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ABSTRACT Machine learning has found many applications in network contexts. These include solving
optimisation problems and managing network operations. Conversely, networks are essential for facilitating
machine learning training and inference, whether performed centrally or in a distributed fashion. To conduct
rigorous research in this area, researchers must have a comprehensive understanding of fundamental
techniques, specific frameworks, and access to relevant datasets. Additionally, access to training data can
serve as a benchmark or a springboard for further investigation. All these techniques are summarized in
this article; serving as a primer paper and hopefully providing an efficient start for anybody doing research
regarding machine learning for networks or using networks for machine learning.

INDEX TERMS Computer networking, datasets, machine learning, metrics, tools.

I. INTRODUCTION
In recent years, the ever-growing interconnection of busi-
nesses and people and their increased reliance on networked
services has prompted computer network architectures to
continually grow in size and complexity. Moreover, with
the increased efficiency and convenience of network-based
services and businesses, the expectations of enterprises
and people with respect to network performance indicators
such as latency, throughput, reliability and resilience are
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steadily growing. Consequently, conventional algorithmic
and heuristic-based approaches for network management
tasks are starting to fall behind the expected levels of perfor-
mance, as they fail to deliver timely and nuanced decisions
in the face of the complex environment they are operating in.
Meanwhile, Machine Learning (ML) has shown remarkable
results in various problem domains such as discovering new
antibiotic drugs [1], generating high-fidelity images from
arbitrary text prompts [2] and even finding newmathematical
conjectures [3]. Such successes usually become very visible
even beyond the research community, and thusML has soared
in popularity in the past few years. Generally, Artificial
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Intelligence (AI) refers to machines or systems that can
perform tasks typically requiring human intelligence, such as
learning, reasoning, problem-solving, perception, language
understanding, and decision-making. ML is a subfield of
AI that concentrates on developing algorithms and statistical
models. These models enable computers to perform tasks
without explicit programming. In other words, it involves
using statistical techniques to enable machines to learn from
data and improve their performance over time. ML models
repeatedly show their potential for delivering high-quality
output (e.g. classifications/decisions, regression values and
generated artifacts) in highly complex environments with
non-trivial decision boundaries. Generally, for that sort of
environment, the proposed ML model greatly reduces the
compute resources needed to generate an adequate response
and/or generates outputs that are much ‘‘better’’ than what
existing models could deliver. That being said, for more
complex problem domains, most ML approaches require
substantial amounts of compute resources and training data.
Since most ML models aim at generalizing from specific
records of data, the quality of these data samples is essential
to the overall model performance. This often means that large
amounts of data records are required to depict a sufficiently
representative portion of the problem’s data domain. Also,
more sophisticated models can quickly explode in terms of
parameter/compute operation count and thus often require
specialized training hardware (i.e. memory and compute).
Nevertheless, the continuous improvement of used hardware
as well as the increased attention towards training data
acquisition, preparation and generation has paved the way for
ML to enter into more and more application domains.

Computer networking is a highly complex problem domain
with a plethora of tasks and problems that, to this day,
are solved predominantly through hand-crafted, algorithmic,
or heuristic methods. These methods have to respect a wide
range of topologies, network types and scopes, configura-
tions, hardware and protocol stacks, traffic patterns, and other
sources of variation. Furthermore, there are many different
ways to assess network performance, and in many cases,
minimum performance guarantees and security policies add
special constraints to the optimization problem. Additionally,
contemporary networks use specialized hardware to deliver
optimized performance, e.g. for forwarding packets at line
speed. Oftentimes, this hardware does not easily allow ML
models to replace existing functionality, e.g. because certain
types of computations are not supported or because the stor-
age is not available for more complex ML models. Finally,
while network administrators and networking researchers do
monitor their networks in action, the amount of useful ML
training data in networking – data that is not noisy nor
incomplete, publicly available, and diverse enough to cover
large parts of the problem’s underlying data domain – is
only a fraction of what other problem domains have at their
disposal. As a consequence, optimizing network performance
has so far been largely beyond the reach of ML research.
However, given the increased visibility of ML, researchers

are beginning to take on the aforementioned challenges of
the networking community on ML, and combining ML and
networking in research seems more attractive than ever.
Furthermore, computer network infrastructures have been
used recently to improve the performance of existing ML
approaches, e.g. by distributing the training process or the
data collection to improve resource utilization or training
speed.

ML is a very active and rapidly expanding research
field that includes an abundance of learning techniques,
model types, tools and frameworks, practices, and application
possibilities. Although we focus here on ML models, some
applications require considering the whole running system,
i.e., AI system, to properly evaluate and understand the
output, instead of focusing solely on the MLmodels [4]. This
paper is intended as a primer/practical guide for researchers
who are keen on quickly applying ML to problems in com-
puter networking and/or leveraging networking techniques
to improve the performance of their ML systems but feel
overwhelmed by the possibilities the intersection of ML and
computer networking provides. The key points of the paper
are the following:

• It first introduces the most relevant concepts and model
architectures of ML and then puts them into the context
of the different networking problem domains and the
latest advancements therein,

• It exposes the currently open problems within computer
networking and introduces a selection of different tools,
data sets, and approaches that have been popular among
the research community and might serve as a starting
point for future work,

• It covers several techniques for utilizing networks to
improve ML efficiency, such as reducing resource
requirements via Split Learning (SL) and distributed
training via Federated Learning (FL) or incorporating
the right inductive biases into ML models to improve
their ability to generalize from limited data,

• It discusses challenges related to networks for ML, such
as resource constraints, security concerns, and the lack
of understanding of how ML models make decisions
(and how techniques such as Explainable Artificial
Intelligence (XAI) may help in gaining understanding),

• It comprehensively provides pointers for further study
on related surveys and research.

The organization of the paper is visualized in Figure 1,
and the remainder is organized as follows: Section II explains
the basic concepts and categories of ML and relates common
networking problems to them. Section III introduces the ML
subfield of deep learning, which has been responsible for
most of the recent ML breakthroughs, elaborating on the
most common model architectures and how and why they
are suited to specific tasks within computer networking.
Thereafter, Section IV sheds light on the variety of accessible
data sets, tools, and frameworks that ease the development
and training of ML-powered networking systems. Section V
discusses explainability in Artificial Intelligence (XAI),
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FIGURE 1. Overview of the organization of this paper.

which is rightfully gaining traction because many recently
tapped application domains (including computer networks)
come with amounts of complexity and risk that disqual-
ify fully black-box ML models for widespread adoption.
Section VI broadens the scope presented up until now and
introduces ML techniques and paradigms such as distributed
and parallel learning. These techniques leverage existing
networking concepts and technology and seem useful, if not
mandatory, for many problems in the networking domain.
Section VII and Section VIII give an overview of related
survey papers and open challenges in the concerned areas,
and finally, Section IX concludes this paper by summarizing
the content presented in this paper and providing perspectives
on the open challenges and questions of ML in networking
and vice versa.

II. AN OVERVIEW OF MACHINE LEARNING
AI is the discipline of machines that solve problems by per-
ceiving the environment and using some form of knowledge
model in order to derive solutions and conclusions. ML is
an integral part of AI, of which it is considered a major

subfield [5]. ML models are statistically and computationally
derived from evidence in the form of historical data or
experience instead of explicitly programming a machine for
a task. The three traditional ML paradigms are supervised,
unsupervised, and Reinforcement Learning (RL). Methods
can be categorized into these paradigms by the type of
feedback the learning system receives. In supervised learning,
exact feedback is available in the form of data labels.
In unsupervised learning, on the other hand, data is only
partially labeled or completely unlabeled. Finally, in RL,
implicit feedback is available for observed data in terms of
a so-called reward function that labels data by a numerical
value.Wewill now discuss the threemainMLparadigmswith
a focus on the most popular ones. We then briefly touch on
some additional branches of ML that are relevant to computer
networking.

A. SUPERVISED LEARNING
Supervised learning is the first of the three main types of
ML and encompasses models that predict target values yi
for given data points xi. The starting point for the learning
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problem is a data set that consists of input-output data
points D = (x1, y1), (x2, y2), . . . , (xN , yN ). The goal is to
learn a function h mapping from the input domain to the
target domain such that ŷi = h(xi) for all data points.
Both input and output domains can take various shapes,
such as boolean or scalar values, euclidean vectors or
more complex representations such as graphs. Depending
on the type of output domain, supervised learning is
generally divided into classification and regression problems.
Examples of popular network applications that use supervised
learning are traffic prediction [6] and classifying security
attacks [7].

1) CLASSIFICATION
In classification problems, the output domain is finite,
e.g. true/false, sunny/cloudy/rainy or the set of digits 0-9.
Examples from the networking domain include anomaly
detection [8] (‘‘Given the current network monitoring data,
is the network showing abnormal behavior?’’) and failure
prediction [9] (‘‘Is this network node going to fail?’’). The
most fundamental models for classification are explained in
the following paragraphs.

• Support Vector Machines (SVMs) [10] aim at construct-
ing a so-called maximum margin separator - a decision
boundary that divides samples of two different classes
with a maximum possible distance to the boundary.
This situation is depicted in Figure 2a. The solid
black line represents the maximum margin separator
and the two dashed lines visualize the margins to
both classes. The nearest data points to the separator
are called the support vectors (red circles), as they
support the position of the decision boundary. Generally,
the larger the margin, the better the generalization of
the model, as it reduces the risk of misclassifying
new, unseen data. Since the decision boundary is a
separating hyperplane, the classification task fails for
data that is not linearly separable. However, SVMs
can also be used for non-linearly separable data by
applying the kernel trick. It transforms the data into
a higher-dimensional space where it becomes linearly
separable and a separating hyperplane is calculated.
When that linear hyperplane is transformed back into
the original space, it becomes a non-linear or even
incoherent hypersurface.

• Decision Trees [11] are structured like an inverted tree,
with a root node at the top, branching out into internal
nodes, and ending in leaf nodes at the bottom. The
data is split at the root node and the internal nodes
based on a threshold value for a feature. The splitting
process continues until a stopping criterion is met, such
as reaching a maximum depth or minimum number of
samples in a leaf node. Leaf nodes represent the final
predictions of the decision tree. The majority class in
each leaf node is used as the prediction. Figure 2b
visualizes a simple example decision tree (right side)
with a root node and two leaf nodes for the same data

as in the SVM example (left side). Data points where
Feature2 ≤ −0.103 are assigned Class 1, all others are
assigned Class 2. This decision boundary is visualized
as the color step from green to blue in the left plot.
Decision Trees are a simple yet powerful tool to reach
conclusions from input data with a high degree of human
explainability (see Section V).

• Random Forests [12] create a collection of decision
trees, each trained on a different subset of the training
data. To achieve as little inter-tree correlation as
possible, a random subset of features is considered for
each split at each node when constructing the decision
trees. The results of all individual decision trees are
aggregated to a final prediction. The class with the
majority vote among the trees is chosen as the final
prediction. Figure 2c visualizes the decision boundary of
a random forest with three individual trees for the same
data set used for the SVM and decision tree examples.
Compared to single decision trees, random forests are
known to improve the prediction accuracy as well as to
reduce overfitting [12].

• The k-Nearest Neigbors (KNN) [13] algorithm is a
simple technique to assign class labels to new data
points by examining the class labels of its k-nearest
neighbors with known labels. Given the features of
the input data point, these k-nearest neighbors are
determined by calculating a distance metric in the
input space, e.g., the Euclidean distance, Manhattan
distance, or Minkowski distance. The class label of the
majority of these neighbors is then inherited for the new
data point. Figure 2d visualizes the decision boundary
for the known data set using the Minkowski distance
and k = 5.

2) REGRESSION
In regression problems, the output domain is continuous,
e.g., Rn (n ≥ 1). Examples from the networking domain
include network performance prediction [14] (‘‘How will
the network perform in the future, given certain network
conditions and traffic?’’) and traffic prediction [15] (‘‘How
much / which type of traffic will be generated in the
near future?’’). In principle, any function fw with learnable
parameters w can serve as a regression model. However, the
structure of fw and the optimization procedure used to update
the learnable parameters are crucial to finding good function
parameters efficiently. The most fundamental regression
methods will be explained in the following paragraphs. All
of the aforementioned classificationmethods can also be used
for regression with slight modifications.

• Support Vector Regression (SVR) [16] is an extension of
SVMs for regression tasks. It aims to find a function
f that approximates the relationship between input
features and continuous target values with a certain
degree of error tolerance. The error tolerance (ϵ) defines
an ϵ-tube around f . Inside this tube, errors from the
regression model are not penalized. The algorithm
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FIGURE 2. Visualization of different classification methods based on a data set containing 30 samples and two features. The samples contain
15 samples of two different classes that are perfectly linearly separable. A Gaussian noise with a mean of 0 and a standard deviation of 0.8 is added,
making classification errors likely.

maximizes the number of training data points inside this
tube. ϵ is a parameter defined by the user. Similar to
SVMs, the kernel trick can be applied to create non-
linear SVRs.

• Decision Trees [11] can be used for regression tasks by
using the average value of the samples in each leaf node
as the prediction value.

• Random Forests [12] for regression use the average of
the individual trees’ predictions as the final prediction
value.

• The KNN [13] method for regression calculates the label
for the new data point by calculating the average target
value of its k-nearest neighbors.

• The most popular regression method is least-squares
fitting, in which the model is updated to minimize
the squared L2 norms of the difference between the
predicted values and their associated labels. This is
known as the Mean Squared Error (MSE).
In linear regression, this line is represented by a
linear function, while in logarithmic regression, it is
represented by a logarithmic function. In other words,
least-squaresmethod fits a line to the data points in away
that minimizes the sum of the squared vertical distances
between the line and the points.

B. UNSUPERVISED LEARNING
As opposed to supervised learning, in unsupervised learning,
the data comes without output/target values. Consequently,

MLmodels are taskedwith finding the underlying regularities
in the data domain by inferring them from the given training
data. The two main types of unsupervised learning, namely
clustering and dimensionality reduction, differ in their use
case. Supervised learning has been used for tasks such as
anomaly detection, intrusion detection [17] and data traffic
analyses [18].

1) CLUSTERING
Clustering approaches use the data points’ feature values to
find regularities in the data domain and thus divide them
into multiple semantically meaningful categories. Clustering
approaches such as k-means or Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) [19] differ
in the way cluster affiliation is calculated, for example,
through data density or neighbor connectivity via measurable
distance between the data points. Within the networking
domain, data grouping can serve as a useful starting point
for further analysis and action in a variety of problem
settings, such as anomaly detection and resolution [20], task
classification for scheduling [21], or traffic characterization
for traffic engineering [22].
In general, there are different metrics to evaluate the

performance of ML algorithms. Table 3 shows the most
common metrics, which appear in the literature, used for
supervised learning (with an emphasis on classification met-
rics that are typically used for evaluating traffic prediction)
and unsupervised learning (with an emphasis on clustering
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metrics as seen in intrusion detection as well as node(s)
selection for data collection).

2) DIMENSIONALITY REDUCTION
This type of learning analyzes the statistical properties of
the data in order to reduce the number of dimensions
that sufficiently describes the data. This is particularly
useful when dealing with more complex learning problems,
as theoretical results show that the amount of data points
needed to learn an accurate model scales exponentially
with the dimensionality of the input data domain [23] (this
phenomenon has been coined the ‘‘curse of dimensionality’’).
While approaches like Decision Trees or Random Forest
can reduce the dimensionality of the relevant portions of
the data by considering only the most meaningful features,
approaches like Principal Component Analysis (PCA) [24]
find a reduced-cardinality combination of new features. Like
clustering, this type of unsupervised learning is beneficial as
a preparative step before further analysis or model training,
especially since, in many real-world scenarios, it has been
observed that the given data lies on manifolds of much lower
dimensionality than the actual input space (the presumed
general rule for this is called the manifold hypothesis [25]).

Table 1 summarizes supervised methods, while Table 2
summarizes unsupervised methods. Further details can be
found in [26] and [27]. Regardless which method is used, it is
important to watch out for over- and underfitting.

Overfitting is a condition where a statistical model begins
to describe the random error in the data rather than the
relationships between variables. This problem occurs when
the model is too complex.

Underfitting, on the other hand, is the inverse of overfitting.
It means that the statistical or ML model is too simplistic
to accurately capture the patterns in the data. A sign of
underfitting is that there is a high bias and low variance
detected in the current model used.

C. FURTHER ML METHODS
There are various other branches of ML that are of use in
computer networks, see [28] and [29]. Here, we discuss two
additionalML frameworks that are presumably relevant in the
networking domain.

1) PROBABILISTIC ML
Oftentimes, neither all relevant information is known or
attainable prior to making a decision, nor is the environment
that reacts to the taken decision purely deterministic [5].
Uncertainty may exist in the input data, in the decision
model parameters and output values and even in the
architecture of the decision model itself [30]. In all of these
cases, probability theory provides a unified framework to
cope by using probability distributions to model uncertain
quantities. This framework is in principle, applicable to all
ML learning paradigms, model architectures and problem
domains that come with some notion of uncertainty. Since

its comprehensive introduction would exceed this paper’s
scope, we point the interested reader to [30] for a high-level
overview, and [31] for an extended overview of the core
concepts of probabilistic ML.

2) HYBRID LEARNING APPROACHES
Many ML contributions do not fully fall into one of the
aforementioned learning paradigms but rather combine their
ideas and create new sources for learning signals. Some
of these ‘‘hybrid’’ learning approaches are popular enough
to earn their own description. In semi-supervised learning,
typically, only parts of the training data are labeled [27].
To train a model in a supervised or unsupervised manner,
the auxiliary information is extracted by respectively using
the other learning type. Self-supervised learning, on the
other hand, tackles shortcomings of supervised learning
approaches (i.e., the need for large amounts of data and
vulnerability to adversarial inputs) by using parts or rep-
resentations of the input data as labels [32]. For example,
in [33], a model is trained to predict future video frames by
only feeding it the first few frames of a video and using the
remaining frames as ‘‘comparison’’ labels.

D. REINFORCEMENT LEARNING
In the spectrum of traditional learning paradigms for
intelligent agents, Reinforcement Learning (RL) is located
between the two extreme domains of fully supervised
and unsupervised learning. RL is particularly suitable for
decision, control, and optimization problems where data
and observations are received sequentially [34]. As such,
RL can be applied to various challenging problems in network
science [35], [36], [37]. Especially, Deep RL (DRL) methods
as to be discussed in Section III-C have seen tremendous
success in solving resource allocation problems in computer
networking [38].

The implementation of RL is based on an RL agent
that receives performance feedback called rewards as the
agent interacts with an environment over time [39]. The
algorithm designer typically crafts the reward as a function
of the agent’s sequential observations. The rewards, however,
do not provide exact instructive feedback on how to change
the agent’s behavior, thence RL is placed in the spectrum
of learning paradigms. In this section, we will describe
the basics of RL and the most fundamental algorithms.
Throughout, wewill directly refer to applications in computer
networking for almost all mentioned algorithms.

The interaction of an RL agent with its environment is
described by aMarkov Decision Process (MDP) as illustrated
in Figure 3.Whenever one seeks to solve a problem using RL,
the first step (arguably the most important) is to define the
problem as an MDP. Based on this MDP one then chooses or
designs a suitable RL algorithm to find a solution to theMDP.
In general, an MDP can be considered as a system that can
assume states s from a state space S . The MDP transitions to
a new state s′ according to a controlled transition probability
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TABLE 2. Summary of unsupervised learning.

TABLE 3. Common metrics of ML.

FIGURE 3. Illustration of the Markov Decision Process (MDP) feedback
loop.

distribution p(s′ | s, a) after the agent has taken an action
a from an action space A. Once the system transitions to
the new state, the agent receives a feedback/reward signal
r(s, a, s′). An MDP is therefore typically stated as a four-
tuple (S,A, p, r). The design of the reward signal r is
arguably themost important part of defining anMDP.Wewill

discuss some best practices for reward design in Section III-C.
Excellent introductory material for RL is the course by David
Silver.1 For background on partially observable MDPs, see
the web page of Anthony R. Cassandra.2

The goal in reinforcement learning is to find a policy
(decision rule) π : S → A that maps states to actions so
as to optimize an objective function. Since all future states
can potentially be influenced by an action at a current time
step via the transition probabilities p(s′ | s, a), it is natural
to consider an objective function that captures the whole
trajectory of future rewards. The most common objective is
the discounted infinite horizon accumulated reward R :=∑

∞

n=1 γ n−1r(sn, an, sn+1) with discount factor γ ∈ (0, 1).
The intuition is that higher weight is given to rewards in

1https://www.deepmind.com/learning-resources/introduction-to-
reinforcement-learning-with-david-silver

2http://www.pomdp.org
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the near future, and the weights of future rewards decay
geometrically. For background on average and total cost
MDPs see [40, Chapter 4 & 5].

Given a policyπ , the associated action-value function (also
called Q-function) is defined as

Qπ (s, a) := Eπ [R | s1 = s, a1 = a] . (1)

The Q-function is a fundamental object in RL and describes
what accumulated reward R one can expect if we are in
state s, take action a, and follow the policy π for all future
states. Furthermore, for finite action spaces, the Q-function
can directly be used to implement a policy by setting π(s) =

argmaxa∈AQ(s, a). This makes RL algorithms that seek to
find or approximate the optimal Q-function3 attractive since
they immediately lead to simple, implementable policies.

1) BASIC RL ALGORITHMS
RL algorithms can be roughly divided into three groups,
value-basedmethods, policy-basedmethods, and actor-critic
methods. Value-based methods seek to find or approximate
value functions like the Q-function. Policy-based meth-
ods instead seek to optimize a policy π directly. Value-
based methods, therefore, yield an implicit policy, whereas
policy-based methods yield an explicit policy. Actor-critic
methods combine learning in value- and policy-space and use
a learned value function to ‘‘guide’’ the training of an explicit
policy. See [41, p. 36] for an illustration of the actor-critic
feedback loop.

Before stating some examples of popular RL algorithms,
we have to distinguish some typical MDP and RL settings:
1) Continuous state (e.g. S = Rn) vs. finite state MDPs

(e.g. S = {1, . . . , d}).
2) Continuous action vs. finite action MDPs.
3) Model-based vs. model-free RL problem.

Model-based RL usually focuses on offline planning of value
functions and policies, where either the transition function p
is given or where p will be approximated [42]. Model-free
RL methods instead seek to determine what action to take in
a given state without knowledge of p, e.g., solely by observing
MDP transitions (s, a, r, s′).
The traditional algorithms for model-based RL in finite

state and action MDPs are value and policy iteration
[40, Chapter 2]. Some recent applications of modern
value iteration algorithms in the context of networking
are age-of-information minimization in wireless broadcast
networks [43] and multi-agent routing [44]. The most well-
knownmodel-free RL algorithm is tabular (simulation-based)
Q-Learning, which seeks to find the optimal Q-function.
Under simple conditions, Q-Learning is guaranteed to
converge to the optimal Q-function if all states and actions are
explored infinitely often [40, Section 6.6.1]. Q-Learning has
been successfully applied to various problems in computer

3The optimal Q-function is given by the solution to Bellman’s equation
[41, Section 5.6].

networks, e.g., network self-organization [45], network
slicing [46] or virtual network embedding [47].

2) RL WITH FUNCTION APPROXIMATION
The rise of RL as a powerful tool for decision-making
is largely due to the effective use of function approxi-
mation. When the state S becomes large or continuous,
the traditional algorithms become impractical. Function
approximation solves this problem by enabling RL agents
to infer information about unseen state-action pairs from
observed state-action pairs. The approximation may be used
in policy or value space or in both, policy and value space.
For example, a Q-function Q(s, a) can be approximated by a
function Qθ (s, a) with parameters θ . This is the basis of deep
Q-learning to be explained in Section III-C. Traditionally,
function approximation was an important part of RL even
before the rise of deep neural networks [48].

In Section III-C, we will discuss RL with deep neural
networks as function approximators. Here, we highlight the
traditional class of stochastic policy gradient algorithms with
policy function approximation for MDPs with finite action
space. Define a stochastic policy πθ (s, a) with parameters θ ;
πθ (s, a) maps states to a distribution on A.

The stochastic policy gradient theorem [49] has given
rise to a large class of algorithms, where Qπθ (s, a) is
replaced by a suitable estimator. E.g., the REINFORCE
algorithm [50] uses a Monte-Carlo estimator, actor-critic
algorithms now add approximation in value space with an
additional function approximator Qw(s, a) with parameters
w in place of Qπθ (s, a) [51], the famous Advantage-Actor-
Critic (A2C) algorithm [52] uses an approximation Aw(s, a)
of the advantage function Aπθ (s, a) := Qπθ (s, a) − V πθ (s),
where V πθ (s) := Ea∼πθ [Q

πθ (s, a)]. These algorithms have
been used for various scheduling and resource allocation
tasks in data centers [53], wireless networks [54], edge
computing [55] or vehicular networks [56].

3) EXPLORATION AND CURIOSITY IN RL
RL methods trade-off exploration vs. exploitation during
training, i.e., agents either explore some random action or
exploit their current best guess of the optimal action for
the current state. On the other hand, some methods purely
focus on exploration as a metric for learning. Such methods
may seek to explore as many unseen states during training
as possible. Another approach is to explore promising
states, e.g., those parts of the state space where the current
approximation of a certain value function is particularly bad.
Such methods are known as curiosity-driven RL [57], [58].

4) MULTI-AGENT RL
Multi-Agent RL (MARL) problems are formulated as
Markov games [59], where depending on the local reward
structure, the agents may cooperate or compete. An illus-
tration is given in Figure 4 from the perspective of some
agent i in a Markov game environment. Most notably,
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FIGURE 4. Markov game feedback loop over discrete time n.

the environment typically transitions to a new state as a
function of all local actions and all local states. There are
several additional properties to classify MARL settings, such
as whether the setting is decentralized, or whether or to
what extent agents transition independently [60]. We will
discuss the two most common deep MARL algorithms in
Section III-C. For a survey of MARL algorithm and various
applications and challenges in computer networks, see [61]
and [62].

5) RL WITH CONSTRAINTS
Contrained RL (CRL) [63] is a paradigm for constraint
MDPs. The goal is to ensure that the agent’s actions do not
violate any environmental constraints. A set of constraints
can be specified as hard (absolute and must always be
satisfied) or soft (desired but can be violated if necessary)
constraints. Safe RL (SRL) [64], on the other hand, aims to
learn policies that minimize the likelihood of unsafe actions
while maximizing the long-term expected reward for safe
actions. Accordingly, CRL and SRL both focus on ensuring
that the agent’s actions do not violate certain constraints,
but the formulation of constraints takes slightly different
approaches. Both approaches are used when resources (such
as bandwidth, computation, and energy) are limited [65],
[66], [67] or when some applications may impose additional
constraints (such as throughput and latency) [68], [69].

III. DEEP LEARNING—THE COOL KID OF ML
Deep Learning is a subfield of ML that aims at facilitating
the learning of complex data representations by learning
hierarchies of simpler intermediate representations [5], [70].
The resulting ‘‘stacking’’ of model blocks (predominantly
Neural Network (NN) layers) is what gives Deep Learning
its name. While the term Deep Learning has been around
for decades, it only started to gain widespread traction
in 2012 with the widely visible success of AlexNet [71]
winning a widely popular image classification challenge
with deep Convolutional Neural Network (CNN) (see Sec-
tion III-B). Since then, the rate of progress concerning deep
NN architectures, paradigms and learning techniques has
skyrocketed, and the development of specialized hardware
such as high-end GPUs or TPUs has led to deep learning
models with millions or even billions of parameters [72].
As a consequence, a growing proportion of ML applications

nowadays employ deep NN architectures. For networking
applications, NNs are a powerful tool to learn non-linear
relationships for complex problems. We shall now begin with
a review of the most important NN background.

A. NEURAL NETWORKS
Given its central role in almost any cognitive process, neu-
roscientists have long tried to understand the inner workings
and mechanisms of the brain. In [73], a mathematical model
for a neuron was introduced that has since inspired an
emerging class of ML model architectures: Artificial NN
[5]. In NNs, a neuron j receives inputs ai from nodes i =

1, . . . , n and a bias input a0 = 1, and first computes a
weighted sum using link weights wij: a′

j =
∑n

i=0 wijai.
Then, it computes the output (also called activation) oj =

g(a′
j) using an activation function g [74]. If multiple such

neurons (mostly called perceptrons in the ML community)
are connected in a directed and acyclic manner, they form
a so-called feed-forward network that is usually arranged in
layers. In such layered feed-forward networks, each neuron
receives the outputs of the neurons of the previous layer,
with the first layer receiving the overall model input and the
last layer providing the overall model output. The resulting
compound function expressed with the network can be
highly complex, in fact, it is shown in [75] that with as
little as one intermediate neuron layer and by choosing any
squashing activation function (e.g., a non-decreasing function
converging towards 0 and 1 on its respective ends), NNs can
theoretically approximate any continuous function uniformly
on any compact set to an arbitrary degree of accuracy. This
statement is also known as the Universal Approximation
Theorem (UAT).

The UAT becomes even more interesting once we view
the entire NN as a function hw(x) of the input vector x
and the NN weights w [5]. The UAT implies that there
exists a weight parameter configuration that sufficiently
approximates the function which describes the desired
solution to a problem. Hence, many learning problems can
be viewed as a problem of function approximation to find
the right NN weights. The most common technique to
update the NN weights is gradient descent in combination
with the so-called backpropagation algorithm [76]. For
example, to update a NN using an input-output tuple (x, y),
backpropagation calculates the derivative ∂

∂w |y − hw(x)|2 of
the output error with respect to the NN weights. This
calculation is done sequentially starting from the output layer
by applying the chain rule on the above derivative. Calculated
gradients are then used to update the NN weights iteratively.
Various algorithms have been proposed throughout the last
decade to use the aforementioned calculated gradients most
effectively. The most well-known algorithm is the ADAM
optimizer [77], which adaptively selects the stepsize for
individual NN weights based on the calculated gradient
information. See [78] and the reference therein for various
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other gradient-based methods. Note that most tools (such as
PyTorch and TensorFlow) offer these optimimzers as black
boxes without having to deal with the implementation details.

B. DEEP NEURAL NETWORK ARCHITECTURES
The UAT seems to advocate that rather simple feed-forward
NN architectures can be used for any problem that might
be solvable with ML. In practice, however, the findings of
the UAT are greatly humbled by the excessive amounts of
training data, the size of the NN models, and the required
time for training necessary to achieve satisfactory results
on a complex task. Furthermore, for many tasks, it can be
observed that the members of the underlying data domain
are semantically composable into simpler entities, spanning
a hierarchy of concepts. As a consequence, researchers have
started to add more structure to their models.

Different model architectures have proven effective for
different tasks. An overview of common deep learning model
architectures is given in Table 4. In the following subsections,
we briefly present the most popular model archetypes
and refer to the provided references for further reading.
Interestingly, all of the model archetypes introduced below
are derivable from the same basic mathematical framework
and only differ in the shape of data and the assumptions made
about regularities in the data [79].

1) MULTILAYER PERCEPTRONS (MLP)
Standard Deep Neural Networkss (DNNs) consisting of
multiple hidden layers of neurons are also called Multilayer
Perceptrons (MLPs). Together with non-linear activation
functions, they have long become a standard tool for pro-
cessing vector-shaped inputs as their hierarchy of non-linear
function approximators is widely applicable across many
problem domains [80]. However, given that Multilayer
Perceptronss (MLPs) make rather few assumptions about
the input and output data despite being shaped as a vector,
for many tasks these models often perform unfavorably
compared to more specialized models of similar size.
A detailed introduction to MLPs is given in [70]. MLPs have
already been used in computer andwireless networks, e.g., for
channel decoding [81], in resource allocation [82], and in
intrusion detection [83].

2) CONVOLUTIONAL NEURAL NETWORK (CNN)
In many problem domains, data exists on a grid-like
structure where spatial patterns carry the same semantic
information regardless of their location in the grid (also
referred to as translation invariance). Examples include
images (2D grids) but also time-series data (1D grids).
To exploit this symmetry, Convolutional Neural Network
(CNN) utilize spatial convolution, which applies the same
learnable spatial parametric kernels (i.e., small matrices with
learnable individual entries) on evenly spaced patches of the
input grid [70]. The re-usage of a set of such kernels across
multiple image positions is called weight sharing and greatly
reduces the number of parameters needed to learn and extract
the patterns of the input data.

3) RECURRENT NEURAL NETWORK (RNN)
For dealing with sequential data such as time series,
Recurrent Neural Network (RNN) elements such as the Long
Short-Term Memory (LSTM) [84] or the Gated Recurrent
Unit (GRU) [85] have proven very useful. The commonality
between all RNNs is feeding a portion of the output back into
the RNN block for subsequent computations, enabling NN
architectures with recurrent elements to capture sequential
dependencies within the data [70].

4) GRAPH NEURAL NETWORK (GNN)
Recently, Graph Neural Networks (GNNs) have emerged
as powerful architectures for handling graph-structured
data. Utilizing permutation-invariant aggregation/pooling
operations and permutation-equivariant message passing
operations to learn patterns in the data while respecting the
graph topology rather than assuming any specific ordering of
its nodes and edges [86].

5) GENERATIVE ADVERSARIAL NETWORK (GAN)
Generative Adversarial Networks (GANs) [87] have emerged
as a powerful tool for generating realistic data samples,
including images [88], videos [89], and audio [90], but
also network traffic [91]. GANs consist of two NNs: a
generator that creates synthetic samples, and a discriminator
that tries to distinguish between real and fake samples. These
two networks are trained simultaneously in an adversarial
setting, where the generator tries to fool the discriminator,
while the discriminator tries to correctly identify the real
samples. In the context of computer networks, GANs are
useful for generating synthetic network traffic patterns that
mimic real-world traffic. This is useful for testing and
evaluating network performance metrics, intrusion detection
systems, and network security protocols. See Section IV-B3
for example applications of GANs being used to generate
data.

6) TRANSFORMERS
In manyML domains with complex long-range dependencies
within data points, the attention mechanism [92] and its
implementation in the Transformer architecture [93] has
proven to be extremely powerful. Works like [94] and
[95] show that Transformers can outperform both CNNs
and RNNs in problems with spatial and temporal data
as each token/component of the input can relate to any
other component. While we refer to [93] for a detailed
explanation of the attention mechanism, it is worth noting
that transformers are a special case of GNNs operating on a
fully-connected computation graph [96]. This implies that for
large inputs, using the transformers is computive intensive.

7) LARGE LANGUAGE MODEL (LLM)
Large Language Models (LLMs) have recently gained
significant attention in the field of Natural Language
Processing (NLP). These models are trained on vast amounts
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TABLE 4. Overview on deep learning architectures.

of text data and can generate human-like text based on their
input. One popular type of LLMs is the generative pre-
trained transformer (GPT), which uses a transformer-based
architecture and is pre-trained on large amounts of text
data using a self-supervised learning approach. During pre-
training, the model learns to predict the next word in
a sentence, which enables it to generate coherent and
contextually relevant text. GPTs can be fine-tuned on specific
NLP tasks, such as text classification, summarization, and
translation, by adding a task-specific output layer and training
on a smaller dataset. Unlike traditional NLP models that
rely on hand-crafted features, LLMs learn to represent the
meaning of words and phrases in a continuous vector space,
enabling them to perform a wide range of NLP tasks. In the
context of computer networks, LLMs and GPTs have been
used, for example, to generate synthetic network traffic [97],
to explain decisions in intrusion and anomaly detection
systems [98], [99] and for managing networks [100]. For
an overview of applications, techniques, and challenges,
we refer to [101].

8) GENERATIVE AI (GENAI)
Generative AI (GenAI) is a broader concept that can apply
to any type of data [102]. It uses ML models, such as GPT,
GAN, or/and others, to learn the patterns and structure of the
given training data, and can then be used to generate realistic
and novel outputs that are similar but not identical to the data.
Additionally, and closely related, GenAI can be used with
retrieval-augemented generation (RAG) [103] to automate
collecting information from the network, analyze it, and
push new configuration if necessary [104], [105], [106]. This
removes the pain of learning a new documentation or writing
new scripts, and simplifies the user interaction. Recent
GenAI models have shown impressive and/or human-like
capabilities in an unprecedented range of downstream tasks.
As a consequence, several network industrial companies
have started to develop or adjust commercial products
that leverage GenAI e.g. to generate threat intelligence
reports [107], security policies, incident response plans [104],
and proactively identify and fix network issues [105].

C. DEEP REINFORCEMENT LEARNING (DRL)
Deep Reinforcement Learning (DRL) refers to the use of
DNNs as function approximators for RL algorithms. The gen-
eral idea of RL with function approximation has been briefly
described in Section II-D2. With the advent of deep learning
libraries such as Keras and TensorFlow (see Section IV),
as well as standardized APIs such as Gymnasium (formerly
known as OpenAI Gym), training of DRL algorithms has
become very accessible. However, the success of RL with
DNNs4 relies on some key techniques. This subsection
focuses on the most important DRL algorithms and the tools
and techniques to train DRL models.

First, we will explain two key techniques for DRL based on
Deep Q-Learning also known as Deep Q-Networks (DQN)
[109]. DQN is a DRL algorithm for MDPs with finite action
space. DQN seeks to approximate the optimal Q-function
by a DNN Qθ (s, a) with parameters θ . Specifically, a DQN
takes a state s as input and outputs Qθ (s, a) for every
action a of the finite number of actions. The key techniques
introduced for DQN are an experience replay buffer and
a so-called target network. During training, DQN interacts
with its environment, generating data tuples (s, a, r, s′).
These data tuples are stored in an experience replay buffer.
During training, DQN samples a mini-batch from this
memory and applies a stochastic gradient descent step of
the average squared Bellman error of the samples from
the mini-batch. This rather simple technique reduces the
bias of Q-Learning towards its recent interaction with the
environment and thereby helps to stabilize training. In NN
terminology, the right-hand side of the Bellman loss, i.e., r +

γ maxa′ Qθ (s′, a′) is the training target for Qθ (s, a) given
the data tuple (s, a, r, s′). In other words, the DQN itself
is used to compute its training targets. The idea behind
target networks is to use a separate target network Qθ ′

(s, a)
to compute the aforementioned training targets. The target
parameters θ ′ are then chosen to track the actual training
parameters slowly. With this, target networks provide more

4Historically, it was known that training RL with a NN could potentially
lead to systematic overestimation of utility values (such as the Q-function)
and thus to failed learning [108].
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stable training targets, which has been shown to generally
improve DRL training, see [109] and [110]. However, more
recent theoretical and numerical studies suggest that gradient
clipping is superior to the use of target networks [111].
DQN is also an integral component of the Deep Deter-

ministic Policy Gradient (DDPG) algorithm [110], which
is one of the most well-known actor-critic algorithms for
continuous action spaces. In DDPG, a critic is trained using
the DQN algorithm, while a deterministic policy is trained
to maximize the approximated Q-function. DQN and DDPG,
in turn, are the basis for the two common deep MARL
algorithms Independent Deep Q-Learning [112] and Multi-
Agent DDPG (MADDPG) [113]. However, only DDPG has
a truly distributed version that can be run with nearly arbitrary
communication delays over a communication network. This
is known as the Distributed DDPG (3DPG) algorithm [114].

Another important technique for successful DRL train-
ing was proposed as part of the deep actor-critic algo-
rithm Asynchronous-Advantage-Actor-Critic (A3C) [52].
The asynchronous part refers to using several agents in
parallel simulated environments to improve and speed up
DRL training. In other words, the training progress of several
agents on the same problem is combined to enhance the
training performance. This is especially important for com-
plex tasks since multiple parallel processors can significantly
reduce the overall training time.

The success of DRL has been demonstrated across
various sub-areas in computer networks like management
of satellite-terrestrial networks [115], multi-objective service
coordination [116], scheduling for large-scale networked
control systems [117], acoustic sensor networks, [118],
adaptability of wireless sensor networks [119] and other
applications in communications and networking [120].

1) GENERAL ADVICE FOR TRAINING DRL AGENTS
Training a DRL Agent to successfully solve a given problem
can be a challenging task. In this section, we provide some
general advice from our experience in the hope to ease this
task.

1) It is good practice to normalize the states and actions,
e.g., [−1, 1]d , d ∈ N. Linear scaling always makes
this possible when the state space S is bounded in real
dimensional space. When S is unbounded, let’s say Rd ,
one needs to use, e.g., a scaled version of the hyper-
bolic tangent or the inverse stereographic projection.
Such nonlinear transformations, however, change the
environment, and the resulting policies may perform
poorly in the actual environment if the normalization
is not chosen carefully. Ideally, one should aim at
linear scaling throughout the state space’s ‘‘expected’’
dominant part. As the action space is typically bounded,
action normalization is less problematic.

2) Reward normalization should be used even more
carefully than state normalization. In general, changing

the reward changes the perception of an agent about the
environment and results in different learned policies.

3) The design of the reward signal is an integral part
of the design of an MDP. One has to craft a reward
function that incentivizes the desired behavior to get
an algorithm to learn the desired goal. Some additional
comments in no particular order: Make it easy for
an agent to distinguish good from bad scenarios;
Continuous rewards or dense rewards typically make it
easier for algorithms to learn; If possible, avoid sparse
rewards and instead shape the rewards to give gradual
feedback; Strictly positive rewards incentive agents to
avoid terminal states; Strictly negative rewards incentive
agents to reach terminal states.

4) It should be avoided to train DRL models with drop-
outs. Drop-outs is a regularization technique that was
introduced in [121] to train NNmodels with less overfit-
ting while improving the generalization. However, this
leads to increased training variance, which is generally
undesirable for the training of DRL.

2) ALGORITHM CATEGORIZATION
The sheer amount of available DRL algorithms can be
overwhelming for starters in the field, making it challeng-
ing to find appropriate algorithms for a given problem.
To ease the algorithm selection, we provide categorizations
of widely used single-agent and multi-agent DRL algo-
rithms in Figure 5 and Figure 6, respectively. We note
that the tree structures are simplified. For example, the
model-based algorithms in Figure 5 can further be classified
into value-based, policy-based, actor-critic and on/off-policy
algorithms. Furthermore, only selected and widely used
algorithms are shown. These categorizations should serve
as starting points. The final algorithm selection for a
specific problem should also consider additional factors such
as sampling efficiency, algorithm stability and exploration
strategy.

Single-Agent-DRL Algorithm Categorization: Single-
agent-DRL algorithms can be coarsely categorized by their
supported action space (discrete/continuous), if they are
model-based or model-free, and if they are value-based,
policy-based or a combination of both - called actor-critic.
Considering the tree-structure in Figure 5, it can be seen that
some algorithms (e.g., A2C/A3C, SAC, PPO) can be used
for both, discrete and continuous action spaces, while others,
such as DQN and DDPG, are only compatible with one of
them.

MARL algorithms can generally be categorized based on
the same factors as single-agent DRL algorithms. However,
additional multi-agent based factors can be included. These
are mainly centralized/decentralized learning and coopera-
tive/independent learning. To preserve clarity, some of the
traditional single-agent based factors have been omitted in
Figure 6.
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FIGURE 5. Categorization of well-used Single-Agent Deep Reinforcement Learning (DRL) algorithms.

FIGURE 6. Categorization of well-used Multi-Agent RL (MARL) algorithms.

IV. DATASETS, TOOLS, AND FRAMEWORKS
Now that we have discussed what ML is and its potential
applications, we will introduce here the most popular datasets
in the field of networks, as well as emulators, and simulators
that can be used to run ML experiments. Since ML models
parameters are learned from data, the datasets used are crucial
in accomplishing the intended task, such as network latency
prediction or decision-making for traffic routes.

Additionally, ML models need to be tested before being
applied in a productive environment. Thus, well-known
network tools and frameworks can aid in prototyping,
tracking, and evaluating these models.

A. DATASETS
Datasets are usually not plug-and-play and require prepro-
cessing. The type of preprocessing required for the datasets
depends on the specific problem being addressed and the type

of data being used. In general, preprocessing includes the
following steps:

• Data cleaning: This involves removing any missing,
inconsistent, or irrelevant data to ensure the quality of
the data being used for training.

• Data normalization: This involves transforming the data
into a common scale, such as normalizing the values
between 0 and 1, to ensure that no variable has an undue
influence on the model.

• Data selection: This involves selecting the relevant
features or variables from the dataset that are most
important for the problem at hand. This step is important
to reduce the dimensionality of the data; making it easier
to improve the performance of the model; it removes
irrelevant or redundant features, it can help to speed
up the training process and reduce the computational
resources required for analysis.
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• Data transformation: This involves transforming the data
into a format suitable for the ML algorithm being used,
such as converting categorical variables into numerical
values using one-hot encoding; it generates a vector,
whose length corresponds to the number of categories
in the dataset. Data points belonging to the category are
assigned 1, otherwise 0.

• Data splitting: This involves splitting the dataset into a
training set to train themodel, a validation set to evaluate
its performance during training, and a test set to evaluate
the models’ performance after training.

It is important to note that the specific preprocessing steps
required may vary depending on the dataset, the problem
being addressed, and the type of ML model used. The
preprocessing steps should be chosen carefully to ensure
that the data is suitable for training and that the model
can accurately represent the underlying relationships in
the data. In the following, we present the most popular
network domain datasets in the literature for different
applications.

1) MOBILE NETWORK THROUGHPUT DATASETS
A common problem in networking research is replicat-
ing realistic network conditions, especially throughputs.
Dynamic Adaptive Streaming over HTTP (DASH) is
one such exemplary research area. Depending on the
mobile network, different datasets containing traces of
real-world measurements have been created in order to
allow for a better comparison between different research
approaches.

For 3Gmobile networks, the dataset by Riiser et al. [122] is
widely used [123]. It contains 86 traces from measurements
conducted on commute paths in Oslo, Norway, using six
differentmobility patterns (cf. Table 5). Besides the download
throughput, it also contains the GPS latitude and longitude
coordinates of the measurement device.

For 4G mobile networks, the dataset by Van Der Hooft
et al. [124] (we call it 4G_a in this paper) is commonly
used [125]. It contains traces of 40 measurements with
different mobility patterns (cf. Table 5) conducted in Ghent,
Belgium. It is similar to the 3G dataset by containing the
download throughput, as well as the GPS coordinates of the
measurement device.

Another widely used [126] dataset for 4G networks was
created by Raca et al. [127] (we call it 4G_b in this
paper). A total of 135 measurements were conducted in
Ireland. In comparison to the 4G_a dataset, this one is larger,
also contains different mobility patterns (cf. Table 5), and
contains significantly more metrics, such as the download
and upload throughput, additional channel-related metrics,
context-related metrics, and cell-related metrics.

In Farthofer et al. [128] an LTE dataset for the use of ML
is described. The dataset is measured on an Austrian highway
and contains over 2000 measurement points per month over
a time period of two years. Additionally, there are different
signal parameters measured in the dataset like SINR, RSSI,

and RSRP as well as GPS data, time, data rate, etc., and it is
published at CRAWDAD.5

Raca et al. also created a widely used [129] dataset for
5G networks [130]. It contains 83 traces of measurements in
Ireland with two different mobility patterns (cf. Table 5). The
measurement setup and dataset structure are comparable to
their 4G_b dataset. In addition, it also contains ping statistics.

Table 5 provides a comparative overview of the presented
datasets.

2) ROUTING
As routing is an important part of networking, having
a real-world dataset for it can be beneficial for training
ML models, evaluating their performance and testing their
robustness in the case of network failures and other real-world
issues. In the following, we discuss some of these datasets.

The Abilene dataset [131] is a real-world network trace
that captures the communication patterns of a backbone
network. It was collected by the Abilene project, which was
a collaboration between researchers from the University of
California, SanDiego, and theUniversity of Kansas. TheAbi-
lene dataset provides information about the communication
patterns of a backbone network that connects several research
institutions in the United States. It includes information
about the network topologies, routing algorithms, and traffic
patterns of the network. It contains information about the
routes taken by packets, the number of packets sent and
received, and the size of the packets. The dataset is commonly
used for research in the areas of network routing, network
management, and network performance evaluation.

The Global Environment for Network Innovations (GENI)
dataset [132] provides network traces from real-world
deployments. GENI is a large-scale research infrastructure
that provides a platform for conducting experiments and
evaluating new network technologies and protocols. The
dataset includes network traces that were collected from a
variety of testbeds and networks, including campus networks,
data centers, and wide-area networks. It includes information
about the network topology, routing algorithms, and traffic
patterns of the network. It also contains information about
the routes taken by packets, the number of packets sent and
received, and the size of the packets. The dataset is commonly
used for research in the areas of network routing, network
management, and network performance evaluation.

The Cooperative Association for Internet Data Analysis
(CAIDA) anonymized internet traces dataset is a collection
of network traces that were collected by the CAIDA
project [133]. CAIDA is a non-profit research organization
that collects and analyzes data about the internet to gain
insights into its structure and behavior. It includes data from a
variety of sources, including routers, switches, and end hosts.
The data includes information about the network topology,
routing algorithms, and network traffic patterns. Additionally,
it contains information about the routes taken by packets,

5https://www.crawdad.org/
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TABLE 5. Overview of throughput datasets for 3G, 4G, and 5G mobile networks.

the number of packets sent and received, and the size of
the packets. The data is collected using active and passive
measurements:
Active measurement involves actively sending test packets

or requests to a network, and then analyzing the resulting
responses to gain insight into the network behavior and
performance. Examples of active measurement techniques
include pinging, tracerouting, and bandwidth testing. Active
measurements are often more accurate and provide more
detailed information about the network, but they can also
introduce more overhead into the network and disrupt normal
network traffic.
Passive measurement involves observing network traffic

without actively generating any test traffic. Passive measure-
ments are typically less disruptive to the network and do
not introduce any overhead, but they provide a more limited
view of the network’s behavior and performance. Examples
of passive measurement techniques include network traffic
analysis, packet capture and analysis, and log file analysis.

The RocketFuel dataset [134] is a collection of network
topology data that was collected by the RocketFuel project.
The RocketFuel project was a research effort aimed at
studying the structure and behavior of the Internet at the level
of individual routers and links. The project collected data
from several large Internet Service Providers (ISPs) and used
it to create a high-resolution map of the Internet. It includes
information about the network topology and the paths that
packets take through the network. It also includes information
about the capacities of the links between routers, as well
as information about the location and characteristics of the
routers themselves.

The Internet Topology Zoo [135] is a collection of network
topology datasets that provide information about the physical
structure of different networks. The datasets in the Internet
Topology Zoo come from a variety of sources, including
measurements of the internet, testbeds, and simulations. Its
datasets provide information about the connections between
nodes in a network, the capacities of the links between nodes,

and the characteristics of the nodes themselves, such as
their locations and capabilities. One of the main strengths
of the Internet Topology Zoo is its comprehensive coverage
of different types of networks, including wide-area networks,
data centers, and other large-scale networks. This makes it a
valuable resource for researchers and practitioners working
in the field of network routing and network management,
as it provides a diverse set of datasets for evaluating and
comparing different algorithms and technologies.

To sum up, GENI and Abilene datasets primarily focus
on network infrastructure, providing researchers access to
national research networks. Conversely, CAIDA and Rocket-
Fuel are designed to facilitate the measurement and analysis
of network traffic and topology. The Internet Topology Zoo,
meanwhile, is a collection of publicly available network
topologies that researchers can use for various purposes.
Thus, the size of the network varies depending on the
scope and focus of the dataset. The GENI and Abilene
datasets tend to cover larger networks compared to CAIDA
and RocketFuel, which prioritize measurement and analysis
tools [136]. CAIDA and RocketFuel datasets use passive
measurements, while GENI and Abilene datasets use both
active and passive measurements. The Internet Topology Zoo
is a collection of network topologies and does not involve any
measurements. Further comparison is shown in Table 6

3) DYNAMIC ADAPTIVE STREAMING OVER HTTP (DASH)
Video streaming via Dynamic Adaptive Streaming over
HTTP (DASH) is a large research area in networking.
Recent rate adaptation algorithms often aim to optimize the
user’s Quality of Experience (QoE) under the given network
conditions, such as a constrained bandwidth [137]. While
these algorithms were initially conventional heuristics, DRL-
based approaches have recently shown excellent performance
and are now considered state-of-the-art [138]. In order to
benchmark different solutions, publicly available DASH
datasets are often used [138]. Typically, the datasets contain
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TABLE 6. Overview of available routing datasets.

videos that are encoded under a controlled set of parameters,
e.g., resolution and bitrate, and split into segments of certain
lengths. The solutions are commonly evaluated via simula-
tions where the videos from the DASH datasets are streamed
over simulated networks [139]. Realistic network conditions,
especially the download bandwidth, are commonly simulated
using the network traces from the datasets presented in
Section IV-A1 [138]. In the following, we present four
commonly used DASH video datasets. Table 7 provides an
overview of their most important properties.

The DASH dataset [140] is an old (2012) but still widely
used dataset, e.g., to test new QoE-schemes [139]. It contains
6 videos of different genres split into segments ranging from
1 - 15 seconds in length.

The Distributed DASH (D-DASH) dataset [141] was
published in 2013 and is intended to be used in real-world
testbeds. It contains one video that is distributed on servers in
Klagenfurt, Paris, and Prague. This enables a client to choose
the requested location for each segment individually.

The ultra high definition HEVC DASH dataset [142] was
published in 2014 and includes one video. In contrast to
the DASH and D-DASH datasets, the video is encoded with
the newer and more efficient H.265 (HEVC) video codec.
Furthermore, it is encoded in UHD resolution, at 30 and 60
Frames per Second (FPS), and at 8 and 10 bits.

The multi-codec DASH dataset [143] is a rather new
dataset from 2018. It consists of 10 videos that are encoded
with four different video codecs: H.264, H.265, VP9, and
AV1. In addition, three different video FPS are included: 24,
30, and 60.

4) MOBILITY AND AUTONOMOUS VEHICLES
In the context of mobility or autonomous driving using a
wireless network infrastructure (let it be cellular or V2X),

most of the studies in the literature discussing solutions
and their results do not make the datasets publicly available
for scrutiny by third parties. As such, the results are
difficult to verify and validate properly. Nevertheless, many
studies rely on simulated datasets. An open-source traffic
simulation software called Simulation of Urban Mobility
(SUMO)6 provides datasets for simulating realistic urban
traffic scenarios. Among the datasets are road networks,
traffic demand patterns, and vehicle behavior models, which
can be customized for different traffic scenarios and urban
environments [144].

Although SUMO is popular among researchers and prac-
titioners in the industry, another software called Multi-Agent
Transport Simulation (MATSim)7 is often used in academic
research. While SUMO focuses on macroscopic traffic flow
modeling, MATSim uses an agent-based approach to model
individual travel behavior [145]. As a result, MATSim can
capture more complex individual decision processes, while
SUMO is better suited for overall traffic flow modeling.
Another open-source software is CityFlow,8 which includes
a range of features that are not available in SUMO, such as
real-time simulation and the ability to model pedestrian and
bicycle traffic [146].
There exist other alternatives, yet commercial, that also

provide mobility datasets, such as Aimsun,9 Vissim10 and
TransModeler11 We present in Table 8 an overview of these
datasets, while a comparison of the use cases for some of
these datasets was shown in [147].

6https://sumo.dlr.de/docs/Data/Scenarios.html
7https://www.matsim.org/open-scenario-data
8https://github.com/cybercore-co-ltd/track2_aicity_2021
9https://www.aimsun.com/
10https://www.ptvgroup.com/
11https://www.caliper.com/transmodeler/default.htm
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TABLE 7. Overview of the DASH datasets.

TABLE 8. Overview of mobility frameworks.

5) (ENCRYPTED) NETWORK TRAFFIC ANALYTICS
Another common task for ML in networking is network
traffic analytics. This includes the task of traffic/service
classification, i.e., identifying an active service or traffic type
in the network. Examples for such a task are distinguishing
between video and web traffic, between services like
YouTube and Netflix, or even between different Android
apps. Due to pervasive encryption with for example TLS on
application and transport layer, protocols like HTTPS, DNS
over TLS (DoT), and QUIC [154] do not yield sufficient
unencrypted data that reliably identify services and traffic
types. Instead, new techniques have to be developed which
make use of the available unencrypted data. For encrypted
network traffic analytics, a common approach is therefore
to extract packet sizes, directions, and inter-arrival times as
well as potential additional information like port numbers to
build features. These features describe the network traffic of
a specific service or traffic type [155], [156], [157], [158].
These features are then fed to ML models to learn specific
patterns exhibited by different traffic types or services.
Beyond traffic classification, this type of analytics is often
used for security-related tasks like intrusion detection or
fingerprinting of websites, browsers, devices, and operating
systems, and for estimating the QoE of services [159], [160].

Due to the prevalence of those topics, there also exists a
variety of datasets for the different network traffic analytic
tasks.

An overview on the topic of traffic classification along
with a list of existing works (and solutions) and datasets
is provided in [161]. However, many of these datasets are
quite old and, thus, outdated. A dataset for encrypted network
traffic classification of YouTube and Netflix is provided
in [162]. Here, the authors collected three classes of flows,
namely, web flows, YouTube flows, and Netflix flows for
the most popular websites and videos, while using different
end devices, browsers, and operating systems. A new dataset
for app traffic classification is Mirage [163]. This dataset
was generated using three different mobile devices, which
were used by real experimenters (students) once or twice
a day. Overall, each experimenter generated 12 captures of
a duration of 5 to 10 minutes. Experimenters were hereby
instructed to use the app as they would usually do in their
day-to-day life. The resulting datasets consists of 40 Android
apps from 16 different categories. Another new dataset for
traffic classification of mobile apps is AppClassNet [164].
It was designed as ImageNet for encrypted network traffic
analytics and, therefore, is significantly larger in terms
of tested apps and available samples than other datasets.
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The corresponding public dataset contains 500 apps with
a volume of around 10 TB and stems from passive
measurements.

For security tasks, in particular network intrusion detec-
tion, a comprehensive survey can be found in [165]. In this
survey, the authors describe over 30 datasets and list the
corresponding attacks and data types. A variety of datasets
for different security tasks is also provided by the Canadian
Institute for Cybersecurity, University of New Brunswick
(UNB) [166]. They provide more than 25 datasets from
different categories. These categories include IoT, dark web,
DNS, IDS, traffic classification (web and apps using Tor or
VPN), malware, and operational technology. A dataset for
fingerprinting of devices and operating system in the potential
presence of VPN is provided in [167]. The dataset contains
around 20000 examples suitable for fingerprinting browsers,
operating systems, and apps.

B. DATA GENERATION
Using real-world data is often challenging due to its limited
availability and applicability. In this section, we explore the
use of simulators, emulators, and synthetic methods, such
as GANs, for generating data that can be used to train
ML models. These approaches have the potential to help
when datasets are not available or suited, and can enable the
creation of diverse and complex datasets.

1) SIMULATION TOOLS
One of the paramount parts of designing a new scheme or
protocol is the evaluation process. There are various methods,
including real-world experiments, simulation, emulation,
or analytical models in order to perform detailed investigation
of the newly designed scheme. Nevertheless, eachmethod has
its advantages and disadvantages. When employing practical
tests, the accuracy of the results can be faultless, however,
in contrast, complexity and cost can increase. On the other
hand, modeling a new protocol based on conceptualization is
beneficial for having an analytics model, yet the complexity
is still a flaw. Moreover, the accuracy can be declined as the
lack of capability for reflecting real-world scenarios might
be highlighted. Considering the above challenges, using
simulation and emulation environments can strike a good
balance between complexity, cost, and accuracy. They might
not depict real-world conditions minutely, but even so, they
are eminent tools that can assist a researcher or developer
to expand novel schemes. A thorough analysis of different
simulators for networking can be found in [168] and [169].

NETWORK SIMULATOR 3
One of the most powerful simulation tools in networking is
ns-3 (Network Simulator - 3)12 [170], which is a discrete-
event open-source simulator under the GNU GPLv2 license.
This tool comes with various modules such as Wi-Fi, LTE,
or even a recently released mmWave (millimeter wave)

12https://www.nsnam.org

[171] module to ease the way for researchers to have
somehow reliable test environments for the newly developed
approaches and reduce development time for various kinds
of research interests. Indeed, ns-3 can assist researchers in
network performance evaluation, however, if it is extended
through open-source AI frameworks, the procedure would be
more beneficial to ML problems as by default it does not
support ML approaches. An attempt to do so was employed
in ns3-gym [172], an extension of ns-3 connecting the
module to the OpenAI Gym toolkit. This connection is done
utilizing Zero MQ sockets through the IPC (Inter-Process
Communications) method. Moreover, the capability and
adaptability of OpenAI Gym to reinforcement learning can
be favorable, as it is a widespread library such as TensorFlow
and Scikit-Learn. ns3-gym aims at ameliorating the process
of network prototyping that employs reinforcement learning.
This module enhances the feature of scalability, which is
important for having several instances in ns-3 and making
the conversion and deployment of ns-3 scripts feasible in the
OpenAI Gym. Furthermore, debugging and exploitation of
the module could be kept at a level that is uncomplicated for
users as it is such a conventional module for ns-3, having
two main blocks of OpenAI Gym and ns-3 that interact with
each other. Another interface extension that bridges the ns-3
and python-side ML implementation is ns3-ai [173], which
claims to greatly increase the interaction speed by facilitating
communication through a shared memory block.

OMNET++

Another popular discrete-event network simulator is
OMNeT++,13 which can be used free of charge for
academic and educational purposes under a license with
rights similar to the GPL,14 but requires a paid license for
commercial use. While OMNeT++ itself only contains the
core simulation framework, various models can be added via
external frameworks. The most important one is the INET
Framework,15 which is maintained by the OMNeT++ core
team and provides models for network standards like IEEE
802.3 and IEEE 802.11 as well as higher layer protocols like
IP, UDP, and TCP.

In terms of ML, Veins-Gym [174] exposes an OMNeT++

simulation as an OpenAI Gym environment, analogous to
ns3-gym for ns-3. Despite its name, Veins-Gym can be used
not only in combination with the Veins framework but also
with any OMNeT++ simulation.

An overview with examples of how to use different ML
frameworks such as TensorFlow in OMNeT++ can be found
in [175].

2) EMULATORS
A network emulator, unlike a simulator, creates a virtual copy
of a physical device, including all hardware and software

13https://omnetpp.org/
14https://omnetpp.org/intro/license
15https://inet.omnetpp.org/
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TABLE 9. Overview of the encrypted network traffic datasets.

configurations, to functionally replace it. Hence, emulation
is more accurate than simulation, but also more expensive
in terms of computation resources. There are many network
emulating tools, including but not limited to:

• Mininet16: a Python-based tool focused on emulating
software-defined networks (SDNs) using OpenFlow
switches.

• GNS317: supports a wide range of network devices and
protocols using virtual machines and real devices.

• Mahimahi18: a lightweight network emulator that is
designed to emulate low-bandwidth networks with high
latency.

• WANEM19: a Linux-based tool that can be used to
emulate various network conditions such as latency,
packet loss, and bandwidth limitations in WAN.

• TENS20: a VM tool that can be used to generate emu-
lated network traffic for security evaluation purposes.
It can generate various types of traffic, such as HTTP,
FTP, SMTP, etc.

• CORE21: similar to GNS3 but with further emulation
capabilities beyond traditional networks, such as SDN
and virtualization technologies.

• FlowEmu [176]22: a modular network link emulator
with a flow-based programming inspired user interface
that integrates TensorFlow for writing custom ML
modules.

Many of these tools have been used for training and
evaluatingML algorithms. For example, SDWAN-gym23 and
IROKO [177] are Python-based platforms built on top of
Mininet for training and evaluating reinforcement learning
algorithms in software-defined WANs and data centers,
respectively. It is often the case that emulated data is mixed
with real data for a large reliable dataset. There exist many
datasets that adopt this approach in cybersecurity, such as
the Canadian Institute for Cybersecurity database.24 They
provide the ‘‘CICIDS2017’’ dataset, labeled network flows
with full packet payloads in PCAP format, for ML and

16http://mininet.org/
17https://docs.gns3.com/
18https://manpages.org/mahimahi/
19https://github.com/PJO2/wanem
20https://github.com/vmware/te-ns
21http://coreemu.github.io/core/
22https://github.com/ComNetsHH/FlowEmu
23https://github.com/amitnilams/sdwan-gym
24https://www.unb.ca/cic/datasets/index.html

deep learning purposes. Also, they provide the AndMal 2020
dataset to identify and classify Android malware based on
ML.

3) SYNTHETIC
Synthetic data is needed because it can help to overcome the
lack of up-to-date real-world data and privacy constraints,
which limit the development of new models. In addition,
synthetic data can provide an efficient mechanism to
surmount the lack of labeled datasets and post-processing
overhead. In the context of network traffic analysis, synthetic
data can be used, for example, to train ML models to detect
cyber-attacks and resolve network congestion as well as other
performance issues.

SynGAN (Synthetic Generative Adversarial Network)
[178] is a packet-level GAN designed to generate synthetic
traffic data. It generates synthetic packets that closely
resemble real-world traffic by simultaneously training the
generator and discriminator networks. The generator network
takes random noise as input and produces synthetic network
traffic data as output, while the discriminator network
distinguishes between synthetic and real data. Adversarial
training ensures that the synthetic data produced by SynGAN
is representative of real network traffic.

To make sure that the generated data satisfies certain
constraints, PAC-GAN (Projection Adversarial Constraint
GAN) [91] uses a projection operator to map the generated
data onto a feasible set that satisfies the desired constraints.
In addition to the standard GAN loss, PAC-GAN uses a
constraint loss to ensure that the generated data is not only
realistic but also satisfies the desired constraints.

Another type of traffic generator is flow-based GANs that,
unlike packet generators, focus on individual packets and
generate flows of packets that share common characteristics,
such as source and destination IP addresses, source and
destination ports, and protocol type. Additionally, they can
reduce the amount of data needed to be generated by
generating a single flow instead of multiple individual
packets.

The authors in [179] propose different preprocessing
approaches, for transforming IP addresses of flows into a
continuous feature, since GANs can only process continuous
features. Then, they use domain knowledge, such as packet
size, inter-arrival time, and flow duration distributions,
to evaluate the quality of the generated data. Another
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example is MAIGAN (Massive Attack Generator via GAN)
[180] that generates synthetic network traffic that mimics
various types of cyber attacks, including Distributed Denial
of Service (DDoS) attacks, port scanning attacks, and
brute-force attacks, which is able to bypass black-box
ML-based detection models.25 To handle the problem of
imbalanced traffic classification, i.e., data used for training
the classification model contains a disproportionate number
of samples from one class compared to the others, ITC-
GAN [181] uses a modified GAN architecture with a class-
balancing loss, based on the inter-packet time characteristics,
which helps to balance the number of samples from each
class during training and remove the bias in the classification
model.

The work in [182] discusses other GANs models for net-
work traffic generation, including Facebook Chat GAN [183]
that generates chat message sequences based on Face-
book Messenger data, ZipNet GAN [184] that generates
compressed network packets using Huffman coding and
PcapGAN [185] that generates network packet captures (pcap
files) by learning from real-world pcap files.

C. MACHINE LEARNING TOOLS
Selecting the right tools to solve ML problems can be
challenging. This section gives an overview of the most
commonly used Python-based tools for classic ML, deep
learning, and reinforcement learning. Furthermore, we pro-
vide guidelines for when to use which tool.

1) CLASSIC MACHINE LEARNING
Scikit-learn,26 also known as sklearn, is a machine-learning
library for Python that provides a wide range of tools for
data analysis and modeling. It is built on top of other
popular Python libraries such as NumPy27 and SciPy28

and is designed to be easy to use and efficient. Sklearn
provides a variety of ML algorithms for various tasks such
as classification, regression, clustering, and dimensionality
reduction. These algorithms are carefully designed to be
intuitive, fast, and efficient, allowing for quick prototyping
and testing of ML models. Some of the commonly used algo-
rithms available in sklearn include support vector machines,
decision trees, k-nearest neighbors, logistic regression, and
random forests. It also includes tools for model selection,
preprocessing, and evaluation that enable researchers to
preprocess data and select the right model for a problem.
Some of the popular tools available in sklearn include cross-
validation, grid search, PCA, and feature selection. A key
advantage of sklearn is its wide range of algorithms for
different tasks that are designed to be easily utilized by
beginners to get started with ML.

25https://github.com/JayWalker512/PacketGAN
26https://scikit-learn.org/stable/
27https://numpy.org
28https://scipy.org

2) DEEP LEARNING
Keras29: Keras is an open-source library for deep learning in
Python that provides a high-level API for building, training,
and evaluating DL models. A key advantage of Keras is its
simplicity due to its high-level API, which abstracts away the
complexities of building and training deep learning models.
Keras provides a user-friendlyAPI that makes it easy to create
and experiment with different neural network architectures
and offers a wide range of pre-trained models. Keras provides
a wide range of pre-built layers, optimizers, and other
building blocks that can be easily combined to create complex
models. Keras can also be run on top of several backends,
including TensorFlow, Theano, and CNTK. Keras is best
suited for building simple to medium-complexity neural
networks and deep learning models.
TensorFlow30: TensorFlow is an open-source library for

ML and deep learning developed by Google. It is widely used
for a variety of tasks, such as image and speech recognition,
natural language processing, and for training and deploying
large-scale ML models. The key advantages of TensorFlow
are flexibility and scalability. It allows for the building
and training of complex models, including deep neural
networks, and can run on a variety of platforms, including
CPUs, GPUs, and TPUs. TensorFlow can be used for
distributed (ML) training across multiple machines, making
it well-suited for large-scale ML tasks. The TensorFlow
ecosystem includes a wide range of tools and libraries
for tasks such as data pre-processing, model visualization,
and deployment. TensorFlow is a good choice for building
complex deep-learning models that require a high degree
of customization and is suitable for both research and
production environments.
PyTorch31: PyTorch is an open-source ML library for

Python that is primarily developed by Facebook’s AI research
group. A distinctive feature of PyTorch is its dynamic compu-
tational graph, which allows for more flexibility in building
and modifying models compared to the static computation
graph used in other libraries, such as TensorFlow. This
feature facilitates the easy implementation of advanced deep-
learning models, including those with conditional logic,
loops, and dynamic inputs. PyTorch is designed to bemodular
and flexible, with awide range of building blocks (e.g., layers,
activations, loss functions, and optimizers) that can be used to
create custom deep-learning models with various complexity
levels. Furthermore, PyTorch supports distributed training,
allowing for the efficient use of multiple GPUs andmachines.
PyTorch is suitable for building complex deep learning
models, and its dynamic computational graph makes it easy
to write and debug codes.

3) REINFORCEMENT LEARNING
Many tools for RL are built on top of classical ML and deep
learning tools, to support various algorithms.

29https://keras.io/
30https://www.tensorflow.org/
31https://pytorch.org/
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OpenAI Gym / Gymnasium: OpenAI Gym32 (lately con-
tinued as Gymnasium33 by the Farama Foundation) is an
open-source Python library that provides a standardized API
for the interaction between RL algorithms and environments.
Additionally, it includes a wide range of environments of
different complexities, including classic control tasks, Atari
games, robotic simulations, as well as physical simulations.
This allows researchers to reproducibly benchmark RL algo-
rithms on a standardized set of environments. Furthermore,
Gym can be extended by custom environments, allowing
users to easily compare the performance of different RL
algorithms for customized problems.

One challenge of RL research is that different implemen-
tations of the same RL algorithm can have significantly
different performances in the same environment, making RL
algorithms highly sensitive not only to hyperparameters but
also to small implementation details [186].
Stable Baselines3: Stable Baselines3 (SB3) [187] is an

open-source Python library that contains reference imple-
mentations of seven widely used DRL algorithms. Tab. 10
lists all supported algorithms. The performance of those
algorithms has been thoroughly tested. The library is
compatible with the OpenAI Gym/GymnasiumAPI, enabling
users to train RL agents in just a few lines of code. Moreover,
the library supports custom Gym environments, custom
policies for the algorithms, TensorBoard, as well as data
logging customization through custom callbacks.

Additional RL algorithms are implemented in the Stable
Baselines3 Contrib (SB3-Contrib)34 package. These are
implementations of newly published algorithms. They are
less tested and therefore considered experimental.
RL Baselines3 Zoo: RL Baselines3 Zoo35 is a Python

library that provides pre-trained agents and a set of optimized
hyperparameters for the algorithms from SB3 and the Gym
environments. Moreover, it provides useful helper scripts for
training and evaluating agents, for tuning hyperparameters,
and for plotting results.
CleanRL: CleanRL [188] is a DRL framework that

provides thoroughly benchmarked single-file Python imple-
mentations of eight DRL algorithms (c.f. Tab. 10). Its goal
is to provide researchers full control over an algorithm in
a single file, making it easier to 1) fully understand all
implementation details, and 2) quickly prototype novel DRL
features. In addition, it provides support for TensorBoard.
In comparison to SB3, CleanRL does not provide a high-level
user-friendly API for model training. It is instead tailored
to provide a development environment for DRL researchers
with implementations that are easy to read, debug, modify,
and study. The desired workflow is to first prototype new RL
ideas in CleanRL and afterwards port it to a library offering
a higher-level API like SB3.

32https://www.gymlibrary.dev
33https://gymnasium.farama.org
34https://sb3-contrib.readthedocs.io/en/master/
35https://github.com/DLR-RM/rl-baselines3-zoo

OpenAI SpinningUp: OpenAI SpinningUp36 is a great
resource for aspiring researchers and practitioners that are
excited to apply DRL to their problems but are over-
whelmed by the implementation complexity of algorithms
in frameworks like Stable Baselines3. It provides detailed
explanations of the most important concepts of DRL, as well
as explanations and implementations of key DRL algorithms.
The algorithm implementations specifically focus on sim-
plicity with the aim of being easy to follow for people new
to the field. This simplicity is achieved by narrowing down
the implementations to the core concepts of the algorithms,
and by omitting more complex features that can significantly
improve the algorithm’s performance. As a result, OpenAI
SpinningUP should be primarily seen as a resource for
education that should not be used in production systems.
PettingZoo: PettingZoo37 is an open-source Python

library that contains a set of environments for multi-agent
reinforcement learning. While it is similar to OpenAI
Gym/Gymnasium in its functionality andAPI, the application
scenario of MARL is different from the one of single-agent
RL. Among others, it contains multi-agent environments
of Atari games and classic games like chess and Go.
Furthermore, it can be extended by custom environments.
Ray RLlib: Ray RLlib [189] is an open-source Python

library for RL. Out of the RL libraries presented in this
section, it is the most comprehensive one. It supports a wide
range of performance-tested RL algorithms, offers a high-
level user-friendly API to train agents, supports single-agent,
multi-agent, and custom environments, offers high scalability
by supporting both single-machine and distributed training,
and offers tools for managing, tracking, and visualizing the
results of experiments. Because it is built on the Ray platform,
it is also seamlessly compatible with other Ray libraries and
tools for distributed computing and parameter tuning.
When to use which RL library? An important question to

answer in this primer is when to use which of the presented
RL libraries? CleanRL is recommended to be used either
to fully understand how an algorithm is implemented or by
RL researchers to quickly prototype new ideas, since its
design decision to separate each algorithm into its own file
lets the researcher focus on the algorithm instead of the
complex software architecture of other RL algorithm libraries
with intertwined modular implementations. SB3 is primarily
intended to offer well-tested baseline implementations of
important DRL algorithms as a benchmark baseline for new
RL developments. However, along with its extensions SB3-
contrib and Zoo, it is recommended to be used if a high-level
interface for fast training of well-established and well-tested
RL algorithms on single-agent environments are desired
and no scalability via distributed learning is required. RLlib
offers a production-ready framework for large scale projects.
It is recommended to be used for multi-agent environments,
as well as when high scalability via distributed learning,

36https://spinningup.openai.com
37https://pettingzoo.farama.org
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TABLE 10. Overview of the implemented single-agent algorithms of
different RL frameworks.

e.g., on clusters, is required. Furthermore, RLlib includes
tested implementations of cutting-edge RL algorithms. Con-
cerning environments and the interaction of agents with them,
Gymnasium and PettingZoo are arguably the most recognized
and thus important standard APIs for single-agent and multi-
agent RL, respectively. Creating environment interfaces that
adhere to their API definitions makes it much easier to
experiment with different RL algorithms and variations, since
many implementations expect Gymnasium or PettingZoo
environment instances.

Table 10 provides an overview of the algorithms imple-
mented in the different RL frameworks. Besides the listed
algorithms, RLlib supports further algorithms specifically for
MARL.

D. DATA LOGGING AND PARAMETER TUNING
Prototyping is an essential aspect of ML development, and
the ability to log and monitor experiments is crucial for
efficient iteration. Creating individual names for logs and
artifactsmight work after ten runs but becomes overwhelming
after hundreds of runs. When trying to compare different
runs or when looking for the respective parameters of a run,
having to look into log files is cumbersome. Fortunately,
a range of tools has been developed to do this task, organizing
every run with its parameters, visualizing runs with plots
and the option to filter and search for specific runs, which
will be introduced in this section. These tools provide
a suite of features beyond just logging and monitoring,
including the ability to perform hyperparameter tuning.
Additionally, most of them easily integrate with popular
ML frameworks such as TensorFlow, PyTorch, Keras, and
Scikit-learn.

1) DATA LOGGING
TensorBoard is by far the most popular data logging and
visualization tool in ML. It is widely used in conjunction
with deep learning frameworks like TensorFlow and PyTorch.
However, there are other popular data logging and visual-
ization tools as well, such as Weights & Biases (WandB)
and Comet.ml. The popularity of these tools may vary
depending on the specific use case and developer preferences.
We present in Table 11 a list of the most popular tools. These
tools all support different ML frameworks and offer real-time
monitoring and visualization of ML models. They also
handle various data types and provide customizable views.
Weights & Biases and Comet.ml provide experiment tracking
and collaboration features that allow for easy collaboration
and sharing of results, while Visdom and TensorWatch are
great options for debugging and developing since they offer
configurable logging options and real-time tensor viewing.

It’s important to keep in mind that the developer’s
individual demands and preferences will determine the
visualization tool that fits best. Some developers might
favor a tool that integrates well with their preferred ML
framework, whereas others would value flexibility and
customization possibilities. Also, some developers could
need more sophisticated features like collaboration tools or
hyperparameter optimization, while others might only need
the most fundamental logging and visualization options.

2) TUNING TOOLS
InML, hyperparameters are often used to control the behavior
of the ML model. These hyperparameters include the usual
parameters for training such as batch size, which optimizer to
use, learning rate and other optimizer specific parameters, but
can also include the structure of the model like number, type
and topology of layers, or other custom parameters specific
to the application. Selecting optimal hyperparameters is
critical to achieving the best possible performance of a ML
model. However, searching for the optimal hyperparameters
can be a complex and time-consuming task, especially for
large datasets and complex models. Tuning tools help to
automate this process by systematically searching for optimal
hyperparameters based on a user-defined search space and
optimization criteria. This can save significant time and
resources in the ML development process and help to achieve
better model performance. Below is a list of the most popular
tools:

• NNI (Neural Network Intelligence) [218]: an open-
source toolkit developed by Microsoft for automating
and optimizing the hyperparameter tuning process
of deep learning models. It provides a framework
for designing and conducting experiments using var-
ious search algorithms and techniques, such as grid
search, random search, Bayesian optimization, evolu-
tionary optimization, and tree-structured Parzen estima-
tor (TPE). It also supports distributed training and can
scale up to thousands of nodes for high-performance
computing.
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TABLE 11. List of Visualization and Logging Tools.

• Optuna [219]: an open-source hyperparameter opti-
mization framework for ML. It provides a flexible
and modular platform for automating the process of
selecting optimal hyperparameters for a given model
architecture. Optuna uses various algorithms to search
the hyperparameter space, including TPE, Covariance
Matrix Adaptation Evolution Strategy (CMA-ES), Non-
Dominated Sorting Genetic Algorithm II (NSGA-II),
and adaptive sampling. It also supports distributed
optimization across multiple nodes for faster and more
efficient tuning.

• Ray Tune [220]: the hyperparameter tuning component
of the Ray framework. It handles the execution of
experiments including parameter studies with possibly
multiple repetitions as well as scheduling the runs
for parallel execution. For hyperparameter tuning,
it supports a wide variety of approaches. These include
basic strategies such as grid or random search, but
also more advanced approaches such as Bayesian
optimization or Population Based Training [221]. While
some algorithms are implemented internally, it relies
heavily on third-party optimization libraries such as
Hyperopt [222] and Optuna [219], and provides a
unified interface to them.

• Keras Tuner [223]: a library customized for Keras that
provides an easy-to-use API for defining a hyperparam-
eter search space, choosing search algorithms such as
random search and Bayesian optimization, and running
hyperparameter search processes. Furthermore, Keras
Tuner is easy to integrate with other Keras workflows
and can optimize both single-node and distributed
hyperparameters.

• Hyperopt [224]: a Python library for hyperparameter
optimization that uses a combination of random search
and Bayesian optimization to efficiently explore and
exploit the hyperparameter search space. It provides an
easy-to-use API for defining the hyperparameter search
space, selecting optimization algorithms, and executing
the hyperparameter search process. Hyperopt uses
a Tree-structured Parzen Estimator (TPE) algorithm
to model the relationship between hyperparameters
and model performance and to guide the search for
better hyperparameters. Hyperopt also allows for the
parallelization of the search process, making it scalable
to large hyperparameter search spaces and parallel
computing environments. It can be used with a variety
ofmachine-learning frameworks, including Scikit-learn,
Keras, and PyTorch.
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• Scikit-Optimize [225]: a Python library for sequen-
tial model-based optimization that aims to efficiently
explore and exploit the hyperparameter search space
while minimizing the number of model evaluations.
It provides a simple and flexible API for defining
the hyperparameter search space and selecting opti-
mization algorithms, including Bayesian optimization
and gradient-based optimization. Scikit-Optimize also
supports parallel evaluation of the search process,
making it scalable to large hyperparameter search spaces
and parallel computing environments. In addition to
hyperparameter optimization, Additionally, it can be
used for function optimization and global optimization
tasks. Furthermore, it integrates easily with popu-
lar ML frameworks such as Scikit-learn and Keras,
while including features such as early stopping and
warm-starting to further improve the efficiency of the
hyperparameter search process.

Note that Table 12 presents only the most commonly used
algorithms for each tool. While other algorithms may be
added, the mileage may vary depending on the specific use
case and requirements. Overall, the choice of which tool to
use depends on the specific requirements and use case. For
example, if there is a need for scalability and distributed
training, Ray Tune is a good choice. If there is a need for
a general-purpose optimization library, then Scikit-Optimize
might be a good choice.

E. TESTBEDS
As previously outlined, it is hard to replicate realistic network
conditions, and using existing datasets might not always fit
the problem. While simulation tools can help with that, there
is also the possibility of using existing testbeds or building
your own. Access is usually open or free to researchers
for the existing real-world testbeds, but you might have to
schedule your experiments and wait depending on utilization.
In the following, some popular real-world testbeds and some
devices one could use to build a testbed will be introduced.
There are two types of testbeds, wired ones, and wireless
ones. The wireless ones are wireless sensor networks without
any routers or switches, and communication is broadcasted.
Testbeds are relatively versatile and can be used to either test
ML applications that rely on networks like Distributed ML or
to test ML algorithms that do traffic routing, for example.

1) REAL-WORLD TESTBEDS
For a more extensive overview, [226], [227], [228], and [229]
provide surveys that either include a section about testbeds or
are entirely about testbeds. We present a selection of popular
testbeds, starting with wireless testbeds.
FlockLab [230] is an experimental platform that enables

researchers to test and evaluate the performance of wireless
sensor networks (WSN) and IoT systems. It is a flexible,
open-source testbed that provides a controlled and repeatable
environment for the evaluation of various applications.
An advantage of FlockLab is its flexibility, as it can be used to

test and evaluate a wide range of wireless sensor networks and
IoT systems [230]. It supports various wireless technologies,
such as Zigbee, Z-Wave, and LoRaWAN, and it can be easily
extended to support new technologies. FlockLab is widely
used in the field of WSNs and IoT systems [231], and it
has been developed and maintained by the Communication
Systems Group at ETH Zurich.
FIT IoT Lab [232] is an open-access testbed for IoT

experiments provided by the French Institute of Technology.
It contains over 1500 nodes offering a wide range of
low-power wireless devices that can be used to test and
evaluate various IoT applications, protocols, and algorithms.
In addition, its large-scale infrastructure and easy-to-use web
interface provide a flexible and convenient platform for IoT
experimentation.
D-Cube [233] is a testbed by Graz University of Tech-

nology. It contains about 50 nodes with two platforms,
nRF52840 and TelosB, and provides a set of predefined
scenarios. These scenarios allow researchers to evaluate
protocol performance and compare it against each other
easily.
CLOVES [234] is a part of the IoT Testbed at the

University of Trento. It contains 275 indoor devices spread
over 8000 square meters. Communication is possible using
ultra-wideband or narrowband, and all nodes are remotely
accessible.

Next, we are going to introduce some wired testbeds. Note
that some of them also provide wireless capabilities.
PlanetLab [235] was founded in 2002 by researchers

from several universities, including Princeton University, the
University of California at Berkeley, and Stanford University.
While it was shut down in March 2020, PlanetLab Europe38

continues to operate. It is a collection of interconnected
computers located at over 250 sites in more than 40 countries
across Europe and beyond, available for researchers to use
in their experiments. PlanetLab Europe provides researchers
with virtual machines, storage, and network connectivity.
In addition, researchers can deploy their software on the
nodes and create custom network topologies to simulate
various network scenarios.
EmuLab39 [236] is a network testbed developed by the

University of Utah that provides users with a virtual network
environment to test and evaluate various networking systems
and applications. Emulab allows researchers to create and
configure network topologies, deploy software and network
services, and generate different types of network traffic to test
and evaluate various networking scenarios.
GENI (Global Environment for Network Innovations)

[237] is a US national-scale network testbed that provides
researchers with a virtual laboratory for developing and test-
ing new networking technologies and applications. It com-
prises a large-scale network of interconnected computing

38https://www.planet-lab.eu/
39https://www.emulab.net/
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TABLE 12. Comparison of Hyperparameter Tuning Tools.

resources, including servers, routers, switches, and other
network devices.

2) BUILDING YOUR OWN TESTBED
When seeking greater control over a testbed, building a
customized one emerges as a viable option. Fortunately,
there are several cost-effective devices available for this
purpose, with some even incorporating machine learning
accelerators [238]. These accelerators enable the deployment
of machine learning models for training and inference within
the testbed and offer a variety of communication approaches.
In this section, we will provide a list of the most common
and popular devices used for this purpose, along with detailed
explanations of their respective advantages.
NVIDIA Jetson40 is a series of embedded computing

boards designed for IoT and ML applications. They include
NVIDIA GPUs and CPUs, as well as a variety of interfaces
and sensors for connecting to other devices. Jetson boards are
designed to be low-power and compact, making them suitable
for portable and battery-powered applications. They can be
used for various tasks, including image and video processing,
deep learning, and robotic control.
Google Coral41 includes a range of hardware and software

products, such as the Coral Dev Board, the Coral USB
Accelerator, and the Edge TPU software. The Coral Dev
Board is a single-board computer that is designed to be small
and low-power, making it suitable for use in portable and
battery-powered devices. It has a system-on-a-chip (SoC)
that includes a Google Edge TPU, which is a custom-built
Tensor Processing Unit (TPU) for running ML/DL models.
The Coral USB Accelerator is a small USB device that can
add Edge TPU capabilities to existing devices. The Edge TPU
software provides a set of libraries and tools for developing
and deploying ML models.

The Raspberry Pi boards are equipped with a variety
of interfaces and peripherals, such as USB ports, Ethernet,
HDMI, and a 40-pin expansion header. They also have high

40https://www.nvidia.com/de-de/autonomous-machines/embedded-
systems/

41https://coral.ai/

CPU and memory capacity, which makes them powerful
enough to run various applications. The Raspberry Pi can
run TensorFlow Lite and other ML frameworks, enabling
researchers to run pre-trained models and perform basic ML
tasks. It can also be used as an edge device for collecting and
preprocessing data before sending it to the cloud for further
analysis.

The Intel Movidius Neural Compute Stick42 is a USB
device that provides on-device AI inference for various appli-
cations in networked systems. It features a Myriad 2 VPU,
which can run deep neural networks with low power
consumption. The Neural Compute Stick can accelerate
computer vision, speech recognition, and natural language
processing tasks in networked devices.

V. EXPLAINABLE ARTIFICIAL INTELLIGENCE
While ML and especially DL models are powerful tools
for network service providers, they come with the major
drawback that their reasoning is difficult to understand for
humans due to their black-box characteristics [239]. This lack
of understanding may result in stakeholders, e.g., network
service providers, not deploying ML models in production
environments as they do not trust their reasoning and, thus,
fear outages or revenue losses. To alleviate these concerns,
Explainable AI (XAI) is well-suited as it helps to understand
the underlying reasoning of ML models. This reasoning
is achieved by intelligently relating inputs and outputs.
The thereby learned transformation function or only some
parts of it become interpretable. Usually, this interpretability
comes in the form of mathematical functions or as heatmaps
describing the influence of the inputs on themodel’s decision.
In addition, a quantification of a model’s uncertainty is
fundamental for risk assessment during deployment, thereby
paving the way for Responsible AI.

There are plenty of use cases to apply XAI in commu-
nication networks [240]. These use cases include network
planning and engineering [241], resource allocation [242],
[243], performance management [128], [244], and security

42https://www.intel.com/content/www/us/en/developer/articles/tool/
neural-compute-stick
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management [245], [246]. Most of these works use the
methods presented in this chapter to make their models
explainable.

A. TAXONOMY OF XAI METHODS
A general overview of XAI techniques is provided in [247]
and an extensive survey on XAI methods as well as a
taxonomy for XAI methods in general can be found in [248].
XAI methods can be classified into techniques which explain
a model locally or globally. A local explanation technique
provides model explanations for a single input, e.g., why is
a specific packet routed that way, while a global explanation
technique provides general explanation strategies of a model,
e.g., how does the model route packets in general.

Further, XAI methods can be classified into post-hoc
explainers and interpretable models. Post-hoc explainers
are utilized to explain various already trained black-box
models, e.g., neural networks or ensemble models. Ensem-
ble models like Random Forest are composed of multiple
smaller models jointly determining the output. This makes
interpretation difficult. Interpretable, transparent, or glass-
box models provide an explanation for how the model obtains
the output by design. Prevalent models are, for example, the
well-known linear models and decision trees, as well as the
less-known generalized additive models.

Finally, model-agnostic methods andmodel-specificmeth-
ods are distinguished. Model-agnostic methods can be used
on top of every kind of model, while model-specific methods
can only be used by specific model families. A prominent
example of model-specific methods are saliency maps [249],
which are computed from the feature maps learned by a
model and can be used in computer vision to highlight
the regions on which the model focuses when processing
input. They are generally applicable when using CNNs. This
also implies that the nature of the data directly influences
the applicable XAI techniques for the different use cases,
e.g., time series XAI techniques are not usable for graph data.

B. SPECIFIC XAI METHODS
Since there are many different categories of XAI techniques,
there is a wide spectrum of specific XAI methods. Thus,
the following explained methods are only a small selection.
Due to the fact that in many XAI scenarios a black-box
ML model should be intelligible, the methods introduced
first focus on post-hoc explainer. While it is common to
perform post-hoc explanations, the authors of [250] argue
that we should stop using post-hoc explainers and instead
directly use interpretable models. Interpretable models often
perform weaker than black-box models, but are interpretable
by design.

1) POST-HOC EXPLAINERS
As a majority of advances in ML happen in computer
vision, there exists a huge variety of post-hoc explainers
explaining the learnt filters of a CNN, e.g., saliency maps.

As a consequence, these techniques are model-specific and
usually not applicable for network data. Nevertheless, there
exist approacheswhere network data is transformed to images
beforehand, e.g., for encrypted network traffic classification
in [251], and processed with a CNN, so saliency maps could
be applied here.

Layer-wise Relevance Propagation (LRP) is a post-hoc
method that uses the neural network’s forward pass and
propagates its output backwards through the layers until the
input layer to derive the relevance of an input on the model’s
prediction.

A prevalent local model-agnostic post-hoc explainer is
called SHapley Additive exPlanations (SHAP), which uses
methods from game theory to judge the importance of
different feature inputs. Although this method can explain
the black box of a ML model very well, it comes with the
drawback that it needs high computational power. Thus, it is
only feasible for models with fewer input parameters [252].

A well-working method for getting an explanation of
classification models in a model-agnostic fashion is a method
named Local Interpretable Model-agnostic Explanations
(LIME) [253]. LIME belongs to the class of surrogate
models, where a model is used to approximate the predictions
of a target black-boxmodel to infer the reasoning of the black-
box model. LIME trains a local surrogate model to explain
the predictions for a specific sample by first aggregating
permutations of the original feature inputs of the sample into
a new dataset, weighting the samples of the dataset according
to their proximity to the original sample, and then training
an interpretable model on this dataset to approximate the
predictions of the black-box model. After training, the local
model can be interpreted to understand the black-boxmodel’s
reasoning.

Another type of local model-agnostic post-hoc explainers
are counterfactual explanations [247]. Counterfactual expla-
nations are used for causal reasoning andmay serve to answer
what-if questions, i.e., ‘‘would Y have occurred if X had
not occurred before’’. These techniques may be helpful for
network operators when they try to analyze and manage
their network with respect to critical situations, e.g., how to
avoid congestion in a network. In a nutshell, they work by
deriving causal relationships from the input features and then
manipulating input features to perform specific reasoning.

2) INTERPRETABLE MODELS
The easiest to interpret and most known interpretable
models include decision trees, which are interpretable in
an if-else fashion, and linear models like linear regression
or logistic regression, where slope and intercept directly
characterize the input mapping. Generalized linear models
(GLMs) and generalized additive models (GAMs) extend
linear models to better reflect non-linear functions and
different target distributions other than Gaussian distributions
as with linear regression [247]. Especially for GAMs, many
different models exist by now that are directly interpretable.
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FIGURE 7. Architecture for Neural Additive Model (NAM) [255].

The main idea behind GAMs is that a separate function
fi is learnt for each feature xi and that the outputs of
these functions are then summed up with a bias β to
perform the prediction. The bias can hereby be learnt or
fixed beforehand. Variants of GAM include the Explainable
Boosting Machine (EBM) [254], which is a tree-based GAM
and uses gradient boosting to improve performance, and the
Neural Additive Model (NAM) [255], which consists of n
neural subnetworks (fi) transforming each of the n input
features to a new representation. The architecture of NAM
with its n subnetworks and the bias β is depicted in Fig. 7.
In Fig. 8, we show the interpretability of EBM and NAM

with the exemplary use case of Quality of Experience (QoE)
modelling for video streaming [256]. QoE describes the
delight or annoyance of a user with a networked service as
influenced by different factors, e.g., context factors or system
factors [257]. In order to avoid customer churn, network
service providers and ISPs are thus interested in estimating
QoE or, as a proxy, QoE influence factors from encrypted
network traffic. For this purpose, most approaches rely on
ML as can be seen for video streaming and web browsing
in [157] and [258]. For data-driven QoE modelling, the goal
is to predict the Mean Opinion Score (MOS) of a service
on the range from 1 (bad) to 5 (excellent) in a regression
task given some QoE influence factors. With video streaming
QoE, some of these influence factors include video quality,
initial delay, and stalling events (interruption of playback due
to buffer underrun), and also quality switches. Given a sample
X with the individual feature values x1 to x5 for avg. bitrate,
initial delay, number of stallings, total stalling duration, and
number of quality switches, the model simply transforms
each feature input xi with the learnt function fi to an effect
and sums up these effects along with the bias β to obtain the
prediction. The figure for example shows that an increase in
avg. bitrate leads to a higher MOS (positive effect) and that
stalling events severely degrade the MOS (negative effect).
A service provider should therefore try to increase the avg.
bitrate and try to avoid stalling events to improve QoE. The
learnt functions of the model can be easily interpreted and
the model’s decision can therefore always be reconstructed

FIGURE 8. Interpretability of EBM and NAM for an exemplary video
streaming QoE modelling scenario [256].

from the inputs. Given some experts’ domain knowledge,
the learnt functions can also be verified with the expected
experts’ functions. Both these aspects strongly increase the
trust towards the model and, thus, allow actual deployment.

C. UNCERTAINTY
One major issue with every form of ML is the fact that
training usually consists of fitting models such that the mean
response of the model approximates the groundtruth in a
best possible way. This results in the model learning point
estimates, which may be close to the groundtruth or very far
away from it for single data points, but across all data points
the model may be performing well on average. While this
may be acceptable for some use cases, for other use cases
this becomes problematically as soon as wrong decisions
become costly for stakeholders, e.g., a ML model organising
the routing tables in a network may cause downtimes in a
network due to wrongly deleting or adding routing rules.
Thus, stakeholders have to assume that the model does not
always perform as expected. This, however, impedes the
deployment ofMLmodels in general, and also in particular in
communication networks, and a way to quantify the certainty
or, more important, the uncertainty is required.

Uncertainty thus describes a model’s insecurity about its
prediction. Uncertainty can be divided into aleatoric uncer-
tainty and epistemic uncertainty [259]. Aleatoric uncertainty
resembles the uncertainty in the data used for training and
testing. This kind of uncertainty can never be reduced as the
underlying process of the training and test data generation
already includes noise. Epistemic uncertainty, on the other
hand, can be reduced as this uncertainty is caused by the ML
model due to a lack of training data at specific points or an
insufficient capacity, i.e., the model is not complex enough
to capture the actual relationships between the features.
Hence, epistemic uncertainty can also be considered as model
uncertainty. This uncertainty can be reduced by collecting for
example more training data for training points, where data is
scarce, or by increasing model complexity.

In mostML and XAImodels, a way to quantify uncertainty
is usually not included. Instead, different means to quantify
aleatoric and epistemic uncertainty have to be used. Note also
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TABLE 13. Overview on XAI techniques and libraries.

that many approaches quantify only epistemic or aleatoric
uncertainty, but not both simultaneously. A survey over
existing approaches is provided in [260]. In the following,
some selected ways to quantify uncertainty are shortly
introduced. A way to estimate epistemic uncertainty is
for example the use of ensembles, i.e., training the same
model with different seeds and considering the predictions
of each model and, in particular, the differences in these
predictions. The stronger the differences between themodels’
predictions, the higher the uncertainty. This approach can be
used for any kind of model. Another simple approach for
estimating epistemic uncertainty in neural networks is the
use of Monte Carlo Dropout. With Monte Carlo Dropout, the
dropout layers, which are usually used for improved model
generalizability during training, are also kept active during
inference. Generating multiple model predictions with active
dropout can also be considered as approximate Bayesian
inference. Again, the variation in the returned predictions
quantifies the degree of uncertainty. To learn aleatoric
uncertainty, it is usually required to learn in the model not
only mean responses, but instead the variance must be learnt,
too [261]. With neural networks and a regression task, this
is for example easily possible by simply adding another
head, i.e., output neuron, to the neural network, which learns
the variance and by accordingly adjusting the loss function.
Using the negative log-likelihood of a Normal distribution
(or any other distribution) as loss function, it is thus for
example possible to learn a Normal distribution for an input,
thereby allowing to quantify the uncertainty in form of the
variance for an input. Finally, Bayesian Neural Networks as
proposed by Kendall and Gal [261] can model both aleatoric
and epistemic uncertainty. With Bayesian Neural Networks,
model weights are assigned a probability distribution instead
of a single value. Using these probability distributions, it is
then possible to quantify epistemic uncertainty. For aleatoric
uncertainty, they simply use two heads, where they learn both
mean and variance for a data point.

D. RESPONSIBLE AI
Strongly related to uncertainty is the concept of Responsible
AI. According to Arrieta et al. [248], XAI alone is not

sufficient for an ethical and responsible usage of ML
models. Responsible AI is in general a much broader
topic than XAI [262]. With responsible AI, there are
additional principles, which must be kept in mind, when
developing and deploying ML models. These principles
include the prevention of discrimination against persons,
groups, or races, i.e., the model must be fair. In the context
of communication networks, this could for example mean
that a model discriminates specific users by assigning them
lower bandwidth shares and a higher latency. Additionally,
responsible AI ensures that users or stakeholders are always
aware of the usage of ML models. Specifically, it must be
transparent to everybody that ML has been used and how it
has been used. An example for communication networks is
the adaptive change of a routing table by an ML model. The
model must be able to outline why a change was required
and why it has changed specific routes. Next, the use of
ML models should always end up in a beneficial way for
humanity in all aspects of life. They should not be used in
disruptive ways, e.g., generating downtimes in a network
for specific users on purpose. Finally, privacy and security
is also a very important topic. ML models require data.
Here, the privacy and security of sensitive data must be kept
throughout the whole lifecycle of preparing and deploying
the model. Responsible AI is still a young field of research.
Nevertheless, all the mentioned principles must be kept in
mind when preparing and deploying ML models in practice.
It is one of those topics already diligently discussed in
the conceptualization of future networks, e.g., 6G [263].
Meanwhile [264] is a more generic survey of best practices
to ensure that the AI environments are responsible.

E. LIBRARIES
Several XAI libraries are available for all kinds of frame-
works, e.g., Scikit-learn, PyTorch, and TensorFlow (cf.
Section IV). Microsoft created a Python library named
InterpretML [254], which unifies black-box explainers,
e.g., SHAP values, LIME, or Partial Dependence Plots, and
transparent models, e.g., linear models, decision trees, deci-
sion rules, and also EBM, a tree-based generalized additive
model. OmniXAI [265], AIX360 [266], and Alibi [267]
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also provide a collection of various post-hoc explainers and
models for all kinds of data types and backends. In contrast
to the libraries containing several different tools, individual
explainers like SHAP or Anchors, but also interpretable
models like the attention-based model TabNet43 are available
as separate Python packages.

All gradient-based methods, e.g., Integrated Gradi-
ents [268], can be directly implemented within PyTorch
and TensorFlow, or additional libraries like Captum [269],
TorchRay [270] and TF-Explain [271] can be used. Captum
also comprises a huge number of techniques for explaining
image-based data.

VI. NETWORKS FOR MACHINE LEARNING
In the previous sections, we primarily explainedMLmethods,
architectures, and principles to develop ML models. Hence,
we focused on applyingML to design and optimize networks,
detect patterns and anomalies, and predict network behavior
autonomously. We refer to this application as ‘‘ML for
Networks’’ [272], [273], where ML models are developed
from network data to, e.g., design the communication
topology of a network or to balance the traffic load.

However, networks and ML form a mutual relationship
in which networks support ML, e.g., by using a network as
an infrastructure for ML algorithms, both for training and
inference. As we will see throughout this section, networks
are thus a key success factor for ML by connecting and
providing computational power and data storage [274], [275].
We refer to this support and infrastructure functionality of
networks as ‘‘Networks for ML’’. Important to note is that
it is detached from the ML model application. Instead, any
ML model can be trained or deployed in a networked system.
As ML is a relatively new network task, challenges for
networks arising from ML traffic and possible effects on ML
from networks are still the subject of research. ‘‘Networks for
ML’’ generally comprises these open research questions.

ML algorithms primarily use a network to access data
from memory or to exchange model parameters/updates.
The traffic load generated, the traffic shape, and network
requirements, e.g., regarding latency and robustness, are
unknown for many ML methods and are likely to be
application-specific and method-specific. All this can pose
new challenges for networks and make a better understanding
of the mutual relationship between ML and networks
necessary. Thus, it is no longer sufficient to evaluate ML
model performance alone but also the network performance.
Hence, one might ask the question: Which metrics to use to
evaluate model and network performance when applying ML
in networks?

From Section II, we know, that several metrics can be
used to evaluate the performance of ML models. These
metrics could depend on the specific task or application of
the model [276]. Although these metrics were introduced for
ML models with network application (‘‘ML for Networks’’),

43https://dreamquark-ai.github.io/tabnet/

it is worth noting that some metrics can also help answer
the questions arising in ‘‘Networks for ML’’. The choice of
metrics will depend on the specific problem and the desired
outcome. Hence, ‘‘ML for Networks’’ and ‘‘Networks for
ML’’ are not mutually exclusive [277].

For instance, Data Quality is a metric that can be used
for evaluating both. As ML is generally data-driven, data
quality is very important for model development. Thus,
when ML is applied for network tasks, data quality is
often determined primarily measured by the correctness
and representativeness of events/classes. This can also be
utilized in ‘‘Networks for ML’’. However, as it focuses on
decentralized data sources, data distribution can additionally
be considered. Other metrics typically considered by the ML
community are: Privacy, Robustness, Energy Efficiency, and
Fairness. However, as ‘‘Networks for ML’’ also focuses on
network behavior, typical network metrics are often applied,
such as Throughput, Latency, Packet loss rate, and Spectral
efficiency. Table 14 further explains the metrics and their
impact.

So why do these network metrics influence the ML
models? High latency and low throughput (as well as low
spectral efficiency) can cause delays in the training process,
leading to slower training times and increased iteration
cycles. Packet loss can impact the accuracy and also the
consistency of ML models, because it can lead to incorrect
or incomplete data inputs, and can cause inconsistent data
transfer in case of retransmissions. This, in turn, can affect
the model’s ability to generalize, converge and make accurate
predictions.

Different network topologies could affect the ‘‘Networks
for ML’’ performance, scalability, and security. Furthermore,
when considering ML for Networks, the choice of network
topology can also affect the accuracy and efficiency of the
models.

For example, in a star topology, all nodes are directly
connected to a central hub, which can make the network
easier to manage and administer. From a ML perspective,
this topology would lend itself to centralized learning, where
data from all nodes is collected and processed in a central
location. This approach could simplify the deployment and
maintenance of the ML model, but it could also lead to a
single point of failure and potential privacy concerns.

On the other hand, a mesh topology, in which nodes are
connected in a decentralized fashion, can be more resilient to
failures and provide more privacy, but it can also be more
difficult to manage. In terms of ML, this topology can be
suitable for distributed learning, where each node trains a
local model and shares its knowledge with the other nodes.
This approach could improve the scalability and privacy of
the model, but it could also increase the synchronization
overhead.

There are also other network topologies, such as bus, ring,
tree, and hybrid, which can have different tradeoffs in terms
of network metrics. Choosing the right topology for a ML
application depends on several factors, such as the size and
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TABLE 14. Examples of metrics for ML for Networks and Networks for ML.

complexity of the network, the nature of the data and task,
and the available resources and constraints.

Examples of these constraints are computational resources
and data availability. In the former, a star topology would
have a central server that must have sufficient compu-
tational resources to process all the data, whereas, in a
mesh topology, each node could contribute computational
resources, reducing the burden on any one node. In the
latter constraint, a star network topology would have the
data stored in a single location, which can limit the amount
of data available for training. In contrast, a mesh topology
could distribute data across multiple nodes, providing a
larger and more diverse data set for training. We refer
to [279] for a comprehensive survey on the convergence,
robustness and privacy of ML algorithms with respect to
network architecture and implementation in the context of 5G
networks.

In the following, we will explain advanced ML topics that
have distributed implementation, exploiting both ‘‘ML for
Networks’’ and ‘‘Networks for ML’’ domains.

A. CENTRALIZED ML
Centralized ML refers to training ML models on a central
node of the network using data from multiple nodes and is
widely applied in networked systems such as the IoT [280],

[281]. Therefore, the data is first collected from various nodes
in the network and then transmitted to a central server to
train the ML model. Typically, the data is also preprocessed
for the training, which can happen on both, the collecting
nodes and the central server. In many cases, the central
server has more computing resources and larger storage space
than the collection nodes. Since training and inference are
independent, the resulting model can be used centrally and
decentrally for inference. In centralized inference, a central
computing node (server) employs the model to infer from the
data of various collection nodes. The collection nodes usually
send their observed data to the central computing node and
receive the model predictions. However, it is also common to
distribute the centrally trained ML model to different nodes,
which then independently infer from their local data.

Centralized ML takes advantage of monopolization
through central servers (e.g., on the cloud) with power-
ful computing resources that can handle the processing
and training of computationally-heavy models using large
datasets [282]. While the increase in training speed and
better resource utilization is obvious, the benefit of more
accurate predictions requires a more detailed explanation.
Unlike the case where each node trains its model using its
local data, centralized ML training benefits from aggregating
data from multiple nodes [283]. Thus, the model trains
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on a larger dataset, but also the aggregated data better
represents the overall data distribution, allowing the model
to generalize better. For example, an ML model can extract
significant information from data from different sensor
types or locations. This is particularly useful in network
applications such as smart cities, environment monitoring,
and industrial IoT.

However, there are also several disadvantages associated
with centralized ML in networked systems. First, the depen-
dence on a central computing node for model training and
inference introduces a single point of failure, and scalability
issues, potentially impacting the reliability and availability
of the system [284]. The centralized approach places high
demands on the central server in terms of computing and
network performance, making its acquisition and mainte-
nance expensive. Secondly, the data collected by networked
devices (e.g., multimedia sensors, intelligent vehicles) is
transmitted in large quantities over the network, requiring
high data rates. Nevertheless, transferring large amounts of
data to a central node can cause network congestion and
degrade real-time performance [285]. Sensitive data may
need to be transmitted to the central server, potentially
compromising user privacy. Recently, there are growing
concerns about privacy in networked systems with data
generated by networked devices, such as wearable devices or
sensors, where data is often very private or sensitive [286].
This results in additional requirements for the network over
which the data is transmitted, processed, and stored.

B. DISTRIBUTED ML
In various fields of application, the complexity of tasks being
tackled by MLmodels has led to an increase in the number of
model parameters. To cope with this complexity, distributed
ML techniques make use of networks of interconnected
computing machines to address challenges such as handling
larger and distributed datasets, accommodating heightened
computing resource demands, and dealing with models that
surpass the memory capacity of a single machine. Here,
two approaches are prevalent and usually take advantage of
networking to enhance model training: 1) data-parallel and
2) model-parallel. Combinations of data- and model-parallel
methods are also possible.

Data-parallel corresponds to scale-out parallelization and,
therefore, increases computational capacity. During training,
several machines, so-called worker, train instances of the
ML model. These instances operate on distinct and usually
non-overlapping portions of the dataset. All instances have
the same model structure, number of layers, and number
of neurons per layer, but the parameter values can vary.
The workers periodically communicate to exchange model
parameters and aggregate their updates after processing a
predefined number of samples locally. Various data-parallel
methods have been formulated, differing primarily in the
manner of cooperation among workers during training,
encompassing how workers communicate and where update

aggregations occur. From this perspective, architectures can
be primarily distinguished by Client-Server and Peer-to-
Peer methods. The Client-Server methods use a set of
decentralized workers that process model updates as Clients
and a centralized server as Server. The server can be a
single worker, or multiple workers organized equally or
in hierarchical layers. Regardless of the server’s internal
structure, the server maintains the shared model state and
stores all model parameters. Clients receive the current model
state with its parameter set from the server and communicate
their updates only to it. All communication is thus handled by
the server, which can lead to a bottleneck. In contrast, Peer-to-
Peer methods entail direct communication of updates among
workers without the presence of a central server managing
the global model state.Which workers can communicate with
each other is defined in a communication topology. Here,
all-to-all but also graph-based topologies such as trees and
rings are possible. In addition to the cooperation relationship,
data-parallel methods differ in whether workers transmit their
updates synchronously or asynchronously and in the amount
of communication overhead incurred. In production, where
it is usually inferred from the model, the machines use the
mutual model instance.

Model parallelism, on the other hand, splits the model and
distributes it across multiple workers, allowing for model
sizes larger than the memory of a single machine. Each
worker trains and infers only its parts of the model, which
requires less memory. Consequently, the model’s entirety
is upheld collectively by all workers, necessitating constant
communication among them during both the training and
inference phases. The data is fed to the workers that maintain
the input layer of the model, and each worker forwards its
computed output to the worker holding the next part of the
model. In the backpropagation step during training, the work-
ers holding the output layer first compute the updates. The
updates are then propagated to the workers in reverse order
and applied. A central challenge within model parallelism
lies in devising an effective strategy for partitioning a given
model across multiple networked machines. This partitioning
determines how the model segments are distributed among
workers to optimize communication and computation while
maintaining overall model coherence.

Common methods for distributed ML for data-parallel and
model-parallel are explained below.

C. PARAMETER SERVER
Parameter Server [287], [288] is a data-parallel Client-Server
method (cf. Figure 9a). Here, multiple decentralized clients -
Worker are connected to a centralized server - Parameter
Server. The parameter server stores the model parameters,
assigns data to workers, and aggregates the updates received
fromworkers. Often, the parameter server is a single machine
but can also be a set of equivalent or hierarchically structured
machines [289]. Each worker maintains an instance of the
model and individually processes parameter updates based on
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its data. Typically, SGD is used for parameter optimization
during a training process. The processed data can either be
captured and stored on the worker machine or transmitted
from the parameter server. Usually, workers access only (non-
overlapping) portions of the data. The complete dataset is
thus distributed across multiple workers. After processing
a predefined number of data samples, the workers first
propose their parameter updates to the parameter server and
then receive the updated model. However, how many other
workers have contributed to the updated model depends
on the Parameter Server implementation. For synchronous
implementations, the parameter server considers updates
from all workers. The workers do not continue processing
until the updated model has been broadcast. Therefore,
the slowest worker impacts the time for a model update
significantly. In contrast, in asynchronous implementations,
the parameter server updates and broadcasts the model
immediately after receiving an update from the sending
worker. Here, workers proceed on different model instances.
This is a problem in heterogeneous environments, with
different computing resources and transmission delays.
Slower workers working on outdated model instances can
derange SGD’s solution with their updates, causing the
model to converge incorrectly. For homogeneous cluster
environments, this is not the case and is often faster
than synchronous systems [290]. Since synchronous and
asynchronous Parameter Server implementations struggle in
heterogeneous environments, time-wise and model-quality-
wise, respectively, Parameter Server is typically applied in
data centers.

D. FEDERATED LEARNING
Federated Learning (FL) [291] is another data-parallel Client-
Server distributed ML method that enables multiple devices
to collaboratively train a shared model without sharing their
raw data. This approach has gained significant attention in
recent years due to its ability to protect user privacy and
enable learning on edge devices with limited computational
resources.

In FL, multiple devices, such as smartphones, IoT devices,
or edge servers, participate in the training process by locally
training a model using their own data and then sending their
updated model parameters to a central server. The server
aggregates the updates from all devices and uses them to
update the global model. Figure 9b shows an FL scenario
with three connected devices and a central server. The key
idea behind FL is that the global model is trained using
a large amount of data from multiple devices, while each
device only needs to share the model updates. This allows
FL to achieve the same performance as traditional centralized
learning while preserving user privacy.

One of the most widely used FL algorithms is Feder-
ated Averaging (FedAvg). FedAvg is designed to address
several challenges that arise in FL, including the need to
preserve data privacy, mitigate bias and inconsistency across
devices, reduce communication overhead, and enable model

convergence. FedAvg works by having each device train its
own localmodel using its local data, and then the localmodels
are aggregated to form a global model that is distributed
back to the devices for further training. To address the
challenge of bias and inconsistency across devices, FedAvg
uses a weighted average of the local models, with the
weights determined based on the amount of data each device
contributes to the model. This approach ensures that each
device’s contribution is weighted appropriately, producing a
more representative and robust global model.

By training a model locally, FL allows devices to make
predictions and decisions without the need for a constant
network connection to a central server. This is particularly
useful in applications such as autonomous vehicles, drones,
and medical devices where data needs to be processed in
real-time. Additionally, FL is also beneficial in scenarios
where data is sensitive and cannot be shared, such as medical
imaging or financial data. Another essential benefit of FL
is its ability to handle data that is non-IID (Independent
and Identically Distributed), a common characteristic of data
collected from networked devices.

In traditional centralized learning, data is often assumed to
be IID, which means that it has the same distribution across
all devices. However, in practice, each device can have its
own data distribution, which can lead to biased or suboptimal
models. FL algorithms such as Federated Averaging [291],
Federated Transfer Learning [292], and Federated Meta-
Learning [293] are proposed to address these issues.

E. ALL-REDUCE
The All-Reduce approach [294] is a data-parallel distributed
MLmethod for trainingMLmodels and implements the Peer-
to-Peer concept. Therefore it dispenses with a central server,
and instead, workers communicate directly. Which workers
communicate with one another is specified by the commu-
nication topology used. Multiple communication topologies
are possible for the All-Reduce approach, i.e., ring [295], but-
terfly [296], and trees [297]. The communication topologies
affect the data rate and latency of the network differently.
In some cases, the topology also restricts access to the data
set.

In principle, each worker maintains an instance of the
model and individually processes updates by its assigned
portion of data. The data is usually distributed at the
beginning of the training. After processing a predefined
number of data samples, the workers communicate their
local updates with all their peers. Shortly after, they receive
the updates of their peers and aggregate them with their
own. This step of communication and aggregation can be
repeated several times. When all updates are distributed
to all workers, each worker adjusts its model instance
parameters according to the aggregated updates and proceeds
to produce the next local updates. The repetitive and
expensive communication of updates guarantees that all
workers work with the same model instance [294]. Figure 9c
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FIGURE 9. Cooperation topologies for common distributed ML architectures.

TABLE 15. Summary of approaches of networks for ML approaches.

illustrates the communication topology of a ring All-Reduce
approach.

F. SPLIT LEARNING AND INFERENCE
Split Learning (SL) [298], [299] is a model-parallel dis-
tributed ML method that decouples model training from the
need for direct access to the raw data, in which amodel is split
into at least two sub-models. It is similar to FL, but it focuses
on the case where devices have low computational power,
memory constraints, or limited energy budget. In contrast to
FL, where devices typically train a model locally and send

the updated model parameters to a central server, in SL, the
devices only forward a feature representation of their data to
the central server, which performs the model updates.

In SL, the model is split into at least two parts, with one
part running on the device and the other part running on
the central server. Figure 9d shows the SL representation
with three devices. The key idea behind SL is that the
device part of the model is lightweight and can be run
on devices with low computational power instead of the
entire computationally demanding model. Thus, SL enables
model training and inference on devices with low computing
resources.
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SL over networked devices is particularly useful in
scenarios where devices have low computational power
and high communication bandwidth. For example, in a
network of smartphones, each smartphonemay have a camera
that captures images, but the device may not have the
computational power to process the images. SL can be used
to train a model that can classify images without needing to
process the images on the device.

1) FEDERATED SPLIT LEARNING
Federated Split Learning (FSL) [300], [301] is a distributed
algorithm that combines the ideas of computing the weighted
average, a characteristic of the FL architecture, and the
neural network split between the client and server of the SL
architecture. It thus combines data- and model parallelism.
In FSL, all clients compute in parallel and independently.
They send/receive their smashed data to/from the server
in parallel. The client-side sub-network synchronization,
i.e., forming the global client-side network, is done by
aggregating (e.g., weighted averaging) all local client-side
networks on a separate server.

2) SPLIT COMPUTING
Splitting a neural network for inference tasks is usually called
Split Computing (SC). It is very similar to SL, as a model is
split into sub-models and then distributed on multiple devices
communicating with each other. It is helpful in scenarios
where sensor devices are resource-limited and can not deploy
full models. Instead of offloading the sensor data, the sensor
can compute a part of the model and then transmit the
compressed feature representation, resulting in a smaller end-
to-end latency [302].

Most works focus on a simple client-server scenario. The
model is then split into a head and a tail part. The client,
a sensor, gathers sensor data, feeds it into the head of the
model, and then transmits the feature representation to the
server. The server receives the feature representation and
completes the inference process using the tail. In this client-
server scenario, the main challenges are to minimize the
head with regard to computation and size on the client as
sensors have limited resources and to minimize the amount
of communication while making sure that the model does not
lose too much accuracy.

Matsubara et al. [303] provide a comprehensive survey
describing many proposed methods to optimize SC. Addi-
tionally, it also contains links to code where available. With
sc2bench [304], there is also a pip package to test and
compare several SC techniques while providing a framework
to start creating your own method.

VII. FURTHER READINGS
Several related survey and tutorial papers exist that cover
parts of the interplay between ML and networking to a
varying extent and on varying scales of granularity. Table 16
lists the most related of these papers while highlighting their
ML scope, covered network applications, and whether they

focus on ML for Networks (ML4N) or Networks for ML
(N4ML).

Perhaps the most comprehensive survey on ML for
Networks, [308] discusses ML approaches for a wide range
of networking challenges and provides further references to
more specialized surveys about ML approaches in certain
networking domains. The work of [276] considers itself
as an update to [308], covering more recent develop-
ments and discussing recent IDS datasets. Additionally,
several surveys consider ML approaches for a subset of
networked systems, such as vehicular networks in [316]
and [317], Software-Defined Networks (SDN) in [307],
mobile/wireless/ubiquitous networks in [4] and [279], edge
computing [305], [306] or network traffic monitoring and
analysis [314]. The work of [309] takes a unique stance and
provides the joint application of recent ML and Blockchain
technologies for networking problems. Other surveys focus
on specific ML subdomains such as unsupervised learn-
ing [29], deep learning [272] or distributed ML [310].

The work presented in [311] and [312] specifically
consider the role of FL in networking. While [311] discusses
FL several applications in the domain of communications
and networking, [312] focuses on mobile edge computing
but also discusses how communication techniques influence
FL methods. The studies [285], [313] provide an overview
of various applications of ML methods through IoT systems
and analyses various approaches on how ML models
can be distributed and processed in the cloud-to-things
continuum. The survey [284] discusses the convergence of
edge computing methods and ML; specifically, it provides
a comprehensive view of how networking can be utilized
for cooperative processing of deep learning models on
edge devices. The survey [303] provides insights into how
networked devices such as smartphones and autonomous
vehicles are used for collaborative training of ML model, and
inference operations over the network using split computing
and early exit methods.

Concerning the role of XAI in networking, the amount of
survey work is limited. The work of [319] motivates the usage
of XAI methods in networking challenges but only covers a
single concrete problem. While there exist survey papers on
XAI [320] and Explainable Reinforcement Learning (XRL)
[321] in general (i.e., not limited to networking), to the best
of our knowledge only [318] surveys XAI techniques in
the domain of networking, namely in challenges related to
wireless/6G.

VIII. CHALLENGES AND FUTURE DIRECTIONS
The adoption of ML in networks also brings forth several
challenges and opens up exciting future directions for
research and development for both ML for networks and
Networks for ML. In this section we touch on some of these
challenges, while we refer to [322] for further discussions on
limitations and challenges ofML andmore specifically, when
we apply ML for Network [276], [323]. The following are
some of the current challenges in ML for Networks:
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TABLE 16. Selective surveys & tutorials on using ML for Networks (ML4N) and Networks for ML (N4ML).

• Scalability: One of the critical challenges in ML for
Networks is scaling up models to handle large-scale
networks with millions of nodes and edges. Most
ML approaches are initially developed and tested for
small-scale networks to better debug them and under-
stand their effect on individual network components.
However, making themwork at scale is not always trivial
because large-scale network structures might lead to
computation time explosions (as has been indicated e.g.
for SDN in [324]), especially for problems where global
decisions are taken in a centralized manner.

• Limited data: One of the challenges in ML for Networks
is the limited amount of data available for training. Col-
lecting and labeling network data is a time-consuming
and costly process, and in some cases, data may be
proprietary or sensitive, making it difficult to obtain.

• Interoperability: Another challenge is the lack of inter-
operability of ML models. In many cases, it is difficult
to understand how a model arrived at a particular

decision or prediction, making it challenging to debug
or troubleshoot issues.

• Heterogeneous data: Networks often contain heteroge-
neous data from multiple sources, such as text, images,
and numerical data. Incorporating this data into ML
models and designing models that can effectively handle
heterogeneous data is another challenge that requires
further research.

• Robustness: ML models are vulnerable to attacks and
adversarial examples, especially in network environ-
ments where data may be noisy or corrupted.

• Real-time decision-making in closed-loop systems: In
many Network Control Systems (NCSs) environments,
decisions must be made in real-time, requiring efficient
and fast ML model inference [325], [326]. Developing
algorithms that can make accurate but fast decisions in
real-time is a significant challenge in ML for Networks.
One of the core problems is the potential for unstable
system behavior caused by a mismatch between the
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indented NCS sampling time and the time required for
inference of an ML model. As a result, input delays
affect the resulting system, which must be handled
carefully [327]. Hence, there is a trade-off between
large models that can handle large-scale networks (the
scalability challenge) and the required time for their
inference. In general, the required inference time by
AI and ML models will be a non-trivial function
of the resulting closed-loop system in which it is
embedded. For RL, delays due to model inference
can be explicitly included in the modeling, resulting
in the notion of real-time MDPs and real-time RL
algorithms [328]. Beyond cyber-physical closed-loop
systems, model inference delay impacts user experience
when prompt LLMs, IoT or VR services are run via
edge computing networks [329]. In other words, in these
cases, the system loop is closed via human feedback,
where unstable behavior will eventually result in the
performance loss.

• Energy efficiency: ML models often require significant
computational resources, which can be challenging
in resource-constrained network environments. As the
current trend points towards ever-increasing model
scales, energy efficiency might become an even more
important aspect in even more situations.

• Privacy and security: Networks can contain sensitive
and private data, which requires ML algorithms to be
developed with strong privacy and security safeguards.
ML algorithms for networks must maintain data privacy
while providing accurate predictions.

• Network complexity: Computer Networks can be highly
complex and dynamic, with large numbers of inter-
connected nodes, an interplay of various different
protocols and changing operation conditions. This
makes it challenging to develop accurate ML models,
since formulatingML problems for complex application
domains or sub-problems where suitable training data
is available often requires several simplifying and/or
narrowing assumptions at the start [330]. Leaving out
such assumptions one by one brings ML systems closer
to deployment in real-world scenarios, but often is a
non-trivial task that brings unexpected challenges in
every step along the way.

On the other hand, the challenges related to Networks for
ML include:

• Resource constraints: ML algorithms often require sig-
nificant computational resources, including processing
power, memory, and storage. Moreover, the training of
MLmodels requires large amounts of data, and transfer-
ring this data across networks can be time-consuming
and resource-intensive. This can be a challenge in
resource-constrained networks, such as those in IoT
devices and edge computing environments, or when spe-
cialized networking hardware disallows certain compute
operations. In addition, storing data in a centralized
location can create a bottleneck and security issues.

• Latency: Network latency can affect the performance
of ML algorithms, particularly in real-time applications
where decisions must be made quickly. High latency
can lead to delays in data transmission and processing,
which can negatively impact the accuracy and effective-
ness of the algorithm [331].

• Bandwidth: ML algorithms often require large amounts
of bandwidth to transfer data, and this can be a challenge
in networks with limited bandwidth. High bandwidth
requirements can also lead to increased costs for network
infrastructure in a real-world deployment.

• Network topology: The topology of a network can
impact the performance ofML algorithms. For example,
networks with high levels of congestion or interference
may not be suitable for real-time applications.

• Privacy and security: ML algorithms require access
to data, which can create potential privacy and
security risks, increasing the risk of data breaches and
cyber-attacks during transmission over the network or
remote processing of user data.

• Heterogeneous resources: The computing and commu-
nication resources in devices used for processing ML
algorithms over the network may vary widely, leading
to unstable training processes. Furthermore, this can
lead to the presence of slower devices (stragglers) that
slow down the training of a global model and affect the
model’s efficiency.

As earlier mentioned in Section VI some of these
challenges may overlap, such as privacy and security.
Overall, ML for Networks and Networks for ML are rapidly
growing fields with many challenges and opportunities for
future research. Addressing these challenges will require
collaboration between researchers from different disciplines.
In the following sections, wewill discuss some of the trending
applications that focus on these challenges.

A. A NEW PARADIGM FOR NEXT-GENERATION WIRELESS
NETWORKS
The rapid advancement of AI and ML technologies has also
opened up new vistas for next-generation wireless networks
like 5G Advanced and 6G. These next-generation networks
essentially serve two purposes: Data transport and service
delivery. They comprise various types of devices from User
Equipments (UEs), base stations, switches, routers, and
servers in a data center. With the integration of SDN and
Network Function Virtualization (NFV), all devices can now
constantly adapt to new situations, such as changing traffic
patterns, better function placements, or new service demands,
and incorporateAI and ML [332]. These technologies
promise to revolutionize the way we design and manage
wireless networks, leading to the emergence of AI-native
networks and AI-native air interfaces.
On the one hand, AI-native networks are networks

designed with AI integration at their core, rather than as
an afterthought or add-on. Hence, AI (partially) replaces
human-defined rules, models, and algorithms, which may
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not be optimal or scalable for the complex and dynamic
wireless scenarios, so that these networks can learn, adapt,
and optimize itself autonomously and intelligently.

On the other hand, an AI-native air interface is an air
interface that uses AI and ML to define and configure its
physical and medium access control layer parameters, such
as waveforms, constellations, pilots, coding, modulation,
synchronization, channel estimation, equalization, detection,
decoding, and access schemes [333].
One of the main challenges here is the complexity and
heterogeneity of wireless networks. This complexity makes
it difficult to collect, process, and analyze data in real-
time [333]. However, this can be mitigated by using
distributed AI engines, which can process data closer to the
source and reduce latency. Another challenge is the lack of
standardized frameworks and architectures for implementing
AI in networks. To address this challenge, industry, and
academia collaborate to develop standardized AI frameworks
and tools that can be used across different networks [334],
[335]. There are four aspects to address this challenge [336]:

1) DATA INFRASTRUCTURE
a distributed data infrastructure that can handle massive
amounts of varied, distributed, and dynamic data, and enable
data ingestion, processing, and exposure across layers and
domains.

2) INTELLIGENCE EVERYWHERE
a comprehensive and automated management of AI models,
from training to deployment to monitoring, and the ability
to handle model drift, retraining, and versioning. This would
take place for every network layer and on every network
device.

3) ZERO TOUCH
a high degree of automation and autonomy for the manage-
ment of AI and data, and the ability to express and supervise
high-level goals rather than low-level actions.

4) AI AS A SERVICE
the exposure of AI and data services to external parties,
such as service providers or customers, and the creation of
a platform for innovation and collaboration.

For further readings on the evaluation metrics of such
networks, we refer to [337]. The authors in [338] also provide
a road-mapwith potential frameworks to build such networks.

B. DEEP NEURAL NETWORKS MODEL COMPLEXITY AND
ENERGY CONSUMPTION
The increasing complexity of DNNs has direct implications
on energy consumption, a critical factor in both envi-
ronmental sustainability and practical deployment [339].
The complexity of DNNs is largely driven by the depth
and breadth of the network architecture. As DNNs grow
deeper (with more layers) and wider (with more neurons

in each layer), they can capture more intricate patterns in
data. This increased capacity, while maybe beneficial for
model accuracy, leads to a higher number of computations
during both the training and inference phases [284]. Each
computation requires a certain amount of energy, and thus,
as models grow more complex, their energy requirements
escalate.

The energy consumption of DNNs is a multifaceted issue.
Training DNNs is an energy-intensive process that requires
substantial computational resources [340]. This phase often
necessitates the use of high-performance GPUs or even
clusters of GPUs, which are power-hungry devices [341].
The electricity consumption during this phase is considerable,
contributing to the overall energy footprint of developing
DNNs. The inference phase, where DNNs make predictions
on new data, also demands a considerable amount of
energy [342]. This phase is critical in real-world applications
where continuous or on-demand operation of DNNs is
required, such as in autonomous systems or real-time analysis
applications.

The substantial energy consumption of DNNs poses a sig-
nificant challenge for environmental sustainability. As these
networks become more prevalent across various sectors,
the need for energy-efficient neural network architectures
and training methods becomes increasingly important [343].
In energy-constrained environments (e.g., with battery-
operated devices) the energy demands of DNNs are a crucial
consideration. This has led to a focus on balancing model
complexity with energy efficiency, driving innovation in
optimization techniques, and the development of specialized
hardware to run these models more efficiently [344].
Moreover, different models and benchmarks are used to
estimate and plan the energy consumption of DNNs [345],
[346], [347].

C. TINY MACHINE LEARNING
Tiny Machine Learning (TinyML) is an emerging field that
combines ML with ultra-low power computing, typically
found in microcontrollers and small IoT devices [348]. Its
goal is to deploy efficient ML models that can operate in
environments with limited memory, processing power, and
energy. This is particularly relevant for applications where
traditional ML models would be impractical due to their size
and energy requirements.

The primary motivation for TinyML is the need for
localized data processing, especially in situations where
privacy, speed, and power efficiency are critical, rather than
transmitting it to a centralized server or cloud [349]. This can
be applied for many applications, spanning from smart home
devices and wearable technology to healthcare monitoring
and environmental sensors [285].

The core implementation of TinyML relies on ML model
quantization, which reduces its numerical precision and
size. Hence, implementing TinyML in environments with
limited resources presents several ongoing challenges – The
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low computational capabilities and storage capacities of
smaller devices restrict the complexity of the models that
can be deployed [350]. This constraint can adversely affect
the efficacy and precision of TinyML-based applications.
To address this, some research suggests the integration of
cooperative ML (Section VI) and TinyML approaches [342],
[351]. This strategy would enable devices with constrained
resources to work collaboratively on ML tasks. Moreover,
progress in hardware development, particularly in creating
more efficient microcontrollers and sensors, is expected to
broaden the range of possible applications for TinyML. For a
recent survey of tinyML applications and techniques, we refer
to [352].

IX. CONCLUSION
The aim of this paper is to provide interested but inexpe-
rienced readers an an inspiring and practical jumpstart for
research in the intersection of ML and computer networking.
This encompasses not only the creation of novel ML-
powered solutions for covered networking scenarios but also
leveraging established networking technology to enhance
existing ML approaches.

Compared to the aforementioned surveys and tutorials
(Section VII), we are the first to provide a comprehensive
bidirectional overview of ML and XAI techniques across
different networking fields, and vice versa.44 Furthermore,
in addition to an overview of the current state of the art, our
work provides practical guidance for aspiring researchers to
shortcut their way into meaningful research:

• Many of the mentioned related papers do not consider
datasets and/or starting points to reproduce the results or
even to just start experimenting. In contrast, we refer to
publicly available datasets as well as methods and tools
to generate synthetic datasets (Section IV) and design
ML models suitable for the respective task.

• We categorize existing approaches as ML serving
networks (ML4N) and networks serving ML (N4ML)
based on the used metrics, which helps to identify
research gaps and possible future directions of research.

We introduced the most popular ML techniques, model
types, and tools as well as several practical aspects to
consider when practicing ML such as obtaining high-quality
data for the learning algorithm, or the incorporation of
inductive biases (more specifically for networking data and
network topologies) into ML models in order to reduce
resource requirements. Secondly, we introduced the most
common computer networking problem domains and pointed
to existing tools and datasets to accelerate and facilitate ML
research on networking problems.

Thirdly, we introduced how XAI methods can improve
the transparency of ML models’ decisions and thus push

44We do not aim for a comprehensive review of state-of-the-art research
in ML or its sub-disciplines, as there are numerous survey and tutorial
resources that provide an excellent ML-focused overview. Rather, we view
ML techniques solely in relation to networking, either as facilitators (ML for
Networks) or beneficiaries (Networks for ML).

their acceptance in the computer networks research domain
and their suitability in productive environments. We also
elaborated on how networking techniques can boost the
performance of existing ML setups and workflows, e.g.
through several approaches for distributed learning.

Lastly, we provided a large number of pointers for further
reading, such as surveys on more specific ML/networking
domains, example research works for some of the problems
introduced in this paper or links to many of the mentioned
datasets or tools.

Despite our comprehensive coverage of established tools,
approaches, and recent breakthroughs, it’s important to
acknowledge the dynamic nature of ML research. The
field is characterized by the emergence of new algorithms,
the potential availability of additional tools and features
in the future, and the hopeful prospect of more open-
sourced datasets. While this evolution is happening at an
unprecedented pace, this paper still serves as a valuable
starting point for researchers and newcomers alike and
provides a timely and relevant contribution to the intersection
of the fields of ML and computer networking.
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