially biased because of energy leakage and the 
presence of beam backgrounds (see Sect. 5.1). We per-
form a binned fit using a double-sided crystal ball [34, 
35] function as probability density function (pdf) with the 
kafe2 [?] framework. We shift all reconstruction error 
distributions independently by a multiplicative factor to 
correct the difference between the fitted peak position and 
zero (Fig. 5). Since �dep and �gen are asymmetric distribu-
tions, we repeat this procedure until the difference between 
the fitted peak position and zero is less than 0.002. This 
procedure usually converges within two or three iterations.

Fig. 4   Comparison of (a)  truth energy fractions, (b)  reconstructed 
energy fraction by the GNN, and (c)  reconstructed energy fraction 
by basf2 for an example event with high beam background. Colors 
indicate the fractions belonging to each photon or background. The 

marker centers indicate the crystal centers, the marker area is propor-
tional to the truth or reconstructed (GNN, basf2) energy deposition 
respectively

Fig. 5   Example distribution of the relative reconstruction error �gen 
of the generated energy and illustration of the bias correction, the 
FWHM , and the tail ranges
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We then determine the full width half maximum (FWHM ) 
of the final shifted distributions in �dep and �gen , yielding 
FWHMdep and FWHMgen respectively. The uncertainty on the 
FWHM is calculated from the uncertainties of the fit param-
eters. In addition to the FWHM , we determine the tails of the 
reconstruction error distribution. The left and right tails TL,R 
are calculated as the 95th percentile when ranking the unbinned 
events on the respective side of the peak position, as given by 
the fit parameters, in ascending order ( TR ) and descending order 
( TL ) respectively. Propagating the uncertainty on the peak posi-
tion as given by the fit yields the uncertainty on TL,R.

Results

The first sections of the results focus on detailed studies 
of isolated clusters. Section 7.4 then introduces overlap-
ping clusters and their effects on the performance. Fig-
ure 6 shows examples for the distributions of both recon-
struction errors �dep and �gen , as well as the fit results 
for events with low beam background. Figure 7 shows 
the equivalent distributions for events with high beam 
background.

Fig. 6   Distribution of relative reconstruction errors (a) �dep and (b) �gen for isolated clusters for low beam backgrounds. The first bin contains all 
underflow entries; the last bin contains all overflow entries

Fig. 7   Distributions of relative reconstruction errors (a) �dep and (b) �gen   for isolated clusters for high beam backgrounds. The first bin contains 
all underflow entries; the last bin contains all overflow entries
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The �gen distributions are wider because the reconstruc-
tion error includes the effects of leakage which result in 
missing energy with respect to the generated photon energy. 
This only affects the left-side tails.

In the following subsections, we are comparing the 
performance of the GNN and the basf2 reconstruction 
algorithms for different detector regions for low and high 
beam backgrounds by evaluating the energy resolution 
FWHMgen∕2.355 and the tail parameters. We then analyze 
the GNN in more detail by testing the input variable depend-
encies and the robustness against differences in beam back-
ground levels between training and evaluation.

Energy Resolution and Energy Tails

The three detector regions barrel, forward endcap, and back-
ward endcap described in Sect. 3 differ in crystal geometry, 
levels of background, and amount of passive material before 
and in between crystals. The following section studies the 
variations in the energy reconstruction performance that 
arise as a direct result of these differences.

In order to access the energy dependence of the resolu-
tion and tail parameters we simulate test data sets of photons 
at various fixed energies. The FWHM for each simulated 
data set is then determined according to Sect. 6. Plotting the 

Fig. 8   Resolution 
FWHMgen∕2.355 of the GNN 
and basf2 as function of the 
simulated photon energy Egen 
for both endcaps and the barrel 
for (a) low and (b) high beam 
background. Each color is asso-
ciated with one detector region; 
the light color indicates basf2, 
the dark color the GNN. The 
bands indicate the uncertainty 
of the fits, see text for details. 
The fit parameters are summa-
rized in Table 2



	 Computing and Software for Big Science (2023) 7:1313  Page 10 of 15

resolutions FWHMgen∕2.355 over the generated photon ener-
gies Egen reveals a characteristic relationship that is param-
eterized by the function a∕Egen ⊕ b∕

√

Egen ⊕ c , where ⊕ 
indicates addition in quadrature.

Both the GNN as well as the baseline algorithm per-
form differently in regards to the energy resolution in all 
three detector parts, as can be seen in Fig. 8a for low beam 

background and as Fig.  8b for high beam background. 
Table 2 reports the parameters of the fitted parameterization 
of the resolution. We attribute these difference to the large 
spread of both shape and size of crystals in the endcaps, 
the asymmetric distribution of beam backgrounds, and the 
different amount of passive material in front of the different 
detector regions.

Table 2   Fit results 
( a∕Egen ⊕ b∕

√

Egen ⊕ c ) of the 
fits shown in Fig. 8

Region Algorithm Low beam background High beam background

a ( ×10−2) b ( ×10−2) c ( ×10−2) a ( ×10−2) b ( ×10−2) c ( ×10−2)

Barrel GNN 0.23 ± 0.02 1.32 ± 0.02 1.00 ± 0.01 1.25 ± 0.02 2.39 ± 0.02 0.75 ± 0.03
basf2 0.35 ± 0.02 1.54 ± 0.02 0.91 ± 0.02 1.88 ± 0.02 3.11 ± 0.03 0.31 ± 0.10

Forward GNN 0.00 ± 0.14 1.11 ± 0.01 1.49 ± 0.00 0.61 ± 0.03 2.23 ± 0.02 1.20 ± 0.02
basf2 0.00 ± 0.37 1.51 ± 0.01 1.38 ± 0.01 1.11 ± 0.03 2.92 ± 0.03 0.84 ± 0.03

Backward GNN 0.50 ± 0.02 1.69 ± 0.03 1.59 ± 0.02 2.18 ± 0.03 2.51 ± 0.05 2.28 ± 0.02
basf2 0.78 ± 0.03 2.12 ± 0.04 1.50 ± 0.03 2.72 ± 0.05 4.64 ± 0.05 0.91 ± 0.08

(a) Left tail length TL. (b) Right tail length TR.

(c) Left tail length TL. (d) Right tail length TR.

Fig. 9   95% left- and right tail lengths T
L
 and T

R
 of �gen for the GNN and basf2 as function of the simulated photon energy Egen for both endcaps 

and the barrel for (a and b) low and (c and d) high beam background. Each color is associated with one detector region
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Overall, the energy resolution of the GNN algorithm is 
significantly better than the baseline algorithm for all photon 
energies. The GNN energy resolution is better by more than 
30% for photon energies below 500 MeV which is the energy 
range of more than 90% of all photons in B-meson decay 
chains. The higher the beam background, the larger the dif-
ference between the GNN and the baseline algorithm. The 
difference between the two algorithms decreases with energy 
because the relative contribution of beam backgrounds to the 
photon energy resolution decreases.

The shape of the left-side tails is dominated by passive 
material and is hence expected to be different in the different 
detector regions. The left-side tails are almost independent 
of beam backgrounds as can be seen by comparing Fig. 9a 
for low beam background and Fig. 9c for high beam back-
ground. The GNN and the baseline algorithm both show the 
smallest tail length for the barrel region with decreasing tail 
lengths for increasing energy. The left-side tails are largest 
in the backward endcap due to the highest ratio of passive to 
active material as expected. The right-side tails are mostly 
originating from beam background being wrongly added to 
photon clusters. The GNN produces shorter tails than the 
baseline algorithm for all energies and for both low and high 
beam backgrounds, with the performance difference increas-
ing for lower energies and higher beam backgrounds.

Beam Background Robustness

The beam background levels are changing continuously dur-
ing detector operations. Ideally, reconstruction algorithms at 

Belle II are insensitive to such changes. The basf2 base-
line algorithm achieves robustness against increasing beam 
backgrounds by adaptively including fewer crystals in the 
energy sum calculation. Since our GNN is trained with a 
large number of events with event-by-event fluctuations of 
beam backgrounds, we expect robustness against varying 
beam backgrounds if the GNN generalizes well enough. We 
test the robustness of our GNN by comparing GNNs trained 
and tested on the same backgrounds, against GNNs trained 
and tested on the two different beam backgrounds (Fig. 10, 
parameterization in Table 3). While the GNNs trained on 
the same beam backgrounds achieve a better resolution than 
the ones trained on different beam backgrounds, the GNN 
still outperforms the baseline algorithm even for networks 
trained on the different beam backgrounds. This demon-
strates an promising generalization with respect to different 
levels of beam backgrounds.

Input Parameter Dependency

As discussed in Sect. 3, multiple input features are avail-
able for the GNN, while the basf2 algorithm uses crys-
tal position and energy only. This section presents a study 
of the influence of the input features on the FWHM . For 
that, the architecture described in Sect. 5.2 is trained on 
isolated photon events with low or high beam backgrounds 
using different combinations of input features. The 200,000 
events from the respective validation data set, as described in 
Sect. 4, are used for inference. The data set covers an energy 
range of 0.1 < Egen < 1.5GeV and the full detector range 

Fig. 10   Resolution FWHMgen∕2.355 as a function of the simulated 
photon energy Egen for the GNNs trained with low beam background 
(LBB GNN) and high beam background (HBB GNN) in the barrel. 
The color is associated with the evaluation on either beam back-
ground; the dark color indicates the model trained with the beam 

background identical to the evaluation, and the light color indicates 
the model trained with the respective other beam background. The 
bands indicate the uncertainty of the fits, see text for details. The fit 
parameters are summarized in Table 3. The resolution of the basf2 
algorithm is shown for comparison
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17◦ < 𝜃gen < 150◦ and 0◦ < 𝜙gen < 360◦ , each of which in 
uniform distribution. The FWHM of Egen and Edep is calcu-
lated as described in Sect. 6. All GNNs use the global crystal 
coordinates, the LM position, and the crystal mass as input 
features. A comparison of the FWHM for the different addi-
tional input features is shown in Table 4. The results show, 

that even for the minimal set of input variables, the GNN’s 
FWHM is smaller than basf2 ’s for both the deposited and 
the generated energy in both beam background scenarios. 
Adding local coordinates leads to small improvements and 
using time information brings significant improvement in the 
GNN performance. PSD information has almost no effect on 

Table 3   Fit results ( a∕Egen ⊕ b∕
√

Egen ⊕ c ) of the fits shown in Fig. 10 for the GNN trained with low beam background (LBB GNN) and high 
beam background (HBB GNN)

The values for the LBB GNN inferred on low beam background test samples, and for the HBB GNN inferred on high beam background are iden-
tical to the ones reported in Table 2

Region Algorithm Low Beam Background High Beam Background

a ( ×10−2) b ( ×10−2) c ( ×10−2) a ( ×10−2) b ( ×10−2) c ( ×10−2)

Barrel LBB GNN 0.23 ± 0.02 1.32 ± 0.02 1.00 ± 0.01 1.59 ± 0.02 2.27 ± 0.03 1.32 ± 0.02
HBB GNN 0.28 ± 0.02 1.58 ± 0.01 0.85 ± 0.02 1.25 ± 0.02 2.39 ± 0.02 0.75 ± 0.03

Table 4   Comparison of the performances of GNN models with different additional input features, and the performance of the basf2 baseline

Shown are the FWHMdep and FWHMgen (see Sect. 6), for 200 000 events in the validation data sets (see Sect. 4) with low and high beam back-
ground. The data sets cover an energy range of 0.1 < Egen < 1.5GeV and the full detector range 17◦ < 𝜃gen < 150◦ and 0◦ < 𝜙gen < 360◦ , each 
of which in uniform distribution. The uncertainties of the FWHM in each column are correlated since they use the same simulated events. The 
input features are described in detail in Sect. 3

Input features Low beam background High beam background

FWHMdep ×10−2 FWHMgen ×10−2 FWHMdep ×10−2 FWHMgen ×10−2

Energy 2.17 ± 0.01 5.25 ± 0.02 5.05 ± 0.03 8.08 ± 0.04
Energy, local coordinates 2.11 ± 0.02 5.19 ± 0.02 5.04 ± 0.04 8.04 ± 0.04
Energy, local coordinates, PSD 2.19 ± 0.01 5.20 ± 0.02 5.06 ± 0.03 8.07 ± 0.04
Energy, local coordinates, time 1.72 ± 0.01 4.85 ± 0.02 4.52 ± 0.03 7.63 ± 0.03
Energy, local coordinates, time, PSD 1.72 ± 0.01 4.85 ± 0.02 4.51 ± 0.03 7.62 ± 0.03
basf2 2.32 ± 0.02 5.13 ± 0.02 6.73 ± 0.05 8.97 ± 0.07

Table 5   FWHMgen × 102 of one 
photon with photon energy E(1)

�
 

in dependence of the second 
photon energy E(2)

�
 for low beam 

background for the full detector 
(barrel and endcaps combined)

The uncertainties of the FWHM for the two algorithms are correlated for each energy interval since they 
use the same simulated events. The improvement over the basf2 baseline algorithm is stated in percent 
for each energy interval

E
(1)
�

 (GeV) ↓ E
(2)
�

 (GeV) → [0.1, 0.2] [0.2, 0.5] [0.5, 1.0] [1.0, 1.5]

[0.1, 0.2] GNN 11.04 ± 0.79 11.98 ± 0.40 11.94 ± 0.31 13.25 ± 0.34
basf2 12.72 ± 0.80 13.93 ± 0.55 14.32 ± 0.41 15.16 ± 0.48
Improvement 15.2% 16.3% 20.0% 14.4%

[0.2, 0.5] GNN 7.38 ± 0.18 7.57 ± 0.12 8.23 ± 0.09 8.38 ± 0.12
basf2 8.48 ± 0.22 8.30 ± 0.14 8.84 ± 0.12 8.96 ± 0.12
Improvement 14.9% 9.7% 7.5% 7.0%

[0.5, 1.0] GNN 5.22 ± 0.08 5.43 ± 0.05 5.69 ± 0.04 5.89 ± 0.04
basf2 5.58 ± 0.10 5.71 ± 0.06 5.85 ± 0.05 6.17 ± 0.05
Improvement 6.7 % 5.1 % 2.8% 4.9%

[1.0, 1.5] GNN 4.24 ± 0.06 4.43 ± 0.04 4.67 ± 0.03 4.77 ± 0.03
basf2 4.55 ± 0.07 4.58 ± 0.04 4.74 ± 0.04 4.85 ± 0.04
Improvement 7.3% 3.4% 1.4% 1.8%
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the FWHM . Since the main purpose of the PSD information 
is to differentiate electromagnetic and hadronic interactions 
per crystal, this is expected. In anticipation of future exten-
sions of the GNN to hadronic interactions as well, the PSD 
information is kept throughout this work.

Overlapping Photons

When discussing overlapping photon events, it is important 
to note that the FWHM of the photon energy distribution not 
only depends on its own properties but also on the properties 
of the second photon present. To account for that, the evalua-
tion is split in energy bins of [0.1, 0.2], [0.2, 0.5], [0.5, 1.0], 
and [1.0, 1.5] GeV for both photons respectively. We report 
the FWHM of the first photon for different simulated ener-
gies of the second photon for low beam backgrounds (see 
Table 5) and high beam backgrounds (Table 6).

The GNN provides a better FWHM for all combinations, 
but the improvement is most significant if the photon is low 
energetic. For low beam backgrounds, the GNN improves 
the FWHM by up to 20% for photons with simulated energies 
between 0.1 < Egen < 0.2 GeV . For high beam backgrounds, 
the GNN improves the FWHM by more than 35% for pho-
tons with simulated energies between 0.1 < Egen < 0.2 GeV.

The result shows that the significant performance improve-
ment observed for isolated photons can also be achieved for 
the more complicated overlapping photon signatures.

Conclusion and Outlook

In this work, we have presented a complete study of a 
GNN-based fuzzy clustering algorithm for the Belle II 
electromagnetic calorimeter. We have been using a 

realistic full detector simulation and simulated beam back-
ground for low and high luminosity conditions of Belle II. 
The GNN algorithm has been compared to the currently 
used basf2 baseline algorithm. We find a significantly 
improved resolution of more than 30% for high beam 
backgrounds, but also improved performance in reducing 
the right-side tails of the reconstruction errors that are 
caused by beam background. Such significant improve-
ments in photon reconstruction performance directly 
improve the physics reach of Belle II for almost all final 
states with photons, but also analyses that use missing 
energy information [21]. We also trained different GNNs 
to separate energy depositions of overlapping photon 
clusters. The improvement of the energy resolution is up 
to 30% for the low energy photon in asymmetric photon 
pairs. Any improvement in overlapping photon recon-
struction has direct implications for the reconstruction of 
boosted �0 mesons or axion-like particles with couplings 
to photons [36].

While the basf2 algorithm strictly reconstructs one 
cluster for each LM, the GNN algorithm only uses the LMs 
to center the ROI. The GNN algorithm can therefore in 
principle also be used to reconstruct overlapping photons 
that only produced one LM (Fig. 11). The extension of the 
GNN algorithm to such overlapping signatures as well as 
to charged particles and neutral hadrons will be the focus 
of follow-up work. Future work is also going to address 
robustness against varying beam backgrounds explicitly, for 
example by introducing features that are directly sensitive to 
beam-background levels.

This is the first application of a GNN-based cluster-
ing algorithm at Belle II for a realistic detector geometry 
and realistic and high beam backgrounds. This is also 
the first time that an algorithm has shown to improve the 

Table 6   FWHMgen × 102 of one 
photon with photon energy E(1)

�
 

in dependence of the second 
photon energy E(2)

�
 for high 

beam background for the full 
detector (barrel and endcaps 
combined)

The uncertainties of the FWHM for the two algorithms are correlated for each energy interval since they 
use the same simulated events. The improvement to the basf2 baseline is stated in percent for each energy 
interval

E
(1)
�

 (GeV) ↓ E
(2)
�

 (GeV) → [0.1, 0.2] [0.2, 0.5] [0.5, 1.0] [1.0, 1.5]

[0.1, 0.2] GNN 24.77 ± 0.83 24.10 ± 0.76 24.02 ± 0.60 24.72 ± 0.63
basf2 33.12 ± 1.08 32.82 ± 1.38 31.28±0.79 32.42 ± 0.88
Improvement 33.7% 36.2% 30.3% 31.1%

[0.2, 0.5] GNN 13.16 ± 0.30 13.96 ± 0.20 14.17 ± 0.16 14.17 ± 0.16
basf2 17.73 ± 0.47 17.56 ± 0.31 17.62 ± 0.24 16.88 ± 0.23
Improvement 34.8% 25.8% 24.3% 19.1%

[0.5, 1.0] GNN 8.07 ± 0.12 8.56 ± 0.08 8.71 ± 0.06 8.84 ± 0.06
basf2 10.53 ± 0.19 10.77 ± 0.12 10.75 ± 0.09 10.73 ± 0.08
Improvement 30.6% 25.8% 23.4% 21.4 %

[1.0, 1.5] GNN 6.05 ± 0.08 6.33 ± 0.05 6.42 ± 0.04 6.54 ± 0.04
basf2 7.52 ± 0.12 7.56 ± 0.07 7.60 ± 0.06 7.68 ± 0.06
Improvement 24.2% 19.6% 18.3% 17.4%
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performance of the photon reconstruction by explicitly 
including timing information on clustering level at Belle II.
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