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Abstract

The rapid development of artificial intelligence (AI) and its growing ability to
autonomously perform a wide range of tasks raises questions about the future role of
humans in various domains. In this thesis, we argue that despite the potential ability
of AI to automate tasks, there is complementarity between humans and AI that can
be harnessed to achieve complementary team performance (CTP), i.e., a level of
performance that neither can achieve individually. Therefore, we propose that in
the presence of complementarity, humans and AI should work together, a situation
commonly referred to as human-AI collaboration. However, existing empirical work
shows that the realization of CTP seems to be inconsistent and elusive. Some studies
confirm its achievement, while others contradict this finding, essentially weakening
human-AI collaboration as an alternative to automation. Therefore, this thesis
investigates the challenges of achieving CTP and aims to provide guidance on how
to obtain it.

Since the current overview of CTP is rather anecdotal, we begin the thesis by conduct-
ing a structured literature review and a meta-analysis to provide a comprehensive
and statistical perspective on the current state of empirical studies in the field of
human-AI collaboration. Our results show that human-AI collaboration can outper-
form human individuals but often does not exceed the AI’s individual performance.
These findings underscore the need for a deeper understanding of the factors that
influence CTP.

To address the identified shortcomings, we derive a theoretical foundation of the
impact factors of CTP, which we refer to as the human-AI complementarity concept.
Our concept, anchored in existing justificatory knowledge from the information
systems field, provides a formalization, highlights possible sources of complementar-
ity potential, and introduces a classification of mechanisms to fuse human and AI
decisions during collaboration. Based on this concept, the remainder of the thesis
focuses on how existing complementarity potential can be harnessed.

We first explore the process of harnessing complementarity potential in AI-assisted
decision-making, the most common form of human-AI collaboration. In this setting,
a human receives advice from an AI agent and then decides whether to accept or
adjust it. To achieve CTP in this form of collaboration, it is critical that humans rely
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appropriately on the advice provided by AI. This area of research is still in its infancy
and lacks a solid foundation and established measures. To address this research
gap, we develop a new measure and a research model. In addition, we conduct two
empirical studies to validate and test both the measure and the model. We then
shift our focus beyond AI-assisted decision-making to show how complementarity
can be harnessed in other forms of human-AI collaboration. Finally, we address the
challenge of preserving complementarity over time by conceptualizing a new form
of human-AI collaboration—intelligent decision assistance.

This thesis enriches the research on human-AI collaboration by conducting a compre-
hensive analysis of the current state of empirical studies, introducing new theoretical
concepts, developing a measure and research models, and addressing critical chal-
lenges. From a practical standpoint, we enable organizations to maximize AI’s utility
and yield higher return on investment by offering clear guidance to consistently
achieve CTP. Finally, we contribute to the ubiquitous discourse on the future of work,
which predominantly focuses on either full automation or pure human work, by
providing foundations and evidence for effective human-AI collaboration.
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Introduction and Foundations





Introduction 1
„ Today's workforce should prepare to work hand

in hand with AI.

— Arvind Krishna

(IBM CEO)

1.1 Motivation

In recent years, arti�cial intelligence (AI) has made signi�cant strides in various

domains such as medicine (Wu et al., 2020), �nance (Day et al., 2018) or man-

ufacturing (Stauder & Kühl, 2022), even including those involving high-stakes

decision-making. For example, AI applications now assist doctors in making diag-

noses (Leibig et al., 2022), aid recruiters in the hiring process (Peng et al., 2022),

and even provide decision support within the judicial sector (Kleinberg et al., 2018).

This widespread adoption of AI stems from ongoing advancements in machine learn-

ing (ML), leading to improved capabilities and enhanced performance (Janiesch

et al., 2021; Ren et al., 2015). Especially novel developments in the architectures

of deep neural networks (Dong et al., 2021) have led to cases where ML models

outperformed many existing benchmarks based on traditional methods (Sarker,

2021).

Across a growing range of tasks, the increasing capabilities of AI have begun to

surpass human performance (Takeda et al., 2023). This includes mastering complex

games such as poker (Brown & Sandholm, 2019) and Go (Silver et al., 2018),

accurately identifying categories in image recognition tasks (He et al., 2015), and

detecting medical conditions such as breast cancer (Pisano, 2020). Especially with

the recent rise of foundation models—pre-trained large ML models (Bommasani

et al., 2021)—the number of tasks that both humans and AI can perform effectively

and independently is growing. Examples of such tasks include material discovery

(Takeda et al., 2023), social media content creation (Bommasani et al., 2021), and

programming code generation (Mozannar et al., 2022). The increasing ability of

AI to perform tasks autonomously distinguishes today's AI from the past, when AI
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provided selective input for broader downstream decisions that only humans could

make. For example, in credit allowance decisions, AI only provided an aggregated

probability of default that the lender used in the downstream task of making the

�nal credit decision. Today, however, AI is increasingly capable of making such

decisions independently, meaning that more and more tasks could be automated. As

automation increases, AI is essentially competing with humans and raising questions

about the future role of humans. To summarize, we1 can say that in more and more

application cases, AI is matching human performance, which essentially changes the

role of AI from a decision-making input provider to an autonomous AI agent(Qian

& Qian, 2020).

In this thesis, we argue that modern AI agents, despite being able to automate, also

have the potential to enhance humans through complementary capabilities (Bansal

et al., 2021; Dellermann et al., 2019a). For example, in the medical domain, both,

human and AI agents are able to conduct the diagnosis of diseases on their own

(Pisano, 2020; Reverberi et al., 2022). However, it has been demonstrated that

they typically show different performances on individual task instances (Geirhos

et al., 2021; Steyvers et al., 2022). For example, human and AI agents in cancer

detection show different detection qualities on individual CT images (Jussupow

et al., 2021). In this context, AI agents may detect patterns in large amounts of data

that humans will �nd challenging to discover, while humans, in turn, excel at the

causal interpretation and intuition required to interpret these patterns (Lake et al.,

2017; Li et al., 2019b). By leveraging this complementarity potential between these

two agents, a superior performance beyond the human or AI agent alone can be

reached.2 This desired superior performance is referred to ascomplementary team

performance (CTP)(Bansal et al., 2021).

We argue that in the presence of complementarity potential, human involvement,

as opposed to automation, should be considered to enable CTP. In this thesis, we

refer to the interplay between human and AI agents ashuman-AI collaboration.

This concept is de�ned as a setting where two or more agents, including at least

one human and one AI agent, collaborate to achieve mutual goals (Terveen, 1995;

Vössing et al., 2022). For the purpose of this thesis, as a starting point, we restrict

1Linguistically, this thesis uses the �rst-person plural using “we”. Two rationales underpin this practice.
First, it promotes the readability of this work, as “we” better engages the reader and invites to a
shared journey. Second, research always takes place in a community that collectively seeks to explore
a research area.

2Some people argue that when AI agents reach superintelligence, that is, when they become better
than humans in every way, this complementarity will disappear. However, as Keynes said: “In the
long run, we are all dead.” (Keynes, 1923, p. 80). Keynes was arguing for some focus on the short
and medium term. In the short and medium term, no AI is likely to reach the cognitive level of
superintelligence, which ensures the relevance of human-AI complementarity in the now.
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our study of human-AI collaboration to scenarios involving a single human and one

AI agent. The goal of achieving CTP through human-AI collaboration has recently

gained attention in various disciplines, such as information system (IS) (Fuegener

et al., 2022), human-computer interaction (HCI) (Bansal et al., 2021; Zhang et al.,

2022), and computer science (CS) (Bansal et al., 2019b; Siu et al., 2021).

Various empirical studies have demonstrated that human-AI collaboration can out-

perform human individuals, but they often do not exceed the AI agents' individual

performance (Bansal et al., 2021). The observation that CTP is often not attained in

empirical studies raises questions about which factors could contribute to achieving

CTP. It illustrates that the current knowledge of how the respective capabilities of hu-

mans and AI agents can be utilized to create joint synergies has yet to be suf�ciently

developed. This means there is a need for additional concepts that foster an in-depth

understanding of complementarity and how to harness it in human-AI collaboration.

In this thesis, we aim to understand what is necessary to createeffectivehuman-AI

collaboration, i.e., to achieve CTP consistently and thereby contribute to human-AI

collaboration research in IS, HCI, and CS.

1.2 Research Objective and Research Questions

Building on the outlined motivation, the objective of this thesis is to explore and

establish foundations that can guideeffectivehuman-AI collaboration. The evolution

of AI toward autonomous agents requires deeper insights into the unique and

complementary capabilities of human and AI agents. This work aims to contribute

to a better understanding of the mechanisms that promote effective human-AI

collaboration (i.e., achieving CTP), which leads to the following research objective

of this thesis:

Research Objective

The research objective of this thesis is to derive foundations and evidence for

understanding and designing effective human-AI collaboration.

Our primary research objective is divided into four research questions (RQs). In the

following, the individual research questions are introduced.

With the ongoing development of AI agents and the increasing interest in human-

AI collaboration, researchers have begun to assess whether the improvement in

decision performance from human-AI collaboration can be quanti�ed (Bansal et al.,
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2021; Buçinca et al., 2020). While some researchers �nd a bene�t from human-AI

collaboration in user studies (Buçinca et al., 2020), others �nd negligible evidence

(Carton et al., 2020). These differences could be due to different experimental

setups and tasks tailored to different research objectives. It lacks a uni�ed view

of related work and statistical analysis. In particular, there is no overview of the

achievement of CTP across experimental studies. Therefore, we aim to clarify the

current state of the art of AI-assisted decision-making performance in empirical user

studies and formulate:

Research Question 1 (RQ1)

How effectively do human agents and AI agents collaborate?

Answering our �rst research question highlights a severe ambiguity in current

research on human-AI collaboration (Hemmer et al., 2021; Schemmer et al., 2022b).

More speci�cally, we show that CTP is often not attained in empirical studies. Most

studies investigate whether CTP can be achieved through appropriate human reliance

on the AI agents' advice. In these studies, researchers supplement the AI agents'

recommendation with additional information aiming to enable human agents to

assess betters its reliability, e.g., explanations or con�dence measures (Bansal et al.,

2021; Liu et al., 2021; Schreiber et al., 2020; Zhang et al., 2020) which is commonly

referred to as explainable AI (XAI) (Wanner et al., 2020). However, our research

shows that this additional information does not reliably have positive effects on

decision-making performance (Hemmer et al., 2021; Schemmer et al., 2022b). The

fact that CTP is often not reached and the most common design feature of effective

human-AI collaboration (XAI) does not reliably improve performance illustrates

that the current understanding of human-AI collaboration is not yet suf�ciently

developed and that there is a need for a deeper understanding. Therefore, we

formulate:

Research Question 2 (RQ2)

What are the key factors that in�uence effective human-AI collaboration?

We derive and formalize two key factors of effective human-AI collaboration, namely

the existence of complementarity potential and the effective realization of this

potential (Schemmer et al., 2023b). To illustrate complementarity potential, in

classi�cations, it refers to the proportion of tasks that can be effectively accom-

plished by either entity (such as a human or an AI) but not by both together. It

essentially signi�es the unique problem-solving abilities possessed by each agent.
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It is important to note that even if complementarity potential is available, it is

useless if it cannot be harnessed. Current research does not show robust ways to

improve decision performance through human-AI collaboration (Bansal et al., 2021;

Hemmer et al., 2021; Schemmer et al., 2022b). Therefore, while ensuring suf�cient

complementarity potential is essential, in this thesis, we focus on realizing existing

complementarity potential. More speci�cally, we focus on human agents receiving

input from AI agents—so-called human ex-post integration. Here, the most common

instantiation of this integration is AI-assisted decision-making (Lai et al., 2023).

AI-assisted decision-making refers to a setting in which a human receives AI advice

and then is asked to either follow or adjust the advice. Since this is the most common

integration, we want to explore it further and formulate the following third research

question:

Research Question 3 (RQ3)

How can complementarity potential in AI-assisted decision-making be har-

nessed?

To harness complementarity in AI-assisted decision-making, human decision-makers

need to appropriately rely on the advice recommended by the AI agent (Schemmer et

al., 2023d). However, it is unclear how to design for appropriate reliance. Therefore,

we develop and validate a measure of appropriate reliance and a research model

to investigate appropriate reliance in AI-assisted decision-making. However, the

spectrum of human-AI collaboration is much broader than AI-assisted decision-

making (Vössing et al., 2022), which encompasses classi�cation and regression

tasks. AI agents can address a magnitude of additional tasks (Carbonell et al.,

1983), such as clustering, anomaly detection, etc. Especially the generation of text

or images, commonly referred to as generative AI (Jo, 2023), is growing. Other

forms of collaboration and different tasks than classi�cation and regression may

require different foundations. Therefore, we extend our perspective and research

beyond AI-assisted decision-making. Thus, as the �nal research question of this

thesis, we want to explore how to potentially harness complementarity potential

beyond AI-assisted decision-making:

Research Question 4 (RQ4)

How can complementarity potential beyond AI-assisted decision-making be

harnessed?

In the following, we introduce the research design of this thesis to answer the

research questions.

1.2 Research Objective and Research Questions 7



1.3 Research Design and Structure

This thesis consists of six parts. In the current Part I, we introduce the research

questions and outline the research design. Furthermore, the foundations of the

thesis are presented. In Part II, we analyze the current state of empirical studies on

human-AI collaboration to address RQ1. Based on the insights gained in Part III, we

conceptualize the foundation of effective human-AI collaboration to address RQ2.

Next, in Part IV, we derive insights on how to harness human-AI complementarity in

AI-assisted decision-making, addressing RQ3. In Part V, we broaden our perspective

to address RQ4, which focuses on leveraging complementarity beyond AI-assisted

decision-making. Finally, Part VI, we summarize the �ndings, discuss implications,

and outline limitations and potential future research. Table 1.1 on page 9 visualizes

the structure of this thesis.

The type of research questions and the nature of the study determine the choice

of research methodology. Following the structure of the thesis and based upon the

research questions introduced in Section 1.2, in the following, we illustrate the

research methodology.

In Part I , in Chapter 2 , we introduce the foundations of this thesis. We analyze

the role of ML in AI agents. We do so by taking an ML perspective on AI agents'

capabilities and their relevant implementation. To this end, we review the relevant

literature for both terms and synthesize and conceptualize the results.

In Part II , the �rst research question (RQ1) of this thesis is addressed in two chapters.

To answer the question of how effective human agents and AI agents collaborate, we

collect studies based on a structured literature review (SLR) that empirically analyze

human-AI collaboration and study them with two approaches—�rst qualitatively

and then quantitatively using a meta-analysis. The nature of SLRs and meta-analyses

require a certain degree of homogeneity within the sample (Borenstein et al., 2021;

vom Brocke et al., 2009). Therefore, we �rst determine the scope of the articles to

analyze. A common trait found amongst a considerable sample of these empirical

studies is the emphasis on equipping humans with insights into the decision-making

processes of AI, a concept often denoted as XAI. Consequently, our search strategy is

tailored to incorporate studies that revolve around the theme of XAI.

In Chapter 3 , we conduct a structured literature review following vom Brocke

et al. (2009) to collect the body of empirical studies of human-AI collaboration.

We analyze the collected data (29 articles) qualitatively using a socio-technical

perspective (Maedche et al., 2019) and cluster the identi�ed factors according to
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Table 1.1.: Overview of conducted research studies and research methodologies.

human agents, AI agents, and tasks. Our results highlight that only a small number

of experiments show CTP. Most of the time, the human decision performance with

AI assistance is inferior to the AI performance if the AI agent had performed the

task alone. This leaves the question unanswered why CTP—also exceeding this AI

performance—could not have been accomplished. Furthermore, our results show

that XAI has ambiguous effects on team performance in general and CTP in speci�c.
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Some studies show positive results, while others show negative results. Finally, we

derive 12 hypotheses about factors that may have a potential impact on CTP.

In Chapter 4 , we complement the structured literature review with a statistical

meta-analysis of the empirical studies. First, we renew the SLR, resulting in a total

of 33 articles. Next, we sample 9 articles from the 33 that meet the requirements for

meta-analysis. The articles comprised multiple experimental studies with multiple

treatments, which led to a collection of 44 treatments. Subsequently, all necessary

performance metrics are extracted from the articles. Based on this data foundation,

a meta-analysis (Higgins et al., 2019) is conducted, which allows a statistical

comparison between human, AI-, and XAI-assisted task performance. The statistical

analysis con�rms the previous structured literature review. The majority of studies

in the �eld merely demonstrate that humans teaming with AI may achieve higher

team performance than conducting the decision task alone. However, we �nd no

effect of explanations on users' performance compared to AI assistance. Some

studies report positive XAI assistance performance effects, whereas others �nd no or

slightly adverse effects. This statistical analysis further highlights the ambiguity in

harnessing complementarity potential.

In Part III , our objective is to gain a deeper understanding of the ambiguous

empirical �ndings and consequently explore RQ2, i.e., identifying the key factors

that in�uence effective collaboration between humans and AI agents.

Therefore, in Chapter 5 , we derive a concept for understanding and developing

effective human-AI collaboration, i.e., achieving CTP. Essentially, CTP depends on

suf�cient complementarity potential and the ability to harness it. Based on exist-

ing justi�catory knowledge of Fügener et al. (2021), we derive a formalization of

complementarity potential. In detail, we argue that complementarity potential has

an inherent and a collaborative component. Whereas the �rst captures the idea

that humans and AI possess different inherently present capabilities in the form of

unique human and AI knowledge, the second component captures a new type of

knowledge that only emerges through human-AI interaction. In the formalization,

for both components that together result in the total complementarity potential, we

distinguish between the realized amount that has materialized and a theoretical

amount that serves as an upper boundary. Next, we outline possible sources of

complementarity potential and introduce a classi�cation of mechanisms for inte-

grating human and AI agent decisions during collaboration. We call the triad of

formalization, sources of complementarity potential, and classi�cation of integration

mechanisms the human-AI complementarity concept. To illustrate our concept, we

apply it in an empirical study: we focus on information asymmetry as a promising
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source of complementarity potential and demonstrate, for a real estate appraisal use

case, that humans can indeed leverage their unique information to achieve CTP. To

sum it up, CTP essentially depends on complementarity potential and the ability to

harness it. In this thesis, we focus in the next chapters on how to harness existing

complementarity potential.

As a starting point, in Part IV , to analyze how to harness complementarity potential,

we focus on the most common form of human-AI collaboration—AI-assisted decision-

making (Lai et al., 2023), thereby addressing RQ3.

AI-assisted decision-making describes a setting in which a human receives AI advice

and is asked to act upon it. Human agents should not always rely on AI advice but

should differentiate when to rely on AI advice and when to rely on their own, i.e.,

they should display appropriate reliance (AR) (Bansal et al., 2021; Wang & Yin,

2021; Yang et al., 2020a; Zhang et al., 2020). Despite being a necessary condition

for effective human-AI collaboration, current research on AR on AI advice is still

ambiguous with regard to de�nition, measurement, and impact factors (Bansal

et al., 2021). Therefore, we derive a measurement concept and a research model in

Chapter 6 .

The term “appropriate reliance” is currently used inconsistently in research, referring

to both a binary target state (where AR is either achieved or not achieved) and a

metric indicating varying degrees of appropriateness. To address this ambiguity, we

propose a two-dimensional metric, termed appropriateness of reliance (AoR), to

de�ne and quantify reliance behavior. This metric takes into account the relative

frequency of accurate overrides of incorrect AI suggestions (referred to as relative

self-reliance—RSR) and adherence to correct AI suggestions (referred to as relative

AI reliance—RAIR). AoR embodies a metric understanding of AR. Using this metric,

we can de�ne different levels of AR that represent the achievement of speci�c goals,

such as meeting legal, ethical, and performance standards.

In addition, we aim to analyze how the provision of explanations of AI in�uences

AoR. Existing literature is ambiguous with regard to the effects of explanations

(Alufaisan et al., 2021; Bansal et al., 2021; Wang & Yin, 2021): while in some

experiments, explanations support AR (Wang & Yin, 2021; Yang et al., 2020a),

in others they cause “blind trust” (Alufaisan et al., 2021; Bansal et al., 2021)

in AI advice. To better understand and reconcile con�icting results, we consider

additional constructs that may mediate the effect of explanations. More speci�cally,

we hypothesize that explanations do not only in�uence the information available to

the decision-maker but also have an impact on trust toward AI and self-con�dence.

Based on those hypotheses, we derive an initial research model on AoR. Our results
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show that in certain situations, explanations can improve the relative AI reliance

and that this effect is partially mediated by a change in self-con�dence and trust.

Next, in Chapter 7 , we further explore RQ3 and extend our previously derived

research model. One of the core in�uence factors of reliance behavior in human-AI

collaboration seems to be the expertise of decision-maker (Nourani et al., 2020a;

Wang & Yin, 2021). We follow this line of thought and hypothesize that learning

in AI-assisted decision-making (decision-makers gradually gaining expertise) could

be a relevant mediator of AoR. Therefore, we extend our research model on AoR,

including theory-driven hypotheses, and subsequently conduct a behavioral exper-

iment to evaluate the model. We use example-based explanations (Fahse et al.,

2022) to design a human-AI collaboration scenario with a high potential for learning.

Our results reveal several interrelated �ndings. First, we see that example-based

explanations enhance human learning during the process of human-AI collaboration.

Furthermore, this enhanced learning provides individuals with a better ability to

determine when to rely on their own judgment. Finally, when a signi�cant amount

of learning is already present, it can effectively help determine the optimal times to

rely on the AI agent's advice.

Our insights address how to harness complementarity in AI-assisted decision-making.

However, many different forms of human-AI collaboration exist beyond AI-assisted

decision-making, e.g., anomaly detection and investigation, generative AI, etc. Thus,

next, in Part V, we analyze how to harness complementarity beyond AI-assisted

decision-making addressingRQ4. Many different forms of human-AI collaboration

and tasks are possible to investigate. Therefore, we brie�y outline the reasoning for

the focus of this thesis, followed by our methodological approach.

AI-assisted decision-making, per de�nition, comprises classi�cation and regression

tasks which are both parts of so-called supervised ML (Kühl et al., 2022). Supervised

ML refers to techniques that allow a system to learn a particular task from a set of

given instances (Mitchell, 1997). In the learning process, no manual adjustment

or programming of rules or strategies to solve a problem is required (Kühl et

al., 2022). Beyond supervised ML, literature usually refers to two other types

of ML, unsupervised and reinforcement (Kühl et al., 2022). Unsupervised ML

comprises methods that reveal previously unknown patterns in data. Reinforcement

learning refers to methods that are concerned with teaching intelligent agents to

take those kinds of actions that increase their cumulative reward (Kaelbling et al.,

1996). To broaden our perspective, we want to study harnessing complementarity

in unsupervised ML, an approach used in many practical use cases, such as cancer

detection (Haq et al., 2021), predictive maintenance (Amruthnath & Gupta, 2018),
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or intrusion detection (Verkerken et al., 2022). Therefore in Chapter 8 , we shift

the focus from supervised ML to unsupervised ML. Further, we selected the case

of anomaly detection due to its signi�cant relevance in practical applications of

unsupervised ML (Casolla et al., 2019; Roohi et al., 2020).

Anomaly detection is a critical task in many domains, including cybersecurity

(Blazquez-Garcia et al., 2021) and maintenance (Ren et al., 2018), where hu-

man experts often rely on anomaly detection systems based on unsupervised ML

due to the tedious nature of continuous data monitoring. However, these systems

may �ag events that are unusual, such as a scheduled machine shutdown, but not

events of interest, such as unexpected machine failures. This requires human ex-

pertise to investigate the relevance of the detected anomalies, revealing a potential

area of complementarity potential. To harness this complementarity, we propose a

novel method that supports anomaly investigation by providing explanations of the

unsupervised anomaly detection. To evaluate the effectiveness of our method, we

conduct a behavioral experiment using New York City taxi records as a testbed. Par-

ticipants are tasked with distinguishing between anomalies due to extreme weather

conditions and those due to other unusual events. The results of the experiment

show that the inclusion of counterfactual explanations improves the examination

of anomalies. Our results show that providing counterfactual explanations does

improve the investigation of anomalies, indicating the potential for explainable

anomaly detection to harness complementarity potential in general.

In addition, to analyzing complementarity in unsupervised ML, we aim to address

one of the core challenges in AI-assisted decision-making, presuming the theoreti-

cal inherent complementarity over time (Fügener et al., 2021). Despite the many

bene�ts that recent breakthroughs in AI-assisted decision-making have brought to

business and society, there are also some drawbacks. It has long been known that

AI-assisted decision-making can lead to various drawbacks, such as automation bias

and deskilling (Goddard et al., 2012). In particular, the deskilling of knowledge

workers is a major issue, as they are the same people who should also train, chal-

lenge and evolve AI. Therefore, inChapter 9 , we further explore RQ4 and address

deskilling in AI-assisted decision-making. To this end, based on a literature review

of two different research streams—decision support system (DSS) and automation—

we conceptualize a new form of human-AI collaboration, which we call intelligent

decision assistance (IDA). IDA supports human agents without in�uencing them

through explicit AI advice. Speci�cally, we propose to use techniques of XAI while

withholding concrete AI recommendations. To test this conceptualization, we de-

velop hypotheses on the impacts of IDA and provide �rst evidence for their validity

based on empirical studies in the literature.
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Finally, in Part VI , we summarize the results of this thesis, including theoretical

contributions, and discuss its managerial implications as well as limitations and a

research outlook.

1.4 Integration of Articles

The foundation of this thesis is built upon eight separate articles (Chapter 2 through

Chapter 9), out of which �ve have already received acceptance for publication in

scholarly forums. The other three are included as working papers. Table 1.2 on

page 15 summarizes the integration of articles. The subsequent tables provide a

summarization of these original publications, arranged in the order of their presen-

tation within this thesis (refer to Table 1.4 – Table 1.10). Each table enumerates

the title, authors, the outlet, the outlet type (conference vs journal paper), and year

of publication, along with their abstract. To give an intuition about the quality of

the work, we additionally report ranking measures. Since we publish in different

research communities (IS, HCI, CS) depending on the focus of our research, we

report the VHB-Jourqual3 (Verband der Hochschullehrerinnen und Hochschullehrer

für Betriebswirtschaft e.V., 2022) ranking, the CORE conference or journal rating,

and the H5 index of google scholar.

14 Chapter 1 Introduction



Table 1.2.: Overview of the integrated articles in the structure of the thesis.
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Table 1.3.: Summary of the paper included in Chapter 2

Title Arti�cial Intelligence and Machine Learning

Author(s) Kühl, N., Schemmer, M., Goutier, M., Satzger, G.

Outlet Electronic Markets

Type Journal Paper

Year 2022

Ranking VHB-JQ3: B

CORE Conference Ranking: A

H5-Index: 41

Abstract

Within the last decade, the application of “arti�cial
intelligence” and “machine learning” has become
popular across multiple disciplines, especially in in-
formation systems. The two terms are still used in-
consistently in academia and industry—sometimes
as synonyms, sometimes with different meanings.
With this work, we try to clarify the relationship
between these concepts. We review the relevant
literature and develop a conceptual framework to
specify the role of machine learning in building (ar-
ti�cial) intelligent agents. Additionally, we propose
a consistent typology for AI-based information sys-
tems. We contribute to a deeper understanding of
the nature of both concepts and to more termino-
logical clarity and guidance—as a starting point for
interdisciplinary discussions and future research.
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Table 1.4.: Summary of the paper included in Chapter 3

Title
Human-AI Complementarity in Hybrid Intelligence
Systems: A Structured Literature Review

Author(s) Hemmer, P., Schemmer, M., Vössing, M., Kühl. N.

(Shared �rst authorship)

Outlet
Proceedings of the 28th Paci�c Asia Conference on
Information Systems

Type Conference paper

Year 2021

Ranking VHB-JQ3: C

CORE Conference Ranking: N/A

H5-Index: 24

Abstract

Hybrid Intelligence is an emerging concept that
emphasizes the complementary nature of human
intelligence and arti�cial intelligence (AI). One key
requirement for collaboration between humans and
AI is the interpretability of the decisions provided
by the AI to enable humans to assess whether to
comply with the presented decisions. Due to the
black-box nature of state-of-the-art AI, the explain-
able AI (XAI) research community has developed
various means to increase interpretability. However,
many studies show that increased interpretability
through XAI does not necessarily result in com-
plementary team performance (CTP). Through a
structured literature review, we identify relevant
factors that in�uence collaboration between hu-
mans and AI. Additionally, as we collect relevant
research articles and synthesize their �ndings, we
develop a research agenda with relevant hypothe-
ses to lay the foundation for future research on
human-AI complementarity in Hybrid Intelligence
systems.
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Table 1.5.: Summary of the paper included in Chapter 4

Title
A Meta-Analysis on the Utility of Explainable Arti�-
cial Intelligence in human-AI collaboration

Author(s)
Schemmer, M., Hemmer, P., Nitsche, M., Kühl, N.,
Vössing, M.

(Shared �rst authorship)

Outlet
Proceedings of the 2022 AAAI/ACM Conference on
AI, Ethics, and Society

Type Conference paper

Year 2022

Ranking VHB-JQ3: N/A

CORE Conference Ranking: N/A

H5-Index: 44

Abstract

Research in arti�cial intelligence (AI)-assisted
decision-making is experiencing tremendous
growth with a constantly rising number of stud-
ies evaluating the effect of AI with and without
techniques from the �eld of explainable AI (XAI)
on human decision-making performance. However,
as tasks and experimental setups vary due to differ-
ent objectives, some studies report improved user
decision-making performance through XAI, while
others report only negligible effects. Therefore, in
this article, we present an initial synthesis of ex-
isting research on XAI studies using a statistical
meta-analysis to derive implications across exist-
ing research. We observe a statistically positive
impact of XAI on users' performance. Additionally,
the �rst results indicate that human-AI collabora-
tion tends to yield better task performance on text
data. However, we �nd no effect of explanations
on users' performance compared to sole AI pre-
dictions. Our initial synthesis gives rise to future
research investigating the underlying causes and
contributes to further developing algorithms that
effectively bene�t human decision-makers by pro-
viding meaningful explanations.
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Table 1.6.: Summary of the paper included in Chapter 5

Title
Human-AI Complementarity: Conceptualization
and the Effect of Information Asymmetry

Author(s)
Schemmer, M., Hemmer, P., Kühl, N., Vössing, M.,
Satzger, G.

(Shared �rst authorship)

Outlet Working Paper (Under review)

Type Journal paper

Year 2023

Ranking VHB-JQ3: A

CORE Conference Ranking: N/A

H5-Index: 47

Abstract

Arti�cial intelligence (AI) can improve human
decision-making in various application areas. Ide-
ally collaboration between humans and AI systems
should lead to complementary team performance
(CTP), i.e., a level of performance that none of
them can reach individually. However, CTP has
rarely been observed, suggesting an insuf�cient
understanding of the complementary constituents
within human-AI collaboration that can contribute
to CTP in decision-making. Therefore, this work
aims at a holistic theoretical foundation for under-
standing and developing human-AI complementar-
ity: Based on existing IS justi�catory knowledge,
we conceptualize complementarity which consists
of formalizing the notion of complementarity po-
tential, outlining possible sources, and introducing
a classi�cation of mechanisms for the integration
of human and AI decisions during collaboration.
To illustrate our conceptualization, we apply it in
an empirical study: We focus on information asym-
metry as a promising source of complementarity
potential, and, for a real estate appraisal use case,
demonstrate that humans can in fact leverage con-
textual information to achieve CTP. Our work pro-
vides researchers with a theoretical foundation of
complementarity for human-AI collaboration and
demonstrates that information asymmetry can con-
stitute a promising source of inherent complemen-
tarity potential that can be turned into CTP.
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Table 1.7.: Summary of the paper included in Chapter 6

Title
Appropriate Reliance on AI Advice: Conceptualiza-
tion and the Effect of Explanations

Author(s)
Schemmer, M., Kühl, N., Benz, C., Bartos, A.,
Satzger, G.

Outlet
Proceedings of the 28th International Conference
on Intelligent User Interfaces

Type Conference paper

Year 2023

Ranking VHB-JQ3: N/A

CORE Conference Ranking: A

H5-Index: 40

Abstract

AI advice is becoming increasingly popular, e.g., in
investment and medical treatment decisions. As
this advice is typically imperfect, decision-makers
have to exert discretion as to whether actually fol-
low that advice: they have to “appropriately” rely
on correct and turn down incorrect advice. How-
ever, current research on appropriate reliance still
lacks a common de�nition as well as an operational
measurement concept. Additionally, no in-depth
behavioral experiments have been conducted that
help understand the factors in�uencing this behav-
ior. In this paper, we propose Appropriateness of
Reliance (AoR) as an underlying, quanti�able two-
dimensional measurement concept. We develop a
research model that analyzes the effect of provid-
ing explanations for AI advice. In an experiment
with 200 participants, we demonstrate how these
explanations in�uence the AoR, and, thus, the ef-
fectiveness of AI advice. Our work contributes
fundamental concepts for the analysis of reliance
behavior and the purposeful design of AI advisors.

20 Chapter 1 Introduction



Table 1.8.: Summary of the paper included in Chapter 7

Title
Towards Effective Human-AI Collaboration: The
Role of Human Learning in Appropriate Reliance
on AI Advice

Author(s)
Schemmer, M., Bartos, A., Spitzer, P., Hemmer, P.,
Kühl, N., Liebschner, J, Satzger, G.

Outlet Working Paper (Under review)

Type Conference paper

Year 2023

Ranking VHB-JQ3: A

CORE Conference Ranking: N/A

H5-Index: 34

Abstract

The true potential of human-AI collaboration lies
in exploiting the complementary capabilities of hu-
mans and AI to achieve a joint performance supe-
rior to that of the individual AI or human, i.e., to
achieve Complementary Team Performance (CTP).
To realize this complementarity potential, humans
need to exert discretion in following an AI's ad-
vice, i.e., they need to appropriately rely on the
AI's advice. While previous work has focused on
building a mental model of the AI to assess an AI
recommendation, recent research has shown that
the mental model alone cannot explain appropri-
ate reliance. We hypothesize that, in addition to
the mental model, human learning is a key media-
tor of appropriate reliance and, thus, CTP. In this
study, we demonstrate the relationship between
learning and appropriate reliance in an experiment
with 100 participants. This work provides funda-
mental concepts for analyzing reliance and derives
implications for the effective design of human-AI
collaboration.

1.4 Integration of Articles 21



Table 1.9.: Summary of the paper included in Chapter 8

Title
From Anomaly Detection to Anomaly Investigation:
Support by Explainable AI

Author(s) Schemmer, M., Holstein, J., Kühl, N., Satzger, G.

Outlet Working Paper (under review)

Type Journal paper

Year 2023

Ranking VHB-JQ3: C

CORE Journal Ranking: N/A

H5-Index: N/A

Abstract

Fast and reliable anomaly detection is critical in
many areas, including cybersecurity and mainte-
nance. However, continuously monitoring data
streams for anomalies is an error-prone and te-
dious task that requires innovative solutions. One
approach is the use of machine learning to identify
anomalous patterns. Given the inherent rarity and
potential diversity of anomalies, the availability of
labels for training is often limited. For this rea-
son, unsupervised machine learning methods are
typically used that do not require any labels. How-
ever, the anomalies detected by unsupervised ap-
proaches may include rare events, such as a sched-
uled machine shutdown, but not the actual event
of interest, such as a machine failure. Therefore,
human experts are generally needed to investigate
the relevance of the detected anomalies. Yet, the
high dimensionality of data sets and the potential
abundance of detected anomalies often exceed the
human capabilities to investigate anomalies. Our
results show that incorporating these explanations
improves the accuracy of human anomaly investi-
gation, providing a novel empirical link between
anomaly detection explanations and anomaly inves-
tigation. Our work has the potential to signi�cantly
impact the design and use of anomaly detection
systems in various domains.

22 Chapter 1 Introduction



Table 1.10.: Summary of the paper included in Chapter 9

Title
Intelligent Decision Assistance Versus Automated
Decision-Making: Enhancing Knowledge Workers
Through Explainable Arti�cial Intelligence

Author(s) Schemmer, M., Kühl, N., Satzger, G.

Outlet
Proceedings of the 55th Hawaii International Con-
ference on System Sciences

Type Conference paper

Year 2021

Ranking VHB-JQ3: C

Core Conference Ranking: N/A

H5-Index: 55

Abstract

Detecting rare events is essential in various �elds,
e.g., in cyber security or maintenance. Often, hu-
man experts are supported by anomaly detection
systems as continuously monitoring the data is
error-prone and tedious task. However, among
the anomalies detected may be events that are rare,
e.g., in industrial maintenance a planned shutdown
of a machine, but are not the actual event of in-
terest, e.g., breakdowns of a machine. Therefore,
human experts are needed to validate whether the
detected anomalies are relevant. Related work
neglects this human anomaly investigation and in-
stead, solely focuses on the technical implemen-
tation of anomaly detection. To close this gap,
we introduce a human-centered work�ow linking
anomaly detection and investigation. We propose
to complement the anomaly investigation through
explanations of the automated anomaly detection.
To evaluate the utility of the work�ow, we conduct
a behavioral experiment using records of taxi rides
in New York City as a testbed. Our results show
that providing counterfactual explanations does
improve the investigation of anomalies, indicating
potential for explainable anomaly detection in gen-
eral.
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Foundations 2
To provide a common understanding, we outline the theoretical foundations relevant

to this thesis. In Section 2.1, we discuss the relationship between AI and ML to

provide a common understanding of AI agents and underlying methods. Next,

Section 2.2 outlines basic terminology in the area of human-AI collaboration and

clari�es the scope of the thesis. Finally, Section 2.3 provides an overview of XAI,

which is explored in this thesis as a central means of designing effective human-AI

collaboration.

2.1 Arti�cial Intelligence and Machine Learning

This chapter comprises an article that was published as: Kühl, N., Schemmer,

M., Goutier, M., & Satzger, G. (2022). Arti�cial Intelligence and Machine

Learning. Electronic Markets, 32(4), 2235–2244. Note: The abstract has been

removed. Tables and �gures were reformatted, and newly referenced to �t the

structure of the thesis. The terminology was standardized with the dissertation.

Chapter, and section numbering and respective cross-references were modi�ed.

Formatting and reference style was adapted and references were integrated into

the overall references section of this thesis.

AI has been named as one of the most recent, fundamental developments of the

convergence in electronic markets (Alt, 2021) and has become an increasingly

relevant topic for IS research (Abdel-Karim et al., 2021; Alt, 2018). While a large

body of literature is concerned with designing AI to mimic and replace humans

(Dunin-Barkowski, 2020; Fukuda et al., 2001), IS research in general, and DSS

research in particular, emphasize the support of humans with AI (Arnott & Pervan,

2015). Recent research in hybrid intelligence (HI) and human-AI collaboration offers

a promising path in synthesizing AI research across different �elds (Dellermann

et al., 2019b): The ultimate goal of HI is to leverage the individual advantages of

both human and AI to enable synergy effects (Wilson & Daugherty, 2018) and to

achieve CTP (Hemmer et al., 2021).
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However, in many cases in both research and practice, AI is simply equated with

the concept of ML—negatively impacting terminological precision and effective

communication. Ågerfalk et al. (2020, p. 2) emphasizes that differentiating between

AI and ML is especially important for IS research: “Is it not our responsibility as

IS scholars to bring clarity to the discourse rather than contributing to its decline?

(...) It would mean to distinguish between different types of AI and not talk of AI as

synonymous with ML, which in itself is far from a monolithic concept.”

The practical relevance of a clear understanding is underlined by observing confusion

and misuse of the terms AI and ML: During Mark Zuckerberg's U.S. senate hearing

in April 2018, he stressed that Facebook had “AI tools to identify hate speech” as

well as “terrorist propaganda” (The Washington Post, 2018). Researchers, however,

would usually describe tasks identifying speci�c social media platform instances as

classi�cation tasks in the �eld of (supervised) ML (Waseem & Hovy, 2016). The

increasing popularity of AI (Hidemichi & Shunsuke, 2017) has led to the term often

being used interchangeably with ML. This does not only hold true for the statement

of Facebook's CEO above, but also across various theoretical and application-oriented

contributions in recent literature (Brink, 2017; Nawrocki et al., 2018; Shirazi et al.,

2017). Camerer (2018) even mentions that he still uses AI as a synonym for ML

despite knowing it is inaccurate.

As the remainder of this paper shows, both concepts are not identical—although

in many cases both terms will appear in the same context. Such ambiguity might

lead to multiple imprecisions in both research and practice when conversing about

the relevant concepts, methods, and results. This is especially important in IS

research—being interdisciplinary by nature (D'Atri et al., 2008). Ultimately, misuse

can either lead to fundamental misunderstandings (Carnap, 1955) or to research

that ought to be undertaken not being conducted (Davey & Cope, 2008). After

all, misunderstandings can potentially lead to low perceived trustworthiness of AI

(Thiebes et al., 2021).

It seems surprising that despite the frequent use of the terms, there is hardly any

helpful academic delineation—apart from the notion that ML is a (not well-de�ned)

subset of AI (Campesato, 2020), comparable to other possible subdisciplines of

AI: Expert systems, robotics, natural language processing, machine vision, and

speech recognition (Léon & Dejoux, 2018; Vickers, 2017). Consequently, this paper

aims to shed light on the relationship between the two concepts: We analyze the

role of ML in AI and, more precisely, in intelligent agents, which are de�ned by

their capability to sense and act in an environment (Schleiffer, 2005). We do so

by taking an ML perspective on intelligent agents' capabilities and their relevant
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implementation—with IS research in mind. To this end, we review the relevant

literature for both terms and synthesize and conceptualize the results.

Our article's contributions are twofold: First, we identify different contributions of

ML to intelligent agents as speci�c AI instantiations. We base this on an expansion of

the existing AI framework by (Russell, 2010) — explicitly breaking down intelligent

agents' capabilities into separate “execution” and “learning” capabilities. Second,

we develop a typology to provide a common terminology for AI-based information

systems, where we conceptualize which systems employ ML—and which do not.

The result should provide guidance when designing and analyzing systems.

Next, in Section 2.1.1, we review relevant literature in the �elds of AI and ML. In

Section 2.1.2, we then analyze the capabilities of intelligent agents in more depth

and examine the role of ML in them. Section 2.1.3 develops a framework and

typology to differentiate the terms AI and ML and to explain their relationship.

2.1.1 Terminology

Over the last decade, both terms, arti�cial intelligence (AI) and machine learning

(ML), have enjoyed increasing popularity in IS research. An analysis of the “AIS

Senior Scholars' Basket1” journals since 20002, illustrates how the occurrences of

both terms increased in titles, abstracts, and keywords (cf. Figure 2.1 on page 28).

While over the last 21 years, we observe a small but constant number of publications

covering AI-related topics, ML only gained relevance in the literature after 2017:

The late re�ection of ML—despite of the earlier adoption and spread in industry

(Brynjolfsson & Mcafee, 2017)—may raise questions about whether IS has picked

up the topic early enough.

As the analysis demonstrates, the two terms do exist for quite some time, while their

related subjects are highly and increasingly topical now. In this section, we will

elaborate on the meaning of the terms.

Arti�cial Intelligence

In 1956, a Dartmouth workshop, led by Minsky and McCarthy, coined the term

“Arti�cial Intelligence” (McDonald et al., 2017)—later taking in contributions from a

1As of March 2022, see https://aisnet.org/page/SeniorScholarBasket, last accessed 16.05.2022
2We start with the year 2000, as it was the last point in time when a journal (JAIS) was added to AIS
Senior Scholars' Basket.
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Figure 2.1.: Appearance of the terms “arti�cial intelligence” and “machine learning” in AIS
Senior Scholars' Basket journals.

variety of different research disciplines, such as computer science (He et al., 2016)

and programming (Newell & Simon, 1961), neuroscience (Ullman, 2019), robotics

(Brady, 1985), linguistics (Clark et al., 2012), philosophy (Smith, 2013), and futur-

ology (Krawczyk, 2016). While the terminology is not well de�ned across disciplines,

even within the IS domain de�nitions do vary widely; (Vickers, 2017) provide a

comprehensive overview. Recent AI de�nitions transfer the human intelligence

concept to machines in its entirety as “the ability of a machine to perform cogni-

tive functions that we associate with human minds, such as perceiving, reasoning,

learning, interacting with the environment, problem solving, decision-making, and

even demonstrating creativity” (Rai et al., 2019). Still, over the last decades various

debates have been raging on thedepthand objectivesof AI. These two dimensions

span the space for different AI research streams in computer science and IS that were

categorized by Russell (2010): On the one hand (depth dimension), it may target

either the thought process or a concrete action (thinking vs. acting); on the other

hand (objective dimension), it may try to either replicate human decision-making or

to provide an ideal, “most rational” decision (human-like vs. rational decision). The

resulting research streams are depicted in Table 2.1.

Table 2.1.: AI research streams (based on Russell (2010))

Depth

Objective
Human Rational

Thinking Cognitive modeling Laws of thought

Acting Turing Test Rational agent

(Perspective of this work)

According to the cognitive modeling(i.e., thinking humanly) stream, AI instantiations

must be “machines with a mind” (Haugeland, 1989) that perform human thinking
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(Bellman, 1978). Not only should they arrive at the same output as a human

when given the same input, but also apply the same reasoning steps leading to this

conclusion (Newell & Simon, 1961). The laws of thought stream (i.e., thinking

rationally) requires AI instantiations to arrive at a rational decision despite what

a human might come up with. AI must therefore adhere to the laws of thought

by using logic-based computational models (Charniak & McDermott, 1985). The

Turing test stream (i.e., acting humanly) implies that AI must act intelligently when

interacting with humans. To accomplish such tasks, AI instantiations must perform

human tasks at least as well as humans (Rich & Knight, 1991), which can be tested

via the Turing test (Turing, 2012). Finally, the rational agent stream considers AI as

a rational (Russell, 2010) or intelligent (Poole et al., 1998) agent 3 . This agent does

not only act autonomously, but also with the objective of achieving the rationally

ideal outcome.

Machine Learning

Many researchers perceive ML as an (exclusive) part of AI (Copeland, 2016; Ong-

sulee, 2017; Vickers, 2017). In general, learning is a key facet of human cognition

(Neisser, 2014). Humans process a vast amount of information by utilizing abstract

knowledge that helps them to better understand incoming input. Owing to their

adaptive nature, ML models can mimic a human being's cognitive abilities (Janiesch

et al., 2021) : ML describes a set of methods commonly used to solve a variety of

real-world problems with the help of computer systems, which can learn to solve a

problem instead of being explicitly programmed to do so (Koza et al., 1996). For

instance, instead of explicitly telling a computer system which words within an tweet

would indicate it to contain a customer need, the system (given a suf�cient set of

training samples) learns the typical patterns of words and their combination which

results in a need classi�cation (Kühl et al., 2020).

In general, we differentiate between unsupervised, supervised, and reinforcement

ML. Unsupervised ML comprises methods that reveal previously unknown patterns

in data. Consequently, unsupervised learning tasks do not necessarily have a “correct”

solution, as there is no ground truth (Wang et al., 2009).

Supervised ML refers to methods that allow the building of knowledge about a given

task from a series of examples representing “past experience” (Dietterich, 2009). In

the learning process, no manual adjustment or programming of rules or strategies to

3In this case, the terms rational and intelligent are used interchangeably in related work (Gama et al.,
2014; Koza et al., 1996; Russell, 2010).
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solve a problem is required, i.e., the model is capable to learn “by itself”. In more

detail, supervised ML methods always aim to build a model by applying an algorithm

to a set of known data points to gain insight into an unknown set of data (Hastie

et al., 2009): Known data points are semantically labeled to create a target for the

ML model. So-called semi-supervised learning combines elements from supervised

and unsupervised ML by jointly using labeled and unlabeled data (Zhu, 2005).

Reinforcementlearning refers to methods that are concerned with teaching intelligent

agents to take those kinds of actions that increase their cumulative reward (Kaelbling

et al., 1996). It differs from supervised learning in that no correctly matched features

and targets are required for training. Instead, rewards and penalties allow the model

to continuously learn over time. The focus is on a trade-off between the exploration

of the uncharted environment and the exploitation of the existing knowledge base.

2.1.2 The Role of Rational Agents in Information Systems

To further elaborate on the role of ML within AI, we need to take a clear perspective

on the different de�nitions of AI to be bene�cial to IS research. IS traditionally

utilizes ML in predictive analytics tasks within (intelligent) decision support systems

(DSS) (Arnott & Pervan, 2015; Müller et al., 2016) where the goal is to generate

the best possible outcome (Arnott & Pervan, 2015; Hunke et al., 2022; Power et al.,

2019). As Phillips-Wren et al. (2019, p. 63) emphasize, DSS “should help the

decision-maker think rationally”. The perspective of rationality is also endorsed

by other researchers in the �eld (Bakos & Treacy, 1986; Dellermann et al., 2019b;

Klör et al., 2018; Power et al., 2019; Schuetz & Venkatesh, 2020). Thus, in the

following we will explore the relationship between ML and AI in IS from the lens

of the rational agent stream as discussed above. Furthermore, we will focus on

supervised ML as it is the most common type of ML (Jordan & Mitchell, 2015). In

the remainder of this section, we will �rst distinguish different types of (rational)

agents and then use the insights to differentiate between the necessary layers when

designing them as part of information systems.

Types of Rational Agents

According to the selected research stream, intelligence manifests itself in how

rational agents act. Five features characterize agents in general: they “operate

autonomously, perceive their environment, persist over a prolonged time period,

adapt to change, and create and pursue goals” (Russell, 2010). An agent de�nes its
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action, not for itself, but within the environment it operates and interacts with. It

recognizes the environment through its sensors, relies on an agent program to handle

and digest input data, and performs actions via actuators. A rational agent targets

to achieve the highest expected outcome according to one or multiple objective

performance measures—which are based on current and past knowledge of the

environment and possible actions. For example, a rational agent within a medical

diagnosis system aims to maximize the health of a patient measured via blood

pressure, heart rate, and blood oxygen (potentially while minimizing the �nancial

costs of a treatment as a secondary condition) (Grosu, 2022).

The agent's conceptualization and surroundings are summarized in theagent-

environmentframework. It consists of three components: an agent, an environment,

and a goal. Intelligence is the measurement of the “agent's ability to achieve goals

in a wide range of environments” (Legg & Hutter, 2007). The agent obtains input

through perceptions that the environment generates. Observations of the environ-

ment are one type of perception, while others are reward signals that indicate how

well the agents' goals have been achieved. Based on these input signals, the agent

decides to perform actions, which are subsequently communicated back as signals

to the environment.

Rational Agents in Information System Architectures

As we investigate the role of ML in AI for IS research, we also need—apart from

the theoretical and de�nitory aspects of agents—to consider how the functionality

of a rational agent is re�ected in an IS architecture. The implementation of agents

is a key step to embed their functionality into practical, real-world (intelligent)

information systems in general or into DSS speci�cally (Gao & Xu, 2009). Any

rational agent needs to be capable of at two least two tasks: cognition (Lieto et al.,

2018) and (inter)action with the environment (Russell, 2010). If we map these

capabilities to system design terms, then acting capabilities are the ones built into a

frontend, while the cognitive capabilities are embedded in a backend.

The frontend as the interface to the environment may take various forms; it may

be designed as a very abstract, machine-readable web interface (Kühl et al., 2020),

a human-readable application (Engel et al., 2022; Hirt et al., 2019), or even a

humanoid template with elaborated expression capabilities (Guizzo, 2014). For the

frontend to interact with the environment, two technical components are required:

sensors and actuators. Sensors detect events or changes in the environment and

forward the information via the frontend to the backend. They can, for instance,
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read the signals within an industrial process network (Hein et al., 2019), read

visuals of an interaction with a human (Geller, 2014), but also perceive a keystroke

input (Russell, 2010). Actuators, on the other hand, are components responsible for

moving, controlling, or displaying content. While sensors merely process information,

actuators act, for instance, by automatically making bookings (Neuhofer et al., 2015)

or changing a humanoid's facial expressions (Berns & Hirth, 2006). One could argue

that the Turing test (Turing, 2012) takes place at the environment's interaction with

the frontend, or, more precisely, when sensors and actuators are combined in a way

to test the agent's AI for acting humanly.

The backend provides the required functionalities to depict an intelligent agent's

cognitive capabilities. More precisely, this executing backend allows the agent to

draw on its built-in knowledge. The backend translates signals from the frontend and

transforms them into signals sent back to the frontend as a response by executing

actions. In some cases, there is an additional component modifying this response

function over time, and thus modifying the execution part of the backend. We call

this the learning part of the backend as depicted in Figure 2.2. Within the next

subsections, we will further elaborate this framework and its components.

Figure 2.2.: Conceptual framework describing the general architecture for intelligent agents
in AI-based information systems.
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The Role of Machine Learning in Rational Agents

In terms of supervised ML, we need to further differentiate between the process

task of building (training) adequate ML models (Witten et al., 2011) and the one of

executing the deployed models (Chapman et al., 2000). To further understand ML's

role in intelligent agents, we partition the agent's cognition layer into a learning

sublayer (model building) and an executing sublayer (model execution). We, there-

fore, regard the implementation required by the learning sublayer as the learning

backend, while the executing backend denotes the executing sublayer.

The learning backend �rst dictates if the intelligent agent is able to learn, and,

second,how it does so—with respect to the algorithms it actually uses, the type of

data processing it applies, and the handling of concept drift (Gama et al., 2014),

etc. Using the terminology of Russell (2010), we distinguish two different types of

intelligent agents: simple-re�ex agentsand learning agents. This differentiation holds

explicitly in terms of a ML perspective on AI because it considers whether the under-

lying models in the cognition layer are trained just once and after that never touched

(simple-re�ex), or whether they are continuously updated to be adaptive (learning).

Related work provides suitable examples of both. Kitts and Leblanc (2004) build

a bidding agent for digital auctions as a simple-re�ex agent: While building and

testing the model for the agent may show convincing results, the system's adaptive

learning after deployment could be critical. Other examples of agents with models

trained just once are common in different areas, for example, in terms pneumonia

warning for hospitals (Oroszi & Ruhland, 2010), the (re)identi�cation of pedestrians

(Zheng et al., 2018), and object annotation (Jorge et al., 2014). On the other hand,

recent literature also provides examples of learning agents. Jordan and Mitchell

(2015) present the concept of “never-ending learning” agents that strongly focus

on continuously building and updating models in agents. Neuhofer et al. (2015)

suggest an agent capable of personalization through a continuous learning processes

of guest information for digital platforms, which an example of such an agent. Other

examples include agents capable of making recommendations on music platforms

(Liebman et al., 2014), regulating heat pump thermostats (Ruelens et al., 2015),

acquiring collective knowledge across different tasks (Rostami et al., 2017), and

learning the meanings of words (Yu et al., 2017). The choice of the learning type

in agents (simple-re�ex vs. learning agent) in�uences the agent's general overall

design and the contribution of ML.

As a result from the layers of agents and types of learning, our conceptual framework

combining both is shown in Figure 2.2 on page 32. Regarding the previously

mentioned ML methods, supervised ML can be the basis for either simple-re�ex
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or learning agents, depending on whether the learning backend exists and on its

feedback to the agent's knowledge base. In terms of reinforcement learning, the

agent, by de�nition, is a learning agent. However, there are also examples of where

an agent functions without the utilization of ML—because the execution is based on

rules (Wang et al., 2009), formulas (Billings et al., 2002) or other methods (Abasolo

& Gomez, 2000). From this perspective, this means there can be AI without ML.

2.1.3 A Typology for Machine Learning in AI Systems

Based on the differentiation between simple-re�ex and learning agents, we can now

derive a typology for IS research. We refer to IS systems as static AI-based systems if

they employ simple re�ex agents that may be based on a model trained with ML.

Adaptive AI-based systems, though, use learning agents, i.e., do have a learning

backend— that may be based on ML, but alternatively also could be based, e.g., on

rule-based knowledge representation. We, thus, propose the typology (as depicted in

Figure 2.3 ) for AI-based IS along the two dimensions: the existence of an ML-base

for the executing backend and the existence of a learning backend.

Figure 2.3.: Typology of AI-based information systems.

We illustrate these �ndings in concrete IS research examples:Static AI systemsare

characterized by an executing backend which is based on algorithms not classi�ed

as ML and they lack a learning backend, i.e. they have a �xed response model

(Chuang & Yadav, 1997). The executing backend of such systems is based on rules
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(like nested if-else statements), formulas (like mathematic equations describing a

phenomena) or algorithms (like individual formal solution descriptions for speci�c

problems). As an example for such systems, Hegazy et al. (2005) build a static AI

system based on a self-developed algorithm and evaluate its performance within a

cybersecurity context by simulating multiple attacks. Another example is provided

by Ritchie (1990) who has developed an architecture and an instantiation of a static

AI system for a traf�c management platform.

In contrast, a static ML-based AI system has an executing backend which is based on

ML. An example is provided in He et al. (2018). The authors develop an artifact to

classify marketing on Twitter in either defensive or offensive marketing and show

convincing prediction results. While their work did not aim at designing a productive

artifact and is rather focused on showing the general feasibility of the approach, they

choose a static ML-based AI system—which, however, might not be suf�cient for

permanent use: After the release of the article in 2018, Twitter changed its tweet size

from 140 to 280 characters, thus changing the environment. It would be interesting

to see how the developed model would need to adapt to this change. As another

example, Samtani et al. (2017) build a model to identify harmful code snippets,

typically utilized by hackers. They show how to design an artifact that can detect

these code assets accurately for a proactive cyber threat intelligence. However, also

in this case the environment and the assets of the hackers could and will change

over time.

Adaptive AI systems, which are not based on ML, do comprise an executing backend

with the �exibility to dynamically adapt the model to changing environments. This

type of system is oftentimes enabled through the interaction between humans and

AI systems. Most of the times, the system provides means and triggers for updates,

while the human provides “manually encoded” knowledge updates. For example,

Zhou et al. (2009) implement an adaptive AI system for pipeline leak detection

which is based on a rule-based expert system and offers means to update the

system online. In another example, Hatzilygeroudis and Prentzas (2004) develop an

adaptive AI system to support the teaching process which has a speci�c component

for knowledge updates. Both examples are inherently knowledge-based, but are

explicitly designed to allow and force updates—although not on the basis of ML.

Finally, adaptive ML-based AI-systemsimplement learning in both sublayers of the

cognition layer. For example, Zheng et al. (2013) design a reinforcement-learning-

based artifact to obtain information from hidden parts (“deep web”) of the internet.

As their developed system perceives its current state and selects an action to submit

to the environment (the deep web), the system continuously learns and builds up
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experience. In another example, Ghavamipoor and Hashemi Golpayegani (2020)

build an adaptive ML-based AI system to predict the necessary service quality level

and adapt an e-commerce system accordingly. As their system is continuously

learning, their results show the total pro�ts improve through effective cost reduction

and revenue enhancement.

In this section, we clari�ed the relationship of machine learning (ML) in arti�cial

intelligence (AI), particularly in intelligent agents, for the �eld of information

systems research. Based on a rational agent view, we differentiated between AI

agents capable of continuously improving as well as those who are static. Within

these agents as instantiations of arti�cial intelligence, (supervised) ML can serve to

support in different ways: either to contribute a once-trained model to de�ne a static

response pattern or to provide an adaptive model to realize dynamic behavior. As we

point out, both could also be realized without the application of ML. Thus, “ML” and

“AI” are not terms that should be used interchangeably—but as a conscious choice.

Without question, ML is an important driver of AI, and the majority of modern AI

cases will utilize ML. However, as we illustrate, there can be cases of AI without ML

(e.g., based on rules or formulas).

This distinction enables our proposed framework to apply an intelligent agent's

perspective on AI-based information systems, enabling researchers to differentiate

the existence and function of ML in them. Interestingly, as of today, many AI-based

information systems remain static, i.e. employ once-trained ML models (Kühl et al.,

2021). With increasing focus on deployment and life cycle management, we will see

more adaptive AI-based systems that sense changes in the environment and use ML

to learn continuously (Baier et al., 2019). Our framework and the resulting typology

should allow IS researchers and practitioners to be more precise when referring to

ML and AI, as it highlights the importance of not using the terms interchangeably

but clarifying the role ML plays in AI's system design.

2.2 Human-AI Collaboration

In this section, we elaborate on key concepts in human-AI collaboration and the

scope of the thesis.

In the past, AI was mainly used as an input provider to human decision-making.

Advances in AI are leading to an increase in its ability to operate autonomously,

essentially changing the role of AI from a provider of decision-making input to an

autonomous AI agent (Qian & Qian, 2020). Human-AI teamsrefer to the idea of

36 Chapter 2 Foundations



combining the unique strengths of both human and AI agents in repetitive tasks

(Seeber et al., 2020). In this thesis, we focus on human-AI teams comprising of

a single AI agent and one human agent. Human-AI collaboration is the process

by which a human-AI team works together in a synergistic manner to achieve

shared goals, e.g., with the AI agent providing recommendations or insights and

humans guiding and re�ning the AI-generated outputs (Terveen, 1995; Vössing

et al., 2022). Hybrid intelligenceis an emerging paradigm with the idea of leveraging

complementary heterogeneous intelligence in the form of a socio-technical ensemble

to resolve current AI limitations. We refer to the work of Dellermann et al. (2019a,

p. 640), who de�ne hybrid intelligence as “the ability to achieve complex goals by

combining human and AI, thereby achieving better results than what each of them

could have accomplished separately, and continuously improve by learning from

each other.”

The predominant form of human-AI collaboration is typically characterized by a

human receiving advice from an AI agent while retaining the freedom to adhere to,

modify, or disregard that advice (Lai et al., 2023). The term most commonly used

in research to describe this setting isAI-assisted Decision-Making, see for example

Buçinca et al. (2021), Wang and Yin (2021), and Zhang et al. (2020). In this thesis,

we follow this naming convention. The term AI-assisted decision-making refers to

applying supervised ML and, more speci�cally, to classi�cation and regression tasks.

The types of AI-assisted decision tasks vary widely, from sentiment classi�cation

to house price prediction to cancer classi�cation (Lai et al., 2023). Other forms of

collaboration beyond AI-assisted decision-making range from different collaboration

mechanisms, e.g., delegation (Hemmer et al., 2023), to different ML approaches,

e.g., unsupervised ML, to different tasks, e.g., clustering or content generation.

In addition to providing advice, AI agents have an array of other features to assist

humans in understanding and evaluating AI predictions for superior �nal decision-

making. In this thesis, these features are de�ned as AI assistance elements following

the terminology of Lai et al. (2023). AI assistance elements can be grouped in

information about prediction, information about models and training data, and other

AI agent elements (Lai et al., 2023). Information about the prediction includes the

provision of model performance metrics, uncertainty indicators, and explanations for

predictions. Since the main AI assistance elements used in practice are explanations

(XAI) (Bansal et al., 2021; Hemmer et al., 2021; Lai et al., 2023), in the following,

we provide an overview of XAI.
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2.3 Explainable Arti�cial Intelligence

In 2004, Van Lent et al. �rst used the term XAI to describe the ability of their system

to explain the behavior of agents in simulation games. The recent rise in popularity

of XAI is largely due to the increasing demand for improving the understandability

of complex models (Wanner et al., 2020). Although highly complex models can

produce superior results compared to linear models, their internal operations can

often pose interpretability challenges for humans.

The �eld of XAI encompasses a wide range of techniques. According to Adadi

and Berrada (2018), these techniques can be broadly organized based on their

complexity, scope, and degree of dependence.

The complexity of a model is inextricably linked to its interpretability. Wanner et al.

(2020) have divided the levels of complexity into white-box, gray-box, and black-box

models. White-box models, such as linear regressions, are those with complete

transparency and are therefore inherently explicable without the need for additional

explanatory techniques. On the other hand, black-box models, despite their superior

performance, often struggle with the problem of limited interpretability. Gray box

models bridge the gap between the two—they are not interpretable out of the box,

but their interpretability can be enhanced with the help of additional explanation

techniques.

Explanation techniques can be further characterized by their scope (Adadi & Berrada,

2018): global or local explanations. Global XAI techniques provide thorough expla-

nations for the entire model, while local explanations focus on individual instances.

In addition to scope, these XAI techniques can be classi�ed according to whether

they are model agnostic, i.e., they can work with any type of model, or model

speci�c.

The most common explanation techniques are feature importance, example-based

explanations, and counterfactual explanations (Lai et al., 2023). Feature importance

is a model-agnostic technique that provides the decision maker with information

about the importance of certain features. Two well-known feature importance

algorithms are LIME (Ribeiro et al., 2016a) and SHAP (Lundberg & Lee, 2017).

Example-based explanations provide historical data similar to the current instance

(Van der Waa et al., 2021). Thus, example-based explanations are essentially a

form of information retrieval. Research in psychology suggests that people prefer

explanations that use examples (Cai et al., 2019). Counterfactual explanations

38 Chapter 2 Foundations



provide information about what the smallest change would be to get a different AI

decision (Wachter et al., 2017).

Several studies have evaluated whether different types of explanations can support

humans' understanding of the AI agent with the goal of better relying on recommen-

dations in the correct cases (Alufaisan et al., 2021; Buçinca et al., 2021; Carton et al.,

2020; Van der Waa et al., 2021). However, it has also been shown that some types

of explanations can lead people to rely too much on the AI agents' recommendation,

especially in cases where the advice is wrong (Bansal et al., 2021; Poursabzi-Sangdeh

et al., 2021; Schemmer et al., 2022c). Overall, we �nd mixed results regarding the

effect of explanations on human decision-making. Therefore, in Part II, we begin

this thesis with a rigorous analysis of the state of the art of empricial studies in

human-AI collaboration in general and in XAI in particular.
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Part II

Analysis of the Current State of Empirical

Work on Human-AI Collaboration





Structured Literature Review

of Empirical Studies on

Human-AI Collaboration

3

This chapter comprises an article that was published as: Hemmer, P., Schemmer,

M., Vössing, M., & Kühl, N. (2021). Human-AI Complementarity in Hybrid

Intelligence Systems: A Structured Literature Review.Proceedings of the 17th

Paci�c Asia Conference on Information Systems, 7–39. Note: To improve the

structure of the work, the title was changed. The abstract has been removed.

Tables and �gures were reformatted, and newly referenced to �t the structure

of the thesis. The terminology was standardized with the dissertation. Chapter,

section and research question numbering and respective cross-references were

modi�ed. Formatting and reference style was adapted and references were

integrated into the overall references section of this thesis.

3.1 Introduction

Over the last years, an unprecedented development in the �eld of arti�cial intelli-

gence (AI) has contributed to an improvement in prediction accuracy of modern

AIs—even exceeding the capabilities of domain experts in an increasing number of

�elds (He et al., 2015). These advancements have fueled the ongoing discussion

of whether AI will replace domain experts in the foreseeable future (Schuetz &

Venkatesh, 2020). However, in many application domains, reducing human auton-

omy might not be desirable. For example, the cost of errors in situations in which

perfect algorithmic accuracy is not attainable might not be acceptable. Moreover,

legal regulations and ethical considerations might make full algorithmic automation

undesirable from a societal perspective. Additionally, the capabilities of AI are

often limited to narrowly de�ned application contexts as the utilized algorithms

often struggle to handle instances that differ from the patterns learned during train-

ing (D'Amour et al., 2022). In these cases, humans can leverage capabilities not
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possessed even by state-of-the-art AI—for example, intuition, creativity, and also

common sense.

This line of thought gives rise to the vision of so-called hybrid intelligence (HI)

(Dellermann et al., 2019a). The HI concept proposes to combine the complementary

capabilities of humans and AI by facilitating collaboration to achieve superior results

in comparison to the isolated entities operating independently (Dellermann et al.,

2019a; Liu et al., 2021). In this context, humans and AI are regarded as equal

team members that solve tasks in cooperation (Siemon et al., 2020). Hereby, we

understand complementary team performance (CTP) as the desired outcome of

human-AI collaboration, i.e., the team performance exceeds the maximum perfor-

mance of both individual entities. One of the key requirements for the success of

human-AI collaboration lies in the fact that they enable humans to understand the

decisions provided by the AI and allow them to draw conclusions about when and

to what extent they can rely on the AI's prediction. This concept can be traced back

to the early research on expert systems (Nunes & Jannach, 2017; Swartout & Moore,

1993).

Nowadays, with the rise of AI, algorithms emerging from the �eld of explainable AI

(XAI) offer a rich fundus of explainability techniques to be applied within human-AI

collaboration (Bansal et al., 2019a; Chu et al., 2020; Liu et al., 2021). Since XAI

techniques are a means to explain the decision-making process of black-box models,

we focus on human-AI collaboration that leverage XAI as a collaboration mechanism

(Zschech et al., 2021). In this context, Doshi-Velez and Kim (2017) propose a

taxonomy of evaluation approaches for interpretability. Their results emphasize the

need for the rigorous empirical evaluation of XAI algorithms. Although the body of

literature dedicated to the evaluation of these XAI approaches is steadily increasing,

their utility in terms of CTP remains largely unexplored, as the research community

has initially focused on the study of constructs such as system trust (Davis et al.,

2020). To date there exists no structured literature review on relevant factors

impacting CTP of human-AI collaboration. Therefore, in this paper, we conduct a

structured literature review (SLR) on user studies analyzing the task performance

of humans and AI separately as well as in the form of an HI system to answer the

following research question:

RQ1: What factors have been analyzed in user studies regarding the design of human-AI

collaboration that impact CTP?

As the identi�ed factors depend on the human, the AI, and the task, we cluster them

from a socio-technical perspective (Maedche et al., 2019). A subsequent in-depth

analysis of each perspective reveals further factors that have not been taken into
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consideration by existing user studies. Thus, we formulate the following second

research question:

RQ2: What factors have not been analyzed in user studies regarding the design of

human-AI collaboration that impact CTP?

To answer the second research question, we derive and discuss, based on the SLR,

neglected but relevant factors of CTP. Additionally, we propose testable hypotheses

future research needs to address to realize the full potential of human-AI collabora-

tion.

The contributions of this paper are twofold: First, we collect the existing body of

knowledge for human-AI collaboration and describe possible relevant factors of

CTP. Second, we discuss yet neglected but relevant factors of CTP and formulate

respective hypotheses for future work.

The remaining work is structured as follows: In the next section, we explain the con-

ceptual foundations with regard to XAI and human-AI collaboration. Consecutively,

we outline the methodology applied to conduct the SLR and present our �ndings

in the results section. Following, we derive and discuss yet neglected factors that

might be taken into consideration to achieve CTP. Lastly, the conclusion summarizes

our work by stressing its importance for the IS research discipline.

3.2 Conceptual Foundations

In the following, we provide a short overview of the two key concepts addressed in

our work—HI and explainable AI (XAI).

3.2.1 Hybrid Intelligence

Dellermann et al. (2019a, p. 640) de�ne HI as “the ability to achieve complex goals

by combining human and AI, thereby reaching superior results to those each of them

could have accomplished separately, and continuously improve by learning from

each other.”. We focus on the �rst part of the de�nition. On the one hand, humans

can rely on their senses, perceptions, emotional intelligence, and social skills (Braga

& Logan, 2017). On the other hand, AI excels at detecting patterns or calculating

probabilities (Dellermann et al., 2019a). These complementary skill sets allow for

superior performance in speci�c tasks through collaboration. For example, managers

can use emotional intelligence to build relationships and motivate employees to work
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for the company (Davenport & Kirby, 2016). In contrast, repetitive and monotonous

work can be conducted by AI.

The goals of human-AI collaboration are manifold. Among them are increasing the

effectiveness and ef�ciency of the outcome of a speci�c task (Dellermann et al.,

2019a). In this work, we focus on task effectiveness with regard to CTP. We follow

the de�nition of Liu et al. (2021) and de�ne CTP as the performance of teams

consisting of humans and AI with the goal of achieving superior performance than

AI or humans could have accomplished alone. The performance can be measured

by different metrics, depending on the particular task, e.g., accuracy, recall, or

the f1-score.and de�ne CTP as the performance of teams consisting of humans

and AI with the goal of achieving superior performance than AI or humans could

have accomplished alone. The performance can be measured by different metrics,

depending on the particular task, e.g., accuracy, recall, or the F1 score.

To enable CTP, humans need insights into AI decision-making. An emerging research

stream that enables interpretability of AI decisions is the �eld of XAI.

3.2.2 Explainable Arti�cial Intelligence

Explainability is a concept with a long tradition in the information system (IS)

research community. With the rise of knowledge-based systems, expert systems, and

intelligent agents in the 1980s and 1990s, the IS community laid the foundations for

research on explainability (Meske et al., 2022). In this context, Gregor and Benbasat

(1999) provide a comprehensive overview of explanations in IS research.

XAI encompasses a wide spectrum of algorithms. A comprehensive survey on many

existing explanation techniques can be found in Burkart and Huber (2021). In

general, they can be differentiated by their complexity, their scoop and their level of

dependency (Adadi & Berrada, 2018). Interpretability of a model directly depends

on the complexity of the model. (Wanner et al., 2020) cluster different types of

complexity in white-, grey-, and black-box models. They de�ne white-box models

as models with perfect transparency, such as linear regressions. These models

do not need additional explainability techniques but are intrinsically explainable.

Black-box models, on the other hand, tend to achieve higher performance but

lack interpretability. Lastly, grey-box models are not intrinsically interpretable but

are made interpretable with the help of additional explanation techniques. These

techniques can be differentiated in terms of their scoop, i.e., being global or local

explanations. Global XAI techniques address holistic explanations of the models as
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a whole. In contrast, local explanations function on an individual instance basis.

Besides the scoop, XAI techniques can also be differentiated whether they are model

agnostic, i.e., can be used with all kinds of models, or model speci�c.

3.3 Methodology

To answer our research questions, we conducted a structured literature review (SLR)

based on the methodology outlined by vom Brocke et al. (2009). We developed

our search string consisting of two main areas. The �rst was XAI, including relevant

synonyms, such as “explainable AI” or “interpretability” combined with “arti�cial

intelligence”. The second part comprised synonyms of behavioral experiments, e.g.,

“user study” or “user evaluation”. To �nd the synonyms, we initiated our SLR with

an explorative search. The search string was iteratively extended resulting in the

following �nal search string:

TITLE-ABS-KEY(“explainable arti�cial intelligence” OR XAI OR “explainable AI” OR ( (

interpretability OR explanation ) AND ( “arti�cial intelligence” OR ai OR “machine

learning” ) ) ) AND ( “human performance” OR “human accuracy” OR “user study” OR

“empirical study” OR “online experiment” OR “human experiment” OR “behavioral

experiment” OR “human evaluation” OR “user evaluation”)

Next, we selected an appropriate database. Our exploratory search revealed that

relevant work is dispersed across multiple publishers, conferences, and journals.

Thus, we chose the SCOPUS database, to ensure comprehensive coverage. Following

that, we de�ned our inclusion criteria, i.e., articles that were in scope of this SLR.

We included every article that (a) did conduct empirical research, (b) did report

performance measures and (c) did focus on an application context where humans

and AI perform the same task.

With our search string de�ned, we conducted the SLR from January to March 2021.

We identi�ed 256 articles through the keyword-based search. As a next step, we

analyzed the abstract of each article and �ltered based on our inclusion criteria,

leading to 61 articles. Afterwards, two independent researchers read all articles in

detail and applied the inclusion criteria again. This led to a total of 14 remaining

studies. Based on these, we conducted forward and backward search. With the

forward and backward search, we identi�ed 15 additional articles leading to a �nal

set of 29 articles that were consequently analyzed in-depth to collect data about
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each experiment. The increase in articles can be attributed to a large number of yet

unpublished papers.

The data collection process was conducted by two independent researchers. Differ-

ences were discussed and corrected. The main focus of the SLR was to extract the

treatments and outcomes of each experiment reported in the studies. For example,

if two XAI techniques were used and compared as separate experimental treatments

we added two entries into our database.

We clustered the extracted treatments from a socio-technical view, which is in line

with other research (Buçinca et al., 2020). From a socio-technical view, human-AI

collaboration can be divided in the following three key elements that are connected

through a collaboration mechanism (Goodhue & Thompson, 1995) human(s) with a

speci�c goal, the task that needs to be accomplished, and the technology—in our

case the AI (Maedche et al., 2019). The collaboration mechanism enables teamwork

between humans and AI regarding the task to be done. Figure 3.1 depicts the

relationship between all relevant elements of human-AI collaboration.

Figure 3.1.: Key elements of human-AI collaboration.

3.4 Results

In this section, we present the results of our SLR. The �nal data set consists of 29

articles in which 93 XAI-related experimental conditions are described. We start by

providing an overview of the subset of articles that report CTP. Subsequently, we

analyze the experimental conditions and cluster them according to our introduced

socio-technical approach.
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3.4.1 Overview

We extract, whenever possible, four different performance metrics from the arti-

cles—human, AI, AI-assisted and XAI-assisted performance. Human and AI perfor-

mance refer to the performance achieved by humans or the AI when conducting the

task individually. AI-assisted performance refers to the human performance when

provided with the AI prediction. Finally, XAI-assisted refers to the performance of

humans when provided with the AI's recommendation as well as a supplementary

explanation. Both, AI-assisted and XAI-assisted are measures of team performance.

CTP is reached if this team performance exceeds both human and AI performance.

Figure 3.2 on page 50 displays the number of studies in which AI or XAI has a

positive impact on HI-system performance considering different constraints. As

not all studies report all four performance metrics, the following observations

apply to different subsets of experiments. In general, 72 experiments measure

the AI-assisted performance and XAI-assisted performance, but not necessarily

human or AI performance. Of these, in 46 experiments XAI-assisted performance

exceeds AI-assisted performance. Moreover, 59 out of 63 experiments report that

providing either the AI's prediction or a supplementary explanation (i.e., XAI) has a

positive effect on human performance. In 53 experiments, all necessary information

to analyze CTP are given—human and AI performance and either AI-assisted or

XAI-assisted performance. Just 16 out of 53 experiments achieve CTP. Of these

16 experiments, �ve times, the XAI-assisted performance exceeds the AI-assisted

performance. The 16 experiments are reported in two articles conducted by Bansal

et al. (2019a) and Chu et al. (2020).

Bansal et al. (2019a) report 11 different experiments in which CTP is achieved

meaning the team performance exceeds both the individual AI and human perfor-

mance. All experiments focus on textual data. It is important to highlight that while

CTP is reached, XAI does not yield a signi�cant improvement over pure AI-assisted

recommendations.

Further, in 5 experiments reported by Chu et al. (2020), CTP is achieved. The exper-

iments focus on the task of predicting the age of a human based on facial images. In

contrast to Bansal et al. (2019a), XAI has a signi�cant effect on performance.

In addition to identifying existing studies that demonstrate CTP in human-AI col-

laboration, in the following, we provide an overview of all experimental conditions

examined in the 93 studies. While most of these conditions have currently not

led to CTP, they still have shown some effect on team performance or on relevant

behavioral constructs, such as trust or cognitive load. We group the experimental
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Figure 3.2.: Overview of the number of studies in which a) XAI-assisted performance
exceeds AI-assisted performance, b) AI- or XAI-assisted performance exceeds
human performance, c) CTP is achieved, and d) CTP is reached by using XAI.

conditions into four groups: collaboration characteristics, task characteristics, AI

characteristics, and human characteristics (see Figure 3.1 on page 48).

3.4.2 Collaboration Characteristics

One important factor regarding the collaboration is the order in which the AI's

predictions and explanations are made available to the human. Green and Chen

(2019) �nd empirical evidence that asking participants to make a prediction before

providing them the AI prediction or explanation leads to a better XAI-assisted

performance. One possible reason might be that users are encouraged to invest

cognitive capability in an active way instead of passively accepting the AI's suggestion

(Green & Chen, 2019).

Another important factor is the interactivity in the human-AI collaboration. Liu et al.

(2021) test this experimental condition and �nd an improvement in terms of human

perception of AI-assistance. Bansal et al. (2021) implement adaptive explanations

based on the con�dence of the AI decision. If the AI prediction has a low con�dence,

more explanations are given. Their reasoning behind this approach is that a low

con�dence indicates a higher probability of a wrong AI prediction. By displaying

more explanations, the human is encouraged to re�ect more about the prediction.

Lastly, some researchers modify the degree of automation. One factor is whether

the AI's prediction should be revealed at all (Lai & Tan, 2019). Lai et al. (2020) test
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various XAI techniques without displaying the actual AI prediction. For example,

they highlight all words that are relevant for the AI decision. Another condition

is to colorize these highlights differently depending on the in�uence of the words.

Their results show that differently colorized highlights result in a signi�cant increase

in XAI-assisted performance (70.7% accuracy for colorized highlights compared to

60.4% accuracy for human performance).

3.4.3 Task Characteristics

The tasks conducted in the studies play a decisive role in terms of individual and

team performance. In general, in order to allow for generalizability, many studies

utilize multiple tasks and data sets. In this context,Liu et al. (2021, p. 23) state that

“[...] it is important to explore the diverse space and understand how the choice of

tasks may induce different results in the emerging area of human-AI interaction”. For

example, Alufaisan et al. (2021) study the in�uence of explanations on an income

prediction and a recidivism task. In terms of concrete experimental conditions, our

SLR shows that existing research focuses on skill sets and data types.

As discussed in the conceptual foundations, the skill set of AI and humans are

complementary. Liu et al. (2021) �nd initial empirical evidence consistent with this

line of thought by demonstrating enhanced team performance in correctly classifying

out-of-distribution examples as the AI struggles to deal with instances that are beyond

the patterns learned during training (D'Amour et al., 2022). However, it remains

unclear how strong the distribution shift between in- and out-of-distribution data

must be to discern a positive in�uence on CTP.

Concerning the data type, Lai et al. (2020, p. 744) state that “there may also exist

signi�cant variation between understanding text and interpreting images, because

the former depends on culture and life experience, while the latter relies on basic

visual cognition.”. The experimental studies analyzed in this SLR deal with human-AI

tasks that are performed on either image (n = 24), tabular (n = 28), text (n =

39), or video (n = 2) data. In total, the analysis reveals the existence of only one

study achieving CTP on textual data (Bansal et al., 2019a) and one on image data

(Chu et al., 2020), respectively. Regarding tabular data, we are not aware of any

study demonstrating comparable results. Hase and Bansal (2020) explicitly compare

tabular and textual data. In this context, they observe that users rate explanations

from tabular data higher than from textual data. Moreover, they �nd that displaying

feature importance improves team performance on tabular data and that displaying

examples helps for both data types.
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3.4.4 Arti�cial Intelligence Characteristics

In addition to the �rst two components, the AI plays a central role in the human-

AI collaboration. It can be divided into two different components—backend and

frontend, i.e., the AI and XAI techniques and how explanations and predictions are

displayed to humans.

Generally, most studies do not vary their AI techniques. An exception is the work

of Lai et al. (2020) who test the in�uence of AI complexity on the XAI results.

Their results show that explanations from simple models lead to better XAI-assisted

performance.

In general, the XAI techniques vary from simple white-box models (Poursabzi-

Sangdeh et al., 2021) over con�dence scores (Zhang et al., 2020) to complex

counterfactual explanations (Liu et al., 2021). As speci�c experimental conditions

mostly con�dence scores, feature importance, examples, and rules are used. Hereby,

AI con�dence refers to a probabilistic value that quanti�es the certainty of the

model with respect to a speci�c prediction (Zhang et al., 2020). Feature importance

quanti�es the contribution of each input feature to the prediction, and example-based

explanations select and display most similar instances of a knowledge base (Adadi &

Berrada, 2018). Lastly, rules refer to explanations based on if-then statements that

are either extracted from more complex models or directly generated by the model

(Van der Waa et al., 2021).

Our SLR highlights that the included studies report contradicting results with regards

to the effect of these XAI techniques. For example, while Bansal et al. (2019a), Lai

and Tan (2019), and Zhang et al. (2020), �nd that communicating the con�dence

of an AI's prediction is more effective than providing the importance of individual

features, Chandrasekaran et al. (2017) report exactly the opposite. This indicates

that focusing purely on XAI conditions might not be suf�cient to extract generalizable

and valuable insights. Table 3.1 on page 53 highlights all XAI-technique-related

experimental conditions identi�ed in the SLR. We want to emphasize that these

results should not be interpreted quantitatively, since a lot of control variables and

even measurements differ between the experiments.

In addition to the actual XAI technical category there are also differences in terms

of the concrete implementations of the XAI algorithm. For example, Schmidt and

Biessmann (2019) as well as Chandrasekaran et al. (2017) compare different tech-

nical implementations of feature importance algorithms. In particular, Schmidt

and Biessmann (2019) compare LIME Ribeiro et al. (2016a) and covariance-based

explanations. They �nd signi�cant XAI-assisted performance differences (81.72%
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Table 3.1.: Experimental conditions of XAI and their comparisons in existing studies.

Comparison of different XAI-assisted decision References

performances

Feature Importance outperforms Con�dence Chandrasekaran et al. (2017)

Feature Importance outperforms Examples Lai and Tan (2019)

Feature Importance outperforms Prototypes Hase and Bansal (2020) and Yeung et al. (2020)

Feature Importance outperforms Rules Hase and Bansal (2020)

Con�dence outperforms Feature Importance Bansal et al. (2021), Lai and Tan (2019), and Zhang et al. (2020)

Con�dence outperforms Examples Lai and Tan (2019)

Con�dence outperforms Prototypes None

Con�dence outperforms Rules None

Examples outperform Feature Importance Adhikari et al. (2019)

Examples outperform Con�dence None

Examples outperform Prototypes None

Examples outperform Rules Van der Waa et al. (2021)

Prototypes outperform Feature Importance Hase and Bansal (2020)

Prototypes outperform Con�dence None

Prototypes outperform Examples None

Prototypes outperform Rules Hase and Bansal (2020)

Rules outperform Feature Importance Hase and Bansal (2020) and Ribeiro et al. (2016a)

Rules outperform Con�dence None

Rules outperform Examples None

Rules outperform Prototypes Hase and Bansal (2020)

for LIME and 84.52% for covariance) indicating that the size of the improvement

also depends on the selection of the speci�c XAI algorithm.

Besides these rather algorithmic experimental conditions our SLR reveals also more

frontend-speci�c conditions. Lai and Tan (2019) show that the way the performance

of the AI is displayed has an impact on team performance. Their results illustrate

that independent of the AI's performance, sharing information about the perfor-

mance increases trust. However, lower displayed performance relatively decreased

XAI-assisted performance and trust. Carton et al. (2020) test the in�uence of the

information amount communicated through the explanation. They evaluate the

performance of detecting misclassi�cation of online toxicity with full and sparse

explanations. Full explanations highlight all words that have an in�uence on the

prediction. Sparse explanations highlight just the most important words. This condi-

tion analyzes whether explanations need suf�cient or comprehensive information.

Their results indicate that there is no signi�cant difference between both conditions

(52.4% for full and 52.6% accuracy for sparse explanations).
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3.4.5 Human Characteristics

Lastly, human characteristics in�uence the effectiveness of human-AI collaboration.

One human-speci�c factor considered in the experiments is the human knowledge

of the XAI techniques. Lai and Tan (2019) examine the usage of human-centered

tutorials to build up essential knowledge and report a positive effect.

Another experimental condition tested is the self-assessment capability. Green and

Chen (2019) explicitly test this experimental condition by asking participants how

con�dent they are in their own decisions on a 5-point Likert scale. In their study

they �nd that participants can not determine their own or the model's accuracy and

fail to calibrate their use of AI.

3.5 Research Implications for Human-AI Collaboration

The SLR revealed relevant factors impacting the collaboration of human and AI.

However, due to the small number of studies achieving CTP, it becomes evident that

further research is needed on the design of human-AI collaboration. Therefore, based

on the �ndings of the previous section, we derive and discuss possible factors beyond

those tested in existing studies, which should be taken into consideration when

studying CTP. Again, we structure this discussion from a socio-technical perspective.

Finally, for each identi�ed characteristic with a possible effect on CTP, we formulate

multiple testable hypotheses with CTP as a dependent variable that future research

should address.

3.5.1 Collaboration Characteristics

In the collaboration scenarios analyzed in existing studies, AI typically assists the

human in form of recommendations. However, this must not lead to the human

any longer questioning the AI's prediction. Against this background, it has been

demonstrated that it is bene�cial to actively involve the human in the decision-

making process—either through encouragement by asking the human to make an

informed decision before receiving the AI's prediction (Green & Chen, 2019), or

by having the possibility to dynamically interact with the system (Liu et al., 2021).

Following Lai and Tan (2019), who �nd a positive effect of human training for the

interpretation of static explanations, we hypothesize a similar effect when humans

are being trained to dynamically interact with the AI.
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H1: Training humans to dynamically interact with the AI and interpret its recommen-

dations has a positive effect on CTP.

In addition to training for dynamic interaction and interpretation, it could also be

bene�cial to visualize the AI's error boundary which highlights for each input if the

model output is the correct action for that input feature combination—potentially

enabling the human to predict when the AI will err and decide when to override the

prediction. An improved understanding of the AI's error boundary in turn might

positively contribute to CTP (Hase & Bansal, 2020).

H2: Visualizing the AI's error boundary depending on provided input features has a

positive effect on CTP.

Moreover, to balance the amount of required cognitive load invested by the human,

we suggest that it could also be viable to let the human decide case by case whether

the recommendation or explanation should be revealed.

H3: Allowing the human to decide whether the AI's prediction should be revealed has a

positive effect on CTP.

One aspect all studies considered have in common is the fact that the responsibility of

the �nal team decision is with the human. A new perspective on collaboration could

be that the AI distributes a priori who will have the �nal responsibility of the team

decision depending on who has the higher expected probability of correctly executing

the task taking the individual strengths of both team members into consideration

(Mozannar & Sontag, 2020; Wilder et al., 2020).

H4: Assigning the �nal decision dynamically to either the human or the AI has a

positive effect on CTP.

3.5.2 Task Characteristics

Even though existing literature discusses various facets of task characteristics, we

see multiple directions for future research in terms of task complexity as well as

performance differences between humans and AI.

In terms of task dif�culty, previous studies found humans tend to rely more on

heuristics the harder a task becomes (Goddard et al., 2014). The presence of AI

support within human-AI collaboration might create the risk that people will rely

more strongly on the proposed AI recommendation as the dif�culty increases (Xu
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et al., 2007). In this context, we hypothesize that increasing task dif�culty for the

human might be counterproductive in terms of CTP.

H5: Increasing task dif�culty has a negative effect on CTP.

When working together on the same task, the absolute performance difference

of humans and AI might play a signi�cant role. There are situations in which

the AI outperforms humans (Alufaisan et al., 2021) and vice versa (Chu et al.,

2020). In this context, a very low performance of the AI, independent of the human

performance, could result in algorithmic aversion (Manzey et al., 2012). Contrary, a

very high performing AI could induce over-reliance in human action (Skitka et al.,

2000). Following this line of reasoning, one might assume that the potential for CTP

might be leveraged when humans and AI have comparable performance. In this

context, Bansal et al. (2019a) hypothesize that a similar performance level of human

and AI may contribute to achieving a signi�cant effect on CTP. However, a small

performance gap alone might not be suf�cient for achieving CTP. In this context,

we want to highlight that comparable performance does not inherently increase

the probability of achieving the threshold to CTP. The important point is not the

comparable performance but no positive correlation of human and AI errors. We

hypothesize that even within the same task no positive correlation of human and AI

errors contributes to reaching CTP.

H6: No positive correlation of human and AI errors has a positive effect on CTP.

3.5.3 Arti�cial Intelligence Characteristics

An important component to ensure the collaboration between human and AI is the

communication capability of the AI. In this context, the frontend serves as a means

for communicating the AI's prediction including explanations to the human. Its

design has a signi�cant in�uence on how well the user will interpret and use the

recommendations derived by the AI. In general, it is crucial to balance the amount

of information in order to prevent information overload (Bederson & Shneiderman,

2003). For instance, Klapp (1986) states that high volumes of information can

have the same effect as noise, distraction or stress resulting in erroneous judgement.

Besides the amount of information, the visualization quality also plays a signi�cant

role. For this reason, the question emerges whether a more user-centered design

regarding the information presentation resulting from existing explanation algo-

rithms could result in better human understanding. In this context, Suresh et al.

(2021) propose a framework for characterizing the stakeholders of interpretable AI
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including their needs. According to them not only the knowledge of humans but

also the context in which human-AI interaction occurs plays a decisive role. For this

reason, in-line with Kühl et al. (2020), we hypothesize that tailoring the information

presentation particularly to the user while considering its knowledge and application

context yields potential for improved CTP.

H7: Personalized information presentation considering the humans' knowledge and the

application context has a positive effect on CTP.

Besides the information presented to the user, the accuracy of the inferred expla-

nations plays a decisive role. Researchers have proposed evaluations to assess the

performance of explanations, which is also known as �delity of explanations (Shen

& Huang, 2020). It can be interpreted as the capability of the explanation to re-

�ect the AI's behavior (Alvarez Melis & Jaakkola, 2018). For example, Papenmeier

et al. (2019) �nd that humans could lose trust in the AI when exposed to low

�delity explanations. In this context, Shen and Huang (2020, p. 172) mention

“the representational power––including the correctness, sensitivity, etc., of the in-

terpretation model––might not be suf�cient to augment human reasoning about

errors.”. Therefore, we hypothesize a strong positive correlation between the �delity

of explanations and the ability of humans to detect when the AI errs.

H8: Increasing explanation �delity has a positive effect on CTP.

Even if established explanation techniques suf�ce the �delity criterion, a further

notable aspect should be their robustness. In this context, a large body of research

found that explanations can vary signi�cantly even for instances that are nearly

identical and have the same classi�cation Alvarez Melis and Jaakkola (2018), Ghor-

bani et al. (2019), and Tomsett et al. (2020) test the consistency of saliency maps

and state their statistical unreliability. For this reason, we formulate the following

hypothesis:

H9: Increasing explanation robustness has a positive effect on CTP.

3.5.4 Human Characteristics

Intensive research has been conducted across multiple disciplines over the past

decades on characteristics that allow individuals to succeed in team settings (Zhao

& Feng, 2019). For example, Morgeson et al. (2005) emphasize the importance of

social skills, personality characteristics as well as team knowledge in the context of

team member selection. Similar to human teams, we suggest that individual human
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characteristics also play a crucial role in human-AI collaboration. We focus on a

small subset of characteristics that have been examined in the context of human

teams, which we believe will also have a major impact on human-AI collaboration.

In this context, multiple meta-analytic studies found an in�uence of personality char-

acteristics such as conscientiousness, agreeableness, or emotional stability (Hogan &

Holland, 2003; Hurtz & Donovan, 2000). Even though human-AI teams differ signif-

icantly from human teams, we assume these characteristics to impact CTP for the

following reasons (Rie�e & Benz, 2021). Conscientious people tend to demonstrate

willingness to contribute to team performance regardless of their designated role

(Barrick et al., 1998; Neuman & Wright, 1999). Moreover, they stand out by being

especially concerned with performing their required behaviors towards achieving

de�ned team goals (LePine et al., 1997). Furthermore, the characteristic of agree-

ableness encompasses traits such as cooperativeness and �exibility (John M., 1990).

We hypothesize that these traits might be bene�cial in the human-AI setting as well,

since those individuals might be more willing to contemplate the AI's opinion. In

addition, emotional stability might play a decisive role in this context as people

with this trait tend to be more stress-resistant allowing them to more sovereignly

manage demanding and ambiguous situations (Barrick et al., 1998). For the reasons

mentioned above, we formulate the following hypotheses:

H10: Personality characteristics (e.g., conscientiousness, agreeableness, emotional

stability) have an effect on CTP.

A further interesting direction of future research might be the in�uence of human

cognitive capacity on CTP. In addition to various studies that �nd empirical evidence

for cognitive ability being a strong predictor of individual performance (Hunter &

Hunter, 1984; Wagner, 1997), a similar relationship can be shown at the team level

(Devine & Philips, 2001). Thus, we suspect a similar relationship with regard to

human-AI teams in the context of human-AI collaboration.

H11: Cognitive ability has a positive effect on CTP.

Lastly, human decision-making is heavily in�uenced by human biases (Kahneman,

2011). Human-AI collaboration is not spared of these biases. A particularly serious

bias is the automation bias, i.e., “the tendency to use automated cues as a heuristic

replacement for vigilant information seeking and processing” (Skitka et al., 2000,

p. 344) that may lead to an overreliance on AI recommendations. Therefore, we

formulate the following hypothesis:

H11: Automation bias has a negative effect on CTP.
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3.6 Conclusion

The main goal of this study was to determine the current state of human-AI col-

laboration with regard to CTP. Therefore, we conducted a SLR. Subsequently, we

provided an overview of the proportion of articles that reached CTP and presented

experimental conditions that were tested in the articles. Based on the SLR and

supplementary work we derived and discussed further experimental conditions and

formulated testable hypotheses.

Unleashing the potential of human-AI collaboration that leverage the complementary

capabilities of humans and AI to achieve CTP requires a multidimensional design

process. For this reason, we see IS as the predestined research discipline to advance

research in this �eld. We hope to motivate IS researchers and practitioners to actively

participate in the exploration of understanding of the factors contributing to the

design of human-AI collaboration for CTP.

Considerably more work needs to be done to determine the underlying patterns

of effective Human-AI collaboration. Therefore, rigorous research models based

on behavioral constructs need to be developed. Constructs such as mental model,

cognitive load, and trust need to be measured to understand and enable CTP. Future

work needs to address the testable hypotheses outlined in this work in behavioral

experiments. We invite researchers to support and join us on the path to CTP.
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A Meta-Analysis of the Impact

of Explainable AI on Decision

Performance

4

This chapter comprises an article that was published as: Schemmer, M., Hem-

mer, P., Nitsche, M., Kühl, N., & Vössing, M. (2022b). A Meta-Analysis on the

Utility of Explainable Arti�cial Intelligence in Human-AI Decision-Making. Pro-

ceedings of the 2022 AAAI/ACM Conference on AI, Ethics, and Society, 617–626.

Note: To improve the structure of the work, the title was changed. The abstract

has been removed. Tables and �gures were reformatted, and newly referenced

to �t the structure of the thesis. The terminology was standardized with the

dissertation. Chapter, section and research question numbering and respective

cross-references were modi�ed. Formatting and reference style was adapted

and references were integrated into the overall references section of this thesis.

4.1 Introduction

Over the last years, the rapid developments in arti�cial intelligence (AI) have

increased its use in many application domains. In this context, AI's continuously

rising capabilities have surpassed human performance in an increasing number of

tasks, such as playing poker (Brown & Sandholm, 2019), go (Silver et al., 2018), or

correctly recognizing various categories of interest in images (He et al., 2015). Due

to these remarkable developments, AI is increasingly applied to support decision-

makers in an increasing number of domains, such as medicine (McKinney et al.,

2020; Wu et al., 2020), �nance (Day et al., 2018), law (Kleinberg et al., 2018) or

manufacturing (Stauder & Kühl, 2022).

To offer decision-makers meaningful support, AI models are expected to provide

accurate predictions and a notion of how a particular decision has been derived. In

particular, explaining the rationale behind an algorithmic decision should enable

domain experts to learn when to trust the recommendations of the AI and when to
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question it (Zhang et al., 2020). This requirement fueled the continuous develop-

ment of explainability techniques from the �eld of explainable AI (XAI), intending

to make the decision-making process of black-box AI models more transparent and,

thus, comprehensible for domain experts (Adadi & Berrada, 2018). Common ap-

proaches include among others feature importance-based (Ribeiro et al., 2016a),

example-based (Cai et al., 2019), or rule-based methods (Ribeiro et al., 2018). A

better understanding of how the AI's decision was derived should subsequently

enable the user to appropriately rely on the AI's suggestions on a case-by-case basis

(Bansal et al., 2021; Lee & See, 2004). For instance, explanations contradicting the

AI's prediction could signify the user to become skeptical, consequently considering

the AI prediction less in the �nal decision-making process.

With the ongoing development of XAI techniques, researchers have started to eval-

uate AI with and without explanations to assess whether their utility for better

decision-making can be quanti�ed (Bansal et al., 2021; Buçinca et al., 2020; Buçinca

et al., 2021; Carton et al., 2020; Chu et al., 2020; Green & Chen, 2019; Hase &

Bansal, 2020; Hemmer et al., 2022b; Lai et al., 2020; Lai & Tan, 2019; Liu et al.,

2021; Van der Waa et al., 2021; Yeung et al., 2020; Zhang et al., 2020). Whereas

some researchers identify a bene�t of XAI-based decision support in user studies

(Buçinca et al., 2020; Lai et al., 2020), others �nd only negligible evidence (Carton

et al., 2020; Liu et al., 2021), with the underlying causes remaining partly unex-

plored (Hemmer et al., 2021; Schoeffer et al., 2022b). Therefore, in this article, we

aim to clarify the current “snapshot” of the utility of XAI-based decision support. We

conduct a meta-analysis of user studies identi�ed in a structured literature review

to shed light on the effect of XAI-assisted decision-making on user performance. In

detail, our analysis encompasses studies that allow a comparison between human,

AI-, and XAI-assisted task performance. Our initial �ndings are the following: First,

on average, XAI-assisted decision-making enhances human task performance com-

pared to no assistance at all. However, we �nd no additional effect of explanations

on users' performance in XAI-assisted decision-making compared to isolated AI

predictions, which raises questions on how to further develop current XAI methods

that improve users' task performance. Second, we �nd that distinct data types affect

user performance differently. In this context, human-AI collaboration turns out to be

more effective on text data compared to tabular data.

The remainder of this article is structured as follows. In Section 4.2, we �rst outline

related work in the context of human-AI collaboration. In Section 4.3, we describe

the methodological approach of our meta-study. Subsequently, we present the

results of the meta-study, including a subgroup analysis in Section 4.4. In this

context, we provide additional qualitative insights on an individual level. We outline
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the current limitations of our work in Section 4.5, followed by a discussion on

relevant implications that result from these �ndings for the future development of

XAI algorithms in Section 4.6. Finally, Section 4.7 concludes our work.

4.2 Related Work

Over the last years, research has focused on developing algorithms that provide

explanations for AI predictions (Adadi & Berrada, 2018; Das & Rad, 2020). By now,

these algorithms are increasingly employed in a growing number of practical use

cases such as in manufacturing (Senoner et al., 2022; Treiss et al., 2020), medicine

(Pennisi et al., 2021), or the hospitality industry (Vössing et al., 2022). Usually, XAI

is utilized in scenarios that involve humans-in-the-loop processes. The underlying

idea is that humans will bene�t from the AI's suggestion if it is accompanied by an

explanation. Therefore, a constantly rising number of studies has started to analyze

the effects of explanations in behavioral experiments (Hemmer et al., 2021). In

these experiments, many different target variables are taken into consideration, e.g.,

whether humans are capable of predicting what a model would recommend (proxy

tasks) (Arjun et al., 2018; Buçinca et al., 2020; Hase & Bansal, 2020) or whether

explanations support them in model debugging (Adebayo et al., 2020; Kaur et al.,

2020).

In the scope of this study, we explicitly focus on AI-assisted decision-making—a set-

ting in which an AI supports a human with the goal of improving the decision-making

quality. The AI's prediction might be accompanied by additional information, e.g.,

about its prediction uncertainty or different types of explanations. After receiving the

AI's advice, the human decision-maker is responsible for making the �nal decision—a

scenario which is often also required from a legal perspective (Bauer et al., 2021). By

providing either additional information on the AI's prediction uncertainty (Nguyen

et al., 2021; Zhang et al., 2020) or explanations on how a decision was derived

(Bansal et al., 2021; Lai & Tan, 2019), humans shall be enabled to better question

the AI's decision. To develop a deeper understanding of this assumption, research

has evaluated the effect of explanations on users' trust and how reliance on AI

decisions can be appropriately calibrated (Bansal et al., 2019b; Buçinca et al., 2021;

Kunkel et al., 2019; Schemmer et al., 2022c; Yu et al., 2019; Zhang et al., 2020).

In this context, providing humans not only with the AI's prediction and respective

explanations but also with a notion about its global performance can in�uence the

overall team performance (Lai & Tan, 2019). Additional bene�ts can be found when

humans are provided with model-driven tutorials about AI functionality and the task
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itself (Lai et al., 2020). Further work has investigated the in�uence of AI advice in

the out-of-distribution setting—instances differing from the distribution used for AI

training—on the �nal human decision (Liu et al., 2021).

Besides these factors, the explanation type of an AI prediction can play a decisive

role. In this context, research has developed various explainability techniques (Adadi

& Berrada, 2018) ranging from feature importance methods (Ribeiro et al., 2016a)

over example-based approaches (Cai et al., 2019) to rule-based explanations (Ribeiro

et al., 2018) that have been evaluated in user studies accordingly (Hemmer et al.,

2021). However, the current picture emerging from the results of different studies

regarding the effects of XAI methods on AI-assisted decision-making performance

is not unambiguous. For example, whereas Carton et al. (2020) conclude that

feature-based explanations do not help users in classi�cation tasks, Hase and Bansal

(2020) �nd some of them to be effective in model simulatability, which refers to

the ability to predict the model behavior given an input and an explanation. In this

context, further studies demonstrate the utility of explanations (Buçinca et al., 2020),

whereas others �nd that they can convince humans to follow incorrect suggestions

more easily (Bansal et al., 2021; Van der Waa et al., 2021).

Of course, ambiguous �ndings can also be attributed to the speci�c setups of each

study and the different goals pursued by the researchers. We aim to shed light on this

ambiguity by conducting a meta-analysis of human-AI collaboration—particularly

on the in�uence of explainability.

4.3 Methodology

We elaborate on our data collection approach to identify relevant articles, followed

by the statistical analysis conducted on the �nal set of user studies.

4.3.1 Data Collection

For the collection of empirical user studies in the �eld of XAI, we conducted a

structured literature review based on the methodology outlined by vom Brocke et al.

(2009). In detail, we developed a search string focusing on XAI and behavioral

experiments. For both topics, several synonyms were included after an explorative

search. Subsequently, the search string was iteratively re�ned, resulting in the

following �nal search string:
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TITLE-ABS-KEY(“explainable arti�cial intelligence” OR XAI OR “explainable AI” OR ( (

interpretability OR explanation ) AND ( “arti�cial intelligence” OR AI OR “machine

learning” ) ) ) AND ( “human performance” OR “human accuracy” OR “user study” OR

“empirical study” OR “online experiment” OR “human experiment” OR “behavioral

experiment” OR “human evaluation” OR “user evaluation”)

To ensure comprehensive coverage of relevant articles, we chose the SCOPUS

database for our initial search (Schotten et al., 2017). We �ltered identi�ed articles

according to the following three criteria: an article identi�ed with the search string

was included if it (a) conducted at least one empirical user study and (b) reported

the task performance as a performance measure for humans and AI- or XAI-assisted

decision-making on the same task.

Additionally, we conducted a forward and backward search starting from the articles

that ful�ll our inclusion criteria. We extracted all individual treatments and outcomes

for each article. For instance, if an experiment compared AI- with XAI-assisted

decision-making in a between-subject design in two separate treatments, each of

them was registered as a separate record in our database. If an article includes

multiple experiments, we performed the data extraction process for each experiment

separately. We contacted authors by email in case of missing or not reported

information in the articles regarding the conducted user studies.

The collected studies vary considerably in terms of tasks, problem settings, and

reported performance metrics. Accordingly, we �ltered our set of studies in the

following way: First, we focused on studies assessing classi�cation tasks as they

account for the largest subset across all entries in our database. Second, we re-

stricted the subset of relevant studies to those reporting the mean accuracy as the

performance measurement in each study since we require a common metric across

multiple studies. This ensures that we base our meta-analysis on comparable and

interpretable effect sizes. Third, we only included studies that have been conducted

as a between-subject design. By excluding studies conducted in a within-subject

design, we avoid taking into account the learning effect of participants between

treatments that might distort the effect sizes of our analysis.

Subsequently, we extracted all necessary performance metrics from the articles. We

de�ne the case in which the human performs the task without any AI support as

human performance. If the human is additionally equipped with AI advice, but

without explanations, we call the performance AI-assisted performance. AI assistance

with explanations is called XAI assistance, and the resulting performance measure is

denoted as XAI-assisted performance. Based on these de�nitions, we excluded all
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studies that do not report human performance and either AI-assisted or XAI-assisted

performance. Based on the resulting sample, we conducted the following statistical

analysis.

4.3.2 Statistical Analysis

For each study, we calculate the effect size as the between-group standardized

mean difference (SMD) of the task performance. Furthermore, we report Hedges'

g (Hedges & Olkin, 1985) to correct the SMD for a possible upward bias of the

effect size when the sample size of a study is small (n � 20). Thus, Hedges'g

is smaller for n � 20 than the uncorrected SMD but approximately the same for

larger sample sizes. We obtain the standard deviations from standard errors and

con�dence intervals for group means reported for each treatment following the

procedure outlined in Higgins et al. (2019). In case an article encompasses multiple

studies with a single control group, we divide the size of this control group by the

number of studies to avoid multiple comparisons against the same group (Higgins

et al., 2019).

For our meta-analytic model and the pooling of effect sizes, we estimate a random-

effects model as the setups and populations are considerably heterogeneous be-

tween studies. Hence, we calculate the distribution mean of effect sizes instead of

estimating and assuming one single true effect size underlying the studies (�xed-

effect model (Borenstein et al., 2010)). To assess the between-study heterogeneity

variance � 2 and its con�dence intervals we use the DerSimonian-Laird estimator

(DerSimonian & Laird, 1986) and Jackson's method (Jackson & Bowden, 2016),

respectively.

Additionally, we conduct a subgroup analysis to provide further insights across

current XAI studies. Several studies have discussed that task choice has a strong

in�uence on the experimental outcome (Fügener et al., 2021; Lai et al., 2023). This

article focuses on the in�uence of the task's data type. In this context, many re-

searchers have argued about the importance of data types in human-AI collaboration.

For example, Fügener et al. (2021) reason that image recognition, in general, is well

suited for human-AI collaboration since it is an intuitive task for humans.
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4.4 Results

We start by presenting the �nal set of included studies, then outline the meta-study

results, including the respective subgroup analyses. Finally, we provide additional

qualitative insights on an article level.

4.4.1 Data Collection

As of February 2022, we identi�ed a total number of 393 articles. After applying our

inclusion criteria and conducting a forward and backward search, the number of

relevant articles is reduced to 33.

Total records identi�ed ( n = 393).

Number of records after �ltering
according to eligibility criteria and
forward/backward search ( n =
33).

Records after excluding studies
with incomplete information and
�ltering for classi�cation tasks
(metric: accuracy) conducted in a
between-subject design (n = 9 ).

Figure 4.1.: Flowchart describing the data collection and article selection procedure.

As classi�cation tasks form the largest subset, we focus on this particular prediction

problem. After �ltering for accuracy as a common metric and removing articles with

missing information, e.g., sample size or dispersion measures, we include 9 articles

in the meta-analysis and the respective subgroup analyses. Figure 4.1 visualizes the

entire �ltering process. Moreover, Table 4.1 on page 68 provides an overview of

all included articles together with information about each dataset, datatype, and

treatments extracted from the articles. Each article contains at least one behavioral

experiment conducted with a particular dataset. Each experiment consists of several

experimental treatments. The treatment in which humans conducted a task on their
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own without AI assistance is referred to as a control group. In the following, we

denote each treatment as an individual study. Overall, we thereby have a sample

size of 44 studies.

4.4.2 AI Assistance Versus XAI Assistance

We start our meta-analysis by investigating AI- and XAI-assisted performance. For

this reason, we �rst focus on all studies that report AI- and XAI-assisted performance,

which leads us to a sample of 11 studies and a total number of 999 observations.

Figure 4.2 on page 70 displays the forest plot of the SMD between AI-assisted and

XAI-assisted performance. The results of the analysis reveal that, on average, the

SMD of all studies that reported AI- and XAI-assisted performance is 0.07 with a

95% con�dence interval (CI) [-0.15, 0.30]. A z-test against the null-hypothesis that

the effect size is 0 cannot be rejected (z = 0 :63; p = 0 :53). This means we do not

�nd a signi�cant difference between AI-assisted and XAI-assisted performance in

our current sample of studies.

Regarding heterogeneity, we �nd an I 2 of 57.00% (95% CI [15.70%, 78.00%]),

which can be considered moderate (Higgins et al., 2019). The� 2 is 0.07 (95% CI

[0.01, 0.54]) and Q is signi�cantly different from 0 ( Q = 23:24; df = 10; p < 0:01).

Thus, we can reject the null hypothesis that the true effect size is identical in all

studies. To provide an intuitive understanding of the heterogeneity, we also report

the prediction interval that represents the expected range of true effects in other

studies (IntHout et al., 2016). The prediction interval ranges from -0.59 to 0.74.

That means we can expect negative as well as positive effects of XAI assistance in

comparison to AI assistance. In summary, on average, XAI-assisted decision-making

does not signi�cantly in�uence the performance of human-AI collaboration in our

sample. The highest improvement was measured by Van der Waa et al. (2021).

Contrary, the highest negative impact of XAI is measured by Alufaisan et al. (2021).

4.4.3 Human Versus XAI Assistance

We analyze the overall effect of XAI in comparison with human performance. There-

fore, we �lter all studies that report human and XAI-assisted performance. This

results in a sample of 33 studies and a total number of 5,083 participants. Based on

this sample, we analyze whether XAI-assisted decision-making improves performance

compared to humans conducting a task alone.
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Figure 4.3 on page 72 visualizes the forest plot of the standardized mean difference

between human and XAI-assisted performance. The meta-analysis indicates that,

on average, XAI assistance increases task performance by 0.59 SMD as compared

to humans conducting the tasks alone. The 95% CI of the SMD ranges from 0.39

to 0.79. As this range does not include an effect size of 0 and a z-test is signi�cant

(z = 5 :73; p < 0:0001), we can reject the null hypothesis concluding that, on average,

XAI-assisted decision-making improves human task performance.

Looking at heterogeneity, we can reject the null hypothesis that the true effect size

is identical in all studies (Q = 219:24; df = 32; p < 0:0001). Moreover, I 2 is 85.40%

with a 95% CI of 80.50% to 89.10%. The estimated � 2 is 0.29 (95% CI [0.18, 0.59]).

Thus, the level of heterogeneity can be considered substantial (Higgins et al., 2019).

The prediction interval in the analysis is -0.54 to 1.71. This means that we cannot

say with certainty that XAI always has a positive impact on human decision-making

as the prediction interval is not exclusively larger than 0. Even though most studies

report a performance improvement through XAI assistance, we also �nd studies that

report a performance decline. In this context, one of the two studies conducted

by Alufaisan et al. (2021) encountered the most negative effects with a human

performance decline. Participants are asked to predict whether a defendant will

recidivate in two years and receive AI predictions with decision rules aiming to

support users' understanding of the AI's decisions. However, this reduction is not

statistically signi�cant due to a high level of dispersion. The most considerable

improvement can be found in a study by Buçinca et al. (2020). Here, participants

have to decide based on an image of a meal whether the fat content of this meal on

a food plate exceeds a certain threshold.

It is important to highlight that the signi�cant SMD does not imply that including

explanations will improve performance over simply providing AI advice without any

form of explainability, as we did not �nd a signi�cant difference between AI-assisted

and XAI-assisted performance in Section 4.4.2. Instead, it can be interpreted as a

positive effect of someform of AI advice.

4.4.4 Tabular Versus Text Data

Additionally, we conduct a subgroup analysis based on three data types used in our

sample—tabular, text, and image data. As only two articles report experiments using

image data, the interpretation of this data type might not be conclusive. Thus, we

focus on tabular and text data types for the subgroup analysis resulting in a total

sample size of 31 studies and 4,702 participants. Figure 4.4 on page 74 displays the
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forest plot of the standardized mean difference between human and XAI-assisted

performance with regard to both data types.

The SMD of the tabular subgroup is 0.01 (95% CI [-0.24, 0.26]). As this range does

include an effect size of 0 and the z-value is 0.08 with a corresponding p-value of

0.94, we cannot reject the null hypothesis. That means we cannot conclude that the

SMD is signi�cantly different from 0. Regarding heterogeneity, we can reject the null

hypothesis that the true effect size is identical in all studies (Q = 20:30; df = 7 ; p <

0:005). The I 2 is 65.50% with a 95% CI ranging from 26.70% to 83.80% and � 2 has

a value of 0.09 (95% CI [0.01, 0.48]). Finally, the prediction interval ranges from

-0.77 to 0.79. That means we can expect future negative impacts of XAI assistance

on human decision performance in certain situations.

The text data subgroup has a higher SMD of 0.72 (95% CI [0.50, 0.93]). This range

does not include an effect size of 0. Additionally, the z-value is 6.65 with p < 0:0001

denoting that the SMD is signi�cantly different from 0. In terms of heterogeneity,

we can reject the null hypothesis that the true effect size is identical in all studies

(Q = 103:57; df = 22; p < 0:0001). In this context, � 2 is 0.21 (95% CI [0.10, 0.47])

and I 2 is 78.80% (95% CI [68.70%; 85.60%]). Thus, the heterogeneity of the

text data subgroup can be considered higher than the tabular data subgroup. The

prediction interval ranges from -0.26 to 1.69, which means we can also expect some

negative XAI effects with text data.

Lastly, comparing both subgroups, we observe signi�cant performance differences

between tabular and text data suggesting that the data type in our sample in�uences

the effect of XAI assistance on the performance (Q = 17:81; df = 1 ; p < 0:0001).

4.4.5 Summary of the Articles

Having analyzed the collected studies in the form of a meta-analysis, we pursue a

discussion and summarization of the individual articles from a qualitative perspective.

We focus on extracting further insights that can be derived from comparing human

performance without any assistance and AI or XAI assistance. In particular, we

are interested in the question of why XAI assistance did or did not improve AI

assistance.

Alufaisan et al. (2021) draw upon rule-based explanations generated by anchor LIME

(Ribeiro et al., 2018) for two real-world tabular datasets—an income prediction

task using the Census dataset (Dua & Graff, 2019) and a recidivism prediction task

using the COMPAS dataset (ProPublica, 2016). The XAI algorithm provides rules
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which are denoted as anchors to explain a prediction on an instance level. A rule

is considered an anchor if any changes in the features that are not included in the

anchor do not impact the AI decision (Alufaisan et al., 2021). The authors �nd

that AI assistance improves human performance. However, they �nd no additional

bene�t of XAI assistance regarding decision-making performance. They hypothesize

that one reason for the negligible effects of XAI could be information overload.

When taking a closer look at the individual decision level, humans tend to follow AI

predictions more often when the AI makes a correct prediction than when it makes

an incorrect one. In this context, explanations did not alter this observation.

Bansal et al. (2021) compare multiple forms of explanations of AI predictions on

three tasks. Two of them are about sentiment analysis of book (He & McAuley,

2016), and beer reviews (McAuley et al., 2012). The third task consists of a set of law

school admission test questions requiring logical reasoning (Team, 2017). All three

datasets consist of text data. As explanations, they use feature importance generated

by LIME (Ribeiro et al., 2016a) and feature importance generated by human experts.

Additionally, the authors evaluate the effect of providing only con�dence ratings of

the AI's prediction, which we consider as a form of explanation as well to ensure that

AI assistance encompasses only the predictions of the AI in all studies. Therefore,

we are restricted to the comparison of human performance with XAI assistance in

the meta-analysis. Interestingly, the authors �nd no performance improvements of

explanations over con�dence ratings. However, they �nd that providing explanations

tends to increase the chance that humans accept the AI's prediction regardless of

its correctness—which shows contrary results to the observations of Alufaisan et al.

(2021). Moreover, participants receiving XAI assistance outperform both participants

and AI alone.

Buçinca et al. (2020)analyze two different techniques for evaluating XAI systems.

First, a proxy task, e.g., asking humans to predict the AI's decision. Second, an actual

decision-making task, e.g., asking humans to make a decision with XAI assistance.

We consider the actual decision-making task for the meta-analysis. The authors show

participants images of different food plates and ask them to predict the fat content

of the meal. The participants are requested to decide whether the fat content in

percent is higher than a threshold. Users are provided with inductive (i.e., example-

based) and deductive (i.e., rule-based) explanations. With XAI assistance, the users

signi�cantly outperform users with AI assistance, which yields better performance

than users conducting the task without any support. Interestingly, example-based

explanations enable users to identify erroneous AI predictions better. However, they

prefer and trust the rule-based explanations more.
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Carton et al. (2020) consider a social media comment toxicity prediction task for

their experiment by sampling comments from the dataset provided by Wulczyn

et al. (2017). They utilize feature importance by highlighting passages and words

pointing towards a toxic comment. In detail, three different forms of explanations

are analyzed—full, partial, and keyword explanations. The full explanations are

generated by an attention model (Carton et al., 2018) that produces a discrete

attention mask over the input text for toxic content. Partial explanations refer to

reducing the mask to the most toxic passage. Keyword explanations are derived from

a bag-of-words logistic regression classi�er that highlights only the most toxic single

words instead of considering the context. Their study shows a marginal negative

trend of AI assistance performance in comparison to users with no assistance at

all. However, the effect does not vary signi�cantly regardless of explanations being

present or not. In this context, users tend to follow the AI prediction without an

effect of the different explanations provided. A detailed analysis of false negative

and false positive rates reveals that explanations tend to increase false negatives

and reduce false positives. The authors hypothesize that this might indicate a

reduced cognitive engagement with the social media comments by focusing on the

highlighted text without considering the not highlighted passages.

Fügener et al. (2021)use a dog breed image classi�cation task (Russakovsky et

al., 2015a). They evaluate the effect of AI assistance with and without additional

con�dence ratings and compare both treatments with the performance of users that

do not receive any AI support. While the authors �nd that AI assistance signi�cantly

improves human performance, no additional effect of providing con�dence ratings

can be identi�ed. In this context, both AI-assisted performance and the one with

additional con�dence ratings outperform humans and AI when conducting the task

alone. A detailed analysis of the con�dence rating treatment reveals that providing

AI certainty decreases AI adherence. The authors hypothesize that a decrease in

users' trust might explain this effect as it also declines in this treatment.

Lai et al. (2020) consider a deception detection task which is about identifying fake

hotel reviews (Ott et al., 2013; Ott et al., 2011). The authors analyze the effect

of three types of XAI assistance provided together with the AI prediction. First,

they provide users with signed feature importance, i.e., they highlight the most

important words that indicate real and fake reviews. Word importance is derived

from the absolute value of the coef�cients using a linear SVM with a unigram bag-of-

words. Second, they additionally provide the participants with supporting guidelines

derived from related research and observations of the model, which are paraphrased

by the authors. Third, they provide an additional AI accuracy performance statement

on top. Before the actual decision-making task, participants had to undergo a task-
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speci�c training phase. In a prior experiment, the authors demonstrated that these

so-called tutorials enhance participants' performance without any further assistance

from the AI. In general, they �nd an improvement in XAI-assisted performance over

human performance in all three treatments. However, no statistical signi�cance

between the different forms of XAI assistance can be detected. Moreover, the authors

also emphasize that XAI-assisted performance remains inferior to the AI performing

the task alone, even though a small proportion of participants who were able to

outperform the AI can be identi�ed. The authors do not consider an AI-assisted

treatment in their experiment.

Liu et al. (2021) explore the effect of out-of-distribution data instances and interac-

tive explanations on human-AI collaboration. For the meta-analysis, we focus on the

in-distribution setting, including a comparison of static with interactive explanations,

as out-of-distribution data might impede the comparability with the other studies.

The authors draw upon three tasks in their article. In the �rst, participants predict

whether arrested defendants will violate the terms of pretrial release using the ICPSR

dataset (United States Department of Justice, 2014). The second task is about pre-

dicting whether defendants will recidivate in two years using the COMPAS dataset

(ProPublica, 2016). Both are tabular datasets. The third task requires participants

to predict a person's profession given a textual biography using the BIOS dataset

(De-Arteaga et al., 2019). Regarding the AI model, a linear SVM classi�er with

unigram bag-of-words for BIOS and one-hot encoded features for ICPSR and COM-

PAS is employed. The static explanations consist of feature importance by coloring

features that contribute to the AI prediction. Interactive explanations offer users

the possibility to explore what-if scenarios. In general, the authors �nd that XAI

assistance improves users' performance in predicting a person's profession compared

to users without any assistance. However, no signi�cant performance difference

between static and interactive explanations can be found. For the two recidivism

prediction datasets, they �nd no signi�cant difference between the performance of

XAI assistance and human alone. The authors hypothesize that the complexity of

both recidivism tasks might have prevented noticeable performance improvements.

Even though no performance difference can be observed, users rate interactive

explanations more useful in the recidivism prediction tasks. The authors do not

consider sole AI-assisted decision-making in their article.

Van der Waa et al. (2021)evaluate the effect of example- and rule-based explanations

in the context of a diabetes self-management task where participants are requested

to select the appropriate dose of insulin. The authors compare AI assistance with

both types of explanations but do not report sole human performance. In this

context, the presence of either example- or rule-based explanations does not result
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in a signi�cant performance difference compared to pure AI assistance. A closer

analysis of explanations' “persuasive power”, i.e., how often humans agree with the

AI recommendation regardless of being correct or not, reveals that users without

explanations follow the AI prediction signi�cantly less than with example- or rule-

based explanations.

Zhang et al. (2020) compare the effect of additional con�dence ratings with feature

importance explanations using Shapley values (Lundberg & Lee, 2017) in the context

of human-AI collaboration. They utilize the Census dataset (Dua & Graff, 2019) for

asking participants to predict whether a person's income would exceed $50,000.

In the experiment, the authors �nd no signi�cant difference between additional

con�dence ratings and feature importance explanations in terms of task performance.

Moreover, both treatments do not differ signi�cantly from sole AI assistance. Even

though displaying con�dence scores does not affect task performance, it can be

found that it improves overall trust and contributes to a calibration over different

con�dence levels. The authors explain this phenomenon with a high correlation

between human and AI con�dence, showing a large overlap of instances with low AI

and human con�dence. In contrast, explanations do not affect users' trust in their

experiment.

In summary, most studies, except for Buçinca et al. (2020), found no signi�cant

differences when comparing XAI and AI assistance on an individual study level.

Alufaisan et al. (2021) argue that the negligible effect of XAI might stem from

information overload. Carton et al. (2020) discuss that XAI, in the case of feature

importance, might reduce the amount of data humans process as they just focus on

the features relevant to the AI. Liu et al. (2021) discuss whether task complexity

could be a reason for no signi�cant improvements of XAI assistance over AI assistance.

We also observe some contrasting results that require further investigation in future

work. Fügener et al. (2021) �nd a general decrease in AI adherence in the context

of con�dence ratings. In contrast, Van der Waa et al. (2021) and Bansal et al. (2021)

�nd that explanations increase the general probability of accepting AI advice. Based

on the qualitative review, we derive two potential factors in�uencing the utility

of XAI: First, XAI could improve decision-making performance by increasing the

acceptance of AI advice. Note that the performance improvement will just happen

if the AI, on average, performs signi�cantly better than the human (Zhang et al.,

2020). Second, XAI assistance could in�uence appropriate trust and reliance, which

means humans can discriminate between correct and incorrect AI advice (Bansal

et al., 2021). The idea is that humans will be better able to distinguish between

correct and incorrect advice if the AI conveys its reasoning. Our qualitative review

showed that while there is evidence for increased acceptance of AI advice due to XAI
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(Bansal et al., 2021; Van der Waa et al., 2021; Zhang et al., 2020), just one article

reports some form of appropriate reliance (Buçinca et al., 2020).

4.5 Limitations

As XAI is a relatively new �eld of research, at least in comparison to research domains

where meta-analyses are more common, e.g., medical research (Eaden et al., 2001),

we encounter some major limitations that form around the current existing sample

of XAI studies.

First, the current existing sample of XAI studies contains just online studies. In

these online studies, people are recruited via online platforms such as Mechanical

Turk. They conduct a task not in a controlled lab environment inducing higher

variability. Second, the studies use different XAI algorithms ranging from providing

an additional con�dence score to personalized explanations. We also considered

a subgroup analysis for the XAI algorithm category but were limited due to the

current sample size. Therefore, interpretable �ndings could not be derived yet.

Third, also task design differs between the studies. Some studies use more intuitive

tasks for humans, such as sentiment analysis of reviews, while others consider more

complicated ones, such as recidivism prediction. In this context, future studies

should evaluate other task-related factors beyond data type. Fourth, in the data

type subgroup, the tabular subgroup contains just two articles (Alufaisan et al.,

2021; Liu et al., 2021). Even though it contains 8 studies, this poses a possible

limitation. Moreover, as many studies do not report dispersion metrics numerically,

we had to extract them from the plots. We conducted a multi-step approach. Two

researchers extracted the values individually and afterward discussed the differences.

Furthermore, we want to highlight that the meta-analysis is limited with regard to

drawing causal conclusions. Our analysis should instead be considered as a synthesis

of existing research. Lastly, the main limitation of the comparison of AI-assisted and

XAI-assisted performance is the small sample size due to other studies not reporting

the dispersion of their AI-assisted condition.

4.6 Discussion and Future Work

In this work, we conducted the �rst meta-analysis of XAI-assisted decision-making.

Based on a structured data collection process, we collected 393 XAI-related articles.
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After applying our inclusion criteria, we identi�ed a set of 9 articles encompassing

44 studies for the meta-analysis.

In the current sample, we �nd no statistically signi�cant difference between XAI-

and AI-assisted performance. However, some studies report positive XAI assistance

performance effects, whereas others �nd no or slightly negative effects. Additionally,

we �nd a positive effect of XAI assistance on human task performance. Since we

do not identify a difference between XAI and AI assistance, the results need to be

interpreted carefully. Therefore, we cannot conclude that XAI will lead to an overall

performance superior to AI assistance. However, we observe a positive tendency

of AI to support humans in decision-making, either with explanations or without.

A promising avenue for future research is to investigate the factors that determine

consistent performance gains in human-AI collaboration. In this context, the work

of Lai et al. (2023) could be a foundation for the data collection. Furthermore,

our subgroup analysis indicates a stronger positive effect of explanations on task

performance with text data than tabular data. If this effect can be con�rmed in

future studies, more work would be required regarding human-AI collaboration with

tabular data. Reasons for this difference could be that text data is a more intuitive

data type for humans. Additionally, analyzing the utility of explanations and AI

predictions concerning image data requires more attention, as we identi�ed only

2 articles using image data. Therefore, future work should explicitly investigate

performance differences induced by different data types. Moreover, due to the

currently high heterogeneity of the studies, future analyses could consider not only a

distinction by data type but also by task type, e.g., complexity and users' task-speci�c

knowledge. For example, in easy tasks, humans might be able to evaluate better

whether AI advice is correct or not.

Our qualitative review of the collected studies highlights that explanations can easily

lead to increased acceptance of AI advice. In the scenario in which AI performs,

on average, better than humans, its performance might bound the maximum joint

performance of both. However, if the goal is that human-AI collaboration ideally

results in superior team performance (Bansal et al., 2021), appropriate reliance

on the AI's decision becomes indispensable. Therefore, future research should

investigate design mechanisms that enable appropriate reliance. Additionally, from

this observation emerges the need to discuss the ethical implications of pure AI

decision acceptance increase in future work as it can be understood as a form of

manipulating people to follow AI advice blindly.
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4.7 Conclusion

This article presents the results of a meta-analysis of the utility of explanations in

human-AI collaboration. We identify a total sample of 9 articles that report all neces-

sary information as a prerequisite through a structured literature review. We analyze

whether humans' decision-making can bene�t from AI support with and without

explanations and derive three major �ndings: First, we do not �nd a signi�cant effect

of state-of-the-art explainability techniques on AI-assisted performance. Second, we

observe a signi�cant positive effect of XAI assistance on human performance. Third,

our analysis indicates that XAI assistance is more effective on text than tabular data.

We hope that our work will motivate scholars to pursue meta-analyses in future

human-AI research to systematically assess previous studies to derive conclusions

about the current body of research.
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Human-AI Complementarity:

Conceptualization and the

In�uence of Information

Asymmetry

5

This chapter comprises a working paper that is currently under review as

Schemmer, M., Hemmer, P., Kühl, N., Vössing, M., & Satzger, G. (2023b).

Human-AI Complementarity: Conceptualization and the Effect of Information

Asymmetry [Working paper]. Note: To improve the structure of the work,

the title was changed. The abstract has been removed. Tables and �gures

were reformatted, and newly referenced to �t the structure of the thesis. The

terminology was standardized with the dissertation. Chapter, section and

research question numbering and respective cross-references were modi�ed.

Formatting and reference style was adapted and references were integrated into

the overall references section of this thesis.

5.1 Introduction

The increasing capabilities of arti�cial intelligence (AI) have paved the way for sup-

porting human decision-making in a wide range of application domains. Examples

include decision support for humans in application areas such as customer service

(Adam et al., 2021), medicine (Wu et al., 2020), law (Mallari et al., 2020), �nance

(Day et al., 2018), and industry (Stauder & Kühl, 2022). While increasingly accurate

decisions of AI systems can tempt the automation of speci�c tasks, automation

generally overlooks the potential of combining individual team members' strengths

in a human-AI team (Seeber et al., 2020) to achieve even better performance.

The recent emergence of large language models illustrates this (Malone et al.,

2023). Applications like ChatGPT often provide helpful results but cannot be relied

upon completely, and a human decision-maker has to collaborate with the system,
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for example to override erroneous answers, to achieve superior task performance

(Malone et al., 2023). Similarly, in the medical domain, AI as well as humans

are able to conduct a disease diagnosis on their own. It has however also been

demonstrated that humans and AI can make different errors on individual task

instances (Geirhos et al., 2021; Steyvers et al., 2022), such as ensuring that CT

images complement each other (Jussupow et al., 2021). In this context, the AI may

detect patterns in large amounts of data that humans will �nd dif�cult to discover,

while humans in turn excel at the causal interpretation and intuition required to

interpret these patterns (Lake et al., 2017; Li et al., 2019a).

This potential for complementarity has led researchers to investigate how the in-

dividual capabilities of humans and AI can be leveraged to achieve superior team

performance, compared to either one performing the decision task independently.

Such an outcome is de�ned ascomplementary team performance(CTP) (Bansal et al.,

2021).

Various studies have demonstrated that human-AI teams can outperform human

individuals, but they often do not exceed the AI's individual performance (Bansal et

al., 2021; Hemmer et al., 2021). The observation that CTP, meaning a performance

beyond that of an isolated human or AI, is often not attained in these studies raises

questions about which factors could contribute to achieving this phenomenon. It

illustrates that the current knowledge of how the respective capabilities of humans

and AI can be utilized to create joint decision-making synergies has not yet been

suf�ciently developed and that there is a need for additional concepts that foster an

in-depth understanding of complementarity in human-AI collaboration.

To address this gap, we build on the theoretical work of Fügener et al. (2021) who

analyze how AI advice affects unique human knowledge. In particular, we propose

a conceptualization of human-AI complementarity by introducing the notion of

complementarity potential (CP). The conceptualization consists of formalizing the

complementarity potential and its constituent components, delineating relevant

sources of complementarity potential, and classifying integration mechanisms to

infer the �nal team decision and realize the human-AI complementarity potential. In

detail, we argue that complementarity potential has an inherent and a collaborative

component. Whereas the �rst captures the idea that humans and AI possess different

inherently present capabilities in the form of unique human and AI knowledge, the

second component captures a new type of knowledge that only emerges through

human-AI interaction.

To demonstrate the utility of the proposed conceptualization, we choose the domain

of real estate valuation and instantiate a relevant source of complementarity poten-
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tial together with an integration mechanism. We train and deploy an AI model to

predict real estate prices based on tabular data. Human decision-makers have addi-

tional access to a real estate photograph that represents unique human contextual

information - a relevant source of inherent complementarity potential - that they

can use. The human decision-maker constitutes the �nal integrator of their own and

the AI decision.

Our results highlight the usefulness of our conceptualization, allowing us to develop

a more nuanced understanding of the factors that in�uence whether synergies in

decision-making emerge during human-AI collaboration. Our experiment shows

that the distribution of instances for which the human or the AI performs better on

(indicating the inherent complementarity potential) changes when the human sees

an additional photograph of the house. More speci�cally, providing the photograph

increases the number of house price estimates where the human performs better than

the AI. We �nd that providing an additional photograph of the house has a surprising

effect on the human's estimate after receiving advice from the AI. Intuitively, the

awareness of having more information than the AI could lead to algorithm aversion

(Jussupow et al., 2020), which prevents humans from appropriately adjusting the

house prices the AI recommended. Our research however indicates the opposite,

as our results show that providing the photo improves human adjustment of house

prices suggested by the AI.

In summary, our contribution is threefold: First, we conceptualize human-AI comple-

mentarity by introducing and formalizing the notion of complementarity potential,

delineating sources of complementarity potential, and providing a classi�cation

of existing integration mechanisms to realize the complementarity potential. Sec-

ond, we demonstrate the applicability and usefulness of the conceptualization for a

human-AI collaboration setting by drawing on information asymmetry as a source of

complementarity potential. Third, through our proposed conceptualization, we �nd

a new and surprising insight that unique human contextual information can result

in human decision-makers better adjusting AI advice.

Our work should be guiding further theoretical and empirical work on human-

AI collaboration. The concepts we study in this article can be applied to various

other application domains, such as medical diagnosis, weather forecasting, or co-

programming.

In the remainder of this work we start by outlining the relevant background and

related work in Section 5.2. In Section 5.3, we derive the proposed conceptualization

of human-AI complementarity by formalizing the notion of complementarity poten-

tial, identifying relevant sources of complementarity potential as well as classifying
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integration mechanisms to realize the complementarity potential. In Section 5.4, we

illustrate the utility of our conceptualization in an experimental study in the context

of real estate valuation and study the effect of information asymmetry as one source

of complementarity potential. We discuss our results in Section 5.5, before Section

5.6 concludes the work.

5.2 Theoretical Foundations and Related Work

In this section, we elaborate on key concepts and existing work on human-AI

collaboration, human-AI complementarity, and information asymmetry.

Many terms have been used to describe the interaction between humans and AI.

Common terms are human-AI team (Seeber et al., 2020), human-AI collaboration

(Vössing et al., 2022), or human-AI collaboration (Lai et al., 2023). Human-AI teams,

human-AI collaboration, and human-AI collaboration are interrelated concepts that

emphasize the integration of human and AI systems to achieve optimal outcomes.

Human-AI teamsrefer to the idea of combining the unique strengths of humans

and AI, such as human creativity, empathy, and contextual understanding with AI's

data processing, complex calculations, and ef�ciency in repetitive tasks (Seeber

et al., 2020). Human-AI collaboration is the process by which these teams work

together in a synergistic manner to achieve shared goals, for example with the AI

system providing recommendations or insights and humans guiding and re�ning the

AI-generated outputs (Terveen, 1995; Vössing et al., 2022).human-AI collaboration

refers to the combined input of humans and AI in making choices or judgments,

where it is a decision-making task and the AI offers data-driven decision suggestions

while humans leverage their domain expertise, emotional intelligence, and ethical

considerations to reach a �nal decision (Lai et al., 2023).

By focusing on these integrated approaches, organizations can capitalize on the

complementary strengths of humans and AI systems, fostering improved performance

and decision-making in various domains.

5.2.1 Human-AI Collaboration

In recent years, research on human-AI collaboration has experienced tremendous

growth as a particular �eld of human-AI collaboration (Bansal et al., 2021; Buçinca

et al., 2020; Lai et al., 2020; Liu et al., 2021). An increasing number of studies have
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conducted behavioral experiments to understand how humans make decisions with

AI support (Alufaisan et al., 2021; Bansal et al., 2021; Buçinca et al., 2020; Carton

et al., 2020; Fügener et al., 2021; Lai et al., 2020; Liu et al., 2021; Malone et al.,

2023; Reverberi et al., 2022; Van der Waa et al., 2021; Zhang et al., 2022; Zhang

et al., 2020).

In this context, a growing body of work examines how human reliance on AI

decisions can be appropriately calibrated to establish effective decision-making

(Buçinca et al., 2020; He et al., 2023; Kunkel et al., 2019; Yu et al., 2019; Zhang

et al., 2020). One idea is to enable humans to judge the quality of an AI decision by

revealing insights about the uncertainty of the prediction (Zhang et al., 2022) or by

providing explanations that shed light on the AI's decision-making (Alufaisan et al.,

2021; Bansal et al., 2021; Buçinca et al., 2020; Lai et al., 2020; Liu et al., 2021).

For this purpose, explainable arti�cial intelligence (XAI) research has developed

various approaches to enable humans to understand the underlying mechanisms that

contribute to an AI's prediction (Adadi & Berrada, 2018). Several studies investigate

how human-AI collaboration bene�ts from different XAI techniques. Examples range

from feature-based (Ribeiro et al., 2016a) and example-based (Van der Waa et al.,

2021) to rule-based (Ribeiro et al., 2018) techniques. Even though experimental

evidence has demonstrated the bene�ts of explanations (Buçinca et al., 2020) , it

has also revealed that explanations can convince humans to follow an incorrect AI

decision (Bansal et al., 2021) which is referred to as automation bias (Schemmer

et al., 2022c).

A closer look at the studies that analyze human-AI collaboration quantitatively

reveals that, in general, human performance increases when supported by a high-

performing AI. In the vast majority of cases, the team performance however still

remains inferior to that of the AI when it had performed the task alone (Hemmer

et al., 2021; Malone et al., 2023).

5.2.2 Human-AI Complementarity

Complementarity between humans and AI is discussed as part of three closely re-

lated paradigms: intelligence augmentation, human-machine-symbiosis, and hybrid

intelligence.

Intelligence augmentationis de�ned as “enhancing and elevating human ability,

intelligence, and performance with the help of information technology” Zhou et al.

(2021), p. 245. It is a form of human-AI collaboration in which machines use their

5.2 Theoretical Foundations and Related Work 89



complementary strengths to assist humans, not necessarily with the goal of achieving

CTP, but to improve human objectives.

Human-machine symbiosisis a paradigm that envisions deepening the collaborative

human-AI connection. It is based on the notion of a symbiotic relationship between

humans and AI, which implies considering both as a common system rather than

two separate entities, aiming to become more effective together compared to work-

ing separately (Licklider, 1960). This leads to overcoming human restrictions by

extending their abilities and reducing the time needed to solve problems (Gerber

et al., 2020). Another aspect that emphasizes the symbiotic nature of humans and

AI is the focus on human-like communication and interaction between both team

members. Researchers argue that the machine should be able to understand verbal

and non-verbal communication to exchange information with a human (Sanchez &

Principe, 2009; Sandini et al., 2018).

Hybrid intelligenceis an emerging paradigm with the idea of combining human and

arti�cial team members in the form of a socio-technical ensemble to resolve current

AI limitations. We refer to the work of Dellermann et al. (2019a), p. 640, who

de�ne hybrid intelligence as “the ability to achieve complex goals by combining

human and AI, thereby achieving better results than what each of them could have

accomplished separately, and continuously improve by learning from each other.”

Human-machine symbiosis and hybrid intelligence share our view that humans and

AI should complement each other to achieve superior results. Existing studies under

both labels however do not provide theoretical foundations or classify sources of

complementarity potential and integration mechanisms. The only work of which we

are aware that contains a theoretical view of human-AI complementarity are articles

by Donahue et al. (2022), Rastogi et al. (2022), and Steyvers et al. (2022), develop

a taxonomy that characterizes differences between human and AI decision-making.

The authors formalize a particular integration mechanism in detail–the technical

integration of human and AI decisions. However, they neither provide a formalization

of complementarity nor a classi�cation of possible integration mechanisms beyond

their instantiated approach. Donahue et al. (2022) also focus on a single integration

mechanism and formalize an integration algorithm that assigns weights to human

and AI predictions. Lastly, Steyvers et al. (2022) derive a framework for combining

the decisions and different types of con�dence scores from humans and AI. They

focus on a particular integration mechanism where a Bayesian model combines

human and AI decisions.
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In summary, to our knowledge, there is no work that holistically formalizes the

complementarity of humans and AI, delineates relevant sources of complementarity,

and provides a classi�cation of integration mechanisms.

5.2.3 Information Asymmetry

In many application domains, a possible source of complementarity potential resides

in the information asymmetry between humans and AI–as additional contextual

information is often available to humans only. While AI requires digitally available

and suf�cient training data to detect patterns that can subsequently be used for

decision recommendations (LeCun et al., 2015), relevant information may not have

been digitized, for technical or economic reasons (Ibrahim et al., 2021). Contextual

information may also not be suf�ciently available to be included in AI model training.

Humans can however use their expertise and additionally consider non-digitized

information as well as information about rare events to create a holistic picture

for decision-making. We hypothesize that this information asymmetry represents a

promising source of harnessing human-AI complementary capabilities.

This hypothesis is strengthened by forecasting theory (Sanders & Ritzman, 1991,

1995, 2001). (Sanders & Ritzman, 1995) analyze the effects of averaging the pre-

dictions of a statistical forecast and a human with access to contextual information.

They �nd a positive effect when giving higher weights to the predictions of humans

with more contextual information. However, they do not provide a deeper analysis

of why and how unique human contextual information improves team performance.

While this study indicates promising effects of unique human contextual information

on team performance in forecasting, it lacks a theoretical foundation.

Systematic analyses of leveraging unique human contextual information to improve

human-AI collaboration are scarce, with a notable exception being the work of Zhang

et al. (2020). The authors focus on the psychological effect of humans knowing to

have more information than an AI, independent of the possible performance gain

by including unique human contextual information. To do so, they provide the

participants in their behavioral experiment with an additional feature that contains

no relevant information for the task. Their study shows that this treatment has no

signi�cant effect on performance.

We therefore conclude that the current knowledge of how the complementarity

potential between humans and AI determines whether CTP can be achieved during

joint decision-making is not suf�ciently developed. Research work currently lacks a
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theoretical conceptualization supported by empirical evidence of human-AI comple-

mentarity. In this work, we aim to provide both a theoretical foundation as well as

empirical insights.

5.3 Conceptualization of Human-AI Complementarity

In this section, we �rst elaborate on the purpose and scope of human-AI comple-

mentarity. Subsequently, we introduce our conceptualization by formalizing the

notion of complementarity potential, followed by delineating possible sources of

complementarity potential and their realization by classifying different existing

integration mechanisms.

5.3.1 Purpose and Scope of Human-AI Complementarity

We initiate the development of the conceptualization by de�ning the purpose and

scope of human-AI complementarity (Jones & Gregor, 2007). Researchers have

discussed different perspectives of human-AI collaboration. For example, humans

are required for the training and debugging process of AI systems (Dellermann et al.,

2019a), take over the �nal decision in high-stakes decision-making scenarios due

to ethical and legal considerations (Lai & Tan, 2019), or are involved in realizing

human-AI performance synergies (Bansal et al., 2021; Reverberi et al., 2022).

In this work, we focus on the performance perspective, particularly decision-making

tasks where humans and AI can perform the task independently. With the recent rise

of large language models, there is an increasing number of tasks that both humans

and AI can conduct. Examples include accurately diagnosing diseases in medicine

(Goldenberg et al., 2019), conducting loan decisions in �nance (Turiel & Aste, 2020),

or writing entire programs with AI code generation systems (Ross et al., 2023).

This differentiates human-AI complementarity from classical decision support, where

an algorithm only provides selective input for more comprehensive downstream

decisions that only a human can make. For example, in credit allowance decisions,

a technical system may only provide an aggregated probability for default that the

lender uses in the downstream task of making the �nal loan decision. Nowadays, AI

systems have become increasingly capable of conducting such decisions in isolation,

meaning that more and more tasks can be automated. Recent studies in the medical

domain demonstrate that AI can detect diabetic retinopathy as accurately as highly

trained experts (Gulshan et al., 2019). Therefore, AI's role increasingly changes
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from being a pure input provider to becoming an equitable team member for the

human.

5.3.2 Formalization of Complementarity Potential

In this subsection, we introduce and formalize the notion of complementarity

potential. With the formalization we aim to provide the means to quantify the

synergetic potential between humans and AI to foster a more detailed understanding

of their individual and joint decision-making capabilities. This is because the sole

comparison of performance metrics does not capture the underlying mechanisms

that drive the resulting performance outcomes.

In detail, the formalization pursues the idea that human-AI complementarity poten-

tial is composed of an inherent and collaborative component. The �rst component

captures any complementarity potential that can be attributed to the individual

capabilities of both with respect to a decision-making task and is inherently present

in both team members. We denote it as inherent complementarity potential. The sec-

ond component captures the complementarity potential that emerges only through

any form of collaboration during joint decision-making and is therefore ex-ante not

existent. We denote it as collaborative complementarity potential. In the formaliza-

tion, for both components that together result in the total complementarity potential,

we distinguish between the realized amount that has materialized and a theoretical

amount that serves as an upper boundary.

Figure 5.1 on page 94 provides a high-level conceptual overview of the notion of

complementarity potential, including its components in human-AI collaboration. In

addition to the components, it depicts the average decision-making performance

for a task conducted by a human and AI together as a team as well as both indi-

vidually, expressed by an arbitrary loss function that quanti�es the prediction error

with respect to a given ground truth. The difference between the best individual

team member and the joint human-AI team performance materializes in realized

complementarity potential, whereas its theoretical upper boundary for potential

further improvement is given by the performance of the best team member. Viewing

human-AI collaboration from this granular perspective allows a deeper understand-

ing of the joint decision-making behavior to develop. In the next step, we introduce

and develop the proposed formalization.

Let us consider a decision taskT = f x i ; yi g as a set ofN instancesx i 2 X with

corresponding ground truth labels yi 2 Y The ground truth may not be known at
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the time of the decision but can be determined and revealed later. Both a human

decision-maker and an AI model are capable of independently inferring a prediction

ŷH
i and ŷAI

i for a given instance x i . Additionally, let us consider some loss function l

with its loss bounded in R+ . A loss function determines the error between a single

prediction of a human or an AI model and the corresponding ground truth label. In

this context, it can be understood as a generic measure of task performance. In our

formalization, it can encompass classi�cation as well as regression tasks. For a given

prediction task, we denote the instance-speci�c human loss aslH and the average

loss over all available instances asL H = 1
N

P N
i =1 lH

�
ŷH

i ; yi

�
. Likewise, we denote

the instance-speci�c AI loss aslA I and the average loss considering all available

instances asL AI = 1
N

P N
i =1 lAI

�
ŷAI

i ; yi

�
. For both the human and the AI model, we

assume their decisions are made independently.

In addition, we represent any way of collaboration between the human and the AI

model by an integration mechanism I (ŷH
i ; ŷAI

i ) producing a joint prediction ŷI
i . This

decision also incurs an instance-speci�c lossl I . Similarly, we de�ne the average

loss of the integrated decision asL I = 1
N

P N
i =1 l I (ŷI

i ; yi ). Complementary team

performance (CTP) exists once the average loss of the integrated decision is lower

than both the individual average losses of the human and the AI model (Bansal et al.,

2021):

CTP =

8
>><

>>:

1; L l < min(L H ; L AI );

0; otherwise

In addition to this binary outcome, we quantify the difference between the average

loss of the best individual team member and the team performance and denote this

amount as realized complementarity potential:

CPrealized = min( L H ; L AI ) � L I

In this context, a positive value of the realized complementarity potential (CPrealized )

denotes that synergies between human and AI could be realized during the collabo-

ration, whereas a negative value means that the collaboration resulted in a worse

outcome compared to the best team member alone. It also allows us to interpret

the average loss of the best individual team member as an upper boundary for

further improvement. A reduction by this amount through collaboration would

mean perfect human-AI collaboration behavior. We therefore denote it as theoretical

complementarity potential:
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CPtheoretical = min( L H ; L AI ) � L I

The notion of complementarity potential forms the basis for developing a deeper

understanding of the factors that can lead to CTP in human-AI collaboration. Speci�-

cally, we argue that it is essentially composed of two components - inherent human-AI

complementarity potential and collaborative complementarity potential, which does

not exist inherently, but can only emerge through the collaboration itself.

The �rst component can be understood as the potential performance increase result-

ing from the exploitation of unique human or AI knowledge. In accordance with

Fügener et al. (2021b), we denote it as unique human knowledge (UHK ) and

unique AI knowledge (UAIK ). When a human can contribute unique human knowl-

edge to particular instances of a decision task, it is re�ected in a lower loss compared

to that of the AI. Vice versa, when the AI can contribute its unique knowledge, it is

re�ected in a lower loss compared to that of a human. These knowledge-based per-

formances can be de�ned as the sum of the differences between the instance-speci�c

AI and the instance-speci�c human losses:

UHK =
NX

i =1

max
�
0; l (i )AI � l (i )H

�

UAIK =
NX

i =1

max
�
0; l (i )H � l (i )AI

�

From the perspective of the team member with the lower average individual loss (e.g.

L AI < L H or L H < L AI ) the other team member's unique knowledge constitutes

the theoretically existing unique knowledge that can materialize in improved team

performance, for example by selecting the individual decision of either human or AI

that is more accurate on the task instance level than the team decision. Alternatively,

it can be understood as the existing additional potential for team performance

improvement that the lower-performing team member possesses uniquely and can

contribute to the better-performing team member's capabilities. As this unique

knowledge roots in the individual team members' capabilities and therefore exists

inherently ex-ante when human and AI team up, we denote it as theoretical inherent

complementarity potential. It can be de�ned as
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CP inh
theoretical =

8
>><

>>:

UHK; L AI � L H ;

UAIK; L AI > L H :

If the average loss of a human and AI is equalL AI = L H , both team members can

contribute quantitatively the same amount of unique knowledge (UHK = UAIK )

which then corresponds to the theoretical inherent complementarity potential

CP inh
theoretical .

In practice, it is unlikely that the integrated decision, resulting from human-AI

collaboration, will always fully exploit the theoretical inherent complementarity

potential CP inh
theoretical . It rather represents an upper boundary of the �rst component

of the realized complementarity potential CP inh
theoretical . We are however interested

in measuring the amount that has been exploited by integrating the human and

AI decisions. We therefore denote the realized amount of the theoretical inherent

complementarity potential CP inh
theoretical as realized inherent complementarity poten-

tial CP inh
theoretical . To determine this amount, we must distinguish which of the two

team members has the lower average individual loss, as the lower-performing team

member's unique knowledge contributes to the realized inherent complementarity

potential.

When we considerL AI < L H , any integrated decision with lAI > l I � lH means

that unique human knowledge is present but not fully exploited. In this case,

CP inh
theoretical is the difference between the instance-speci�c loss of the AI modellAI

and the instance-speci�c loss of the integrated decisionl I . Figure 5.2 case a on

page 98 exempli�es this scenario. It displays the absolute difference of the instance-

speci�c loss of each team member individually and of the integrated decision with

respect to the ground truth for a particular instance. As shown in Figure 5.2 case b

on page 98, the loss of the integrated decisionl I may even fall below the loss of the

human lH (lAI > l H > l I ). Then, CP inh
theoretical is the difference between the losses

of the AI model lAI and the loss of the human lH . Any remaining improvement

beyond the smaller loss (in Figure 5.2 case b on page 98 the human one) cannot be

attributed to the “upfront” inherent knowledge asymmetry. We will interpret this

when we elaborate the concept of collaborative complementarity potential.

Now, let us consider the caseL H < L AI . Any integrated decision with lH ; l I ; L AI

can be interpreted that unique AI knowledge is present but not fully exploited. In

this case, CP inh
theoretical is the difference between the instance-speci�c loss of the

human lH and the instance-speci�c loss of the integrated decisionl I . Figure 5.3

case a exempli�es this scenario. Again, if the instance-speci�c loss of the integrated
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Figure 5.2.: Deviation of human prediction, AI prediction and integrated prediction from
the ground truth for a single instance. Possible cases of how realized inherent
complementarity potential CP inh

theoretical emerges, considering the scenario
L AI < L H

decision l I even falls below the instance-speci�c loss of the AI modellAI (lH > l AI >

l I ); CP inh
theoretical can only be the difference between the instance-speci�c loss of

the human lH and the instance-speci�c loss of the AI modellA I . We visualize this

scenario in Figure 5.3 case b on page 98.

Figure 5.3.: Deviation of human prediction, AI prediction and integrated prediction from
the ground truth for a single instance. Possible cases of how realized inherent
complementarity potential CP inh

theoretical emerges, considering the scenario
L H < L AI

Finally, we can summarize each component of the realized inherent complementarity

potential in the following formula 1 :

CP inh
theoretical =

NX

i =1

8
>>>>>>>>>><

>>>>>>>>>>:

l (i )AI � l (i )I ; L AI � L H and lAI > l I � lH

l (i )AI � l (i )H ; L AI � L H and lAI > l H � l I

l (i )H � l (i )I ; L H � L AI and lH > l I � lAI

l (i )H � l (i )AI ; L H � L AI and lH > l AI � l I

1If both team members have the same average lossL AI = L H ),it is valid to calculate the realized
inherent complementarity potential CP inh

theoretical either according to the caseL AI < L H (used in
this work) or the case L H < L AI .
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We denote the second component of the complementarity potential as collaborative

complementarity potential. It refers to the observation that collaboration between a

human and an AI model can also result in an integrated decisionl I that improves or

deteriorates for a speci�c instance beyond the better or worse individual human or

AI decision. This may be driven by effects that happen due to the collaboration itself,

such as (un)learning. Given the unique knowledge of the human-AI team determined

by the theoretical inherent complementarity potential CP inh
theoretical and the amount

of the overall theoretical complementarity potential CP inh
theoretical , we can calculate

an upper boundary for potential further improvement through collaboration. We

refer to it as theoretical collaborative complementarity potential:

CPcoll
theoretical = CPtheoretical � CP inh

theoretical

There might be task instances where improvement beyond the best individual de-

cision is attainable through joint decision-making. Likewise, there will also be

situations where joint decision-making leads to deterioration. In practice, we are

interested in capturing both effects that contribute to the realized collaborative com-

plementarity potential (CPcoll
realized ). We re�ect this idea in the formalization by distin-

guishing positive realized collaborative complementarity potential (CPcoll; positive
realized )

and negative realized collaborative complementarity potential (CPcoll; negative
realized ) in

the following way:

CPcoll
theoretical = CPcoll; positive

theoretical � CPcoll; negative
theoretical

Let us �rst focus on the positive realized collaborative complementarity potential

(CPcoll; positive
realized ). For a better understanding, let us again consider the scenario with

L AI < L H . If the instance-speci�c loss of the integrated decision l I falls below the

lower individual instance-speci�c loss of the human lH (lAI � lH > l I ) or the AI

model (lH � lA I > l I ), the difference between the lower individual instance-speci�c

loss of either the human lH or the AI model lAI and the integrated loss l I refers

to positive realized collaborative complementarity potential (see Figure 5.4 case

a and b), as this improvement can only be driven by collaboration and not by the

inherently present unique knowledge of one team member.

The same phenomenon applies to the scenario withL H < L AI . If the instance-

speci�c loss of the integrated decision l I falls below the individual instance-speci�c

loss of the AI model lAI (lH � lAI > l I ) or the human lH (lAI � lH > l I ) the

difference between the lower individual instance-speci�c loss of either the human lH
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or the AI model lAI and the integrated loss l I refers to positive realized collaborative

complementarity potential (see Figure 5.4 case a and b). We summarize positive

realized collaborative complementarity potential in the following formula 2

CPcoll; positive
realized =

NX

i =1

max
�
0; min

�
l (i )H ; l (i )AI

�
� l (i )I

�

Lastly, we consider scenarios in which negative realized collaborative complementar-

ity potential
�
CPcoll; positive

realized

�
can occur.

Figure 5.4.: Deviation of human prediction, AI prediction and integrated prediction from
the ground truth for a single instance. Possible cases of how positive realized
collaborative complementarity potential CP coll; positive

theoretical emerges.

In the scenario with L AI < L H the AI model on average outperforms the human.

Negative realized collaborative complementarity potential CPcoll; positive
realized incurs,

once the instance-speci�c loss of the integrated decisionl I is larger than the instance-

speci�c loss of the AI model lAI (l I > l AI ) independent of the instance-speci�c loss of

the human lH (see Figure 5.5 case a on page 101). Negative realized collaborative

complementarity potential CPcoll; positive
realized is the difference between the instance-

speci�c loss of the integrated decision l I and the instance-speci�c loss of the AI

model lAI .

Similarly, in the scenario with L H < L AI the human on average outperforms the

AI model. We therefore incur negative realized collaborative complementarity

potential
�
CPcoll; negative

realized

�
once the instance-speci�c loss of the integrated decision

l I is larger than the instance-speci�c loss of the human lH (l I > l H ) independent

of the instance-speci�c loss of the AI model lAI (see Figure 5.5 case b). Negative

realized collaborative complementarity potential
�
CPcoll; negative

realized

�
is the difference

between the instance-speci�c loss of the integrated decisionl I and the instance-

2Note that the formula also applies to a case where both team members have the same average loss
(L AI = L H )
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Figure 5.5.: Deviation of human prediction, AI prediction and integrated prediction from
the ground truth for a single instance. Possible cases of how negative realized
collaborative complementarity potential CP coll; negative

realized emerges, with case
a considering the scenarioL AI < L H and case b considering the scenario
L H < L AI .

speci�c loss of the human lH . We summarize negative collaborative knowledge in

the following formula 3 :

CPcoll; negative
realized =

NX

i =1

8
>><

>>:

l (i )I � l (i )AI L AI � and lI > l AI

l (i )I � l (i )H L H < L AI and lI < l H

Based on both introduced components, we can formulate the realized complemen-

tarity potential (CPrealized ) as the sum of the realized inherent complementarity

potential
�
CP inh

realized

�
and the realized collaborative complementarity potential

�
CPcoll

realized

�

CPrealized = CP inh
realized + CPcoll

realized

This alternative perspective on the realized complementarity potential (CPrealized )

allows us to analyze human-AI collaboration on a more granular level that can help

uncover new insights about the joint decision-making behavior.

5.3.3 Sources of Theoretical Complementarity Potential

A continuously growing body of research on human-AI collaboration assumes com-

plementary capabilities between humans and AI (Bansal et al., 2021; Dellermann

et al., 2019a). The discourse about complementary capabilities usually remains

3If both team members have the same average loss(L AI = L H ) it is valid to calculate the negative
realized collaborative complementarity potential CP coll; negative

realized either according to the caseL AI <
L H (used in this work) or the case L H < L AI
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super�cial, for example hypothesizing that humans excel in creativity, whereas AI

better identi�es patterns in large amounts of data (Dellermann et al., 2019a). A

conceptualization together with an empirical analysis of complementarity is how-

ever still lacking, therefore we aim to provide a more nuanced understanding of

theoretical complementarity potential by identifying its sources. To that end, we

conceptually distinguish three phases in human and AI decision-making. The �rst is

the learning or training phasethat encompasses AI training and the human learning

process. Note that AI models are typically developed in a short period of time by

learning from aggregated training data, while human learning is a lifelong process.

The second is the inference phase, in which the human and AI infer a decision on

a particular instance. The third is the integration phase, in which the human and

AI collaborate. Based on this simpli�ed decision-making process, we can discuss

sources of theoretical complementarity potential (inherent and collaborative) in a

more granular fashion.

Training phase: First, training data as input of the training process differs between

humans and AI. Humans may have seen a considerablenumber of training instances,

whereas the AI is typically trained on a limited, customized training data set. Second,

their inherent capabilities, which are stimulated through training, differ from each

other. For instance, the AI can ef�ciently identify patterns in high-dimensional data

or infer decisions from probabilistic reasoning (Dellermann et al., 2019a; Jarrahi,

2018). In contrast, humans can already learn abstract concepts from a small number

of samples (Zheng et al., 2017). Third, during the training process, humans and AI

learn different decision boundariesfrom which their �nal decision is inferred (Geirhos

et al., 2021). In this context, human decision-making can often be purely heuristic

or intuitive without considering all available information (Jarrahi, 2018). These

differences provide the potential for complementary capabilities; their presence

results in theoretical inherent complementarity potential.

Inference phase: After the training process, the AI can be used to infer a decision

for a particular instance. Even assuming identical decision boundaries of humans

and AI, different available input data can constitute a source of theoretical inherent

complementarity potential - as in real-world settings, AI and humans often have

access to different features (Bansal et al., 2021; Sanders & Ritzman, 2001). A

famous example is the “broken leg” scenario, which refers to side information that

is known to humans (Meehl, 1957). This information could not be incorporated

as features in the model due to its rare occurrence. In the majority of application

domains in which AI is applied to support human decision-making, additional

information exists beyond the data used to train the AI model (Ibrahim et al., 2021).

In practice, due to technical or economic reasons, this discretionary data may often

102 Chapter 5 Conceptualization of Human-AI Complementarity and the In�u-

ence of Information Asymmetry



not be digitally available at all, or only in a small quantity that is insuf�cient for

model training (Ibrahim et al., 2021). Nevertheless, in human-AI collaboration,

human team members may leverage their expertise to use the additional information

(Ibrahim et al., 2021). On the other hand, researchers highlight the consistency of

AI decision-making at inference (Blattberg & Hoch, 2010; Dellermann et al., 2019a).

To summarize, theoretical inherent complementarity potential can be present during

training or inference and is typically either based on information asymmetries or

complementary skills.

Integration phase: The integration process adds a third phase to the overall decision-

making process. In the integration phase, theoretical collaborative complementarity

potential can arise as an additional part of theoretical complementarity potential

beyond the theoretical inherent complementarity potential. For the collaborative

aspect of theoretical complementarity potential, it is essential for the human-AI team

to possess the capability to further improve the best individual decision achieved

either by the AI or human alone on a given task instance. Figure 5.6 summarizes all

three phases.

Figure 5.6.: Conceptual overview of the human-AI collaboration process.

5.3.4 Integration Mechanisms: Realizing the Theoretical

Complementarity Potential

Human as well as AI team members can make decisions individually for any instance

of a particular task. However, from a team perspective, there is a �nal team deci-

sion. We denote a generic representation of inferring the �nal team decision as an

integration mechanism. We consider the integration mechanism as the collaborative

element of the human-AI team that can be instantiated arbitrarily. In this subsection,

we aim to derive a classi�cation of possible integration mechanisms.

5.3 Conceptualization of Human-AI Complementarity 103



We differentiate integration mechanisms along two dimensions. First, different

timings of integration are conceivable. We may ex-ante assign the decision either

to the human or AI. This means that only one of the team members would have to

solve the task without interactive collaboration. Alternatively, we may have both

propose a decision and integrate them ex-post. Second, we may differentiate who

performs the integration – the human or the technical system (agency). Whereas

literature on decision support systems usually considers the human as the only

decision-maker, research in forecasting and human-AI collaboration proposes several

technical delegation and aggregation methods (Bondi et al., 2022; Hemmer et al.,

2021; Sanders & Ritzman, 2001). Note that in some instantiations of the integration

mechanisms, the integrator can also be one of the team members. Table 5.1 on page

105 depicts the resulting four classes of integration mechanisms that we describe in

the following subsections.

Technical delegation: Analogously to human delegation, a technical delegation of

task instances is also possible (Bondi et al., 2022; Hemmer et al., 2021; Mozannar

& Sontag, 2020). Recent work proposes to speci�cally train the AI to consider the

capabilities of human team members and accordingly decide who to assign the task

to (Hemmer et al., 2021; Mozannar & Sontag, 2020; Wilder et al., 2020). A simpler

technical delegation might consist of distributing task instances solely based on the

con�dence of the AI (Fügener et al., 2021). In the case of the ex-post integration, a

decision is made by both the human and AI respectively. They are the basis for the

�nal decision integrated either by the human or a technical system.

Human aggregation: Human aggregation refers to the human who receives both

the human and an AI prediction and integrates them. The most common integration

mechanism might be one that allows humans to make judgmental adjustments to AI

decisions (Hemmer et al., 2021; Ibrahim et al., 2021; Lai et al., 2023; Sanders &

Ritzman, 1995).

Technical aggregation: Similar to the human aggregation, a technical aggregation

is also conceivable. One of the most common approaches is stacked generalization

(Wolpert, 1992) where typically a secondary AI is trained that aggregates the

decisions of multiple AI models. Similarly, this secondary AI may also aggregate

human and AI decisions. Alternative technical, but non-AI, approaches consider a

weighting mechanism for the decisions of both team members (Blattberg & Hoch,

2010).

The theoretical complementarity potential realized by ex-ante and ex-post integration

mechanisms is different. Ex-ante integration mechanisms are able to realize inherent

theoretical complementarity potential, while ex-post integration mechanisms can
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realize both inherent and collaborative theoretical complementarity potential. The

reason is that to realize collaborative complementarity potential, humans and AI

must jointly make a better decision than individually at the task instance level. This

can only happen through collaboration in ex-post integration, because in ex-ante

integration the task instance is delegated to one of the team members, and therefore

the maximum performance is that of the better team member on that particular task

instance.

Table 5.1.: Conceptual overview of the human-AI collaboration process.

In this subsection, we developed a conceptualization of human-AI complementarity

by introducing and formalizing the notion of complementarity potential, identi�ed

sources of theoretical complementarity potential, and classi�ed different integration

mechanisms to realize the theoretical complementarity potential. We focus on

settings where a human and an AI form a team with the overarching goal of reaching

CTP. Our conceptualization allows an analysis of the contributing factors, including

their magnitude, to foster an in-depth understanding through which factors CTP

was achieved during human-AI collaboration or not.

In Table 5.2 on page 106, we summarize our conceptualization. It highlights starting

points for the design of human-AI complementarity. System designers can develop

mechanisms that in�uence the realized inherent and the realized collaborative

complementarity potential. In the following subsections, to demonstrate the utility

of our conceptualization, we apply it in a behavioral experiment.

5.4 Experimental Design

To illustrate our conceptualization, we conduct a behavioral experiment. As dis-

cussed in the previous section, the key drivers of CTP are the complementarity

potential, the presence of its sources and the integration mechanism to realize the

theoretical complementarity potential. Several previous empirical studies focused
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Table 5.2.: Conceptualization of human-AI complementarity consisting of the notion of
complementarity potential, sources of complementarity potential, and inte-
gration mechanisms. The realized complementarity potential subtracted from
the isolated performance of the better team member results in the �nal team
performance after collaboration. Note that performance is represented by a
loss that can be interpreted as an error measure. This means a lower value
represents a better performance.

on investigating the effect of the integration mechanisms on the effectiveness of

human-AI collaboration (Bondi et al., 2022; Hemmer et al., 2021; Lai et al., 2023).

In this behavioral experiment, we use our conceptualization to study the effect of

designing for the theoretical inherent complementarity potential by ensuring the

presence of a relevant source. To induce complementarity potential, we generate

a setting with asymmetric information between humans and AI. More speci�cally,

we equip the human with unique human contextual information and choose a hu-

man aggregation setting in which the human adjusts the AI suggestions in the best
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possible way from the ex-post integration mechanisms. In the following subsection,

we denote this setting as human adjustment. It allows us to investigate the realized

inherent as well as the realized collaborative complementarity potential. The latter

does not arise in the ex-ante integration classes. More speci�cally, we instantiate an

AI-assisted decision-making setting in which the human integrates their own and

the AI decision.

5.4.1 Task and AI Model

In this subsection, we explain our chosen task and AI model. We draw upon a real

estate appraisal task provided on the data science website Kaggle (2019). As housing

is a basic need, and because it is ubiquitous in everyone's life, all people have to

some degree the ability to assess the value of a house based on relevant factors

such as size or appearance. The data set encompasses 15,474 houses and contains

information about the street, city, number of bedrooms, number of bathrooms, and

size (in square feet). House prices in the data set denote their listing price. The

average house price is $703,120, with a minimum of $195,000 and a maximum of

$2,000,000. An image of each house's exterior is provided.

For the house price prediction task, we use a random forest regression model

(Breiman, 2001). We draw upon the individual trees in the random forest to

generate a predictive distribution for each instance and provide the 5% and 95%

quantiles as indicators of the AI's prediction uncertainty. We use 80% of the data

as the training set and 20% as the test set. We randomly draw a hold-out set of 15

houses from the test set, serving as samples for our behavioral experiment. We train

the random forest on the features of street, city, number of bedrooms, number of

bathrooms, and square feet of the house, while the image of the house is withheld

from the AI model. The AI model achieves a performance measured in terms of the

mean absolute error (MAE) of $163,080 on the hold-out set, which is representative

of its performance on the test set.

For the condition with unique human contextual information, we create suf�cient

complementarity potential between human and AI. From prior studies in real estate

appraisal, we know that AI usually outperforms humans Viriato, 2019. We can

therefore assume a certain amount of unique AI knowledge, also in our task setup.

To ensure a certain amount of unique human knowledge, we give the humans access

to additional contextual information. To positively affect CTP, this information must

be useful for humans. For the selected use case of real estate appraisal, a valuable

piece of information may be an image of the house, as humans can use their general
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understanding to form an overall assessment based on the house's features, the

visible neighborhood, and its appearance. To verify this assumption, we conduct an

initial pilot study (Appendix A.1.1 contains the detail).

5.4.2 Study Design and Procedure

We conduct an online experiment with a between-subject design. We recruit partici-

pants via proli�c.co. The study includes two treatments and randomly assigns each

participant to one of these treatments. We do not allow any repeated participation.

Each participant passes through the steps displayed in Figure 5.7 and described

below.

Figure 5.7.: Sequence of the individual steps in the experiment (UHCI = unique human
contextual information).

Step 1: After accepting the task, participants are transferred to our experimental

website. They are asked to give their consent and read the instructions. The study is

initiated by a control question. Step 2:As prior work highlights the importance of

providing training about the task that the participants must conduct, we include a

mandatory tutorial (Grootswagers, 2020). To familiarize participants with the task

and data, both treatments receive an identical in-depth introduction about the data

set, including summary statistics about the entire data set, like mean, maximum and

minimum house prices as reference points (Figure A.1 and Figure A.2 in Appendix

A.1.2 contain more information). Participants in the treatment without unique

human contextual information (without UHCI) are only introduced to the tabular

data of the houses, while the participants in the treatment with unique human

contextual information (with UHCI) are also provided with the house images.

Step 3: As part of the tutorial, we introduce the participants to the AI prediction.

We highlight that the AI did not have access to the images during training. We

show the AI prediction in the context of minimum and maximum house prices. The

participants also receive information about the AI's uncertainty in the form of the

5% and 95% quantiles (see Figure 5.8). We explain the interpretation of the AI's

advice, including all data points mentioned above. The participants are then asked

to answer a control question to verify their understanding.
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Figure 5.8.: An overview of the interfaces containing the information that the participants
are provided with in the respective treatments of the behavioral experiment

Step 4: The participants conduct two training tasks. For each task, we initially

let the participants provide a prediction on their own, before we reveal the AI's

recommendation. They are asked to adjust the AI's prediction in the best possible

way. After each training example, participants receive feedback in the form of the

true house price. After completing the two training tasks, they are informed about

the start of the study.

Step 5: Each participant completes 15 house price prediction tasks presented in a

randomized order in the same procedure as described inStep 4. During the tasks,

participants are not informed about the true house price. After completion of all

tasks, we ask participants to complete a questionnaire to collect qualitative feedback

(Step 6) and demographic information ( Step 7).

The overall task lasts approximately 30 minutes. We recruit a total of 120 partic-

ipants, 60 per condition. They receive a base payment of £5 and are additionally

incentivized following the approach of Kvaløy et al., 2015. Note that the two
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training tasks are not included in the �nal evaluation. To ensure the quality of the

collected data, we remove participants by entering house prices that are higher

than the communicated maximum house price in the data set of $2,000,000. We

also identify outliers for removal using the median absolute deviation Leys et al.,

2013; Rousseeuw and Croux, 1993. After applying these criteria, we continue with

the data from 101 participants over both conditions - 53 in the treatment without

UHCI and 48 in the treatment with UHCI (Table C1 in Appendix A.1.3 contains the

detail).

5.4.3 Evaluation Measures

We measure the human's and AI's individual performances (L H and L AI ) as well as

the joint team performance resulting from the instantiated integration mechanism

(L I ). The loss per participant is measured by the mean absolute error (MAE):

MAE =
1
N

NX

i =1

jy � xj

In addition to the respective losses, we calculate the speci�c components of the

formalization of complementarity potential as de�ned in subsection 5.3.2. It in-

cludes complementary team performance (CTP) as a binary task outcome, unique

human knowledge (UHK), unique AI knowledge (UAIK), complementarity potential

(theoretical: CPtheoretical realized CPrealized ) including its components inherent

complementarity potential (theoretical: CP inh
theoretical realized CP inh

realized ) and col-

laborative complementarity potential (theoretical: CPcoll
theoretical realized CPcoll

realized )

Regarding the realized collaborative complementarity potential, we report its posi-

tive
�
CPcoll;positive

realized

�
as well as its negative components

�
CPcoll;negative

realized

�

5.5 Results

In this section, we analyze the impact of unique human contextual information on

team performance and complementarity potential. We evaluate the signi�cance of

the results using the Student's T-test and the Mann-Whitney U-test depending on

the ful�llment of the prerequisites while applying the Bonferroni correction. First,

we focus on the impact of contextual information on performance, followed by an
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in-depth analysis of the effect on complementarity potential and its constituting

components.

Isolated performance and team performance. Figure 5.9 displays the sole human

and joint AI-assisted performance for both conditions. It also includes the perfor-

mance of the AI alone. We �rst evaluate the impact of unique human contextual

information without any AI assistance. Participants in the treatment without UHCI

achieve an MAE of $251,282, while those in the treatment with UHCI yield an MAE

of $200,510 - an improvement of $50,772 (20.21%), which is signi�cant ( p < 0:001,

two-sample, two-tailed T-test). This result con�rms the general usefulness of the

provided unique human contextual information (the house images) for the human

decision-making.

Figure 5.9.: Performance results as MAE of the integration mechanism “human adjustment”
across conditions (UHCI = unique human contextual information), including
95% con�dence intervals. The red horizontal line denotes the AI performance.

Next, we evaluate the impact of unique human contextual information when the

human is teamed up with the AI (human adjustment). Looking at the team per-

formance after adjusting the AI's prediction, the treatment without UHCI results

in an MAE of $160,095 versus an MAE of $148,009 in the treatment with UHCI -

an improvement of $12,086 (7.55%), which is signi�cant ( p = 0 :04, two-sample,

two-tailed T-test). In both treatments, the human-AI team outperforms the AI (MAE:

$163,080). Whereas the difference between the performance of the human-AI

team in the treatment with UHCI is signi�cant ( p < 0:001, one-sample, two-tailed

T-test), the difference in the treatment without UHCI does not constitute a signi�cant

improvement (p = 0.999, one-sample, two-tailed T-test).
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In the next step, we demonstrate the usefulness of the formalization by analyzing

the theoretically and realized complementarity potential, including its components,

as this allows a more in-depth understanding of the factors that contribute to CTP.

Theoretical complementarity potential. The theoretical complementarity potential

(CPtheoretical ) consists of the theoretical inherent(CP inh
theoretical ) as well as the theoret-

ical collaborative (CPcoll
theoretical ) complementarity potential. The theoretical inherent

complementarity potential refers to the unique knowledge the lower-performing

team member can contribute. We observe an increase in unique human knowledge

(UHK) in the presence of unique human contextual information that is signi�cantly

different. It is $42,995 in the condition without UHCI and $61,970 in the condition

with UHCI ( p < 0:001, two-tailed Mann-Whitney U test). This �nding can be inter-

preted as that the images contain useful contextual information for humans that is

not accessible to the AI. At the same time, unique AI knowledge decreases (UAIK

without UHCI: $131,196; UAIK with UHCI: $99,399), which is signi�cant ( p = 0 :008

two-sample, two-tailed T-test). This can be explained by the observation that unique

human contextual information also increases human performance on tasks where

the AI performs better, which consequentially reduces the unique AI knowledge. To

determine the theoretical inherent complementarity potential (CP inh
theoretical ), the

unique knowledge attributable to the lower-performing team member must be de-

termined. Since the AI performs better than the human, the theoretical inherent

complementarity potential (CP inh
theoretical ) is de�ned by the unique human knowledge

(UHK).

Next, we calculate the theoretical collaborative complementarity potential (CPcoll
theoretical )

as the difference between the performance of the better team member (L AI ), mean-

ing the total theoretical complementarity potential (CPtheoretical ): without UHCI:

$163,080; with UHCI: $163,080), minus the theoretical inherent complementar-

ity potential (CP inh
theoretical ). Whereas in the condition without UHCI it results in

$120,085, in the condition with UHCI it takes on a value of $101,110. The difference

is statistically signi�cant ( p < 0:001, two-tailed Mann-Whitney U test).

Note that it is highly unlikely that the total theoretical complementarity potential

will be fully realized, as this would mean that each prediction is exactly correct.

Realized complementarity potential. Now that we have analyzed the impact of

unique human contextual information on the theoretical complementarity potential

(CPtheoretical ), we focus on the realized complementarity potential (CPrealized ).

We �nd a signi�cant difference between the realized inherent complementarity

potential (CP inh
theoretical ) in both conditions (without UHCI: $14,468; with UHCI:
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$27,860; p < 0:001, two-tailed Mann-Whitney U test), which highlights the potential

of contextual information. This absolute increase may be due to the increase in

complementarity potential and/or improved integration. Therefore, to investigate

this further, we also calculate the relative amount of realized inherent complemen-

tarity potential
�

CP inh
realized

CP inh
theoretical

�
. This analysis reveals that unique human contextual

information not only enhances the theoretically available inherent complementarity

potential, but participants can also use signi�cantly more of it (without UHCI: 34%;

with UHCI: 45%; p < 0:001, two-tailed Mann-Whitney U test). This is a surprising

result, as having more information available than the AI could also have detrimental

psychological effects. For example, Jussupow et al. (2020) �nd that perceived AI

capabilities and expertise in�uence aversion towards AI. This can lead to humans

taking less account of the AI's suggestions when making their �nal decision (Longoni

et al., 2019), which could result in CTP not being achieved. Our results show that

unique human contextual information can however not only increase the potential

but also the overall effectiveness of the integration.

Lastly, we analyze the impact of unique human contextual information on realized

collaborative complementarity potential (CPcoll
theoretical ). The realized collaborative

complementarity potential is not signi�cant between both treatments (CPcoll
theoretical ):

without UHCI: $-11,483; with UHCI: $-12,789; p = 0 :999, two-tailed Mann-Whitney

U test). In this context, the positive realized collaborative complementarity potential

(CPcoll;positive
theoretical ) is $6,770 in the treatment without UHCI and $7,731 in the treat-

ment with UHCI. The negative realized collaborative complementarity potential

(CPcoll;negative
theoretical ) takes on larger values in both treatments (without UHCI: $18,253;

with UHCI: $20,520), explaining the overall negative realized collaborative comple-

mentarity potential. In our experiment, it was expectable that the negative exceeds

the positive realized collaborative complementarity potential. Given that the AI in

our setup outperforms its human team member, the occurrence of positive realized

collaborative complementarity potential can only occur on task instances where the

team performance surpasses that of the AI and the human. Conversely, each instance

where the human underperforms in comparison to the AI and fails to exactly adapt

the AI's decision, ampli�es the negative realized collaborative complementarity

potential. As humans tend to choose decisions between two boundaries (in our

case their own and the AI decision), our setup naturally fosters a negative realized

collaborative complementarity potential. The more important point is however that

the human can realize the theoretical inherent complementarity potential and even

improves in the presence of unique human contextual information, which �nally

even results in CTP.
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Summing the realized inherent complementarity potential and the realized col-

laborative complementarity potential results in the total realized complementarity

potential (CPcoll
realized ), which is equivalent to the performance difference between

the best individual team member and the joint human-AI team performance (without

UHCI: $2,985; with UHCI: $15,071).

To summarize, we have shown that unique human contextual information increases

the complementarity potential and also improves the human ability to integrate

their own and the AI decision. This constitutes a new empirical insight that was

only possible to measure due to the granular formalization. Table 5.3 on page 115

summarizes the results of our experiment.

5.6 Discussion

Our research highlights CTP as an increasingly relevant goal of human-AI collabora-

tion. As long as AI still had limited capabilities and was used to merely augment

the human in low-stakes decision-making tasks, such as calculating decision-making

inputs, CTP had not been a focus. Nowadays AI can however conduct a rising

number of tasks independently and is even entering high-stakes decision-making

domains such as medicine (McKinney et al., 2020) and law (Hillman, 2019). It

also offers general-purpose support fueled through the recent advances in large

language models that enable applications like ChatGPT (Bubeck et al., 2023). While

this opens up the potential for automating tasks, it also calls for a new form of

human-AI collaboration in which AI models and humans are team members that

can complement each other. In this work, we provide guidance to reach CTP more

consistently.

5.6.1 Contributions

Current research lacks a concise picture of human-AI complementarity, as the major-

ity of studies focusing on human-AI collaboration do not achieve CTP (Bansal et al.,

2021; Hemmer et al., 2021). The contributions of our research are threefold and

provide guidance on the endeavor to reach CTP. First, we conceptualize human-AI

complementarity to facilitate the understanding of the inner workings in human-AI

teams that are relevant for achieving CTP. Our conceptualization consists of three

parts. We start with a formalization of human-AI complementarity and introduce

associated metrics. In addition, we systematically identify information asymmetry
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Table 5.3.: Summary of human-AI complementarity results.

and complementary skills as the key sources of complementarity potential. Finally,

we structure the options for designing effective human-AI integration mechanisms

that do not only exploit the inherent complementarity potential but also allow the

creation of collaboratively complementarity potential.

Second, for one instantiation of an integration mechanism—human adjustments—

we empirically show that asymmetric information between human and AI can result
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in CTP. In this context, we illustrate the application of the developed conceptualiza-

tion and metrics.

Third, our formalization allows us to reveal an interesting empirical insight about

the effect of unique human contextual information on human integration. Our

experiment highlights that providing humans with unique contextual information not

only affects the theoretical inherent complementarity potential, but also signi�cantly

increases the realized inherent complementarity potential. This is an interesting

�nding because the perception of having more information than the team member

could intuitively also worsen collaboration.

5.6.2 Theoretical Implications

Our work advances the discourse on human-AI collaboration (Bansal et al., 2021;

Dellermann et al., 2019a) and in particular expands the theoretical groundwork

of Fügener et al. (2021). Our conceptualization - the formalization, including

operational metrics, sources of complementarity, and the classi�cation of integration

mechanisms - provide a basis for future research in human-AI collaboration. In this

context, we do not only provide the research community with a formalization for

human-AI collaboration but also supply concrete measures that allow investigation

into the inner workings of human-AI collaboration on an in-depth level in behavioral

experiments.

Providing sources of complementarity potential in a structured way may inspire

researchers to look for complementarity beyond arbitrary statements about com-

plementarity capabilities such as human creativity and AI's computational power.

The classi�cation of integration mechanisms aids comprehension of the appropriate

application of speci�c instantiations for different scenarios. By employing our pro-

posed concepts, researchers can conduct a more thorough analysis of distinct aspects

of human-AI collaboration, namely the theoretical complementarity potential and

its realization.

The most important implication of our research is the need to design for CTP, which

is in�uenced by two factors - the complementarity potential and the integration

mechanism. Both can and should be designed. The inherent complementarity

potential can be in�uenced by increasing the unique knowledge. From an AI

perspective, this could for example be realized by designing “complementary” AIs

that are particularly trained in areas of the feature space where humans do not

perform well (Hemmer et al., 2021; Mozannar & Sontag, 2020; Wilder et al., 2020).
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From a human perspective, humans could be trained to focus on their unique

capabilities and build awareness to use unique human contextual information. The

integration mechanism needs to be consciously designed to maximize the realized

inherent and collaborative complementarity potential.

Our work prepares the ground for the rigorous and fruitful development of design

knowledge and artifacts for human-AI complementarity.

5.6.3 Managerial and Political Implications

Our work also has major implications for decision-makers in management and

politics. In application areas suitable for human-AI collaboration tasks, such as high-

stakes decision-making, responsible managers should focus on developing AI systems

that enable the realization of CTP. Competitors might otherwise realize competitive

advantages. They need to start collecting data to train complementary AI and invest

in training that upskills their workers to improve the inherent complementarity

potential of human-AI teams.

Our work provides guidance on where to identify complementarity potential. Our

two classi�cations, one for sources of complementarity potential and one for inte-

gration mechanisms, allow an intuitive and easy evaluation of use cases' eligibility

for CTP. Current AI endeavors often result in blindly adopting human-AI collabora-

tion due to decision-makers' concerns regarding full automation (Jussupow et al.,

2021). It is however worth purposefully designing human-AI collaboration, as it can

potentially achieve CTP. Rather than fearing automation, decision-makers should

explore the bene�ts of working with AI. Our research provides valuable guidance to

managers, assisting them in determining when and how to collaborate with AI to

optimize decision-making and achieve CTP.

Many politicians and researchers warn of the ethical implications of giving AI the

�nal authority in decision-making. Our research shows that in addition to ethical

considerations, employing AI without human input does not allow leveraging the

potential of human-AI collaboration to reach CTP. Politicians and managers should

therefore consider supporting human-AI collaboration as commercially driven com-

panies might only see the short-term bene�t in cost reduction through automation

while neglecting the long-term potential value of CTP.
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5.6.4 Limitations

Our current research design has several limitations that need to be addressed in

future work. We conducted our behavioral experiment based on a regression task.

Many design elements of our study are therefore closely related to regressions, such

as providing quantile information as con�dence proxies in AI decisions. In future

work, classi�cation as well as generative tasks should be evaluated, especially due

to the increase of large language models that enable applications like ChatGPT. In

this study, we also focus on a single task, namely real estate appraisal.

Another limitation is the way in which we measure the counterfactual human

decision if the user did not receive AI advice. In this work, we conducted a sequential

decision-making setup to �rst measure the human prediction and afterwards the

AI-assisted decision. The sequential setup alone might however in�uence human

decision-making. The timing of revealing the AI's recommendation is therefore a

critical aspect in the experimental design (Jussupow et al., 2021). By immediately

presenting the AI recommendation to the participants, humans might invest reduced

cognitive capacities in the task, as the AI already provided a possible answer (Green

& Chen, 2019).

5.6.5 Future Research

We see several potential areas of future research regarding human-AI complemen-

tarity, which we structure along the formalization, the sources of complementarity

potential, and the integration mechanisms.

Future work could apply our concepts and metrics to other domains. Our formaliza-

tion could also be extended further, for example to a team setting with more than

two team members, considering multiple AIs or multiple humans.

Additionally, future work should use the conceptualization and extend the collection

of sources. In this work, we highlighted the existence of unique human contextual

information as a particular source of complementarity potential. Besides identifying

possible further sources, it is worthwhile to identify general criteria when certain

information can be considered contextual information. To extend the current under-

standing of complementarity potential, future work could derive design principles

that ensure a suf�cient amount of complementarity potential in human-AI collabo-

ration. AI and humans can be trained to increase their complementarity potential.

From a human perspective, researchers should investigate how to speci�cally train

people to use unique human contextual information and actively integrate it into
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human-AI collaboration. From an AI perspective, research should explore how to

train AI that maximizes complementarity potential.

In addition, future work needs to address the realization of theoretical complemen-

tarity potential, inherent as well as collaborative. Our work shows that even with

unique human contextual information humans only capture 9% of the theoretical

complementarity potential. Future research needs to investigate how to improve

the integration. With human aggregation, researchers could derive research models

and evaluate relevant constructs, such as trust (Söllner et al., 2014) and mental

models (Rouse & Morris, 1986), to improve the appropriate reliance of humans in

AI decisions.

5.7 Conclusion

human-AI collaboration has predominantly been concerned with AI supporting hu-

man users. With an increasing number of tasks that can be automated, meaning they

can be solved by AI alone, the focus has however shifted to the purposeful design of

the collaboration between humans and AI as team members. The ultimate objective

of these teams must be the achievement of complementary team performance (CTP),

with the team outperforming each individual team member. The IS community is

predestined to drive the development of appropriate theories and lay the foundation

for practical applications. We hope that the conceptual base developed in this paper

with regard to formalization, sources, and integration mechanisms will provide

fruitful ground for future research, and that the empirical studies will illustrate the

validity and potential of the human-AI complementarity paradigm.
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Part IV

Harnessing Complementarity Potential in

AI-Assisted Decision-Making





Harnessing Complementarity:

The Role of Appropriate

Reliance

6

This chapter comprises an article that was published as: Schemmer, M., Kuehl,

N., Benz, C., Bartos, A., & Satzger, G. (2023d). Appropriate Reliance on AI

Advice: Conceptualization and the Effect of Explanations. Proceedings of the

28th International Conference on Intelligent User Interfaces, 410–422. Note: To

improve the structure of the work, the title was changed. The abstract has

been removed. Tables and �gures were reformatted, and newly referenced

to �t the structure of the thesis. The terminology was standardized with the

dissertation. Chapter, section and research question numbering and respective

cross-references were modi�ed. Formatting and reference style was adapted

and references were integrated into the overall references section of this thesis.

6.1 Introduction

Most important decisions are made by calling upon advisors. While in the past advice

was typically obtained from human experts, nowadays advisors based on arti�cial

intelligence (AI) are becoming increasingly frequent in research and practice (Jung

et al., 2018; Jussupow et al., 2021). For example, AI advises medical professionals

in breast cancer screening (McKinney et al., 2020), or in loan decisions (Demajo

et al., 2020).

In the past, research has predominantly focused on maximizing the reliance (Kerasi-

dou et al., 2021), trust (Siau & Wang, 2018), utilization (Alnowami et al., 2022),

compliance (Kühl et al., 2019), or acceptance (Shin, 2021) of AI advice (Jussupow

et al., 2021). With certain nuances, all these terms basically describe a concept that

aims at maximizing the amount of AI advice that a human decision-maker eventu-

ally follows, i.e. maximizing the AI reliance. Recently, a new line of research has

emerged that argues that maximising AI reliance does not fully exploit the potential
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of state-of-the-art human-AI collaboration (Bansal et al., 2021; Buçinca et al., 2021;

Schemmer et al., 2022a; Zhang et al., 2020). We summarize the reasons for this

line of thought in three main categories:

Increasing usage of imperfect AI advisors. First, prior research on AI advice

often assumed “perfect” advice (Jussupow et al., 2021). This makes sense if one

considers narrow application spaces, e.g. performing deterministic algebra. But AI

nowadays is used for more complex tasks (Frey & Osborne, 2017) which increases

both the number and severity of AI errors. Therefore, generally accepting AI advice

would also include the acceptance of incorrect AI advice: Assume that without an AI

advisor's intervention, a physician would have diagnosed cancer, yet in the setting

with AI advice had been misled by an incorrect AI advice and, thus, had failed to

detect the cancer.

Increasing alignment of the objectives of human decision-makers and AI advisors.

Second, in previous research, the goal of human or AI advisors was often inconsistent

with the goal of the decision-maker, e.g., �nancial advisors wanted to persuade a

client to purchase certain �nancial products that would yield the highest �nancial

bene�t for their own bonus. In this situation, AI designers do not want customers to

differentiate good from bad advice but simply increase acceptance of advice. Today,

however, AI advisors are often speci�cally designed to enhance human decision-

making (Lai et al., 2023). The advice seekers can design the advisor based on

individual goals and with desired features such as “honest” explainability. This

honesty might be missing if the inherent goal of the advisor is different from the

advice seeker's. If the AI is not designed in alignment with human goals, it is often

not in the AI designer's interest to enable humans to critically question the advice

they receive.

Increasing potential for complementary team performance. Third, as modern AI

is not only more performant and offers more application areas, but also complements

humans (Hemmer et al., 2022a; Hemmer et al., 2022b; Lai et al., 2022), there is

an increasing potential to achieve complementary team performance (CTP), i.e.,

a performance that exceeds both—individual AI and human performance (Bansal

et al., 2021; Fügener et al., 2021; Hemmer et al., 2022b; Lai et al., 2022; Nguyen

et al., 2022). However, this level of performance can only be achieved by exploiting

complementary capabilities. Even in the case of superior AI advice, it cannot be

achieved simply by accepting AI advice, as it is then tied to AI performance without

considering the potential additional strengths of the human.

In conclusion, human decision-makers should not simply rely on AI advice, but

should be empowered to differentiate when to rely on AI advice and when to rely
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on their own, i.e. they should display appropriate reliance (AR)(Bansal et al., 2021;

Wang & Yin, 2021; Yang et al., 2020a; Zhang et al., 2020). Despite being a necessary

condition for the effective use of AI, current research on AR on AI advice is still very

ambiguous with regard to de�nition, measurement, and impact factors. 1

First, we deal with the ambiguous concept of AR: Current research inconsistently

uses the term both for a binary target state (“appropriate reliance is either achieved

or not”) and a metric indicating a degree of appropriateness. To clarify this, we

introduce a two-dimensional metric—the appropriateness of reliance (AoR)—to

describe and measure reliance behavior. It is based on relative frequencies of

correctly overriding wrong AI suggestions (self-reliance) and following correct AI

suggestions (AI reliance), and re�ects a metric understanding of AR. This metric

can then be used to de�ne different levels as target states of AR that mark the

achievement of particular objectives like certain legal, ethical and performance

requirements.

Second, we analyze how the provision of explanations in�uences AoR and the

achievement of AR states. Existing literature is ambiguous with regard to effects

of explanations (Alufaisan et al., 2021; Bansal et al., 2021; Wang & Yin, 2021):

While in some experiments, explanations support AR (Wang & Yin, 2021; Yang

et al., 2020a), in others they cause “blind trust” (Alufaisan et al., 2021; Bansal

et al., 2021) in AI advice. To better understand and reconcile con�icting results, we

consider additional constructs that may mediate the effect of explanations. More

speci�cally, we hypothesize that explanations do not only in�uence the information

available to the decision-maker, but also have an impact on trust toward AI and on

self-con�dence.

To test our hypotheses, we conduct a behavioral experiment with 200 participants.

Our experiment underscores the advantages of AoR as a metric to examine in detail

the factors that lead to changes in overall performance. Moreover, our results help

explain the relationship between explanations and AoR by assessing the role of

reliance and con�dence as mediators, thus mitigating the ambiguity of previous

research.

Our work provides researchers with a theoretical foundation of AR within human-

AI collaboration research and provides guidance on how to design AI advisors.

More speci�cally, our research contributes to research and practice by de�ning

AR, developing a measurement concept (AoR), and analyzing how explainable

1It is worth to mention that several studies have examined AR in automation and robotics research
(Lee & See, 2004; Wang et al., 2008), but an agreed-upon de�nition of AR and a respective metric
are still missing (Lai et al., 2023; Wang et al., 2008).
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AI in�uences the AoR. Our de�nition should help researchers to more accurately

describe whether they have achieved AR in their experiments. The AoR metric allows

to precisely steer the development towards AR. Lastly, our experimental insights can

be seen as a starting point for in-depth experimental evaluations of factors impacting

AoR.

The remainder of this article is structured as follows: In Section 6.2, we �rst outline

related work on AR in the context of human-AI collaboration. In Section 6.3, we

de�ne AR and develop a measurement concept, the AoR, to isolate different possible

effects. Subsequently, we derive impact factors on AoR in Section 6.4. In Section

6.5, we describe the design of our behavioral experiment and summarize the results

in Section 6.6. In Section 6.7, we discuss our results and provide ideas for future

work. Section 6.8 concludes our work.

6.2 Related Work

In the following, we introduce the related work of this article, structured along

the topics of appropriate reliance in human advice, automation, and human-AI

collaboration as well as the role of explainability.

Appropriate reliance in human advice. Historically, the use of (human) advice

is generally discussed in the so-called judge-advisor system (JAS) research stream

(Harvey & Fischer, 1997; Sniezek & Van Swol, 2001; Yaniv, 2004). The term “judge”

refers to the decision-maker who receives the advice and must decide what to do

with it (Bonaccio & Dalal, 2006). The judge is the person responsible for making the

�nal decision. The “advisor” is the source of the advice (Bonaccio & Dalal, 2006).

The research stream mainly focuses on advice acceptance.2

Appropriate reliance in automation. In contrast, many researchers have worked

on AR with regard to automation (Lee & See, 2004) and robotics (Talone, 2019).

In the following, we will provide an overview of the most common de�nitions.

Fundamental work in the context of AR in automation has been laid by Lee and See

(2004). The authors outline the relationship between “appropriate trust” and AR

in their work. However, they do not de�ne AR explicitly but provide examples of

inappropriate reliance, such as “misuse and disuse are two examples of inappropriate

reliance on automation that can compromise safety and pro�tability” (Lee & See,

2004, p. 50). Wang et al. (2008) de�ne appropriate reliance as the impact of reliance

2In this article, we use the term advice acceptance as a generic term to describe the behavior of
following AI advice regardless of its quality.
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on performance. For example, they discuss the situation in which automation reaches

a reliability of 99%, and the human performance is 50%. In their opinion, it would be

appropriate to always rely on automation as this would increase performance. Talone

(2019) follows the work by Wang et al. (2008) and de�nes AR as “the pattern of

reliance behavior(s) that is most likely to result in the best human-automation team

performance” (Talone, 2019, p. 13). Both see AR as a function of human-automation

team performance.

Appropriate reliance in Human-AI Collaboration. Recent work in human-AI

collaboration has started to discuss AR in the context of AI advice. Lai et al. (2023)

give an overview of empirical studies that analyze AI advice considering AR. For

example, Arjun et al. (2018) analyze whether humans can learn to predict the AI's

behavior. This ability is associated with an improved ability to appropriately rely

on AI predictions. Moreover, Gonzalez et al. (2020) measure the acceptance of

incorrect and correct AI advice. Similarly, Poursabzi-Sangdeh et al. (2021, p. 1)

point out the idea of AR in the form of “making people more closely follow a model's

predictions when it is bene�cial for them to do so or enabling them to detect when a

model has made a mistake”. However, the authors do not explicitly relate this idea

to the concept of AR. In this context, additional work uses the term “appropriate

trust” with a similar interpretation as the behavior to follow “the fraction of tasks

where participants used the model's prediction when the model was correct and

did not use the model's prediction when the model was wrong” (Wang & Yin, 2021,

p. 323). Finally, also Yang et al. (2020a, p. 190) de�ne “appropriate trust is to

[not] follow an [in]correct recommendation”. All these articles have in common

that they consider AR or appropriate trust on a case-by-case basis. Bussone et al.

(2015) assess how explanations impact trust and reliance on clinical decision support

systems. The authors divide reliance into over- and self-reliance as part of their

study. They use a qualitative approach to answer their research questions. Chiang

and Yin (2021) evaluate the impact of tutorials on AR and measure AR through

team performance.

The related work highlights that current research inconsistently uses the term both

for a binary target state (“AR is either achieved or not”) and a metric indicating

a degree of appropriateness. Additionally, previous research does not provide a

uni�ed measurement concept that allows measuring the degree of appropriateness

(Lai et al., 2023).

Explainable AI and appropriate reliance. Most researchers that studied AR so far

have proposed to use explanations of AI as a means for AR (Adadi & Berrada, 2018;

Lai & Tan, 2019; Zhang et al., 2020). We refer to AI that generates explanations as
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explainable AI (XAI). Explanations can be differentiated in terms of their scope, i.e.,

being global or local explanations (Adadi & Berrada, 2018). Global XAI techniques

address holistic explanations of the models as a whole. In contrast, local explanations

work on an individual instance basis. Besides the scope, XAI techniques can also be

differentiated with regard to being model speci�c or model agnostic, i.e., whether

they can be used with all kinds of models (Adadi & Berrada, 2018). The most

commonly used model agnostic technique is feature importance (Lundberg et al.,

2018; Lundberg & Lee, 2017). Feature importance can be used to generate saliency

maps for computer vision tasks or highlight important words for text classi�cation.

Table 6.1.: Related work on explainable AI (XAI) and appropriate reliance (AR).

Study AR Metric Independent variable Effect of XAI on AR

Bansal et al. (2021) Accuracy on correct or incorrect AI advice Local feature importance Negative

Adaptive explanations Positive

based on AI con�dence

Buçinca et al. (2021) Ratio of reliance on incorrect AI advice Local feature importance Negative

Jakubik et al. (2023) Ratio of reliance on correct Local feature importance No effect

or incorrect AI advice Predictive outcomes Negative

Wang and Yin (2021) Accuracy on correct or incorrect AI advice Global feature importance No effect

Local feature importance Positive

Examples No effect

Counterfactuals No effect

Yang et al. (2020a) Ratio of reliance on correct Local feature importance Positive

or incorrect AI advice

Several studies have evaluated whether different types of explanations can support

humans' understanding of the AI model with the goal of better relying on recom-

mendations in the correct cases (Alufaisan et al., 2021; Buçinca et al., 2021; Carton

et al., 2020; Van der Waa et al., 2021). However, it has also been shown that

some types of explanations can lead people to rely too much on the AI's recom-

mendation, especially in cases where the AI advice is wrong (Bansal et al., 2021;

Poursabzi-Sangdeh et al., 2021; Schemmer et al., 2022c). In Table 6.1, we provide a

comprehensive overview of the results that were found in the current studies on AR

in XAI-assisted decision-making. Overall, we �nd mixed results regarding the effect

of explanations.
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To sum it up, related work is missing a precise de�nition of AR, a uni�ed measure-

ment concept, and a precise understanding of when and why explanations of AI

advisors in�uence AR.

6.3 Conceptualization of Appropriate Reliance

Although several studies have examined AR in automation and robotics research (Lee

& See, 2004; Wang et al., 2008), an agreed-upon de�nition of AR and a respective

metric are still missing (Lai et al., 2023; Wang et al., 2008). We, therefore, initiate

our research by deriving a de�nition of AR and a corresponding metric. To do so,

we �rst discuss the terms reliance and appropriateness. Following that, we derive

our metric and lastly de�ne AR.

6.3.1 Reliance and Appropriateness

Reliance itself is de�ned as a behavior (Dzindolet et al., 2003; Lee & See, 2004).

This means it is neither a feeling nor an attitude but the actual action conducted.

This means reliance is directly observable. Scharowski et al. de�ne reliance in the

AI advisor context as “user's behavior that follows from the advice of the system”

(Scharowski et al., 2022, p. 3). De�ning reliance as behavior also clari�es the role of

trust in this context, which is de�ned as “the attitude that an agent will help achieve

an individual's goals in a situation characterized by uncertainty and vulnerability”

Lee and See, 2004, p. 51. In general, research has shown that trust in AI increases

reliance, but reliance can also take place without trust being present (Lee & See,

2004). For example, we might not trust the bank advisor but consciously decide that

following the advice is still the best possible decision. The other way around, we

could also generally trust an advisor, but consciously decide that the given advice is

not correct in a particular situation. Finally, reliance is in�uenced beyond trust by

other attitudes such as perceived risk or self-con�dence (Riley, 2018).

After establishing a common understanding of reliance, we proceed by de�ning

“appropriateness”. Appropriateness depends on different types of AI errors. Current

AI is imperfect, i.e., it may provide erroneous advice. This erroneous advice can be

divided into systematic errors and random errors (Talone, 2019). While humans can

identify systematic errors, random errors have no identi�able patterns and can not

be distinguished. These different types of errors allow differentiation between two

cases. If all errors are random and cannot be detected, then, from a performance
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perspective, humans should always rely on the AI's advice when the AI performs

better on average, and never when the AI performs worse on average(Talone, 2019).

However, suppose there are some systematic errors. In that case, humans might be

able to differentiate between correct and incorrect advice, which may even result

in superior performance , i.e. complementary team performance (CTP) (Hemmer

et al., 2021), compared to a scenario in which AI and humans conduct the task

independently of each other.

This changes the overall discrimination to a case-by-case discrimination. In the

presence of systematic errors, humans should evaluate each case individually. Since

the solution approach in the presence of just random errors is relatively simple,

as pointed out above, in this article, we focus on the more complicated setting

when a signi�cant proportion of task instances exhibit systematic errors. After

having de�ned the terms reliance and appropriateness in the following, we derive a

metric.

6.3.2 Towards a Measurement Concept�Appropriateness of

Reliance

Appropriateness is often measured by the percentage in which the decision-maker

relies on correct AI advice and the percentage in which the decision-maker does not

rely on incorrect AI advice (Bansal et al., 2021; Gonzalez et al., 2020). The major

disadvantage of this measurement is that we cannot know whether the reliance

on correct AI advice stems from a correct discrimination or simply an overlap of

the human and the AI's decision, i.e. instances where the AI advisor just con�rms

the human (Tejeda et al., 2022). Especially from an ethical point of view, it makes

a major difference whether the �nal decision is incorrect because an AI advisor

“convinced” a human decision-maker to accept an incorrect AI advice or whether the

human decision-maker would also not have been competent to solve it alone.

Therefore, to measure the degree of appropriateness in a more narrow sense, we

follow the approach of the JAS paradigm and include an initial human decision

(Sniezek & Van Swol, 2001). This approach requires participants to make a decision,

receive advice, and then make a second, potentially revised decision. In general,

if we do not consider the initial human decision, information about the human

discrimination ability, including the consequent action, gets lost—it is not traceable

how the human would have decided without the AI advice. Nevertheless, especially

this interaction needs to be documented to research AR holistically.
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We use a simple discrete decision case to highlight the different possible outcomes

of reliance. Note that for simplicity, we refer to classi�cation problems. However,

the measurement concept can be extended to regression problems as well (see for

example Petropoulos et al. (2016)). We focus on a single task instance perspective

and consider a sequential decision process which can be described as follows: First,

the human makes a decision, then receives AI advice. Second, the human is asked

to update the initial decision, i.e., either adopt or overwrite the AI advice. This

allows measuring appropriateness in a �ne-granular way. Figure 6.1 highlights the

different combinations. Four of the eight combinations are cases where the human's

initial decision and the AI's advice are the same, i.e. the AI con�rms the human's

decision. In our reliance measure, we exclude these con�rmation cases for two

reasons: First, if the same decision is made in all three steps, it is impossible to

objectively measure whether AI or self-reliance was present. Second, if the �nal

decision differs from the advice and the initial human decision, it is questionable

whether we can speak of a reliance outcome. For example, if both the human and

the AI are initially incorrect, then arriving at a correct �nal decision is less a matter

of reliance than of human-AI collaboration. While these cases of collaboration are

relevant to CTP, they are beyond the scope of our work. Therefore, we arrive at four

different reliance outcomes, which we present below.

Figure 6.1.: Combinatorics of initial human decisions, AI advice and human reliance for a
single task instance in a sequential task setting.

On a high level, we can cluster those four outcomes into either AI or self-reliance.AI

reliancerefers to cases in which the initial decision-maker's decision is different from

the AI advisor and the decision-maker relies on the AI's advice. Likewise,self-reliance
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refers to cases in which the decision-maker is different from the AI advisor but

�nally relies on themselves. On a more detailed level, we can further differentiate

whether the �nal decision is correct or incorrect which leaves us with the following

four reliance outcomes: First, correct AI reliance (CAIR), which describes the case

when the human is initially incorrect, receives correct advice, and relies on that

advice. Second, the case in which the human relies on the initial incorrect decision

and neglects correct AI advice. This is denoted asincorrect self-relianceor under-

reliance. Third, if the human is initially correct and receives incorrect advice, this

can either result in correct self-reliance (correct self-reliance (CSR)), i.e., neglecting

the incorrect AI advice, or relying on it, which is denoted as incorrect AI reliance

or over-reliance.3 Based on these cases, we propose a two-dimensional metric that

transfers the instance perspective on a measurement for multiple task instances.

Let us consider a prediction taskT = f X i ; yi gN
i as a set ofN instancesx i 2 X with

a corresponding ground truth label yi 2 Y . On the �rst dimension, we calculate

the ratio of the number of cases in which humans rely on correct AI advice and the

decision was initially not correct, i.e., in which humans rightfully change their mind

to follow the correct advice.

Relative AI reliance (RAIR ) =
P N

i =0 CAIR i
P N

i =0 CA i

CAIR i is one if, in this particular case, the original human decision was wrong,

the AI recommendation was correct and the human decision after receiving the AI

recommendation is correct, and zero otherwise.CA i is one if the original human

decision was wrong and the AI advice was correct, regardless of the �nal human

decision, and zero otherwise. On the second dimension, we propose to measure the

relative amount of correct self-reliance in the presence of incorrect AI advice.

Relative self -reliance (RSR) =
P N

i =0 CSRi
P N

i =0 IA i

CSRi is one if on this particular instance the initial human decision was correct, the

AI advice was incorrect and the human decision after receiving AI advice is correct.

IA i is one, if the initial human decision for a task instance i was correct and the AI

advice was incorrect.

3This also clari�es our de�nition of over- and under-reliance. Both are errors on a task instance level,
when humans do not rely appropriately.
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Figure 6.2 highlights both dimensions. On the x-axis, we depict the relative AI

reliance (RAIR ), and on the y-axis, the relative self-reliance (RSR). The �gure

highlights the properties of the measurement concept. It ranges between 0 and

1 along both dimensions. We call the tuple of RAIR and RSR appropriateness of

reliance(AoR).

Appropriateness of Reliance (AoR) = ( RSR; RAIR )

We refer to the theoretical goal of having a RSR and a RAIR metric of “1” as

optimal AoR. Most likely, this theoretical goal will not be reached in any practical

context as humans will not always be able to perfectly discriminate on a case-by-case

basis whether they should rely on AI advice. Furthermore, random errors will reduce

AoR as they cannot be discriminated against. Therefore, optimal AoR will most likely

be a theoretical goal.

Figure 6.2.: Two-dimensional depiction of appropriateness of reliance (AoR).

6.3.3 De�nition of Appropriate Reliance

So far, we have discussed how to measure AoR and the theoretical upper boundaries

of AoR. The challenge, however, is to de�ne the level of RAIR and RSR that

constitutes AR. In our work, we take an objective-oriented perspective and propose

to de�ne AR individually in the context of the task. Dependent on the task, different

levels of RAIR and RSR might be appropriate. In this work, we focus on AR with
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respect to performance (P) following Talone (2019) and Wang and Yin (2021). 4

Thus, we de�ne AR with regard to CTP:

Appropriate Reliance (AR) =

8
<

:

1; if PH & AI > max (PH ; PAI )

0; otherwise

With PH & AI being the performance after receiving AI advice, PH the individual

human performance and PAI the individual AI performance. Essentially, this means

any tuple of RAIR and RSR that leads to CTP is considered AR.

In summary, we derived a metric (AoR) and de�ned AR. In the next section, we

will use this foundation to derive a research model to analyze the impact of AI

recommendation explanations on AoR.

6.4 Theory Development And Hypotheses

With the measurement concept (AoR) at hand, we now develop hypotheses on the

effect of explanations on AoR. Research has already investigated in-depth the effect

of explanations on AI advice acceptance (Shin, 2021). However, research is missing

theoretical and empirical evidence on how explanations in�uence AoR (Bansal et al.,

2022). Thus, our work contributes a research model that is evaluated applying the

AoR concept.

As a dependent variable, we use the before-de�ned two dimensions of AoR— namely

RAIR and RSR. We believe that both dimensions need to be treated differently

as there are inherent differences between theRAIR and the RSR. The RAIR

essentially deals with cases where the human is initially incorrect, gets correct

advice, and relies on this advice. In contrast,RSR focuses on cases where the

human is initially correct and receives incorrect advice, which is then rightfully

ignored. Thus, we formulate different hypotheses for the RAIR and the RSR.

The most central impact factor in the assessment of the AI advisor might be the

explanations of its recommendations. These explanations should provide insights

into the AI's thought process. In the presence of incorrect advice, explanations

might enable the human to detect whether the advice is incorrect, for example, by

validating if the AI advisor violates some universal axioms of the task. Similarly,

4Note that besides this performance perspective, appropriateness could also be discussed from an
ethical perspective. Since in high-stake decision-making humans have an oversight responsibility
(Schoeffer et al., 2022a).
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(Bansal et al., 2021) hypothesize that if explanations do not “make sense”, humans

will reject the AI advice. However, on the other hand, sometimes explanations are

rather interpreted as a general sign of competence and thereby increase over-reliance

(Buçinca et al., 2021). Which effect exceeds the other is unclear. Therefore, we

hypothesize, without specifying a direction of the effect, that the explanations have

a general effect on theRSR:

H1a: Providing explanations of the AI advisor in�uences the relative self-reliance

(RSR).

The second effect of explanations on AoR is through theRAIR . Essentially, the

RAIR measures the percentage of times decision-makers follow the correct advice

after initially being wrong about the task instance. This means they do not have

enough domain knowledge to solve the task on their own. Thus, to increase the

RAIR , human decision-makers need to extend their knowledge and simultaneously

validate whether this knowledge extension makes sense. Here, explanations are

needed to �rst get inspired to derive new knowledge and second to validate the

knowledge. Figure 6.3 on page 136 shows an illustrative example based on an

animal classi�cation task. Imagine that a child has just seen big dogs and then

sees a very small dog. It might think that this animal is something else, like a rat.

Next, the child receives AI advice that says the animal it sees is a dog, and provides

additional justi�cation by highlighting the part of the image that led to the AI's

decision. Now, the child's �rst task is to �gure out whether this advice makes sense

in general, while building the knowledge base. In this illustrative case, it might

understand that the animal has characteristics of a dog, but is only smaller and

therefore relies on the AI, thereby increasing theRAIR . In the presence of correct

advice, explanations might point humans towards new patterns they have not seen

before and help discriminate these knowledge extensions. In the presence of correct

advice, the convincing element of explanations would not have a negative effect

as a higher overall reliance on the AI advice would simply increase theRAIR . We

therefore hypothesize:

H1b: Providing explanations of the AI advisor increases the relative AI reliance

(RAIR ).

Beyond the provisioning of additional information, explanations might change the

attitude toward the AI advisor. In 1992, Lee and Moray (1992), already discussed the

in�uence of self-con�dence and trust as predominant attitudes for reliance decisions

in the context of automation. Therefore, in the following, we discuss potential

impacts on trust and the change in self-con�dence induced through explanations

and their impact on AoR.
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Figure 6.3.: Illustrative example of how humans can increase their relative AI reliance
(RAIR ) based on explanations of the AI advice.

Con�dence is de�ned as a person's degree of belief that their own decision is correct

(Peterson & Pitz, 1988; Zarnoth & Sniezek, 1997). Con�dence in one's own decision

is a key mechanism underlying advice acceptance (Chong et al., 2022; Wang &

Du, 2018). So far, most research has discussed the in�uence of static human

self-con�dence on AoR, i.e. a con�dence in doing the task instance without any

advisor (Chong et al., 2022). However, we hypothesize that the absolute level

of human con�dence actually plays a minor role in comparison to the change of

con�dence after seeing the AI advice as it essentially re�ects the combination of a

self-assessment and the AI advisor's assessment. Explanations should not in�uence

the initial human self-con�dence but the con�dence level after seeing the AI advice.

Thus, we hypothesize:

H2 Providing explanations of the AI advisors increases the change in self-con�dence.

We hypothesize that this change in self-con�dence positively correlates with the

discrimination capability and thus should increase the RSR and RAIR .

H3a An increased change in human self-con�dence increases the relative self-reliance

(RSR).

H3b: An increased change in human self-con�dence increases the relative AI reliance

(RAIR)).

We hypothesize that also trust in the AI advisor in�uences AoR. There are different

levels of trust, e.g. trust in AI in general, trust in a speci�c AI advisor (Jacovi et al.,

2021) and some researchers even refer to the case-by-case discrimination as trust on

a task instance level (Wang & Yin, 2021). In this work, we focus on the speci�c trust

in our developed AI advisor. In general, trust is a complex, multidisciplinary construct

with roots in diverse �elds such as psychology, management and information systems
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(Niese & Adya, 2022). In our study, we de�ne trust as a belief in the integrity,

benevolence, trustworthiness, and predictability of the AI advisor following (Crosby

et al., 1990; Doney & Cannon, 1997; Ganesan, 1994; McKnight et al., 2002).

Understanding is crucial in building trust (Gilpin et al., 2019). Psychological research

shows that in general explanations of humans increase trust (Koehler, 1991). Thus,

we hypothesize:

H4 Providing explanations of the AI advisor increases trust in the AI advisor.

Trust in�uences reliance, but does not fully determine it (Lee & See, 2004). When

people show a high level of trust in the advisor, they consider the advice to be

high-quality advice from an advisor with good intentions, and they will give more

weight to that advice (Wang & Du, 2018). In general, this should increase the

acceptance of AI consulting. For systems' most effective use, however, users must

appropriately trust AI advisors (Lee & See, 2004). Trust should be calibrated and

match the AI's capabilities (Lee & See, 2004). Insuf�cient trust is called distrust and

when trust exceeds capability it is called over-trust (Lee & See, 2004). Research

on automation has shown that over-trust can result in over-reliance on automation

(Bailey & Scerbo, 2007; Goddard et al., 2012; Parasuraman et al., 1993) and,

therefore, should decrease theRSR. Thus, we hypothesize:

H5a: Trust decreases the relative self-reliance (RSR).

Since trust increases reliance it should also increase theRAIR . Therefore, we

hypothesize:

H5b: Trust increases the relative AI reliance (RAIR).

Figure 6.4 highlights all our hypotheses and combines them into one integrated

research model.

Figure 6.4.: Research model on the effect of explanations on appropriateness of reliance
(AoR).
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6.5 Experimental Design

In this section, we present our study task, the AI model, and the corresponding

explanations. We then explain the study procedure and measurements.

6.5.1 Task, Model, and Explanations

As an experimental task, we have chosen a deceptive hotel review classi�cation.

Humans have to differentiate whether a given hotel review is deceptive or genuine.

Ott et al. (2013), Ott et al. (2011) provide the research community with a data set

of 400 deceptive and 400 genuine hotel reviews. The deceptive ones were created

by crowd-workers, resulting in corresponding ground truth labels.

The implemented AI advisor is based on a Support Vector Machine with an accuracy

of 86%, which is a performance that is similar to the performance in related literature

(Lai et al., 2020). For the explanations, we use a state-of-the-art explanation

technique, LIME feature importance explanations (Ribeiro et al., 2016b), as it

is the most common one for textual data. Feature importance aims to explain

the in�uence of an independent variable on the AI's decision in the form of a

numerical value. Since we deal with textual data, a common technique to display

the values is to highlight the respective words according to their computed in�uence

on the AI's decision (Lai et al., 2020). We additionally provide information on the

direction of the effect and differentiate the values into three effect sizes following

the implementation of Lai et al. (2020) (see step 2 in Figure 6.5).

6.5.2 Study Design and Procedure

The research model is tested in an online experiment with a between-subject design.

We tested two different conditions. First, a control condition in which the human

receives AI advice without feature importance explanations and second, afeature

importancecondition.

In each condition, participants are provided with 16 reviews. We incorporate an

advanced sampling strategy to isolate the effects of discriminating AI advice. We

have a test set of 32 reviews to which we apply strati�ed sampling and select

four reviews of each class of a confusion matrix (True Positive, False Positive, True

Negative, False Negative), two with a positive sentiment and two with a negative
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Figure 6.5.: Online experiment graphical user interface for the feature importance condition.
The ground truth of the exemplarily shown hotel review is “fake”. The design
of the interface is adapted from Lai et al. (2020).

sentiment. This approach allows us to ensure a high-performing AI that should

provide good explanations but also the potential for incorrect AI advice.

Task �ow. The online experiment is initiated with an attention control question

that asks participants to state the color of grass. To control for internal validity,

participants are randomly assigned to the condition groups. Then, both condition

groups receive an introduction to the task and either AI alone or AI including feature

importance. We provide the participants with a general intuition of the AI but not
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with speci�c performance information. Then, the participants conduct two training

tasks, to familiarize the participants with the task and the AI and, depending on the

condition, with its explanations. Additionally, the participants receive feedback on

the training tasks. After the two training reviews, the participants are provided with

the 16 main tasks. For the AoR measurement concept, sequential task processing is

essential. In our study, this means the human �rst receives a review without any AI

advice, i.e., just plain text, and classi�es whether the review is deceptive or genuine

(see step 1 in Figure 6.5 on page 139). Then the participant is asked to classify the

review and provide a con�dence rating. Following that, the human either receives

a simple AI advice statement, e.g. “the AI predicts that the review is fake” or the

AI advice and additional explanations (see step 2 in Figure 6.5 on page 139). After

receiving the AI advice the participant is able to change the initial decision and

provide a new self-con�dence assessment. This sequential two-step decision-making

allows us to measure AoR. During the main tasks, the participants do not receive

feedback on their performance. After classifying the hotel reviews, we collect data

on trust and demographic variables.

Reward. To incentivize the participants, they were informed that for every correct

decision, they get an additional 12 Cents in addition to a base payment of 5.83 Euro.

Hereby, the two training classi�cations do not count for the �nal evaluation.

Participant information. The participants are recruited using the platform “Pro-

li�c.co”. We note that crowd workers might limit the generalizability of our results.

However, deception detection of digital information is often done in online commu-

nities. Future work could analyze the effects in professional deception detection

screening services. In total, we conducted the experiment with 200 participants. We

excluded one participant in the feature importance condition because of a failed

manipulation check. Table 6.2 shows the age, gender, and education distribution of

the participants.

6.5.3 Evaluation Measures

To measure AoR, we use the upfront derived measurementsRAIR and RSR. We

measure thechange in self-con�dencefor all task instances per participant:

Change in self -conf idence =
16X

i =1

Conf H 2; i � Conf H ; i
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Table 6.2.: Summary of participants' characteristics.

Number per condition Control = 100

Feature importance = 99

Age � = 27.5, � = 8.5

Gender 46 % Male

54 % Female

Education 32 % High school

38 % Bachelor

14 % Master

16 % Other

Conf H refers to the human self-con�dence when doing the task instance alone and

Conf H 2 to the human self-con�dence after receiving AI advice. Both are measured

with a 7-point Likert scale (“How con�dent do you feel in your decision?”). We

measure the trust in the AI advisor as a subjective latent construct with a 7-point

Likert scale. We use four items based on (Crosby et al., 1990; Doney & Cannon,

1997; Ganesan, 1994; Gefen et al., 2003). The items were: “I think I can trust the

AI.”, “The AI can be trusted to provide reliable support.”, “I trust the AI to keep

my best interests in mind.” and “In my opinion, the AI is trustworthy.”. Cronbach's

Alpha was 0.89 (high). The original scales were validated. As both classes are

equally distributed, task performance was measured by the percentage of correctly

classi�ed images, i.e., accuracy. To measure thehuman accuracy, we calculated this

measure for both conditions based on the initial human decision across all 16 task

instances. Furthermore, we calculate theAI-assisted accuracybased on the revised

human decision after receiving AI advice.

6.6 Results

In the following, we present the results of our behavioral experiment. We start

by presenting descriptive results, followed by the results with respect to AoR and

AR. Following that, we analyze our full research model, including mediations, by

applying structural equation modelling (SEM).

6.6 Results 141



6.6.1 Descriptive Analysis

Descriptive results of our study can be found in Table 6.3. They are split according to

the experimental condition. We evaluate the signi�cance of the results using t-tests

after controlling for normality. The participants' RAIR is signi�cantly higher in the

explanation group compared to the control group (t = � 1:95; p = 0 :05). The change

in con�dence is statistically signi�cant (t = � 2:33; p = 0 :02) which means that on

average people feel more con�dent after receiving AI advice including explanations.

Neither AI-assisted nor human accuracy is signi�cantly different between condi-

tions. However, the difference between the human and AI-assisted performance is

signi�cant (feature importance condition = 2.45 pp; control condition = -1.56 pp ;

t = 2 :29; p = 0 :02) which means that explanations not only improve the RAIR but

also as a consequence the overall performance.

Table 6.3.: Descriptive results.

Condition RAIR RSR Trust (SD) Change in Self- AI-assisted Human

Con�dence (SD) Accuracy Accuracy

Control 29.59 % 71.87% 4.45 (1.17) 0.19 (0.42) 53.94 % 55.50 %

Feature 38.87% 69.45 % 4.4 (1.18) 0.06 (0.35) 56.30 % 53.85 %

Importance

6.6.2 Appropriateness of Reliance & Appropriate Reliance

We depict our AoR results of the experiment in Figure 6.6 on page 143. They

highlight in the control condition a high RSR of 71:87% (� 3pp) and a relatively

low RAIR of 29:59%(� 3pp). This indicates that humans in the setting were able to

differentiate between wrong AI advice and self-rely to a high degree. TheRAIR of

29:59%shows that we can observe a severe share of under-reliance on AI.

In the XAI condition, we can observe a signi�cant increase (t = � 1:95, p = 0 :05)

in RAIR from 29:59% (� 3pp) to 38:87% (� 3pp) while the RSR does not change

signi�cantly ( 71:87%� 3pp for the control condition and 69:45%� 3pp for the feature

importance condition, t = 0 :61, p = 0 :54). This means explanations of AI decisions

can reduce the share of under-reliance. It is important to highlight that RAIR is not

increased simply by relying more often on AI advice, as this would have also reduced
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Figure 6.6.: Illustration of appropriateness of reliance (AoR) including standard errors.
Explanations increase theRAIR signi�cantly. Differences in RSR are not
signi�cant.

the RSR signi�cantly. Thus, our experiment indicates that feature importance on

textual data can have a positive effect on human-AI collaboration.

Following our AR de�nition, to evaluate whether the participants display AR, we

need to calculate whether we reached CTP. Therefore, we compare the individual

human and AI performance with the human-AI team performance. The down-

sampled AI performance is 50 % for both conditions. The human accuracy varies

depending on the condition. The human-AI team performance is not signi�cantly

different from the human accuracy which means we do not reach CTP and therefore

AR is not displayed. Further means would be necessary to reach AR.

6.6.3 Structural Equation Model

In addition to analyzing the direct effect of explanations on the RAIR and RSR, we

use SEM analysis to test our hypothesized research model. Before �tting our SEM,

we conducted missing data analysis, outlier detection, a test for normality, and the

selection of an appropriate estimator. We observe no missing data and no outliers.

However, one participant failed our attention check leaving us with a �nal sample

size of 199 for both conditions. Shapiro's test for normality indicates that several

variables of interest deviate signi�cantly from normal distributions. As a result, we
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conducted the analysis with an estimator that allows for robust standard errors and

scaled test statistics (Kunkel et al., 2019). Therefore, we use the MLR estimator (Lai,

2018).

Table 6.4.: Structural equation model �tting index using a chi-squared test ( � 2) , root mean
square error of approximation (RMSEA), Comparative Fit Index (CFI), Tucker-
Lewis Index (TLI), and Standardized Root Mean Squared Residual (SRMR).

� 2 RMSEA CFI TLI SRMR

Measurement criteria > 0.05 < 0.05 > 0.96 > 0.95 < 0.08

(Bentler, 1990; Hu & Bentler, 1999)

Value 0.083 0 1 1.02 0.02

Our dependent variables are theRAIR and RSR. Since these dependent variables

are between 0 and 1, we employed a logistic model in the Lavaan package, version

0.6-9, in R (Rosseel, 2012). This model has an excellent overall �t (see Table 6.4).

The results for each independent variable are discussed below and visualized in

Figure 6.7.

Figure 6.7.: Structural equation modeling results. Signi�cance: ? ? ?p < 0.01, ?? p <0.05,
? p < 0.1.

We do not �nd any signi�cant relationship between providing explanations of the AI

advisor and the RSR (H1a). However, also in the SEM the effect of explanations

on the RAIR is signi�cant ( H1b). Additionally, we �nd a signi�cant positive

relationship between providing explanations of the AI advisor and the change in

self-con�dence which con�rms H2. We also observe a positive correlation between

the change in self-con�dence and the RAIR (H3b). Since the absolute strength of

the relationship also decreased with including the change in con�dence, we can

conclude that the positive effect of explanations on theRAIR is partially mediated

by the change in con�dence. Interestingly, we do not �nd a relationship between

the change in self-con�dence and the RSR (H3a). Additionally, we �nd no effect
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of our explanations on trust ( H4). However, both H5a and H5b are con�rmed, i.e.

increasing trust increasesRAIR but also decreasesRSR. We display a summary

of the hypotheses results in Table 6.5. In the following Section, we discuss our

results.

Table 6.5.: Analysis results of the structural equation model (? ? ?p < .01, ?? p <.05, ? p
< .1)

X Y z-value Standardized regression Result

coef�cient

H1a: Explanations –> RSR 0.04 -0.03 not supported

H1b: Explanations –> RAIR 1.73 0.08 ? supported

H2: Explanations –> Change in self- con�dence 2.30 0.13 ? supported

H3a: Change in con�dence –> RSR 0.02 0.00 not supported

H3b: Change in con�dence –> RAIR 1.84 0.11 ? supported

H4: Explanations –> Trust -0.21 -0.04 not supported

H5a: Trust –> RSR -3.08 -0.05 ? ? ? supported

H5b: Trust –> RAIR 3.19 0.06 ? ? ? supported

6.7 Discussion

In this article, we �rst de�ned AR and conceptualized a measurement concept (AoR).

Following that, we derived a research model regarding the impact of explanations on

AoR which we subsequently tested on a deception detection task. Though conducted

in a limited scope, our �ndings should help to guide future work on AR.

Theoretical foundation of appropriate reliance. The main contribution of our

work is the theoretical development of AR. So far, terms like “appropriate trust”,

“calibrated trust” and AR were often used interchangeably in prior research. We

provide clarity by de�ning AR and putting the terms in perspective. Second, we

derive a granular, two-dimensional measurement concept—appropriateness of re-

liance (AoR). Most prior work neglected the initial human decision that would have

been made without any AI advice.5 Taking this initial human decision into account

allows to differentiate between the effects of advice (correct and incorrect) and

con�rmation. Without the human initial decision, we cannot say for sure whether a

5The one exception is the work of (Buçinca et al., 2021) who measure over-reliance in the same way
that we do but do not consider under-reliance.
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�nal wrong human decision is due to over-reliance on a wrong AI advice or due to

the human and the AI being wrong.

Implications for appropriate reliance and explainable AI. We further have inves-

tigated the effect of AI explanations on AoR. We con�rm the results of prior research

(Bansal et al., 2021; Gonzalez et al., 2020; Wang & Yin, 2021) by �nding an effect

of explanations on the RAIR . We believe that the reason for this could be that the

AI's explanations increase people's knowledge of the task (Gonzalez et al., 2020;

Spitzer et al., 2022). Maybe in such cases, the human should be seen less as a “judge”

but instead more as a student of the AI. On the other hand, our results show that

explanations do not in�uence the RSR. While this may sound disappointing at �rst,

it also shows that the claim that explanations would reduce overreliance (Bansal

et al., 2021; Buçinca et al., 2021) does not seem to hold for all kinds of tasks.6 It

further suggests that new techniques must be developed to distinguish incorrect AI

advice. Moreover, our study is the �rst one that analyzed mediators of the effect of

explanations on AR. Interestingly, in our study, we �nd no effect of explanations on

trust. However, prior research has shown that it depends on a lot of confounding

factors. We �nd signi�cant effects of trust on RAIR as well asRSR. Additionally,

we show that the effect of explanations on RAIR partially depends on the change

in con�dence after receiving AI advice.

Appropriate reliance and complementary team performance (CTP). Lastly, we

want to elaborate on the relationship between AoR and CTP. To reach CTP, the task

needs to have instances where the AI is better than the human and vice versa, i.e. a

certain amount of complementarity potential needs to be present (Hemmer et al.,

2022b). CTP essentially depends on the relationship betweenRSR and RAIR and

this complementarity potential.

The human impact on CTP is given by multiplying the RSR and the share of

incorrect AI advice. However, simultaneously involving a human might reduce the

AI performance (1 � RAIR multiplied by the share of correct advice). That means

to reach CTP, the gain through human involvement needs to be larger than the loss

through discounting correct AI advice or more formally 7:

CTP =

8
<

:

1; if RSR � IA > (1 � RAIR ) � CA

0; otherwise

6An earlier study by this research team (Schemmer et al., 2022c) found initial signs of a reducedRSR
in a pretest. However, this study with more participants shows that the effect is not signi�cant in a
larger sample.

7Provided that nothing changes in the cases where the initial decision of the human and the AI advice
are the same.
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Here IA is the total number of task instances in a test set where the human is initially

correct and receives incorrect advice.CA refers to the number of task instances

where the human is initially incorrect and receives correct advice. If this condition is

not ful�lled, AR depends on the relationship between human and AI performance.

If the human performs worse than the AI advisor and has a lowRSR and RAIR ,

one should always favor AI advice. If the human decision-maker performs better

on average than the AI, one can argue that from a performance perspective the AI

should not be used.

Limitations. No research is without limitations. We would like to emphasize that

deception detection is a dif�cult task for humans (Lai et al., 2020; Lai & Tan,

2019). Humans on average just perform slightly better than by chance on this

particular hotel review task (Lai et al., 2020). This makes AR dif�cult as the task of

discrimination requires human domain knowledge. Additionally, the generalizability

of our experimental �ndings is limited due to the choice of explanations. However,

we have deliberately chosen the most modern form of explanation to maximize

the impact of our results. Our concept is limited to classi�cation tasks but will be

extended in future work. First approaches can be found in the work of Petropoulos

et al. (2016).

Furthermore, the sequential task setup necessary for our measurement concept has

some disadvantages as it changes the task itself. Since conducting the same task

initially alone before receiving AI advice, the human is already mentally prepared

and might react differently than after directly receiving AI advice. More speci�cally,

research has shown that letting humans conduct the task alone before receiving

AI advice might reduce over-reliance (Buçinca et al., 2021). The sequential task

setup could induce an anchoring effect which prevents the human to more actively

take the AI into account (Buçinca et al., 2021). This could have led to the overall

low RAIR in our experiment. Moreover, sequentially conducted tasks with AI

advice might not always be possible or desired in real-world settings. Therefore, the

measurement should be seen as an approximation of real human behavior. Instead

of having a sequential task setup, one alternative option could be to simulate a

human model based on a data set of task instances solved by humans without AI

advice. This simulation model could approximate the initial human decision within

a non-sequential task setting. However, this approach is also an approximation

of real human behavior. In other work, a latent construct has been derived to

measure reliance behaviour (Tejeda et al., 2022). Future work should compare the

approaches.
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Future Work. Essentially, the improvement in RAIR depends on the knowledge

gain of the human. Future work could therefore extend our research model by

adding newly learned knowledge as a mediator. Empirically, this could be measured

by asking humans before collaborating with AI to do a couple of task instances on

their own and afterwards (Spitzer et al., 2022). The performance improvement can

be interpreted as learned knowledge.

Most importantly, future research needs to investigate the impact of different design

features of AR. We initiate our research with state-of-the art feature importance but

many other ones can be thought of, e.g. counterfactuals, global explanations. Future

research should evaluate these potential design features to provide practitioners

with a toolkit for effective use of AI.

6.8 Conclusion

Appropriate reliance in AI advice is the next milestone after a decade of research

focused on AI adoption and acceptance. Nowadays, many AI applications are de-

ployed and used on a daily basis. While adoption and acceptance remain important,

we argue that a perspective shift is necessary. In the use phase of AI, researchers

need to �nd ways to ensure appropriate reliance and, thus, effective use of AI. In

this article, we provide guidance for future research on appropriate reliance by

providing a de�nition and a measurement concept—appropriateness of reliance

(AoR). Furthermore, we generate initial insights how explanations in�uence the

appropriateness of reliance. We hope that our research will inspire researchers

and practitioners for future research on appropriate reliance, resulting in effective

human-AI collaboration.
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Harnessing Complementarity:

The In�uence of Human

Learning on Appropriate

Reliance

7

This chapter comprises a working paper that is currently under review as

Schemmer, M., Bartos, A., Spitzer, P., Hemmer, P., Kühl, N., Liebschner, J.,

& Satzger, G. (2023a). Towards Effective Human-AI Decision-Making: The

Role of Human Learning in Appropriate Reliance on AI Advice [Working paper].

Note: To improve the consistency of the thesis, the title has been changed. The

abstract has been removed. Tables and �gures were reformatted, and newly

referenced to �t the structure of the thesis. The terminology was standardized

with the dissertation. Chapter, section and research question numbering and

respective cross-references were modi�ed. Formatting and reference style was

adapted and references were integrated into the overall references section of

this thesis.

7.1 Introduction

Over the past years, Arti�cial Intelligence (AI) systems have entered a wide range

of areas, even high-stake decision domains. For instance, AI applications support

doctors in their diagnoses (Leibig et al., 2022), help recruiters in the hiring process

(Peng et al., 2022), and support legal decisions in court (Kleinberg et al., 2018). This

proliferation is driven by the continuous development of AI systems, which results in

advanced capabilities and increased performance (Ren et al., 2015). Self-supervised

models and generative AI have further fueled a new era of human-AI collaboration,

e.g., Notion AI, GitHub Co-pilot, DeepL, and ChatGPT.

Modern AI is not only more performant and versatile in its applications, but also bears

the potential to enhance humans through complementary capabilities (Dellermann

et al., 2019a; Fügener et al., 2021; Hemmer et al., 2021) reaching performance
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levels beyond the ones humans or AI can reach on their own. This desired supe-

rior performance in human-AI collaboration is referred to as complementary team

performance (CTP) (Bansal et al., 2021; Hemmer et al., 2021).

Despite the tremendous advances in performance and capabilities, it is essential

to bear in mind that every AI application has inherent uncertainty. AI models

and their recommendations are based on probabilities. So, no matter how good

a model is, it will not always be accurate. Since AI advice is imperfect, general

acceptance by a human decision-maker would also comprise incorrect advice. For

example, physicians would blindly follow AI advice on cancer diagnosis—although

AI advice might be wrong, and the physicians might have known better. Thus, it is

important for human decision-makers to have the ability to discern when to rely on

AI advice and when to rely on their judgment, i.e., they should display a high level

of appropriateness of reliance (AoR) (Schemmer et al., 2023d).

So far, research has focused on driving AoR by enabling humans to build an accurate

mental model of AI (Bansal et al., 2019a; Kloker et al., 2022; Kühl et al., 2022;

Taudien et al., 2022). The term mental model refers to the human's knowledge about

various aspects of the AI system's capabilities. Bansal et al. (2019a) particularly

stress the importance of recognizing the AI's error boundaries to develop a realistic

mental model. The mental model research stream focuses on enabling decision-

makers to assess the quality of an AI prediction. Researchers aim to build this mental

model by providing explanations of the AI's decision process (Bansal et al., 2019a;

Zhang et al., 2020).

However, recent review articles have shown that the current focus on in�uencing

the mental model through the provisioning of explanations is not suf�cient to

consistently reach CTP (Hemmer et al., 2021; Schemmer et al., 2022b). One of the

core in�uence factors of reliance behavior in human-AI collaboration seems to be

whether the decision-maker is an expert (high domain knowledge) or a lay worker

(low domain knowledge) (Nourani et al., 2020b; Wang & Yin, 2021). We follow

this line of thought and hypothesize that learning during human-AI collaboration

(decision-makers gradually gaining expertise) could be a relevant mediator of AoR.

Figure 7.1 on page 151 illustrates this line of thought based on a brain cancer

classi�cation example. Previous work has focused on using AI explanations to enable

the decision-maker to determine a classi�cation's quality. Although we do not want

to abandon this line of research, we believe that an additional facilitator could

be that a decision-maker learns new patterns through AI's explanations that can

diagnose cancer.
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However, the speci�c effect of learning on AoR is ambiguous. Learning during

collaboration could also lead to unwanted effects, such as aversion–as humans might

think they have learned enough to solve the task alone and no longer need the AI

advice. Therefore, we formulate the following research question.

RQ1: How does human learning during human-AI collaboration in�uence the Appro-

priateness of Reliance on AI advice?

Figure 7.1.: Distinction between related work and our contribution.

Even if learning improves AoR, we must �nd ways to enable and improve learning

during human-AI collaboration. Recent research on learning systems has seen �rst

positive results of using explanations of AI to improve learning (Goyal et al., 2019;

Wang & Vasconcelos, 2020). However, it is an open question if the promising result

in learning systems can be replicated in human-AI collaboration. Therefore, we

formulate our second research question.

RQ2: Can explanations of AI increase human learning in human-AI collaboration?

To gain �rst answers to our broader research questions, we derive a research model

including theory-driven hypotheses and subsequently conduct a behavioral experi-

ment with 100 participants using an image classi�cation task as a testbed to evaluate

the model. We use example-based explanations (Fahse et al., 2022) to design a

human-AI collaboration scenario with a high potential for learning.

Our results show that a) example-based explanations can improve human learning

during human-AI collaboration, b) learning improves the human ability to assess

when to rely on themselves, and c) if suf�cient learning is present, human learning

helps to assess better when to rely on AI.

We contribute to the body of knowledge on human-AI collaboration in general

and on AoR and learning from AI in particular. To the best of our knowledge,

this research depicts the �rst study covering the effect of explanations on learning

and the mediating effect on AoR. We thereby extend the research model of AoR
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developed by Schemmer et al. (2023d) by a learning construct. Our work provides a

new perspective on AoR and the design of human-AI collaboration systems.

7.2 Theoretical Foundations and Related Work

In the following, we introduce the related work of this article, structured along the

topics of human-AI collaboration, explainable AI, appropriate reliance on AI advice,

and learning from AI.

7.2.1 Human-AI Collaboration

In recent years, there has been a surge of research in human-AI collaboration, with

a growing number of studies conducting behavioral experiments to gain a better

understanding of how humans form decisions in the presence of AI (Alufaisan et al.,

2021; Buçinca et al., 2020; Carton et al., 2020; Lai et al., 2020; Lai & Tan, 2019; Liu

et al., 2021; Zhang et al., 2020). This research has focused on improving human-AI

collaboration to optimize team performance (Buçinca et al., 2020; Zhang et al.,

2020).

The idea behind human-AI collaboration is to be more effective than both human and

AI individually (Dellermann et al., 2019a). This improvement through collaboration

stems from the idea that both the AI and the human possess a unique set of skills

that can enrich each other in speci�c tasks. Thus, the true potential of human-AI

collaboration lies in leveraging these complementary capabilities to reach the desired

state of superior performance, i.e., complementary team performance (CTP) (Bansal

et al., 2021; Hemmer et al., 2021).

The question of how to realize this complementarity potential and thus reach

the desired superior performance remains an active area of research. In most

empirical studies, the performance of human-AI collaboration is still inferior to

that of individual AI, and thus CTP is not achieved (Bansal et al., 2021; Hemmer

et al., 2021; Schemmer et al., 2022b). Current research identi�es the missing

appropriateness of reliance as a main cause preventing the achievement of CTP

(Bansal et al., 2021; Hemmer et al., 2021; Schemmer et al., 2022b).
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7.2.2 Explainable Arti�cial Intelligence

Explainability has a long-standing history in information system (IS), dating back to

the emergence of knowledge-based systems, expert systems, and intelligent agents

in the 1980s and 1990s (Meske et al., 2022). The term “Explainable Arti�cial

Intelligence” (XAI) was �rst introduced by Van Lent et al. (2004), referring to the

capacity of their system to clarify agent behavior.

XAI techniques can be differentiated in terms of their scope, i.e., global or local

explanations (Adadi & Berrada, 2018): Global XAI techniques deal with holistic

explanations of the models as a whole. In contrast, local explanations work based

on individual task instances. Local approaches can be based on examples, features,

or rules. Example-based explanations provide examples from historical data that

are either from the AI predicted class (normative examples) or from a different

class (comparative examples) (Cai et al., 2019). In an image classi�cation task, a

normative example would be an image from the AI predicted class. A comparative

example would be the most similar images from a different class. It is important

to note that example-based explanations have a link to ground truth, as they have

historically validated labels.

7.2.3 Appropriate Reliance in Arti�cial Intelligence

The concept of appropriate reliance has gained attention in the �eld of human-AI

collaboration (Bansal et al., 2021; Schemmer et al., 2022b). In general, appropriate

reliance refers to desirable behavior where humans override incorrect AI advice and

follow correct advice (Bansal et al., 2021; Schemmer et al., 2023d).

First work on the conceptualization and measurement of appropriate reliance was

done by Schemmer et al. (2023d). The authors differentiate between appropriate

reliance as a binary target state (“appropriate reliance is either achieved or not”) and

a metric indicating a degree of appropriateness. They introduce a two-dimensional

metric—the appropriateness of reliance (AoR)1—to describe and measure reliance

behavior. It is based on relative frequencies of correctly overriding wrong AI sugges-

tions (correct self-reliance) and following correct AI suggestions (correct AI reliance)

and re�ects a metric understanding of appropriate reliance (see Figure 7.2 on page

154). This metric can then be used to de�ne different levels as target states of ap-

propriate reliance that mark the achievement of objectives like certain legal, ethical

1Note that the measurement of AoR requires a sequential task setup as visualized in Figure 7.2 on
page 154 and described in Schemmer et al. (2023d)
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Figure 7.2.: Combinatorics of initial human decisions, AI advice and human reliance for a
single task instance in a sequential task setting (Schemmer et al., 2023d).

and performance requirements. From an effectiveness perspective they argue that

appropriate reliance is achieved if CTP is present.

Several studies have explored the impact of different explanation techniques on

AoR, including feature-based (Ribeiro et al., 2018), example-based (Van der Waa

et al., 2021) and rule-based (Ribeiro et al., 2018) explanations. Some empirical

evidence has shown that XAI explanations can help humans differentiate better

between correct and incorrect AI predictions (Buçinca et al., 2020), but they can

also be misleading, convincing humans to follow incorrect AI advice and leading to

poorer team performance (Bansal et al., 2021; Poursabzi-Sangdeh et al., 2021) . This

ambiguous prospect raises the question of what constitutes good explanations in the

context of human-AI collaboration and highlights the importance of further research

into suitable explanations to support AoR and its underlying factors. Moreover,

Nourani et al. (2020b) shows, that the effect of XAI explanations on humans'

reliance is dependent on their initial domain knowledge. In this work, we explore

the potential impact of leaning from AI as a mediator between explanations and

AoR.

7.2.4 Learning from Arti�cial Intelligence

In recent years, researchers have been exploring the potential for AI to augment

human learning (Cakmak & Lopes, 2012; Edwards et al., 2018). One �eld of
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research that has emerged is machine teaching (Zhu et al., 2018). In this �eld,

instead of assisting humans in decision-making, AI systems are set up as learning

systems to teach humans. One example are AI systems that train crowd-sourcing

workers to correctly annotate images (Wang & Vasconcelos, 2020). The concept

involves selecting the optimal teaching set (Zhu et al., 2018) to achieve the best

learning performance (Singla et al., 2014).

In recent research, the focus in this interaction between humans and AI has been

on explainable AI (XAI). Recent studies have utilized XAI to generate explanations

in such learning systems. The AI system provides additional explanations to the

human to improve their knowledge in a speci�c domain (Alipour et al., 2021). For

example, Goyal et al. (2019) use a convolutional neural network for various image

classi�cation tasks and apply comparative examples to provide visual explanations.

The authors select images with minor changes from another class to generate

comparative explanations.

With the advent of research to facilitate XAI in learning systems, to the best of our

knowledge, there are no studies that investigate how explanations affects human

learning in human-AI collaboration. In this study, we investigate how XAI affects

human learning without explicitly developing a learning system but by observing

its use in human-AI collaboration to improve AoR. Dellermann et al. (2019a) argue

that humans and AI systems can learn from each other when they collaborate. We

follow this line of thought and following, derive a research model on the potential

mediating effect of learning on AoR.

7.3 Theoretical Development

In this work, we postulate that human learning plays a crucial role in AoR and

that it can be in�uenced by providing explanations. In this section, we derive a

corresponding research model that establishes the link between explanations and

human learning and its mediating role on AoR.

As a dependent variable, we use the previously introduced tuple of AoR, which com-

prises the two dimensions of relative self-reliance textit(RSR) and relative AI-reliance

(RAIR). RSR encompasses the cases where the human is initially correct, receives

wrong advice, and rightly dismisses it. In this case, the humans' complementary

knowledge is leveraged by correcting an AI's wrong output on an instance level. In

contrast, RAIR encompasses the cases where the human is initially incorrect, gets

correct advice, and rightly follows. In this case, complementarity potential from an
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AI can be exploited as the human would not have been able to correctly solve the

task instance without the help of the AI advisor.

We now �rst derive hypotheses related to the impact of providing explanations

on learning and thereafter focus on the potential impact of learning on AoR and

potential direct effects.

Prior research at the intersection of IS and human-computer interaction has lever-

aged learning systems that are supported by AI to teach humans in an example-based

manner. The objective of learning systems is the user's knowledge extension. In

human-AI collaboration, the goal is to improve performance (Hemmer et al., 2021).

In learning system research, the effect of explanations generated by XAI on humans'

learning performance is an evolving research stream (Alipour et al., 2021; Goyal

et al., 2019). However, previous research has only examined how explanations can

be utilized in learning systems. To the best of our knowledge, there are no studies

investigating how XAI affects learning in human-AI collaboration.

In general, explanations hold the potential to stimulate new ways of thinking, which

can lead to the generation of new knowledge (Saeed & Omlin, 2023). Prior research

indicates that learning performance among humans can be enhanced in learning

systems through example-based learning (Basu & Christensen, 2013; Martin-de-

Castro et al., 2008; Stark et al., 2004). In this study, we examine example-based

explanations as both normative and comparative instances. Normative examples

embody instances of the predicted class, while comparative examples illustrate

instances from a different class. As Cai et al. (2019) explain, normative examples

aim to set a standard for the intended class by displaying training instances from that

class, while comparative explanations provide a contrast between the AI prediction

and the most similar instances from a different class. Example-based explanations

are anticipated to be easily comprehensible and prompt causal thinking, enabling

individuals to deduce cause-and-effect relationships. Fahse et al. (2022) suggest that

the ef�cacy of example-based explanations can be attributed to their compatibility

with human reasoning processes and the minimal cognitive burden they impose on

users. Yang et al. (2020b) further argue that these explanations align with people's

inductive (i.e., bottom-up logic) and analogical reasoning (i.e., drawing comparisons

from one instance to another), which helps users understand why certain objects

are deemed similar or dissimilar.

The main difference between the use of Explainable Arti�cial Intelligence (XAI) in a

learning system and in human-AI collaboration may be the level of accuracy. In the

learning system, the AI is expected to achieve perfect accuracy, whereas in human

AI decision contexts, such perfect accuracy may not be achievable. This is because
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learning system designers can use historical data and select a training set where the

AI prediction is known to be correct. In human-AI decision-making, it is unclear

whether an AI's advice is right or wrong. AI is inherently imperfect in human-AI

collaboration. However, we argue that example-based explanations are actually not

entirely dependent on the performance of the AI. Example-based explanations have

a clear ground truth because they are drawn from the training data set. Therefore,

example-based explanations have the potential to increase knowledge even if the AI

is wrong.

To sum it up, we hypothesize that the bene�ts of normative and comparative

examples on learning that are present in learning systems will also be present during

human-AI collaboration. Therefore, we formulate:

H1: Example-based explanations have a positive effect on human learning during

human-AI collaboration.

Next, we hypothesize the effect of human learning on RSR and RAIR. Distinguish-

ing these two dimensions allows for a deeper understanding of the underlying

mechanisms. We base our hypotheses on theories of domain knowledge (Nourani

et al., 2020b). Much of the latter work in appropriate reliance has examined the

differences between experts (high domain knowledge) and lay workers (low domain

knowledge) in terms of their reliance behavior in human-AI collaboration. We argue

that the differences between experts and lay workers can be seen as an analogy for

learning.

RSR essentially refers to the ability to override incorrect AI advice. In other words,

if humans can correctly solve a task instance and receive an incorrect AI recommen-

dation, the RSR tells us how well they can reject that incorrect advice. Nourani

et al. (2020b) have shown that experts are better at correcting AI errors than lay

workers. Consequently, learning should increase the effectiveness of validation, and

thus increase the RSR. Therefore, we hypothesize:

H2a: Learning increases relative self-reliance (RSR).

Improving RAIR reveals a more complex process. In this setting, the human does not

have enough domain knowledge to solve the task instances independently. Using

our analogy, they could be considered “lay workers” in these cases. Becoming an

“expert” can have two advantages. First, at the task instance level, learning a new

pattern based on the explanations received could allow the decision-maker to solve

the task independently, which in turn would increase RAIR. Second, an increase in

overall knowledge over time may help the decision-maker to better recognize and
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follow correct AI advice (following RSR logic). Both mechanisms would essentially

lead to an increase in RAIR through learning.

H2b: Learning increases relative AI-reliance (RAIR).

In addition to our hypothesized mediation effects, we also follow the line of thought

of previous work and consider that explanations might in�uence AoR by improving

the mental model. For this reason, we formulate additional direct path hypotheses

between explanations and AoR that represent additional effects of explanations

beyond learning2.

Explanations allow insights into the reasoning and decision-making of AI models. In

the case of inaccurate advice, these insights might help the human decision-maker to

evaluate the validity of such reasoning by checking for its alignment with universal

axioms of the task. This process might, in turn, enhance their knowledge regarding

the underlying AI model (mental model) and thus improve validation capability. As

RSR is increased by the correction of wrong AI advice, explanations that enhance

this kind of knowledge would increase the RSR.

H3a: Example-based explanations have a positive effect on relative self-reliance (RSR).

Additionally, it could also be possible to calibrate the own mental model of the AI in

such a way that without learning, it is still possible to detect a good recommendation

of an AI. Therefore, we hypothesize:

H3b: Example-based explanations have a positive effect on relative AI-reliance (RSR).

Figure 7.3 on page 159 summarizes all hypotheses in one integrated research model.

Lastly, any improvement in AoR should in turn improve team performance and at a

certain level enable CTP.

7.4 Methodology

In this section, we present our design for a behavioral experiment to test our research

model.

2The inclusion of both indirect and direct effect hypotheses in a research model is well known in IS
research. For example, see Tereschenko et al. (2022)
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Figure 7.3.: Research model on the effect of human learning on appropriateness of reliance
(AoR).

7.4.1 Task, Model and Explanations

As an experimental task, we choose a bird species classi�cation task based on image

data. We chose the context of image recognition following the reasoning of Fügener

et al. (2021): Firstly, image recognition is a broad task that all humans should be

capable of executing without requiring specialized skills or training. In behavioral

research, the objective is often to establish a context where �ndings are applicable

to various situations. It is believed that observations in general tasks can transfer

to more specialized tasks, while contexts that necessitate speci�c training result

in less generalizable outcomes. Secondly, image classi�cation is an area where

contemporary AI systems excel (Szegedy et al., 2015), performing at least on par

with human abilities (Russakovsky et al., 2015b). Thirdly, prior studies have shown

the high complementarity potential of image classi�cation (Fügener et al., 2021;

Nguyen et al., 2022).

The bird species classi�cation task is based on the Caltech-UCSD Birds-200-2011

dataset (Wah et al., 2011). This dataset has been used extensively in high-pro�le

publications and includes 11,788 images of 200 different bird categories (Goyal et al.,

2019; Nguyen et al., 2022). Four black-colored bird classes (American Crow, Groove

billed Ani, Shiny Cowbird, and Boat tailed Grackle) are chosen for the experiment.

In a preliminary study, we tried different combinations of bird classes and the

number of classes to get a solvable but still dif�cult task. Only the consistently

black-colored birds are selected from each of these classes, resulting in 216 images

in the dataset used. We �lter out no-black birds as the preliminary studies have

shown that participants tend to choose color as an important factor during learning

which, however, was not an unambiguous feature of the bird classes.
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As a model, we use a pre-trained ResNet50 (He et al., 2016) and �ne-tune it on our

data set. For training, we use Adam as an optimizer with a StepLR rate scheduler

with step size 5 and gamma of 0.1. The training data is augmented with random

rotation, change in sharpness and contrast. The model is trained for 9 epochs and

achieves an accuracy of 87.96%.

To sample the normative and comparative examples, we follow the approach of

(Cai et al., 2019). The comparative examples are searched within the second most

probable classes according to the model. Next, we calculate the cosine similarity of

the feature vectors of the �attened layer of the model between the target image and

all images of the searched class (Chen, 2020). Then, the two most similar images are

selected. The normative examples are randomly selected from the class predicted by

the model. The images which are to be classi�ed in the experiment were omitted

from the examples.

7.4.2 Experimental Design

The experiment is conducted online with a between-subject design where two

different conditions are tested (in the following, these conditions are referred to

as baseline condition and XAI condition). Depending on the condition, either a

baseline or an example-based explanation is provided. The study is approved by the

University IRB.

Our experimental design is in�uenced by the requirements to measure learning

and AoR. To measure learning, we use standard methods from the organizational

learning research stream (Spitzer et al., 2022) and conduct two knowledge tests in

the experiment. The difference between the two tests then constitutes as learning

(Spitzer et al., 2022). Additionally, to measure AoR, a sequential task setup is

necessary as it is necessary to measure an initial human decision (Schemmer et al.,

2023d). These two requirements shape the design of our experiment.

Participants are randomly assigned to the condition groups to control for internal

validity. The online experiment is initiated with an attention control question. Then,

both condition groups receive an introduction to the task. The participants are

not provided with any speci�c performance information about the AI. Then, the

participants conduct a tutorial where we show them one example per bird class.

After the tutorial, we conduct a knowledge test by asking the participants to classify

8 pictures. Hereby, the 8 pictures are drawn strati�ed from a sample of 16 images in

total.
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Once the initial tutorial and �rst knowledge assessment have been completed,

participants move to the main task consisting of 16 individual task instances. We use

an advanced sampling strategy to ensure that RSR as well as RAIR is possible in our

study. We strati�ed sample each bird class and control for 50% correct predictions

and 50% incorrect predictions. For the AoR measurement concept, sequential

task processing is essential. In our study, this means the human �rst receives an

image without any AI advice (see step 1 in Figure 7.4). Then the participant is

asked to classify the image. Following that, the human either receives a simple AI

advice statement, e.g., “the AI predicts that the image below shows Class 4” or the

AI advice and additional example-based explanations (see step 2 in Figure 7.4).

After receiving the AI advice, the participant can change the initial decision. This

sequential two-step decision-making allows us to measure AoR. During the main

tasks, the participants do not receive feedback on their performance. After �nishing

the main task, again, their task-speci�c knowledge is assessed. Additionally, data on

demographic variables are collected.

Figure 7.4.: Online experiment graphical user interface for the example-based explanation
condition. The ground truth is class 2.

7.4.3 Measurements

In this work, we measure initial task knowledge by counting the number of correctly

classi�ed images in the �rst knowledge test. Learning is measured as the difference

between the number of correctly classi�ed images in the second knowledge test and

the �rst knowledge test.

We measure the AoR following the work of Schemmer et al. (2023d) as a tuple of RSR

and RAIR. RSR is hereby measured as the number of cases of correct self-reliance

divided by the total number of cases in which a previously correct decision-maker
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receives incorrect AI advice. Correct self-reliance (CSR) hereby is “1” if, on this

particular instance i, the initial human decision was correct, the AI advice was

incorrect, and the human decision after receiving AI advice is correct. Incorrect

advice (IA) is “1” if the initial human decision for a task instance i was correct and

the AI advice was incorrect.

Relative self -reliance (RSR) =
P N

i =0 CSRi
P N

i =0 IA i

RAIR is the ratio of the number of cases in which humans rely on correct AI advice,

and the decision was initially not correct, i.e., in which humans rightfully change

their minds to follow the correct advice. Correct AI reliance (CAIR) hereby is “1” if, in

this particular case i, the original human decision was wrong, the AI recommendation

was correct, and the human decision after receiving the AI recommendation is

correct, and “0” otherwise. Correct advice (CA) is “1” if the original human decision

is wrong and the AI advice is correct, regardless of the �nal human decision, and “0”

otherwise.

Relative AI reliance (RAIR ) =
P N

i =0 CAIR i
P N

i =0 CA i

The human performance is measured as the number of correctly classi�ed images

divided by the total number of images before receiving AI advice. Likewise, the

human performance after AI advice refers to the number of correctly classi�ed

images divided by the total number of images after receiving AI advice. Finally, CTP

is de�ned as a binary state that is achieved if the human performance after AI advice

is signi�cantly higher than the human as well as the AI performance.

7.4.4 Participants

The experiment was performed in April 2023 on the platform “Proli�c”. Image

classi�cation is often done as crowd work and previous IS research has shown the

validity of using online studies for image classi�cation (Fügener et al., 2021).

Overall, 100 participants were recruited, 50 per condition. All of them passed our

attention check. To incentivize the participants, they were informed that for every

correct decision, they get an additional 5 Pennies in addition to a base payment of 1.5

Pounds for an estimated study time of 15 min. Average duration of the experiment

was 9:00 minutes in the base line condition and 12:36 minutes in the XAI condition.
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Roughly 64% of the �nal sample identi�ed as being female, almost 36% identi�ed

as being male, and one participant preferred not to report. Participants' age ranges

from 18 years to the age group of 76 years with an average age of approximate 32

years.

We excluded one participant in the baseline condition because of a failed manipula-

tion check. In addition, some participants had no cases where the AI was correct,

and they were previously wrong leading to an unde�ned RAIR. We assigned those

participants the average value of the condition (1 in the baseline condition and 2 in

the XAI condition). Next, after removing missing values, we remove outliers from

our data using the z-score method (2 sigma). We �nd one outlier in the XAI condi-

tion with a learning value of -5. Additionally, we �nd 4 outliers with zero correct

classi�cations in the �rst knowledge test. Which leaves us with a �nal data set of 48

participants in the baseline condition and 46 participants in the XAI condition.

7.5 Results

In this section we report the results of our behavioral study. First, we provide an

overview of the descriptive �ndings, followed by the results in terms of AoR and CTP.

We then examine our comprehensive research model, which includes mediations,

using structural equation modelling (SEM) and conduct an exploratory subgroup

analysis.

7.5.1 Descriptive Results and Appropriateness of Reliance

The descriptive results of our study are presented in Table 7.1 on page 164. They are

divided according to the experimental condition. We evaluated the signi�cance of the

results using t-tests after controlling for normality. Otherwise, we use Mann-Whitney

U tests. In order to control for multiple comparisons and reduce the likelihood of

Type I errors, we applied Bonferroni corrections to our statistical analyses. First,

we report descriptive measures of initial knowledge and learning. Next, we report

correlation measures and then our analysis of AoR.

Our control variable initial task knowledge is not signi�cantly different between

groups, meaning that participants start the experiment with the same knowledge

on average (baseline mean = 4.54, XAI mean = 4.26; two-tailed t-test: T = - 0.8,

p = 0.43). On average, participants correctly classify about 4 of the 8 birds in the

initial knowledge test. Note that this does not mean that they perform randomly
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on average, as we perform a multiclass classi�cation with 4 classes, i.e., random

guessing would lead, on average, to a performance of 2 out of 8. Testing against

randomness shows that participants in both groups have signi�cant initial knowledge

(one-sample t-test: baseline: T = 9.55, p < 0.01; XAI: T = 9.86, p < 0.01). In

summary, initial knowledge is not signi�cantly different between the two groups,

and participants have suf�cient initial knowledge to avoid guessing at random.

Learning is signi�cantly different between the groups (two-tailed t-test: T = 2.09, p

= 0.04), which means that, on average people, learned more in the XAI condition.

In addition, we test with a one-sample t-test whether the learning is signi�cantly

different from 0. In the baseline condition, we �nd no signi�cant difference (T = -

0.69, p = 0.49). In the XAI condition, we observe that learning is signi�cantly greater

than zero (T = 2.25, p = 0.03). This means that our example-based explanations

not only increase learning but also bring it to a level higher than 0.

Table 7.1.: Descriptive results (*** p < 0.01, ** p < 0.05, * p < 0.1)

Treatment Learning ** (SD) RSR (SD) RAIR (SD)

Baseline -0.19 (1.89) 64.89% (32pp) 57.82% (39pp)

Example-based
explanations

0.63 (1.9) 74.61% (25pp) 66% (33pp)

We also analyze the Pearson correlation on paths 2 and 3 of our hypothesis. The

results are presented in Table 7.2. To analyze the correlation paths, we do not yet

distinguish between conditions. We �nd a weak correlation between learning and

RSR but no signi�cant correlation between learning and RAIR.

Table 7.2.: Correlation analysis (*** p < 0.01, ** p < 0.05, * p < 0.1)

Treatment Correlation P-Value

Learning – RSR* 0.18 0.07

Learning – RAIR 0.08 0.43

Next, we analyze AoR. Participants' RAIR and RSR are not signi�cantly different

between conditions. However, both values are relatively high if we compare them

with related literature (Schemmer et al., 2023d; Taudien et al., 2022). We also

observe that, although not signi�cant, there is a trend that our example-based

explanations increase both RSR and RAIR. Figure 7.5 on page 165 illustrates our

AoR analysis.
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Figure 7.5.: Appropriateness of reliance analysis (including standard errors).

7.5.2 Structural Equation Modeling

In addition to analyzing the direct effect of explanations on RAIR and RSR, we

use structural equation modeling (SEM) analysis to test our hypothesized research

model.

Prior to �tting our SEM, we performed missing data identi�cation, outlier detection,

normality testing, and selection of an appropriate estimator. We describe how we

identify missing data and remove outliers in the previous section. Shapiro's test

for normality indicates that several variables of interest deviate signi�cantly from

normal distributions. As a result, we conduct the analysis using an estimator that

allows for robust standard errors and scaled test statistics (Kunkel et al., 2019).

Thus, we use the MLR estimator (Lai, 2018).

Our dependent variables are RAIR and RSR. Since these dependent variables are

between 0 and 1, we used a logistic model in the Lavaan package, version 0.6-9, in

R (Rosseel, 2012). This model has an excellent overall �t (see Table 7.3 on page

166). The results for each independent variable are discussed below and visualized

in Figure 7.6 on page 166.

First, we �nd a signi�cant relationship between providing explanations and learning

(H1). We �nd no direct effect of providing explanations on RSR or RAIR (H3a &
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Table 7.3.: Structural equation model �tting index using root mean square error of approxi-
mation (RMSEA), Comparative Fit Index (CFI), Tucker-Lewis Index (TLI) and
Standardized Root Mean Squared Residual (SRMR)

RMSEA CFI TLI SRMR

Measurement Criteria based
on (Hu & Bentler, 1999)

< 0.05 > 0.96 > 0.95 < 0.08

Value 0 0.99 1 4.06

3b). We also �nd no effect of learning on RAIR ( H2b). However, we do �nd a

strong signi�cant effect of learning on RSR (H2a). This reveals a rare but possible

phenomenon where the direct effect of a mediation is not signi�cant, but the indirect

pathways are. This may occur if learning does not fully mediate the effect of

examples on RSR, and a confounder reduces the overall effect. For example, this

confounder could be aversion. Future studies should take this into account. We

also test the in�uence of our control variable initial domain knowledge. We �nd

that initial domain knowledge has a positive signi�cant effect on both learning and

RSR.

Figure 7.6.: Structural equation modeling results. Signi�cance: (*** p < 0.01, ** p < 0.05,
* p < 0.1)

7.5.3 Explorative Sub-Group Analysis

In this section, we want to explore the interesting result that learning does not affect

RAIR at all. Therefore, we analyze both conditions (baseline and XAI) separately and

perform an exploratory subgroup analysis. Overall, we �nd signi�cant differences

between the SEMs �tted to the different conditions (X2 = 18.26, p = 0.02). Table

Table 7.4 on page 164 shows the path coef�cients and p-values of the subgroup

models.
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In the XAI group, we �nd our expected positive signi�cant effect of learning on RAIR

(H2b). The analysis of the baseline condition reveals the reasons for the overall

non-signi�cant effect. In the baseline condition, the effect of learning on RAIR is also

weakly signi�cant, but the path coef�cient is negative. This is an interesting result

that deserves discussion. In order to answer this question, we need to understand

what learning in the baseline condition actually means. Objectively, it is almost

impossible to learn anything from the AI in the baseline condition as there is no

reference to ground truth. This means that in the baseline condition, there is a

tendency for humans to learn nothing or even unlearn patterns that were learned in

the tutorial (which is re�ected by the overall negative learning value). The limited

learning potential during human-AI collaboration could then lead to automation

bias (Goddard et al., 2014) , i.e., blindly relying on AI advice. Automation bias, in

turn, increases RAIR (Schemmer et al., 2022a). This could mean that learning in

the baseline condition simply means less automation bias and, therefore less RAIR.

To conduct a �rst validation of this reasoning, we test the impact of learning on

absolute reliance3 in both subgroups. We �nd that learning signi�cantly decreases

reliance in the baseline condition (Path coef�cient = -0.03, Z = -2.38, p= 0.02)

and has no in�uence in the XAI condition (Path coef�cient < 0.01, Z = -0.05, p=

0.96). Moreover, this reliance positively impacts RAIR in the baseline as well as in

the XAI condition. This �nding con�rms our reasoning above. Future studies need

to con�rm our �ndings.

Table 7.4.: Subgroup analysis.

Baseline Condition XAI Condition

Path Estimate P-Value Estimate P-Value

Learning – RSR 0.08 < 0.01 0.04 0.14

Learning – RAIR -0.06 0.08 0.05 0.05

7.6 Discussion

In this work, we investigated two research questions. First, do explanations improve

learning from AI during human-AI collaboration, and second, how does learning

from AI in�uence AoR? To answer both research questions, we derived a research

model and conducted a behavioral experiment.

3We measure reliance as the average number of times the participant followed the AI advice.
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7.6.1 RQ1: The E�ect of Learning on Appropriateness of Reliance

To answer our �rst research question (How does human learning during human-AI

collaboration in�uence the Appropriateness of Reliance on AI advice?), we analyze

the impact of learning on RAIR and RSR.

Applying SEM on our research model does highlight a signi�cant effect of learning on

the RSR. However, the direct path between explanations and RSR is not signi�cant.

This could mean that some confounders are prevalent that hamper the positive effect

of explanations on RSR. One of those confounders could be automation bias (blindly

relying on AI advice) (Bansal et al., 2021).

Interestingly, we, however, do not �nd a positive effect of learning on RAIR. There-

fore, we conducted an exploratory sub-group analysis and found signi�cant differ-

ences between the effect of learning in the XAI condition and the baseline condition.

In the XAI condition, the expected positive effect of learning on RAIR is present.

Based on our results, we deduce that a certain level of learning is necessary to

observe any impact of learning on RAIR.

7.6.2 RQ2: The E�ect of Explanations on Learning

To answer our second research question (Can explanations of AI increase human

learning in human-AI collaboration?), we explore the impact of example-based

explanations on human learning. We �nd a statistically signi�cant difference be-

tween a baseline condition and the XAI condition. In the baseline condition, which

may be the default con�guration in many real-world applications, it may be objec-

tively very dif�cult to learn anything at all from the AI, which is also con�rmed by

our experiment. In contrast, we observe statically signi�cant learning in the XAI

condition.

To reference our work back to IS research, we want to discuss the link to hybrid

intelligence. In their seminal paper on hybrid intelligence, Dellermann et al. (2019a)

discuss the impact of human-AI collaboration on mutual learning. Humans can

teach AI new patterns (often referred to as human-in-the-loop systems (Dellermann

et al., 2019a) or active learning (Hemmer et al., 2020)). However, the human side

of mutual learning has been neglected. We complement IS research with the �rst

work on human learning during human-AI collaboration.

Finally, we will discuss the implications of long-term human-AI collaboration for

unique human and AI knowledge. Learning is only possible if the “teacher” has
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some unique knowledge. The question now is whether humans and AIs can reach

an equilibrium where the knowledge of both has aligned such that no further

learning is possible. In the case of a static AI (and a human not continuing to

learn independently of the AI), this could be the case. However, recent IS research

(Kühl et al., 2022) has developed a more dynamic perspective on AI. AI models are

frequently updated or being re-trained (the authors call this adaptive AI systems).

Similarly, humans usually learn on the job, so they are continuously building unique

knowledge. Especially in organizations, this is crucial to prevent knowledge loss

and foster the distribution of knowledge (Engbom, 2020). Therefore, AI, as well as

humans, are in a continuous learning process that creates unique knowledge.

7.6.3 Implications for Theory and Practice

Theory . Our research contributes to the literature on organizational learning (Levitt

and March 1988) as well as appropriate reliance (Schemmer et al., 2023d). Even

though learning on the job is a widely recognized approach for organizational

learning, research has neglected the potential of in-process learning during human-

AI collaboration. So far, learning from AI was always considered as part of a

knowledge management tool. We, however, show that also in-process learning is

possible and thereby opens up new research potential for the machine teaching

domain. With regard to appropriate reliance, learning was so far neglected as an

impact factor. With our work, we extend the research model of Schemmer et al.

(2023d).

Practice. Our research implies that practitioners can, with the right design, leverage

two bene�ts at ones from human-AI collaboration—upskilling of the workforce

and better performance. With our study, we show the potential to learn from each

other in a human-AI collaboration. Thus, these insights can be used to guide not

only designers of AI systems but also knowledge managers within organizations to

enhance the learning of humans.

7.6.4 Limitations and Future Work

Despite the contributions of this work, also limitations are present. First of all,

our empirical work is limited by the choice of task as well as conducting a single

study. However, we believe that image classi�cation is a task with much potential

for generalization following the arguments of Fügener et al. (2021). There are many

real-world situations where humans need to classify images. Tasks can range from
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low-stakes tasks, such as product quality inspection, to high-stakes tasks, such as

cancer detection.

Additionally, the generalizability of our experimental �ndings is limited due to the

choice of explanations. Both normative and comparative examples are a special type

of XAI that is directly linked to ground truth. However, example-based explanations

are state-of-the-art for learning systems (Goyal et al., 2019). Future work should

evaluate different example techniques.

Additionally, the sequential task structure required for our measurement approach

has certain drawbacks, as it alters the task itself. When humans �rst complete the

task independently before receiving AI assistance, they are already mentally prepared

and may respond differently than if they received AI advice immediately. However,

this is a known challenge in research and not speci�c to our study (Schemmer et al.,

2023d).

Most importantly, future research needs to investigate the impact of different design

features. Future research should evaluate these potential design features to provide

practitioners with a toolkit for the effective use of AI.

7.7 Conclusion

Over the last decade, the emphasis in research on AI adoption and acceptance by hu-

mans has facilitated the widespread use of AI in everyday life. The now widespread

adoption raises the question of how to harness the potential of human-AI collabo-

ration in the best way possible. The true potential of human-AI collaboration lies

in leveraging their complementary capabilities in a way that jointly a performance

is reached that is superior to individual AI or human performance. Therefore, to

pave the way toward effective human-AI collaboration, it is now crucial to focus on

appropriateness of reliance that realizes this potential. In this work, we study the

effect of learning on appropriateness of reliance in a behavioral experiment. We �nd

�rst evidence for learning as an impact factor of appropriateness of reliance and

show that human learning can be in�uenced through explanations. Thus, this work

contributes to the design of effective human-AI collaboration.
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Part V

Harnessing Complementarity Potential

beyond AI-Assisted Decision-Making





Harnessing Complementarity

in Anomaly Detection
8

This chapter comprises a working paper that is currently under review as

Schemmer, M., Holstein, J., Kühl, N., Vössing, M., & Satzger, G. (2023c).

From Anomaly Detection to Anomaly Investigation: Support by Explainable

AI [Working paper]. Note: To improve the structure of the work, the title was

changed. The abstract has been removed. Tables and �gures were reformatted,

and newly referenced to �t the structure of the thesis. The terminology was

standardized with the dissertation. Chapter, section and research question

numbering and respective cross-references were modi�ed. Formatting and

reference style was adapted and references were integrated into the overall

references section of this thesis.

8.1 Introduction

Anomaly detection is essential in various domains, e.g., manufacturing (Ren et al.,

2018; Susto et al., 2017), �nancial auditing (Debener et al., 2021), healthcare

(Matschak et al., 2021; Schultz et al., 2022), and cyber security (Blazquez-Garcia

et al., 2021; Gamboa, 2017). For example, engineers in manufacturing want to �nd

early indicators of machine failures that would allow them to conduct preventive

maintenance. In cyber security, experts aim to �nd security breaches and attacks. In

�nancial auditing, detecting fraudulent claims is a crucial task (Schultz et al., 2022),

with an estimated total of 13 billion euro in Europe in 2017 (Insurance Europe,

2019).

At the same time, manually detecting anomalies is very challenging even for human

experts (Huang et al., 2022; Qian et al., 2020), primarily due to the vast amounts

of data—in terms of granularity and variability—that need to be analyzed. For

this reason, designers of information systems build so-called anomaly detection

systems (ADSs) that aim to support human experts in identifying anomalies (Bhuyan

et al., 2013; Breitenbacher et al., 2019; Moustafa et al., 2019). Information systems
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research guides the development of such systems in many domains, e.g., auditing

(Bhattacharya & Lindgreen, 2020), manufacturing (Ren et al., 2018), etc. Recently,

more and more of these systems are based on machine learning (ML) (Garg et

al., 2022) equipping them with the ability to detect complex patterns in high-

dimensional datasets (Audibert et al., 2022). Due to the inherent rarity of anomalies,

only limited amounts of labels are available for training ML models. Additionally,

the term “anomaly” often encompasses a diverse range of underlying events (Wang

et al., 2019). To address these challenges, unsupervised ML provides a practical

solution by acquiring knowledge of normal data patterns and identifying anomalies

as deviations from these (Cheng et al., 2021; Matschak et al., 2021; Steenwinckel

et al., 2021).

Despite the capabilities of unsupervised anomaly detection techniques in identifying

anomalous patterns embedded within datasets, they are insuf�ciently precise in the

detection of relevant rare events and, instead, detectany anomalous pattern in the

data. However, domain experts are often interested in a speci�c type of anomaly

that is relevant to the business, e.g., an increase in temperature prior to a shut-in.

Therefore, human experts need to carefully validate and investigate the detected

anomalies to determine their business relevancy. As a result, ADS cannot perform

the task of detecting relevant anomalies in an automated way. This means that

human anomaly investigationis necessary to con�rm whether an identi�ed anomaly

is indeed relevant.

While existing literature provides a comprehensive examination of anomalydetection,

it falls notably short when it comes to providing systematic support for anomaly

investigation(Chemweno et al., 2016; Pang et al., 2021; Steenwinckel et al., 2021).

This de�cit becomes increasingly apparent given that anomaly investigation often

necessitates domain experts to scrutinize hundreds of distinct features (Liu et al.,

2022), not all of which are necessarily relevant to a speci�c anomaly. Take, for exam-

ple, a typical manufacturing production line that records thousands of measurements

every second. Despite this volume of data, there currently exists no established

systematic support to guide domain experts in their investigations. Considering

the dif�culty in identifying the features necessary to validate relevant anomalies, it

becomes apparent that human domain experts require assistance in their anomaly

investigation. Therefore we formulate our research question:

Research Question: How can we methodologically support human experts in anomaly

investigation?
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While an automated validation of anomalies may not be feasible in many cases, we

hypothesize that unsupervised anomaly detection methods can still offer valuable

information to human experts, enhancing the investigation process. Speci�cally, we

hypothesize that explanations derived from anomaly detection can assist in human

anomaly investigation. Therefore, our method embarks on a novel approach—it

utilizes explanations generated from unsupervised anomaly detection to improve the

investigation process. Our research speci�cally targets the investigation of anomalies

in multivariate time series, which have numerous use cases for anomaly detection

(Kieu et al., 2019; Malhotra et al., 2016), e.g., predictive maintenance (Choi et

al., 2022), stock price movements (De Benedetti et al., 2018) or cyber security

(Blazquez-Garcia et al., 2021). To evaluate the effectiveness of our proposed method,

we conduct a behavioral experiment to test whether providing humans with these

explanations improves the accuracy of anomaly investigation.

To instantiate our proposed method, we have chosen an LSTM-autoencoder as it is a

commonly used approach for anomaly detection in time series data (Malhotra et al.,

2016). Previous research has indicated that counterfactual explanations have shown

potential in the realm of multivariate time series forecasting problems (Ates et al.,

2021). This approach offers a nuanced means of understanding the forecasting

model's output by providing alternative scenarios that could have resulted in a

different forecast. In essence, counterfactual explanations generate scenarios that

are as close as possible to the actual data instance but with a different predicted

outcome. This is accomplished by altering a minimal number of features, therefore

highlighting the most in�uential factors driving the model's decisions.

For our behavioral experiment, we leverage the public New York City taxi trip dataset

(TLC, 2022) and design an autoencoder that detects anomalous patterns, i.e., events

that have a signi�cant impact on the local taxi industry. To generate explanations,

we utilize the framework for counterfactual explanations for autoencoders proposed

by Ates et al. (2021). As a testbed, we ask participants in the subsequent anomaly

investigation task to differentiate between a speci�c event of interest and other

events. Our experiment involves a total of 64 participants, and we �nd that the

provided explanations can improve the accuracy of anomaly investigation.

Our contribution is twofold. First, we introduce a method to support human anomaly

investigation, utilizing explanations derived from anomaly detection. Second, we

demonstrate the effectiveness of these explanations through a behavioral experiment.

Our study is the �rst to empirically investigate the impact of anomaly detection

explanations on anomaly investigation. By validating their potential, we inspire
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new use cases for anomaly detection which could have a signi�cant impact on how

anomaly detection systems are approached.

In the following sections, we will provide further details on our work. In Section

8.2, we will present the fundamentals and related work. Subsequently, in Section

8.3, we will conceptualize our anomaly investigation method. In Section 8.4, we

will introduce our dataset, the design of our explainable autoencoder, and our

experimental design. The results of our experiment will be presented in Section 8.5,

followed by a discussion of the �ndings and a conclusion in Section 8.6. Finally, in

Section 8.7, we will conclude our study.

8.2 Related Work

In this chapter, we introduce the fundamentals of our work and provide an overview

of related work. First, we introduce foundations of anomalies, anomaly detection,

investigation, and explainable anomaly detection. Then, we introduce the related

work that covers explainable autoencoder-based anomaly detection in multivariate

time series.

8.2.1 Anomaly De�nition

First, it is imperative to de�ne the term “anomaly” to establish a common ground.

An anomaly is essentially a data point or a sequence of data points with substantial

deviations from the majority of data points (Görnitz et al., 2013; Hawkins, 1980).

The term anomaly does not describe a speci�c event but rather a property of those

events. Those events are described as “unusual”, “rare” and simply not “normal”

(Görnitz et al., 2013).

Anomalies can be categorized into different types: Point anomaliesare the most

trivial to �nd, as these anomalies are only single points located outside the normal

value range. Next, contextual anomaliescan consist of sequences and can only be

identi�ed as anomalous in comparison to different points with the same context. The

most complex type is the collective anomaly.Collective anomaliesalways span over

sequences and only gradually show a different pattern compared to normal data.

Individual values within this type of anomaly may seem ordinary and only collectively

raise suspicion (Braei & Wagner, 2020). Figure 8.1 on page 177 highlights the three

types.
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Figure 8.1.: Different anomaly types (Choi et al., 2021). The three examples depict uni-
variate time series, with the three types of anomalies in time series.

In most use cases where anomalies are to be detected, the ultimate goal is not

to detect any anomaly but relevant ones (Liu et al., 2022; Song et al., 2007).

Therefore, most anomaly detection use cases essentially boil down to a rare event

classi�cation. For example, in manufacturing, the goal of operators may be to detect

early indicators of machinery failures. However, not only these early indicators but

also other events deviate from the “normal” operation, e.g., planned shut-downs.

This means only a subset of the anomalies is actually of interest.

In the past, knowledge-based systems have been used to classify those rare events

of interest, i.e., systems that explicitly store the knowledge of experts to detect the

events (Steenwinckel et al., 2021). However, experts have a limited, more global

view, and as data volume grows, it becomes harder for experts to explain deviations

in values and their effects (Steenwinckel et al., 2021). Moreover, acquiring their

knowledge is a time-consuming and challenging task (Steenwinckel et al., 2021).

For this reason, more and more ADS were developed. However, ADS cannot classify

the detected anomalies based on their relevancy. This means a human anomaly

investigation is still imperative (Song et al., 2007).

8.2.2 Anomaly Detection

Anomaly detection approaches consist of either classi�cation (e.g., isolation forest),

nearest neighbor (e.g., distance-based), compression-based (e.g., autoencoder),

or clustering methods (Muruti et al., 2018). Further, anomaly detection can be

categorized into three different classes (Nassif et al., 2021). Supervised anomaly

detectionaims to build a classi�er model that learns from a labeled training dataset.

Here, the training dataset contains labels for normal and anomalous instances.

In practice, it may be challenging to �nd such datasets due to anomalies being

rare events and models requiring vast amounts of data. Next,semi-supervised

anomaly detectionrequires only a training dataset with instances being labeled as

normal. Accordingly, any instance different from the normal class is classi�ed as
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an anomaly. Finally, unsupervised anomaly detectionis the most common type for

anomaly detection as it does not require any labels in the training dataset, with

autoencoders being one of the most powerful model classes.

While there are numerous methods to perform anomaly detection, the focus of this

work is deep anomaly detection due to its superior performance (Chalapathy &

Chawla, 2019). Deep anomaly detection describes the application of deep learning

to the anomaly detection task. Autoencoders are the most frequently used deep

unsupervised anomaly detection method (Chalapathy & Chawla, 2019). This archi-

tecture was already introduced in the 1980's (Rumelhart et al., 1985) and attempts

to compress the input data to then reconstruct it with as little information loss as

possible (Baldi, 2012). The most basic structure of an autoencoder contains an

encoder that generates a compressed representation of the input data and a decoder

that aims to reconstruct the input data from the compressed representation (Bank

et al., 2020). Not all the information can be stored in the so-called bottleneck layer,

so the model must learn statistical patterns in the training data (Bengio et al., 2009).

These lower-dimensional representations are the latent space of an autoencoder

(Dillon et al., 2021). For time series anomaly detection, autoencoders are usually

equipped with LSTM layers that can capture temporal dependencies (Malhotra

et al., 2016). To decide whether a sample is anomalous or not the autoencoder

reconstruction error is used. If the reconstruction error of a sample exceeds a certain

threshold, the sample is labeled as an anomaly. The threshold can be tuned manually

or set by a certain percentage of the highest errors.

8.2.3 Anomaly Investigation

Only a few articles focus on anomaly investigation (Liu et al., 2022; Soldani & Brogi,

2022). Anomaly investigation can happen on multiple levels based on the necessary

and available data (Soldani & Brogi, 2022). It can either be conducted based on the

same data used for the anomaly detection or by taking additional data into account.

This work focuses on use cases where the same data is used.

Most of the existing work deals with data visualization to improve anomaly investi-

gation (Soldani & Brogi, 2022; Xue & Yan, 2022). Xue and Yan (2022) develop an

ADS for detecting and analyzing anomalies in cloud computing performance. They

provide rich visualization and interaction designs to help understand the anomalies

in a spatial and temporal context. Soldani and Brogi (2022) improve the process of

detecting and investigating anomalies in time series data in industrial contexts. To

do so, they characterize six design elements and develop a visual ADS to support this
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process. However, beyond visualization approaches, methods to improve anomaly

investigation are still missing (Liu et al., 2022; Soldani & Brogi, 2022).

8.2.4 Explainable Anomaly Detection

Explanations are required to understand how speci�c predictions are generated

(Šimić et al., 2021). On an abstract level, approaches can be divided into local

and global explanations (Ates et al., 2021). Global explanations focus on the

entire dataset (Ibrahim et al., 2019), whereas local explanations refer to individual

observations (Plumb et al., 2018). By reviewing related work, it becomes apparent

that there are many implementations of explainable anomaly detection (Choi et al.,

2022; Song et al., 2018). However, none of them evaluate the effect on anomaly

investigation. Overall, to the best of our knowledge, no study has ever empirically

evaluated whether the explanations of the anomaly detection also provide a bene�t

for anomaly investigation. Therefore, we argue that this work's topic is highly

relevant.

8.2.5 Explainable Autoencoder-Based Anomaly Detection in

Multivariate Time Series

Within the context of multivariate time series, a lack of explainability approaches

can be observed, while simultaneously, analytics for these time series are increasing

in popularity (Ates et al., 2021). Counterfactuals are a promising explainability

technique for time series (Filali Boubrahimi & Hamdi, 2022). While there are many

counterfactual approaches in various domains, the multivariate time series domain

remains mostly uncovered (Guidotti, 2022). Hereby, the work of Ates et al. (2021) is

the only known framework for counterfactual explanations in time series forecasting

and classi�cation. As their approach is model agnostic, they only require class

probabilities as the model's output to create explanations. To do so, they modify the

input data in a way that is as close as possible to the original input while receiving

a different class label. However, not all available input features are altered and,

instead, only the ones with the highest deviations between the original input and the

modi�ed instance with a different label. Reducing the number of adjusted variables

helps human experts as previous research has pointed out that humans are only

capable of processing four variables simultaneously (Halford et al., 2005). A typical

example of counterfactual explanations outside the domain of time series is a loan

application scenario: An AI-based system declines a person's request, stating that
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similar customers have also been declined. In contrast, a counterfactual statement

can convey that the request would have been accepted if the person had slightly

lowered the credit amount (Kenny & Keane, 2021).

During the review of related works that implement explainable autoencoder, it

becomes apparent that most works utilize some form of feature importance as

an explanation technique. Alfeo et al. (2020), Dix (2021), and Ghalehtaki et al.

(2022) use the model's built-in reconstruction error to detect important features.

However, Roelofs et al. (2021) argue that this methodology is not very robust

as the reconstruction error does not always match the actual feature importance.

Other work uses well-known frameworks such as SHAP or LIME to generate feature

importance through a surrogate model (e.g., (Jakubowski et al., 2021)) or even

deploy multiple SHAP explanations to capture temporal and feature interactions

respectively (Hussain & Perera, 2022). Ha et al. (2022) calculates the feature

importance through SHAP by applying a �attening layer on their LSTM autoencoder.

The new model uses the weights from the autoencoder and generates explanations

by using Gradient SHAP. Oliveira et al. (2022) designs its framework, the residual

explainer, which interprets deviations of the reconstruction errors to create feature

importance. In an experiment, the approach produces better results than SHAP and

takes only a fraction of the time. The only work to our knowledge that uses an

explanation technique besides feature importance is the work of Sulem et al. (2022),

who also generate counterfactual explanations. However, none of them evaluate the

impact of explanations on human anomaly investigation.

In summary, we �nd no study that provides methodological support for anomaly

investigation and that empirically investigates the in�uence of explainable anomaly

detection on anomaly investigation.

8.3 Conceptualization of Explainable Anomaly

Detection for Anomaly Investigation

In this section, we outline our method for investigating anomalies. As discussed,

we argue that the overarching goal of most anomaly detection use cases is actually

to classify speci�c rare events—relevant anomalies. The small number of labels

available for these rare events makes automated classi�cation dif�cult. Unsupervised

approaches can detect anomalies without labels (Cheng et al., 2021) and can

�nd unknown patterns (Matschak et al., 2021). The underlying assumption of

using unsupervised approaches is that the desired rare events are a subset of the
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identi�ed anomalies. While unsupervised anomaly detection methods can effectively

detect anomalies, they are limited in their ability to fully automate the detection of

relevant anomalies. Consequently, determining whether an identi�ed anomaly is

truly relevant involves human experts, as they can apply their domain knowledge

to analyze anomalies in-depth (Liu et al., 2022). However, they are limited by

their cognitive capacity, such as the patterns they can process. For example, when

analyzing hundreds of sensors, humans may reach their cognitive limits. Thus,

cognitive capacity may limit their ability to investigate anomalies.

To summarize, unsupervised ML-based ADSs are constrained in their capability

to classify relevant anomalies, while human experts are limited by their cognitive

abilities. To overcome these limitations, we adopt a human-centered perspective

(Shneiderman, 2020) and develop a method that combines the strengths of au-

tomated anomaly detection with human anomaly investigation. We contend that

this approach has the potential to overcome the challenges posed by both ADSs

and human experts, resulting in a more effective and comprehensive approach to

classifying rare events.

To reduce the required cognitive capacity for investigating anomalies, we propose to

leverage recent advances in explainable AI. More speci�cally, we use explanations

derived from the ADS to inform the anomaly investigation, which can explain the

ADS's reasoning for �agging data as anomalous. Our underlying reasoning is that we

hypothesize a relationship between the features in�uencing the automated detection

of an anomalous event and the features a human needs to investigate the anomalies.

For example, if the event is an early indicator for a machine failure, we hypothesize

that the sensor values that behave unusual also give an insight that the event is an

early indicator and not, for example, a planned shut-down. Besides giving insights

for the investigation, we also hypothesize that explanations can be used to reduce

the cognitive effort of human experts. For example, showing humans a �ltered list of

sensors relevant to anomaly detection would reduce the number of sensors a human

expert needs to analyse. In summary, we argue that explanations of the anomaly

detection can help humans in their anomaly investigation.

Having outlined the general idea of the method, in the following, we provide a

detailed overview along with the four components of the method—data, anomaly

detection, explanations of the anomaly detection, and the human investigation.

Figure 8.2 on page 182 visualizes the method. The �rst two components are related

to anomaly detection, and the last two are related to anomaly investigation. We

highlight the components of the method, an exemplary instantiation, and provide

8.3 Conceptualization of Explainable Anomaly Detection for Anomaly

Investigation
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an illustration. As an example, we use the detection of early indicators for machine

faults.

Figure 8.2.: Representation of the proposed method. Explanations generated from the
anomaly detection support the human anomaly investigation.

Data. For our method, the underlying data needs to have enough events of normal

behavior to be able to use an unsupervised approach. In our machine fault classi�-

cation example, the input data to the method are sensor values. In the illustration

in Figure 8.2, we depict a univariate time series, e.g. a single sensor value such as

temperature over time.

Unsupervised Anomaly Detection. Next, an unsupervised ML-based anomaly

detection �ags anomalies in the input data—indicating anomalous events that

require human analysis. Unsupervised anomaly detection models operate by learning

what is normal or what are expected based on various characteristics of the data.

Following this any data point that signi�cantly deviates from this established norm is

then considered as an anomaly. This method does pose certain challenges, primarily

in determining the threshold at which a point is �agged as an anomaly. Setting

this threshold usually involves a tradeoff whether to detect more anomalies (low

deviations are considered as an anomaly) or less anomalies (only high deviations lead

to anomalies). Commonly employed methods for unsupervised anomaly detection

are, for example, auto-encoder, principal component analysis, or isolation forest.

In our example, the output of this step are highlighted time windows in the sensor

data that are anomalies with respect to the normal behavior of the machine. It is

important to note that a human will only examine the time windows highlighted by

the anomaly detection.
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Explanations of Anomaly Detection. As a next step, explanations of the unsuper-

vised anomaly detection are generated. Common approaches are ex-post explana-

tions such as feature importance (highlighting the relevant sensor or timestamps),

example-based or rule-based explanations. Research on supervised approaches has

highlighted the importance of a human-centered perspective for designing explana-

tions (Ehsan et al., 2021). Following this line of thought, we argue that explanations

need to be consciously designed for the problem at hand. For example, in the time

series domain, research has shown the advantages of counterfactual explanations

(Ates et al., 2021). In our example, we show counterfactual explanations. This

means the explanations highlight how the sensor data should have behaved to be

not labeled as anomalous.

Human Anomaly Investigation. In the �nal step, a human expert receives the

explanations and differentiates the detected anomalies in for the business problem

relevant and non-relevant anomalies. This method step may be conducted by

business experts, lay workers, etc. In our example, the anomalies are investigated

by engineers. The outcome are those events that the engineer identi�es as early

indicators for a machine breakage.

Having outlined our proposed novel method, in the next chapter, we present the

design of our experiment to demonstrate the value of the method.

8.4 Experiment Design

In this section, we provide information about the data and the task we use to

investigate the utility of our proposed method. Then, we describe the development

of the autoencoder and the counterfactual explanations, together forming our

explainable ADS. Finally, we present the experimental design.

8.4.1 Dataset, Task and Data Preprocessing

Dataset. We search for a suitable task and dataset by specifying a list of requirements

the dataset must ful�ll. The dataset must consist of multivariate time series and must

include anomalies and, ideally, external information about the respective anomalies.

Since the participants are non-experts, the dataset must come from a context they

can understand.
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Based on these requirements, we evaluate several well-known multivariate bench-

mark datasets frequently used in anomaly detection on multivariate time series (e.g.,

(Du et al., 2017; Risdal et al., 2016)). All these datasets are multivariate and stem

from a technical context. While these characteristics are desirable for a technical

evaluation of a model, they con�ict with our requirement to be easy enough to

understand by experiment participants.

For this reason, we picked a dataset with a more familiar context. One dataset that

meets all these requirements is the public New York City Taxi dataset (TLC, 2022).

Currently, around one million trips are recorded every day (TLC, 2022). TLC has

made this data available to the public since 2009. Each trip record contains 19

features, e.g., information about the pick-up and drop-off time and location, the trip

distance, payment types, fares, and the number of passengers. Nearly 13 years of

data are available - in these years, the taxi industry has changed considerably. Fares,

availability of cabs, or, for example, new competitors have, among other factors,

in�uenced the collected data and represented a considerable challenge (Baier et al.,

2019) that is out of the scope of this work. We address this issue by using a shorter

period of observation.

Certain days, such as holidays or days with extreme weather conditions, cause

considerable deviations from the usual behavioral pattern. These days are thus

suitable as anomalies because they are out-of-distribution by nature while serving as

ground truth at the same time (Ferreira et al., 2013). For extreme weather events,

ground truth can be found on the governmental extreme weather website 1. All of

the anomalies are collective anomalies, e.g., they are just anomalous as a sequence.

During the chosen timeframe from the beginning of 2016 to the end of December

2018, several events with known large impacts on the taxi business took place, for

example:

• Christmas (12/24/2018 - 12/26/2018)

• New Year's Day (01/01/2018)

• Winter storm (11/15/2018

• Heavy snowfalls (03/21/2018)

For the training of our model, we use 2016 as the training and 2017 as the validation

period. 2018 serves as our test set, of which we visualized a subset in Figure 8.3 on

page 185. The colored areas shown indicate known events in New York City.

1https://www.weather.gov/okx/stormevents
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Task. Accordingly, we want to provide an easy-to-understand task based on the

dataset that supports the classi�cation of the identi�ed anomalies. Our dataset

lays the ideal basis for this task as the anomalies have different classes, e.g., public

holidays, extreme weather events, or other events. While it may not be possible

to differentiate between such events deterministically, some frequently appearing

patterns can be observed, e.g., during extreme weather, fewer people use taxis and,

at the same time, the share of the tips increases. Therefore, we provide participants

with the task of classifying whether the shown anomaly is an extreme weather event

or not. We employ a binary classi�cation (extreme weather event or not) to be

close to a realistic task. For example, in condition-based maintenance, the binary

classi�cation may be to discriminate faults from other anomalies.

Data Preprocessing. As the data is provided directly from the recording, it is

necessary to clean and preprocess it. The goal of the preprocessing is to increase

the data quality and, therefore, also the performance of the ADS (Frye et al., 2021).

We merely make basic assumptions that ensure the validity of individual recordings

while not removing any anomalies the model should detect, e.g., the trip duration

should be longer than zero minutes (Baier et al., 2020). After the data cleaning,

we aggregate the taxi demand by hour and perform a few preprocessing steps.

To increase the comprehensibility of the dataset, we drop some of the original 19

dimensions, as they are sometimes dif�cult to understand and negligible for anomaly

detection. Further, we create additional features that are easy to interpret and thus

support the classi�cation task. Therefore, our �nal dataset consists of the following

features: trip count, average trip duration per mile, the proportion of tips in the total

fare, average trip distance, proportion of trips starting and ending in the city center,

and, �nally, the average number of passengers per trip. Lastly, we scale the data to

unify the magnitude of different features (Misra & Yadav, 2019), as this can have

otherwise undesired results on the model's processing (Papenmeier et al., 2019).

8.4.2 Explainable Anomaly Detection System

Modeling. In the following, we present our anomaly detection modeling. Similar to

related work (Ghalehtaki et al., 2022; Ha et al., 2022; Jakubowski et al., 2021), we

use LSTM-layer to take intertemporal and multivariate dependencies into account.

To optimize our architecture, we conduct a grid search and identify the following

parameters as the best combination: window size of 8, step size of 2, hidden

dimensions of the autoencoders are 8, 6 and 4, and �nally the latent space with 4

dimensions. We use the reconstruction error and the detection of known anomalies

as the target.
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Our approach is to calculate the average reconstruction error of a window over all

timesteps and features and compare this value to a threshold. The threshold must

be optimized based on the results. The goal of this optimization is the recall of the

model, meaning that all anomalies are identi�ed as such by the model.

Counterfactual Explanations. The standard autoencoder architecture must be

extended to enable explanations for common explanation frameworks such as

SHAP (Lundberg & Lee, 2017) or CoMTE (Ates et al., 2021) that cannot handle

the autoencoder output. This is because the autoencoder output has the same

dimensions as the input data. Current explainable AI frameworks, however, expect

outputs in the form of a classi�cation or regression prediction. Thus, we design a

new layer that manipulates the model's output to provide class probabilities (Ates

et al., 2021). To calculate the necessary class probabilities, a new layer is given a

threshold value in addition to the already existing sum of the reconstruction error, as

proposed in (Ates et al., 2021). The reconstruction error is then, similar to (Aronsson

& Bengtsson, 2021; Ates et al., 2020), converted to a binary class probability by

�rst subtracting the threshold value ( � ) from the calculated mean error.The Sigmoid

function afterward projects that value to a range between 0 and 1. The layer is

concatenated after training the autoencoder.

Finally, we use the CoMTE framework to generate the counterfactual explanations

(Ates et al., 2021), which serve two purposes. First, they reduce the number

of features that experts need to analyze (On average, our approach changes 3.2

features). Second, they highlight how the time series should have looked liked

to be not �agged as anomalous. Figure 8.4 on page 188 depicts two examples of

our explanations. The used approach modi�es four input features in the extreme

weather event and three for the public holiday.

Having introduced our explainable ADS, we now describe how we conduct our

behavioral experiment.

8.4.3 Experimental Design

Pilot Study.

To obtain qualitative feedback on our ADS, we conduct a focus group interview

with �ve experts with backgrounds in ML. The session lasts 30 minutes. First, we

brie�y introduce the basic information about this work and then focus on the core

of the study. There, an anomalous window with the respective features is presented.
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The session is recorded and transcribed to evaluate the results more precisely in

retrospect (McGrath et al., 2019).

The experts argue that the only cue generated by the explanations, the distance

between the two lines of the counterfactual explanation, is not enough. We observe

that it is vital to provide exemplary patterns in the pre-training of the user study to

ensure that participants can understand the events being classi�ed. We argue that

this also transfers to real-world cases, as domain experts also have prior knowledge

within their domain, which they incorporate into the anomaly investigation.

Study Procedure.

The research model is tested in an online experiment with a between-subject design.

We test two different conditions. First, a control condition in which the human

receives the ADS without counterfactual explanations, and second, a counterfactual

explanation (CF) condition. The study as a whole is approved by the University

IRB.

Sampling Strategy. In each condition, we provide participants with eight events.

For the sampling of the eight events, we apply rules to ensure that the patterns of

the underlying event are visible and prevent participants from being able to classify

events based on previously seen anomalies, e.g., the same extreme weather at two

different times during a day. Therefore, we �rst label our anomalies based on the

provided dates, start and end times of extreme weather of the government storm

website and public holidays 2. For extreme weather events, we label an anomaly as

extreme weather if the identi�ed anomaly starts at most 2 hours before the start of

the extreme weather or two hours before the end of the extreme weather. Similarly,

we label anomalies as a holiday if they start on the date of a public holiday. Finally,

we randomly draw four extreme weather events, three holiday events, and one

anomaly classi�ed as neither. While sampling, we verify that we do not draw two

anomalies on the same day.

Interface. Next, we create visualizations of the sampled anomalies (see Figure 8.5 on

page 190). Similar to Liu et al. (2022), we use two views with varying information:

the context view and the zoomed view. First, our context view shows past data of the

last three weeks for all variables, with the anomaly being highlighted. This should

support participants in understanding the behavior and interactions of the variables

in non-anomalous times and thus provides context (following the requirements from

the pilot study). However, we refrain from �agging additional anomalies in this

2https://publicholidays.com/us/new-york/2018-dates/
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Figure 8.5.: Example of an extreme weather event with counterfactual explanations (top:
zoomed view, bottom: context view).

period to avoid the possibility of inferring the date based on the position of the

anomalies, e.g., New Year's Day, by the previous anomalies of Christmas. Second,

the zoomed view allows a detailed look at the speci�c time window of the anomaly.

It is also the single point in which the treatments differ. While the AI treatment

solely receives the data during the anomaly, the zoomed view of the counterfactual

treatment additionally displays explanations. To support the anomaly investigation,

we provide supplemental information about the time of the anomaly to enable a
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better understanding of the anomaly's patterns without allowing conclusions on the

speci�c date (e.g., Christmas). For example, while an extreme weather event may

result in fewer trips, this is also true for nights on regular working days. Additionally,

we argue that in real-world cases of anomaly, investigation time is a feature that is

also available.

Task �ow. The online experiment is initiated with an attention control question

that asks participants to state the color of grass. To control for internal validity,

participants are randomly assigned to the condition groups. As multivariate time

series are dif�cult to interpret for humans (Janus et al., 2021), we include multiple

tutorials. First, both conditions receive an introduction to the task and are given

examples of extreme weather events and other events. Following that, we explain the

two views of our ADS and ask participants four comprehension questions. Afterward,

we give a short tutorial on how participants can detect extreme weather events,

followed by two comprehension questions. Finally, we sample event patterns based

on related literature (Lee & Sohn, 2020; Qing et al., 2015). For the CF condition,

we follow on with an explanation of counterfactual explanations. We provide

the participants with a general intuition of the explanations rather than speci�c

technical information. During the experiment, we neither use the terms AI and ML

nor counterfactual explanations to prevent issues of AI literacy. Instead, we speak

of ADS and expected values. Then, the participants conduct two training tasks to

familiarize them with the task and, depending on the condition, with its explanations.

Additionally, the participants receive feedback on the training tasks. After the two

training reviews, the participants receive the eight main tasks. For each task, we

ask them how much they agree with the statement “The anomaly is an extreme

weather event” on a four-point Likert scale (Strongly agree, agree, disagree, strongly

disagree). This allows us to get a binary classi�cation and certainty information.

After classifying the anomalies, we collect data on demographic variables.

Reward. To incentivize the participants, they were informed that for every correct

decision, they get an additional 12 cents in addition to a base payment of 6 pounds

per hour. However, the two training classi�cations do not count for the �nal

evaluation.

Participant information. The participants are recruited using the platform “Pro-

li�c.co”. We note that crowd workers might limit the generalizability of our results.

However, our sampling of the task should ensure that crowd workers are capable

of doing the task. In total, we conduct the experiment with 66 participants (33

participants per condition). We exclude two participants in the CF condition and two

participants in the control condition because of conducting the eight tasks in under
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one minute. Apart from the attention check, we provide participants with in total

of six questions that ensure that participants understand the task and underlying

visualization, e.g., how many weeks of data are displayed in the context view. Based

on these questions, we further exclude eight participants in the CF condition and

nine participants in the control condition for incorrect answers. Even though this

might seem like a high number of excluded participants, one needs to consider that

multivariate time series anomaly detection is a very challenging task, and some

crowd workers may not even understand what a time series is. In addition, we

exclude all participants who fall outside the interquartile range of 1.5. By doing

so, we exclude two outliers in the CF condition. This leaves us with 22 participants

in the control group and 21 in the counterfactual group. Table 8.1 shows the age,

gender, and education distribution of the participants.

Table 8.1.: Summary of participants' characteristics.

Number per condition Control = 22

Counterfactual Explanations = 21

Age � = 27.12, � = 6.29

Gender 47 % Female

47 % Male

6 % Non-Binary

Education 26 % High school

51 % Bachelor

12 % Master

11 % Other

Evaluation Measures.

To evaluate our hypothesis, we calculate two measures based on the results of our

experiment—effectiveness and ef�ciency.

Our �rst measure, effectiveness, is the participants' accuracy in the anomaly investi-

gation, e.g., the share of correctly classi�ed events. To calculate the share, we �rst

binarize the result. Due to our sampling strategy, by chance, participants would be

able to have an accuracy of 50 percent. In addition to the accuracy, we analyze the

participants' certainty by comparing the share of agreement and disagreement with
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the percentage of strong agreement and disagreement. Next, ef�ciency represents

the time needed for the anomaly investigation. For both measures, we calculate the

mean per participant for the global evaluation of our hypothesis. Additionally, we

examine the effects of the explanation on each type of event more closely. Therefore,

we also build the mean for the four extreme and non-extreme weather events.

8.5 Results

In the following section, we report the results of our study. First, we provide a

qualitative interpretation of typical patterns of detected anomalies that could have

been observed by the participants of the experiment Finally, we present an analysis

of the experiments' results.

8.5.1 Qualitative Interpretation of Detected Anomalies

As mentioned earlier, participants in the experiment must classify identi�ed anoma-

lies in extreme weather events. This classi�cation is based on the intuition that each

type of event has common patterns that are shared across events. However, these

patterns often do not allow for a deterministic classi�cation of anomalies. Neverthe-

less, in the following, we qualitatively present and interpret certain patterns derived

from counterfactual explanations.

Extreme Weather. During extreme weather events, three variables in particular

differ from normal days: the number of trips is lower, the percentage of tips in the

total fare increases, and the average trip distance decreases. For an example of a

winter storm, see the top of Figure 8.4. We interpret this pattern to mean that more

people stay home on stormy days and forgo longer trips, such as visiting relatives

or friends in other neighborhoods. Furthermore, people leave their homes only for

urgent matters and then rely on taxis. Once they arrive at their destination, they

express their gratitude to the taxi drivers with an increased tip due to the adverse

circumstances.

Holidays. Compared to extreme weather events, holidays often have a distinct

pattern (see the bottom of Figure 8.4). On holidays, the number of trips during

the night is usually higher, and later the average number of passengers per trip is

higher. People often go out the night before, so there are more trips during the

night compared to regular days. Compared to regular workdays, we interpret the

higher number of trips during the night as people going out, resulting in more trips.
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The second observation with more people sharing taxis could be families visiting

relatives or friends together.

8.5.2 Experiment Results

In Table 8.2 we highlight the descriptive results of our experiment. The results

are broken down by experimental condition. Finally, we evaluate the signi�cance

of the results using Student's T-tests or Mann-Whitney U-tests after controlling

for normality using the Shapiro-Wilk test. In the following, we �rst present our

results on effectiveness and then highlight the impact of explanations on ef�ciency.

Figure 8.6 and Figure 8.7 visualize the results of our experiment.

Table 8.2.: Descriptive outcomes.

Condition Effectiveness Ef�ciency

Control 55.11 % (21.71 %) 30.92 s (22.2 s)

Counterfactual Explanations (CF) 70.24 % (15.04 %) 25.89 s (12.47 s)

Effectiveness. In the control condition, participants have an average accuracy of

55.11 %, or an average of 4.41 correct classi�cations. In the CF condition, we

measure an average accuracy of 70.24 %, which corresponds to an average of 5.7

correct classi�cations with the help of counterfactual explanations. The analysis of

the results of the experiment shows that the mean accuracy of the participants in

the CF condition is signi�cantly higher than in the control condition (Mann-Whitney

U-test: U =137.5 , p = 0.02). Thus, we can conclude that explanations improve

the effectiveness of anomaly investigation. In addition, Figure 8.6 shows that the

interquartile range is lower when explanations are provided.

Figure 8.6.: Distribution of the effectiveness of participants.
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Ef�ciency. On average, participants took 30.92 seconds to complete the eight classi-

�cations in the control condition (approximately 3.87 seconds per classi�cation).

In the CF condition, they took 25.89 seconds (approximately 3.24 seconds per

classi�cation). Figure 8.7 shows the measurements. No signi�cant effect on classi�-

cation time was observed between the CF and control conditions (Mann-Whitney

U-test: U = 255.5, p = 0.56). We conclude that counterfactual explanations do

not signi�cantly increase human anomaly investigation ef�ciency in our setup. We

discuss possible reasons for the non-signi�cant effect in the next chapter.

Figure 8.7.: Distribution of the ef�ciency of participants.

In total, our experiment highlights the potential for using counterfactual explanations

to improve anomaly investigation. In the following section, we discuss our results.

8.6 Discussion

In this paper, we propose a method to support anomaly investigation. We suggest

using explanations derived from anomaly detection to guide human anomaly investi-

gation. We instantiated this method to demonstrate its usefulness and to analyze two

facets of anomaly investigation—accuracy and ef�ciency. To this end, we conducted

a behavioral experiment that showed that providing counterfactual explanations

can improve the accuracy of anomaly investigation, particularly in distinguishing

weather events from non-weather events. That is, humans can identify the subset

of relevant anomalies from a larger set of detected anomalies. However, providing

counterfactual explanations does not signi�cantly improve ef�ciency in our current

setup. A possible reason for this lies in the nature of counterfactual explanations—

the visualization of a second instance that must be interpreted and compared to

the anomaly to be classi�ed. This additional effort may offset effects that improve

ef�ciency, such as easier classi�cation.
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8.6.1 Implications

To our knowledge, we are the �rst study to show empirically that explainable

anomaly detection can improve anomaly investigation. This result has important

implications for research and practice.

Implications for Research. In our research, we propose an anomaly detection and

investigation method that extends the well-researched area of anomaly detection

with complementary anomaly investigation. We then instantiated the method and

tested it in a behavioral experiment. We show that counterfactual explanations

can improve human accuracy in detecting relevant anomalies from a larger set of

anomalies. By demonstrating the usefulness of our method, we extend the existing

research on anomaly detection with the complementary anomaly investigation.

Implications for Practice. Our work has implications for any use case with large

amounts of data and rare classes of interest. In previous work, these use cases have

typically been characterized as unfavorable for ML (Pang et al., 2021). However, we

argue that they require a different approach. Instead of using supervised ML with

sampling strategies (e.g., SMOTE), we hypothesize that using explainable anomaly

detection together with human expert-based anomaly validation—i.e., human-AI

collaboration—may be superior. To maximize the potential bene�ts of such a system,

organizations should consider training their experts in AI-derived explanations to

increase their familiarity with explanations and potentially increase the ef�ciency of

anomaly investigation. By improving the usability of these interfaces, companies

could increase the ef�ciency and effectiveness of their decision-making processes,

leading to better outcomes and increased competitiveness.

8.6.2 Limitations and Future Work

As always with behavioral experiments, there is the question of how generalizable our

results are. We would like to emphasize that our research does not aim to recommend

general design features (e.g., the use of counterfactual explanations for time series),

but rather to show that explanation can improve the investigation of anomalies per

se, i.e., it shows the existence of the effect. We further argue that showing that it

works with laypeople in an online experiment shows even more potential for experts.

However, more work is needed to explore design recommendations and whether our

�ndings hold in other domains. We encourage other researchers to test our method

in different settings and derive design knowledge.
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We also want to discuss how realistic our chosen testbed is. Therefore, we compare

the classi�cation of taxi events with a typical use case for anomaly detection in

manufacturing. In manufacturing, anomaly detection is often used to detect early

indicators of machine failures (Jankauskas et al., 2023). Compared to our task, the

number of features in manufacturing is usually even higher. However, based on the

expertise of researchers, we argue that the number of relevant features informing

classi�cation tasks is usually similarly small.

A key open question is how our method is perceived by end users. A key criterion for

anomaly detection in the past has been the reduction of “false alarms,” i.e., detected

anomalies that do not belong to a class of interest, in order to reduce the workload

of experts (Campos et al., 2016; Pang et al., 2019). However, our results show that

explanations sometimes do not reduce the time needed to interpret the anomalies.

This means that explanations may be perceived as inconvenient. Future research

needs to investigate whether experts �nd explainable ADS useful and adopt it.

In addition to detecting infrequent events of interest–thus acting as an alert system–

explainable anomaly detection has the potential to act as a data mining tool to

generate new knowledge for organizations. Anomaly detection can �nd patterns

previously unknown to experts (Chandola et al., 2009). Explanations could allow

experts to validate these patterns and generate entirely new insights. Future work

could provide insight into this additional use case.

8.7 Conclusion

In this work, we address the problem of investigating anomalies in terms of their

relevance. We develop a method that assists human experts in anomaly investigation

by providing them with explanations of unsupervised automated anomaly detection.

We then conduct a behavioral experiment and show that counterfactual explana-

tions of autoencoder-based anomaly detection improve anomaly investigation in

multivariate time series. With our results, we hope to motivate researchers and

practitioners to research, implement, and use explainable anomaly detection.
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Harnessing Complementarity

in Intelligent Decision

Assistance

9

This chapter comprises an article that was published as: Schemmer, M., Kühl,

N., & Satzger, G. (2022d). Intelligent Decision Assistance Versus Automated

Decision-Making: Enhancing Knowledge Work Through Explainable Arti�cial

Intelligence. Proceedings of the 55th Hawaii International Conference on System

Sciences, 617–626. Intelligent decision assistance versus automated decision-

making: Enhancing knowledge workers through explainable arti�cial intelli-

gence. Note: To improve the structure of the work, the title was changed. The

abstract has been removed. Tables and �gures were reformatted, and newly

referenced to �t the structure of the thesis. The terminology was standardized

with the dissertation. Chapter, section and research question numbering and

respective cross-references were modi�ed. Formatting and reference style was

adapted and references were integrated into the overall references section of

this thesis.

9.1 Introduction

The recent advances in arti�cial intelligence (AI) lead to an increase in automated

decision-making (Coombs et al., 2020). Decisions can be classi�ed into unstruc-

tured, semi-structured, and structured decisions (Turban et al., 2010). Traditionally,

automated decision-making was applied to structured problems, and decision sup-

port system (DSS) enhanced decision-making for unstructured problems (Gorry &

Scott Morton, 1971; Turban et al., 2010). Unstructured tasks were considered too

dif�cult to automate since they require more cognitive �exibility (Lacity & Willcocks,

2016). However, advances in AI, speci�cally in deep learning, now increasingly

enable to automate also more complex cognitive tasks, such as driving a car (Frey &

Osborne, 2017). Therefore, AI has now the potential to also address semi-structured

and unstructured decisions that are far from basic back-of�ce tasks (Asatiani et al.,
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2019). For example, AI is used to automate loan approval (Infosys, 2019), or to

conduct recruitment choices (Albert, 2019)—decisions that in the past were unimag-

inable to automate. Therefore, both the number and complexity of tasks that can be

automated increase.

However, it has long been known that increasing automation of decisions can lead

to various drawbacks, such as automation bias and deskilling (Mosier & Skitka,

1999; Parasuraman et al., 2000). This is especially challenging since most semi-

structured and unstructured tasks are knowledge work incorporating high-stake

decision-making, e.g. medical diagnosis or jurisdictional decisions. In general, AI for

knowledge workers should automate routine and assist knowledge-intensive work

with reasoning and other high-level functions (Adelstein, 2007). The deskilling of

knowledge workers is a major problem, as they are the people who should train,

challenge and evolve AI. Knowledge workers create the labels for the AI that is

the foundation for its initial training. After changes in the environment of the

AI knowledge workers adapt and develop new solutions based on their domain

expertise (Baier et al., 2019). Furthermore, they should be able to challenge the

AI's recommendation, either with regard to performance but also with respect to

ethical and fairness concerns. While in many use cases these disadvantages may be

negligible there are cases where they must not be ignored. Reasons include, but are

not limited to, losing signi�cant competitiveness, e.g. in asset investment strategy

decisions, or even potentially harming people, e.g. in medical diagnoses.

Because DSS are explicitly designed to not automate but support decision-makers

(Arnott & Pervan, 2016), the initially obvious idea emerges to address these problems

by using DSS instead of fully automated systems. However, automation should not

be interpreted as a binary state but instead as a continuum (Parasuraman et al.,

2000). Negative impacts already occur at low automation levels (Parasuraman et al.,

2000)—as positive features of human decision-making are reduced such as human

engagement. Therefore, when speaking about automated decision-making, we use

the broader understanding of the continuum mentioned above, also including lower

automation levels. As many state-of-the-art DSS do include automated, AI-based

recommendations (Turban et al., 2010), they are subject to negative impacts, like

automation bias in the short, reduced engagement in the medium, and deskilling

in the long term. Thus, we perceive a major research gap in supporting human

decision-making without those downsides, and formulate:

RQ: How can we design AI for decision support without introducing automation

disadvantages?
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Based on automation and DSS research, we conceptualize a new class of DSS,Intel-

ligent Decision Assistance (IDA), that reduces automation-induced disadvantages

while still preserving decision support levels. From the automation literature, we

draw the critical evaluation of potential disadvantages of automated decision-making

and the awareness of a continuum between full automation and human agency

(Parasuraman et al., 2000). From DSS literature, we use the concept of guidance

(Morana et al., 2017). Part of guidance theory is the explainability of DSS (Morana

et al., 2017) which is a traditional topic of IS research (Meske et al., 2022). We

discuss various combinations of automation levels and explainability and eventually

follow the idea of informative guidance as a guidance that foregoes to provide

explicit recommendations (Silver, 1991). In line with this notion, we propose to

withhold the AI's decision and let the human “brainstorm” together with the AI

by providing techniques from the Explainable AI (XAI) knowledge base (Adadi &

Berrada, 2018), such as examples, counterfactuals, or feature importance. After

conceptualizing IDA and deriving hypotheses on its impact, we provide �rst evidence

for their validity through a systematic evaluation of empirical studies in the literature.

With our work, we contribute to research and practice by conceptualizing a new

class of DSS—Intelligent Decision Assistance.

9.2 Literature Review

In general, IS are designed to support or automate human decision-making (Zuboff,

1985). These two purposes are traditionally analyzed in two different research

streams: decision supportis traditionally covered in DSS literature (Power, 2007),

while Automation is mainly addressed in Ergonomics literature (Coombs et al.,

2020).

9.2.1 Decision Support Systems

DSS represent an important class of IS that aim to provide decisional advice (Arnott

& Pervan, 2016). In general, “DSS is a content-free expression, which means that

there is no universally accepted de�nition” (Turban et al., 2010, p. 16). However,

DSS can be used as an umbrella term to describe any computerized system that

supports decision-making in an organization (Turban et al., 2010). Originally, DSS

were de�ned as supportive IT-based systems, aiming at supporting and improving

managerial decision-making (Arnott & Pervan, 2016; Young, 1983). Later devel-

opments in DSS opened the area for application to all levels of an organization
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(Arnott & Pervan, 2016). In contrast to other IS, DSS focuses on decision-making

effectiveness and decision-making ef�ciency rather than ef�ciency alone (Evans &

Riha, 1989).

In general, the decision-making process consists of three phases that are supported

through DSS—the intelligence, design, and choice phase (Simon, 1960). In the

intelligence phase, the decision-maker searches, classi�es and decomposes problems

(Turban et al., 2010, p. 48-49). In the design phase, decision alternatives are

derived (Turban et al., 2010, p. 50). Finally, in the choice phase, the critical phase

of decision-making, the decisions are chosen (Turban et al., 2010, p. 58).

An important concept of decision support is decisional guidance that has a long-

lasting history in IS literature (Morana et al., 2017). Silver (1991) differentiates in

the form of guidance, which can be either suggestive, quasi-suggestive, or informa-

tive. Suggestive guidance makes judgmental recommendations that can also be a set

of alliterative decisions (Silver, 1991, p. 94). Quasi-suggestive guidance is guidance

“that does not explicitly make a recommendation but from which one can directly

infer a recommendation or direction” (Silver, 1991, p. 109). Lastly, informative

guidance provides decision-makers only with decision-relevant information without

suggesting or implying how to act.

Another form of guidance is the explainability of the DSS (Morana et al., 2017).

Explainability is a concept with a long tradition in IS (Gregor & Benbasat, 1999).

With the rise of expert systems, knowledge-based systems, and intelligent agents

in the 1980s and 1990s, the IS community has built the basis for research on

explainability (Meske et al., 2022). In particular, the research stream of Explainable

AI (XAI), which addresses the opaqueness of AI-based systems, is gaining momentum.

The term XAI was �rst coined by Van Lent et al. (2004) to describe the ability of

their system to explain the behavior of agents. The current rise of XAI is driven

by the need to increase the interpretability of complex models (Wanner et al.,

2020). In contrast to interpretable linear models, more elaborate models can achieve

higher performance (Briscoe & Feldman, 2011). However, their inner workings

are hard to grasp for humans. XAI encompasses a wide spectrum of algorithms.

These algorithms can be differentiated by their complexity, their scope, and their

level of dependency (Adadi & Berrada, 2018). The interpretability of a model

directly depends on its complexity. Wanner et al. (2020) de�ne three types of

complexity—white, grey, and black-box models. They de�ne white-box models as

models with perfect transparency, such as linear regressions. These models do not

need additional explainability techniques but are intrinsically explainable. Black-box

models, like neural networks, on the other hand, tend to achieve higher performance
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but lack interpretability. Lastly, grey-box models are not inherently interpretable but

are made interpretable with the help of additional explanation techniques. These

techniques can be further differentiated in terms of their scope, i.e., being global or

local explanations(Adadi & Berrada, 2018): Global XAI techniques address holistic

explanations of the models as a whole. In contrast, local explanations function

on an individual instance basis. Besides the scope, XAI techniques can also be

differentiated with regard to being model-speci�c or model agnostic.

9.2.2 Automation

Research on automation is an essential part of IS research (Frank, 1998) and has been

around for more than a century (Lacity & Willcocks, 2016) with the overarching goal

to increase the ef�ciency of work by using automation as a means (Hitomi, 1994).

In general, humans are performing worse than machines in conducting repetitive

tasks and are in�uenced by cognitive bias (Heer, 2019). Thereby, automation can

reduce human bias-induced errors. Automated decision-making applications are

designed to minimize human involvement and relieve humans from exhaustive tasks

(Harris & Davenport, 2005). Additionally, automation acts as an “talent multiplier”

that scales human expertise and frees up human capacity to focus on more valuable

work (Harris & Davenport, 2005).

Traditionally, automation has been seen as a binary state—either none or fully

automatic (Endsley & Kaber, 1999). However, Parasuraman et al. (2000, p. 287)

de�ne automation as “the full or partial replacement of a function previously carried

out by the human operator” which implies that automation may occur on different

levels. The authors propose a taxonomy of automation and develop ten levels. While

humans are responsible for decision-making at the �rst �ve levels, AI has control at

the last �ve levels up to full autonomy at level ten.

Beyond developing the 10-level taxonomy, Parasuraman et al. (2000) provide a

four-stage model of automated human information processing consisting of infor-

mation acquisition, information analysis, decision and action selection, and action

implementation. This model allows to precisely specify which stage is automated in

the decision process.

Although automation has many advantages, some authors have expressed chal-

lenges, such as automation bias or cognitive skill reduction leading possibly to

deskilling (Bainbridge, 1983). In the following, we discuss these disadvantages

which essentially represent the problem with current approaches that we want to

solve.
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In the short-term, automation might lead to Automation biaswhich is the “tendency

to use automated cues as a heuristic replacement for vigilant information seeking

and processing” (Mosier & Skitka, 1999)—essentially representing an over-reliance

on AI recommendations. For this reason, sometimes high levels of automation are

not desirable if the automation is not perfectly reliable and recommends wrong

decisions (Sarter & Schroeder, 2001). These wrong recommendations then can

lead to a negative switch from a previously correct human decision (Goddard et al.,

2012).

Furthermore, in the long-term, automation bias can result in deskilling, either

because of the reduction of existing skills or due to the lack of skill development

in general (Meske et al., 2022; Sutton et al., 2018). This attacks the collective

intellectual capital that is the key asset of many organizations (Asatiani et al.,

2019). Many factors might eventually result in deskilling. One factor is the reduced

amount of stored information in memory, and more importantly, the reduced mental

capability to store information, when using automation, which is commonly known

as the “Google effect” (Sparrow et al., 2011). Users seem to reduce investing energy

into storing things that can be easily retrieved (Sutton et al., 2018).

Research shows that humanengagementin the task is particularly important to

keep up the vigilantly (Mosier & Skitka, 1999). Engagement is a psychological

state that is broadly de�ned as an “individual's involvement and satisfaction as

well as enthusiasm for work” (Harter et al., 2002, p. 269) that could reduce

potential deskilling (Asatiani et al., 2019). Exemplary, the danger of deskilling can

be highlighted with an intelligent asset solution for �nancial markets. Thereby,

the engagement of the broker in the task will reduce which may lead �nally to

deskilling. Therefore, within the company implementing that solution, the broker

deskills—while brokers from companies not implementing the project stay skilled.

In the long-term, the environment may eventually change, for example, because

of new regulations. Therefore, existing AI solutions need to be built and trained.

One of the most important factors in the development process is domain knowledge

which may now be reduced due to deskilling. If other companies did not implement

AI, they can build and adapt faster and will, therefore, have competitive advantages

.

This long-term disadvantage of automated decision support leads to a discussion

of ef�ciency in the short and long-term in human-AI systems. In the short-term AI

might increase performance. However, in the long-term due to deskilling, AI systems

will not be effectively further trained and evolved. This potentially results in severe

negative long-term effects.
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9.3 Conceptualization of Intelligent Decision Assistance

In this section, we use the previously depicted research streams of DSS and automa-

tion and synthesize them to conceptualize a solution against the disadvantages of

automation. Subsequently, we discuss three particular techniques of this concept

We see two main dimensions that in�uence the undesired effects of automation,

which we discuss in more detail below: First, the general level of human control and

agency (Parasuraman et al., 2000) and, second, the form and degree of explainability

(Morana et al., 2017).

Which level of human agency in automation should be implemented is a notorious

discussion in automation literature (Heer, 2019). Asatiani et al. (2019) have

discussed that retaining control of human workers may help to sustain their skill

level. Similar, Endsley et al. (1997) argued that lower automation levels, in general,

can keep them cognitively engaged.

Regarding the second dimension, the literature suggests “that a seamless, collab-

orative interaction between human agents and automated tools, as opposed to

using automation as an isolated “black box”, could help to prevent the ill effects of

deskilling” (Asatiani et al., 2019, p. 6). As discussed, the research stream of XAI

addresses this “black box” issue in AI-based automated decision-making. Recent

examples (Lai & Tan, 2019; Ribeiro et al., 2018) demonstrate the capability of XAI to

support end-users in their decision-making. By varying the “degree” of explanations,

i.e. the system's transparency (Vössing, 2020), we believe different effects on the

negative aspects of automation could be in�uenced. On the one hand, some might

argue that more explainability is always better. However, the latest research suggests

that a high level of automation paired with high explainability might just result in

automation bias (Hemmer et al., 2021). Furthermore, the degree of explainability

should be adapted to the profession and experience of the end-user, e.g. novice

users might need more intuitive and simpler explanations while data scientists can

get the full degree of potential explanations (Kühl et al., 2019). These examples

show that also the degree of explainability needs to be chosen thoughtfully.

As introduced, there are many forms of guidance—suggestive, quasi-suggestive, and

informative guidance (Silver, 1991). Suggestive guidance provides the decision-

maker with explicit recommendations and tries to increase the guidance of this

recommendation. However, as Parasuraman et al. (2000) states, also partially

automated systems can lead to automation bias and skill degradation. In contrast,

as mentioned, informative decisional guidance is a form of guidance where users do
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not receive explicit recommendations (Silver, 1991). We follow this line of reasoning

and propose a system could simply withhold its recommendation—although it is

aware of that recommendation. Parkes (2012) validates that suggestive guidance—

which is actually a form of automated decision-making—can lead to automation bias,

while informative guidance does not have such effects. Research also shows that the

effects of the types of guidance vary depending on the task complexity. Montazemi

et al. (1996) found that suggestive guidance is better for less complex tasks and

informative guidance is better with increasing task complexity. This argument

strengthens our derivation. Following this line of thought gives rise to the idea to set

the degree of automation to almost zero and withhold explicit AI recommendations

while keeping support through explanations up. By doing so, we can minimize

the drawbacks of automation while still assisting human decision-making. We are

creating intelligent systems that are fully capable of solving issues on their own but

use their capabilities to inspire and support instead of automating. Based on the

derivation, we name this new class of DSS, Intelligent Decision Assistance (IDA) and

de�ne it as follows:

De�nition: Intelligent Decision Assistance (IDA) is an AI that a) supports humans, b)

does not recommend explicit decisions or actions, and c) explains its reasoning

Referring to the three phases of decision-making—intelligence, design, and choice—

we mainly support with this approach the intelligence and to some extent the

design phase. In terms of �nal effects on the human, we derive three hypotheses

(engagement, performance, automation disadvantages).

First, IDA provides decision-makers with options to actively engage with the task by

interactively requesting explanations, interpreting them and essentially communi-

cating with the AI. As Asatiani et al. (2019) (Asatiani et al., 2019) have discussed

providing explanations instead of using automation as an isolated “blackbox” could

result in an engaged human-AI collaboration. Thus, we hypothesize:

H1: IDA increases engagement with the task.

Beyond that, we hypothesize that IDA should increase human performance. While

especially, if the automation is far better than the human, IDA will most likely

not exceed automated decision-making, it should still improve the performance by

providing guidance and especially insights. Therefore, we formulate:

H2: IDA performance outperforms the human alone.
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Lastly, because IDA does not incorporate higher levels of automation it should

reduce automation disadvantages and especially prevent deskilling. Therefore, we

formulate the following hypothesis:

H3: IDA reduces automation induced disadvantages.

In the next section, we are going to test these hypotheses based on empirical studies

in the literature.

Figure 9.1 depicts IDA in the continuum of both discussed dimensions. We depict

different types of systems for decision-making. At a high level of automation and

almost no explanations, we position automation (Turban et al., 2010). Traditional

DSS come also usually with a higher level of automation, through providing explicit

recommendation, but additionally provide explanations for the decision-maker.

We delimit ourselves from DSS that use AI to transform unstructured data into

structured data and DSS that use AI to produce a pre-decision output, e.g. a forecast.

As stated, Parasuraman et al. (2000) de�ne four stages of automation—information

acquisition, information analysis, decision-making, and actions. Following this

classi�cation, we focus on the decision-making level. This classi�cation allows us

also to differentiate IDA from Advanced Analytics (Watson, 2014). While advanced

analytics may incorporate AI solutions they are always on the information acquisition

or analysis level. In contrast, IDA allows the decision-maker to actively engage on

the decision level and is positioned in the right top corner of Figure 9.1 with high

explainability and full human autonomy.

Figure 9.1.: Positioning of Intelligent Decision Assistance on the two dimensions of explain-
ability and degree of automation
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Now that we derived, de�ned, and delimit IDA, we discuss speci�c explanation

techniques that support IDA and consequently pose valid implementation options.

Speci�cally, we discuss feature importance, example-based explanations, and coun-

terfactual explanations. We explain these features based on the example of a loan

approval decision-making task.

Feature importance : Feature importance is a model-agnostic technique that gives

the decision-maker information about the importance of speci�c data points. Two

famous algorithms of feature importance are LIME (Ribeiro et al., 2016a) and

SHAP (Lundberg & Lee, 2017). In a loan approval decision where the banker has

information about past credits, expenses, demographics, etc., one could now train

arti�cial intelligence to make this decision and recommend explicit decisions. In

contrast, IDA would withhold the speci�c AI decision but provide the decision-maker,

i.e. the banker, with information on which data was in particular important for

the AI's decision. In an IDA this information could now be used for various use

cases. Now in the time of big data, e.g. having many information on customers, one

particular great use case would be to �lter or sort the features in an intelligent way

based on the feature importance.

Example-based explanations : Example-based explanations provide historical data

that is similar to the current instance (Van der Waa et al., 2021). Example-based

explanations, therefore essentially represent some form of information retrieval.

Research in psychology states that humans prefer explanations that show examples

(Cai et al., 2019). Furthermore, examples can be used within complex tasks (Glaser,

1986). Referring to our loan approval case, the decision-maker would receive

information on past approvals that were similar. In an IDA, the decision-maker

would get information about similar historical cases that are labeled. Based on these

examples, the decision-maker should be able to infer differences or similarities.

Counterfactual explanation : Counterfactual explanations give information on

what the smallest change would be to get a different AI decision (Wachter et al.,

2017). Counterfactual explanations take a similar form to the statement (Schoeffer

et al., 2021): “You were denied a loan because your annual income was 20,000.

If your income had been 45,000, you would have been offered a loan.” In an IDA

a counterfactual explanation would look like the following: “Your current annual

income is £30,000. If your income would be £45,000, the AI's decision would

change.” This type of non-intrusive explanation would lead to an increased thought

process of the decision-maker.

Figure 9.2 on page 209 highlights the idea of IDA for a credit allowance example.

On the left side, we display a traditional interface for automated decision-making.
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On the right side, IDA is visualized. In the traditional interface, the decision-maker

gets a speci�c recommendation. Additionally, the decision-maker gets the available

information on the credit applicant, the importance of the features for the decision,

and optional explanation options. In contrast, an IDA does not provide a speci�c

recommendation, but rather various XAI techniques that allow the decision-maker

to “brainstorm” with the AI.

Figure 9.2.: Comparison of traditional automated decision-making and Intelligent Decision
Assistance (IDA)

9.4 Validation Study

After deriving a conceptualization of IDA, we validate our concept by conducting a

literature-based validation study based on the methodology outlined by vom Brocke

et al. (2009). The goal of the study is to �nd empirical studies that tested variations

of automation and explainability and to analyze whether the �ndings do support

our hypotheses above. This means they should address the degree of automation

and explainability. For this reason, our search string consists of two main parts.

The �rst re�ects XAI, including relevant synonyms, such as “explainable AI” or

“interpretability” comprises of “arti�cial intelligence”. The second part comprised

synonyms of behavioral experiments, e.g., “user study” or “user evaluation”. To �nd

the synonyms, we initiated our SLR with an explorative search. The search string

was iteratively extended resulting in the following �nal search string:

TITLE-ABS-KEY(“explainable arti�cial intelligence” OR XAI OR “explainable AI” OR (

( interpretability OR explanation ) AND (“arti�cial intelligence” OR ai OR “machine

learning” ) ) ) AND ( “human performance” OR “human accuracy” OR “user study”
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OR “empirical study” OR “online experiment” OR “human experiment” OR “behavioral

experiment” OR “human evaluation” OR “user evaluation”)

Then, we selected an appropriate database. Our exploratory search indicated that

relevant work is dispersed across multiple disciplines, publishers, conferences, and

journals. For this reason, we chose the SCOPUS database, to ensure comprehensive

coverage. Following that, we de�ned our inclusion criteria. We included every

article that (a) conducted empirical research, (b) reported performance measures,

(c) focused on an application context where AI supports humans on the decision

level, and (d) provided an IDA setting. With our search string de�ned, we conducted

the SLR from January to March 2021. We identi�ed 256 articles through the

keyword-based search. As a next step, we analyzed the abstract of each article

and �ltered based on our inclusion criteria, leading to 61 articles. Afterward, two

independent researchers read all articles in detail and applied the inclusion criteria

again. Based on these, we conducted a forward and backward search. This led to a

total of �ve articles that were consequently analyzed in-depth to collect data about

each experiment. The data collection process was conducted by two independent

researchers who discussed and homogenized differences. The main focus of the

validation study was to extract the treatments and outcomes of each experiment

reported in the studies. For example, if two XAI techniques were used and compared

as separate experimental treatments we added two entries into our database. In

total, we identi�ed �ve articles and 12 experiments (Carton et al., 2020; Chu et al.,

2020; Lai et al., 2020; Lai & Tan, 2019; Schmidt & Biessmann, 2019). In the

following, we describe the studies and their results with regard to IDA in detail.

Carton et al. (2020) conduct an experiment on online toxicity classi�cation of social

media posts. They use feature importance to highlight words that were relevant

for the classi�cation. As one condition they have the prediction presence. In their

experiment, they �nd no signi�cant effect of examples. However, they �nd signs of

automation bias:“We �nd that the presence of a visible model prediction tends to

bias subjects in favor of the prediction, whether it is correct or incorrect.” (Carton

et al., 2020, p. 101)

Chu et al. (2020) conduct an experiment on age guessing supported through AI. They

test three different conditions of explanations and the visibility of AI predictions.

The authors found no signi�cant effects of explanations but also signs of automation

bias: “The predictions generally help whenever the human is inaccurate [...], but

can hurt when the human is accurate and the model is inaccurate [...].” (Chu et al.,

2020, p. 5)
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Lai and Tan (2019) and Lai et al. (2020) refer in their studies also to the ten levels of

automation introduced by (Parasuraman et al., 2000) and test various XAI techniques

without ever displaying what the actual AI's decision is on a deception detection

task. For example, they highlight all words that were relevant for the decision

(unsigned) (Lai et al., 2020). Another condition was to colorize this highlight

differently depending on the in�uence of the words (signed). Their results show

that signed highlights result in a signi�cant increase in XAI-assisted performance

(70:7% for signed, and 60:4% for human performance) (Lai et al., 2020). In Lai and

Tan (2019) they test additionally the in�uence of example-based explanations with

also positive but not signi�cant effects. However, also in Lai and Tan (2019) two

highlight-based conditions showed signi�cant positive effects in terms of short-term

performance.

Lastly, Schmidt and Biessmann (2019) conduct two different tasks in their experiment—

a book category classi�cation based on their descriptions and a movie rating classi�-

cation. They test two different XAI algorithms, both feature importance techniques

to highlight important words. Both data sets and both XAI algorithms show an

increase in IDA performance with one algorithms generating signi�cant results on

both data sets.

Table 9.1.: Validation study results

Source Engagement Performance Automation

Carton et al. (2020) No Measurement No effect Automation Bias

Chu et al. (2020) No Measurement No effect Automation Bias

Lai and Tan (2019) No Measurement Improvement No Measurement

Lai et al. (2020) No Measurement Improvement No Measurement

Schmidt and Biessmann (2019) No Measurement Improvement No Measurement

Table 9.1 summarizes our results of the validation study. Regarding our �rst hy-

pothesis (H1), we can see that current research fails to provide insights into the

effect of IDA on engagement. RegardingH2, three papers validated our hypotheses

that IDA performance should exceed human performance. Lastly, regardingH3,

two of the studies showed signs of Automation Bias in the presence of explicit AI

recommendations, which is an indicator of potential long-term deskilling effects

(Meske et al., 2022; Sutton et al., 2018).
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9.5 Discussion

Overall, the validation study provides �rst support for the hypotheses on the impact

of IDA and highlights the potential of IDA through �ve experiments with signi�cant

positive effects and none with signi�cant negative effects. Furthermore, the study

shows that current research lacks insights on the in�uence of IDA on engagement

which should be addressed in future research.

IDA has of course also limitations. One of them might be the perceived usefulness.

Telling the decision-maker that the AI would be theoretically capable of providing

them with a recommendation but this recommendation is to withhold may be

perceived as annoying for decision-makers, especially if they are under time pressure.

Therefore, the advantages of IDA need to be highlighted. One attenuated option

could be to show the explanations on default, but the recommendation just on

request. Another limitation is the potential high computational costs. Some XAI

techniques, e.g. SHAP values (Lundberg & Lee, 2017), are computational inef�cient.

Therefore, the computational costs, especially in comparison to traditional analytics

tools might be much higher. This trade-off has to be determined for individual

cases.

We want to clarify that IDA should not be applied in every use case. We explicitly

derive this idea for knowledge work and not for repetitive structured work. Especially

for jobs where the disadvantages of automation are critical, IDA should be taken

into account. Among others, in high stake decision-making such as medicine, law,

or human resource. But also in knowledge-intensive areas where the competitive

advantage is based on knowledge, such as �nance. However, as pointed out by

Endsley and Kaber (1999), for structured tasks that require low �exibility and have

a high system performance, full automation can be the best option.

Additionally, we want to discuss an additional advantage that may have a temporary

in�uence on the adoption of IDA. Paragraph 22 of the GDPR states: “The data

subject shall have the right not to be subject to a decision based solely on automated

processing [...].” (European Union, 2018) This means that in some cases automated

decision-making is simply forbidden. Here the best possible augmentation through

IDAs could be a valuable approach.

Furthermore, IDAs could have a positive in�uence on the fairness of AI-enhanced

decision-making. AI algorithms can have biases that can lead to unfair decision-

making. With IDAs, we allow people to have full control over the �nal decision and

can thus reduce bias.
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Finally, there are some open questions. Future work should empirically validate

whether IDAs prevent deskilling and other automation disadvantages and in contrast

increases engagement. Furthermore, one should access the ef�ciency effects of

IDA on human decision-making. For example, Fazlollahi et al. (1995) �nd that

decisional guidance increases decision time. However, also direct recommendations

may decrease ef�ciency if they lead to cognitive dissonance and consequently to an

in-depth analysis of the decision-maker. The ef�ciency of IDAs needs to be compared

to pure human and automated approaches.

9.6 Conclusion

The main goal of this study was to conceptualize a solution to automation-induced

disadvantages, such as automation bias or deskilling. To do so, we initiated our

research by conducting a literature review of automation and DSS literature. Based

on these two research streams, we conceptualized a new class of DSS, namelyIntel-

ligent Decision Assistance (IDA). IDA augments human decision-making through

Explainable AI (XAI) while withholding explicit AI recommendations. Thereby,

IDA aims to provide insight into the data without generating automation disadvan-

tages. Subsequently, we validated our conceptualization by searching for empirical

literature which shows �rst evidence of our hypotheses.

Our contributions are threefold: First, we synthesize the body of knowledge in

automation sciences and decision support literature. Second, we conceptualize

a new class of systems—IDA—and third, we test three hypotheses regarding the

potential of IDA.

Unleashing the potential of IDA requires a multidimensional design process. For this

reason, we see the IS research community as the predestined research discipline to

advance research in this �eld. We hope to motivate IS researchers and practitioners

to actively participate in the exploration of IDA.
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Conclusion 10
This thesis is based on the idea that human and AI agents do not necessarily compete

on all tasks but can complement each other. However, we observe that currently,

human-AI collaboration leads to ineffective results (Bansal et al., 2021; Hemmer

et al., 2021; Schemmer et al., 2022b). Therefore, in this study, we investigate impact

factors and how to harness the complementarity potential between human and AI

agents. Accordingly, our goal is to derive fundamental insights for understanding

and designing effectivehuman-AI collaboration. We addressed this research objective

by answering four interrelated research questions.

This �nal chapter of this thesis is structured as follows: In Section 10.1, we summa-

rize the results of our research and discuss the theoretical contributions. Next, in

Section 10.2, we outline the managerial implications of our work. In Section 10.3,

we discuss limitations and potential future research.1

10.1 Summary and Theoretical Contributions

In this section, we highlight the results of the thesis and their theoretical contri-

butions stemming from each study by revisiting the research questions (see Sec-

tion 1.2) to structure our �ndings. The results presented in this thesis contribute to

the domains of information systems, human-computer interaction, and computer

science.

Research Question 1 (RQ1)

How effectively do human agents and AI agents collaborate?

To address RQ1, we conduct a structured literature review and a meta-analysis

in Part II. Based on the structured literature review, we provide a comprehensive

overview of the in�uence of explainable AI on human decision-making performance

1Note that, with exceptions (arti�cial intelligence: AI, complementary team performance: CTP,
machine learning: ML, research question: RQ), for improved readability, we do not use previously
introduced abbreviations throughout this chapter.
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(cf. Chapter 3). Figure 10.1 summarizes the main results of the empirical analysis

of the state of the art. We collected a total of 93 experiments and further �ltered

them into three conditions based on available performance measures, i.e., human,

AI, AI-assisted, and explainable AI-assisted performance. We observe that of all the

experiments measuring AI and explainable AI-assisted performance, 46 out of 72

experiments showed an improvement in human decision performance by providing

explanations of the AI agent's prediction. Out of 63 experiments that measured AI- or

explainable AI-assisted performance and human performance, 59 experiments show

an improvement in performance due to AI- or explainable AI assistance. Finally,

our analysis shows that in the current state of empirical research on human-AI

collaboration, CTP (a joint performance superior to each agent individually) is not

consistently achieved, as only 16 out of 53 experiments show CTP. In addition,

we derive twelve testable hypotheses about potential in�uencing factors of CTP

that need to be addressed in future research. The contributions of this study are

twofold: First, we summarize the existing body of knowledge for empirical studies

of human-AI collaboration and describe relevant researched factors of CTP. Second,

we discuss neglected but relevant factors of CTP and formulate hypotheses for future

work.

Figure 10.1.: Research contribution addressing RQ1: Empirical results of structured litera-
ture review (cf. Chapter 3).

Furthermore, in Chapter 4, we conduct a statistical meta-analysis (Borenstein et

al., 2021) to complement the observations of the structured literature review. On

average, explainable AI assistance improves human task performance compared

to no assistance. We �nd that different types of data affect user performance

differently. For example, human-AI collaboration is more effective for textual data

than for tabular data. However, we �nd no additional effect of explanations on

user performance in explainable AI-assisted decision-making compared to isolated
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arti�cial intelligence (AI) assistance, raising the question of how to further develop

current explainable AI methods that improve user decision-making performance.

We contribute to the research by conducting, to the best of our knowledge, the �rst

meta-analysis of empirical human-AI collaboration. As a result, we are able to derive

statistically sound research gaps.

Overall, we contribute to the research by analyzing the state of empirical studies and

deriving research directions. Our research shows the need for a better understanding

of the mechanisms that promote effective human-AI collaboration, which is explored

in RQ2.

Research Question 2 (RQ2)

What are the key factors that in�uence effective human-AI collaboration?

The observation that CTP is often not achieved raises the question of what factors

might contribute to this observation. It illustrates that current knowledge of how

to leverage the respective capabilities of humans and AI agents to create synergies

in joint decision-making is not suf�ciently developed and that there is a need for

additional concepts that promote a deeper understanding of complementarity in

human-AI collaboration.

To address this research gap and to address RQ2 (cf. Chapter 5), we build upon

the theoretical work of Fügener et al. (2021) and propose a conceptualization

of human-AI complementarity. The conceptualization consists of a formalization

of complementarity potential and its constituting components, a differentiation

of relevant sources of complementarity potential, as well as a classi�cation of

integration mechanisms to realize the complementarity potential between humans

and AI. In detail, we argue that complementarity potential is composed of an inherent

and collaborative component. The �rst component captures the idea that humans

and AI agents possess different inherently present capabilities in the form of unique

human and AI knowledge. The second component captures a new type of knowledge

that only emerges through the interaction of humans and AI. We further differentiate

between the theoretical upper limit of complementarity potential available and

the realized amount during human-AI collaboration. Figure 10.2 on page 220

summarizes our conceptualization of human-AI complementarity.

We conduct a behavioral experiment to demonstrate the proposed conceptualiza-

tion's usefulness.2 Our results highlight the advantages of our conceptualization,

2We choose the real estate listing price prediction domain as a testbed and exemplarily instantiate a
relevant source of complementarity potential together with an integration mechanism.
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Figure 10.2.: Research contribution addressing RQ2: Conceptualization of Human-AI com-
plementarity (cf. Chapter 5).

allowing us to develop a more nuanced understanding of the factors that in�uence

effective human-AI collaboration. Our experiment shows that the distribution of

instances in which the human or the AI agents performs better (and thus the inherent

complementarity potential) changes when the human is provided with an additional

house photograph. More speci�cally, providing the photograph increases the num-

ber of house price estimates where the human performs better than the AI agent.

Moreover, we �nd that providing an additional photograph of the house affects the

human's estimate after receiving advice from the AI agent. Intuitively, the awareness

of having more information than the AI agent could lead to algorithm aversion

(Jussupow et al., 2021), which prevents humans from appropriately adjusting the

house prices recommended by the AI agent. However, our research indicates the

opposite, as our results show that providing the photo improves human adjustment

of house prices suggested by the AI agent.
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To summarize, our contributions are threefold. First, we conceptualize human-AI

complementarity by introducing and formalizing the notion of complementarity po-

tential, outlining sources of complementarity potential, and providing a classi�cation

of existing integration mechanisms for realizing complementarity potential. Second,

we demonstrate the usefulness of the conceptualization to a human-AI collaboration

setting by relying on information asymmetry as a source of complementarity poten-

tial. Third, through our proposed conceptualization, we �nd a new and surprising

insight that unique human contextual information can lead human decision-makers

to better adjust AI advice.

To conclude, in order to answer RQ2, we introduce the concept of human-AI com-

plementarity, consisting of a formalization, sources of complementarity potential,

and a classi�cation of integration mechanisms. It becomes clear that to achieve CTP,

it is essential to have the capabilities to harness complementarity potential, such as

information asymmetry, a topic we address in RQ3.

Research Question 3 (RQ3)

How can complementarity potential in AI-assisted decision-making be har-

nessed?

In this thesis, we focus on harnessing the theoretical complementarity potential and,

to address RQ3, analyze how this complementarity potential can be harnessed in AI-

assisted decision-making, which refers to the setting where human decision-makers

receive AI advice and are asked to either follow or adjust the advice. As discussed in

detail in Chapter 6, human decision-makers should not simply rely on AI advice but

should be empowered to differentiate when to rely on AI advice, and when to rely on

their own, i.e., they should display appropriate reliance. Despite being a necessary

condition for the effective use of AI, current research on appropriate reliance on AI

advice still needs to be clari�ed with regard to de�nition, measurement, and impact

factors (Bansal et al., 2021).

To address the current ambiguity in appropriate reliance research, we introduce a

two-dimensional metric—the appropriateness of reliance (AoR)—to describe and

measure reliance behavior. It is based on the relative frequency of correctly over-

riding incorrect AI suggestions (relative self-reliance—RSR) and following correct

AI suggestions (relative AI-reliance—RAIR) and re�ects a metric understanding of

appropriate reliance. Figure 10.3 on page 222 visualizes the metric.

Second, we analyze how the provision of explanations in�uences appropriateness

of reliance and the achievement of appropriate reliance states. Existing literature
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Figure 10.3.: Research contribution addressing RQ3: Measurement of appropriateness of
reliance (cf. Chapter 6).

is ambiguous with regard to the effects of explanations (Alufaisan et al., 2021;

Bansal et al., 2021; Wang & Yin, 2021). We consider additional constructs that may

mediate the effect of explanations to better understand and reconcile con�icting

results. More speci�cally, we hypothesize that explanations do not only in�uence

the information available to the decision-maker but also have an impact on trust

toward AI and self-con�dence. Our work shows that both mediators signi�cantly

in�uence the appropriateness of reliance.

Our work provides researchers with a theoretical foundation of appropriate reliance

on AI-assisted decision-making. More speci�cally, our research contributes by de�n-

ing appropriate reliance, developing a measurement concept, and analyzing how

explainable AI in�uences the appropriateness of reliance. Our de�nition should help

researchers to more accurately describe whether they have achieved appropriate

reliance in their experiments. Our measurement allows for precisely steering the

development towards appropriate reliance. Lastly, our experimental insights can be

seen as a starting point for in-depth experimental evaluations of factors impacting

appropriateness of reliance.

Building upon the results of Chapter 6, in Chapter 7, we extend our previously

derived research model by an additional mediator—the level of expertise possessed

by decision-makers. Whether decision-makers are highly knowledgeable experts or
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less knowledgeable laypeople appears to be an essential factor in�uencing reliance

behavior in AI-assisted decision-making (Nourani et al., 2020a; Wang & Yin, 2021).

Building on this notion, we propose that the learning process during human-AI

collaboration, in which decision-makers progressively acquire expertise, may play a

critical role in mediating the phenomenon of appropriateness of reliance. To explore

this hypothesis, we extend the existing research model and conduct a behavioral

experiment to test its validity empirically. Our results show that example-based

explanations can improve human learning during human-AI collaboration, and

learning improves the human ability to assess when to rely on themselves. Further,

if suf�cient learning is present, human learning helps to assess better when to rely

on the AI agent. Figure 10.4 shows the research model, including the measured

effects.

Figure 10.4.: Research contribution addressing RQ3: Research Model including task-speci�c
human learning mediator (sub-group analysis is not included). Signi�cance:
? ? ?p < 0.01, ?? p <0.05, ? p < 0.1 (cf. Chapter 7).

To the best of our knowledge, this research depicts the �rst study covering the

effect of explanations on learning and the mediating effect on appropriateness of

reliance. We thereby extend the research model of appropriateness of reliance

in the previous chapter by a learning construct. We contribute to the body of

knowledge on human-AI collaboration in general and on appropriateness of reliance

and learning from AI agents in particular. Our research contributes to the literature

on organizational learning (Levitt & March, 1988) as well as appropriate reliance

(Bansal et al., 2021; Schemmer et al., 2023d). Even though learning on the job is a

widely recognized approach for organizational learning, research has neglected the

potential of in-process learning during human-AI collaboration. So far, learning from

AI agents was always considered part of knowledge management. We, however,

show that also in-process learning during human-AI collaboration is possible and

thereby opens up new research potential for the domain of so-called AI teaching

(Spitzer et al., 2022). With regard to appropriate reliance, learning was so far

neglected as an impact factor. By extending the appropriateness of reliance research
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model, we contribute to the understanding of harnessing complementarity potential

in AI-assisted decision-making.

In summary, with regard to RQ3, we contribute to research by developing a mea-

surement for quantifying appropriate reliance behavior, deriving a research model

for appropriateness of reliance, including trust, change in con�dence, and human

learning, and validating this research model empirically. As these contributions are

tailored to AI-assisted decision-making, in RQ4, we explore the potential to harness

complementarity beyond AI-assisted decision-making.

Research Question 4 (RQ4)

How can complementarity potential beyond AI-assisted decision-making be

harnessed?

Finally, to better understand how system designers can harness complementarity

beyond AI-assisted decision-making, we analyze two different settings in Part V. Both

studies show examples where complementarity potential exists, but it is harnessed

in a different way than in AI-assisted decision-making. Complementarity potential

is de�ned by an existing ground truth and the potential to solve the task alone

by human and AI agents. AI-assisted decision-making is, per de�nition, bound to

supervised ML tasks, i.e., classi�cation and regression tasks. For this reason, we �rst

analyze how to harness complementarity potential in unsupervised ML to broaden

our perspective. In addition, we address one of the core challenges of human-AI

collaboration presuming theoretical inherent complementarity potential over time

(Fügener et al., 2021).

In the �rst study in Chapter 8, we shift our focus from supervised ML to unsupervised

ML. We chose anomaly detection as an application case because of its relevance

and prevalence in unsupervised ML applications, such as healthcare (Šabić et al.,

2021), maintenance (Minarini & Decker, 2020), and cybersecurity (Karimipour

et al., 2019). The anomalies detected by unsupervised ML approaches may include

rare events but not the actual event of interest. Therefore, human experts are

generally needed to investigate the relevance of the detected anomalies. While

existing literature provides a comprehensive examination of anomaly detection,

it falls notably short when it comes to providing systematic support for anomaly

investigation, i.e., the classi�cation of anomalies which are relevant to the business

problem at hand (Chemweno et al., 2016; Pang et al., 2021; Steenwinckel et al.,

2021). Therefore, we propose a novel method in which anomaly investigation

is improved by explanations from an AI agent that conducts anomaly detection.
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Figure 10.5 visualizes our proposed novel method. Subsequently, we conduct a

behavioral experiment to validate the usefulness of our method. Our experiment

involves a total of 64 participants, and we �nd that providing explanations can

improve the accuracy of anomaly investigation.

Figure 10.5.: Research contribution addressing RQ4: Our method of using explainable
anomaly detection to support anomaly investigation (cf. Chapter 8).

In our research, we propose an anomaly detection and investigation method that

extends the well-researched area of anomaly detection with complementary anomaly

investigation. We thereby contribute to human-AI collaboration research in general

as well as anomaly detection in speci�c. Our contribution can be summarized in

two main aspects. First, we present a conceptual framework for methodological

support of anomaly investigation using explanations derived from anomaly detection.

Second, we demonstrate the effectiveness of these explanations through a behavioral

experiment. Our study is the �rst to empirically examine the impact of anomaly

detection explanations on anomaly investigation. The validation of this potential

will inspire new use cases of anomaly detection that may substantially change the

approach to anomaly detection in general.

In our second study, which addresses RQ3, we critically assess the potential draw-

backs of AI-assisted decision-making (cf. Chapter 9). A major challenge is human

deskilling, which is induced by the low cognitive effort required to validate AI advice

as opposed to doing it alone (Buçinca et al., 2021; Fuegener et al., 2022). To

address this challenge, we discuss different combinations of levels of automation

and explainability and �nally follow the idea of informative guidance that refrains

from providing explicit recommendations (Silver, 1991). In line with this notion, we

propose to withhold the decision from the AI agents and let the human interact with
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the AI agent by providing explanations of the AI agent (Adadi & Berrada, 2018),

such as examples, counterfactuals, or feature importance. We call this new form of

collaboration intelligent decision assistance (IDA). After conceptualizing IDA and

deriving hypotheses about its effects, we provide initial evidence for its validity

through a systematic review of empirical studies in the literature. With our work, we

contribute to research by conceptualizing a new form of human-AI collaboration that

addresses current drawbacks of AI-assisted decision-making—human deskilling. We

thereby continue the research started by Fügener et al. (2021) and provide potential

means to counteract deskilling and thereby preserve complementarity potential.

To conclude, this thesis contributes to research by providing a comprehensive analysis

of the current state of empirical studies, introducing new theoretical concepts,

developing research models, and addressing critical challenges. In doing so, we are

extending the research on human-AI collaboration in information systems, human-

computer interaction, and computer science research.

10.2 Managerial Implications

After having outlined the theoretical contribution of our work, in the following, we

discuss the managerial implications. The economic potential of AI continues to grow,

now fueled by the emergence of new applications such as generative AI (Jo, 2023).3

According to a 2023 study, the implementation of generative AI in 63 use cases

studied could generate annual economic bene�ts ranging from $2.6 trillion to $4.4

trillion. (McKinsey, 2023). This would increase the predicted monetary impact of AI

by 15 to 40 percent. AI budgets are continuously increasing as well and are expected

to hit $154 billion in 2023—up 27% over 2022 (Needham, 2023). However, a

recent study shows that while AI adoption is steadily increasing, the return on

investment (ROI) that can be realized from AI projects is still lacking (Ashoori et al.,

2023). Speci�cally, the average ROI for enterprise-wide initiatives is only 5.9%, well

below the typical 10% cost of capital, and even best-in-class companies are only

scratching 13%. This gap highlights a critical need for developing more effective

strategies to enhance the ROI of AI deployments. We argue that properly designed

human-AI collaboration addresses this lack of ROI. For example, in real estate market

transactions, one of the most important questions is whether a house is appropriately

valued, i.e., the house is offered within a price range that re�ects its assets and is

comparable to similar houses in terms of the characteristics of the property and

3Generative AI usually refers to the process of extracting intent information from human instructions
and generating content according to the extracted intentions (Cao et al., 2023).

226 Chapter 10 Conclusion



its surroundings. It is dif�cult for humans to correctly quantify a property's value

because of the many factors that affect it (Kucklick et al., 2021). For this reason,

more and more companies are using AI agents in real estate appraisals (Madhuri

et al., 2019). As we have shown in Chapter 5, the availability of additional human

information, e.g., by visiting the house, could lead to a complementarity potential

between human and AI agents in appraising houses. We argue that with the right

design, human-AI collaboration could lead to CTP, i.e., prediction accuracy that

exceeds the individual performance of both AI and humans. This would lead to a

better prediction of house prices and thus improve the ROI of the AI investment.4

Our work is concerned with deriving foundations and insights for such effective

human-AI collaboration, i.e., how to achieve CTP. Thus, the results presented have

direct practical relevance, as they can guide managers to pursue their AI initiatives,

leading to improved ROI. In the following, we highlight the speci�c managerial

implications of our thesis.

First of all, we present means to facilitate systematic discussions in organizations

about AI initiatives and their strategic positioning. Discussions about human-AI

collaboration in practical contexts are typically characterized by inconsistent termi-

nology and vague statements. For example, it is often said humans need to monitor

AI, but no reason is provided. In this work, we provide a formalization of human-AI

complementarity and precise terminology. Furthermore, we provide a classi�cation

of sources of complementarity potential and different integration mechanisms. We

believe that by providing clarity on terminology, these foundations can contribute to

a more informed and systematic strategic exchange and, thus, to the development

of AI in organizations.

The foundation of effective human-AI collaboration is complementarity potential. We

provide managers with guidance on where to identify complementarity potential by

providing an overview of possible sources. We highlight the potential of information

asymmetry as one practical, relevant source of complementarity potential. Especially

on the human side, access to further information not available to the AI agent often

exists in practical applications. Not all data might be available in a digital format

due to technical or economic reasons. Also, information is not always digitizable,

especially if it exists only implicitly (Ibrahim et al., 2021). While some of these

obstacles can be overcome, others will likely persist. We empirically validate that

information asymmetry can increase the complementarity potential and, beyond

that, has further bene�cial implications in the collaboration of human and AI agents.

In general, managers could invest in training that enhances the complementary skills

4This example does not account for the costs related to human-AI collaboration. We will discuss this in
the next section.
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of their employees, such as searching and interpreting unique human information,

to improve the inherent complementarity potential in human-AI teams.

Complementarity potential needs to be harnessed in practical applications. Our

research provides guidance on how to leverage existing complementarity potential in

the most widely used practical form of human-AI collaboration—AI-assisted decision-

making. In practice, managers typically focus on the adoption of AI and compliance

with AI advice maximizing the reliance (Alnowami et al., 2022; Jussupow et al.,

2021; Kerasidou et al., 2021; Shin, 2021; Siau & Wang, 2018). However, to

realize the potential bene�ts of human-AI collaboration, employees need to rely

appropriately on AI advice (Bansal et al., 2021; Schemmer et al., 2023d). We show

that the appropriateness of reliance (AoR) can be positively in�uenced by proper

design, e.g., by using adequate explanations of the AI's decision-making.

Besides deriving guidance on the proper design for effective human-AI collaboration,

our research shows empirically that with the right design of human-AI collaboration,

practitioners can not only achieve CTP by using AI as a “teacher” but also increase

the knowledge level of their workforce. We show the potential to learn from each

other in a human-AI collaboration. Thus, these insights can be used to guide not

only designers of AI systems but also knowledge managers within organizations to

enhance the knowledge of practitioners.

Lastly, we introduce and inspire the use of novel concepts and methods. We develop

a new method for harnessing complementarity in anomaly investigation, which

has implications for any use case with large amounts of data and rare classes of

interest. To cope with advantages induced through AI-assisted decision-making, we

derive Intelligent Decision Assistance (IDA), which addresses deskilling in human-AI

collaboration.

In summary, our research contributes to practice by providing terminology, structure,

and insights into the design of effective human-AI collaboration and deriving novel,

inspiring concepts. In doing so, we provide support for human-AI collaboration in

general. Managers often see only the short-term bene�ts of cost reduction through

automation while neglecting the potential value of human-AI collaboration. Even

when they do support human involvement, it is usually for �imsy reasons based on

external pressures, such as complying with regulations. Our research shows that

when faced with external pressure, managers should not view it as a burden but

rather as an opportunity to leverage complementarity potential, realize CTP, and

improve ROI.
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10.3 Limitations and Future Research

The research presented in this thesis certainly has limitations that motivate future

research. Since Chapter 3 through Chapter 9 discuss limitations and future research

for each study individually, in this section, we re�ect the most important ones that

should be taken into consideration regarding the generalizability of the results.

First and foremost, this thesis is limited by the focus oneffectivenessof human-AI

collaboration, i.e., achieving CTP. In this thesis, we focused on effectiveness because

we observed that CTP was not consistently achieved in empirical work. For this

reason, we wanted to demonstrate the possibility of achieving CTP by unraveling its

impact factors. Now that we have investigated systematically impact factors, future

research should analyze the overall economic impact of human-AI collaboration.

While a marginal performance improvement may be theoretically interesting to

demonstrate the existence of CTP, it may not be practically relevant if it does not

improve the ROI. Including the cost of human-AI collaboration implementations

could strengthen the practical implications of this thesis.

An additional limitation arises from the methodological focus on empirical research

in this thesis. To answer RQ2-RQ4, we conducted behavioral experiments. The

generalizability of our research may be limited to the domains and tasks we selected.

The focus of our research was primarily concentrated on singular tasks, which inher-

ently imposes constraints on the broad applicability of the results across diverse tasks.

Therefore, while our �ndings provide valuable insights into human-AI collaboration

in this speci�c task, extrapolating these conclusions to encompass all potential tasks

within different domains or industries might not be appropriate. However, each

experimental setting was consciously and carefully chosen for the individual studies.

Additionally, we employ a variety of tasks over all the studies, ranging from image

classi�cation to text analysis to sensor data, which should increase generalizability.

Nevertheless, future work must validate our concepts in other tasks and domains.

The backbone of this thesis is the assumption that complementarity potential is

available. In this thesis, we provide guidance on sources of complementarity poten-

tial. Providing these sources in a structured way may inspire researchers to look for

complementarity beyond arbitrary statements about complementarity capabilities,

such as human creativity and AI computational power. Furthermore, we introduce a

promising and practical source, information asymmetry (Ibrahim et al., 2019). We

conduct a behavioral experiment to show the impact of unique human contextual

information on complementarity potential. Future work needs to validate additional
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sources empirically. First ideas for, e.g., training AI agents to be more complementary

can be found in Hemmer et al. (2022a) and Hemmer et al. (2023).

Another limitation is the focus on one particular instantiation of AI assistance

elements throughout the thesis—explainable AI. We focus on explainable AI for

our analysis of the state of the art of empirical human-AI collaboration research as

well as the main assistance element to harness the complementarity potential in

AI-assisted as well as beyond AI-assisted decision-making. Since explainable AI is

certainly the most used form to support human-AI collaboration (Lai et al., 2023),

we believe this is a good starting point for research. However, future work should

evaluate other elements of AI assistance, such as providing in-depth information on

training data.

Lastly, with two exceptions, this thesis focuses on AI-assisted decision-making,

encompassing classi�cation and regression tasks. However, AI agents can address a

magnitude of additional tasks (Carbonell et al., 1983), such as clustering, forecasting,

etc. Especially the generation of text or images, commonly referred to as generative

AI (Jo, 2023), is growing. The scope of this thesis has implications for all kinds of

tasks conducted by AI agents. Future work needs to investigate the applicability of

our foundations and insights.

Overall, we hope that this work will contribute to making the most of current

improvements in AI. We believe that our research will prove useful in designing

human-AI collaboration that allows human and AI agents to complement each other,

thus moving from competition to complementarity.
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Appendix A
A.1 Appendix Human-AI Complementarity

Conceptualization

A.1.1 In-Person Pilot Study

For our in-person pilot study, we conducted two expert workshops. Each one lasted

90 minutes and aimed to elaborate on the usefulness of the house images for the

participants and generate insights for the experimental design. The participants

were 13 interviewees and two researchers. The �rst workshop was conducted

with a smaller group to facilitate more extensive exchange. The second workshop

focused on collecting broad ideas. We discussed three prediction cases in each

session. After each house, we collected feedback in a structured way by asking the

participants to make notes about how the AI and the information supported their

decision-making.

In general, both workshops con�rmed the usefulness of unique human contextual

information (UHCI). We also received helpful comments for further re�nement of

our study. In the �rst workshop, a participant mentioned that the “picture was the

�rst indication for me” and another one stated “I was already 70% sure what I was

going to type when I saw the picture.” Both comments indicate the importance that

participants see in the UHCI.

In the second workshop, participants highlighted the need for more information

about the underlying data by stating “show the user the summary statistics.” They

also mentioned the importance of a training section, for example by saying “I need

examples of wrong (and right) predictions”.
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A.1.2 Task and AI Tutorial

Figure A.1.: Online experiment graphical user interface for the task tutorial.
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