
Citation: Teutscher, D.;

Kummerländer, A.; Bukreev, F.; Dorn,

M.; Krause, M.J. Just-in-Time Fluid

Flow Simulation on Mobile Devices

Using OpenVisFlow and OpenLB.

Appl. Sci. 2024, 14, 1784. https://

doi.org/10.3390/app14051784

Academic Editor: Ricardo Castedo

Received: 22 January 2024

Revised: 15 February 2024

Accepted: 20 February 2024

Published: 22 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Just-in-Time Fluid Flow Simulation on Mobile Devices Using
OpenVisFlow and OpenLB
Dennis Teutscher 1,* , Adrian Kummerländer 1 , Fedor Bukreev 1, Marcio Dorn 2 and Mathias J. Krause 1

1 Lattice Boltzmann Research Group, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany;
adrian.kummerlaender@kit.edu (A.K.); fedor.bukreev@kit.edu (F.B.); mathias.krause@kit.edu (M.J.K.)

2 Structural Bioinformatics and Computational Biology Lab (SBCB), Federal University of Rio Grande do Sul
(UFRGS), Porto Alegre 90010, Brazil; mdorn@inf.ufrgs.br

* Correspondence: dennis.teutscher@kit.edu

Abstract: The present state of research in computational fluid dynamics (CFD) is marked by an
ongoing process of refining numerical methods and algorithms with the goal of achieving accurate
modeling and analysis of fluid flow and heat transfer phenomena. Remarkable progress has been
achieved in the domains of turbulence modeling, parallel computing, and mesh generation, resulting
in heightened simulation precision when it comes to capturing complex flow behaviors. Nevertheless,
CFD faces a significant challenge due to the time and expertise needed for a meticulous simulation
setup and intricate numerical techniques. To surmount this challenge, we introduce paint2sim—an
innovative mobile application designed to enable on-the-fly 2D fluid simulations using a device’s
camera. Seamlessly integrated with OpenLB, a high-performance Lattice Boltzmann-based library,
paint2sim offers accurate simulations. The application leverages the capabilities of the Lattice Boltz-
mann Method (LBM) to model fluid behaviors accurately. Through a symbiotic interaction with the
open-source OpenCV library, paint2sim can scan and extract hand-drawn simulation domains, afford-
ing the capability for instant simulation and visualization. Notably, paint2sim can also be regarded as a
digital twin, facilitating just-in-time representation and analysis of 2D fluid systems. The implications
of this technology extend significantly to both fluid dynamics education and industrial applications,
effectively lowering barriers and rendering fluid simulations more accessible. Encouragingly, the
outcomes of simulations conducted with paint2sim showcase promising qualitative and quantitative
results. Overall, paint2sim offers a groundbreaking approach to mobile 2D fluid simulations, pro-
viding users with just-in-time visualization and accurate results, while simultaneously serving as a
digital twin for fluid systems.

Keywords: CFD; LBM; mobile device; just in time; digital twin

1. Introduction

Computational fluid dynamics (CFD) has been a vital tool for understanding fluid
behavior across various industries and academic domains. However, the practical applica-
tion of CFD has been limited by the long computational time and complexity involved in
building a simulation setup. In recent years, the integration of CFD into various software,
including CAD, 3D computational graphic software like Blender version 4.0.2 [1], and game
engines like Unity version 2023.2.10 [2] and Unreal Engine version 5.3 [3], has become more
prevalent due to its usefulness in observing fluid flow behavior.

Various researchers have proposed innovative methods for applying CFD to different
areas of interest. Mathias Berger and Verina Cristie [4] proposed using game engine technol-
ogy to bridge the gap between architects and engineers in evaluating the effect of buildings
on urban climate through CFD methods. Jos Stam [5] presented a rapid implementation
of a fluid dynamics solver for game engines based on the physical equations of fluid flow,
emphasizing stability and speed for just-in-time performance. Wangda Zuo and Qingyan
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Chen [6] proposed the Fast Fluid Dynamics (FFD) method as an intermediate approach be-
tween nodal models and CFD, providing much richer flow information while being 50 times
faster than CFD for conducting faster-than-just-in-time flow simulations for emergency
management in buildings. Angela Minichiello et al. [7] introduced a mobile instructional
particle image velocimetry (mI-PIV) tool for smartphones and tablets running Android
that provides guided instruction to learners, enabling them to visualize and experiment
with authentic flow fields in real time. Jia-Rui et al. [8] explore the use of augmented reality
(AR) technology in mobile devices for visualizing and interacting with CFD simulation
results in the context of indoor thermal environment design. Harwood et al. [9] developed
a GPU-accelerated, interactive simulation framework suitable for mobile devices, enabling
the visualization of flow around particles.

The Lattice Boltzmann Method (LBM), a versatile computational technique for simu-
lating fluid flow, is integral to our approach. Renowned for its capability to handle intricate
geometries, multiple phases, and mesoscale phenomena [10], the LBM operates on a lattice
grid, utilizing probability distribution functions to model fluid behavior, and it is adaptable
for parallel processing on diverse platforms. Recent advancements include the integra-
tion of multiple-relaxation-time schemes to enhance stability and efficiency, along with
extensions for simulating thermal and multiphase flows [11,12]. The LBM finds application
in various scenarios, such as solving evaporating and boiling problems [13], observing
particle behavior in particle-laden flows [14], simulating heat transfer [15], and more.

Previously mentioned work [9] utilized a static domain with fixed inlets and outlets to
create 2D simulations on tablets, which is limited to NVIDIA GPU-based devices.

In this paper, we present a new application called paint2sim version 0.1, which extends
the capabilities of OpenVisFlow version 0.1 [16], a visualization library that introduced novel
solutions to the challenges of a long computational time and complexity when targeting
mobile devices. Leveraging the power of the LBM, paint2sim utilizes the open-source
library OpenCV version 4.8.1 [17] to enable on-the-fly, just-in-time 2D simulations using the
camera of a mobile device. Our approach is not limited to specific NVIDIA GPU-based
mobile devices but is applicable to all Android devices. Furthermore, we incorporate AR
capabilities through the scanning of physical objects. Moreover, in this paper, we compare
the performance, demonstrating better results even while utilizing only one core.

The aim of this approach is to enable users to generate a digital twin of a fluid
domain using hand-drawn sketches, effectively converting their mobile devices into virtual
laboratories for fluid dynamics. The objective is to facilitate the scanning of a simulation
domain and provide real-time visualization of calculated results just in time, eliminating
the need for precompiled simulations or specialized expertise. By seamlessly connecting
physical sketches with real-time simulations, paint2sim strives to function as a digital twin
for 2D fluid flow simulations.

Our contributions include the integration of the Lattice Boltzmann-based library
OpenLB version 1.5 [18] into the mobile device, just-in-time simulation and visualization,
as well as stable simulations for most cases. The application paint2sim plays a pivotal
role in advancing applied CFD by providing students and engineers with a user-friendly
platform for quick insights into 2D fluid dynamics. The unique feature of generating
just-in-time simulations on mobile devices empowers users to swiftly visualize and analyze
fluid behavior in real-time, enhancing the accessibility and efficiency of fluid flow studies.

This technology has the potential to revolutionize how we teach and learn fluid dy-
namics, as well as how we design and optimize fluid-based systems. paint2sim has the
potential to benefit a wide range of users and applications, from students learning the
fundamentals of fluid dynamics to engineers designing complex systems in the chemical,
aerospace, and automotive industries. The technology can also be applied in medical re-
search and environmental studies, where fluid behavior plays a crucial role. By simplifying
the simulation process and making it more accessible, paint2sim has the potential to de-
mocratize the field of CFD and encourage a wider range of users to explore the fascinating
world of fluid dynamics.



Appl. Sci. 2024, 14, 1784 3 of 16

In the remainder of this paper, we delve into the method employed by paint2sim,
present the numerical results obtained through its implementation, and engage in a com-
prehensive discussion of these results. A user guide with a download link for paint2sim can
be found in Appendix A.

2. Method

There are three critical requirements that must be fulfilled in order to run scanned
hand-drawn simulation domains and simulate them locally on mobile devices: a high
performance to simulate and visualize the simulation just in time, a high stability due to
the various domains that can be scanned and the adjustable Reynolds number, and the
physical accuracy should have quantitatively minimal errors and should be qualitatively
comparable to reality.

In the following sections, we discuss the LBM, the simulation model used in this
study, and its suitability for a high performance and physical accuracy. Following that, we
describe the methods utilized to ensure the stability of the simulation.

2.1. Lattice Boltzmann Method (LBM)

The LBM offers several advantages when it comes to both performance and physical
accuracy in simulating fluid behavior. One advantage is that the LBM can be easily
parallelized, allowing for faster computation times and higher performance. Another
advantage is that the LBM inherently models the fluid at a mesoscopic level, allowing
for an accurate representation of complex physical phenomena such as turbulence and
multiphase flows. This makes the LBM well-suited for simulating a wide range of fluid
dynamics problems. In the remainder of this section, we provide a brief introduction to the
LBM and the target equations, the Navier–Stokes Equations (NSE) for mass and momentum
conservation in fluid dynamics.

The NSE is the fundamental equation that governs the behavior of fluids, and it is
widely used in CFD simulations. The NSE in full form can be solved only numerically
using various discretization methods, such as the finite difference, finite volume method or
the LBM.

The NSE can be written as follows:

∇ · u = 0, (1)
∂u
∂t

+ u · ∇u = −∇p
ρ

+ νm∇2u +
F
ρ

, (2)

where u is the velocity vector, p is the pressure, ρ is the fluid density, νm is the molecular
kinematic viscosity of the fluid, and F is the external force acting on the fluid.

The LBM approximates the conservation equations in its limit (Chapman–Enskog
expansion) on a discrete grid of points connected by a set of links that represent the paths
along which the fluid particles can move [19]. In the LBM, the spatial and temporal states of
these particles are represented by the probability distribution functions (PDFs) that evolve
according to the lattice Boltzmann equation.

fi(x + ei∆t, t + ∆t)− fi(x, t) = ΩC + ΩF, (3)

where fi is the PDF at lattice node i and time t, ei is the normalized discrete velocity in
the i-th direction, ΩC = −( fi − f eq

i )/τ is the collision operator, and ΩF is the Guo forcing
term [20].

In the current simulations, the D2Q9 lattice is used, where D is the number of dimen-
sions and Q is the number of the normalized discrete velocity directions. The corresponding
lattice cell is shown in Figure 1.
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Figure 1. A schematic illustration of the discrete velocity set for the D2Q9 lattice.

2.2. Smagorinsky BGK Collision Model

The Smagorinsky model [21] is a subgrid-scale model used in a large eddy simulation
(LES) of turbulent flows. The model introduces a turbulent viscosity term to the governing
equations of fluid flow, which is based on the strain rate tensor of the flow field. The
model filters out the small unresolved vortices by replacing them with an artificial viscosity
increase. The large eddies are preserved. The modified strain rate tensor describes the
production of turbulent kinetic energy in the flow.

The turbulent viscosity term is given by the following:

νt = (CS4x)2|S|, (4)

where νt is the turbulent eddy viscosity, 4x is the grid spacing, CS is the Smagorinsky
constant, and |S| is the magnitude of the strain rate tensor. The Smagorinsky constant is
the filtering parameter that determines which eddies are neglected.

The modified momentum equation with the addition of the turbulent viscosity term
becomes the following:

∂u
∂t

+ u · ∇u = −1
ρ
∇p + νe f f∇2u +

F
ρ

, (5)

νe f f = νm + νt. (6)

For the incompressible NSE with a Smagorinsky LES approach, the lattice Boltzmann
equation using the BGK collision operator [22] can be rewritten as follows:

fi(x + ei∆t, t + ∆t)− fi(x, t) = − ∆t
τe f f (x, t)

( fi − f eq
i ) + ΩF, (7)

where τe f f (x, t) =
νe f f (x,t)

c2
s

4t
4x2 +

1
2 is the effective relaxation time adapted to the Smagorin-

sky model. Here, cs is the discrete speed of sound.
Due to obstacles in the path of a fluid, flow instabilities can be induced even at low

Reynolds numbers. Therefore, it is necessary to adjust the relaxation time accordingly. The
Smagorinsky BGK model accomplishes this by automatically increasing the relaxation time
at the cells with a high shear rate. In the case of a laminar flow, the turbulent viscosity
νt ≈ 0. Choosing a correct Smagorinsky constant secures a stable run of the simulation.

2.3. Fringe Region Technique

A fringe region technique [23] is used to eliminate instabilities at the outflow boundary
condition. The outlet can become divergent if a large eddy flows through it. In order to
compensate for this, a fringe zone is applied to laminarize the outflow. To achieve this, the
NSE in the near-to-outlet region is forced with a special term.

F = λ(x) · (U− u), (8)
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where U is the prescribed velocity, λ(x) is the fringe function that varies smoothly from 0
to 1 over a distance of a few grid points, and u is the computed velocity.

In the fringe region technique, the prescribed velocity U is obtained using a mixing
length model. The mixing length model can be written as follows:

U(x) = U(x) + [U(xout)−U(x)]S
(

x− xmix
∆mix

)
, (9)

where U(x) is the velocity at a point x, xout is the outlet coordinate, xmix and ∆mix are
tuning parameters for transition between real and prescribed velocities, and S is a smooth
function that varies from 0 to 1 over a distance.

2.4. Concept and Realization

The implementation of the system used two separate shared libraries: one for OpenCV
and one for OpenLB. OpenCV provided the image processing capabilities, while OpenLB
provided the CFD simulation capabilities. The shared libraries were written in C++ and
can be compiled on a variety of platforms. The implementation involved creating a set of
functions that could be used by both the OpenCV and OpenLB libraries. These functions
were used to perform image processing and CFD simulation, respectively. In addition,
Unity was used to create the application for the mobile device. Both OpenCV and OpenLB
communicate independently with Unity through their respective shared libraries.

2.4.1. Concept

In order to achieve just-in-time simulation and visualization, there must be a clear
separation between the frontend, which is the application itself, and the backend, which
consists of the OpenLB and OpenCV shared libraries. Each of the shared libraries is called
in separate threads which allows for the decoupling of the simulation and visualization
thereof. The communication between the frontend and backend consists primarily of the
exchange of the simulation results for a timestep in the form of a pressure or velocity array
as shown in Figure 2.

Application OpenCVOpenLB sent screenshotextracted domain

extracted domainvelocity field

Figure 2. Communication between the application, OpenCV, and OpenLB.

2.4.2. Structure of the OpenLB Shared Library

In this section, we present an overview of the OpenLB shared library structure that
we employed for performing the simulations on smartphones. Specifically, Algorithm 1
illustrates the main loop of the library, which adheres to the standard Lattice Boltzmann
simulation structure with OpenLB. Initially, OpenLB is instantiated, and crucial classes are
initialized. The unit converter, which stores the lattice relevant data, is then declared. Next,
the simulation domain is instantiated, and its dimensions correspond to the domain scanned
with the smartphone. This domain is then passed to the load balancer, which distributes
the cuboid into subsections necessary for parallel computing. The material number map
is an array of numbers that refer to the materials in the simulation. However, it cannot
be utilized as is and necessitates a transfer to the OpenLB-specific class, superGeometry.
After preparing the geometry, the lattice is ready for simulation, and boundary conditions
can be set. In particular, we apply the Smagorinksy BGK model in Section 2.2 to the
material numbers of the fluid outflow and inflow. Additionally, we utilize the fringe region
technique around the outflow. Moreover, we need to specify which material numbers define
the inlet and outlet. We also add the postprocessor, which receives relevant dimensions and
pointers to the result arrays. At step 10 of Algorithm 1, the simulation commences with the
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for-loop. In this loop, T corresponds to the total simulation time, while iT represents the
current timestep. For each timestep, we update and set the boundary values. Subsequently,
we call the collide and stream functions to retrieve the values for the subsequent step.
Finally, we synchronize the number of timesteps saved per second with the frames per
second (t f ps) of the smartphone application (step 13 to 21). This synchronization ensures
better performance as we do not save every timestep of the simulation but still maintain a
fluid visualization for the user.

Algorithm 1 Mainloop of the OpenLB Shared Library
1: init OpenLB
2: declare unit converter
3: instantiation of the simulation domain
4: instantiation of a load balancer
5: preparing of the geometry
6: preparing of the lattice
7: add postprocessor
8: calculate the number of timesteps from the total simulation time T
9: start timer t f ps

10: for iT = 0; iT ≤ T; i ++ do
11: set boundary values
12: collide and stream
13: if t f ps ≤ 1 then
14: if ∆t ≤ 1/ f ps & count ≤ f ps then
15: write results via postprocessor
16: write Mega Lattice Updates per Second
17: end if
18: count++
19: end if
20: reset t f ps
21: count = 0;
22: if endSimulation then break;
23: end if
24: end for

2.4.3. Structure of the OpenCV Shared Library

The OpenCV shared library plays a critical role in enabling OpenVisFlow to extract
contours, which is a vital step in obtaining the simulation domain from an image. Contour
extraction involves identifying the object’s boundary in an image and approximating it with
a curve. The curve consists of continuous points along the boundary with the same color
or intensity. The process of domain extraction begins by resizing the image to the desired
simulation resolution, followed by applying a threshold to enhance the contrast between
the domain and the background. The findContours function is then utilized to extract the
domain boundaries. Finally, morphological functions are applied to postprocessing of the
extracted domain. Specifically, a morphological close function is used to fill potential holes
in the boundary, while a morphological open function is used to eliminate noise from the
domain. Figure 3 displays the results of the processing steps, where Figure 3a depicts the
photo of the hand-drawn domain to be extracted, and Figure 3b presents the outcome of the
initial extraction with a threshold; Figure 3c,d represent the post-image processing steps.
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(a) Photo of the
drawn domain.

(b) Extracted
contour

(c) Morphological
close

(d) Morphological
open

Figure 3. The figure illustrates the domain extraction process, starting with the original image (a),
followed by the resulting image after the initial extraction with a threshold (b). Post-image processing
steps are then applied, leading to the final processed images shown in (c,d).

2.5. Expanding OpenVisFlow for Mobile Fluid Flow Simulation with OpenLB

The OpenVisFlow library, based on Unity, is designed to be easily expandable, allowing
it to handle and visualize various data types. To achieve this, two new classes are required
that inherit from the parent DataManager class. These classes enable communication
between OpenVisFlow and the shared libraries OpenLB and OpenCV. Figure 4 depicts
the class diagram for the new classes, OpenCVDatamanger and OpenLBDatamanger, which
inherit from the parent class Datamanager.

DataManager

# frameUpdateActions :
List<Action>
+ frameUpdate() : virtual void

OpenCVDataManager

+ OpenCVDataManager
+ contourExtraction(Texture2D tex) :
List<List<int>>
- drawBoundary() : Texture2D
...

OpenLBDataManager2D

- domain : List<List<int>>

+ OLBDataManager2D (List<List>>
domain)
- startOLB(float inflowAngle, float Re)
: Texture2D
- endSim() : void
...

Figure 4. Class diagram for the OpenCV and OpenLB DataManager, highlighting the most
essential functions.

The OpenCVDataManager class adds necessary functions for communication between
OpenVisFlow and the OpenCV shared library. Similarly, the OpenLBDataManager2D class
inherits from DataManager and includes the essential functions required to initiate and
terminate a simulation. The class also contains additional functionalities such as an optional
placement of a fringe zone. Overall, these new classes ensure seamless communication
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between OpenVisFlow and the OpenLB and OpenCV shared libraries, allowing for efficient
data handling and visualization.

Visualization of the Simulation Data

In order to visualize the calculated results of the OpenLB shared library introduced in
Section 2.4.2, a new visualizer class has to be implemented which has the ability to handle
2D arrays of the type float, transform this information to a texture, and display it. The class
diagram of the new class is depicted in Figure 5. Following the OpenVisFlow framework,
the visualizer is initialized with a Colorscheme, which consist of different colors that are
used to visualize the flow and an instance of the OLBDataManager2D in order to get the
simulation data. The function timeStepUpdate is added to the inherited action list. This
function is called on every frame and extracts the minimum and maximum bounds for
the macroscopic moments of the current timestep. Based on that, the color scheme can be
mapped to each cell and rendered to a texture for display.

OLBVisualizer2D : Visualizer<Colorscheme>
- schemes : Colorscheme
- olbData : OLBDataManager2D
- resultTexture : Texture2D
+ OLBVisualizer2D(Colorscheme schemes, OLBDataMan-
ager2D olbData, Texture2D resultTexture)
+ frameupdate() : override void
- timeStepUpdate() : void

Figure 5. Class diagram of the OLBVisualizer2D, highlighting the most essential functions.

3. Numerical Experiments and Discussion of Results

This section evaluates the precision and performance of the LBM as implemented in
paint2sim. We categorize the results into qualitative and quantitative aspects. The qualitative
section focuses on the visualization of the simulation results and their correspondence to
physical reality. For the quantitative part, we assess the performance and physical accuracy
of the simulation.

3.1. Test Case Setup

To validate the capabilities of paint2sim, we chose the 2D cylinder test case provided by
the OpenLB library. This test case replicates the configuration detailed by Schäfer et al. [24].
This selection enables a direct comparison between the results generated by paint2sim
and the established outcomes in the relevant domain. In addition, we recreated the same
scenario through manual drawing, ensuring consistent proportions as outlined in the
reference work [24]. Subsequently, the hand-drawn representation was scanned using
paint2sim, enabling a precise evaluation of its accuracy in replicating the expected flow
patterns and attributes. The geometry used for validation is visually presented in Figure 6.

Figure 6. Geometry employed for validation, with dimensions in SI millimeters.
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It is important to note that, in this study, paint2sim incorporates the Smagorinsky
BGK Model and the Fringe Region Technique to maintain simulation stability even at
lower resolutions. Notably, the validated cylinder2D case does not utilize either of
these techniques.

3.2. Choice of Discretization Parameters

To accommodate various performance capabilities on mobile devices, paint2Sim offers
four resolution options in terms of ∆x, representing the voxel length. In alignment with this,
we conducted corresponding simulations using the OpenLB framework. The timestep ∆T
scales diffusively with the resolution, meaning that it decreases or increases quadratically
in correspondence with ∆x. To demonstrate that OpenLB produces consistent results with
those presented in Schäfer et al. [24], we also incorporated a higher resolution. Due to
the performance restriction inherent in mobile devices, this higher resolution cannot be
executed on mobile devices. paint2sim differs from the validation case in three aspects.
Firstly, it employs the Smagorinsky BGK Collision Model. Secondly, it incorporates the
fringe region technique to ensure stability. Thirdly, the application exclusively employs
the Bounceback boundary condition instead of the Bouzidi second-order condition. The
decision between the first and second orders is rooted in numerical analysis and depends on
the nature of the boundary—being first order for curved boundaries and second order for
axis-aligned cells. The prevalence of a first-order condition in most scenarios is attributed to
the staircase approximation. This approach is preferred due to the challenging extraction of
the real geometry surface required by Bouzidi from an already discretized scanned domain.

paint2sim-1: The fringe region technique as well as the Smagorinsky BGK Collision
Model are used with the Smagorisnky Constant Cs = 0.15.

paint2sim-2: The fringe region technique is used while the Smagorinsky BGK Model
is replaced with the BGK Collison Model.

paint2sim-3: The fringe region technique is removed, and the Smagorinsky BGK
Model is replaced with the BGK Collison Model.

paint2sim-4: The fringe region technique is removed, and the Smagorinsky BGK
Model is used.

In order to perform a comparison between Bouzidi and Bounceback, we also ran the
validation case from OpenLB with Bouzidi OpenLB-1 and with Bounceback OpenLB-2.

3.3. Validation
3.3.1. Qualitative Results

Figure 7 presents a side-by-side comparison of the results. Observing the laminar
flow at Re = 20, there is no noticeable difference between the validated case shown in
Figure 7a and the result obtained using paint2sim, as shown in Figure 7b. Furthermore, when
comparing the unstable flow in Figure 7c,d, the qualitative results are also in agreement.

3.3.2. Quantitative Results

This section presents a comparative assessment of the validation results obtained
from [24], as depicted in Table 1, concerning the drag and lift coefficients on the cylinder,
with both OpenLB and paint2sim. Table 2 presents the results of simulations conducted
at Re = 20, detailing the parameters and resulting drag and lift coefficients for specific
cases. The results from OpenLB align within the predefined bounds set in Table 1 when
utilizing a sufficiently high resolution. Conversely, paint2sim at its maximum resolution
yields results that deviate by approximately 11% for the drag coefficient. Additionally,
the lift coefficient exhibits considerable variation, failing to closely match the specified
margin. This discrepancy primarily stems from errors introduced during the hand-drawn
domain scan, where image processing techniques for domain extraction introduce slight
shape differences, particularly in the representation of the cylinder within the domain.
Given the current computational limitations of the mobile devices used for the scan and
corresponding simulation resolution, addressing this issue comprehensively is presently
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impractical. Nevertheless, the results emphasize that an increase in resolution contributes
to a reduction in the margin of error.

(a) Example of the 2D cylinder from OpenLB with Re = 20.

(b) Simulation of a hand-drawn domain using paint2sim with Re = 20 replicating
the example used for validation.

(c) Example of the 2D cylinder from OpenLB with Re = 100.

(d) Simulation of a hand-drawn domain using paint2sim with Re = 100, replicat-
ing the example used for validation.

Figure 7. Comparison of qualitative results for the flow around a cylinder between the OpenLB
simulation cases validated by Schäfer et al. [24] and the paint2sim simulations.
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Table 1. Results of drag and lift coefficients from Schäfer et al. [24] in a laminar flow around a cylinder
with Re = 20 for the stable case and Re = 100 for the unstable case.

Reynolds Number (Re) 20 100

Characteristic Length [m] 0.100 0.100

Voxel Length [m] - -

Drag Coefficient 5.570–5.590 3.220–3.240

Lift Coefficient 0.010–0.011 0.990–1.010

Table 2. Comparative analysis of drag and lift coefficients: OpenLB vs. paint2sim in the flow around a
cylinder at Re = 20 (stable case).

∆x[m]
OpenLB-1 OpenLB-2 paint2sim-1 paint2sim-2 paint2sim-3 paint2sim-4

Drag Lift Drag Lift Drag Lift Drag Lift Drag Lift Drag Lift

0.010 5.820 0.015 6.116 0.016 4.040 0.046 4.015 0.046 4.015 0.046 4.040 0.046
0.006 5.689 0.008 5.785 0.008 4.915 0.058 4.899 0.058 4.900 0.058 4.915 0.058
0.005 5.632 0.012 5.796 0.012 5.282 0.064 5.268 0.064 5.269 0.064 5.282 0.064
0.004 5.624 0.009 5.740 0.009 5.882 0.074 5.871 0.074 5.871 0.074 5.882 0.074
0.003 5.601 0.010 5.505 0.010 - - - - - - - -
0.002 5.593 0.010 5.628 0.024 - - - - - - - -

In Table 3, the outcomes for flow simulations at Re = 100 exhibit similar challenges to
those encountered in the stable scenario at Re = 20.

Table 3. Comparative analysis of drag and lift coefficients: OpenLB vs. paint2sim in the flow around a
cylinder at Re = 100 (unstable case).

∆x[m]
OpenLB-1 OpenLB-2 paint2sim-1 paint2sim-2 paint2sim-3 paint2sim-4

Drag Lift Drag Lift Drag Lift Drag Lift Drag Lift Drag Lift

0.010 - - - - 3.954 2.801 4.061 3.027 4.056 2.974 3.966 2.809
0.006 3.696 1.326 3.988 1.654 3.685 1.786 3.684 1.866 3.689 1.865 3.699 1.785
0.005 3.485 1.157 3.777 1.449 3.369 1.041 3.380 1.243 3.484 1.368 3.367 0.979
0.004 3.353 1.089 3.556 1.261 3.414 0.872 3.390 0.839 3.389 0.885 3.418 0.864
0.003 3.324 1.091 3.361 1.110 - - - - - - - -
0.002 3.264 0.991 3.273 1.013 - - - - - - - -

3.4. Performance

Figure 8 presents the total performance achieved by paint2sim measured in millions of
cell updates per second (Mega Lattice Updates per Second (MLUPS)) across a set of mobile-
and stationary test devices.

A central performance bottleneck for numerical simulations on mobile devices due
to their inherent compute-heavy nature is given by heat management constraints. This
is the primary explanation for visible performance fluctuations as mobile devices tend
to aggressively reduce their power output beyond short performance bursts in order to
prevent overheating.

While the underlying LBM library OpenLB supports various parallelization modes
both on CPU and GPU targets [18,25], paint2sim explicitly only uses single-threaded,
single-precision, non-vectorized execution for maximum device portability and as a heat-
management trade-off. While OpenMP-based shared memory parallelization was possible,
core heterogeneity and thread binding caused issues across the diverse set of test devices.
Single-threaded execution provides sufficient cross-device performance for the intended
two-dimensional flow simulations.
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Figure 8. Performance comparison of paint2sim across different devices. Performance is measured in
Mega Lattice Updates per Second (MLUPS).

On the lowest end, we conducted a performance comparison between paint2sim and
the results presented in [9]. Due to hardware availability issues, we were unable to use
the same experimental setup and instead relied on a low-end Huawei P8 Lite with inferior
specifications compared to the initial high-end NVIDIA Shield K1 Tablet. Table 4 presents
a comparison of the specifications obtained via Geekbench, a well-established mobile
benchmark suite, and the achieved total performance in MLUPS. Despite the decision to
not utilize parallelization, paint2sim’s performance compares favourably at a speed-up of
approximately 1.45.

Among the tested mobile devices in Figure 8, the Samsung Galaxy A80 offers the low-
est CPU performance. Despite this, the visualization remains smooth for users at an average
throughput of 10 MLUPS and no noticeable lags. At the top end, the single-threaded LBM
performance on a Samsung Galaxy S22 Ultra is quite close to the unvectorized performance
on higher-end x86 CPU cores at approximately 24 MLUPs.

Overall, the performance characteristics exhibited by paint2sim are sufficient for the
intended simulation cases and are highly competitive to single cores of full-powered x86
CPUs, considering the comparably smaller power envelope.

A notable issue associated with mobile devices is their tendency to decrease the power
output of their CPUs in order to prevent overheating. Figure 9 presents the average MLPUs
of the mobile device Samsung Galaxy S22 Ultra during extended simulation periods. The
graph illustrates a significant decline in performance over time. Moreover, the decline is
not continuous; rather, the device maintains its performance until the temperature reaches
a critical point, at which it then ramps down to a lower performance level.
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Figure 9. Performance decline over time of paint2sim. Performance is measured in Mega Lattice
Updates per Second (MLUPS).

Table 4. Performance and spec comparison of Nvidia Shield Tablet K1 and Huawei P8 Lite. For the
spec comparison and Single-Core Score Geekbench [26].

Aspect Nvidia Shield Tablet K1 Huawei P8 Lite

Processor ARM tn8 ARM ARMv8

Base Frequenzy 2.22 GHz 1.71 GHz

Single-Core Score 207 166

MLUPS 1.1 1.6

3.5. Conclusions

In this paper, we present the paint2sim software for LBM simulations on mobile devices
and the numerical validation of the software on an example of the Schäfer test case. The
simulation results are categorized into qualitative and quantitative aspects, focusing on
visualization, performance, and physical accuracy. Regarding performance, we analyzed
the total performance achieved by paint2sim on various mobile devices. The Samsung
Galaxy A80 exhibited the lowest CPU performance among the tested devices but still
provided smooth visualization with an average of 10 Mega Lattice Updates per Second
(MLUPS) and no noticeable lags. On the other hand, the Samsung Galaxy S22 Ultra
demonstrated impressive performance, comparable to higher-end x86 CPUs, achieving
the highest MLUPS of 24 under specific conditions. However, fluctuations in performance
were observed due to heat management constraints, leading to an aggressive reduction in
the CPU’s power output beyond short performance bursts.

The validation of paint2sim involved qualitative and quantitative comparisons. For
the qualitative validation, we replicated a well-established 2D cylinder example using a
hand-drawn image and compared the results with the validated case from OpenLB. The
flow patterns and characteristics exhibited by paint2sim were found to be in agreement
with the established findings. For the quantitative validation, we compared the drag and
lift coefficients of the cylinder simulation with the results from previous studies: while
the drag coefficients showed minor discrepancies of around ∼10%, the lift coefficients
obtained from paint2sim differed greatly. These variations can be attributed to the shape
approximation of the hand-drawn cylinder and slight inaccuracies in the scanned image.

Overall, the performance and accuracy of paint2sim on mobile devices proved to be
sufficient for the intended simulation cases and to be highly competitive with full-powered
x86 CPUs within a smaller power envelope. Further enhancements can be achieved through
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a parallelization of the application on mobile devices, which would significantly improve
performance metrics. Future work should also address the issue of performance fluctua-
tions resulting from heat management constraints. Taking these factors into account, the
digital twin and virtual laboratory features of paint2sim hold the promise of offering a
valuable simulation tool for 2D computational fluid dynamics applications, allowing for
on-the-go simulations.
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Appendix A. User Guide for paint2sim

The application paint2sim is available for download at www.openlb.net/paint2sim/
(accessed on 18 February 2024). This section provides a detailed description of how to use
the application. The forward/backward buttons are used to navigate between different
steps, while the cross can be used to reset the application. All steps are shown in the
remaining part of this section. It is advisable to use a thick fine-tip marker to draw the
domain for an effective domain recognition.

Selecting Resolution: Begin by selecting your preferred resolution using the slider,
as illustrated in Figure A1a. The options range from 100 to 300 in 50-unit increments,
representing the number of cells across the screen width on your mobile device. Note
that higher resolutions may impact user experience on certain devices, potentially causing
performance issues.

Scanning the Domain: Utilize the scan button (Figure A1b) to initiate the domain-
scanning process. Once completed, input the scale of the domain in meters (Figure A1c).

Setting Characteristic Length: Set the characteristic length for the Reynolds number
estimation either through the input field or by adjusting the scale via touch (Figure A1d).

Re =
u · lc

ν

Edit the Domain: The domain can be edited using various touch-based options as
shown in Figure A1e. The edit functions are as follows: Add walls; Remove existing walls;
Declare particles for drag and lift calculations (currently limited to one particle); Define
mandatory inlets and outlets.

Fluid Parameters: Choose fluid parameters from the dropdown menu, selecting Water,
Oil, or Air. Alternatively, input custom kinematic viscosity and density values (Figure A1f).

Reynolds Number: Enter the Reynolds number for the simulation. (Figure A1h).
Inflow Direction: If not opting for a Poiseuille inflow, enter the desired inflow direc-

tion (Figure A1g).
Simulation: The final step initiates the simulation, which runs continuously until

manually canceled using the back button or the cross button. During the simulation, toggle
between velocity and pressure visualization methods, and view simulation parameters
as needed.

www.openlb.net/paint2sim/
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If every step was performed correctly, the simulation should be running just in time on
the mobile screen. In Figure A2, an example simulation is shown.

(a) Selecting resolution (b) Scanning domain (c) Input domain scale

(d) Characteristic length (e) Edit domain (f) Select fluid

(g) Choose inflow (h) Reynolds number (i) Toggle visualization

Figure A1. The figures show the input menus of paint2sim to scan and set up a simulation.

Figure A2. Resulting example simulation after following each step (Figure A1a–i).
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