KIT | KIT-Bibliothek | Impressum | Datenschutz

Combined study of phase transitions in the P2-type Na$_X$Ni$_{1/3}$Mn$_{2/3}$O$_2$ cathode material: experimental, ab-initio and multiphase-field results

Daubner, Simon ORCID iD icon 1,2; Dillenz, Manuel; Pfeiffer, Lukas Fridolin; Gauckler, Cornelius; Rosin, Maxim 2; Burgard, Nora; Martin, Jan; Axmann, Peter; Sotoudeh, Mohsen; Groß, Axel; Schneider, Daniel ORCID iD icon 1,2; Nestler, Britta 1,2
1 Institut für Angewandte Materialien – Mikrostruktur-Modellierung und Simulation (IAM-MMS), Karlsruher Institut für Technologie (KIT)
2 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract:

The research of new electrode materials such as sodium intercalation compounds is key to meet the challenges of future demands of sustainable energy storage. For these batteries, the intercalation behavior on the micro-scale is governed by a complex interplay of chemical, electrical and mechanical forces strongly influencing the overall cell performance. The multiphase-field method is a suitable tool to study these multi-physics and bridge the scale from ab-initio methods to the cell level. In this work, we follow a combined approach of experiments, density functional theory (DFT) calculations and multiphase-field simulations to predict thermodynamic and kinetic properties for the P2-type Na$_X$Ni$_{1/3}$Mn$_{2/3}$O$_2$ sodium-ion cathode material. Experimentally, we obtain the thermodynamic potential and diffusion coefficients at various sodium contents using electrochemical techniques and discuss limitations of the experimentally applied methods. DFT is used to identify stable phases by calculating an energy hull curve. Then, the influence of long-range dispersion interactions and the exchange-correlation functional on the voltage curve is investigated by comparison with experimental results. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000170551
Veröffentlicht am 08.05.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Institut für Angewandte Materialien – Mikrostruktur-Modellierung und Simulation (IAM-MMS)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 2057-3960
KITopen-ID: 1000170551
Erschienen in npj Computational Materials
Verlag Nature Research
Band 10
Heft 1
Seiten Art.-Nr.: 75
Vorab online veröffentlicht am 18.04.2024
Schlagwörter Atomistic models, Batteries, Computational methods
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page