KIT | KIT-Bibliothek | Impressum | Datenschutz

Bamboo charcoal as electrode material for vanadium redox flow batteries

Schilling, Monja 1; Ershov, Alexey 2; Debastiani, Rafaela ORCID iD icon 3,4; Duan, Kangjun 1; Köble, Kerstin 1; Scherer, Simon 1; Lan, Linghan; Rampf, Alexander 1; Faragó, Tomáš 2; Zuber, Marcus ORCID iD icon 5; Cecilia, Angelica 2; Liu, Shaojun 1; Liu, Cheng 1; Baumbach, Tilo 2,5; Li, Jun; Sui, Pang-Chieh; Zeis, Roswitha 1
1 Helmholtz-Institut Ulm (HIU), Karlsruher Institut für Technologie (KIT)
2 Institut für Photonenforschung und Synchrotronstrahlung (IPS), Karlsruher Institut für Technologie (KIT)
3 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
4 Karlsruhe Nano Micro Facility (KNMF), Karlsruher Institut für Technologie (KIT)
5 Laboratorium für Applikationen der Synchrotronstrahlung (LAS), Karlsruher Institut für Technologie (KIT)

Abstract:

Large-scale energy storage is becoming more critical since the share of energy from renewable sources has increased steadily in recent years. Vanadium redox flow batteries (VRFBs) are a promising candidate for such applications. However, this technique still needs to overcome challenges to enhance battery efficiency, and the investigation of new electrode materials is crucial in this process. In this study, we evaluate bamboo charcoal (BC) as an electrode material for VRFBs for the first time. Bamboo is a rapidly growing renewable carbon source and is thermally treated for use in electrochemical applications. The structure, wettability, wetting behavior, and electrochemical performance of differently-doped BC electrodes are investigated in detail. Scanning electron microscopy and X-ray micro- and nano-computed tomography show the promising channel structure of BC, beneficial for the electrolyte transport through the electrode. Additionally, synchrotron-based time-resolved X-ray radiography and micro tomography was used for an in situ study of the electrolyte flow through the BC channels. These investigations and the dynamic vapor sorption measurements prove that the aqueous electrolyte wets the material easily. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000170586
Veröffentlicht am 10.05.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Helmholtz-Institut Ulm (HIU)
Institut für Nanotechnologie (INT)
Institut für Photonenforschung und Synchrotronstrahlung (IPS)
Karlsruhe Nano Micro Facility (KNMF)
Laboratorium für Applikationen der Synchrotronstrahlung (LAS)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 2753-1457
KITopen-ID: 1000170586
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Weitere HGF-Programme 56.12.11 (POF IV, LK 01) Materials - Quantum, Complex and Functional
Erschienen in Energy Advances
Verlag Royal Society of Chemistry (RSC)
Vorab online veröffentlicht am 02.05.2024
Nachgewiesen in Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page