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A B S T R A C T   

The recent evolution of microelectromechanical systems (MEMSs) presents a more mature technology that ex-
pands from pure research towards multidisciplinary nanoelectromechanical systems (NEMS) research. The 
smaller size of NEMS makes them multifunctional, fast, energy-saving, and sensitive to any external stimuli. The 
extreme sensitivity of these NEMS opens new avenues to the various industrial sector of applications in bio-
sensing, gas sensing, and medical implants which won’t be possible with traditional MEMS counterparts. Most of 
the resistive-gas sensors are more popular than others but their elevated working temperatures consume more 
energy and limit their real-world applications. Various self-heating, embedded MEMS microheaters, and mate-
rials have been explored to improve the sensing performance. Thus, there is an urgent need of the hour to review 
the associated manufacturing techniques and evolution of MEMS fabrication for energy-saving gas sensors and 
new developments in this area. We overview the various manufacturing process and developments in MEMS/ 
NEMS for gas sensor applications, and their historical perspectives, and provide future guidelines to meet the 
existing challenges for real-world gas sensing applications.   

1. Introduction 

In the past few eras, MEMS technology has unfastened innovative 
pathways in numerous applications including gas sensors and bio-
sensors. MEMS-based devices were initially anticipated in the 1960s 
ensuring studies of the piezoresistive potential of silicon (Si) and 
germanium (Ge). The expansion in this area gradually clambered up in 
the 1980s. MEMS-based devices propose features such as scalable de-
vices, small size, and reduction in cost as compared to conventional 
engineering approaches. Lately, micro- and nanofabrication approaches 
have been extensively used to design and fabricate MEMS/NEMS-based 
gas sensors for a variety of applications in environmental sensing, 
physical activities, healthcare, and safety [1–3]. The behavior of the 
active components in NEMS are often in the form of doubly clamped 
beams or cantilevers with nanoscale diameters. These active compo-
nents are made of a variety of materials, including silicon, carbon 
nanotubes, silicon carbide, gold, and platinum. The building block of 

integrated circuits and MEMS microelectronic devices have been widely 
relied on silicon semiconductors. NEMS-based miniaturized gas sensors 
can attain high resolution, and promise a reduction in cost as compared 
to conventional sensing devices [4]. This is due to the fact that the 
thickness of the membrane can go as thin as possible when utilizing 
nanoscale sensitive materials—often has a significant impact on the 
sensitivity and performance of NEMS sensors. When it comes to me-
chanical biosensors, NEMS offer three key benefits. Firstly, they can 
operate at the nanogram scale for mass resolution in fluid media. Sec-
ond, they are highly mechanically compliant, the ability of a NEMS 
device to be displaced or deformed easily to measure a differentiable 
displacement. For instance, NEMS sensors are sensitive enough to detect 
the breakage of hydrogen bonds as they can resolve forces as low as 10 
pN. Third, quick response times from small fluidic mechanical devices 
could make it easier to monitor biological processes in real time [5]. 

Given these essential benefits, MEMS-based gas sensors are utilized 
widely in numerous applications such as navigation sensing on 
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autonomous underwater vehicles (AUV) [6], automobiles, diagnostic 
devices, [7], gas monitoring structures, chemistry, and therapeutic 
fields. There is a great need for miniaturization, portability, and reduced 
power consumption of gas sensors with unified MEMS-based circuits 
[8]. The device integration is traditionally apprehended with a multi- 
chip method in microcircuits while the sensors are fabricated and 
designed over distinct chips. The multi-chip integration allows the self- 
regulating optimization of complementary metal-oxide-semiconductor 
(CMOS) circuits and MEMS sensors. It offers added flexibility as it 
minimizes the fabrication steps needed. Though, the additional cost is 
incurred by intricate packaging [9,10]. This review focuses on MEMS- 
based sensor platforms, highlighting their fabrication and processing 
routes, and developments in MEMS/NEMS for gas sensor applications. 

The entire review article is organized into various sections as follows. 
Section 2 describes trends in MEMS gas sensors covering sensor plat-
forms, microheaters, and photonic and fiber optic MEMS. Section 3 
overviews the transition of MEMS to NEMS and its applications. Section 
4 and 5 cover the materials and manufacturing routes developed for 
MEMS/NEMS gas sensor platforms. Section 6 discusses the different 
target gases exposed to the MEMS platforms and their applicability to 
gas sensors followed by conclusions, challenges, and future perspectives 
in Section 7. 

2. Trends in MEMS gas sensors 

Gas sensor platforms are an integral part of gas sensing devices which 
provide a medium for various gas sensing mechanisms. Therefore, 
different microfabrication methods used for MEMS fabrication could be 
shifted towards gas sensors. MEMS technology has gathered solid 
attention in the area of gas sensing application, such as for the design of 
sensor platforms, embedding Si cavity for thermal insulation, as well as 
for deposition of sensing materials [11,12]. One of the prime issues 
related to gas sensing is to attain a steady operating temperature needed 
to sustain gas sensing. Various approaches have been attempted to 
improve the platform design concerning the use of microheaters, 
manipulation of the conductance and capacitance, isolation of thermal 
components from the sensing layer, and so on [13]. 

2.1. MEMS platforms 

The sensor platform of a traditional metal oxide semiconductor 
(MOX)-based gas sensor and a MEMS-based gas sensor platform is pre-
sented in Fig. 1 a and b. The sensor platform of the traditional MOX- 
sensor comprises three core components: the micro-hotplate, gas-sen-
sitive material, and electrodes for signals [14]. In contrast, the MEMS- 
sensor platform contains an insulation layer, substrate layer, passiv-
ation layer, and heater layer. The complete layers are registered as fol-
lows: (1) substrate, (2) bottom silicon oxide/nitride layers that insulate 
the heating element from the substrate, (3) heating element layer and an 
adhesion layer, if required, (4) top silicon nitride/oxide layer, which 
assists in utilizing insulation among heater and sensing material and 
passivation layer to avoid catalytic interaction among target gas and 
heater material, (5) electrode layer, and (6) gas-sensitive material. 

The main role of the MEMS-based gas sensor platform is to increase 

the temperature of gas-sensitive material to its optimal working tem-
perature which is the major source of power consumption in gas sensors. 
The power consumption of the gas sensor is desired to be as minimum as 
possible, and it depends upon the current and voltage perimeter of the 
miniaturized gas sensors. MEMS gas sensors are generally utilized to 
detect volatile or toxic gas in various types of harsh conditions. There-
fore, MEMS sensor platforms should be chemically stable at room tem-
peratures and not disintegrate at elevated temperatures. MOX materials 
are utilized normally in the MEMS-based gas sensor [16,17]. 

2.2. MEMS-microheaters 

The characteristics of a gas sensor are estimated by 3-S parameters, 
namely, sensor response, selectivity, and stability. In gas sensing, the 
sensor response is stated as the change in response signal while the 
response-recovery times are estimated as the time taken to attain 90% 
variation in the response signal [15]. The ideal MEMS-gas sensor can be 
recognized as small and portable in size, having a high sensor response, 
low detection limit (LOD), high selectivity towards various gases, and 
cross-selectivity. The sensing mechanism for MOX-based gas sensors is 
related to band-gap energy that leads to a change in electrical resistance. 
Cho et al. studied a SnO2-nanotubes deposited MEMS sensor platform 
with suspended ZnO nanowires (NWs) for enhancing joule heating. The 
authors found a fast response-recovery time for H2S gas at room tem-
perature and reduced power consumption [18]. In another report, Zhu 
et al. described a biomimetic gas sensor based on graphene-Pd nano-
particles for hydrogen detection. The study confirmed a better gas sensor 
response as compared to chemical vapor deposited (CVD) graphene gas 
sensors having similar dimensions [19]. The sensor response charac-
teristics of various gas sensors are presented in Table 1. 

MEMS technology has enabled the production of different micro/ 
nanosensor platforms offering several benefits in gas sensing fields. The 
energy consumption could be minimized considerably, specifically by 
the pulse-mode heating process with a minimum duty ratio [33]. Gas 
sensor platforms could be reduced in size considerably by com-
plementing them with an external battery that will be valuable to 
movable gas sensors. The various challenges in microheater perfor-
mance include high mechanical strength, long term stability and power 
consumption. Smaller size features of the MEMS platforms could create 
simple sensor devices which can be accommodated in a small space with 
numerous gas sensor systems. Temperature distributions throughout the 
sensing layer must be carefully managed since the sensing characteris-
tics of micro-gas sensors are very temperature sensitive [34]. High me-
chanical strength is needed for micro-gas sensors during the deposition 
of sensing film and further processing, as well as for all manufacturing 
stages involved in fabricating micro-heaters. For practical applications 
with high sensitivity and a lengthy lifespan, long-term stability is 
necessary. Reducing heat loss by heat conduction by employing thin 
beams with a high length-to-width ratio is a well-known strategy for 
power reduction [35–37]. Nonetheless, inferior mechanical strength is 
typically the result of the beams’ increased length to width ratio. 
Reducing the active area can also help minimize power consumption by 
minimizing heat loss through radiation and convection. Sensitivity 
drops when utilizing a tiny active area since most (bio) chemical sensors 

Fig. 1. (a) Sensor platform of traditional MOX-based gas sensor, and (b) MEMS-based gas sensor platform comprising of various elements [14].  
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have bigger active areas with superior detecting mechanisms. This 
conundrum forces researchers to strike a compromise between me-
chanical strength, sensitivity, and power consumption. 

Previous authors studied 3D micro-heater that features a Pt heating 
resistor inserted in a concave active area. In comparison to existing 2D 
micro-heaters, the 3D micro-heater demonstrated reduced power per 
active area by reducing heat loss through thermal convection and ra-
diation. It is possible to create a micro-heater with a high active area and 
low power consumption using such an innovative structure [38]. 
Recently, pulse driven preheating of SnO2 nanoparticles sensor was 
carried out to enhance its sensing capabilities against volatile organic 
compounds. The pulse heating included double-pulse consisting of brief 

preheating cycle at a high temperature followed by a cooling cycle fol-
lowed by a measurement cycle. Such an operating profile Because of this 
operating profile resulted in improved O2− ions adsorption and ethanol 
based adsorption for efficient gas sensing [39]. 

2.3. MEMS photonic crystals and fiber optics 

It is a noteworthy point to say that these MEMS/NEMS gas sensors 
are not used only for heating but also used in other applications. Several 
MEMS gas sensing platform variations have been commercialized in a 
wide range of applications. The examples include health care di-
agnostics [8,9], food quality monitoring [10,11], agriculture [13], and 
pipeline leak detection [12]. The optical gas sensor such as MEMS 
photonic crystal cavity and fiber optic sensors have played a great role in 
gas sensing. Photonic crystal cavity has periodicity in the dielectric 
constant as proposed by Yablonovitch and John in 1987 [40,41]. Pho-
tonic crystals can control light wavelengths and produce unique effects 
that are impossible with traditional optics. Previous research activities 
have seen several 2D photonic crystal cavity gas sensors (Fig. 2a) due to 
a higher quality factor (Q) than other configurations [42]. 

The mechanism of the photonic crystal gas sensor is described by 
Bragg’s law. 

mλ = 2μd⋅sinθ.

where m is the diffraction order, λ is the wavelength of light, μ is the 
effective refractive index of the periodic structure, d is the interplanar 
spacing, and θ is the glancing angle, respectively. A change in the 
refractive index and the lattice distance will affect the diffraction 
wavelength and hance the detection of gas is made feasible [42]. Pho-
tonic crystals can be produced by MEMS lithographic techniques, e.g., 
electron beam lithography [43], self-assembly, or CVD [44,45]. The 
dimensions of the photonic crystal cavity can be controlled accurately 
using MEMS micromachining techniques. 

In comparison, fiber optic sensors have attracted enough research 
interest owing to their ability to monitor harmful gases. Fiber optic 
sensors consist of a sensing element, core, and a clad, as shown in 
Fig. 2b. If there is a change in refractive indices of the outer layer and 
inner core of fiber (outer layer < inner core), total internal reflection 
occurs, and light propagates in the core [46]. Conversely, if refractive 
indices values of clad and core are too close, the light will be propagated 

Table 1 
Sensor response characteristics evaluation of gas sensors. Abbreviations used in Table 1 for sensor response characteristics evaluation of gas sensors are MOX, field- 
effect transistor (FET), infrared (IR), metal-organic framework (MOF), Zeolitic imidazolate frameworks (ZIF), and room temperature (RT).  

Sensing material Detection principle Fabrication process Response time (s) Detection gas Operating temperature Ref. 

SnO2 MOX Spin coating 150 s H2S 200 ◦C [18] 
Graphene-Pd/Ag FET MEMS 

(lithography) 
16 s H2 150 ◦C [20] 

ZnO NWs MOX MEMS 
(lithography) 

50 s NO 250 ◦C [21] 

Pt-doped Al2O3/ZnO MOX MEMS 
(lithography) 

200 s Acetylene 120 ◦C [22] 

Pd-Si Particle MEMS 
(lithography) 

12 s NO2, H2 RT (25 ◦C) [23] 

Pd-Si NM Diode MEMS 
(lithography) 

22 s H2 RT (25 ◦C) [24] 

Absorber material IR MEMS 
(lithography) 

5 s CO2 RT (25 ◦C) [25] 

ZIF MOF Solution related 300 s NO2, H2 RT (25 ◦C) [26] 
Graphene Band-gap laser 120 s H2 RT (25 ◦C) [19] 
YSZ/SnO2 MOX MEMS 

(lithography) 
15 s SO2 400 ◦C [27] 

Au-In2O3 MOX MEMS (electrospinning) 25 min Formaldehyde 300 ◦C [28] 
Au/SnO2:NiO MOX MEMS 

(Self-assembly) 
5 min NO2 100 ◦C [29] 

ZnO–CuO MOX MEMS 
(sputtering) 

22 s acetone 300 ◦C [30] 

MOF/Co3O4@ZnO MOX MEMS (CVD) 3 s Trimethyleamine 250 ◦C [31] 
SnO2 nanosheets MOX MEMS Photolithography – ethanol 300 ◦C [32]  

Table 2 
Polymer-based gas sensor platform with various sensing materials. Abbrevia-
tions used in Table 2 for polymer-based sensor platforms are polypropylene (PP), 
polyimide (PI), polyethylene terephthalate (PET), polyvinyl acetate (PVA), and 
nylon.  

Sensor 
platform 

Material Synthesis process Target 
species 

Ref 

PET ZnO Hydrothermal H2 [104] 
PI Ga/ZnO Hydrothermal H2 [105] 
PI/PET Pd/ZnO Hydrothermal H2 [106] 
PET SnO2/SnS2 Hydrothermal NH3 [107] 
PET Polyaniline/ 

WO3 

Polymerization NH3 [108] 

Cotton 
fabrics 

ZnO Sol–gel NH3 [109] 

PI Au/In2O3/ 
Polyaniline 

Hydrothermal NH3 [110] 

PI CeO2/CuBr Electron beam 
evaporation 

NH3 [111] 

PI Polyaniline/ 
CeO2 

Self-assembly NH3 [112] 

PP ZnO1-x Suspension flame 
spraying 

NO2 [113] 

PI/PET WO3/MWCNT/ 
rGO 

Hydrothermal NO2 [114] 

PP SWNT/Fe2O3 CVD NO2 [115] 
PET rGO/WO3 Hydrothermal Isopropanol [116] 
PI Ag/ZnO Hydrothermal C2H2 [117] 
Nylon ZnO Hydrothermal H2 [118] 
PVA In2O3 Hydrothermal Ethanol [119]  
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and penetrate the clad region. The optical properties of the core and clad 
layer will be changed in the presence of target gases which will cause a 
change in the refractive index of the sensing layer [46]. Different types 
of MEMS-based fiber optic sensors include Fabry-Perot [47], photonic 
crystals [48], evanescent waves [49], surface plasma resonance [50], 
etc. 

Other MEMS gas sensors include acoustic wave gas sensors which 
utilize mechanical, or acoustic, waves for gas sensing [51]. The acoustic 
gas sensors have better gas detection performance due to the ensuing 
interactions which can be easily identified at lower ppm levels [52]. 
However, the limited selectivity of the acoustic sensors is related to the 
sensing materials used. Examples of acoustic sensors include quartz 
crystal micro-balance and surface acoustic wave sensors. 

3. Evolution of MEMS to NEMS 

Repeated heating and cooling of the bulky MEMS platforms have 
raised concern over the development of innovative energy-saving ap-
proaches in the past [53]. Possible gas response signals at various 
working temperatures would be attained in a few seconds. The relation 
between gas response and working temperatures would be a beneficial 
means to detect target gases [54,55]. As stated earlier, gas sensors are 
anticipated to remain revolutionized by the usage of nanosensor plat-
forms based on NEMS. Though, there is a need to stand clear before the 
developed gas sensors are commercialized. One of the methods is to 
follow nanofabrication methods to deposit the sensing layer homoge-
nously on nanosensor platforms. Moreover, micro/nano- 
characterization techniques must also be well-known [56]. The most 
appropriate way for the fabrication of the MOX sensor platform is the 

integration of MEMS sensor platforms with gas-detecting nano-
structured materials. This method guarantees better 3S parameters 
(sensor response, selectivity, and stability) which are typical of nano-
structures synthesized by various approaches [57]. 

The shrinking of MEMS-based gas sensors reduced to submicron or 
lesser drives to the area of nanotechnology that was profoundly 
endorsed in the past decade [58,59]. In general, the integration of mi-
croelectronics and nanotechnology is known as the field of NEMS 
[60,61]. NEMS appeared in the early 2000s. Unlike MEMS, NEMS is an 
emerging technology. Extremely small features improve the reaction 
kinetics and are highly sensitive to a number of stimuli. Fig. 3 shows the 
typical bulky mechanical structures of micro-accelerometers present in 
airbags to modern nanostructures whose electro-mechanical properties 
can be profoundly modified by their quantum size effects. The extreme 
sensing performance of nanostructured sensors opens the way to diverse 
applications of NEMS sensing platforms in bio-analyses that cannot be 
achieved by their big brothers, MEMS [62], force sensors [63,64], and 
ultrasensitive mass sensors [65–67]. 

On the contrary, MEMS technology is frequently relied on top-down 
fabrication methods, while NEMS is associated with mostly bottom-up 
methods to create important materials and device platforms such as 
nanotubes, NWs, and two-dimensional (2D) nanostructures and carbon 
nanomaterials. The technologies-based NEMS are in the initial phase of 
growth. However, research is swiftly gaining momentum and an 
increasing number of NEMS-based gas sensors are being reported in the 
literature [69,70]. The important disadvantages of MEMS over NEMS 
technology are the extremely high cost of research and development, 
expensive fabrication techniques, and scaling issues for any MEMS 
design or device. In addition, the setup cost for cleanroom facilities can 

Fig. 2. (a) Schematic view and (b) mechanism of a photonic crystal gas sensor.  

Fig. 3. Schematic of the NEMS sensor platform for gas and chemical detection [68].  
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be very high for even low quantities. NEMS has advantages of high ef-
ficiency, reduced power consumption, and miniaturization down to 100 
nm. Small mass and size provide additional attributes like the potential 
for new nanoscale applications and measurements. 

Nanoimprint lithography can be used to fabricate polymer-sensitive 
sensor platforms for the detection of air-borne vapors such as ethanol, 
acetone, and thiols (Fig. 3). Lately, a multi-gas examination scheme 
relied on NEMS was capable of sensing gas at low concentrations. 
Because of minute mass and high resonance frequency, NEMS-based gas 
sensors are capable of improved gas sensing. These NEMS-based gas 
sensors have been applied in industrial organizations for real-time 
analysis of gas mixtures [70]. 

4. Materials for MEMS/NEMS platforms 

Several microelectronic devices use semiconducting materials for 
MEMS such as silicon. As such, Si is the most widely used substrate for 
MEMS/NEMS fabrication due to its dimensional stability, thermal sta-
bility, and compatibility with widely adopted lithographic fabrication 
technologies and packaging techniques. There are other materials also 
used for MEMS platforms such as ceramics, glass, polymers, etc. 

4.1. Silicon 

Silicon (Si) is a primary material of choice for MEMS-based gas 
sensors because of its attractive semiconducting features required for 
MEMS design and fabrication [71,72]. The well-known micromachining 
procedures with additive methods make the design and production of Si- 
MEMS easy and cost-effective. The process flow diagram of silicon 
micromachining is shown in Fig. 4a. 

(a) diagram, and (c) photographic image of MEMS-based gas sensor 
[30]. 

The diagram and photographic image of the gas sensor are shown in 
Fig. 4b-c. Si-MEMS devices might have materials that are well-suited to 
Si including oxides, nitrides, carbides, and metals, for instance, W, Al, 
Cu, and polymers for example polyimide. Apart from benefits from 

MEMS technology, it does not allow heating of sensing material at 
temperatures >350–400 ◦C in operation and does not allow technical 
heating at high temperatures essential for the maintenance of charac-
teristics of MOX sensing material (600–700 ◦C) [73–75]. 

Present silicon MEMS technology in mass production is unable to 
adequately heat the MOX sensing layer (700–800 ◦C) or heat the sensing 
layer at 300–350 ◦C during operation. With the exception of platinum, 
the long-term stability of the heater presents a challenge at high tem-
peratures in both oxidative and reducing environments. Because of its 
low adherence, platinum deposition and stability on SiO2 substrate 
present some challenges. Ti was employed as an adhesive layer for Pt 
deposition by the authors [76]. They discovered that the Pt layer exfo-
liates from the surface after 30 min of heating at 500 ◦C. The specifics of 
this issue were covered in [77]. To increase adhesion, some people 
employed an adhesive film made of a combination of silicon oxide and 
platinum nanocrystals [78]. 

4.2. Alumina 

Perfect platinum adherence to alumina, even after high-temperature 
annealing, is a significant benefit of using alumina as a substrate rather 
than silicon oxide or nitride material for silicon-based microhotplates. 
Since adhesion is the outcome of the interaction of two interface ma-
terials, the substrate’s function in platinum adhesion is obviously highly 
crucial. The first effort to design and fabricate a ceramic-based micro-
heater is made by alumina. The benefit of using alumina as a substrate 
over silicon nitride or oxides micro hotplates relies upon the excellent 
adhesion of platinum (Pt) to alumina ceramics at elevated temperatures 
[79]. The micro-hotplate comprises of hot portion with 20 μm ceramic 
legs and a heater for the sensing material. Ceramics-based gas sensors 
face demerits such as high-power consumption due to the high-heating 
power of gas sensors. Ceramic sensor platforms involve multilayer ce-
ramics, probably to evade the method of etching of ceramic-based sensor 
platforms, for instance, the stack of low-temperatures co-fired ceramics 
(LTCC) sheets [80,81]. The possible methods to reduce power con-
sumption are the usage of the thin-glass film with a similar thermal- 

Fig. 4. (a) Schematic process flow for Si-based gas sensor platform fabrication, (b).  
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expansion coefficient matching with LTCC. Fig. 5 demonstrates the 
design of the ceramic-based sensor. The ceramic MEMS presented in the 
picture is formed by utilizing an alumina thin-film adhered by sealing 
glass on an alumina sensor platform with a cut-out hole. 

Several microheater designs have been studied in the past to reduce 
power consumption and increased energy saving [84]. Previous reports 
have shown promising reductions in power consumption however 
microheater gas sensors remain unsatisfactory at the system level. The 
temperature distribution across the microheater during sensing remains 
a challenge that reduces the sensitivity and reliability of the device. 
Some improvements have been made further in microheater gas sensors 
such as modification of the sensing layer via NW [15,16] or optical 
sensors [17]. However, MEMS-based microheaters are still in the 
picture. 

4.3. Thin ceramic films and membranes 

The formation of thin alumina films (TAF) is the most popular 
method to improve energy saving in ceramic sensor platforms. The 
membrane could be formed through electrolytic oxidation of light 
metals such as Al, Ti, Mg, etc. These TAF-based gas sensor platforms 
have been utilized for gas sensing applications. The electrolytic oxida-
tion of metals occurs at high temperatures and potentials in plasma 
electrolytic oxidation over anodizing chemical method [85]. After 
oxidizing the metals, TAF is fabricated from the surface via etching. 
TAF-based MEMS gas sensors could resist high temperatures up to 
550 ◦C. The power consumption of TAF based MEMS gas sensor platform 
is equivalent to the results obtained from the Si-based gas sensor plat-
form [86]. For instance, MiCS5524 CO gas sensors have a power con-
sumption of 70–85 mW at operating temperature that is equivalent to 
around 300 ◦C. Despite significant results attained with TAF membranes 

created by electrolytic oxidation of Al, high porosity, and surface defects 
of alumina restricts wire bonding of Pt on the MEMS-based sensor 
platform [87]. One more shortcoming of TAF is the roughness of the 
surface, which requires a fairly thick Pt heater (~1 μm) through the 
magnetron sputtering method. Furthermore, porous membranes formed 
via electrolytic oxidation of Al are sensitive to mechanical and thermal 
damage. 

The MEMS-based gas sensor platform on anodic alumina was pre-
sented by D. Routkevich in 2001. A significant benefit of this method is 
the mask-less technology of micro-hotplate formation. Pt was coated on 
an alumina substrate, and a horse-shoe-shaped microheater was made 
by laser cutting Pt with alumina substrate [88]. This micro-heater sensor 
platform could be simply heated to 700 ◦C. Temperature homogeneity 
for this particular sensor platform is comparatively consistent over the 
portion shielded via a sensing material. The foremost hindrance of this 
micro-heater sensor platform is the fragility of the chip and difficulties 
with the packaging of large and thin-area platforms. So, the opinion of 
simple packaging was reinstated to fix the membrane in a similar way to 
the Si-based gas sensor platform [89,90]. Thin-membrane created by 
nanoporous alumina was used in a ceramic MEMS-based gas sensor 
platform, well-known as anodic aluminum oxide (AAO, Fig. 6a-d). 

A major problem in the fabrication of AAO membranes is mechanical 
disintegration that results in the distortion of primarily plane AAO 
membranes through high-temperature annealing beyond ~550 ◦C. This 
hindrance restricts the applications of AAO membrane in gas sensing 
applications annealed around ~600–800 ◦C [92]. Also, high- 
temperature material, for instance, gallium oxide (Ga2O3), is utilized 
as sensing material with working temperatures above 550 ◦C. A signif-
icant benefit of the MEMS-based sensor platform made by AAO mem-
brane as compared to the Si MEMS-based sensor platform is the 
possibility of laser- machining on alumina due to the stress-free alumina 

Fig. 5. (a) Design of ceramic MEMS sensor 1) ceramic platform; 2) adhesive layer; 3) thin-film ceramics membrane; 4) sensing thin-film; 5) laser penetrated hole; 6) 
Pt micro-heater; 7) contact pad; 8) sensing electrode [82]. (b) MEMS microheater and (c) real image of microheater [83]. 
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thin films in contrast to Si- membranes [93]. A similar case of, a 1 mm 
laser-drilled hole, is shown in Fig. 6e. The cutting procedure does not 
result in the creation of cracks in membranes as presented via the 
scanning electron micrograph (SEM) in the inset of Fig. 6e. Therefore, 
the laser could be useful for the creation of holes, and added essentials of 
MEMS capable of progress process of chemical sensors related to 
alumina membranes [40]. 

4.4. Zirconia and borosilicate glass ceramics 

The core benefit of using ZrO2 ceramics in comparison to other 
ceramic materials is due to its thermal conductivity which is ten times 
lower than that of Al2O3. Thus, the MEMS-based gas sensor platform 
created by zirconia ceramics would acquire significantly lesser power as 

compared gas sensor platform created by alumina with a similar thick-
ness [94,95]. Also, as compared to the Si-based gas sensor platform 
zirconia-based gas sensor platform requires less power consumption for 
gas sensor applications [96]. 

The key motive for the claim of thin-film borosilicate glass as a 
substrate for gas sensors is the fabrication through facile low-cost 
equipment [97]. A significant advantage of using a thin-film borosili-
cate glass sensor platform is its attractive thermal expansion coefficient 
which is almost similar to LTCC and Si [98,99]. Therefore, a suitable 
MEMS-based sensor platform can be fabricated by positioning a glass 
cantilever on a ceramic platform. Fig. 7a shows the fabrication of a glass 
micro-heater utilizing a laser pattern for the heater. Later, laser beam 
carving of Pt micro-hotplate, a similar laser beam was utilized for cut-
ting of platform and piercing holes utilized for soldering platform to TO- 

Fig. 6. Diagram of fabrication procedure of SnO2 nano-pore thin-film. (a) AAO pattern; (b) top-view of SnO2 nano-pores; (c) annealing at various temperature; (d) 
SnO2 nano-pore thin-film based UV photo-detector [91], and (e) 1 mm in diameter hole drilled by laser in 20-μm alumina thick-film and SEM image of edges of laser- 
cut [40]. 

Fig. 7. (a) Micro-heater on 30-μm thick-film borosilicate glass as a sensor platform. Pt micro-heater is fabricated via laser ablation, (b) Power-consumption of micro- 
heater: (1) whole-membrane with micro-heater positioned in middle; (2) triangle profile cantilever with a micro-heater positioned at the tip of cantilever [40]. 
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8 sensor package. The thermal characteristics of the micro-heater 
created by 30-μm borosilicate are shown in Fig. 7b. The power profile 
changes according to the positioning of the micro heater which can be 
tuned effectively. 

4.5. Polymers 

Polymers are utilized for fabrication in wearable gas sensor appli-
cations that have very low conductivities (<10− 6 Scm− 1). The core 
monomers of polymer comprise alternate single/double bonds [100]. 
Polymers have been extensively explored for development as a flexible 
substrate to achieve flexibility and improved sensing characteristics at 
RT. Poly(3,4-ethylene dioxythiophene) (PEDOT), polypyrrole, polyani-
line (PANI), and polythiophene (Pth) are the foremost polymers utilized 
in gas sensors [101,102]. Seekaew et al. studied an ammonia gas sensor 
based on PEDOT/PSS sensing material and the sensor showed a 10% 
sensor response towards 100ppm ammonia. The sensor response of 
PANI-based nanoparticles on PET substrate was examined and the 
sensor showed improved sensor response as compared to the Si-based 
substrate [103]. 

Polymers have attracted progressive significance in the field of 
MEMS. It would not ever substitute conventional materials such as Si in 
mass MEMS production, their assets lie in their possible benefits in 
various fields such as rapid prototyping, biological systems, and robust 
operations [119]. The precise practical tests in microfabrication, include 
patterning, deposition, and bonding with polymers, along with typical 
demonstrations of their applications that include gas sensors, and 
microfluidics [120]. Thuau et al. studied a series of electromechanical 
transduction systems for usage in polymer-based MEMS sensors [101]. 
The main devices and materials comprise nanocomposites based on 
carbon nanotubes (CNTs), polymer sensors created by (Polyvinylidene 
fluoride (PVDF) -trifluoroethylene (PVDF-TrFE). These polymers are 
mainly designed for sensor platforms and detecting applications and 
prove that nanocomposite and polymer MEMS could be fabricated and 
combined for complex purposes. 

Polymer MEMS with three-dimensional (3D) printing machinery is 
confirmed by Kundu et al. and Lamperska et al. [121,122]. They utilized 
two-photon lithography to make micro-dumbbell assemblies that could 
be manipulated by optical tweezers. An example of the fabrication of 
polymer-based gas sensors with interdigitated electrodes (1 mm 
spacing) is used for the inkjet printing of the polymer substrate (see 
Fig. 8 a–b). The gas sensor with graphene@PEDOT/PSS is shown in 
Fig. 8 c–d. The thicknesses of graphene–PEDOT:PSS sensing thin-film 
was around 407 nm [123]. 

When compared to the polymers, the Si wafer’s microheater offers 
superior thermal uniformity. Moreover, because of their flexibility and 
deformability, microheaters with PDMS substrates can be used on non- 
flat surfaces and require a lot of power to achieve the same maximum 
temperature on Si wafer [124]. Silica glass has higher electrical re-
sistivity and lower thermal conductivity than silicon, they are used as 
base substrates that result in heat confinement and low power usage 
[125,126]. The comparison of several substrates indicates that the 
microheater on glass reached about 300 ◦C, while the microheater on 
silicon and alumina only produced very little heat at 320 mW power 
[127]. According to all of these studies, the substrate plays a crucial part 
in maintaining the proper temperature by preventing heat loss. 

5. MEMS fabrication techniques 

As already discussed, MEMS fabrication techniques are crucial for 
MEMS-based gas sensor platforms. Various technologies used for MEMS 
fabrication involve ion implantation, oxidation, metal sputtering, CVD, 
and diffusion methods [128–130]. Lithography is an important method 
for MEMS/NEMS fabrication. The progress of this technology is crucial 
to minimizing the drawbacks of MEMS/NEMS fabrication. Aiming the 
innovative fabrication methods, innovative materials, and innovative 
structures, would attract future MEMS/NEMS gas sensor platforms that 
are practical and effective in academic and industrial zones [131–133]. 
The lithography can be used to pattern materials and create structures 
with controlled porosity. This can significantly increase the effective 

Fig. 8. Schematic for gas sensor fabrication procedure. (a) prepared interdigitated electrode, (b) ink-jet printing, (c) schematic diagram of a gas sensor, and (d) 
photograph of a sensor device [123]. 
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surface area and tune the morphology of the sensing material. This 
controlled porosity can influence gas adsorption and desorption kinetics, 
impacting the gas response. Therefore, in this section, we discuss various 
lithographic fabrication methods used for MEMS sensor platforms. 

5.1. Edge lithography 

Edge-lithography is another term for lithography which practices 
edge portions of traditional nano/micro-sized assemblies. High- 
resolution assemblies fabricated by edge-lithography could be simply 
created by narrow edges of traditional nano or micro-sized pre-assem-
blies which are simple to develop. The notion of edge lithography is 
presented by edge arrays through light interference at the edges portion 
of phase shift mask assemblies, which merely lessens nano-pattern size 
[134–137]. 

These edge-lithography approaches have been used in an extensive 
variety of functions that include a gas sensor platform, transparent 
electrodes, and optical devices. Edge lithography has numerous benefits; 
easy to lessen magnitudes, for instance, dimensions and pitch via parting 
individually sides of preassembly [138–140]. Moreover, this technique 
does not involve intricate methods and exclusive equipment. Also, 
numerous applications for improving characteristics utilizing high- 
resolution edge nano assemblies could offer a high surface-to-volume 
ratio. Edge lithography could be characterized by a technique utilizing 
the edge part (Fig. 9). We would define structures and principles of four 
characteristic edge lithography approaches that include spacer lithog-
raphy, phase-shift lithography, edge spreading lithography, and modi-
fied capillary force lithography. 

5.2. Phase shift lithography 

Phase-shift lithography is planned to improve the resolution of 
lithography by utilizing a phase shift mask on the way to produce a 
phase shift by employing groove assemblies or alternative material 
deposition. To lessen magnitudes of lithography, phase-shift lithography 

utilizes interference phenomena of light at the edges area of phase shift 
mask assembly and, thus, creates assemblies smaller than the wave-
length of light [138–140]. Though procedures similar to outdated 
lithography, different traditional photomask with impervious assem-
blies, photomask utilized in phase-shift lithography is translucent 
incomplete areas. Photomask in phase-shift lithography has micro/ 
nano-sized structures that originate from phase shift [141,142]. 

Hence, an important aspect of phase-shift lithography is the relation 
between incident light wavelength and the magnitude of the phase shift 
mask assembly. Phase shift lithography is a facile technique to attain 
nano-patterns at 20–90 nm dimensions by the usage of phase shift 
photomask in traditional lithography methods. Utilizing a phase-shift 
mask of several dimensions, numerous high-resolution assemblies 
could be created. To attain smaller nano-pattern through phase shift 
lithography, integration with further lithography approaches for 
instance post-etching method is essential [143,144]. 

Fig. 10 shows the exposure phase shift lithography for positioning 
NWs. With this method, numerous nanostructures could be fabricated. 
For instance, Fig. 10 (b) Si-based nanoneedles, (c) fencelike Si NW arrays 
in boxlike shape overgrown by ZnO demonstrating nanocontainers, and 
(d) an array of NWs prepared by phase shift lithography assist [145]. 

5.3. Spacer lithography 

Spacer lithography has been utilized mainly to lessen the dimensions 
of nano-patterns by employing side- edge of prevailing nano-pattern 
[146–150]. Also known as spacer-defined double patterning (SDDP) or 
self-aligned double patterning (SADP) as it involves a multi-step 
patterning procedure [151,152]. Spacer lithography uses film coated 
on side-edges nano-size assemblies as one assembly [153]. A pre- 
assembly for coating spacer material is fabricated by numerous lithog-
raphy approaches for instance nano-imprint lithography and photo- 
lithography. The spacer material is coated on pre-assembly. A homog-
enous deposition is significant as it deposits the side edge of the pre- 
assembly through the coating. To entirely shelter side-edges of pre- 

Fig. 9. Four various edge-lithography methods based on approaches for using edges. Edge-lithography could be characterized contingent on the technique for 
utilizing the edges. i) Phase-shift lithography, ii) spacer lithography, iii) edge spreading lithography, and iv) modified capillary-force lithography [137]. 
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assembly, vapor deposition are utilized [154–157]. Reactive ion etching 
(RIE) is utilized to etch spacer material parting only thin film on pre- 
assembly side edges. 

Lastly, the selective elimination of pre-assembly materials withdraws 
thin spacer materials on pre-assembly side-edges. Spacer materials are 
primarily utilized as a mask to transfer spacer assembly to material 
deposited underneath, then spacer assembly to the material beneath, 
spacer could be entirely detached to attain high-resolution assembly 
over massive part. Demami et al. fabricated polysilicon NWs by the side- 
wall spacer Lithography technique. Fig. 11 shows the fabrication of 
polysilicon NWs by the side-wall spacer-lithography method. The cross- 
section SEM image shows the 50-nm polysilicon NWs and 10-μm pol-
y‑silicon NW-based resistors [158]. 

5.4. Edge spreading lithography 

Edge spreading lithography (ESL) creates assemblies on the edges of 
assemblies utilizing the fluidity of the target material. ESL is planned to 
pattern self-assembly monolayer (SAM) for instance alkanethiol and was 
originally recognized via Xia’s research group [159]. Materials of SAM 
on the upper layer are stimulated by nanostructures to the substrate 
beneath and placid at the edge of the structure. Therefore, structure 
facilitates the drive of alkanethiols particles and regulates the shape of 
SAM assembly [160–162]. SAM materials are created in a pattern on the 
outer edges of the photo-resist assembly. After that, a high-resolution 
assembly could be attained by eliminating photo-resist and etch gold 
(Au) through SAM assembly employing a mask. ESL technique could be 
utilized for numerous assemblies likewise as a photo-resist pattern. 

Fig. 10. (a) Two-step exposure phase shift lithography for placing NWs. Numerous nanostructures could be fabricated with this procedure. For instance (b) Si-based 
nanoneedles, (c) fencelike Si NW arrays in boxlike shape overgrown by ZnO demonstrating nanocontainers, and (d) an array of NWs prepared by phase shift 
lithography assist [145]. 

Fig. 11. (a) Fabrication of polysilicon NWs by side-wall spacer-lithography method. (b) SEM photo 50-nm polysilicon NWs cross-section view. (c) Spacer technique 
10-μm polysilicon NWs based resistors [158]. 
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5.5. Modified capillary lithography 

Capillary-force lithography (CFL) is a technique for the assembly of a 
broader diversity of fluidity material. CFL practices mold-stamp to make 
polymers assembly. In CFL, polymer melts and fills the voids among 
molds and polymers. As the stamp is detached from the substrate, 
polymer assembly is formed [163,164]. The CFL technique is based on 
capillary forces, dissimilar height assemblies could be formed at the 
edge of the pattern liable on the number of polymers and profile of as-
sembly. Utilizing high-resolution polymers assembly utilizing a mask, 
the material is etched to attain high-resolution assembly with chosen 
material [165–167]. The profile and size of the assembly could be 
accustomed following the thickness of deposited polymer materials, 
etching period, the shape of the stamp, and other aspects. Besides, edge 
lithography utilizing ESL and CFL, numerous methods relied on de- 
wetting phenomena utilizing fluidity of assembly material, and edge 
transfer technique utilizing the stamping method has been established 
[168–170]. 

Assemblies formed through SSL and edge approaches have a high 
surface-to-volume ratio that could be a benefit for displaying high sensor 
response in numerous gas sensors. Thus, the structure created through 
SSL and edge has been extensively utilized to increase sensor response. 
The usage of nanostructures or assemblies in gas sensor platforms 
frequently enhances the performance of conventional thin-film sensor 
platforms [171]. Edge lithography is an appropriate method for pro-
ducing high-resolution sensor platforms and displays improved sensor 
response with a high surface-to-volume ratio in comparison to tradi-
tional thin-film sensor platforms. Thus, high-resolution polymer or MOX 
assemblies are fabricated by edge lithography to display enhanced 
sensor response outcomes for target gases (Fig. 12 a) [172,173]. Also, 
nano-assemblies formed thru by spacer lithography are well suitable for 
the gas sensor that attains a high surface-to-volume ratio due to its high 
aspect ratio. The spacer lithography technique has the benefit of being a 
gas sensor platform that could utilize several sensing materials. 

For hydrogen (H2) gas sensors, research is concentrated mainly on Pt 

and Pd alloys. The Pt nanostructures-based H2 sensor was formed by SSL 
that showed exceptional sensor response, low LOD around 1 ppm, and 
excellent recovery performance at room temperature (Fig. 12 b) 
[166–168]. The ultra-small grain size and thin interface gap and surface 
electrons scattering principles to instantaneously functional towards 
sole Pd channel, thus persuading dual switching sensor response to-
wards H2 (Fig. 12 c) [176,177]. Lately, H2 gas sensors utilizing Pd- 
created multi-component nano-assemblies have been developed 
(Fig. 12 d) [108]. Depending on present research using sole particle Pt 
and Pd; Penner et al. [178] studied numerous binary structures to 
advance sensor response. When Au or Pt are varied in Pd through spacer 
lithography, the reaction rate was enhanced [178,179]. Pd–Au binary 
structures exhibited a response time of 2 s for 1% H2 gas which is the 
fastest response rate stated to date (Fig. 12 e). 

6. Target gases and MEMS sensors 

MOX-based sensors have been used widely to detect various toxic 
gases such as HCHO, C6H6, and naphthalene, C2H5OH. The concentra-
tion of these gases ranges from ppm to sub-ppb level detections [180]. 
For high-level ppb detection, MOX gas sensors are designed to operate at 
elevated temperatures known as temperature cycled operation to 
improve sensitivity and selectivity. In temperature cycle operation, the 
microheater unit of the sensor is exposed periodically to a different set of 
temperatures that lead to different interaction statistics of sensitive 
layers and analytes [180,181]. 

Recent research has shown that the selectivity of the sensor devices 
can also be increased by utilizing the physisorption effect. The sensi-
tivity and selectivity is affected by the operating temperature of the 
obtained structures. The effective methods used to tune the sensing 
properties of the obtained materials to provide different response 
spectra suitable for exploitation in an electronic nose instrument include 
the proper choice of metal oxide, the ability to control the physical- 
chemical properties of these materials, i.e., their stoichiometry, 
porosity, grain size and shape, as well as the proper addition of dopants 

Fig. 12. High resolution and high aspect ratios gas sensors utilizing secondary and edge lithography. a) CO-based gas sensors of ZnO NW were designed and 
fabricated by spacer-lithography [143]. b) High resolution (16 nm) Pd nano-pattern for hydrogen gas sensors [174]. c) Dual switching sensor response of Pd nano- 
pattern rendering to hydrogen concentrations [174–176]. d) Well-blended Pd bi-metallic nano-pattern for improved hydrogen gas sensor [137]. e) Improved 
hydrogen sensor response in Pd–Pt bi-metallic hydrogen gas sensor and swift response times of the Pd–Au bi-metallic hydrogen gas sensors [178]. 

B. Sharma et al.                                                                                                                                                                                                                                 



Microelectronic Engineering 288 (2024) 112168

12

or surface catalysts. Tubular structures can be made to have different 
compositions in order to increase their sensitivity and selectivity to 
different gases and to provide a variety of specialized sensors depending 
on the target gases and application. In addition to these broad and 
qualitative justifications, it’s important to remember that these char-
acteristics also heavily depend on the material, how it was prepared, and 
the material itself—gaseous compounds should be assessed on a case-by- 
case basis. 

Different MOX catalytic and electrochemical sensors fall into the 
detection range of 1 ppm to 1% limit (Fig. 13). Previous research has 
shown that a detection range of 100 ppb of HCHO and 20 ppb of 
naphthalene is successively achieved [180]. To increase the sensitivity 
and selectivity, further researchers have proposed a MOX sensor design 
with a porous sensing layer. The use of a porous sensing layer offers 
numerous active sites. These porous layers can be synthesized by 
chemical template-based methods [183]. The pore size and the film 
thickness can be tuned for developing potential MOX gas sensors with 
various compositions that affect sensing performance [184]. 

Polymer-based sensors are developed for monitoring healthcare and 
environmental pollutants [185]. Various capped nanoparticle sensors 
for volatile compounds detection have been investigated as chemir-
esistor sensors. Chemiresistor sensors have been designed with deco-
rated Au nano-particle thin film platforms. Such chemiresistive sensors 
are used to detect volatile compounds and breath of lung cancer or 
diabetic patients under normal conditions. The advanced NEMS tech-
nology has made a possibility to design gas sensor platforms with 
different nanoparticles, compositions, and sizes to achieve better 
sensitivity and selectivity. In nanostructured sensors, the high sensitivity 
and selective response in gaseous mixtures of volatile compounds can be 
achieved with a LOD of 20 ppb [186]. 

Other conducting polymer sensors have also been widely employed 
for NEMS platforms. Doped conducting polypyrrole (PPy) with sulfo-
nated groups have been designed for detecting explosive gases such as 
2,4,6-trinitrotoluene (TNT). The sensing layer of PPy on Au-electrodes 
was electropolymerized in the presence of the sulfonated dyes as 
shown in Fig. 14. The sensor demonstrates high sensitivity and selec-
tivity to TNT with a LOD of 0.2 ppb and 10–800 ppb, respectively [187]. 

CNTs are widely used for detecting NH3, NO2, and various organic 
compounds. A LOD of 44 and 262 ppb have been obtained for NO2 and 
TNT, respectively [188]. MOSFET sensors have utilized CNTs to detect 
and improve selectivity among NO2, CO, CO2, O2, and H2 [189,190]. 
Few researchers have shown that CNT sensors are not that efficient for 
the detection of CO, H2O, and bimolecular due to their high bonding 
energy and ability to charge transfer to CNTs. Doping has been sug-
gested to alleviate this problem, such as N2 and B-doped CNTs are useful 
for room temperature selective detection of C2H2, H2O, and NO in a low 
concentration. B-doped CNTs are highly sensitive towards C2H2, while 
N2-doped CNTs are more sensitive to NO2 and CO [191]. 

Capacitative micromachined ultrasonic transducers sensors 
employing different layers of polyimide, amine- and quinidine have 
been used for CO2 detection. The sensitivity of CO2 detection around 
1.06 ppm/Hz at 50 MHz has been obtained in the past. The sensitivity of 
CO2 detectors can be affected by the presence of water vapor, 

repeatability, and integration [192]. Other toxic gas sensors based on a 
cholesteric liquid crystal coated with fibers have been reported for the 
detection of tetrahydrofuran, acetone, and methanol gas, respectively. 
The sensitivity of such a sensor increases with the molar mass of the 
volatile compounds [193]. ZnO nano-particle has been used with the 
fiber-optic gas sensor for the detection of C3H6O, NH3, and C2H5OH. The 
ZnO nano-particles improve the sensitivity of NH3 up to 150 ppm and 
C3H6O at >150 ppm [194]. Such sensors are highly selective towards CO 
among a mixture of NH3, CO2, NOx, LPG, and H2 [195]. 

7. Relation between NEMS and gas sensors 

Nanoelectromechanical systems, or NEMS for short, are promising 
prospects for a wide range of applications in fundamental science and 
semiconductor-based technologies [196,197]. Cells, proteins, and gas 
molecules are all weighed using precision mass sensors called NEMS 
resonators [198–200]. The NEMS mass sensor is based on observing the 
shift in the NEMS resonator’s resonant frequency upon the absorption of 
an extra mass onto its surface. Due to the material’s superior rigidity and 
low specific mass, graphene sheets are currently attracting a lot of in-
terest for use as the foundation of NEMS resonators. 

Previous study [201], presented a technique for producing high- 
quality free-standing graphene NEMS on a wide scale, wherein the 
supporting polymer constantly coats the graphene top surface during the 
construction process. Graphene is a highly sensitive material that is 
employed in research for gas sensing applications [201], but it can be 
even more sensitive with an efficient, one-step process. 

NEMS that use mass transducing mechanisms function according to 
the frequency shift theory. Essentially, this means that resonance fre-
quencies are found for both the system with and without connected 
nanoparticles. It is possible to roughly identify the type of chemical 
substance based on the difference between these two frequencies. Thus 
far, NEMS resonators built on graphene sheets have been utilized to 
study detection using basic chemical substances such H2, H20, O2, CO2, 
CO, NO2, Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, and Pt from both a theoretical 
and experimental perspective [202]. While proof-of-principle compar-
ative studies revealed that graphene, as a building block of a gas sensor, 
has a high sensitivity to gas molecules, graphene’s detecting capabilities 
could be improved by employing a nanoporous substrate. 

8. Conclusions, challenges, and future perspectives 

In this comprehensive review, we have highlighted the recent ad-
vances and developments in the field of MEMS technology over the 
decades including various MEMS-based platforms and their fabrication 
techniques and materials, and various strategies to improve device 
performance.  

1. Several advancements in this MEMS fabrication procedure from 
lithography to micromachining and new materials, internet of things 
(IoTs), and advanced BioMEMS are expected to revolutionize this 
area. Among gas sensors, MEMS has made impressive progress such 
as FET-based gas sensors and emerging, commercial applications are 

Fig. 13. Detection range of important MOX-based gas sensors [182].  
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expected to benefit the materials community research for a wide 
usage of gas sensing technology. 

2. MEMS-based platforms have a simple organization, ease of fabrica-
tion, and are available in plenty. Emerging NEMS technology has not 
only reduced the final dimensions of the sensing device but also 
consumes less power. Future guidelines for improving the fabrication 
techniques, novel materials, and techniques, high-performance 
microdevices that can operate at room temperatures will be more 
readily available.  

3. The combination of the NEMS technique with the current MEMS will 
play an important role in laying the foundation of microdevice and 
gas sensors for smaller and low-cost sensors with improved perfor-
mance and multi-functionality.  

4. The evolution of MEMS to NEMS during the last decades has a great 
potential to build a foundation for the upcoming technological rev-
olution in miniaturized and flexible electronics. 

5. In the future, it is expected that these NEMS-based gas sensor tech-
nologies may replace MEMS owing to their superior performance, 
smaller dimension, and multi-functionalities. 
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