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Abstract
The eddy covariance (EC) method is a standard micrometeorological technique 
for monitoring the exchange rate of the main greenhouse gases across the interface 
between the atmosphere and ecosystems. One of the first EC data processing steps 
is the temporal alignment of the raw, high frequency measurements collected by the 
sonic anemometer and gas analyser. While different methods have been proposed 
and are currently applied, the application of the EC method to trace gases measure-
ments highlighted the difficulty of a correct time lag detection when the fluxes are 
small in magnitude. Failure to correctly synchronise the time series entails a system-
atic error on covariance estimates and can introduce large uncertainties and biases 
in the calculated fluxes. This work aims at overcoming these issues by introducing 
a new time lag detection procedure based on the assessment of the cross-correlation 
function (CCF) between variables subject to (i) a pre-whitening based on autore-
gressive filters and (ii) a resampling technique based on block-bootstrapping. Com-
bining pre-whitening and block-bootstrapping facilitates the assessment of the CCF, 
enhancing the accuracy of time lag detection between variables with correlation of 
low order of magnitude (i.e. lower than −1 ) and allowing for a proper estimate of the 
associated uncertainty. We expect the proposed procedure to significantly improve 
the temporal alignment of the EC time-series measured by two physically separate 
sensors, and to be particularly beneficial in centralised data processing pipelines of 
research infrastructures (e.g. the Integrated Carbon Observation System, ICOS-RI) 
where the use of robust and fully data-driven methods, like the one we propose, con-
stitutes an essential prerequisite.
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1  Introduction

Combating climate changes requires an accurate quantification of greenhouse 
gases (GHG) emitted to and removed from the atmosphere by terrestrial ecosys-
tems. To this end, an important research frontier in ecology is directed toward 
measuring the rates of exchange (or flux densities) of GHGs over natural and 
anthropogenic ecosystems (Houghton 2005; Bonan 2008; Pan et  al. 2011). Sur-
face layer fluxes of energy, water (H2O), carbon dioxide (CO2), methane (CH4) 
and nitrous oxide (N2O) are currently estimated by the eddy  covariance (EC) 
technique (Foken et  al. 2012). The EC technique employs a sonic anemometer 
(SA) for wind velocity components and a gas analyser (GA) for scalar atmos-
pheric concentrations and requires high-frequency sampling rates (e.g. 10 obser-
vations per s). Eddy fluxes are derived from the covariance (normally within an 
averaging time of 30 min) between instantaneous fluctuations about the mean of 
the vertical wind speed (W) and the scalar of interest (S), which can be temper-
ature, atmospheric concentrations of water vapour, carbon dioxide or any other 
trace gas.

The calculation of EC fluxes requires the instantaneous quantities of vertical 
wind velocity and scalar to be simultaneously measured. Such a condition is sel-
dom fulfilled in field measurements because, in general, there is not a perfect co-
location of the SA and the GA sampling points to avoid possible wind flow dis-
tortions. This causes the same air parcel to first pass through one sensor and then 
through the other, creating a delay (time lag) in its wind and concentration meas-
urements. In addition, in closed-path systems (i.e. those GAs with an internal 
sampling cell and an inlet tube), the sampled air parcel, sucked by a pump, has 
to travel from the intake to the measurement cell in the analyser (potentially for 
tens of metres) before being measured and merged with the concurrent wind data. 
This necessarily causes an additional and undesirable temporal delay with respect 
to time series sampled by the SA. Physical distance between sensors is not the 
only source of temporal mis-alignment. Also data flow delays, digital clock drifts, 
and artefacts in the data acquisition strategy could be responsible for introducing 
a significant temporal mis-alignment between EC time series measured by differ-
ent instruments (Fratini et al. 2018).

Correcting such mis-alignments between raw data is a key step in the calcula-
tion of fluxes. Failure to correctly synchronise the time series causes a systematic 
error on covariance estimates (Taipale et al. 2010; Langford et al. 2015). The use 
of a constant time lag derived from the physical characteristics of the sampling 
system is often inappropriate since the temporal mis-alignment between time 
series may vary during the sampling period. For open-path systems (i.e. those 
GAs without tube inlet), while keeping the physical distance between the sensors 
fixed, the temporal mis-alignment may vary according to wind speed and wind 
direction. For closed-path systems instead, while keeping the characteristics of 
the sampling line geometry (e.g. tube length, tube inner diameter, intake air flow 
rate, distance between sonic anemometer and tube inlet) unchanged, the temporal 
mis-alignment may vary with pump ageing, filter contamination, accumulation 
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of dirt in the sampling line, which all impact the stability of the flow rate and 
therefore the travel time of air parcels through the sampling tube (Massman 2000; 
Shimizu 2007). Also the way some non-inert gases interact with the tube walls 
(e.g. adsorption–desorption) is responsible for generating a temporal mis-align-
ment between time series. For example, the transit time of water vapour along the 
intake tube of a closed-path system can vary substantially with relative humidity, 
due to adsorption/desorption processes at the tube walls (Ibrom et al. 2007; Mass-
man and Ibrom 2008; Mammarella et al. 2009; Fratini et al. 2012).

To overcome the limitations of using a constant time lag based procedure, the 
prevalent solution in EC data processing is to assess the cross-covariance function 
between W and S. The cross-covariance function provides a measure of the linear 
dependence between two time series, one of which is delayed with respect to the 
other. In ideal situations and according to the EC theory, the highest dependence 
occurs when W and S are perfectly aligned. Therefore, the actual time lag can be 
detected in correspondence of the step lag that maximises (in absolute terms) the 
cross-covariance between the two time series (Moncrieff et al. 1997; Rebmann et al. 
2012). We refer to such an approach as covariance maximisation (CM hereinafter).

However, the effectiveness of the CM procedure depends on the shape of the 
cross-covariance function, which in turn depends on the stochastic properties of the 
variables involved and on the amount of random uncertainty affecting flux estimates 
(Billesbach 2011; Nemitz et al. 2018; Vitale et al. 2019). Generally, the procedure 
is effective under second order stationary conditions and when the flux magnitude is 
moderate/high. In these circumstances, the cross-covariance function exhibits a dis-
tinct and pronounced peak (either positive or negative) and the actual time lag can 
be easily detected (see Fig. 1a). In other circumstances, in particular when fluxes are 
of small magnitude, the cross-covariance function can be characterised by multiple 
local extrema of similar magnitude (Fig. 1b–e). In some cases the time lag detection 
for fluxes of low magnitude can be facilitated by modern GAs capable of simultane-
ously measuring several GHGs species. For such instruments, and in case of inert 
gases, the detection of the time lag for low magnitude fluxes can be obtained by 
dynamically ascribing delays detected from co-measured variables having a stronger 
signal, generally CO2 (Nemitz et al. 2018). However, in absence of reference high-
magnitude fluxes or when trace gases are measured by different GAs with poten-
tial different time lags (e.g. due to their relative position or the use of different data 
acquisition systems), the detection of the actual time lag becomes challenging, in 
particular in automated EC data processing pipelines.

A tentative solution to this problem has been described in Taipale et al. (2010) 
who suggested applying a preliminary smoothing filter on the cross-covariance 
function before detecting time lag in correspondence of the absolute maximum. 
While smoothing can help in reducing the influence of sporadic and isolated peaks 
significantly, the determination of the extremum in the covariance curve often fails 
for low magnitude fluxes, resulting in unreasonable time lags and, consequently, 
potentially biased flux estimates (Langford et al. 2015; Nemitz et al. 2018; Schall-
hart et al. 2018; Kohonen et al. 2020; Striednig et al. 2020).

In addition, a further limitation of the CM-based procedures (with or with-
out smoothing) is that the alignment of time series when the true unknown flux is 
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null or very close to zero can never be achieved. Fluxes are in fact calculated as 
covariances between W and S and a method which maximises the covariance will 
always search and select a time lag in correspondence of flux values different from 
0 (either positive or negative), a phenomenon known as mirroring effect (Langford 
et al. 2015; Kohonen et al. 2020). In this regard, it should be noted that flux esti-
mates equal to zero fall within the physical range of possible values and they are 
not to be understood as a rare event, in particular during periods of low background 

Fig. 1   Illustrative examples of cross-covariance function (right panels) between vertical wind velocity 
component (W, left panels) and nitrous oxide (N2O, middle panels) atmospheric concentrations sampled 
at 20 Hz scanned frequency (i.e. 20 obs per sec) and collected in 60 min raw data file length. Numbers 
on the top of the x-axis indicate the time lag detected by the covariance-maximisation (CM) procedure in 
correspondence with the peak (in absolute terms) of the cross-covariance function
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fluxes. Moreover, from an eco-physiological point of view, zero fluxes could occur 
not only in the absence of exchange between the atmosphere and the ecosystem, but 
also when there is a perfect balance between amounts assimilated and released by 
the ecosystem, for example during the switch between emission and assimilation of 
CO2 in the morning and in the evening. Discarding zero fluxes can cause not only a 
systematic overestimation of the absolute flux, but also affects the density distribu-
tion of the observed data for values close to zero.

The aim of this work is to propose a new approach that overcomes the limita-
tions of the CM-based procedures. To this end, we developed a fully data-driven 
procedure where time lag is detected by assessing the cross-correlation function 
(CCF) between raw EC data subject to (i) a preliminary filtering procedure based on 
pre-whitening and (ii) a resampling technique based on block-bootstrapping. As rec-
ommended in leading textbooks on time series analysis (see for example Hamilton 
1994; Cryer and Chan 2008), a proper assessment of the CCF between time series 
requires the variables to be stationary and pre-whitened. Stationarity is defined by 
a constant mean and equal variance at all times and can be achieved by detrending 
or differencing. Stationary condition is essential when assessing the CCF because 
dominant long-term trends may hide the correlation between short-term fluctua-
tions. Pre-whitening consists instead of transforming (at least one of) the time series 
involved in CCF into a white noise (WN) process with the twofold purpose of reduc-
ing the influence the serial correlation has on the CCF estimates and making it pos-
sible to assess their statistical significance with standard criteria. However, even 
applying such arrangements, when the peak of the CCF has magnitude similar to 
those of the conventional confidence intervals the risk of detecting erroneous time 
lag increases drastically. By combining pre-whitening and bootstrapping, such a risk 
is avoided and the assessment of the CCF for time lag detection becomes more real-
istic, informative and suitable for variables having correlation of low order of mag-
nitude, as in the case of low magnitude EC fluxes.

The paper is structured as follows. In the following section a detailed descrip-
tion of the procedure is presented with special emphasis on the decision rules for 
the choice of the optimal time lag suitable for the alignment of raw EC data. Hav-
ing described the EC data in Sect. 3, an application of the proposed approach and 
a comparison with commonly used time lag detection procedures are reported in 
Sect. 4. Final remarks are provided in Sect. 5.

2 � Methods

2.1 � Time lag detection via assessment of the cross‑correlation function 
after pre‑whitening

In this section we describe the time lag detection procedure based on the assessment 
of the CCF between pre-whitened variables, focusing on the theoretical aspects 
motivating such preliminary data filtering. The following definitions are derived 
from Cryer and Chan (2008).
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Let Y = Yt and X = Xt be two stationary time series of length n indexed by time 
t, the correlation between X and Y at lag k = ±1,±2,… ,±n can be estimated by the 
sample CCF defined by:

where X and Y  are the sample mean of X and Y, respectively, and the summations 
are done over all data where the summands are available.

For white noise (WN) processes (i.e. sequences of uncorrelated random variables, 
each with zero mean and variance � ), �k is approximately normally distributed with 
zero mean and variance 1/n, where n is the total number of paired data. This leads 
to the conventional 5% significance limits of the CCF estimates equal to ±1.96∕

√
n . 

That is, any peak outside the interval ±1.96∕
√
n (or plus/minus two standard errors) 

is deemed significantly different from zero at 0.05 level. The approximate variance 
of 1/n applies only when data are independent and identically distributed (iid), a 
condition that is almost never met for any real, observed time series, because of the 
presence of autocorrelation (i.e. the current value of the series is dependent on pre-
ceding values and can be predicted, at least in part, on the basis of knowledge of 
those values). Under the assumption that both X and Y are stationary and that they 
are independent of each other, the sample variance of �k is approximately:

where rk(X) and rk(Y) are the autocorrelation estimates at lag k of X and Y, 
respectively.

Suppose for simplicity that X and Y are both first-order autoregressive processes 
with coefficients �X and �Y , respectively, then �k is approximately normally distrib-
uted with zero mean and variance approximately equal to:

From Eq. (3) it can be seen that when �X and �Y are close to 1, the ratio of the 
sampling variance of �k to the nominal value of 1/n approaches infinity. As a con-
sequence, using the ±1.96∕

√
n rule in deciding the significance of the sample CCF 

may lead to many more false positives than the nominal 5% error rate, even when 
time series are independent of each other.

The statistical significance of the CCF estimates is a typical representation of 
the so-called spurious correlations problem often encountered when analysing the 
relationship between time series variables (Yule 1926; Hamilton 1994). To avoid 
the risk of spurious correlations, a viable solution is to disentangle the linear asso-
ciation between X and Y from their autocorrelation. By examining Eq. (2), it can 
be seen that the approximate variance of �k is 1/n if at least one of X and Y is an iid 
sequence. Such a condition can be achieved by transforming one of the variables in 

(1)�k =

∑
(Xt − X)(Yt−k − Y)

�∑
(Xt − X)2

�∑
(Yt − Y)2

,

(2)Var(�k) =
1

n

[
1 + 2

n∑

k=1

rk(X)rk(Y)

]
,

(3)Var(�k) =
1 + �X�Y

n(1 − �X�Y )
.
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a new process that is close to a WN, a procedure known as pre-whitening (Cryer and 
Chan 2008). Since the purpose of pre-whitening is to filter the serial correlation, 
and it is not crucial to find the best and most parsimonious model for X exactly, pre-
whitening can be achieved by means of autoregressive models of order p, AR(p):

where X̃t is a WN, �i are the AR coefficients and B is the backshift operator such that 
BmXt = Xt−m . In this work, the choice of p was automatically selected by minimising 
the Akaike (1998) Information criterion (AIC). Once identified the p order, the AR 
coefficients were estimated via Yule–Walker method (Lütkepohl 2005).

After transforming the X-variable, the same filter is used to transform the Y-var-
iable in Ỹt , which does not need to be a WN. Since pre-whitening is a linear opera-
tion, any linear relationship between the original series will be preserved and can be 
retrieved by assessing the CCF between transformed X̃t and Ỹt variables (Cryer and 
Chan 2008).

The time lag to be used for temporal alignment of raw EC time series can be 
retrieved in correspondence of the peak (in absolute terms) of the CCF between pre-
whitened variables:

provided it is statistically significant at a pre-specified significance level.
We will refer to such an approach for time lag detection of raw EC data using the 

name of the procedure, i.e. as pre-whitening (PW hereinafter).

2.2 � Time lag detection via assessment of the cross‑correlation function 
after pre‑whitening with bootstrap

A time lag detection procedure based solely on the assessment of the CCF between 
pre-whitened variables (Sect. 2.1) is effective when the order of magnitude of the 
correlation is equal to −1 . This is true for moderate/high magnitude EC fluxes 
because the signal dominates over the noise and the estimate of the CCF in cor-
respondence of the true time lag will be far greater than the conventional signifi-
cance limits. When the correlation is low, as is often the case with trace gases, 
things become more complicated because the peak of the CCF in correspondence 
of the true (unknown) time lag will not be so pronounced as to dominate over the 
other estimates of the CCF at different lags. For example, in the case of a sample 
size of 36000 paired observations and an order of magnitude of the correlation 
between variables < −1 , the peak of CCF is close to the 5% significance limits 
( ±1.96∕

√
36000 ≈ ±0.01 ). Therefore, it can often happen that the peak of the CCF 

is detected in correspondence of an erroneous time lag.
If measurements from repeated sampling under the same conditions were avail-

able, it would be easier to distinguish between true and false peaks of the CCF, as 
the former would remain more stable than the latter, which instead would tend to 
cancel out after averaging.

(4)X̃t = (1 − 𝜋1B − 𝜋2B
2
−⋯ − 𝜋pB

p
)Xt = 𝜋(B)Xt,

(5)TL
PW = argmax

k

(
|𝜌k(X̃, Ỹ)|

)
,
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With this idea in mind, we mimicked a repeated sampling by means of a block 
bootstrapping (Härdle et al. 2003) with the twofold aim of (i) increasing the accu-
racy of time lag detection and (ii) obtaining a quantification of the associated uncer-
tainty. Block bootstrap consists of breaking the series into roughly equal-length 
blocks of consecutive observations and resampling the block with replacement. 
Dividing the data into several blocks can preserve the original time series structure 
within a block. In particular, we built NB = 99 bootstrap samples of paired X̃t and Ỹt 
values of size N equal to the length of time series, and where each sample is formed 
by randomly choosing N/L blocks (with replacement) with L = 20 s, a temporal win-
dow large enough to include the true (unknown) time lag and preserve the correla-
tion structure between variables in short time intervals.

The CCF was then estimated for each of the NB block bootstrap samples and, to 
further eliminate the presence of erratic peaks due to noise, a smoothed version ( �S

k,j
 ) 

through a centred moving average of width hz∕2 + 1 time steps, where hz is the 
scanned acquisition frequency of raw data (i.e. 10 or 20 Hz), is computed. For each 
�S
k,j

 , the jth estimated time lag (TL j ) is then detected in correspondence of the peak 
(in absolute terms):

By analysing the distribution of the resulting NB time lags, regardless of their signif-
icance level, the most frequently observed value is selected as the reference time lag:

The 95% highest density interval (HDI), i.e. the shortest interval for which there is a 
95% probability that the true (unknown) time lag would lie within the interval, pro-
vides a measure of the associated uncertainty.

We will refer to such an approach for time lag detection of raw EC data as pre-
whitening with bootstrap (PWB hereinafter).

2.3 � Optimal time lag selection for temporal alignment of long‑term EC data

Irrespective of the chosen procedure, time lag detection of EC data needs to be per-
formed between the high-frequency (e.g. 10–20 observations per s) time series of 
30–60 min (averaging period), usually collected in raw EC data files of the same 
length. To cope with such large datasets (e.g. 17,520 raw data files per year), the 
availability of robust and automated procedures is essential for EC data processing 
pipelines.

In this context, uncertainty estimates are not only important for the accuracy 
evaluation of individual time lags of each scalar variable/raw data files, but also for 
defining a fully data-driven strategy for the temporal alignment of long-term EC 
datasets. While the actual time lag may vary over time for various reasons (see the 
introductory section for more details), it is expected to be fairly stable during the 
averaging time intervals.

(6)TLj = argmax
k

(
|𝜌S

k,j
(X̃, Ỹ)|

)
, for j = 1,… ,NB.

(7)TL
PWB

= Mode(TLj).
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In this perspective, a low uncertainty indicates a low variability of time lags 
detected for each of the NB bootstrapped samples during the averaging time. Con-
sequently, the reference time lag detected by the PWB procedure is more likely to 
be the actual one. In contrast, the highest level of uncertainty occurs when the cor-
relation between variables is zero (i.e. for zero fluxes), since the detected time lag 
will be randomly chosen within the temporal window of lags, in each bootstrapped 
sample.

With these concepts in mind and with the aim of identifying, for each averaging 
time, the optimal time lag (PWBOPT hereinafter) to be used for the temporal align-
ment of long-term EC data, we propose the following strategy articulated in three 
steps:

•	 S1. In the first step, time lags detected by PWB and characterised by a low uncer-
tainty are considered reliable and flagged as optimal. In this work, uncertainty is 
defined as low when the range of the 95% HDI is less than 0.5 s;

•	 S2. In the second step, time lags with larger uncertainty (i.e. range of the 95% 
HDI > 0.5 s) are also considered reliable and flagged as optimal if they show 
no significant deviation from the optimal time lag identified in Step 1 in the clos-
est preceding averaging period. In this work, deviation is considered as signifi-
cant if greater than 0.5 s;

•	 S3. Finally, the remaining time lags not satisfying the above criteria are consid-
ered unreliable and replaced with the optimal time lag identified in the closest 
preceding averaging period, according to S1 or S2 criteria.

In the above strategy, the only parameters to be set are the threshold values that 
define the uncertainty associated with the estimated time lag as low (S1) and the 
deviation between detected time lags (S2). As reported earlier, we recommend set-
ting them equal to 0.5 s, a conservative threshold value that can be considered as an 
upper limit of the time lag variability can take over 30–60 min or between consecu-
tive averaging periods.

2.4 � Algorithmic details and additional data pre‑processing

2.4.1 � Variable selection

Time lag detection for EC data is commonly computed by assessing the CCF 
between S measured by a GA and W measured by a SA. As said in the introductory 
section, once variables have been aligned, flux exchange rates can be derived from 
the covariance between S and W.

Sonic anemometers also provide an indirect measure of the air temperature, the 
so-called sonic temperature (T). Being sampled by the same instrument, W and T 
are perfectly aligned and sensible heat fluxes can be derived from the covariance 
between them, without resorting to any temporal alignment procedure. Since air par-
cels movement is governed by the laws of thermodynamics, any scalar S is corre-
lated with T, and this correlation may be stronger than that existing between S and 
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W. That could facilitate the time lag detection procedure as the CCF between S and 
T would show a more pronounced peak compared to the CCF between S and W.

For the pre-whitening phase, since the aim is to ensure that at least one of the 
transformed series is free of autocorrelation, it does not matter which variable is 
selected as X. For this reason, the PWB procedure considers all (four) possible com-
binations of S, W and T, for which at least one of X- and Y-variable is the atmos-
pheric scalar concentration. Among the four time lags identified, the one to which a 
higher correlation (in absolute value) corresponds is chosen as the reference, regard-
less of its statistical significance.

2.4.2 � Despiking and detrending

Time lag detection procedures were performed on despiked and detrended raw data. 
Wind components were preliminary subject to anemometer tilt correction via double 
rotation method (Rebmann et al. 2012). For despiking, the procedure described in 
Vitale (2021) was performed. Different detrending procedures were adopted.

The CM procedure was performed on variables subjected to a linear trend 
removal, as one of the most used methods in EC data processing (Sabbatini et al. 
2018; Nemitz et al. 2018).

For PW and PWB procedures, any trend affecting raw data was removed by dif-
ferencing, according to the results of the non-parametric variance ratio (VR) test 
described in Breitung (2002). Differencing is the sequential subtraction of consecu-
tive values of a time-series to obtain sequential changes in time. Besides highlight-
ing other useful properties, differencing a variable eliminates any trends present in 
it, whether deterministic (e.g. linear) or stochastic (Box et al. 2015). For the purpose 
of time lag detection, both X- and Y-variables were preliminary differentiated if the 
VR test provided evidence about the presence of a stochastic trend in one or in both 
the variables subjected to the pre-whitening procedure.

2.4.3 � Software implementation

The PWB procedure is implemented in the RFlux package (downloadable at https://​
github.​com/​icos-​etc/​RFlux) taking advantage of the capabilities of the boot package 
(Canty and Ripley 2021) that allow to run in parallel mode the processing of the NB 
block-bootstrapped samples.

3 � Data, benchmark methods and evaluation criteria

3.1 � EC data

In this work, raw data sampled from the following EC sites were used:

•	 CH-Cha: Chamau, Switzerland (CH), managed grassland located in a pre-alpine 
valley (47.2102 N, 8.4104 E, 393 m asl).

https://github.com/icos-etc/RFlux
https://github.com/icos-etc/RFlux
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•	 DE-GsB: Grosses Bruch, Germany (DE), grassland (52.0296 N, 11.1048 E, 
81 m asl).

•	 FI-Kvr: Kuivajärvi, Finland (FI), small humic lake (2.6 km long, 0.4 km wide, 
surface area of 0.6 km2 ) surrounded by mixed coniferous forest (61.8466 N, 
24.2804 E, 141 m asl).

•	 UK-EBu: Easter Bush, Scotland (UK), grazed, managed grassland (55.8655 N, 
3.2065 W, 190 m asl).

In addition to the wind components measured by SA, scalar variables of CO2 , CH4 
and N 2 O atmospheric concentrations were sampled, and considered in this work 
(see Table 1 for a description of the EC flux-station sites setup).

The EC system at UK-EBu was equipped with an inlet overflow system (Nemitz 
et al. 2018), by which a high concentration of N 2 O was injected at set time inter-
vals to measure the time delay between injection and detection by the closed-path 
analyser. This time delay, which is a function of the physical properties of the setup 
(e.g. flow rate through the sampling line and instrument response time), was the 
largest component of the total time lag and used in the derivation thereof. Time lags 
estimated by means of such an experimental approach (EXP hereinafter) were used 
for comparison with our data-driven approach.

3.2 � Benchmark methods and evaluation criteria

To aid in comparison and achieve a better interpretation of the results, the following 
procedures were considered:

•	 CM-W: maximisation of the cross-covariance function between S and W;
•	 CM-T: maximisation of the cross-covariance function between S and T;
•	 CM-WCTR : maximisation of the cross-covariance function between S and W con-

strained within a narrow window of plausible time lags;
•	 CM-TCTR : maximisation of the cross-covariance function between S and T con-

strained within a narrow window of plausible time lags;
•	 PW-W: assessment of the CCF between S and W after pre-whitening (Sect. 2.1);
•	 PW-T: assessment of the CCF between S and T after pre-whitening (Sect. 2.1);
•	 PWB: assessment of the CCF after pre-whitening with bootstrap estimated for 

all (four) possible combinations of S, W and T, for which at least one of X- and 
Y-variable is the atmospheric scalar concentration (see Sects. 2.2 and 2.4);

•	 PWBOPT : optimal time lag derived from PWB results according to the strategy 
described in Sect. 2.3.

Except for CM-WCTR and CM-TCTR , each procedure was performed within a broad 
window of time lags (e.g. ±10 s) with the aim to evaluate their sensitivity in absence 
of constraints. The definition of the (narrow) window of plausible time lags for 
the constrained CM approaches was based on a preliminary data analysis to statis-
tically evaluate the most likely time lags and their ranges of variation. Additional 
constraints based on EC system characteristics were also considered (for example 
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for closed-path GAs a delay of the scalar respect to W greater than zero). For the 
constrained procedures, time lags detected at the window boundaries were discarded 
and replaced with a default value. In this work the modal value computed for the 
entire sampling period was used as the default reference.

The evaluation of each procedure was carried out by looking at the stability of 
the detected time lags over the sampling periods, separately for each trace gas and 
for each EC site. To achieve this goal, descriptive statistics (minimum, first and third 
quartile, maximum, modal value and interquartile range—IQR) of the distribution 
of time lags detected by each of the above procedures for CO2 , CH4 and N 2 O trace 
gases were compared. For N 2 O sampled at the UK-EBu, time lags derived from the 
EXP approach were additionally used for comparison.

4 � Results and discussion

In the following sections, we first report an application of the proposed PWB pro-
cedure on a selection of raw EC data files with the aim to highlight its advantages 
compared to the existing approaches. Then a performance evaluation over long-term 
periods of the procedures listed in Sect. 3.2 is reported and discussed in Sect. 4.2. 
An overall evaluation of the impact of different time lag detection procedures on 
flux covariance data distribution is provided in Sect.  4.3. All statistical analyses 
were entirely performed in the R programming language (R Core Team 2023, ver-
sion 4.3.1).

4.1 � Application results on a selection of raw EC data files

In this section, we report the advantages of the PWB procedure over the widely used 
approach in EC data processing pipelines based on the covariance-maximisation 
using W (CM-W) and the one based on the assessment of the CCF between pre-whit-
ened variables (without bootstrapping) via conventional confidence intervals (for 
illustrative purposes here we report the results obtained via PW-W specification).

To this end, illustrative examples of time lags detected by each procedure on a 
selection of raw EC data are shown in Fig. 2. Data refer to W and N 2 O atmospheric 
concentrations sampled at UK-EBu and depicted in Fig. 1. To better appreciate the 
pros and cons, the above mentioned procedures were performed without setting a 
proper temporal window of plausible time lags, i.e. by detecting the time lag over a 
broad search temporal window of ±10 s.

For moderate/high magnitude fluxes, the use of PW-W and PWB procedures in 
place of the CM-W does not lead to substantially different results. In such cases, 
the cross-covariance function exhibits a distinct peak and the time lag between vari-
ables can be easily derived from it. An example of such a situation is depicted in 
Fig. 2a. For this data sample, the time lag detected by each procedure resulted in 
close agreement and equal to 1.6 s, a sensible estimate given the physical properties 
of this EC system (see Sect. 4.2 for more details). The resulting flux estimate, after 
temporal alignment, is about + 2 nmol N 2 O m −2 s −1.
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When the cross-covariance function does not exhibit a distinct peak, the 
detection of the actual time lag becomes more problematic leading to significant 
biases in flux estimates. For example, by applying the temporal alignment via 
CM-W procedure, flux estimates for the two examples in Fig.  1b and c would 

Fig. 2   Illustrative examples of time lag detection via covariance-maximisation using vertical wind speed 
(CM-W, left panels), cross-correlation function after pre-whitening using vertical wind speed (PW-W, 
middle panels) and after pre-whitening with bootstrap (PWB, right panels). Raw EC data refer to ver-
tical wind speed (W) and nitrous dioxide (N

2
 O) atmospheric concentrations depicted in Fig.  1. Num-

bers on the top of the x-axis indicate the time lag detected by each procedure. Horizontal dashed lines 
in the PW-W plots identify the 95% confidence interval. Shadow area in the PWB plots represents the 
uncertainty (range of the 95% HDI) associated with the detected time lag. Unlike the other methods, the 
PWB procedure provides consistent results in most examples (panels a–d). For the example in panel e, 
all methods detect a wrong time lag, but the uncertainty estimate of PWB allows the unreliable result to 
be identified and discarded
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be −0.1 (Fig. 2b) and −0.2 nmol N 2 O m −2 s −1 (Fig. 2c). If, instead, we assume 
that the actual time lag is around 1.7 s, flux estimates would be of opposite sign. 
Although such differences are small in magnitude, they have important implica-
tions in flux data interpretation. By convention, a positive flux value indicates 
that the ecosystem is a N 2 O source to the atmosphere, while a negative flux 
value indicates a sink.

A strategy often advised to prevent bias in flux estimation is to narrow down the 
temporal window of plausible time lags over which to look for the peak of the cross-
covariance function (Rebmann et al. 2012). For this strategy to be effective, how-
ever, the peak needs to be well defined. For example, considering the cases shown in 
Fig. 2, only in the conditions illustrated in panels a–c a narrower temporal window 
(e.g. 0–5 s) would result in the correct identification of the actual time lag, and thus 
in an improvement for the two cases shown in panels b and c. In contrast, when the 
CCF does not exhibit a well-defined peak, as in the cases shown in panels d and e in 
Fig. 2, detecting the actual time lag remains challenging. Also, constrained CM pro-
cedures using a nominal time lag (default), although leading to an improvement in 
results as shown in the next section, may be ineffective when the shape of the cross-
covariance function is such that the absolute maximum does not fall on the temporal 
window boundaries.

The PW-W approach reduces the risk of spurious correlations through pre-
whitening, thus facilitating the time lag detection compared to the CM method. An 
example is depicted in Fig. 2b, where the actual time lag is detected in correspond-
ence with a statistically significant peak without the need to narrow down the tem-
poral window of plausible time lags. For low magnitude fluxes (Fig. 2c–e), however, 
the detection of the actual time lag by PW-W remains challenging and the evaluation 
of peaks by using conventional confidence intervals introduces considerable uncer-
tainty. In fact, for low magnitude fluxes, the peak of the CCF in correspondence 
with the actual time lag will not be so pronounced as to dominate over the other 
estimates. In such cases, there is a real risk of detecting erroneous time lags and, 
consequently, introducing bias into flux estimates.

The advantage that the PWB offers is to better discern well-defined and stable 
time lags from more uncertain ones. This is done by assessing the uncertainty asso-
ciated with the detected time lag and quantified, after block-bootstrapping, by means 
of the 95% HDI. Among these illustrative examples and following the strategy out-
lined in Sect. 2.3, it turns out that four detected time lags are considered as optimal 
because the range of 95% HDI is less than 0.5 s (Fig.  2a, b) or because they do 
not deviate more than 0.5 s from those identified as optimal in preceding averaging 
periods (Fig. 2c, d), while only one is considered unreliable (Fig. 2e) because too 
uncertain and anomalous. In cases like this, the closest (in time) PWB optimal time 
lag detected is recommended.

4.2 � Evaluation over long‑term periods

In this section, we report a comparison of different time lag detection procedures 
using the  long-term EC data described in Sect.  3.1. Due to space limitations, we 
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report a graphical representation of time lags detected for only three study cases: 
CO2 sampled at FI-Kvr (Fig. 3), CH4 sampled at CH-Cha (Fig. 4) and N 2 O sampled 
at UK-EBu (Fig. 5). The full set of results is available in the supplementary mate-
rial (SM). Descriptive statistics (minimum, first and third quartile, maximum, modal 
value and interquartile range–IQR) of the distribution of time lags detected by dif-
ferent procedures for CO2 , CH4 and N 2 O trace gases are summarised in Tables 1, 2 
and 3 of the SM, respectively.  

Although the actual time lag is not expected to be constant over time for the rea-
sons explained in the introductory section, overall, time lags detected by the pro-
posed PWBOPT approach (see panel i of Figs.  3, 4 and 5) were more stable over 
time than those identified by CM- and PW-based procedures. Considering the IQR 
as a measure of the spread of detected time lags distribution, the one estimated for 
PWBOPT resulted in the lowest IQR for most the cases considered in this work, 
whereas those estimated for CM-W and PW-W had the largest spread.

Negligible differences in terms of IQR were found for CO2 at CH-Cha and DE-
GsB grassland sites characterised by fluxes of moderate/high magnitude (Table  1 
of SM). For CH4 (Table 2 of SM) and N 2 O (Table 3 of SM), the IQR of PWBOPT 
was comparable or lower than those estimated for CM-based procedures, even when 
constrained within a narrow window of plausible time lags. This means that setting 
a narrower window when performing CM-based procedures, although leading to a 
marked improvement in results, does not ensure that the detected time lag converges 
to the actual one. In fact, there is a substantial portion of cases in which most of the 
time lags detected by CM-based procedures were found to diverge at the boundaries 
of the pre-fixed search window of plausible time lags, regardless of its width (see 
panels a-d of Figs. 3, 4 and 5). Such a setting is not strictly required for the proposed 
PWB strategy, which can instead be performed by setting a wide search temporal 
window of time lags, without loss in effectiveness.

The assessment of the cross-covariance function using T in place of W facilitates 
the time lag detection via CM-based procedures, in particular for CH4 and N 2 O trace 
gases where a significant reduction in terms of IQR was found. Despite such an 
improvement, the use of T does not entirely prevent time lags from being identified 
at the boundaries of the search window (see panel i of Figs. 3, 4 and 5 and Tables 1, 
2 and 3 of SM).

Such a risk is drastically reduced when the assessment of the CCF is performed 
with variables preliminarily subjected to the pre-whitening procedure (see panels 
e and f of Figs. 3, 4 and 5). For PW-based procedures, in fact, an improvement, in 
terms of stability of the results, was found when using T in place of W, as confirmed 
by the reduction of the IQR. However, when variables are characterised by a low 
order of correlation, as in the case of low magnitude fluxes, the assessment of the 
statistical significance of the CCF after pre-whitening using conventional confidence 
intervals was not suitable for detecting reliable time lags. As shown in panels e and 
f of Figs. 3, 4 and 5 and Figs. 1–5 of the SM, most of the time lags, even those far 
from the modal value, were detected as statistically significant.

The application of the strategy outlined in Sect. 2.3 to achieve the optimal time 
lag to be used for temporal alignment, leads to an improvement of the PWB results 
in terms of stability. In fact, most time lags detected by PWB with large departures 
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from the IQR were characterized by high uncertainty and, then, considered unreli-
able (panel g of Figs. 3, 4, 5).

Fig. 3   Comparison of time lags detected by several procedures for carbon dioxide (CO
2
 ) sampled at FI-

Kvr. a–d Covariance maximisation using vertical wind speed (CM-W) and sonic temperature (CM-T) 
within a broad (± 10 s) and a constrained window (CTR, 0–2 s) of plausible time lags. Red points in 
c and d indicate time lags detected at the window boundaries. Horizontal red lines in c and d denote 
the modal value estimated without considering time lags detected at the window boundaries. e-f Assess-
ment of the CCF after pre-whitening using vertical wind speed (PW-W) and sonic temperature (PW-T). 
Red triangles in PW plots indicate time lags detected in correspondence with a peak statistically non-
significant at 0.01 level. g Assessment of the CCF after pre-whitening with bootstrap (PWB). Plus signs 
in PWB plot indicate time lags with high uncertainty (range of the 95% HDI > 0.5 s). h Optimal time 
lags (PWBOPT ) according to the strategy described in Sect. 2.3. i Violin plot with included boxplot of 
the distribution of detected time lags by each procedure; red lines indicate the modal value, grey areas 
for CM-WCTR and CM-TCTR indicate the predefined time intervals where plausible time lag must not be 
searched
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The percentage of time lags flagged as optimal during S1 and S2   of the strat-
egy outlined in Sect. 2.3 is reported in Table 2. Among the three gases examined, 
time lags detected for CO2 were the least uncertain. In particular, the 89%, 90% 

Fig. 4   Comparison of time lags detected by several procedures for methane (CH
4
 ) sampled at CH-Cha. 

a–d Covariance maximisation using vertical wind speed (CM-W) and sonic temperature (CM-T) within 
a broad (± 10 s) and a constrained window (CTR, 0–2.5 s) of plausible time lags. Red points in c and d 
indicate time lags detected at the window boundaries. Horizontal red lines in c and d denote the modal 
value estimated without considering time lags detected at the window boundaries. e-f Assessment of the 
CCF after pre-whitening using vertical wind speed (PW-W) and sonic temperature (PW-T). Red trian-
gles in PW plots indicate time lags detected in correspondence with a peak statistically non-significant at 
0.01 level. g Assessment of the CCF after pre-whitening with bootstrap (PWB). Plus signs in PWB plot 
indicate time lags with high uncertainty (range of the 95% HDI > 0.5 s). h Optimal time lags (PWBOPT ) 
according to the strategy described in Sect. 2.3. i Violin plot with included boxplot of the distribution of 
detected time lags by each procedure; red lines indicate the modal value, grey areas for CM-WCTR and 
CM-TCTR indicate the predefined time intervals where plausible time lag must not be searched
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and 97% of time lags detected by PWB at FI-Kvr, CH-Cha and DE-GsB, respec-
tively, were considered reliable and flagged as optimal. For most of them (61%, 
82% and 92% at FI-Kvr, CH-Cha and DE-GsB, respectively) the 95% HDI range 

Fig. 5   Comparison of time lags detected by several procedures for nitrous dioxide (N
2
 O) sampled at UK-

EBu. a–d Covariance maximisation using vertical wind speed (CM-W) and sonic temperature (CM-T) 
within a broad (± 10 s) and a constrained window (NW, 0–5 s) of plausible time lags. Red points in c and 
d indicate time lags detected at the window boundaries. Horizontal red lines in c and d denote the modal 
value estimated without considering time lags detected at the window boundaries. e-f Assessment of the 
CCF after pre-whitening using vertical wind speed (PW-W) and sonic temperature (PW-T). Red trian-
gles in PW plots indicate time lags detected in correspondence with a peak statistically non-significant at 
0.01 level. gAssessment of the CCF after pre-whitening with bootstrap (PWB). Plus signs in PWB plot 
indicate time lags with high uncertainty (range of the 95% HDI > 0.5 s). h Optimal time lags (PWBOPT ) 
according to the strategy described in Sect. 2.3. i Violin plot with included boxplot of the distribution of 
detected time lags by each procedure; red lines indicate the modal value, grey areas for CM-WCTR and 
CM-TCTR indicate the predefined time intervals where plausible time lag must not be searched
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was less than 0.5 s. Referring to CH4 and N 2 O, characterised by a higher occur-
rence of low magnitude fluxes, the percentages of reliable time lags detected by 
PWB were lower than those achieved for CO2 , varying around 70%, except for 
CH4 at FI-Kvr (55%).

Focusing on N 2 O sampled at UK-EBu site, 72% of the detected time lags by 
PWB were flagged as optimal and considered reliable having an associated uncer-
tainty less than 0.5 s (37%) or deviating from time lags detected in preceding 
averaging periods no more than 0.5 s (35%). The remaining 28% were considered 
unreliable and occurred in cases of close-to-zero fluxes.

The comparison with the experimental approach by Nemitz et al. (2018) shows 
that most of time lags achieved by the PWBOPT procedure do not deviate more 
than ± 0.25 s from direct measurements. Moreover, the actual time lags detected 
by both approaches seems to follow a common time trend (Fig. 6), the causes of 
which can have multiple sources not always manageable during field measure-
ments, as said in the introductory section.

Table 2   Percentage of optimal 
time lags detected by the PWB 
procedure after Step 1 (S1) 
and Step 2 (S2) of the strategy 
outlined in Sect. 2.3 separately 
for each site and scalar variable

Variable Site ID S1 (%) S2 (%)

CO
2

CH-Cha 82 90
CO

2
DE-GsB 92 97

CO
2

FI-Kvr 61 89
CH

4
CH-Cha 27 70

CH
4

DE-GsB 49 70
CH

4
FI-Kvr 20 55

N2O CH-Cha 41 70
N2O UK-EBu 37 72

Fig. 6   Comparison of time lags detected by the PWBOPT approach (cyan points) and through the experi-
mental approach (EXP, solid black points) by Nemitz et al. (2018) for nitrous dioxide (N

2
 O) sampled at 

UK-EBu. Panel a shows the temporal dynamics of detected time lags; panel b shows the violin plot with 
included boxplot of differences between the two approaches based on 283 paired data values



1 3

Environmental and Ecological Statistics	

Most (80%) of time lags detected by PWBOPT vary between + 1.45 and + 2.20 s 
(1st and 9th deciles, respectively), in strict agreement with the range (from + 1.50 to 
+ 2.30 s) of the experimental measurements (see Table 3 of SM).

Such a narrow range of variability was not achieved by any of the others CM- and 
PW-based procedures.

4.3 � Impact on flux estimates

The impact on EC fluxes can be appreciated by comparing the flux density distribu-
tions computed after temporal alignment of W and the S scalar of interest using dif-
ferent time lag detection procedures.

Figure  7 depicts a graphical representation of the density distributions of flux 
estimates computed after temporal alignment of time series using time lags detected 
by CM-W, CM-WCTR approaches and by the proposed PWBOPT procedure.

As shown, the CM-W procedure leads to a significant loss of mass density dis-
tribution around zero flux values and is representative of the so-called mirroring 

Fig. 7   Comparison of the flux density distributions computed after temporal alignment of raw, high-fre-
quency EC data using time lags detected by CM-W, CM-WCTR and PWBOPT procedures
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effect. There are no eco-physiological reasons that could explain such a behavior, 
since zero flux values fall within the physical range of possible values and they are 
not to be understood as a rare event, in particular during the monitoring of green-
house trace gases having flux exchange rates small in magnitude. Running into this 
error can have a negative impact on subsequent analyses and should be avoided. For 
example, errors can propagate during the gap-filling stage and lead to an overestima-
tion of the random uncertainty for procedures based on the use of half-hourly flux 
data (Richardson et al. 2008; Lasslop et al. 2008; Vitale et al. 2019).

The mirroring effect is only mitigated when the CM is performed with con-
straints, whereas it completely disappears when fluxes are computed after tempo-
ral alignment via the PWBOPT procedure. The limitations of the CM-WCTR in solv-
ing the mirroring effect may depend on several interrelated factors such as (i) the 
number of occurrences of low magnitude fluxes characterising the ecosystem under 
investigation; (ii) the erratic behaviour of the cross-covariance function even within 
the prefixed window of plausible time lags which makes the CM ineffective; (iii) the 
inadequacy of a constant value of the default time lag in presence of drifts during 
the sampling period, or more in general the selection of a non-representative period 
for the estimation of the modal value. Such limitations are not of relevance for the 
PWB procedure, as it is completely data driven and robust to the presence of spuri-
ous peaks of the CCF.

5 � Conclusions and final remarks

Greenhouse gases monitoring is crucial to combating climate changes. Beyond new 
instrumentations with increased accuracy and precision, the development and the 
application of advanced statistical tools in data processing pipelines can facilitate 
the analysis of such complex phenomena.

In this work, a fully data-driven procedure for the detection of time lag for raw, 
high-frequency EC data was presented. The proposed PWB approach, based on the 
assessment of the cross-correlation function after pre-whitening with bootstrap, is 
designed to overcome the limitations of existing procedures when the correlation 
between variables is of low order of magnitude (i.e. for low magnitude EC fluxes).

In particular, (i) pre-whitening avoids the risk that time lag is detected in cor-
respondence with spurious peaks of the cross-covariance function as often occurs 
with the widely used procedure in EC data processing pipelines based on covari-
ance-maximisation, whereas (ii) block-bootstrap allows an estimate of the associated 
uncertainty useful to reduce the false positives error rate, as occurs with approaches 
based on the assessment of the CCF after pre-whitening with standard criteria.

The application on real, observed EC data showed that the performance of the 
proposed PWB method is really promising, in particular for the time lag detection of 
CH4 and N 2 O trace gases that are currently under expansion in the global network of 
eddy covariance stations (see Delwiche et al. 2021), and which are characterised by 
complex and irregular patterns, like sudden emission peaks alternated to close-to-
zero fluxes.
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The results achieved by the methods comparison study presented in this work 
also suggest insights for further improvements of the widely used CM method: 
(i) we found a better stability in terms of IQR when time lags are detected using 
T in place of W, in particular for low-magnitude fluxes; (ii) we also found that a 
default time lag computed as the modal value of the distribution of time lags and 
based on a preliminary data analysis leads, on average, to results consistent with 
the PWB method. However, it must be considered that the use of a default value 
does not ensure to entirely solve the mirroring effect and that the CM method is 
sensitive to the choice of the predefined search window and to possible drifts of 
the real time lag during long-period samplings, e.g. due to drifts in the clocks or 
changes in the tube air flow rate.

Errors in time lag detection could introduce significant biases in flux estimates, 
with implications on the ecosystem understanding in terms of their full GHGs 
balance. Similar considerations hold true for all GHGs fluxes measured in eco-
systems characterised by low magnitude exchange rates, like in the case of CO2 
measured on water bodies, or during equilibrium phases between photosynthesis 
and total respiration processes.

We expect that the proposed PWB procedure will become a standard for the 
centralised data processing pipelines of research infrastructures (e.g. ICOS-RI, 
Heiskanen et al. 2022) where the use of fully reproducible and objective proce-
dures constitutes an essential prerequisite to move forward in the standardisa-
tion and harmonisation efforts ongoing in the context of the global FLUXNET 
initiatives (Papale 2020). This will be particularly important for non-CO2 gases, 
characterised by generally lower magnitude fluxes than CO2 and by periods with 
fluxes very close to zero. Although modern multi-species GAs offer the possibil-
ity to estimate the time lag by means of CM-based procedures for fluxes with 
high SNR (i.e. CO2 ) and then use it to temporally align scalars representative of 
low-magnitude inert gas fluxes (e.g. CH4 or N 2O), the proposed PWB constitutes, 
to the best of our knowledge, the most effective solution currently available.
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