

Institute of Chemical Process Engineering Prof. Dr. Ing. Gregor D. Wehinger

Karlsruhe Institute of Technology

Highly resolved temperature measurements in slender fixed beds for validation of heat transport in particle-resolved CFD simulations

<u>Martin Kutscherauer¹, Mats Finkeldei², Steffen Flaischlen³, Gregor D. Wehinger¹</u>

¹Institute of Chemical Process Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany ²Institute of Chemical Reaction Engineering, Hamburg University of Technology, Hamburg, Germany ³Institute of Chemical and Electrochemical Process Engineering, Clausthal University of Technology, Clausthal-Zellerfeld, Germany

Annual Meeting on Reaction Engineering and Electrochemical Processes, Würzburg, Germany, May 6-8, 2024

Motivation

In the chemical industry, highly exothermic or endothermic catalytic reactions are commonly carried out in slender fixed bed reactors $(D/d_p < 7)$. Due to the application of questionable correlations for effective heat transport parameters, pseudo-continuum models fail to describe the heat transport and consequently the performance of such reactors. Particle-resolved CFD (PRCFD) simulations overcome this issue by considering particles explicitly within the bed. In this work, an experimental setup for validating the PRCFD is presented. Finally, the validated PRCFD is used to determine detailed temperature fields, which can be used for estimating effective heat transport parameters applied in a pseudo-continuum model

Methodology

Experimental methods

- Two sectioned, double-tube heat exchanger loaded with a fixed bed based on the setup of Stegehake et al. [1].
- Two thermostats guaranteeing defined temperatures at the wall of the inlet (353.15 K) and the heating (353.15 to 473.15 K) zone.
- Fiber Bragg Granting (FBG) sensor protected by a stainless-steel capillary is axially centered in the fixed

Results

Experiments and simulations are preformed with ring shaped particles ($d_{p,o} = 6 \text{ mm}$, $d_{p,i} = 4 \text{ mm}$, $h_p = 5 \text{ mm}$) and for various flowrates at $T_{set} = 423.15$ K, and $T_{in} = 353.15$ K.

> Experimental vs. simulated axial temperature profiles:

- bed to measure temperature simultaneously at 30 individual points.
- Differential pressure sensor to record pressure drop during temperature profile measurements.

Modeling approach

- Fixed beds for PRCFD simulation are generated synthetically using the Rigid body approach within the open-source software Blender [2] and validated with experimental void fraction.
- PRCFD simulation resolved packed bed structure and do not require semi-empirical correlations to describe fluid flow and heat transport.[3]

Validating PRCFD with measurements

Simulations reflecting experimental boundary condition and including the stainless-steel capillary [4]

Extracting 2D temperature fields from PRCFD PRCFD simulations without capillary, extracting circumferentially averaged 2D temperature fields Effective heat transport parameters based on PRCFD and according the correlation of Martin and Nilles [5]:

Conclusion and outlook

Determining effective heat transport parameters

2D pseudo-continuum model to estimate the wall heat transfer coefficient (α_{wall}) and the effective thermal conductivity (λ_{eff}) with 2D temperature fields using the Maximum-Likelihood-Method.

The PRCFD simulations can be validated with highly resolved measurements of the axial temperature profile within a fixed bed. The validated PRCFD approach is used to determine effective heat transport parameters applied in a pseudocontinuum model of an undisturbed fixed bed. In future work, the presented setup will be employed to resolve temperature gradients in catalytic packed beds with strong heat effects.

References

[1] Stegehake, Grünewald (2017), Chem. Ing. Tech., 89 (4), 480-485. [2] Partopour, Dixon (2017) *Powder Technol.*, 322, 258-272. [3] Dixon, Partopour (2020) Annu. Rev. Chem. Biomol. Eng., 11, 109-130. [4] Kutscherauer et al. (2022) ACS Engineering Au., 3(1), 45-58. [5] Ergun (1952) Chem. Eng. Prog., 48(2), 89-94. [6] Martin and Nilles (1993), Chem. Ing. Tech. 65(12), 1468-1477.

Contact

Martin Kutscherauer

martin.kutscherauer@kit.edu

Institute of Chemical Process Engineering, KIT Building 30.44, Fritz-Haber-Weg 2, 76131 Karlsruhe

KIT – The Research University in the Helmholtz Association