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Abstract

The rapid development of artificial intelligence (AI) and its growing ability to
autonomously perform a wide range of tasks raises questions about the future role of
humans in various domains. In this thesis, we argue that despite the potential ability
of AI to automate tasks, there is complementarity between humans and AI that can
be harnessed to achieve complementary team performance (CTP), i.e., a level of
performance that neither can achieve individually. Therefore, we propose that in
the presence of complementarity, humans and AI should work together, a situation
commonly referred to as human-AI collaboration. However, existing empirical work
shows that the realization of CTP seems to be inconsistent and elusive. Some studies
confirm its achievement, while others contradict this finding, essentially weakening
human-AI collaboration as an alternative to automation. Therefore, this thesis
investigates the challenges of achieving CTP and aims to provide guidance on how
to obtain it.

Since the current overview of CTP is rather anecdotal, we begin the thesis by conduct-
ing a structured literature review and a meta-analysis to provide a comprehensive
and statistical perspective on the current state of empirical studies in the field of
human-AI collaboration. Our results show that human-AI collaboration can outper-
form human individuals but often does not exceed the AI’s individual performance.
These findings underscore the need for a deeper understanding of the factors that
influence CTP.

To address the identified shortcomings, we derive a theoretical foundation of the
impact factors of CTP, which we refer to as the human-AI complementarity concept.
Our concept, anchored in existing justificatory knowledge from the information
systems field, provides a formalization, highlights possible sources of complementar-
ity potential, and introduces a classification of mechanisms to fuse human and AI
decisions during collaboration. Based on this concept, the remainder of the thesis
focuses on how existing complementarity potential can be harnessed.

We first explore the process of harnessing complementarity potential in AI-assisted
decision-making, the most common form of human-AI collaboration. In this setting,
a human receives advice from an AI agent and then decides whether to accept or
adjust it. To achieve CTP in this form of collaboration, it is critical that humans rely
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appropriately on the advice provided by AI. This area of research is still in its infancy
and lacks a solid foundation and established measures. To address this research
gap, we develop a new measure and a research model. In addition, we conduct two
empirical studies to validate and test both the measure and the model. We then
shift our focus beyond AI-assisted decision-making to show how complementarity
can be harnessed in other forms of human-AI collaboration. Finally, we address the
challenge of preserving complementarity over time by conceptualizing a new form
of human-AI collaboration—intelligent decision assistance.

This thesis enriches the research on human-AI collaboration by conducting a compre-
hensive analysis of the current state of empirical studies, introducing new theoretical
concepts, developing a measure and research models, and addressing critical chal-
lenges. From a practical standpoint, we enable organizations to maximize AI’s utility
and yield higher return on investment by offering clear guidance to consistently
achieve CTP. Finally, we contribute to the ubiquitous discourse on the future of work,
which predominantly focuses on either full automation or pure human work, by
providing foundations and evidence for effective human-AI collaboration.
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Introduction and Foundations





Introduction 1
„Today’s workforce should prepare to work hand

in hand with AI.

— Arvind Krishna
(IBM CEO)

1.1 Motivation

In recent years, artificial intelligence (AI) has made significant strides in various
domains such as medicine (Wu et al., 2020), finance (Day et al., 2018) or man-
ufacturing (Stauder & Kühl, 2022), even including those involving high-stakes
decision-making. For example, AI applications now assist doctors in making diag-
noses (Leibig et al., 2022), aid recruiters in the hiring process (Peng et al., 2022),
and even provide decision support within the judicial sector (Kleinberg et al., 2018).
This widespread adoption of AI stems from ongoing advancements in machine learn-
ing (ML), leading to improved capabilities and enhanced performance (Janiesch
et al., 2021; Ren et al., 2015). Especially novel developments in the architectures
of deep neural networks (Dong et al., 2021) have led to cases where ML models
outperformed many existing benchmarks based on traditional methods (Sarker,
2021).

Across a growing range of tasks, the increasing capabilities of AI have begun to
surpass human performance (Takeda et al., 2023). This includes mastering complex
games such as poker (Brown & Sandholm, 2019) and Go (Silver et al., 2018),
accurately identifying categories in image recognition tasks (He et al., 2015), and
detecting medical conditions such as breast cancer (Pisano, 2020). Especially with
the recent rise of foundation models—pre-trained large ML models (Bommasani
et al., 2021)—the number of tasks that both humans and AI can perform effectively
and independently is growing. Examples of such tasks include material discovery
(Takeda et al., 2023), social media content creation (Bommasani et al., 2021), and
programming code generation (Mozannar et al., 2022). The increasing ability of
AI to perform tasks autonomously distinguishes today’s AI from the past, when AI
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provided selective input for broader downstream decisions that only humans could
make. For example, in credit allowance decisions, AI only provided an aggregated
probability of default that the lender used in the downstream task of making the
final credit decision. Today, however, AI is increasingly capable of making such
decisions independently, meaning that more and more tasks could be automated. As
automation increases, AI is essentially competing with humans and raising questions
about the future role of humans. To summarize, we1 can say that in more and more
application cases, AI is matching human performance, which essentially changes the
role of AI from a decision-making input provider to an autonomous AI agent (Qian
& Qian, 2020).

In this thesis, we argue that modern AI agents, despite being able to automate, also
have the potential to enhance humans through complementary capabilities (Bansal
et al., 2021; Dellermann et al., 2019a). For example, in the medical domain, both,
human and AI agents are able to conduct the diagnosis of diseases on their own
(Pisano, 2020; Reverberi et al., 2022). However, it has been demonstrated that
they typically show different performances on individual task instances (Geirhos
et al., 2021; Steyvers et al., 2022). For example, human and AI agents in cancer
detection show different detection qualities on individual CT images (Jussupow
et al., 2021). In this context, AI agents may detect patterns in large amounts of data
that humans will find challenging to discover, while humans, in turn, excel at the
causal interpretation and intuition required to interpret these patterns (Lake et al.,
2017; Li et al., 2019b). By leveraging this complementarity potential between these
two agents, a superior performance beyond the human or AI agent alone can be
reached.2 This desired superior performance is referred to as complementary team
performance (CTP) (Bansal et al., 2021).

We argue that in the presence of complementarity potential, human involvement,
as opposed to automation, should be considered to enable CTP. In this thesis, we
refer to the interplay between human and AI agents as human-AI collaboration.
This concept is defined as a setting where two or more agents, including at least
one human and one AI agent, collaborate to achieve mutual goals (Terveen, 1995;
Vössing et al., 2022). For the purpose of this thesis, as a starting point, we restrict

1Linguistically, this thesis uses the first-person plural using “we”. Two rationales underpin this practice.
First, it promotes the readability of this work, as “we” better engages the reader and invites to a
shared journey. Second, research always takes place in a community that collectively seeks to explore
a research area.

2Some people argue that when AI agents reach superintelligence, that is, when they become better
than humans in every way, this complementarity will disappear. However, as Keynes said: “In the
long run, we are all dead.” (Keynes, 1923, p. 80). Keynes was arguing for some focus on the short
and medium term. In the short and medium term, no AI is likely to reach the cognitive level of
superintelligence, which ensures the relevance of human-AI complementarity in the now.
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our study of human-AI collaboration to scenarios involving a single human and one
AI agent. The goal of achieving CTP through human-AI collaboration has recently
gained attention in various disciplines, such as information system (IS) (Fuegener
et al., 2022), human-computer interaction (HCI) (Bansal et al., 2021; Zhang et al.,
2022), and computer science (CS) (Bansal et al., 2019b; Siu et al., 2021).

Various empirical studies have demonstrated that human-AI collaboration can out-
perform human individuals, but they often do not exceed the AI agents’ individual
performance (Bansal et al., 2021). The observation that CTP is often not attained in
empirical studies raises questions about which factors could contribute to achieving
CTP. It illustrates that the current knowledge of how the respective capabilities of hu-
mans and AI agents can be utilized to create joint synergies has yet to be sufficiently
developed. This means there is a need for additional concepts that foster an in-depth
understanding of complementarity and how to harness it in human-AI collaboration.
In this thesis, we aim to understand what is necessary to create effective human-AI
collaboration, i.e., to achieve CTP consistently and thereby contribute to human-AI
collaboration research in IS, HCI, and CS.

1.2 Research Objective and Research Questions

Building on the outlined motivation, the objective of this thesis is to explore and
establish foundations that can guide effective human-AI collaboration. The evolution
of AI toward autonomous agents requires deeper insights into the unique and
complementary capabilities of human and AI agents. This work aims to contribute
to a better understanding of the mechanisms that promote effective human-AI
collaboration (i.e., achieving CTP), which leads to the following research objective
of this thesis:

Research Objective
The research objective of this thesis is to derive foundations and evidence for
understanding and designing effective human-AI collaboration.

Our primary research objective is divided into four research questions (RQs). In the
following, the individual research questions are introduced.

With the ongoing development of AI agents and the increasing interest in human-
AI collaboration, researchers have begun to assess whether the improvement in
decision performance from human-AI collaboration can be quantified (Bansal et al.,
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2021; Buçinca et al., 2020). While some researchers find a benefit from human-AI
collaboration in user studies (Buçinca et al., 2020), others find negligible evidence
(Carton et al., 2020). These differences could be due to different experimental
setups and tasks tailored to different research objectives. It lacks a unified view
of related work and statistical analysis. In particular, there is no overview of the
achievement of CTP across experimental studies. Therefore, we aim to clarify the
current state of the art of AI-assisted decision-making performance in empirical user
studies and formulate:

Research Question 1 (RQ1)
How effectively do human agents and AI agents collaborate?

Answering our first research question highlights a severe ambiguity in current
research on human-AI collaboration (Hemmer et al., 2021; Schemmer et al., 2022b).
More specifically, we show that CTP is often not attained in empirical studies. Most
studies investigate whether CTP can be achieved through appropriate human reliance
on the AI agents’ advice. In these studies, researchers supplement the AI agents’
recommendation with additional information aiming to enable human agents to
assess betters its reliability, e.g., explanations or confidence measures (Bansal et al.,
2021; Liu et al., 2021; Schreiber et al., 2020; Zhang et al., 2020) which is commonly
referred to as explainable AI (XAI) (Wanner et al., 2020). However, our research
shows that this additional information does not reliably have positive effects on
decision-making performance (Hemmer et al., 2021; Schemmer et al., 2022b). The
fact that CTP is often not reached and the most common design feature of effective
human-AI collaboration (XAI) does not reliably improve performance illustrates
that the current understanding of human-AI collaboration is not yet sufficiently
developed and that there is a need for a deeper understanding. Therefore, we
formulate:

Research Question 2 (RQ2)
What are the key factors that influence effective human-AI collaboration?

We derive and formalize two key factors of effective human-AI collaboration, namely
the existence of complementarity potential and the effective realization of this
potential (Schemmer et al., 2023b). To illustrate complementarity potential, in
classifications, it refers to the proportion of tasks that can be effectively accom-
plished by either entity (such as a human or an AI) but not by both together. It
essentially signifies the unique problem-solving abilities possessed by each agent.
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It is important to note that even if complementarity potential is available, it is
useless if it cannot be harnessed. Current research does not show robust ways to
improve decision performance through human-AI collaboration (Bansal et al., 2021;
Hemmer et al., 2021; Schemmer et al., 2022b). Therefore, while ensuring sufficient
complementarity potential is essential, in this thesis, we focus on realizing existing
complementarity potential. More specifically, we focus on human agents receiving
input from AI agents—so-called human ex-post integration. Here, the most common
instantiation of this integration is AI-assisted decision-making (Lai et al., 2023).
AI-assisted decision-making refers to a setting in which a human receives AI advice
and then is asked to either follow or adjust the advice. Since this is the most common
integration, we want to explore it further and formulate the following third research
question:

Research Question 3 (RQ3)
How can complementarity potential in AI-assisted decision-making be har-
nessed?

To harness complementarity in AI-assisted decision-making, human decision-makers
need to appropriately rely on the advice recommended by the AI agent (Schemmer et
al., 2023d). However, it is unclear how to design for appropriate reliance. Therefore,
we develop and validate a measure of appropriate reliance and a research model
to investigate appropriate reliance in AI-assisted decision-making. However, the
spectrum of human-AI collaboration is much broader than AI-assisted decision-
making (Vössing et al., 2022), which encompasses classification and regression
tasks. AI agents can address a magnitude of additional tasks (Carbonell et al.,
1983), such as clustering, anomaly detection, etc. Especially the generation of text
or images, commonly referred to as generative AI (Jo, 2023), is growing. Other
forms of collaboration and different tasks than classification and regression may
require different foundations. Therefore, we extend our perspective and research
beyond AI-assisted decision-making. Thus, as the final research question of this
thesis, we want to explore how to potentially harness complementarity potential
beyond AI-assisted decision-making:

Research Question 4 (RQ4)
How can complementarity potential beyond AI-assisted decision-making be
harnessed?

In the following, we introduce the research design of this thesis to answer the
research questions.
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1.3 Research Design and Structure

This thesis consists of six parts. In the current Part I, we introduce the research
questions and outline the research design. Furthermore, the foundations of the
thesis are presented. In Part II, we analyze the current state of empirical studies on
human-AI collaboration to address RQ1. Based on the insights gained in Part III, we
conceptualize the foundation of effective human-AI collaboration to address RQ2.
Next, in Part IV, we derive insights on how to harness human-AI complementarity in
AI-assisted decision-making, addressing RQ3. In Part V, we broaden our perspective
to address RQ4, which focuses on leveraging complementarity beyond AI-assisted
decision-making. Finally, Part VI, we summarize the findings, discuss implications,
and outline limitations and potential future research. Table 1.1 on page 9 visualizes
the structure of this thesis.

The type of research questions and the nature of the study determine the choice
of research methodology. Following the structure of the thesis and based upon the
research questions introduced in Section 1.2, in the following, we illustrate the
research methodology.

In Part I, in Chapter 2, we introduce the foundations of this thesis. We analyze
the role of ML in AI agents. We do so by taking an ML perspective on AI agents’
capabilities and their relevant implementation. To this end, we review the relevant
literature for both terms and synthesize and conceptualize the results.

In Part II, the first research question (RQ1) of this thesis is addressed in two chapters.
To answer the question of how effective human agents and AI agents collaborate, we
collect studies based on a structured literature review (SLR) that empirically analyze
human-AI collaboration and study them with two approaches—first qualitatively
and then quantitatively using a meta-analysis. The nature of SLRs and meta-analyses
require a certain degree of homogeneity within the sample (Borenstein et al., 2021;
vom Brocke et al., 2009). Therefore, we first determine the scope of the articles to
analyze. A common trait found amongst a considerable sample of these empirical
studies is the emphasis on equipping humans with insights into the decision-making
processes of AI, a concept often denoted as XAI. Consequently, our search strategy is
tailored to incorporate studies that revolve around the theme of XAI.

In Chapter 3, we conduct a structured literature review following vom Brocke
et al. (2009) to collect the body of empirical studies of human-AI collaboration.
We analyze the collected data (29 articles) qualitatively using a socio-technical
perspective (Maedche et al., 2019) and cluster the identified factors according to
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Introduction and Foundations

Part I 
Chapter 1
Introduction

Chapter 2
Foundations
Method: Literature review and conceptualization

Analysis of the Current State of Empirical Work on Human-AI Collaboration

Part II
- RQ1 -

Chapter 3
Structured Literature Review of Empirical Studies on Human-AI Collaboration.
Method: Structured literature review

Chapter 4
A Meta-Analysis of the Impact of Explainable Artificial Intelligence on Decision 
Performance Method: Meta-analysis

Conceptualization of Human-AI Complementarity

Part III
- RQ2 -

Chapter 5
Conceptualization of Human-AI Complementarity and the Influence of Information 
Asymmetry
Method: Formalization, conceptualization, and behavioral experiment

Harnessing Complementarity in AI-assisted Decision-Making

Part IV
- RQ3 -

Chapter 6
Harnessing Complementarity: The Role of Appropriate Reliance
Method: Conceptualization, theory development, behavioral experiment, and structural 
equation modeling

Chapter 7
Harnessing Complementarity: The Influence of Human Learning on Appropriate Reliance
Method: Theory development, behavioral experiment, and structural equation modeling

Harnessing Complementarity Beyond AI-assisted Decision-Making

Part V
- RQ4 -

Chapter 8
Harnessing Complementarity in Anomaly Detection
Method: Conceptualization and behavioral experiment 

Chapter 9
Harnessing Complementarity in Intelligent Decision Assistance
Method: Conceptualization and structured literature review

Finale
Part VI Chapter 10

Conclusion

Table 1.1.: Overview of conducted research studies and research methodologies.

human agents, AI agents, and tasks. Our results highlight that only a small number
of experiments show CTP. Most of the time, the human decision performance with
AI assistance is inferior to the AI performance if the AI agent had performed the
task alone. This leaves the question unanswered why CTP—also exceeding this AI
performance—could not have been accomplished. Furthermore, our results show
that XAI has ambiguous effects on team performance in general and CTP in specific.

1.3 Research Design and Structure 9



Some studies show positive results, while others show negative results. Finally, we
derive 12 hypotheses about factors that may have a potential impact on CTP.

In Chapter 4, we complement the structured literature review with a statistical
meta-analysis of the empirical studies. First, we renew the SLR, resulting in a total
of 33 articles. Next, we sample 9 articles from the 33 that meet the requirements for
meta-analysis. The articles comprised multiple experimental studies with multiple
treatments, which led to a collection of 44 treatments. Subsequently, all necessary
performance metrics are extracted from the articles. Based on this data foundation,
a meta-analysis (Higgins et al., 2019) is conducted, which allows a statistical
comparison between human, AI-, and XAI-assisted task performance. The statistical
analysis confirms the previous structured literature review. The majority of studies
in the field merely demonstrate that humans teaming with AI may achieve higher
team performance than conducting the decision task alone. However, we find no
effect of explanations on users’ performance compared to AI assistance. Some
studies report positive XAI assistance performance effects, whereas others find no or
slightly adverse effects. This statistical analysis further highlights the ambiguity in
harnessing complementarity potential.

In Part III, our objective is to gain a deeper understanding of the ambiguous
empirical findings and consequently explore RQ2, i.e., identifying the key factors
that influence effective collaboration between humans and AI agents.

Therefore, in Chapter 5, we derive a concept for understanding and developing
effective human-AI collaboration, i.e., achieving CTP. Essentially, CTP depends on
sufficient complementarity potential and the ability to harness it. Based on exist-
ing justificatory knowledge of Fügener et al. (2021), we derive a formalization of
complementarity potential. In detail, we argue that complementarity potential has
an inherent and a collaborative component. Whereas the first captures the idea
that humans and AI possess different inherently present capabilities in the form of
unique human and AI knowledge, the second component captures a new type of
knowledge that only emerges through human-AI interaction. In the formalization,
for both components that together result in the total complementarity potential, we
distinguish between the realized amount that has materialized and a theoretical
amount that serves as an upper boundary. Next, we outline possible sources of
complementarity potential and introduce a classification of mechanisms for inte-
grating human and AI agent decisions during collaboration. We call the triad of
formalization, sources of complementarity potential, and classification of integration
mechanisms the human-AI complementarity concept. To illustrate our concept, we
apply it in an empirical study: we focus on information asymmetry as a promising
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source of complementarity potential and demonstrate, for a real estate appraisal use
case, that humans can indeed leverage their unique information to achieve CTP. To
sum it up, CTP essentially depends on complementarity potential and the ability to
harness it. In this thesis, we focus in the next chapters on how to harness existing
complementarity potential.

As a starting point, in Part IV, to analyze how to harness complementarity potential,
we focus on the most common form of human-AI collaboration—AI-assisted decision-
making (Lai et al., 2023), thereby addressing RQ3.

AI-assisted decision-making describes a setting in which a human receives AI advice
and is asked to act upon it. Human agents should not always rely on AI advice but
should differentiate when to rely on AI advice and when to rely on their own, i.e.,
they should display appropriate reliance (AR) (Bansal et al., 2021; Wang & Yin,
2021; Yang et al., 2020a; Zhang et al., 2020). Despite being a necessary condition
for effective human-AI collaboration, current research on AR on AI advice is still
ambiguous with regard to definition, measurement, and impact factors (Bansal
et al., 2021). Therefore, we derive a measurement concept and a research model in
Chapter 6.

The term “appropriate reliance” is currently used inconsistently in research, referring
to both a binary target state (where AR is either achieved or not achieved) and a
metric indicating varying degrees of appropriateness. To address this ambiguity, we
propose a two-dimensional metric, termed appropriateness of reliance (AoR), to
define and quantify reliance behavior. This metric takes into account the relative
frequency of accurate overrides of incorrect AI suggestions (referred to as relative
self-reliance—RSR) and adherence to correct AI suggestions (referred to as relative
AI reliance—RAIR). AoR embodies a metric understanding of AR. Using this metric,
we can define different levels of AR that represent the achievement of specific goals,
such as meeting legal, ethical, and performance standards.

In addition, we aim to analyze how the provision of explanations of AI influences
AoR. Existing literature is ambiguous with regard to the effects of explanations
(Alufaisan et al., 2021; Bansal et al., 2021; Wang & Yin, 2021): while in some
experiments, explanations support AR (Wang & Yin, 2021; Yang et al., 2020a),
in others they cause “blind trust” (Alufaisan et al., 2021; Bansal et al., 2021)
in AI advice. To better understand and reconcile conflicting results, we consider
additional constructs that may mediate the effect of explanations. More specifically,
we hypothesize that explanations do not only influence the information available to
the decision-maker but also have an impact on trust toward AI and self-confidence.
Based on those hypotheses, we derive an initial research model on AoR. Our results
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show that in certain situations, explanations can improve the relative AI reliance
and that this effect is partially mediated by a change in self-confidence and trust.

Next, in Chapter 7, we further explore RQ3 and extend our previously derived
research model. One of the core influence factors of reliance behavior in human-AI
collaboration seems to be the expertise of decision-maker (Nourani et al., 2020a;
Wang & Yin, 2021). We follow this line of thought and hypothesize that learning
in AI-assisted decision-making (decision-makers gradually gaining expertise) could
be a relevant mediator of AoR. Therefore, we extend our research model on AoR,
including theory-driven hypotheses, and subsequently conduct a behavioral exper-
iment to evaluate the model. We use example-based explanations (Fahse et al.,
2022) to design a human-AI collaboration scenario with a high potential for learning.
Our results reveal several interrelated findings. First, we see that example-based
explanations enhance human learning during the process of human-AI collaboration.
Furthermore, this enhanced learning provides individuals with a better ability to
determine when to rely on their own judgment. Finally, when a significant amount
of learning is already present, it can effectively help determine the optimal times to
rely on the AI agent’s advice.

Our insights address how to harness complementarity in AI-assisted decision-making.
However, many different forms of human-AI collaboration exist beyond AI-assisted
decision-making, e.g., anomaly detection and investigation, generative AI, etc. Thus,
next, in Part V, we analyze how to harness complementarity beyond AI-assisted
decision-making addressing RQ4. Many different forms of human-AI collaboration
and tasks are possible to investigate. Therefore, we briefly outline the reasoning for
the focus of this thesis, followed by our methodological approach.

AI-assisted decision-making, per definition, comprises classification and regression
tasks which are both parts of so-called supervised ML (Kühl et al., 2022). Supervised
ML refers to techniques that allow a system to learn a particular task from a set of
given instances (Mitchell, 1997). In the learning process, no manual adjustment
or programming of rules or strategies to solve a problem is required (Kühl et
al., 2022). Beyond supervised ML, literature usually refers to two other types
of ML, unsupervised and reinforcement (Kühl et al., 2022). Unsupervised ML
comprises methods that reveal previously unknown patterns in data. Reinforcement
learning refers to methods that are concerned with teaching intelligent agents to
take those kinds of actions that increase their cumulative reward (Kaelbling et al.,
1996). To broaden our perspective, we want to study harnessing complementarity
in unsupervised ML, an approach used in many practical use cases, such as cancer
detection (Haq et al., 2021), predictive maintenance (Amruthnath & Gupta, 2018),
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or intrusion detection (Verkerken et al., 2022). Therefore in Chapter 8, we shift
the focus from supervised ML to unsupervised ML. Further, we selected the case
of anomaly detection due to its significant relevance in practical applications of
unsupervised ML (Casolla et al., 2019; Roohi et al., 2020).

Anomaly detection is a critical task in many domains, including cybersecurity
(Blazquez-Garcia et al., 2021) and maintenance (Ren et al., 2018), where hu-
man experts often rely on anomaly detection systems based on unsupervised ML
due to the tedious nature of continuous data monitoring. However, these systems
may flag events that are unusual, such as a scheduled machine shutdown, but not
events of interest, such as unexpected machine failures. This requires human ex-
pertise to investigate the relevance of the detected anomalies, revealing a potential
area of complementarity potential. To harness this complementarity, we propose a
novel method that supports anomaly investigation by providing explanations of the
unsupervised anomaly detection. To evaluate the effectiveness of our method, we
conduct a behavioral experiment using New York City taxi records as a testbed. Par-
ticipants are tasked with distinguishing between anomalies due to extreme weather
conditions and those due to other unusual events. The results of the experiment
show that the inclusion of counterfactual explanations improves the examination
of anomalies. Our results show that providing counterfactual explanations does
improve the investigation of anomalies, indicating the potential for explainable
anomaly detection to harness complementarity potential in general.

In addition, to analyzing complementarity in unsupervised ML, we aim to address
one of the core challenges in AI-assisted decision-making, presuming the theoreti-
cal inherent complementarity over time (Fügener et al., 2021). Despite the many
benefits that recent breakthroughs in AI-assisted decision-making have brought to
business and society, there are also some drawbacks. It has long been known that
AI-assisted decision-making can lead to various drawbacks, such as automation bias
and deskilling (Goddard et al., 2012). In particular, the deskilling of knowledge
workers is a major issue, as they are the same people who should also train, chal-
lenge and evolve AI. Therefore, in Chapter 9, we further explore RQ4 and address
deskilling in AI-assisted decision-making. To this end, based on a literature review
of two different research streams—decision support system (DSS) and automation—
we conceptualize a new form of human-AI collaboration, which we call intelligent
decision assistance (IDA). IDA supports human agents without influencing them
through explicit AI advice. Specifically, we propose to use techniques of XAI while
withholding concrete AI recommendations. To test this conceptualization, we de-
velop hypotheses on the impacts of IDA and provide first evidence for their validity
based on empirical studies in the literature.
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Finally, in Part VI, we summarize the results of this thesis, including theoretical
contributions, and discuss its managerial implications as well as limitations and a
research outlook.

1.4 Integration of Articles

The foundation of this thesis is built upon eight separate articles (Chapter 2 through
Chapter 9), out of which five have already received acceptance for publication in
scholarly forums. The other three are included as working papers. Table 1.2 on
page 15 summarizes the integration of articles. The subsequent tables provide a
summarization of these original publications, arranged in the order of their presen-
tation within this thesis (refer to Table 1.4 – Table 1.10). Each table enumerates
the title, authors, the outlet, the outlet type (conference vs journal paper), and year
of publication, along with their abstract. To give an intuition about the quality of
the work, we additionally report ranking measures. Since we publish in different
research communities (IS, HCI, CS) depending on the focus of our research, we
report the VHB-Jourqual3 (Verband der Hochschullehrerinnen und Hochschullehrer
für Betriebswirtschaft e.V., 2022) ranking, the CORE conference or journal rating,
and the H5 index of google scholar.
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Kühl, N., Liebschner, J., & Satzger, G. (2023) Towards Effective 
Human-AI Decision-Making: The Role of Human Learning in 
Appropriate Reliance on AI Advice. Working Paper.

Chapter 7
Harnessing Complementarity: 
The Influence of Human 
Learning on Appropriate 
Reliance

Harnessing Complementarity Beyond AI-assisted Decision-MakingPart V
- RQ4 - Integrated Article: Schemmer, M. Holstein, J., Kühl, N., Vössing, M., 

& Satzger, G. (2023) From Anomaly Detection to Anomaly 
Investigation: Support by Explainable AI. Working Paper.

Chapter 8
Harnessing Complementarity in 
Anomaly Detection

Integrated Article: Schemmer, M., Kühl, N., & Satzger, G. (2022). 
Intelligent Decision Assistance Versus Automated Decision-Making: 
Enhancing Knowledge Work Through Explainable Artificial 
Intelligence. Proceedings of the Hawaii International Conference on 
Systems Sciences, 617–626. 

Chapter 9
Harnessing Complementarity in 
Intelligent Decision Assistance

Table 1.2.: Overview of the integrated articles in the structure of the thesis.
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Table 1.3.: Summary of the paper included in Chapter 2

Title Artificial Intelligence and Machine Learning

Author(s) Kühl, N., Schemmer, M., Goutier, M., Satzger, G.

Outlet Electronic Markets

Type Journal Paper

Year 2022

Ranking VHB-JQ3: B

CORE Conference Ranking: A

H5-Index: 41

Abstract

Within the last decade, the application of “artificial
intelligence” and “machine learning” has become
popular across multiple disciplines, especially in in-
formation systems. The two terms are still used in-
consistently in academia and industry—sometimes
as synonyms, sometimes with different meanings.
With this work, we try to clarify the relationship
between these concepts. We review the relevant
literature and develop a conceptual framework to
specify the role of machine learning in building (ar-
tificial) intelligent agents. Additionally, we propose
a consistent typology for AI-based information sys-
tems. We contribute to a deeper understanding of
the nature of both concepts and to more termino-
logical clarity and guidance—as a starting point for
interdisciplinary discussions and future research.
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Table 1.4.: Summary of the paper included in Chapter 3

Title
Human-AI Complementarity in Hybrid Intelligence
Systems: A Structured Literature Review

Author(s) Hemmer, P., Schemmer, M., Vössing, M., Kühl. N.

(Shared first authorship)

Outlet
Proceedings of the 28th Pacific Asia Conference on
Information Systems

Type Conference paper

Year 2021

Ranking VHB-JQ3: C

CORE Conference Ranking: N/A

H5-Index: 24

Abstract

Hybrid Intelligence is an emerging concept that
emphasizes the complementary nature of human
intelligence and artificial intelligence (AI). One key
requirement for collaboration between humans and
AI is the interpretability of the decisions provided
by the AI to enable humans to assess whether to
comply with the presented decisions. Due to the
black-box nature of state-of-the-art AI, the explain-
able AI (XAI) research community has developed
various means to increase interpretability. However,
many studies show that increased interpretability
through XAI does not necessarily result in com-
plementary team performance (CTP). Through a
structured literature review, we identify relevant
factors that influence collaboration between hu-
mans and AI. Additionally, as we collect relevant
research articles and synthesize their findings, we
develop a research agenda with relevant hypothe-
ses to lay the foundation for future research on
human-AI complementarity in Hybrid Intelligence
systems.
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Table 1.5.: Summary of the paper included in Chapter 4

Title
A Meta-Analysis on the Utility of Explainable Artifi-
cial Intelligence in human-AI collaboration

Author(s)
Schemmer, M., Hemmer, P., Nitsche, M., Kühl, N.,
Vössing, M.

(Shared first authorship)

Outlet
Proceedings of the 2022 AAAI/ACM Conference on
AI, Ethics, and Society

Type Conference paper

Year 2022

Ranking VHB-JQ3: N/A

CORE Conference Ranking: N/A

H5-Index: 44

Abstract

Research in artificial intelligence (AI)-assisted
decision-making is experiencing tremendous
growth with a constantly rising number of stud-
ies evaluating the effect of AI with and without
techniques from the field of explainable AI (XAI)
on human decision-making performance. However,
as tasks and experimental setups vary due to differ-
ent objectives, some studies report improved user
decision-making performance through XAI, while
others report only negligible effects. Therefore, in
this article, we present an initial synthesis of ex-
isting research on XAI studies using a statistical
meta-analysis to derive implications across exist-
ing research. We observe a statistically positive
impact of XAI on users’ performance. Additionally,
the first results indicate that human-AI collabora-
tion tends to yield better task performance on text
data. However, we find no effect of explanations
on users’ performance compared to sole AI pre-
dictions. Our initial synthesis gives rise to future
research investigating the underlying causes and
contributes to further developing algorithms that
effectively benefit human decision-makers by pro-
viding meaningful explanations.
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Table 1.6.: Summary of the paper included in Chapter 5

Title
Human-AI Complementarity: Conceptualization
and the Effect of Information Asymmetry

Author(s)
Schemmer, M., Hemmer, P., Kühl, N., Vössing, M.,
Satzger, G.

(Shared first authorship)

Outlet Working Paper (Under review)

Type Journal paper

Year 2023

Ranking VHB-JQ3: A

CORE Conference Ranking: N/A

H5-Index: 47

Abstract

Artificial intelligence (AI) can improve human
decision-making in various application areas. Ide-
ally collaboration between humans and AI systems
should lead to complementary team performance
(CTP), i.e., a level of performance that none of
them can reach individually. However, CTP has
rarely been observed, suggesting an insufficient
understanding of the complementary constituents
within human-AI collaboration that can contribute
to CTP in decision-making. Therefore, this work
aims at a holistic theoretical foundation for under-
standing and developing human-AI complementar-
ity: Based on existing IS justificatory knowledge,
we conceptualize complementarity which consists
of formalizing the notion of complementarity po-
tential, outlining possible sources, and introducing
a classification of mechanisms for the integration
of human and AI decisions during collaboration.
To illustrate our conceptualization, we apply it in
an empirical study: We focus on information asym-
metry as a promising source of complementarity
potential, and, for a real estate appraisal use case,
demonstrate that humans can in fact leverage con-
textual information to achieve CTP. Our work pro-
vides researchers with a theoretical foundation of
complementarity for human-AI collaboration and
demonstrates that information asymmetry can con-
stitute a promising source of inherent complemen-
tarity potential that can be turned into CTP.
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Table 1.7.: Summary of the paper included in Chapter 6

Title
Appropriate Reliance on AI Advice: Conceptualiza-
tion and the Effect of Explanations

Author(s)
Schemmer, M., Kühl, N., Benz, C., Bartos, A.,
Satzger, G.

Outlet
Proceedings of the 28th International Conference
on Intelligent User Interfaces

Type Conference paper

Year 2023

Ranking VHB-JQ3: N/A

CORE Conference Ranking: A

H5-Index: 40

Abstract

AI advice is becoming increasingly popular, e.g., in
investment and medical treatment decisions. As
this advice is typically imperfect, decision-makers
have to exert discretion as to whether actually fol-
low that advice: they have to “appropriately” rely
on correct and turn down incorrect advice. How-
ever, current research on appropriate reliance still
lacks a common definition as well as an operational
measurement concept. Additionally, no in-depth
behavioral experiments have been conducted that
help understand the factors influencing this behav-
ior. In this paper, we propose Appropriateness of
Reliance (AoR) as an underlying, quantifiable two-
dimensional measurement concept. We develop a
research model that analyzes the effect of provid-
ing explanations for AI advice. In an experiment
with 200 participants, we demonstrate how these
explanations influence the AoR, and, thus, the ef-
fectiveness of AI advice. Our work contributes
fundamental concepts for the analysis of reliance
behavior and the purposeful design of AI advisors.
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Table 1.8.: Summary of the paper included in Chapter 7

Title
Towards Effective Human-AI Collaboration: The
Role of Human Learning in Appropriate Reliance
on AI Advice

Author(s)
Schemmer, M., Bartos, A., Spitzer, P., Hemmer, P.,
Kühl, N., Liebschner, J, Satzger, G.

Outlet Working Paper (Under review)

Type Conference paper

Year 2023

Ranking VHB-JQ3: A

CORE Conference Ranking: N/A

H5-Index: 34

Abstract

The true potential of human-AI collaboration lies
in exploiting the complementary capabilities of hu-
mans and AI to achieve a joint performance supe-
rior to that of the individual AI or human, i.e., to
achieve Complementary Team Performance (CTP).
To realize this complementarity potential, humans
need to exert discretion in following an AI’s ad-
vice, i.e., they need to appropriately rely on the
AI’s advice. While previous work has focused on
building a mental model of the AI to assess an AI
recommendation, recent research has shown that
the mental model alone cannot explain appropri-
ate reliance. We hypothesize that, in addition to
the mental model, human learning is a key media-
tor of appropriate reliance and, thus, CTP. In this
study, we demonstrate the relationship between
learning and appropriate reliance in an experiment
with 100 participants. This work provides funda-
mental concepts for analyzing reliance and derives
implications for the effective design of human-AI
collaboration.
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Table 1.9.: Summary of the paper included in Chapter 8

Title
From Anomaly Detection to Anomaly Investigation:
Support by Explainable AI

Author(s) Schemmer, M., Holstein, J., Kühl, N., Satzger, G.

Outlet Working Paper (under review)

Type Journal paper

Year 2023

Ranking VHB-JQ3: C

CORE Journal Ranking: N/A

H5-Index: N/A

Abstract

Fast and reliable anomaly detection is critical in
many areas, including cybersecurity and mainte-
nance. However, continuously monitoring data
streams for anomalies is an error-prone and te-
dious task that requires innovative solutions. One
approach is the use of machine learning to identify
anomalous patterns. Given the inherent rarity and
potential diversity of anomalies, the availability of
labels for training is often limited. For this rea-
son, unsupervised machine learning methods are
typically used that do not require any labels. How-
ever, the anomalies detected by unsupervised ap-
proaches may include rare events, such as a sched-
uled machine shutdown, but not the actual event
of interest, such as a machine failure. Therefore,
human experts are generally needed to investigate
the relevance of the detected anomalies. Yet, the
high dimensionality of data sets and the potential
abundance of detected anomalies often exceed the
human capabilities to investigate anomalies. Our
results show that incorporating these explanations
improves the accuracy of human anomaly investi-
gation, providing a novel empirical link between
anomaly detection explanations and anomaly inves-
tigation. Our work has the potential to significantly
impact the design and use of anomaly detection
systems in various domains.
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Table 1.10.: Summary of the paper included in Chapter 9

Title
Intelligent Decision Assistance Versus Automated
Decision-Making: Enhancing Knowledge Workers
Through Explainable Artificial Intelligence

Author(s) Schemmer, M., Kühl, N., Satzger, G.

Outlet
Proceedings of the 55th Hawaii International Con-
ference on System Sciences

Type Conference paper

Year 2021

Ranking VHB-JQ3: C

Core Conference Ranking: N/A

H5-Index: 55

Abstract

Detecting rare events is essential in various fields,
e.g., in cyber security or maintenance. Often, hu-
man experts are supported by anomaly detection
systems as continuously monitoring the data is
error-prone and tedious task. However, among
the anomalies detected may be events that are rare,
e.g., in industrial maintenance a planned shutdown
of a machine, but are not the actual event of in-
terest, e.g., breakdowns of a machine. Therefore,
human experts are needed to validate whether the
detected anomalies are relevant. Related work
neglects this human anomaly investigation and in-
stead, solely focuses on the technical implemen-
tation of anomaly detection. To close this gap,
we introduce a human-centered workflow linking
anomaly detection and investigation. We propose
to complement the anomaly investigation through
explanations of the automated anomaly detection.
To evaluate the utility of the workflow, we conduct
a behavioral experiment using records of taxi rides
in New York City as a testbed. Our results show
that providing counterfactual explanations does
improve the investigation of anomalies, indicating
potential for explainable anomaly detection in gen-
eral.
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Foundations 2
To provide a common understanding, we outline the theoretical foundations relevant
to this thesis. In Section 2.1, we discuss the relationship between AI and ML to
provide a common understanding of AI agents and underlying methods. Next,
Section 2.2 outlines basic terminology in the area of human-AI collaboration and
clarifies the scope of the thesis. Finally, Section 2.3 provides an overview of XAI,
which is explored in this thesis as a central means of designing effective human-AI
collaboration.

2.1 Artificial Intelligence and Machine Learning

This chapter comprises an article that was published as: Kühl, N., Schemmer,
M., Goutier, M., & Satzger, G. (2022). Artificial Intelligence and Machine
Learning. Electronic Markets, 32(4), 2235–2244. Note: The abstract has been
removed. Tables and figures were reformatted, and newly referenced to fit the
structure of the thesis. The terminology was standardized with the dissertation.
Chapter, and section numbering and respective cross-references were modified.
Formatting and reference style was adapted and references were integrated into
the overall references section of this thesis.

AI has been named as one of the most recent, fundamental developments of the
convergence in electronic markets (Alt, 2021) and has become an increasingly
relevant topic for IS research (Abdel-Karim et al., 2021; Alt, 2018). While a large
body of literature is concerned with designing AI to mimic and replace humans
(Dunin-Barkowski, 2020; Fukuda et al., 2001), IS research in general, and DSS
research in particular, emphasize the support of humans with AI (Arnott & Pervan,
2015). Recent research in hybrid intelligence (HI) and human-AI collaboration offers
a promising path in synthesizing AI research across different fields (Dellermann
et al., 2019b): The ultimate goal of HI is to leverage the individual advantages of
both human and AI to enable synergy effects (Wilson & Daugherty, 2018) and to
achieve CTP (Hemmer et al., 2021).
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However, in many cases in both research and practice, AI is simply equated with
the concept of ML—negatively impacting terminological precision and effective
communication. Ågerfalk et al. (2020, p. 2) emphasizes that differentiating between
AI and ML is especially important for IS research: “Is it not our responsibility as
IS scholars to bring clarity to the discourse rather than contributing to its decline?
(...) It would mean to distinguish between different types of AI and not talk of AI as
synonymous with ML, which in itself is far from a monolithic concept.”

The practical relevance of a clear understanding is underlined by observing confusion
and misuse of the terms AI and ML: During Mark Zuckerberg’s U.S. senate hearing
in April 2018, he stressed that Facebook had “AI tools to identify hate speech” as
well as “terrorist propaganda” (The Washington Post, 2018). Researchers, however,
would usually describe tasks identifying specific social media platform instances as
classification tasks in the field of (supervised) ML (Waseem & Hovy, 2016). The
increasing popularity of AI (Hidemichi & Shunsuke, 2017) has led to the term often
being used interchangeably with ML. This does not only hold true for the statement
of Facebook’s CEO above, but also across various theoretical and application-oriented
contributions in recent literature (Brink, 2017; Nawrocki et al., 2018; Shirazi et al.,
2017). Camerer (2018) even mentions that he still uses AI as a synonym for ML
despite knowing it is inaccurate.

As the remainder of this paper shows, both concepts are not identical—although
in many cases both terms will appear in the same context. Such ambiguity might
lead to multiple imprecisions in both research and practice when conversing about
the relevant concepts, methods, and results. This is especially important in IS
research—being interdisciplinary by nature (D’Atri et al., 2008). Ultimately, misuse
can either lead to fundamental misunderstandings (Carnap, 1955) or to research
that ought to be undertaken not being conducted (Davey & Cope, 2008). After
all, misunderstandings can potentially lead to low perceived trustworthiness of AI
(Thiebes et al., 2021).

It seems surprising that despite the frequent use of the terms, there is hardly any
helpful academic delineation—apart from the notion that ML is a (not well-defined)
subset of AI (Campesato, 2020), comparable to other possible subdisciplines of
AI: Expert systems, robotics, natural language processing, machine vision, and
speech recognition (Léon & Dejoux, 2018; Vickers, 2017). Consequently, this paper
aims to shed light on the relationship between the two concepts: We analyze the
role of ML in AI and, more precisely, in intelligent agents, which are defined by
their capability to sense and act in an environment (Schleiffer, 2005). We do so
by taking an ML perspective on intelligent agents’ capabilities and their relevant
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implementation—with IS research in mind. To this end, we review the relevant
literature for both terms and synthesize and conceptualize the results.

Our article’s contributions are twofold: First, we identify different contributions of
ML to intelligent agents as specific AI instantiations. We base this on an expansion of
the existing AI framework by (Russell, 2010) — explicitly breaking down intelligent
agents’ capabilities into separate “execution” and “learning” capabilities. Second,
we develop a typology to provide a common terminology for AI-based information
systems, where we conceptualize which systems employ ML—and which do not.
The result should provide guidance when designing and analyzing systems.

Next, in Section 2.1.1, we review relevant literature in the fields of AI and ML. In
Section 2.1.2, we then analyze the capabilities of intelligent agents in more depth
and examine the role of ML in them. Section 2.1.3 develops a framework and
typology to differentiate the terms AI and ML and to explain their relationship.

2.1.1 Terminology

Over the last decade, both terms, artificial intelligence (AI) and machine learning
(ML), have enjoyed increasing popularity in IS research. An analysis of the “AIS
Senior Scholars’ Basket1” journals since 20002, illustrates how the occurrences of
both terms increased in titles, abstracts, and keywords (cf. Figure 2.1 on page 28).
While over the last 21 years, we observe a small but constant number of publications
covering AI-related topics, ML only gained relevance in the literature after 2017:
The late reflection of ML—despite of the earlier adoption and spread in industry
(Brynjolfsson & Mcafee, 2017)—may raise questions about whether IS has picked
up the topic early enough.

As the analysis demonstrates, the two terms do exist for quite some time, while their
related subjects are highly and increasingly topical now. In this section, we will
elaborate on the meaning of the terms.

Artificial Intelligence

In 1956, a Dartmouth workshop, led by Minsky and McCarthy, coined the term
“Artificial Intelligence” (McDonald et al., 2017)—later taking in contributions from a

1As of March 2022, see https://aisnet.org/page/SeniorScholarBasket, last accessed 16.05.2022
2We start with the year 2000, as it was the last point in time when a journal (JAIS) was added to AIS
Senior Scholars’ Basket.
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Figure 2.1.: Appearance of the terms “artificial intelligence” and “machine learning” in AIS
Senior Scholars’ Basket journals.

variety of different research disciplines, such as computer science (He et al., 2016)
and programming (Newell & Simon, 1961), neuroscience (Ullman, 2019), robotics
(Brady, 1985), linguistics (Clark et al., 2012), philosophy (Smith, 2013), and futur-
ology (Krawczyk, 2016). While the terminology is not well defined across disciplines,
even within the IS domain definitions do vary widely; (Vickers, 2017) provide a
comprehensive overview. Recent AI definitions transfer the human intelligence
concept to machines in its entirety as “the ability of a machine to perform cogni-
tive functions that we associate with human minds, such as perceiving, reasoning,
learning, interacting with the environment, problem solving, decision-making, and
even demonstrating creativity” (Rai et al., 2019). Still, over the last decades various
debates have been raging on the depth and objectives of AI. These two dimensions
span the space for different AI research streams in computer science and IS that were
categorized by Russell (2010): On the one hand (depth dimension), it may target
either the thought process or a concrete action (thinking vs. acting); on the other
hand (objective dimension), it may try to either replicate human decision-making or
to provide an ideal, “most rational” decision (human-like vs. rational decision). The
resulting research streams are depicted in Table 2.1.

Table 2.1.: AI research streams (based on Russell (2010))

Depth

Objective
Human Rational

Thinking Cognitive modeling Laws of thought

Acting Turing Test Rational agent

(Perspective of this work)

According to the cognitive modeling (i.e., thinking humanly) stream, AI instantiations
must be “machines with a mind” (Haugeland, 1989) that perform human thinking
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(Bellman, 1978). Not only should they arrive at the same output as a human
when given the same input, but also apply the same reasoning steps leading to this
conclusion (Newell & Simon, 1961). The laws of thought stream (i.e., thinking
rationally) requires AI instantiations to arrive at a rational decision despite what
a human might come up with. AI must therefore adhere to the laws of thought
by using logic-based computational models (Charniak & McDermott, 1985). The
Turing test stream (i.e., acting humanly) implies that AI must act intelligently when
interacting with humans. To accomplish such tasks, AI instantiations must perform
human tasks at least as well as humans (Rich & Knight, 1991), which can be tested
via the Turing test (Turing, 2012). Finally, the rational agent stream considers AI as
a rational (Russell, 2010) or intelligent (Poole et al., 1998) agent3 . This agent does
not only act autonomously, but also with the objective of achieving the rationally
ideal outcome.

Machine Learning

Many researchers perceive ML as an (exclusive) part of AI (Copeland, 2016; Ong-
sulee, 2017; Vickers, 2017). In general, learning is a key facet of human cognition
(Neisser, 2014). Humans process a vast amount of information by utilizing abstract
knowledge that helps them to better understand incoming input. Owing to their
adaptive nature, ML models can mimic a human being’s cognitive abilities (Janiesch
et al., 2021) : ML describes a set of methods commonly used to solve a variety of
real-world problems with the help of computer systems, which can learn to solve a
problem instead of being explicitly programmed to do so (Koza et al., 1996). For
instance, instead of explicitly telling a computer system which words within an tweet
would indicate it to contain a customer need, the system (given a sufficient set of
training samples) learns the typical patterns of words and their combination which
results in a need classification (Kühl et al., 2020).

In general, we differentiate between unsupervised, supervised, and reinforcement
ML. Unsupervised ML comprises methods that reveal previously unknown patterns
in data. Consequently, unsupervised learning tasks do not necessarily have a “correct”
solution, as there is no ground truth (Wang et al., 2009).

Supervised ML refers to methods that allow the building of knowledge about a given
task from a series of examples representing “past experience” (Dietterich, 2009). In
the learning process, no manual adjustment or programming of rules or strategies to

3In this case, the terms rational and intelligent are used interchangeably in related work (Gama et al.,
2014; Koza et al., 1996; Russell, 2010).
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solve a problem is required, i.e., the model is capable to learn “by itself”. In more
detail, supervised ML methods always aim to build a model by applying an algorithm
to a set of known data points to gain insight into an unknown set of data (Hastie
et al., 2009): Known data points are semantically labeled to create a target for the
ML model. So-called semi-supervised learning combines elements from supervised
and unsupervised ML by jointly using labeled and unlabeled data (Zhu, 2005).

Reinforcement learning refers to methods that are concerned with teaching intelligent
agents to take those kinds of actions that increase their cumulative reward (Kaelbling
et al., 1996). It differs from supervised learning in that no correctly matched features
and targets are required for training. Instead, rewards and penalties allow the model
to continuously learn over time. The focus is on a trade-off between the exploration
of the uncharted environment and the exploitation of the existing knowledge base.

2.1.2 The Role of Rational Agents in Information Systems

To further elaborate on the role of ML within AI, we need to take a clear perspective
on the different definitions of AI to be beneficial to IS research. IS traditionally
utilizes ML in predictive analytics tasks within (intelligent) decision support systems
(DSS) (Arnott & Pervan, 2015; Müller et al., 2016) where the goal is to generate
the best possible outcome (Arnott & Pervan, 2015; Hunke et al., 2022; Power et al.,
2019). As Phillips-Wren et al. (2019, p. 63) emphasize, DSS “should help the
decision-maker think rationally”. The perspective of rationality is also endorsed
by other researchers in the field (Bakos & Treacy, 1986; Dellermann et al., 2019b;
Klör et al., 2018; Power et al., 2019; Schuetz & Venkatesh, 2020). Thus, in the
following we will explore the relationship between ML and AI in IS from the lens
of the rational agent stream as discussed above. Furthermore, we will focus on
supervised ML as it is the most common type of ML (Jordan & Mitchell, 2015). In
the remainder of this section, we will first distinguish different types of (rational)
agents and then use the insights to differentiate between the necessary layers when
designing them as part of information systems.

Types of Rational Agents

According to the selected research stream, intelligence manifests itself in how
rational agents act. Five features characterize agents in general: they “operate
autonomously, perceive their environment, persist over a prolonged time period,
adapt to change, and create and pursue goals” (Russell, 2010). An agent defines its
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action, not for itself, but within the environment it operates and interacts with. It
recognizes the environment through its sensors, relies on an agent program to handle
and digest input data, and performs actions via actuators. A rational agent targets
to achieve the highest expected outcome according to one or multiple objective
performance measures—which are based on current and past knowledge of the
environment and possible actions. For example, a rational agent within a medical
diagnosis system aims to maximize the health of a patient measured via blood
pressure, heart rate, and blood oxygen (potentially while minimizing the financial
costs of a treatment as a secondary condition) (Grosu, 2022).

The agent’s conceptualization and surroundings are summarized in the agent-
environment framework. It consists of three components: an agent, an environment,
and a goal. Intelligence is the measurement of the “agent’s ability to achieve goals
in a wide range of environments” (Legg & Hutter, 2007). The agent obtains input
through perceptions that the environment generates. Observations of the environ-
ment are one type of perception, while others are reward signals that indicate how
well the agents’ goals have been achieved. Based on these input signals, the agent
decides to perform actions, which are subsequently communicated back as signals
to the environment.

Rational Agents in Information System Architectures

As we investigate the role of ML in AI for IS research, we also need—apart from
the theoretical and definitory aspects of agents—to consider how the functionality
of a rational agent is reflected in an IS architecture. The implementation of agents
is a key step to embed their functionality into practical, real-world (intelligent)
information systems in general or into DSS specifically (Gao & Xu, 2009). Any
rational agent needs to be capable of at two least two tasks: cognition (Lieto et al.,
2018) and (inter)action with the environment (Russell, 2010). If we map these
capabilities to system design terms, then acting capabilities are the ones built into a
frontend, while the cognitive capabilities are embedded in a backend.

The frontend as the interface to the environment may take various forms; it may
be designed as a very abstract, machine-readable web interface (Kühl et al., 2020),
a human-readable application (Engel et al., 2022; Hirt et al., 2019), or even a
humanoid template with elaborated expression capabilities (Guizzo, 2014). For the
frontend to interact with the environment, two technical components are required:
sensors and actuators. Sensors detect events or changes in the environment and
forward the information via the frontend to the backend. They can, for instance,
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read the signals within an industrial process network (Hein et al., 2019), read
visuals of an interaction with a human (Geller, 2014), but also perceive a keystroke
input (Russell, 2010). Actuators, on the other hand, are components responsible for
moving, controlling, or displaying content. While sensors merely process information,
actuators act, for instance, by automatically making bookings (Neuhofer et al., 2015)
or changing a humanoid’s facial expressions (Berns & Hirth, 2006). One could argue
that the Turing test (Turing, 2012) takes place at the environment’s interaction with
the frontend, or, more precisely, when sensors and actuators are combined in a way
to test the agent’s AI for acting humanly.

The backend provides the required functionalities to depict an intelligent agent’s
cognitive capabilities. More precisely, this executing backend allows the agent to
draw on its built-in knowledge. The backend translates signals from the frontend and
transforms them into signals sent back to the frontend as a response by executing
actions. In some cases, there is an additional component modifying this response
function over time, and thus modifying the execution part of the backend. We call
this the learning part of the backend as depicted in Figure 2.2. Within the next
subsections, we will further elaborate this framework and its components.
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Figure 2.2.: Conceptual framework describing the general architecture for intelligent agents
in AI-based information systems.
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The Role of Machine Learning in Rational Agents

In terms of supervised ML, we need to further differentiate between the process
task of building (training) adequate ML models (Witten et al., 2011) and the one of
executing the deployed models (Chapman et al., 2000). To further understand ML’s
role in intelligent agents, we partition the agent’s cognition layer into a learning
sublayer (model building) and an executing sublayer (model execution). We, there-
fore, regard the implementation required by the learning sublayer as the learning
backend, while the executing backend denotes the executing sublayer.

The learning backend first dictates if the intelligent agent is able to learn, and,
second, how it does so—with respect to the algorithms it actually uses, the type of
data processing it applies, and the handling of concept drift (Gama et al., 2014),
etc. Using the terminology of Russell (2010), we distinguish two different types of
intelligent agents: simple-reflex agents and learning agents. This differentiation holds
explicitly in terms of a ML perspective on AI because it considers whether the under-
lying models in the cognition layer are trained just once and after that never touched
(simple-reflex), or whether they are continuously updated to be adaptive (learning).
Related work provides suitable examples of both. Kitts and Leblanc (2004) build
a bidding agent for digital auctions as a simple-reflex agent: While building and
testing the model for the agent may show convincing results, the system’s adaptive
learning after deployment could be critical. Other examples of agents with models
trained just once are common in different areas, for example, in terms pneumonia
warning for hospitals (Oroszi & Ruhland, 2010), the (re)identification of pedestrians
(Zheng et al., 2018), and object annotation (Jorge et al., 2014). On the other hand,
recent literature also provides examples of learning agents. Jordan and Mitchell
(2015) present the concept of “never-ending learning” agents that strongly focus
on continuously building and updating models in agents. Neuhofer et al. (2015)
suggest an agent capable of personalization through a continuous learning processes
of guest information for digital platforms, which an example of such an agent. Other
examples include agents capable of making recommendations on music platforms
(Liebman et al., 2014), regulating heat pump thermostats (Ruelens et al., 2015),
acquiring collective knowledge across different tasks (Rostami et al., 2017), and
learning the meanings of words (Yu et al., 2017). The choice of the learning type
in agents (simple-reflex vs. learning agent) influences the agent’s general overall
design and the contribution of ML.

As a result from the layers of agents and types of learning, our conceptual framework
combining both is shown in Figure 2.2 on page 32. Regarding the previously
mentioned ML methods, supervised ML can be the basis for either simple-reflex
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or learning agents, depending on whether the learning backend exists and on its
feedback to the agent’s knowledge base. In terms of reinforcement learning, the
agent, by definition, is a learning agent. However, there are also examples of where
an agent functions without the utilization of ML—because the execution is based on
rules (Wang et al., 2009), formulas (Billings et al., 2002) or other methods (Abasolo
& Gomez, 2000). From this perspective, this means there can be AI without ML.

2.1.3 A Typology for Machine Learning in AI Systems

Based on the differentiation between simple-reflex and learning agents, we can now
derive a typology for IS research. We refer to IS systems as static AI-based systems if
they employ simple reflex agents that may be based on a model trained with ML.
Adaptive AI-based systems, though, use learning agents, i.e., do have a learning
backend— that may be based on ML, but alternatively also could be based, e.g., on
rule-based knowledge representation. We, thus, propose the typology (as depicted in
Figure 2.3 ) for AI-based IS along the two dimensions: the existence of an ML-base
for the executing backend and the existence of a learning backend.
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Figure 2.3.: Typology of AI-based information systems.

We illustrate these findings in concrete IS research examples: Static AI systems are
characterized by an executing backend which is based on algorithms not classified
as ML and they lack a learning backend, i.e. they have a fixed response model
(Chuang & Yadav, 1997). The executing backend of such systems is based on rules
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(like nested if-else statements), formulas (like mathematic equations describing a
phenomena) or algorithms (like individual formal solution descriptions for specific
problems). As an example for such systems, Hegazy et al. (2005) build a static AI
system based on a self-developed algorithm and evaluate its performance within a
cybersecurity context by simulating multiple attacks. Another example is provided
by Ritchie (1990) who has developed an architecture and an instantiation of a static
AI system for a traffic management platform.

In contrast, a static ML-based AI system has an executing backend which is based on
ML. An example is provided in He et al. (2018). The authors develop an artifact to
classify marketing on Twitter in either defensive or offensive marketing and show
convincing prediction results. While their work did not aim at designing a productive
artifact and is rather focused on showing the general feasibility of the approach, they
choose a static ML-based AI system—which, however, might not be sufficient for
permanent use: After the release of the article in 2018, Twitter changed its tweet size
from 140 to 280 characters, thus changing the environment. It would be interesting
to see how the developed model would need to adapt to this change. As another
example, Samtani et al. (2017) build a model to identify harmful code snippets,
typically utilized by hackers. They show how to design an artifact that can detect
these code assets accurately for a proactive cyber threat intelligence. However, also
in this case the environment and the assets of the hackers could and will change
over time.

Adaptive AI systems, which are not based on ML, do comprise an executing backend
with the flexibility to dynamically adapt the model to changing environments. This
type of system is oftentimes enabled through the interaction between humans and
AI systems. Most of the times, the system provides means and triggers for updates,
while the human provides “manually encoded” knowledge updates. For example,
Zhou et al. (2009) implement an adaptive AI system for pipeline leak detection
which is based on a rule-based expert system and offers means to update the
system online. In another example, Hatzilygeroudis and Prentzas (2004) develop an
adaptive AI system to support the teaching process which has a specific component
for knowledge updates. Both examples are inherently knowledge-based, but are
explicitly designed to allow and force updates—although not on the basis of ML.

Finally, adaptive ML-based AI-systems implement learning in both sublayers of the
cognition layer. For example, Zheng et al. (2013) design a reinforcement-learning-
based artifact to obtain information from hidden parts (“deep web”) of the internet.
As their developed system perceives its current state and selects an action to submit
to the environment (the deep web), the system continuously learns and builds up
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experience. In another example, Ghavamipoor and Hashemi Golpayegani (2020)
build an adaptive ML-based AI system to predict the necessary service quality level
and adapt an e-commerce system accordingly. As their system is continuously
learning, their results show the total profits improve through effective cost reduction
and revenue enhancement.

In this section, we clarified the relationship of machine learning (ML) in artificial
intelligence (AI), particularly in intelligent agents, for the field of information
systems research. Based on a rational agent view, we differentiated between AI
agents capable of continuously improving as well as those who are static. Within
these agents as instantiations of artificial intelligence, (supervised) ML can serve to
support in different ways: either to contribute a once-trained model to define a static
response pattern or to provide an adaptive model to realize dynamic behavior. As we
point out, both could also be realized without the application of ML. Thus, “ML” and
“AI” are not terms that should be used interchangeably—but as a conscious choice.
Without question, ML is an important driver of AI, and the majority of modern AI
cases will utilize ML. However, as we illustrate, there can be cases of AI without ML
(e.g., based on rules or formulas).

This distinction enables our proposed framework to apply an intelligent agent’s
perspective on AI-based information systems, enabling researchers to differentiate
the existence and function of ML in them. Interestingly, as of today, many AI-based
information systems remain static, i.e. employ once-trained ML models (Kühl et al.,
2021). With increasing focus on deployment and life cycle management, we will see
more adaptive AI-based systems that sense changes in the environment and use ML
to learn continuously (Baier et al., 2019). Our framework and the resulting typology
should allow IS researchers and practitioners to be more precise when referring to
ML and AI, as it highlights the importance of not using the terms interchangeably
but clarifying the role ML plays in AI’s system design.

2.2 Human-AI Collaboration

In this section, we elaborate on key concepts in human-AI collaboration and the
scope of the thesis.

In the past, AI was mainly used as an input provider to human decision-making.
Advances in AI are leading to an increase in its ability to operate autonomously,
essentially changing the role of AI from a provider of decision-making input to an
autonomous AI agent (Qian & Qian, 2020). Human-AI teams refer to the idea of
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combining the unique strengths of both human and AI agents in repetitive tasks
(Seeber et al., 2020). In this thesis, we focus on human-AI teams comprising of
a single AI agent and one human agent. Human-AI collaboration is the process
by which a human-AI team works together in a synergistic manner to achieve
shared goals, e.g., with the AI agent providing recommendations or insights and
humans guiding and refining the AI-generated outputs (Terveen, 1995; Vössing
et al., 2022). Hybrid intelligence is an emerging paradigm with the idea of leveraging
complementary heterogeneous intelligence in the form of a socio-technical ensemble
to resolve current AI limitations. We refer to the work of Dellermann et al. (2019a,
p. 640), who define hybrid intelligence as “the ability to achieve complex goals by
combining human and AI, thereby achieving better results than what each of them
could have accomplished separately, and continuously improve by learning from
each other.”

The predominant form of human-AI collaboration is typically characterized by a
human receiving advice from an AI agent while retaining the freedom to adhere to,
modify, or disregard that advice (Lai et al., 2023). The term most commonly used
in research to describe this setting is AI-assisted Decision-Making, see for example
Buçinca et al. (2021), Wang and Yin (2021), and Zhang et al. (2020). In this thesis,
we follow this naming convention. The term AI-assisted decision-making refers to
applying supervised ML and, more specifically, to classification and regression tasks.
The types of AI-assisted decision tasks vary widely, from sentiment classification
to house price prediction to cancer classification (Lai et al., 2023). Other forms of
collaboration beyond AI-assisted decision-making range from different collaboration
mechanisms, e.g., delegation (Hemmer et al., 2023), to different ML approaches,
e.g., unsupervised ML, to different tasks, e.g., clustering or content generation.

In addition to providing advice, AI agents have an array of other features to assist
humans in understanding and evaluating AI predictions for superior final decision-
making. In this thesis, these features are defined as AI assistance elements following
the terminology of Lai et al. (2023). AI assistance elements can be grouped in
information about prediction, information about models and training data, and other
AI agent elements (Lai et al., 2023). Information about the prediction includes the
provision of model performance metrics, uncertainty indicators, and explanations for
predictions. Since the main AI assistance elements used in practice are explanations
(XAI) (Bansal et al., 2021; Hemmer et al., 2021; Lai et al., 2023), in the following,
we provide an overview of XAI.
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2.3 Explainable Artificial Intelligence

In 2004, Van Lent et al. first used the term XAI to describe the ability of their system
to explain the behavior of agents in simulation games. The recent rise in popularity
of XAI is largely due to the increasing demand for improving the understandability
of complex models (Wanner et al., 2020). Although highly complex models can
produce superior results compared to linear models, their internal operations can
often pose interpretability challenges for humans.

The field of XAI encompasses a wide range of techniques. According to Adadi
and Berrada (2018), these techniques can be broadly organized based on their
complexity, scope, and degree of dependence.

The complexity of a model is inextricably linked to its interpretability. Wanner et al.
(2020) have divided the levels of complexity into white-box, gray-box, and black-box
models. White-box models, such as linear regressions, are those with complete
transparency and are therefore inherently explicable without the need for additional
explanatory techniques. On the other hand, black-box models, despite their superior
performance, often struggle with the problem of limited interpretability. Gray box
models bridge the gap between the two—they are not interpretable out of the box,
but their interpretability can be enhanced with the help of additional explanation
techniques.

Explanation techniques can be further characterized by their scope (Adadi & Berrada,
2018): global or local explanations. Global XAI techniques provide thorough expla-
nations for the entire model, while local explanations focus on individual instances.
In addition to scope, these XAI techniques can be classified according to whether
they are model agnostic, i.e., they can work with any type of model, or model
specific.

The most common explanation techniques are feature importance, example-based
explanations, and counterfactual explanations (Lai et al., 2023). Feature importance
is a model-agnostic technique that provides the decision maker with information
about the importance of certain features. Two well-known feature importance
algorithms are LIME (Ribeiro et al., 2016a) and SHAP (Lundberg & Lee, 2017).
Example-based explanations provide historical data similar to the current instance
(Van der Waa et al., 2021). Thus, example-based explanations are essentially a
form of information retrieval. Research in psychology suggests that people prefer
explanations that use examples (Cai et al., 2019). Counterfactual explanations
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provide information about what the smallest change would be to get a different AI
decision (Wachter et al., 2017).

Several studies have evaluated whether different types of explanations can support
humans’ understanding of the AI agent with the goal of better relying on recommen-
dations in the correct cases (Alufaisan et al., 2021; Buçinca et al., 2021; Carton et al.,
2020; Van der Waa et al., 2021). However, it has also been shown that some types
of explanations can lead people to rely too much on the AI agents’ recommendation,
especially in cases where the advice is wrong (Bansal et al., 2021; Poursabzi-Sangdeh
et al., 2021; Schemmer et al., 2022c). Overall, we find mixed results regarding the
effect of explanations on human decision-making. Therefore, in Part II, we begin
this thesis with a rigorous analysis of the state of the art of empricial studies in
human-AI collaboration in general and in XAI in particular.
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Part II

Analysis of the Current State of Empirical
Work on Human-AI Collaboration





Structured Literature Review
of Empirical Studies on
Human-AI Collaboration

3

This chapter comprises an article that was published as: Hemmer, P., Schemmer,
M., Vössing, M., & Kühl, N. (2021). Human-AI Complementarity in Hybrid
Intelligence Systems: A Structured Literature Review. Proceedings of the 17th
Pacific Asia Conference on Information Systems, 7–39. Note: To improve the
structure of the work, the title was changed. The abstract has been removed.
Tables and figures were reformatted, and newly referenced to fit the structure
of the thesis. The terminology was standardized with the dissertation. Chapter,
section and research question numbering and respective cross-references were
modified. Formatting and reference style was adapted and references were
integrated into the overall references section of this thesis.

3.1 Introduction

Over the last years, an unprecedented development in the field of artificial intelli-
gence (AI) has contributed to an improvement in prediction accuracy of modern
AIs—even exceeding the capabilities of domain experts in an increasing number of
fields (He et al., 2015). These advancements have fueled the ongoing discussion
of whether AI will replace domain experts in the foreseeable future (Schuetz &
Venkatesh, 2020). However, in many application domains, reducing human auton-
omy might not be desirable. For example, the cost of errors in situations in which
perfect algorithmic accuracy is not attainable might not be acceptable. Moreover,
legal regulations and ethical considerations might make full algorithmic automation
undesirable from a societal perspective. Additionally, the capabilities of AI are
often limited to narrowly defined application contexts as the utilized algorithms
often struggle to handle instances that differ from the patterns learned during train-
ing (D’Amour et al., 2022). In these cases, humans can leverage capabilities not
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possessed even by state-of-the-art AI—for example, intuition, creativity, and also
common sense.

This line of thought gives rise to the vision of so-called hybrid intelligence (HI)
(Dellermann et al., 2019a). The HI concept proposes to combine the complementary
capabilities of humans and AI by facilitating collaboration to achieve superior results
in comparison to the isolated entities operating independently (Dellermann et al.,
2019a; Liu et al., 2021). In this context, humans and AI are regarded as equal
team members that solve tasks in cooperation (Siemon et al., 2020). Hereby, we
understand complementary team performance (CTP) as the desired outcome of
human-AI collaboration, i.e., the team performance exceeds the maximum perfor-
mance of both individual entities. One of the key requirements for the success of
human-AI collaboration lies in the fact that they enable humans to understand the
decisions provided by the AI and allow them to draw conclusions about when and
to what extent they can rely on the AI’s prediction. This concept can be traced back
to the early research on expert systems (Nunes & Jannach, 2017; Swartout & Moore,
1993).

Nowadays, with the rise of AI, algorithms emerging from the field of explainable AI
(XAI) offer a rich fundus of explainability techniques to be applied within human-AI
collaboration (Bansal et al., 2019a; Chu et al., 2020; Liu et al., 2021). Since XAI
techniques are a means to explain the decision-making process of black-box models,
we focus on human-AI collaboration that leverage XAI as a collaboration mechanism
(Zschech et al., 2021). In this context, Doshi-Velez and Kim (2017) propose a
taxonomy of evaluation approaches for interpretability. Their results emphasize the
need for the rigorous empirical evaluation of XAI algorithms. Although the body of
literature dedicated to the evaluation of these XAI approaches is steadily increasing,
their utility in terms of CTP remains largely unexplored, as the research community
has initially focused on the study of constructs such as system trust (Davis et al.,
2020). To date there exists no structured literature review on relevant factors
impacting CTP of human-AI collaboration. Therefore, in this paper, we conduct a
structured literature review (SLR) on user studies analyzing the task performance
of humans and AI separately as well as in the form of an HI system to answer the
following research question:

RQ1: What factors have been analyzed in user studies regarding the design of human-AI
collaboration that impact CTP?

As the identified factors depend on the human, the AI, and the task, we cluster them
from a socio-technical perspective (Maedche et al., 2019). A subsequent in-depth
analysis of each perspective reveals further factors that have not been taken into

44 Chapter 3 Structured Literature Review of Empirical Studies on Human-AI
Collaboration



consideration by existing user studies. Thus, we formulate the following second
research question:

RQ2: What factors have not been analyzed in user studies regarding the design of
human-AI collaboration that impact CTP?

To answer the second research question, we derive and discuss, based on the SLR,
neglected but relevant factors of CTP. Additionally, we propose testable hypotheses
future research needs to address to realize the full potential of human-AI collabora-
tion.

The contributions of this paper are twofold: First, we collect the existing body of
knowledge for human-AI collaboration and describe possible relevant factors of
CTP. Second, we discuss yet neglected but relevant factors of CTP and formulate
respective hypotheses for future work.

The remaining work is structured as follows: In the next section, we explain the con-
ceptual foundations with regard to XAI and human-AI collaboration. Consecutively,
we outline the methodology applied to conduct the SLR and present our findings
in the results section. Following, we derive and discuss yet neglected factors that
might be taken into consideration to achieve CTP. Lastly, the conclusion summarizes
our work by stressing its importance for the IS research discipline.

3.2 Conceptual Foundations

In the following, we provide a short overview of the two key concepts addressed in
our work—HI and explainable AI (XAI).

3.2.1 Hybrid Intelligence

Dellermann et al. (2019a, p. 640) define HI as “the ability to achieve complex goals
by combining human and AI, thereby reaching superior results to those each of them
could have accomplished separately, and continuously improve by learning from
each other.”. We focus on the first part of the definition. On the one hand, humans
can rely on their senses, perceptions, emotional intelligence, and social skills (Braga
& Logan, 2017). On the other hand, AI excels at detecting patterns or calculating
probabilities (Dellermann et al., 2019a). These complementary skill sets allow for
superior performance in specific tasks through collaboration. For example, managers
can use emotional intelligence to build relationships and motivate employees to work
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for the company (Davenport & Kirby, 2016). In contrast, repetitive and monotonous
work can be conducted by AI.

The goals of human-AI collaboration are manifold. Among them are increasing the
effectiveness and efficiency of the outcome of a specific task (Dellermann et al.,
2019a). In this work, we focus on task effectiveness with regard to CTP. We follow
the definition of Liu et al. (2021) and define CTP as the performance of teams
consisting of humans and AI with the goal of achieving superior performance than
AI or humans could have accomplished alone. The performance can be measured
by different metrics, depending on the particular task, e.g., accuracy, recall, or
the f1-score.and define CTP as the performance of teams consisting of humans
and AI with the goal of achieving superior performance than AI or humans could
have accomplished alone. The performance can be measured by different metrics,
depending on the particular task, e.g., accuracy, recall, or the F1 score.

To enable CTP, humans need insights into AI decision-making. An emerging research
stream that enables interpretability of AI decisions is the field of XAI.

3.2.2 Explainable Artificial Intelligence

Explainability is a concept with a long tradition in the information system (IS)
research community. With the rise of knowledge-based systems, expert systems, and
intelligent agents in the 1980s and 1990s, the IS community laid the foundations for
research on explainability (Meske et al., 2022). In this context, Gregor and Benbasat
(1999) provide a comprehensive overview of explanations in IS research.

XAI encompasses a wide spectrum of algorithms. A comprehensive survey on many
existing explanation techniques can be found in Burkart and Huber (2021). In
general, they can be differentiated by their complexity, their scoop and their level of
dependency (Adadi & Berrada, 2018). Interpretability of a model directly depends
on the complexity of the model. (Wanner et al., 2020) cluster different types of
complexity in white-, grey-, and black-box models. They define white-box models
as models with perfect transparency, such as linear regressions. These models
do not need additional explainability techniques but are intrinsically explainable.
Black-box models, on the other hand, tend to achieve higher performance but
lack interpretability. Lastly, grey-box models are not intrinsically interpretable but
are made interpretable with the help of additional explanation techniques. These
techniques can be differentiated in terms of their scoop, i.e., being global or local
explanations. Global XAI techniques address holistic explanations of the models as
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a whole. In contrast, local explanations function on an individual instance basis.
Besides the scoop, XAI techniques can also be differentiated whether they are model
agnostic, i.e., can be used with all kinds of models, or model specific.

3.3 Methodology

To answer our research questions, we conducted a structured literature review (SLR)
based on the methodology outlined by vom Brocke et al. (2009). We developed
our search string consisting of two main areas. The first was XAI, including relevant
synonyms, such as “explainable AI” or “interpretability” combined with “artificial
intelligence”. The second part comprised synonyms of behavioral experiments, e.g.,
“user study” or “user evaluation”. To find the synonyms, we initiated our SLR with
an explorative search. The search string was iteratively extended resulting in the
following final search string:

TITLE-ABS-KEY(“explainable artificial intelligence” OR XAI OR “explainable AI” OR ( (
interpretability OR explanation ) AND ( “artificial intelligence” OR ai OR “machine

learning” ) ) ) AND ( “human performance” OR “human accuracy” OR “user study” OR
“empirical study” OR “online experiment” OR “human experiment” OR “behavioral

experiment” OR “human evaluation” OR “user evaluation”)

Next, we selected an appropriate database. Our exploratory search revealed that
relevant work is dispersed across multiple publishers, conferences, and journals.
Thus, we chose the SCOPUS database, to ensure comprehensive coverage. Following
that, we defined our inclusion criteria, i.e., articles that were in scope of this SLR.
We included every article that (a) did conduct empirical research, (b) did report
performance measures and (c) did focus on an application context where humans
and AI perform the same task.

With our search string defined, we conducted the SLR from January to March 2021.
We identified 256 articles through the keyword-based search. As a next step, we
analyzed the abstract of each article and filtered based on our inclusion criteria,
leading to 61 articles. Afterwards, two independent researchers read all articles in
detail and applied the inclusion criteria again. This led to a total of 14 remaining
studies. Based on these, we conducted forward and backward search. With the
forward and backward search, we identified 15 additional articles leading to a final
set of 29 articles that were consequently analyzed in-depth to collect data about
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each experiment. The increase in articles can be attributed to a large number of yet
unpublished papers.

The data collection process was conducted by two independent researchers. Differ-
ences were discussed and corrected. The main focus of the SLR was to extract the
treatments and outcomes of each experiment reported in the studies. For example,
if two XAI techniques were used and compared as separate experimental treatments
we added two entries into our database.

We clustered the extracted treatments from a socio-technical view, which is in line
with other research (Buçinca et al., 2020). From a socio-technical view, human-AI
collaboration can be divided in the following three key elements that are connected
through a collaboration mechanism (Goodhue & Thompson, 1995) human(s) with a
specific goal, the task that needs to be accomplished, and the technology—in our
case the AI (Maedche et al., 2019). The collaboration mechanism enables teamwork
between humans and AI regarding the task to be done. Figure 3.1 depicts the
relationship between all relevant elements of human-AI collaboration.

Human

Task AI

Collaboration 
Mechanism

Figure 3.1.: Key elements of human-AI collaboration.

3.4 Results

In this section, we present the results of our SLR. The final data set consists of 29
articles in which 93 XAI-related experimental conditions are described. We start by
providing an overview of the subset of articles that report CTP. Subsequently, we
analyze the experimental conditions and cluster them according to our introduced
socio-technical approach.
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3.4.1 Overview

We extract, whenever possible, four different performance metrics from the arti-
cles—human, AI, AI-assisted and XAI-assisted performance. Human and AI perfor-
mance refer to the performance achieved by humans or the AI when conducting the
task individually. AI-assisted performance refers to the human performance when
provided with the AI prediction. Finally, XAI-assisted refers to the performance of
humans when provided with the AI’s recommendation as well as a supplementary
explanation. Both, AI-assisted and XAI-assisted are measures of team performance.
CTP is reached if this team performance exceeds both human and AI performance.

Figure 3.2 on page 50 displays the number of studies in which AI or XAI has a
positive impact on HI-system performance considering different constraints. As
not all studies report all four performance metrics, the following observations
apply to different subsets of experiments. In general, 72 experiments measure
the AI-assisted performance and XAI-assisted performance, but not necessarily
human or AI performance. Of these, in 46 experiments XAI-assisted performance
exceeds AI-assisted performance. Moreover, 59 out of 63 experiments report that
providing either the AI’s prediction or a supplementary explanation (i.e., XAI) has a
positive effect on human performance. In 53 experiments, all necessary information
to analyze CTP are given—human and AI performance and either AI-assisted or
XAI-assisted performance. Just 16 out of 53 experiments achieve CTP. Of these
16 experiments, five times, the XAI-assisted performance exceeds the AI-assisted
performance. The 16 experiments are reported in two articles conducted by Bansal
et al. (2019a) and Chu et al. (2020).

Bansal et al. (2019a) report 11 different experiments in which CTP is achieved
meaning the team performance exceeds both the individual AI and human perfor-
mance. All experiments focus on textual data. It is important to highlight that while
CTP is reached, XAI does not yield a significant improvement over pure AI-assisted
recommendations.

Further, in 5 experiments reported by Chu et al. (2020), CTP is achieved. The exper-
iments focus on the task of predicting the age of a human based on facial images. In
contrast to Bansal et al. (2019a), XAI has a significant effect on performance.

In addition to identifying existing studies that demonstrate CTP in human-AI col-
laboration, in the following, we provide an overview of all experimental conditions
examined in the 93 studies. While most of these conditions have currently not
led to CTP, they still have shown some effect on team performance or on relevant
behavioral constructs, such as trust or cognitive load. We group the experimental
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Figure 3.2.: Overview of the number of studies in which a) XAI-assisted performance
exceeds AI-assisted performance, b) AI- or XAI-assisted performance exceeds
human performance, c) CTP is achieved, and d) CTP is reached by using XAI.

conditions into four groups: collaboration characteristics, task characteristics, AI
characteristics, and human characteristics (see Figure 3.1 on page 48).

3.4.2 Collaboration Characteristics

One important factor regarding the collaboration is the order in which the AI’s
predictions and explanations are made available to the human. Green and Chen
(2019) find empirical evidence that asking participants to make a prediction before
providing them the AI prediction or explanation leads to a better XAI-assisted
performance. One possible reason might be that users are encouraged to invest
cognitive capability in an active way instead of passively accepting the AI’s suggestion
(Green & Chen, 2019).

Another important factor is the interactivity in the human-AI collaboration. Liu et al.
(2021) test this experimental condition and find an improvement in terms of human
perception of AI-assistance. Bansal et al. (2021) implement adaptive explanations
based on the confidence of the AI decision. If the AI prediction has a low confidence,
more explanations are given. Their reasoning behind this approach is that a low
confidence indicates a higher probability of a wrong AI prediction. By displaying
more explanations, the human is encouraged to reflect more about the prediction.

Lastly, some researchers modify the degree of automation. One factor is whether
the AI’s prediction should be revealed at all (Lai & Tan, 2019). Lai et al. (2020) test
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various XAI techniques without displaying the actual AI prediction. For example,
they highlight all words that are relevant for the AI decision. Another condition
is to colorize these highlights differently depending on the influence of the words.
Their results show that differently colorized highlights result in a significant increase
in XAI-assisted performance (70.7% accuracy for colorized highlights compared to
60.4% accuracy for human performance).

3.4.3 Task Characteristics

The tasks conducted in the studies play a decisive role in terms of individual and
team performance. In general, in order to allow for generalizability, many studies
utilize multiple tasks and data sets. In this context,Liu et al. (2021, p. 23) state that
“[...] it is important to explore the diverse space and understand how the choice of
tasks may induce different results in the emerging area of human-AI interaction”. For
example, Alufaisan et al. (2021) study the influence of explanations on an income
prediction and a recidivism task. In terms of concrete experimental conditions, our
SLR shows that existing research focuses on skill sets and data types.

As discussed in the conceptual foundations, the skill set of AI and humans are
complementary. Liu et al. (2021) find initial empirical evidence consistent with this
line of thought by demonstrating enhanced team performance in correctly classifying
out-of-distribution examples as the AI struggles to deal with instances that are beyond
the patterns learned during training (D’Amour et al., 2022). However, it remains
unclear how strong the distribution shift between in- and out-of-distribution data
must be to discern a positive influence on CTP.

Concerning the data type, Lai et al. (2020, p. 744) state that “there may also exist
significant variation between understanding text and interpreting images, because
the former depends on culture and life experience, while the latter relies on basic
visual cognition.”. The experimental studies analyzed in this SLR deal with human-AI
tasks that are performed on either image (n = 24), tabular (n = 28), text (n =
39), or video (n = 2) data. In total, the analysis reveals the existence of only one
study achieving CTP on textual data (Bansal et al., 2019a) and one on image data
(Chu et al., 2020), respectively. Regarding tabular data, we are not aware of any
study demonstrating comparable results. Hase and Bansal (2020) explicitly compare
tabular and textual data. In this context, they observe that users rate explanations
from tabular data higher than from textual data. Moreover, they find that displaying
feature importance improves team performance on tabular data and that displaying
examples helps for both data types.

3.4 Results 51



3.4.4 Artificial Intelligence Characteristics

In addition to the first two components, the AI plays a central role in the human-
AI collaboration. It can be divided into two different components—backend and
frontend, i.e., the AI and XAI techniques and how explanations and predictions are
displayed to humans.

Generally, most studies do not vary their AI techniques. An exception is the work
of Lai et al. (2020) who test the influence of AI complexity on the XAI results.
Their results show that explanations from simple models lead to better XAI-assisted
performance.

In general, the XAI techniques vary from simple white-box models (Poursabzi-
Sangdeh et al., 2021) over confidence scores (Zhang et al., 2020) to complex
counterfactual explanations (Liu et al., 2021). As specific experimental conditions
mostly confidence scores, feature importance, examples, and rules are used. Hereby,
AI confidence refers to a probabilistic value that quantifies the certainty of the
model with respect to a specific prediction (Zhang et al., 2020). Feature importance
quantifies the contribution of each input feature to the prediction, and example-based
explanations select and display most similar instances of a knowledge base (Adadi &
Berrada, 2018). Lastly, rules refer to explanations based on if-then statements that
are either extracted from more complex models or directly generated by the model
(Van der Waa et al., 2021).

Our SLR highlights that the included studies report contradicting results with regards
to the effect of these XAI techniques. For example, while Bansal et al. (2019a), Lai
and Tan (2019), and Zhang et al. (2020), find that communicating the confidence
of an AI’s prediction is more effective than providing the importance of individual
features, Chandrasekaran et al. (2017) report exactly the opposite. This indicates
that focusing purely on XAI conditions might not be sufficient to extract generalizable
and valuable insights. Table 3.1 on page 53 highlights all XAI-technique-related
experimental conditions identified in the SLR. We want to emphasize that these
results should not be interpreted quantitatively, since a lot of control variables and
even measurements differ between the experiments.

In addition to the actual XAI technical category there are also differences in terms
of the concrete implementations of the XAI algorithm. For example, Schmidt and
Biessmann (2019) as well as Chandrasekaran et al. (2017) compare different tech-
nical implementations of feature importance algorithms. In particular, Schmidt
and Biessmann (2019) compare LIME Ribeiro et al. (2016a) and covariance-based
explanations. They find significant XAI-assisted performance differences (81.72%
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Table 3.1.: Experimental conditions of XAI and their comparisons in existing studies.

Comparison of different XAI-assisted decision References

performances

Feature Importance outperforms Confidence Chandrasekaran et al. (2017)

Feature Importance outperforms Examples Lai and Tan (2019)

Feature Importance outperforms Prototypes Hase and Bansal (2020) and Yeung et al. (2020)

Feature Importance outperforms Rules Hase and Bansal (2020)

Confidence outperforms Feature Importance Bansal et al. (2021), Lai and Tan (2019), and Zhang et al. (2020)

Confidence outperforms Examples Lai and Tan (2019)

Confidence outperforms Prototypes None

Confidence outperforms Rules None

Examples outperform Feature Importance Adhikari et al. (2019)

Examples outperform Confidence None

Examples outperform Prototypes None

Examples outperform Rules Van der Waa et al. (2021)

Prototypes outperform Feature Importance Hase and Bansal (2020)

Prototypes outperform Confidence None

Prototypes outperform Examples None

Prototypes outperform Rules Hase and Bansal (2020)

Rules outperform Feature Importance Hase and Bansal (2020) and Ribeiro et al. (2016a)

Rules outperform Confidence None

Rules outperform Examples None

Rules outperform Prototypes Hase and Bansal (2020)

for LIME and 84.52% for covariance) indicating that the size of the improvement
also depends on the selection of the specific XAI algorithm.

Besides these rather algorithmic experimental conditions our SLR reveals also more
frontend-specific conditions. Lai and Tan (2019) show that the way the performance
of the AI is displayed has an impact on team performance. Their results illustrate
that independent of the AI’s performance, sharing information about the perfor-
mance increases trust. However, lower displayed performance relatively decreased
XAI-assisted performance and trust. Carton et al. (2020) test the influence of the
information amount communicated through the explanation. They evaluate the
performance of detecting misclassification of online toxicity with full and sparse
explanations. Full explanations highlight all words that have an influence on the
prediction. Sparse explanations highlight just the most important words. This condi-
tion analyzes whether explanations need sufficient or comprehensive information.
Their results indicate that there is no significant difference between both conditions
(52.4% for full and 52.6% accuracy for sparse explanations).
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3.4.5 Human Characteristics

Lastly, human characteristics influence the effectiveness of human-AI collaboration.
One human-specific factor considered in the experiments is the human knowledge
of the XAI techniques. Lai and Tan (2019) examine the usage of human-centered
tutorials to build up essential knowledge and report a positive effect.

Another experimental condition tested is the self-assessment capability. Green and
Chen (2019) explicitly test this experimental condition by asking participants how
confident they are in their own decisions on a 5-point Likert scale. In their study
they find that participants can not determine their own or the model’s accuracy and
fail to calibrate their use of AI.

3.5 Research Implications for Human-AI Collaboration

The SLR revealed relevant factors impacting the collaboration of human and AI.
However, due to the small number of studies achieving CTP, it becomes evident that
further research is needed on the design of human-AI collaboration. Therefore, based
on the findings of the previous section, we derive and discuss possible factors beyond
those tested in existing studies, which should be taken into consideration when
studying CTP. Again, we structure this discussion from a socio-technical perspective.
Finally, for each identified characteristic with a possible effect on CTP, we formulate
multiple testable hypotheses with CTP as a dependent variable that future research
should address.

3.5.1 Collaboration Characteristics

In the collaboration scenarios analyzed in existing studies, AI typically assists the
human in form of recommendations. However, this must not lead to the human
any longer questioning the AI’s prediction. Against this background, it has been
demonstrated that it is beneficial to actively involve the human in the decision-
making process—either through encouragement by asking the human to make an
informed decision before receiving the AI’s prediction (Green & Chen, 2019), or
by having the possibility to dynamically interact with the system (Liu et al., 2021).
Following Lai and Tan (2019), who find a positive effect of human training for the
interpretation of static explanations, we hypothesize a similar effect when humans
are being trained to dynamically interact with the AI.
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H1: Training humans to dynamically interact with the AI and interpret its recommen-
dations has a positive effect on CTP.

In addition to training for dynamic interaction and interpretation, it could also be
beneficial to visualize the AI’s error boundary which highlights for each input if the
model output is the correct action for that input feature combination—potentially
enabling the human to predict when the AI will err and decide when to override the
prediction. An improved understanding of the AI’s error boundary in turn might
positively contribute to CTP (Hase & Bansal, 2020).

H2: Visualizing the AI’s error boundary depending on provided input features has a
positive effect on CTP.

Moreover, to balance the amount of required cognitive load invested by the human,
we suggest that it could also be viable to let the human decide case by case whether
the recommendation or explanation should be revealed.

H3: Allowing the human to decide whether the AI’s prediction should be revealed has a
positive effect on CTP.

One aspect all studies considered have in common is the fact that the responsibility of
the final team decision is with the human. A new perspective on collaboration could
be that the AI distributes a priori who will have the final responsibility of the team
decision depending on who has the higher expected probability of correctly executing
the task taking the individual strengths of both team members into consideration
(Mozannar & Sontag, 2020; Wilder et al., 2020).

H4: Assigning the final decision dynamically to either the human or the AI has a
positive effect on CTP.

3.5.2 Task Characteristics

Even though existing literature discusses various facets of task characteristics, we
see multiple directions for future research in terms of task complexity as well as
performance differences between humans and AI.

In terms of task difficulty, previous studies found humans tend to rely more on
heuristics the harder a task becomes (Goddard et al., 2014). The presence of AI
support within human-AI collaboration might create the risk that people will rely
more strongly on the proposed AI recommendation as the difficulty increases (Xu
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et al., 2007). In this context, we hypothesize that increasing task difficulty for the
human might be counterproductive in terms of CTP.

H5: Increasing task difficulty has a negative effect on CTP.

When working together on the same task, the absolute performance difference
of humans and AI might play a significant role. There are situations in which
the AI outperforms humans (Alufaisan et al., 2021) and vice versa (Chu et al.,
2020). In this context, a very low performance of the AI, independent of the human
performance, could result in algorithmic aversion (Manzey et al., 2012). Contrary, a
very high performing AI could induce over-reliance in human action (Skitka et al.,
2000). Following this line of reasoning, one might assume that the potential for CTP
might be leveraged when humans and AI have comparable performance. In this
context, Bansal et al. (2019a) hypothesize that a similar performance level of human
and AI may contribute to achieving a significant effect on CTP. However, a small
performance gap alone might not be sufficient for achieving CTP. In this context,
we want to highlight that comparable performance does not inherently increase
the probability of achieving the threshold to CTP. The important point is not the
comparable performance but no positive correlation of human and AI errors. We
hypothesize that even within the same task no positive correlation of human and AI
errors contributes to reaching CTP.

H6: No positive correlation of human and AI errors has a positive effect on CTP.

3.5.3 Artificial Intelligence Characteristics

An important component to ensure the collaboration between human and AI is the
communication capability of the AI. In this context, the frontend serves as a means
for communicating the AI’s prediction including explanations to the human. Its
design has a significant influence on how well the user will interpret and use the
recommendations derived by the AI. In general, it is crucial to balance the amount
of information in order to prevent information overload (Bederson & Shneiderman,
2003). For instance, Klapp (1986) states that high volumes of information can
have the same effect as noise, distraction or stress resulting in erroneous judgement.
Besides the amount of information, the visualization quality also plays a significant
role. For this reason, the question emerges whether a more user-centered design
regarding the information presentation resulting from existing explanation algo-
rithms could result in better human understanding. In this context, Suresh et al.
(2021) propose a framework for characterizing the stakeholders of interpretable AI
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including their needs. According to them not only the knowledge of humans but
also the context in which human-AI interaction occurs plays a decisive role. For this
reason, in-line with Kühl et al. (2020), we hypothesize that tailoring the information
presentation particularly to the user while considering its knowledge and application
context yields potential for improved CTP.

H7: Personalized information presentation considering the humans’ knowledge and the
application context has a positive effect on CTP.

Besides the information presented to the user, the accuracy of the inferred expla-
nations plays a decisive role. Researchers have proposed evaluations to assess the
performance of explanations, which is also known as fidelity of explanations (Shen
& Huang, 2020). It can be interpreted as the capability of the explanation to re-
flect the AI’s behavior (Alvarez Melis & Jaakkola, 2018). For example, Papenmeier
et al. (2019) find that humans could lose trust in the AI when exposed to low
fidelity explanations. In this context, Shen and Huang (2020, p. 172) mention
“the representational power––including the correctness, sensitivity, etc., of the in-
terpretation model––might not be sufficient to augment human reasoning about
errors.”. Therefore, we hypothesize a strong positive correlation between the fidelity
of explanations and the ability of humans to detect when the AI errs.

H8: Increasing explanation fidelity has a positive effect on CTP.

Even if established explanation techniques suffice the fidelity criterion, a further
notable aspect should be their robustness. In this context, a large body of research
found that explanations can vary significantly even for instances that are nearly
identical and have the same classification Alvarez Melis and Jaakkola (2018), Ghor-
bani et al. (2019), and Tomsett et al. (2020) test the consistency of saliency maps
and state their statistical unreliability. For this reason, we formulate the following
hypothesis:

H9: Increasing explanation robustness has a positive effect on CTP.

3.5.4 Human Characteristics

Intensive research has been conducted across multiple disciplines over the past
decades on characteristics that allow individuals to succeed in team settings (Zhao
& Feng, 2019). For example, Morgeson et al. (2005) emphasize the importance of
social skills, personality characteristics as well as team knowledge in the context of
team member selection. Similar to human teams, we suggest that individual human
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characteristics also play a crucial role in human-AI collaboration. We focus on a
small subset of characteristics that have been examined in the context of human
teams, which we believe will also have a major impact on human-AI collaboration.
In this context, multiple meta-analytic studies found an influence of personality char-
acteristics such as conscientiousness, agreeableness, or emotional stability (Hogan &
Holland, 2003; Hurtz & Donovan, 2000). Even though human-AI teams differ signif-
icantly from human teams, we assume these characteristics to impact CTP for the
following reasons (Riefle & Benz, 2021). Conscientious people tend to demonstrate
willingness to contribute to team performance regardless of their designated role
(Barrick et al., 1998; Neuman & Wright, 1999). Moreover, they stand out by being
especially concerned with performing their required behaviors towards achieving
defined team goals (LePine et al., 1997). Furthermore, the characteristic of agree-
ableness encompasses traits such as cooperativeness and flexibility (John M., 1990).
We hypothesize that these traits might be beneficial in the human-AI setting as well,
since those individuals might be more willing to contemplate the AI’s opinion. In
addition, emotional stability might play a decisive role in this context as people
with this trait tend to be more stress-resistant allowing them to more sovereignly
manage demanding and ambiguous situations (Barrick et al., 1998). For the reasons
mentioned above, we formulate the following hypotheses:

H10: Personality characteristics (e.g., conscientiousness, agreeableness, emotional
stability) have an effect on CTP.

A further interesting direction of future research might be the influence of human
cognitive capacity on CTP. In addition to various studies that find empirical evidence
for cognitive ability being a strong predictor of individual performance (Hunter &
Hunter, 1984; Wagner, 1997), a similar relationship can be shown at the team level
(Devine & Philips, 2001). Thus, we suspect a similar relationship with regard to
human-AI teams in the context of human-AI collaboration.

H11: Cognitive ability has a positive effect on CTP.

Lastly, human decision-making is heavily influenced by human biases (Kahneman,
2011). Human-AI collaboration is not spared of these biases. A particularly serious
bias is the automation bias, i.e., “the tendency to use automated cues as a heuristic
replacement for vigilant information seeking and processing” (Skitka et al., 2000,
p. 344) that may lead to an overreliance on AI recommendations. Therefore, we
formulate the following hypothesis:

H11: Automation bias has a negative effect on CTP.
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3.6 Conclusion

The main goal of this study was to determine the current state of human-AI col-
laboration with regard to CTP. Therefore, we conducted a SLR. Subsequently, we
provided an overview of the proportion of articles that reached CTP and presented
experimental conditions that were tested in the articles. Based on the SLR and
supplementary work we derived and discussed further experimental conditions and
formulated testable hypotheses.

Unleashing the potential of human-AI collaboration that leverage the complementary
capabilities of humans and AI to achieve CTP requires a multidimensional design
process. For this reason, we see IS as the predestined research discipline to advance
research in this field. We hope to motivate IS researchers and practitioners to actively
participate in the exploration of understanding of the factors contributing to the
design of human-AI collaboration for CTP.

Considerably more work needs to be done to determine the underlying patterns
of effective Human-AI collaboration. Therefore, rigorous research models based
on behavioral constructs need to be developed. Constructs such as mental model,
cognitive load, and trust need to be measured to understand and enable CTP. Future
work needs to address the testable hypotheses outlined in this work in behavioral
experiments. We invite researchers to support and join us on the path to CTP.

3.6 Conclusion 59





A Meta-Analysis of the Impact
of Explainable AI on Decision
Performance

4

This chapter comprises an article that was published as: Schemmer, M., Hem-
mer, P., Nitsche, M., Kühl, N., & Vössing, M. (2022b). A Meta-Analysis on the
Utility of Explainable Artificial Intelligence in Human-AI Decision-Making. Pro-
ceedings of the 2022 AAAI/ACM Conference on AI, Ethics, and Society, 617–626.
Note: To improve the structure of the work, the title was changed. The abstract
has been removed. Tables and figures were reformatted, and newly referenced
to fit the structure of the thesis. The terminology was standardized with the
dissertation. Chapter, section and research question numbering and respective
cross-references were modified. Formatting and reference style was adapted
and references were integrated into the overall references section of this thesis.

4.1 Introduction

Over the last years, the rapid developments in artificial intelligence (AI) have
increased its use in many application domains. In this context, AI’s continuously
rising capabilities have surpassed human performance in an increasing number of
tasks, such as playing poker (Brown & Sandholm, 2019), go (Silver et al., 2018), or
correctly recognizing various categories of interest in images (He et al., 2015). Due
to these remarkable developments, AI is increasingly applied to support decision-
makers in an increasing number of domains, such as medicine (McKinney et al.,
2020; Wu et al., 2020), finance (Day et al., 2018), law (Kleinberg et al., 2018) or
manufacturing (Stauder & Kühl, 2022).

To offer decision-makers meaningful support, AI models are expected to provide
accurate predictions and a notion of how a particular decision has been derived. In
particular, explaining the rationale behind an algorithmic decision should enable
domain experts to learn when to trust the recommendations of the AI and when to
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question it (Zhang et al., 2020). This requirement fueled the continuous develop-
ment of explainability techniques from the field of explainable AI (XAI), intending
to make the decision-making process of black-box AI models more transparent and,
thus, comprehensible for domain experts (Adadi & Berrada, 2018). Common ap-
proaches include among others feature importance-based (Ribeiro et al., 2016a),
example-based (Cai et al., 2019), or rule-based methods (Ribeiro et al., 2018). A
better understanding of how the AI’s decision was derived should subsequently
enable the user to appropriately rely on the AI’s suggestions on a case-by-case basis
(Bansal et al., 2021; Lee & See, 2004). For instance, explanations contradicting the
AI’s prediction could signify the user to become skeptical, consequently considering
the AI prediction less in the final decision-making process.

With the ongoing development of XAI techniques, researchers have started to eval-
uate AI with and without explanations to assess whether their utility for better
decision-making can be quantified (Bansal et al., 2021; Buçinca et al., 2020; Buçinca
et al., 2021; Carton et al., 2020; Chu et al., 2020; Green & Chen, 2019; Hase &
Bansal, 2020; Hemmer et al., 2022b; Lai et al., 2020; Lai & Tan, 2019; Liu et al.,
2021; Van der Waa et al., 2021; Yeung et al., 2020; Zhang et al., 2020). Whereas
some researchers identify a benefit of XAI-based decision support in user studies
(Buçinca et al., 2020; Lai et al., 2020), others find only negligible evidence (Carton
et al., 2020; Liu et al., 2021), with the underlying causes remaining partly unex-
plored (Hemmer et al., 2021; Schoeffer et al., 2022b). Therefore, in this article, we
aim to clarify the current “snapshot” of the utility of XAI-based decision support. We
conduct a meta-analysis of user studies identified in a structured literature review
to shed light on the effect of XAI-assisted decision-making on user performance. In
detail, our analysis encompasses studies that allow a comparison between human,
AI-, and XAI-assisted task performance. Our initial findings are the following: First,
on average, XAI-assisted decision-making enhances human task performance com-
pared to no assistance at all. However, we find no additional effect of explanations
on users’ performance in XAI-assisted decision-making compared to isolated AI
predictions, which raises questions on how to further develop current XAI methods
that improve users’ task performance. Second, we find that distinct data types affect
user performance differently. In this context, human-AI collaboration turns out to be
more effective on text data compared to tabular data.

The remainder of this article is structured as follows. In Section 4.2, we first outline
related work in the context of human-AI collaboration. In Section 4.3, we describe
the methodological approach of our meta-study. Subsequently, we present the
results of the meta-study, including a subgroup analysis in Section 4.4. In this
context, we provide additional qualitative insights on an individual level. We outline
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the current limitations of our work in Section 4.5, followed by a discussion on
relevant implications that result from these findings for the future development of
XAI algorithms in Section 4.6. Finally, Section 4.7 concludes our work.

4.2 Related Work

Over the last years, research has focused on developing algorithms that provide
explanations for AI predictions (Adadi & Berrada, 2018; Das & Rad, 2020). By now,
these algorithms are increasingly employed in a growing number of practical use
cases such as in manufacturing (Senoner et al., 2022; Treiss et al., 2020), medicine
(Pennisi et al., 2021), or the hospitality industry (Vössing et al., 2022). Usually, XAI
is utilized in scenarios that involve humans-in-the-loop processes. The underlying
idea is that humans will benefit from the AI’s suggestion if it is accompanied by an
explanation. Therefore, a constantly rising number of studies has started to analyze
the effects of explanations in behavioral experiments (Hemmer et al., 2021). In
these experiments, many different target variables are taken into consideration, e.g.,
whether humans are capable of predicting what a model would recommend (proxy
tasks) (Arjun et al., 2018; Buçinca et al., 2020; Hase & Bansal, 2020) or whether
explanations support them in model debugging (Adebayo et al., 2020; Kaur et al.,
2020).

In the scope of this study, we explicitly focus on AI-assisted decision-making—a set-
ting in which an AI supports a human with the goal of improving the decision-making
quality. The AI’s prediction might be accompanied by additional information, e.g.,
about its prediction uncertainty or different types of explanations. After receiving the
AI’s advice, the human decision-maker is responsible for making the final decision—a
scenario which is often also required from a legal perspective (Bauer et al., 2021). By
providing either additional information on the AI’s prediction uncertainty (Nguyen
et al., 2021; Zhang et al., 2020) or explanations on how a decision was derived
(Bansal et al., 2021; Lai & Tan, 2019), humans shall be enabled to better question
the AI’s decision. To develop a deeper understanding of this assumption, research
has evaluated the effect of explanations on users’ trust and how reliance on AI
decisions can be appropriately calibrated (Bansal et al., 2019b; Buçinca et al., 2021;
Kunkel et al., 2019; Schemmer et al., 2022c; Yu et al., 2019; Zhang et al., 2020).
In this context, providing humans not only with the AI’s prediction and respective
explanations but also with a notion about its global performance can influence the
overall team performance (Lai & Tan, 2019). Additional benefits can be found when
humans are provided with model-driven tutorials about AI functionality and the task

4.2 Related Work 63



itself (Lai et al., 2020). Further work has investigated the influence of AI advice in
the out-of-distribution setting—instances differing from the distribution used for AI
training—on the final human decision (Liu et al., 2021).

Besides these factors, the explanation type of an AI prediction can play a decisive
role. In this context, research has developed various explainability techniques (Adadi
& Berrada, 2018) ranging from feature importance methods (Ribeiro et al., 2016a)
over example-based approaches (Cai et al., 2019) to rule-based explanations (Ribeiro
et al., 2018) that have been evaluated in user studies accordingly (Hemmer et al.,
2021). However, the current picture emerging from the results of different studies
regarding the effects of XAI methods on AI-assisted decision-making performance
is not unambiguous. For example, whereas Carton et al. (2020) conclude that
feature-based explanations do not help users in classification tasks, Hase and Bansal
(2020) find some of them to be effective in model simulatability, which refers to
the ability to predict the model behavior given an input and an explanation. In this
context, further studies demonstrate the utility of explanations (Buçinca et al., 2020),
whereas others find that they can convince humans to follow incorrect suggestions
more easily (Bansal et al., 2021; Van der Waa et al., 2021).

Of course, ambiguous findings can also be attributed to the specific setups of each
study and the different goals pursued by the researchers. We aim to shed light on this
ambiguity by conducting a meta-analysis of human-AI collaboration—particularly
on the influence of explainability.

4.3 Methodology

We elaborate on our data collection approach to identify relevant articles, followed
by the statistical analysis conducted on the final set of user studies.

4.3.1 Data Collection

For the collection of empirical user studies in the field of XAI, we conducted a
structured literature review based on the methodology outlined by vom Brocke et al.
(2009). In detail, we developed a search string focusing on XAI and behavioral
experiments. For both topics, several synonyms were included after an explorative
search. Subsequently, the search string was iteratively refined, resulting in the
following final search string:

64 Chapter 4 A Meta-Analysis of the Impact of Explainable AI on Decision Per-
formance



TITLE-ABS-KEY(“explainable artificial intelligence” OR XAI OR “explainable AI” OR ( (
interpretability OR explanation ) AND ( “artificial intelligence” OR AI OR “machine

learning” ) ) ) AND ( “human performance” OR “human accuracy” OR “user study” OR
“empirical study” OR “online experiment” OR “human experiment” OR “behavioral

experiment” OR “human evaluation” OR “user evaluation”)

To ensure comprehensive coverage of relevant articles, we chose the SCOPUS
database for our initial search (Schotten et al., 2017). We filtered identified articles
according to the following three criteria: an article identified with the search string
was included if it (a) conducted at least one empirical user study and (b) reported
the task performance as a performance measure for humans and AI- or XAI-assisted
decision-making on the same task.

Additionally, we conducted a forward and backward search starting from the articles
that fulfill our inclusion criteria. We extracted all individual treatments and outcomes
for each article. For instance, if an experiment compared AI- with XAI-assisted
decision-making in a between-subject design in two separate treatments, each of
them was registered as a separate record in our database. If an article includes
multiple experiments, we performed the data extraction process for each experiment
separately. We contacted authors by email in case of missing or not reported
information in the articles regarding the conducted user studies.

The collected studies vary considerably in terms of tasks, problem settings, and
reported performance metrics. Accordingly, we filtered our set of studies in the
following way: First, we focused on studies assessing classification tasks as they
account for the largest subset across all entries in our database. Second, we re-
stricted the subset of relevant studies to those reporting the mean accuracy as the
performance measurement in each study since we require a common metric across
multiple studies. This ensures that we base our meta-analysis on comparable and
interpretable effect sizes. Third, we only included studies that have been conducted
as a between-subject design. By excluding studies conducted in a within-subject
design, we avoid taking into account the learning effect of participants between
treatments that might distort the effect sizes of our analysis.

Subsequently, we extracted all necessary performance metrics from the articles. We
define the case in which the human performs the task without any AI support as
human performance. If the human is additionally equipped with AI advice, but
without explanations, we call the performance AI-assisted performance. AI assistance
with explanations is called XAI assistance, and the resulting performance measure is
denoted as XAI-assisted performance. Based on these definitions, we excluded all
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studies that do not report human performance and either AI-assisted or XAI-assisted
performance. Based on the resulting sample, we conducted the following statistical
analysis.

4.3.2 Statistical Analysis

For each study, we calculate the effect size as the between-group standardized
mean difference (SMD) of the task performance. Furthermore, we report Hedges’
g (Hedges & Olkin, 1985) to correct the SMD for a possible upward bias of the
effect size when the sample size of a study is small (n ≤ 20). Thus, Hedges’ g

is smaller for n ≤ 20 than the uncorrected SMD but approximately the same for
larger sample sizes. We obtain the standard deviations from standard errors and
confidence intervals for group means reported for each treatment following the
procedure outlined in Higgins et al. (2019). In case an article encompasses multiple
studies with a single control group, we divide the size of this control group by the
number of studies to avoid multiple comparisons against the same group (Higgins
et al., 2019).

For our meta-analytic model and the pooling of effect sizes, we estimate a random-
effects model as the setups and populations are considerably heterogeneous be-
tween studies. Hence, we calculate the distribution mean of effect sizes instead of
estimating and assuming one single true effect size underlying the studies (fixed-
effect model (Borenstein et al., 2010)). To assess the between-study heterogeneity
variance τ2 and its confidence intervals we use the DerSimonian-Laird estimator
(DerSimonian & Laird, 1986) and Jackson’s method (Jackson & Bowden, 2016),
respectively.

Additionally, we conduct a subgroup analysis to provide further insights across
current XAI studies. Several studies have discussed that task choice has a strong
influence on the experimental outcome (Fügener et al., 2021; Lai et al., 2023). This
article focuses on the influence of the task’s data type. In this context, many re-
searchers have argued about the importance of data types in human-AI collaboration.
For example, Fügener et al. (2021) reason that image recognition, in general, is well
suited for human-AI collaboration since it is an intuitive task for humans.
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4.4 Results

We start by presenting the final set of included studies, then outline the meta-study
results, including the respective subgroup analyses. Finally, we provide additional
qualitative insights on an article level.

4.4.1 Data Collection

As of February 2022, we identified a total number of 393 articles. After applying our
inclusion criteria and conducting a forward and backward search, the number of
relevant articles is reduced to 33.

Total records identified (n = 393).

Number of records after filtering
according to eligibility criteria and
forward/backward search (n =
33).

Records after excluding studies
with incomplete information and
filtering for classification tasks
(metric: accuracy) conducted in a
between-subject design (n = 9).

Figure 4.1.: Flowchart describing the data collection and article selection procedure.

As classification tasks form the largest subset, we focus on this particular prediction
problem. After filtering for accuracy as a common metric and removing articles with
missing information, e.g., sample size or dispersion measures, we include 9 articles
in the meta-analysis and the respective subgroup analyses. Figure 4.1 visualizes the
entire filtering process. Moreover, Table 4.1 on page 68 provides an overview of
all included articles together with information about each dataset, datatype, and
treatments extracted from the articles. Each article contains at least one behavioral
experiment conducted with a particular dataset. Each experiment consists of several
experimental treatments. The treatment in which humans conducted a task on their
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own without AI assistance is referred to as a control group. In the following, we
denote each treatment as an individual study. Overall, we thereby have a sample
size of 44 studies.

4.4.2 AI Assistance Versus XAI Assistance

We start our meta-analysis by investigating AI- and XAI-assisted performance. For
this reason, we first focus on all studies that report AI- and XAI-assisted performance,
which leads us to a sample of 11 studies and a total number of 999 observations.

Figure 4.2 on page 70 displays the forest plot of the SMD between AI-assisted and
XAI-assisted performance. The results of the analysis reveal that, on average, the
SMD of all studies that reported AI- and XAI-assisted performance is 0.07 with a
95% confidence interval (CI) [-0.15, 0.30]. A z-test against the null-hypothesis that
the effect size is 0 cannot be rejected (z = 0.63, p = 0.53). This means we do not
find a significant difference between AI-assisted and XAI-assisted performance in
our current sample of studies.

Regarding heterogeneity, we find an I2 of 57.00% (95% CI [15.70%, 78.00%]),
which can be considered moderate (Higgins et al., 2019). The τ2 is 0.07 (95% CI
[0.01, 0.54]) and Q is significantly different from 0 (Q = 23.24, df = 10, p < 0.01).
Thus, we can reject the null hypothesis that the true effect size is identical in all
studies. To provide an intuitive understanding of the heterogeneity, we also report
the prediction interval that represents the expected range of true effects in other
studies (IntHout et al., 2016). The prediction interval ranges from -0.59 to 0.74.
That means we can expect negative as well as positive effects of XAI assistance in
comparison to AI assistance. In summary, on average, XAI-assisted decision-making
does not significantly influence the performance of human-AI collaboration in our
sample. The highest improvement was measured by Van der Waa et al. (2021).
Contrary, the highest negative impact of XAI is measured by Alufaisan et al. (2021).

4.4.3 Human Versus XAI Assistance

We analyze the overall effect of XAI in comparison with human performance. There-
fore, we filter all studies that report human and XAI-assisted performance. This
results in a sample of 33 studies and a total number of 5,083 participants. Based on
this sample, we analyze whether XAI-assisted decision-making improves performance
compared to humans conducting a task alone.
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Figure 4.3 on page 72 visualizes the forest plot of the standardized mean difference
between human and XAI-assisted performance. The meta-analysis indicates that,
on average, XAI assistance increases task performance by 0.59 SMD as compared
to humans conducting the tasks alone. The 95% CI of the SMD ranges from 0.39
to 0.79. As this range does not include an effect size of 0 and a z-test is significant
(z = 5.73, p < 0.0001), we can reject the null hypothesis concluding that, on average,
XAI-assisted decision-making improves human task performance.

Looking at heterogeneity, we can reject the null hypothesis that the true effect size
is identical in all studies (Q = 219.24, df = 32, p < 0.0001). Moreover, I2 is 85.40%
with a 95% CI of 80.50% to 89.10%. The estimated τ2 is 0.29 (95% CI [0.18, 0.59]).
Thus, the level of heterogeneity can be considered substantial (Higgins et al., 2019).
The prediction interval in the analysis is -0.54 to 1.71. This means that we cannot
say with certainty that XAI always has a positive impact on human decision-making
as the prediction interval is not exclusively larger than 0. Even though most studies
report a performance improvement through XAI assistance, we also find studies that
report a performance decline. In this context, one of the two studies conducted
by Alufaisan et al. (2021) encountered the most negative effects with a human
performance decline. Participants are asked to predict whether a defendant will
recidivate in two years and receive AI predictions with decision rules aiming to
support users’ understanding of the AI’s decisions. However, this reduction is not
statistically significant due to a high level of dispersion. The most considerable
improvement can be found in a study by Buçinca et al. (2020). Here, participants
have to decide based on an image of a meal whether the fat content of this meal on
a food plate exceeds a certain threshold.

It is important to highlight that the significant SMD does not imply that including
explanations will improve performance over simply providing AI advice without any
form of explainability, as we did not find a significant difference between AI-assisted
and XAI-assisted performance in Section 4.4.2. Instead, it can be interpreted as a
positive effect of some form of AI advice.

4.4.4 Tabular Versus Text Data

Additionally, we conduct a subgroup analysis based on three data types used in our
sample—tabular, text, and image data. As only two articles report experiments using
image data, the interpretation of this data type might not be conclusive. Thus, we
focus on tabular and text data types for the subgroup analysis resulting in a total
sample size of 31 studies and 4,702 participants. Figure 4.4 on page 74 displays the
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forest plot of the standardized mean difference between human and XAI-assisted
performance with regard to both data types.

The SMD of the tabular subgroup is 0.01 (95% CI [-0.24, 0.26]). As this range does
include an effect size of 0 and the z-value is 0.08 with a corresponding p-value of
0.94, we cannot reject the null hypothesis. That means we cannot conclude that the
SMD is significantly different from 0. Regarding heterogeneity, we can reject the null
hypothesis that the true effect size is identical in all studies (Q = 20.30, df = 7, p <

0.005). The I2 is 65.50% with a 95% CI ranging from 26.70% to 83.80% and τ2 has
a value of 0.09 (95% CI [0.01, 0.48]). Finally, the prediction interval ranges from
-0.77 to 0.79. That means we can expect future negative impacts of XAI assistance
on human decision performance in certain situations.

The text data subgroup has a higher SMD of 0.72 (95% CI [0.50, 0.93]). This range
does not include an effect size of 0. Additionally, the z-value is 6.65 with p < 0.0001
denoting that the SMD is significantly different from 0. In terms of heterogeneity,
we can reject the null hypothesis that the true effect size is identical in all studies
(Q = 103.57, df = 22, p < 0.0001). In this context, τ2 is 0.21 (95% CI [0.10, 0.47])
and I2 is 78.80% (95% CI [68.70%; 85.60%]). Thus, the heterogeneity of the
text data subgroup can be considered higher than the tabular data subgroup. The
prediction interval ranges from -0.26 to 1.69, which means we can also expect some
negative XAI effects with text data.

Lastly, comparing both subgroups, we observe significant performance differences
between tabular and text data suggesting that the data type in our sample influences
the effect of XAI assistance on the performance (Q = 17.81, df = 1, p < 0.0001).

4.4.5 Summary of the Articles

Having analyzed the collected studies in the form of a meta-analysis, we pursue a
discussion and summarization of the individual articles from a qualitative perspective.
We focus on extracting further insights that can be derived from comparing human
performance without any assistance and AI or XAI assistance. In particular, we
are interested in the question of why XAI assistance did or did not improve AI
assistance.

Alufaisan et al. (2021) draw upon rule-based explanations generated by anchor LIME
(Ribeiro et al., 2018) for two real-world tabular datasets—an income prediction
task using the Census dataset (Dua & Graff, 2019) and a recidivism prediction task
using the COMPAS dataset (ProPublica, 2016). The XAI algorithm provides rules
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which are denoted as anchors to explain a prediction on an instance level. A rule
is considered an anchor if any changes in the features that are not included in the
anchor do not impact the AI decision (Alufaisan et al., 2021). The authors find
that AI assistance improves human performance. However, they find no additional
benefit of XAI assistance regarding decision-making performance. They hypothesize
that one reason for the negligible effects of XAI could be information overload.
When taking a closer look at the individual decision level, humans tend to follow AI
predictions more often when the AI makes a correct prediction than when it makes
an incorrect one. In this context, explanations did not alter this observation.

Bansal et al. (2021) compare multiple forms of explanations of AI predictions on
three tasks. Two of them are about sentiment analysis of book (He & McAuley,
2016), and beer reviews (McAuley et al., 2012). The third task consists of a set of law
school admission test questions requiring logical reasoning (Team, 2017). All three
datasets consist of text data. As explanations, they use feature importance generated
by LIME (Ribeiro et al., 2016a) and feature importance generated by human experts.
Additionally, the authors evaluate the effect of providing only confidence ratings of
the AI’s prediction, which we consider as a form of explanation as well to ensure that
AI assistance encompasses only the predictions of the AI in all studies. Therefore,
we are restricted to the comparison of human performance with XAI assistance in
the meta-analysis. Interestingly, the authors find no performance improvements of
explanations over confidence ratings. However, they find that providing explanations
tends to increase the chance that humans accept the AI’s prediction regardless of
its correctness—which shows contrary results to the observations of Alufaisan et al.
(2021). Moreover, participants receiving XAI assistance outperform both participants
and AI alone.

Buçinca et al. (2020) analyze two different techniques for evaluating XAI systems.
First, a proxy task, e.g., asking humans to predict the AI’s decision. Second, an actual
decision-making task, e.g., asking humans to make a decision with XAI assistance.
We consider the actual decision-making task for the meta-analysis. The authors show
participants images of different food plates and ask them to predict the fat content
of the meal. The participants are requested to decide whether the fat content in
percent is higher than a threshold. Users are provided with inductive (i.e., example-
based) and deductive (i.e., rule-based) explanations. With XAI assistance, the users
significantly outperform users with AI assistance, which yields better performance
than users conducting the task without any support. Interestingly, example-based
explanations enable users to identify erroneous AI predictions better. However, they
prefer and trust the rule-based explanations more.
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Carton et al. (2020) consider a social media comment toxicity prediction task for
their experiment by sampling comments from the dataset provided by Wulczyn
et al. (2017). They utilize feature importance by highlighting passages and words
pointing towards a toxic comment. In detail, three different forms of explanations
are analyzed—full, partial, and keyword explanations. The full explanations are
generated by an attention model (Carton et al., 2018) that produces a discrete
attention mask over the input text for toxic content. Partial explanations refer to
reducing the mask to the most toxic passage. Keyword explanations are derived from
a bag-of-words logistic regression classifier that highlights only the most toxic single
words instead of considering the context. Their study shows a marginal negative
trend of AI assistance performance in comparison to users with no assistance at
all. However, the effect does not vary significantly regardless of explanations being
present or not. In this context, users tend to follow the AI prediction without an
effect of the different explanations provided. A detailed analysis of false negative
and false positive rates reveals that explanations tend to increase false negatives
and reduce false positives. The authors hypothesize that this might indicate a
reduced cognitive engagement with the social media comments by focusing on the
highlighted text without considering the not highlighted passages.

Fügener et al. (2021) use a dog breed image classification task (Russakovsky et
al., 2015a). They evaluate the effect of AI assistance with and without additional
confidence ratings and compare both treatments with the performance of users that
do not receive any AI support. While the authors find that AI assistance significantly
improves human performance, no additional effect of providing confidence ratings
can be identified. In this context, both AI-assisted performance and the one with
additional confidence ratings outperform humans and AI when conducting the task
alone. A detailed analysis of the confidence rating treatment reveals that providing
AI certainty decreases AI adherence. The authors hypothesize that a decrease in
users’ trust might explain this effect as it also declines in this treatment.

Lai et al. (2020) consider a deception detection task which is about identifying fake
hotel reviews (Ott et al., 2013; Ott et al., 2011). The authors analyze the effect
of three types of XAI assistance provided together with the AI prediction. First,
they provide users with signed feature importance, i.e., they highlight the most
important words that indicate real and fake reviews. Word importance is derived
from the absolute value of the coefficients using a linear SVM with a unigram bag-of-
words. Second, they additionally provide the participants with supporting guidelines
derived from related research and observations of the model, which are paraphrased
by the authors. Third, they provide an additional AI accuracy performance statement
on top. Before the actual decision-making task, participants had to undergo a task-
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specific training phase. In a prior experiment, the authors demonstrated that these
so-called tutorials enhance participants’ performance without any further assistance
from the AI. In general, they find an improvement in XAI-assisted performance over
human performance in all three treatments. However, no statistical significance
between the different forms of XAI assistance can be detected. Moreover, the authors
also emphasize that XAI-assisted performance remains inferior to the AI performing
the task alone, even though a small proportion of participants who were able to
outperform the AI can be identified. The authors do not consider an AI-assisted
treatment in their experiment.

Liu et al. (2021) explore the effect of out-of-distribution data instances and interac-
tive explanations on human-AI collaboration. For the meta-analysis, we focus on the
in-distribution setting, including a comparison of static with interactive explanations,
as out-of-distribution data might impede the comparability with the other studies.
The authors draw upon three tasks in their article. In the first, participants predict
whether arrested defendants will violate the terms of pretrial release using the ICPSR
dataset (United States Department of Justice, 2014). The second task is about pre-
dicting whether defendants will recidivate in two years using the COMPAS dataset
(ProPublica, 2016). Both are tabular datasets. The third task requires participants
to predict a person’s profession given a textual biography using the BIOS dataset
(De-Arteaga et al., 2019). Regarding the AI model, a linear SVM classifier with
unigram bag-of-words for BIOS and one-hot encoded features for ICPSR and COM-
PAS is employed. The static explanations consist of feature importance by coloring
features that contribute to the AI prediction. Interactive explanations offer users
the possibility to explore what-if scenarios. In general, the authors find that XAI
assistance improves users’ performance in predicting a person’s profession compared
to users without any assistance. However, no significant performance difference
between static and interactive explanations can be found. For the two recidivism
prediction datasets, they find no significant difference between the performance of
XAI assistance and human alone. The authors hypothesize that the complexity of
both recidivism tasks might have prevented noticeable performance improvements.
Even though no performance difference can be observed, users rate interactive
explanations more useful in the recidivism prediction tasks. The authors do not
consider sole AI-assisted decision-making in their article.

Van der Waa et al. (2021) evaluate the effect of example- and rule-based explanations
in the context of a diabetes self-management task where participants are requested
to select the appropriate dose of insulin. The authors compare AI assistance with
both types of explanations but do not report sole human performance. In this
context, the presence of either example- or rule-based explanations does not result
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in a significant performance difference compared to pure AI assistance. A closer
analysis of explanations’ “persuasive power”, i.e., how often humans agree with the
AI recommendation regardless of being correct or not, reveals that users without
explanations follow the AI prediction significantly less than with example- or rule-
based explanations.

Zhang et al. (2020) compare the effect of additional confidence ratings with feature
importance explanations using Shapley values (Lundberg & Lee, 2017) in the context
of human-AI collaboration. They utilize the Census dataset (Dua & Graff, 2019) for
asking participants to predict whether a person’s income would exceed $50,000.
In the experiment, the authors find no significant difference between additional
confidence ratings and feature importance explanations in terms of task performance.
Moreover, both treatments do not differ significantly from sole AI assistance. Even
though displaying confidence scores does not affect task performance, it can be
found that it improves overall trust and contributes to a calibration over different
confidence levels. The authors explain this phenomenon with a high correlation
between human and AI confidence, showing a large overlap of instances with low AI
and human confidence. In contrast, explanations do not affect users’ trust in their
experiment.

In summary, most studies, except for Buçinca et al. (2020), found no significant
differences when comparing XAI and AI assistance on an individual study level.
Alufaisan et al. (2021) argue that the negligible effect of XAI might stem from
information overload. Carton et al. (2020) discuss that XAI, in the case of feature
importance, might reduce the amount of data humans process as they just focus on
the features relevant to the AI. Liu et al. (2021) discuss whether task complexity
could be a reason for no significant improvements of XAI assistance over AI assistance.
We also observe some contrasting results that require further investigation in future
work. Fügener et al. (2021) find a general decrease in AI adherence in the context
of confidence ratings. In contrast, Van der Waa et al. (2021) and Bansal et al. (2021)
find that explanations increase the general probability of accepting AI advice. Based
on the qualitative review, we derive two potential factors influencing the utility
of XAI: First, XAI could improve decision-making performance by increasing the
acceptance of AI advice. Note that the performance improvement will just happen
if the AI, on average, performs significantly better than the human (Zhang et al.,
2020). Second, XAI assistance could influence appropriate trust and reliance, which
means humans can discriminate between correct and incorrect AI advice (Bansal
et al., 2021). The idea is that humans will be better able to distinguish between
correct and incorrect advice if the AI conveys its reasoning. Our qualitative review
showed that while there is evidence for increased acceptance of AI advice due to XAI
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(Bansal et al., 2021; Van der Waa et al., 2021; Zhang et al., 2020), just one article
reports some form of appropriate reliance (Buçinca et al., 2020).

4.5 Limitations

As XAI is a relatively new field of research, at least in comparison to research domains
where meta-analyses are more common, e.g., medical research (Eaden et al., 2001),
we encounter some major limitations that form around the current existing sample
of XAI studies.

First, the current existing sample of XAI studies contains just online studies. In
these online studies, people are recruited via online platforms such as Mechanical
Turk. They conduct a task not in a controlled lab environment inducing higher
variability. Second, the studies use different XAI algorithms ranging from providing
an additional confidence score to personalized explanations. We also considered
a subgroup analysis for the XAI algorithm category but were limited due to the
current sample size. Therefore, interpretable findings could not be derived yet.
Third, also task design differs between the studies. Some studies use more intuitive
tasks for humans, such as sentiment analysis of reviews, while others consider more
complicated ones, such as recidivism prediction. In this context, future studies
should evaluate other task-related factors beyond data type. Fourth, in the data
type subgroup, the tabular subgroup contains just two articles (Alufaisan et al.,
2021; Liu et al., 2021). Even though it contains 8 studies, this poses a possible
limitation. Moreover, as many studies do not report dispersion metrics numerically,
we had to extract them from the plots. We conducted a multi-step approach. Two
researchers extracted the values individually and afterward discussed the differences.
Furthermore, we want to highlight that the meta-analysis is limited with regard to
drawing causal conclusions. Our analysis should instead be considered as a synthesis
of existing research. Lastly, the main limitation of the comparison of AI-assisted and
XAI-assisted performance is the small sample size due to other studies not reporting
the dispersion of their AI-assisted condition.

4.6 Discussion and Future Work

In this work, we conducted the first meta-analysis of XAI-assisted decision-making.
Based on a structured data collection process, we collected 393 XAI-related articles.
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After applying our inclusion criteria, we identified a set of 9 articles encompassing
44 studies for the meta-analysis.

In the current sample, we find no statistically significant difference between XAI-
and AI-assisted performance. However, some studies report positive XAI assistance
performance effects, whereas others find no or slightly negative effects. Additionally,
we find a positive effect of XAI assistance on human task performance. Since we
do not identify a difference between XAI and AI assistance, the results need to be
interpreted carefully. Therefore, we cannot conclude that XAI will lead to an overall
performance superior to AI assistance. However, we observe a positive tendency
of AI to support humans in decision-making, either with explanations or without.
A promising avenue for future research is to investigate the factors that determine
consistent performance gains in human-AI collaboration. In this context, the work
of Lai et al. (2023) could be a foundation for the data collection. Furthermore,
our subgroup analysis indicates a stronger positive effect of explanations on task
performance with text data than tabular data. If this effect can be confirmed in
future studies, more work would be required regarding human-AI collaboration with
tabular data. Reasons for this difference could be that text data is a more intuitive
data type for humans. Additionally, analyzing the utility of explanations and AI
predictions concerning image data requires more attention, as we identified only
2 articles using image data. Therefore, future work should explicitly investigate
performance differences induced by different data types. Moreover, due to the
currently high heterogeneity of the studies, future analyses could consider not only a
distinction by data type but also by task type, e.g., complexity and users’ task-specific
knowledge. For example, in easy tasks, humans might be able to evaluate better
whether AI advice is correct or not.

Our qualitative review of the collected studies highlights that explanations can easily
lead to increased acceptance of AI advice. In the scenario in which AI performs,
on average, better than humans, its performance might bound the maximum joint
performance of both. However, if the goal is that human-AI collaboration ideally
results in superior team performance (Bansal et al., 2021), appropriate reliance
on the AI’s decision becomes indispensable. Therefore, future research should
investigate design mechanisms that enable appropriate reliance. Additionally, from
this observation emerges the need to discuss the ethical implications of pure AI
decision acceptance increase in future work as it can be understood as a form of
manipulating people to follow AI advice blindly.
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4.7 Conclusion

This article presents the results of a meta-analysis of the utility of explanations in
human-AI collaboration. We identify a total sample of 9 articles that report all neces-
sary information as a prerequisite through a structured literature review. We analyze
whether humans’ decision-making can benefit from AI support with and without
explanations and derive three major findings: First, we do not find a significant effect
of state-of-the-art explainability techniques on AI-assisted performance. Second, we
observe a significant positive effect of XAI assistance on human performance. Third,
our analysis indicates that XAI assistance is more effective on text than tabular data.
We hope that our work will motivate scholars to pursue meta-analyses in future
human-AI research to systematically assess previous studies to derive conclusions
about the current body of research.
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Part III

Conceptualization of Human-AI
Complementarity





Human-AI Complementarity:
Conceptualization and the
Influence of Information
Asymmetry

5

This chapter comprises a working paper that is currently under review as
Schemmer, M., Hemmer, P., Kühl, N., Vössing, M., & Satzger, G. (2023b).
Human-AI Complementarity: Conceptualization and the Effect of Information
Asymmetry [Working paper]. Note: To improve the structure of the work,
the title was changed. The abstract has been removed. Tables and figures
were reformatted, and newly referenced to fit the structure of the thesis. The
terminology was standardized with the dissertation. Chapter, section and
research question numbering and respective cross-references were modified.
Formatting and reference style was adapted and references were integrated into
the overall references section of this thesis.

5.1 Introduction

The increasing capabilities of artificial intelligence (AI) have paved the way for sup-
porting human decision-making in a wide range of application domains. Examples
include decision support for humans in application areas such as customer service
(Adam et al., 2021), medicine (Wu et al., 2020), law (Mallari et al., 2020), finance
(Day et al., 2018), and industry (Stauder & Kühl, 2022). While increasingly accurate
decisions of AI systems can tempt the automation of specific tasks, automation
generally overlooks the potential of combining individual team members’ strengths
in a human-AI team (Seeber et al., 2020) to achieve even better performance.

The recent emergence of large language models illustrates this (Malone et al.,
2023). Applications like ChatGPT often provide helpful results but cannot be relied
upon completely, and a human decision-maker has to collaborate with the system,
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for example to override erroneous answers, to achieve superior task performance
(Malone et al., 2023). Similarly, in the medical domain, AI as well as humans
are able to conduct a disease diagnosis on their own. It has however also been
demonstrated that humans and AI can make different errors on individual task
instances (Geirhos et al., 2021; Steyvers et al., 2022), such as ensuring that CT
images complement each other (Jussupow et al., 2021). In this context, the AI may
detect patterns in large amounts of data that humans will find difficult to discover,
while humans in turn excel at the causal interpretation and intuition required to
interpret these patterns (Lake et al., 2017; Li et al., 2019a).

This potential for complementarity has led researchers to investigate how the in-
dividual capabilities of humans and AI can be leveraged to achieve superior team
performance, compared to either one performing the decision task independently.
Such an outcome is defined as complementary team performance (CTP) (Bansal et al.,
2021).

Various studies have demonstrated that human-AI teams can outperform human
individuals, but they often do not exceed the AI’s individual performance (Bansal et
al., 2021; Hemmer et al., 2021). The observation that CTP, meaning a performance
beyond that of an isolated human or AI, is often not attained in these studies raises
questions about which factors could contribute to achieving this phenomenon. It
illustrates that the current knowledge of how the respective capabilities of humans
and AI can be utilized to create joint decision-making synergies has not yet been
sufficiently developed and that there is a need for additional concepts that foster an
in-depth understanding of complementarity in human-AI collaboration.

To address this gap, we build on the theoretical work of Fügener et al. (2021) who
analyze how AI advice affects unique human knowledge. In particular, we propose
a conceptualization of human-AI complementarity by introducing the notion of
complementarity potential (CP). The conceptualization consists of formalizing the
complementarity potential and its constituent components, delineating relevant
sources of complementarity potential, and classifying integration mechanisms to
infer the final team decision and realize the human-AI complementarity potential. In
detail, we argue that complementarity potential has an inherent and a collaborative
component. Whereas the first captures the idea that humans and AI possess different
inherently present capabilities in the form of unique human and AI knowledge, the
second component captures a new type of knowledge that only emerges through
human-AI interaction.

To demonstrate the utility of the proposed conceptualization, we choose the domain
of real estate valuation and instantiate a relevant source of complementarity poten-

86 Chapter 5 Conceptualization of Human-AI Complementarity and the Influ-
ence of Information Asymmetry



tial together with an integration mechanism. We train and deploy an AI model to
predict real estate prices based on tabular data. Human decision-makers have addi-
tional access to a real estate photograph that represents unique human contextual
information - a relevant source of inherent complementarity potential - that they
can use. The human decision-maker constitutes the final integrator of their own and
the AI decision.

Our results highlight the usefulness of our conceptualization, allowing us to develop
a more nuanced understanding of the factors that influence whether synergies in
decision-making emerge during human-AI collaboration. Our experiment shows
that the distribution of instances for which the human or the AI performs better on
(indicating the inherent complementarity potential) changes when the human sees
an additional photograph of the house. More specifically, providing the photograph
increases the number of house price estimates where the human performs better than
the AI. We find that providing an additional photograph of the house has a surprising
effect on the human’s estimate after receiving advice from the AI. Intuitively, the
awareness of having more information than the AI could lead to algorithm aversion
(Jussupow et al., 2020), which prevents humans from appropriately adjusting the
house prices the AI recommended. Our research however indicates the opposite,
as our results show that providing the photo improves human adjustment of house
prices suggested by the AI.

In summary, our contribution is threefold: First, we conceptualize human-AI comple-
mentarity by introducing and formalizing the notion of complementarity potential,
delineating sources of complementarity potential, and providing a classification
of existing integration mechanisms to realize the complementarity potential. Sec-
ond, we demonstrate the applicability and usefulness of the conceptualization for a
human-AI collaboration setting by drawing on information asymmetry as a source of
complementarity potential. Third, through our proposed conceptualization, we find
a new and surprising insight that unique human contextual information can result
in human decision-makers better adjusting AI advice.

Our work should be guiding further theoretical and empirical work on human-
AI collaboration. The concepts we study in this article can be applied to various
other application domains, such as medical diagnosis, weather forecasting, or co-
programming.

In the remainder of this work we start by outlining the relevant background and
related work in Section 5.2. In Section 5.3, we derive the proposed conceptualization
of human-AI complementarity by formalizing the notion of complementarity poten-
tial, identifying relevant sources of complementarity potential as well as classifying
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integration mechanisms to realize the complementarity potential. In Section 5.4, we
illustrate the utility of our conceptualization in an experimental study in the context
of real estate valuation and study the effect of information asymmetry as one source
of complementarity potential. We discuss our results in Section 5.5, before Section
5.6 concludes the work.

5.2 Theoretical Foundations and Related Work

In this section, we elaborate on key concepts and existing work on human-AI
collaboration, human-AI complementarity, and information asymmetry.

Many terms have been used to describe the interaction between humans and AI.
Common terms are human-AI team (Seeber et al., 2020), human-AI collaboration
(Vössing et al., 2022), or human-AI collaboration (Lai et al., 2023). Human-AI teams,
human-AI collaboration, and human-AI collaboration are interrelated concepts that
emphasize the integration of human and AI systems to achieve optimal outcomes.

Human-AI teams refer to the idea of combining the unique strengths of humans
and AI, such as human creativity, empathy, and contextual understanding with AI’s
data processing, complex calculations, and efficiency in repetitive tasks (Seeber
et al., 2020). Human-AI collaboration is the process by which these teams work
together in a synergistic manner to achieve shared goals, for example with the AI
system providing recommendations or insights and humans guiding and refining the
AI-generated outputs (Terveen, 1995; Vössing et al., 2022). human-AI collaboration
refers to the combined input of humans and AI in making choices or judgments,
where it is a decision-making task and the AI offers data-driven decision suggestions
while humans leverage their domain expertise, emotional intelligence, and ethical
considerations to reach a final decision (Lai et al., 2023).

By focusing on these integrated approaches, organizations can capitalize on the
complementary strengths of humans and AI systems, fostering improved performance
and decision-making in various domains.

5.2.1 Human-AI Collaboration

In recent years, research on human-AI collaboration has experienced tremendous
growth as a particular field of human-AI collaboration (Bansal et al., 2021; Buçinca
et al., 2020; Lai et al., 2020; Liu et al., 2021). An increasing number of studies have
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conducted behavioral experiments to understand how humans make decisions with
AI support (Alufaisan et al., 2021; Bansal et al., 2021; Buçinca et al., 2020; Carton
et al., 2020; Fügener et al., 2021; Lai et al., 2020; Liu et al., 2021; Malone et al.,
2023; Reverberi et al., 2022; Van der Waa et al., 2021; Zhang et al., 2022; Zhang
et al., 2020).

In this context, a growing body of work examines how human reliance on AI
decisions can be appropriately calibrated to establish effective decision-making
(Buçinca et al., 2020; He et al., 2023; Kunkel et al., 2019; Yu et al., 2019; Zhang
et al., 2020). One idea is to enable humans to judge the quality of an AI decision by
revealing insights about the uncertainty of the prediction (Zhang et al., 2022) or by
providing explanations that shed light on the AI’s decision-making (Alufaisan et al.,
2021; Bansal et al., 2021; Buçinca et al., 2020; Lai et al., 2020; Liu et al., 2021).

For this purpose, explainable artificial intelligence (XAI) research has developed
various approaches to enable humans to understand the underlying mechanisms that
contribute to an AI’s prediction (Adadi & Berrada, 2018). Several studies investigate
how human-AI collaboration benefits from different XAI techniques. Examples range
from feature-based (Ribeiro et al., 2016a) and example-based (Van der Waa et al.,
2021) to rule-based (Ribeiro et al., 2018) techniques. Even though experimental
evidence has demonstrated the benefits of explanations (Buçinca et al., 2020) , it
has also revealed that explanations can convince humans to follow an incorrect AI
decision (Bansal et al., 2021) which is referred to as automation bias (Schemmer
et al., 2022c).

A closer look at the studies that analyze human-AI collaboration quantitatively
reveals that, in general, human performance increases when supported by a high-
performing AI. In the vast majority of cases, the team performance however still
remains inferior to that of the AI when it had performed the task alone (Hemmer
et al., 2021; Malone et al., 2023).

5.2.2 Human-AI Complementarity

Complementarity between humans and AI is discussed as part of three closely re-
lated paradigms: intelligence augmentation, human-machine-symbiosis, and hybrid
intelligence.

Intelligence augmentation is defined as “enhancing and elevating human ability,
intelligence, and performance with the help of information technology” Zhou et al.
(2021), p. 245. It is a form of human-AI collaboration in which machines use their
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complementary strengths to assist humans, not necessarily with the goal of achieving
CTP, but to improve human objectives.

Human-machine symbiosis is a paradigm that envisions deepening the collaborative
human-AI connection. It is based on the notion of a symbiotic relationship between
humans and AI, which implies considering both as a common system rather than
two separate entities, aiming to become more effective together compared to work-
ing separately (Licklider, 1960). This leads to overcoming human restrictions by
extending their abilities and reducing the time needed to solve problems (Gerber
et al., 2020). Another aspect that emphasizes the symbiotic nature of humans and
AI is the focus on human-like communication and interaction between both team
members. Researchers argue that the machine should be able to understand verbal
and non-verbal communication to exchange information with a human (Sanchez &
Principe, 2009; Sandini et al., 2018).

Hybrid intelligence is an emerging paradigm with the idea of combining human and
artificial team members in the form of a socio-technical ensemble to resolve current
AI limitations. We refer to the work of Dellermann et al. (2019a), p. 640, who
define hybrid intelligence as “the ability to achieve complex goals by combining
human and AI, thereby achieving better results than what each of them could have
accomplished separately, and continuously improve by learning from each other.”

Human-machine symbiosis and hybrid intelligence share our view that humans and
AI should complement each other to achieve superior results. Existing studies under
both labels however do not provide theoretical foundations or classify sources of
complementarity potential and integration mechanisms. The only work of which we
are aware that contains a theoretical view of human-AI complementarity are articles
by Donahue et al. (2022), Rastogi et al. (2022), and Steyvers et al. (2022), develop
a taxonomy that characterizes differences between human and AI decision-making.
The authors formalize a particular integration mechanism in detail–the technical
integration of human and AI decisions. However, they neither provide a formalization
of complementarity nor a classification of possible integration mechanisms beyond
their instantiated approach. Donahue et al. (2022) also focus on a single integration
mechanism and formalize an integration algorithm that assigns weights to human
and AI predictions. Lastly, Steyvers et al. (2022) derive a framework for combining
the decisions and different types of confidence scores from humans and AI. They
focus on a particular integration mechanism where a Bayesian model combines
human and AI decisions.
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In summary, to our knowledge, there is no work that holistically formalizes the
complementarity of humans and AI, delineates relevant sources of complementarity,
and provides a classification of integration mechanisms.

5.2.3 Information Asymmetry

In many application domains, a possible source of complementarity potential resides
in the information asymmetry between humans and AI–as additional contextual
information is often available to humans only. While AI requires digitally available
and sufficient training data to detect patterns that can subsequently be used for
decision recommendations (LeCun et al., 2015), relevant information may not have
been digitized, for technical or economic reasons (Ibrahim et al., 2021). Contextual
information may also not be sufficiently available to be included in AI model training.
Humans can however use their expertise and additionally consider non-digitized
information as well as information about rare events to create a holistic picture
for decision-making. We hypothesize that this information asymmetry represents a
promising source of harnessing human-AI complementary capabilities.

This hypothesis is strengthened by forecasting theory (Sanders & Ritzman, 1991,
1995, 2001). (Sanders & Ritzman, 1995) analyze the effects of averaging the pre-
dictions of a statistical forecast and a human with access to contextual information.
They find a positive effect when giving higher weights to the predictions of humans
with more contextual information. However, they do not provide a deeper analysis
of why and how unique human contextual information improves team performance.
While this study indicates promising effects of unique human contextual information
on team performance in forecasting, it lacks a theoretical foundation.

Systematic analyses of leveraging unique human contextual information to improve
human-AI collaboration are scarce, with a notable exception being the work of Zhang
et al. (2020). The authors focus on the psychological effect of humans knowing to
have more information than an AI, independent of the possible performance gain
by including unique human contextual information. To do so, they provide the
participants in their behavioral experiment with an additional feature that contains
no relevant information for the task. Their study shows that this treatment has no
significant effect on performance.

We therefore conclude that the current knowledge of how the complementarity
potential between humans and AI determines whether CTP can be achieved during
joint decision-making is not sufficiently developed. Research work currently lacks a

5.2 Theoretical Foundations and Related Work 91



theoretical conceptualization supported by empirical evidence of human-AI comple-
mentarity. In this work, we aim to provide both a theoretical foundation as well as
empirical insights.

5.3 Conceptualization of Human-AI Complementarity

In this section, we first elaborate on the purpose and scope of human-AI comple-
mentarity. Subsequently, we introduce our conceptualization by formalizing the
notion of complementarity potential, followed by delineating possible sources of
complementarity potential and their realization by classifying different existing
integration mechanisms.

5.3.1 Purpose and Scope of Human-AI Complementarity

We initiate the development of the conceptualization by defining the purpose and
scope of human-AI complementarity (Jones & Gregor, 2007). Researchers have
discussed different perspectives of human-AI collaboration. For example, humans
are required for the training and debugging process of AI systems (Dellermann et al.,
2019a), take over the final decision in high-stakes decision-making scenarios due
to ethical and legal considerations (Lai & Tan, 2019), or are involved in realizing
human-AI performance synergies (Bansal et al., 2021; Reverberi et al., 2022).

In this work, we focus on the performance perspective, particularly decision-making
tasks where humans and AI can perform the task independently. With the recent rise
of large language models, there is an increasing number of tasks that both humans
and AI can conduct. Examples include accurately diagnosing diseases in medicine
(Goldenberg et al., 2019), conducting loan decisions in finance (Turiel & Aste, 2020),
or writing entire programs with AI code generation systems (Ross et al., 2023).

This differentiates human-AI complementarity from classical decision support, where
an algorithm only provides selective input for more comprehensive downstream
decisions that only a human can make. For example, in credit allowance decisions,
a technical system may only provide an aggregated probability for default that the
lender uses in the downstream task of making the final loan decision. Nowadays, AI
systems have become increasingly capable of conducting such decisions in isolation,
meaning that more and more tasks can be automated. Recent studies in the medical
domain demonstrate that AI can detect diabetic retinopathy as accurately as highly
trained experts (Gulshan et al., 2019). Therefore, AI’s role increasingly changes
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from being a pure input provider to becoming an equitable team member for the
human.

5.3.2 Formalization of Complementarity Potential

In this subsection, we introduce and formalize the notion of complementarity
potential. With the formalization we aim to provide the means to quantify the
synergetic potential between humans and AI to foster a more detailed understanding
of their individual and joint decision-making capabilities. This is because the sole
comparison of performance metrics does not capture the underlying mechanisms
that drive the resulting performance outcomes.

In detail, the formalization pursues the idea that human-AI complementarity poten-
tial is composed of an inherent and collaborative component. The first component
captures any complementarity potential that can be attributed to the individual
capabilities of both with respect to a decision-making task and is inherently present
in both team members. We denote it as inherent complementarity potential. The sec-
ond component captures the complementarity potential that emerges only through
any form of collaboration during joint decision-making and is therefore ex-ante not
existent. We denote it as collaborative complementarity potential. In the formaliza-
tion, for both components that together result in the total complementarity potential,
we distinguish between the realized amount that has materialized and a theoretical
amount that serves as an upper boundary.

Figure 5.1 on page 94 provides a high-level conceptual overview of the notion of
complementarity potential, including its components in human-AI collaboration. In
addition to the components, it depicts the average decision-making performance
for a task conducted by a human and AI together as a team as well as both indi-
vidually, expressed by an arbitrary loss function that quantifies the prediction error
with respect to a given ground truth. The difference between the best individual
team member and the joint human-AI team performance materializes in realized
complementarity potential, whereas its theoretical upper boundary for potential
further improvement is given by the performance of the best team member. Viewing
human-AI collaboration from this granular perspective allows a deeper understand-
ing of the joint decision-making behavior to develop. In the next step, we introduce
and develop the proposed formalization.

Let us consider a decision task T = {xi, yi} as a set of N instances xi ∈ X with
corresponding ground truth labels yi ∈ Y The ground truth may not be known at
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the time of the decision but can be determined and revealed later. Both a human
decision-maker and an AI model are capable of independently inferring a prediction
ŷH

i and ŷAI
i for a given instance xi. Additionally, let us consider some loss function l

with its loss bounded in R+. A loss function determines the error between a single
prediction of a human or an AI model and the corresponding ground truth label. In
this context, it can be understood as a generic measure of task performance. In our
formalization, it can encompass classification as well as regression tasks. For a given
prediction task, we denote the instance-specific human loss as lH and the average
loss over all available instances as LH = 1

N

∑N
i=1 lH

(
ŷH

i , yi

)
. Likewise, we denote

the instance-specific AI loss as lAI and the average loss considering all available
instances as LAI = 1

N

∑N
i=1 lAI

(
ŷAI

i , yi

)
. For both the human and the AI model, we

assume their decisions are made independently.

In addition, we represent any way of collaboration between the human and the AI
model by an integration mechanism I(ŷH

i , ŷAI
i ) producing a joint prediction ŷI

i . This
decision also incurs an instance-specific loss lI . Similarly, we define the average
loss of the integrated decision as LI = 1

N

∑N
i=1 lI(ŷI

i , yi). Complementary team
performance (CTP) exists once the average loss of the integrated decision is lower
than both the individual average losses of the human and the AI model (Bansal et al.,
2021):

CTP =


1, Ll < min(LH , LAI),

0, otherwise

In addition to this binary outcome, we quantify the difference between the average
loss of the best individual team member and the team performance and denote this
amount as realized complementarity potential:

CPrealized = min(LH , LAI) − LI

In this context, a positive value of the realized complementarity potential (CPrealized)
denotes that synergies between human and AI could be realized during the collabo-
ration, whereas a negative value means that the collaboration resulted in a worse
outcome compared to the best team member alone. It also allows us to interpret
the average loss of the best individual team member as an upper boundary for
further improvement. A reduction by this amount through collaboration would
mean perfect human-AI collaboration behavior. We therefore denote it as theoretical
complementarity potential:
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CPtheoretical = min(LH , LAI) − LI

The notion of complementarity potential forms the basis for developing a deeper
understanding of the factors that can lead to CTP in human-AI collaboration. Specifi-
cally, we argue that it is essentially composed of two components - inherent human-AI
complementarity potential and collaborative complementarity potential, which does
not exist inherently, but can only emerge through the collaboration itself.

The first component can be understood as the potential performance increase result-
ing from the exploitation of unique human or AI knowledge. In accordance with
Fügener et al. (2021b), we denote it as unique human knowledge (UHK) and
unique AI knowledge (UAIK). When a human can contribute unique human knowl-
edge to particular instances of a decision task, it is reflected in a lower loss compared
to that of the AI. Vice versa, when the AI can contribute its unique knowledge, it is
reflected in a lower loss compared to that of a human. These knowledge-based per-
formances can be defined as the sum of the differences between the instance-specific
AI and the instance-specific human losses:

UHK =
N∑

i=1
max

(
0, l

(i)
AI − l

(i)
H

)

UAIK =
N∑

i=1
max

(
0, l

(i)
H − l

(i)
AI

)

From the perspective of the team member with the lower average individual loss (e.g.
LAI < LH or LH < LAI) the other team member’s unique knowledge constitutes
the theoretically existing unique knowledge that can materialize in improved team
performance, for example by selecting the individual decision of either human or AI
that is more accurate on the task instance level than the team decision. Alternatively,
it can be understood as the existing additional potential for team performance
improvement that the lower-performing team member possesses uniquely and can
contribute to the better-performing team member’s capabilities. As this unique
knowledge roots in the individual team members’ capabilities and therefore exists
inherently ex-ante when human and AI team up, we denote it as theoretical inherent
complementarity potential. It can be defined as
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CP inh
theoretical =


UHK, LAI ≤ LH ,

UAIK, LAI > LH .

If the average loss of a human and AI is equal LAI = LH , both team members can
contribute quantitatively the same amount of unique knowledge (UHK = UAIK)
which then corresponds to the theoretical inherent complementarity potential
CP inh

theoretical.

In practice, it is unlikely that the integrated decision, resulting from human-AI
collaboration, will always fully exploit the theoretical inherent complementarity
potential CP inh

theoretical. It rather represents an upper boundary of the first component
of the realized complementarity potential CP inh

theoretical. We are however interested
in measuring the amount that has been exploited by integrating the human and
AI decisions. We therefore denote the realized amount of the theoretical inherent
complementarity potential CP inh

theoretical as realized inherent complementarity poten-
tial CP inh

theoretical. To determine this amount, we must distinguish which of the two
team members has the lower average individual loss, as the lower-performing team
member’s unique knowledge contributes to the realized inherent complementarity
potential.

When we consider LAI < LH , any integrated decision with lAI > lI ≥ lH means
that unique human knowledge is present but not fully exploited. In this case,
CP inh

theoretical is the difference between the instance-specific loss of the AI model lAI

and the instance-specific loss of the integrated decision lI . Figure 5.2 case a on
page 98 exemplifies this scenario. It displays the absolute difference of the instance-
specific loss of each team member individually and of the integrated decision with
respect to the ground truth for a particular instance. As shown in Figure 5.2 case b
on page 98, the loss of the integrated decision lI may even fall below the loss of the
human lH(lAI > lH > lI). Then, CP inh

theoretical is the difference between the losses
of the AI model lAI and the loss of the human lH . Any remaining improvement
beyond the smaller loss (in Figure 5.2 case b on page 98 the human one) cannot be
attributed to the “upfront” inherent knowledge asymmetry. We will interpret this
when we elaborate the concept of collaborative complementarity potential.

Now, let us consider the case LH < LAI . Any integrated decision with lH , lI , LAI

can be interpreted that unique AI knowledge is present but not fully exploited. In
this case, CP inh

theoretical is the difference between the instance-specific loss of the
human lH and the instance-specific loss of the integrated decision lI . Figure 5.3
case a exemplifies this scenario. Again, if the instance-specific loss of the integrated
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Case a: lAI > lI ≥ lH Case b: lAI > lH > lI

Ground
Truth

Integrated 
prediction

Human
Prediction

AI
Prediction

Integrated 
prediction

Human
Prediction

AI
Prediction

Ground
Truth

Figure 5.2.: Deviation of human prediction, AI prediction and integrated prediction from
the ground truth for a single instance. Possible cases of how realized inherent
complementarity potential CP inh

theoretical emerges, considering the scenario
LAI < LH

decision lI even falls below the instance-specific loss of the AI model lAI(lH > lAI >

lI), CP inh
theoretical can only be the difference between the instance-specific loss of

the human lH and the instance-specific loss of the AI model lAI. We visualize this
scenario in Figure 5.3 case b on page 98.

Case a: lH > lI ≥ lAI Case b: lH > lAI > lI

Ground
Truth

Integrated 
prediction

AI
Prediction

Human
Prediction

Integrated 
prediction

AI
Prediction

Human
Prediction

Ground
Truth

Figure 5.3.: Deviation of human prediction, AI prediction and integrated prediction from
the ground truth for a single instance. Possible cases of how realized inherent
complementarity potential CP inh

theoretical emerges, considering the scenario
LH < LAI

Finally, we can summarize each component of the realized inherent complementarity
potential in the following formula1 :

CP inh
theoretical =

N∑
i=1



l
(i)
AI − l

(i)
I , LAI ≤ LH and lAI > lI ≥ lH

l
(i)
AI − l

(i)
H , LAI ≤ LH and lAI > lH ≥ lI

l
(i)
H − l

(i)
I , LH ≤ LAI and lH > lI ≥ lAI

l
(i)
H − l

(i)
AI , LH ≤ LAI and lH > lAI ≥ lI

1If both team members have the same average loss LAI = LH),it is valid to calculate the realized
inherent complementarity potential CP inh

theoretical either according to the case LAI < LH (used in
this work) or the case LH < LAI .
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We denote the second component of the complementarity potential as collaborative
complementarity potential. It refers to the observation that collaboration between a
human and an AI model can also result in an integrated decision lI that improves or
deteriorates for a specific instance beyond the better or worse individual human or
AI decision. This may be driven by effects that happen due to the collaboration itself,
such as (un)learning. Given the unique knowledge of the human-AI team determined
by the theoretical inherent complementarity potential CP inh

theoretical and the amount
of the overall theoretical complementarity potential CP inh

theoretical, we can calculate
an upper boundary for potential further improvement through collaboration. We
refer to it as theoretical collaborative complementarity potential:

CP coll
theoretical = CPtheoretical − CP inh

theoretical

There might be task instances where improvement beyond the best individual de-
cision is attainable through joint decision-making. Likewise, there will also be
situations where joint decision-making leads to deterioration. In practice, we are
interested in capturing both effects that contribute to the realized collaborative com-
plementarity potential (CP coll

realized). We reflect this idea in the formalization by distin-
guishing positive realized collaborative complementarity potential (CP coll, positive

realized )
and negative realized collaborative complementarity potential (CP coll, negative

realized ) in
the following way:

CP coll
theoretical = CP coll, positive

theoretical − CP coll, negative
theoretical

Let us first focus on the positive realized collaborative complementarity potential
(CP coll, positive

realized ). For a better understanding, let us again consider the scenario with
LAI < LH . If the instance-specific loss of the integrated decision lI falls below the
lower individual instance-specific loss of the human lH(lAI ≥ lH > lI) or the AI
model (lH ≥ lAI > lI), the difference between the lower individual instance-specific
loss of either the human lH or the AI model lAI and the integrated loss lI refers
to positive realized collaborative complementarity potential (see Figure 5.4 case
a and b), as this improvement can only be driven by collaboration and not by the
inherently present unique knowledge of one team member.

The same phenomenon applies to the scenario with LH < LAI . If the instance-
specific loss of the integrated decision lI falls below the individual instance-specific
loss of the AI model lAI(lH ≥ lAI > lI) or the human lH(lAI ≥ lH > lI) the
difference between the lower individual instance-specific loss of either the human lH
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or the AI model lAI and the integrated loss lI refers to positive realized collaborative
complementarity potential (see Figure 5.4 case a and b). We summarize positive
realized collaborative complementarity potential in the following formula2

CP coll, positive
realized =

N∑
i=1

max
(
0, min

(
l
(i)
H , l

(i)
AI

)
− l

(i)
I

)

Lastly, we consider scenarios in which negative realized collaborative complementar-
ity potential

(
CP coll, positive

realized

)
can occur.

Case a: lAI ≥ lH > lI Case b: lH ≥ lAI > lI

Ground
Truth

Integrated 
prediction

AI
Prediction

Human
Prediction

Integrated 
prediction

AI
Prediction

Human
Prediction

Ground
Truth

Figure 5.4.: Deviation of human prediction, AI prediction and integrated prediction from
the ground truth for a single instance. Possible cases of how positive realized
collaborative complementarity potential CP coll, positive

theoretical emerges.

In the scenario with LAI < LH the AI model on average outperforms the human.
Negative realized collaborative complementarity potential CP coll, positive

realized incurs,
once the instance-specific loss of the integrated decision lI is larger than the instance-
specific loss of the AI model lAI(lI > lAI) independent of the instance-specific loss of
the human lH (see Figure 5.5 case a on page 101). Negative realized collaborative
complementarity potential CP coll, positive

realized is the difference between the instance-
specific loss of the integrated decision lI and the instance-specific loss of the AI
model lAI .

Similarly, in the scenario with LH < LAI the human on average outperforms the
AI model. We therefore incur negative realized collaborative complementarity
potential

(
CP coll, negative

realized

)
once the instance-specific loss of the integrated decision

lI is larger than the instance-specific loss of the human lH(lI > lH) independent
of the instance-specific loss of the AI model lAI (see Figure 5.5 case b). Negative
realized collaborative complementarity potential

(
CP coll, negative

realized

)
is the difference

between the instance-specific loss of the integrated decision lI and the instance-

2Note that the formula also applies to a case where both team members have the same average loss
(LAI = LH)
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Case a: lI > lAI Case b: lI > lH

Ground
Truth

Integrated 
prediction

AI
Prediction

Human
Prediction

Integrated 
prediction

AI
Prediction

Human
Prediction

Ground
Truth

Figure 5.5.: Deviation of human prediction, AI prediction and integrated prediction from
the ground truth for a single instance. Possible cases of how negative realized
collaborative complementarity potential CP coll, negative

realized emerges, with case
a considering the scenario LAI < LH and case b considering the scenario
LH < LAI .

specific loss of the human lH . We summarize negative collaborative knowledge in
the following formula 3 :

CP coll, negative
realized =

N∑
i=1


l
(i)
I − l

(i)
AI LAI ≤ and lI > lAI

l
(i)
I − l

(i)
H LH < LAI and lI < lH

Based on both introduced components, we can formulate the realized complemen-
tarity potential (CPrealized) as the sum of the realized inherent complementarity
potential

(
CP inh

realized

)
and the realized collaborative complementarity potential(

CP coll
realized

)

CPrealized = CP inh
realized + CP coll

realized

This alternative perspective on the realized complementarity potential (CPrealized)
allows us to analyze human-AI collaboration on a more granular level that can help
uncover new insights about the joint decision-making behavior.

5.3.3 Sources of Theoretical Complementarity Potential

A continuously growing body of research on human-AI collaboration assumes com-
plementary capabilities between humans and AI (Bansal et al., 2021; Dellermann
et al., 2019a). The discourse about complementary capabilities usually remains

3If both team members have the same average loss (LAI = LH) it is valid to calculate the negative
realized collaborative complementarity potential CP coll, negative

realized either according to the case LAI <
LH (used in this work) or the case LH < LAI
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superficial, for example hypothesizing that humans excel in creativity, whereas AI
better identifies patterns in large amounts of data (Dellermann et al., 2019a). A
conceptualization together with an empirical analysis of complementarity is how-
ever still lacking, therefore we aim to provide a more nuanced understanding of
theoretical complementarity potential by identifying its sources. To that end, we
conceptually distinguish three phases in human and AI decision-making. The first is
the learning or training phase that encompasses AI training and the human learning
process. Note that AI models are typically developed in a short period of time by
learning from aggregated training data, while human learning is a lifelong process.
The second is the inference phase, in which the human and AI infer a decision on
a particular instance. The third is the integration phase, in which the human and
AI collaborate. Based on this simplified decision-making process, we can discuss
sources of theoretical complementarity potential (inherent and collaborative) in a
more granular fashion.

Training phase: First, training data as input of the training process differs between
humans and AI. Humans may have seen a considerable number of training instances,
whereas the AI is typically trained on a limited, customized training data set. Second,
their inherent capabilities, which are stimulated through training, differ from each
other. For instance, the AI can efficiently identify patterns in high-dimensional data
or infer decisions from probabilistic reasoning (Dellermann et al., 2019a; Jarrahi,
2018). In contrast, humans can already learn abstract concepts from a small number
of samples (Zheng et al., 2017). Third, during the training process, humans and AI
learn different decision boundaries from which their final decision is inferred (Geirhos
et al., 2021). In this context, human decision-making can often be purely heuristic
or intuitive without considering all available information (Jarrahi, 2018). These
differences provide the potential for complementary capabilities; their presence
results in theoretical inherent complementarity potential.

Inference phase: After the training process, the AI can be used to infer a decision
for a particular instance. Even assuming identical decision boundaries of humans
and AI, different available input data can constitute a source of theoretical inherent
complementarity potential - as in real-world settings, AI and humans often have
access to different features (Bansal et al., 2021; Sanders & Ritzman, 2001). A
famous example is the “broken leg” scenario, which refers to side information that
is known to humans (Meehl, 1957). This information could not be incorporated
as features in the model due to its rare occurrence. In the majority of application
domains in which AI is applied to support human decision-making, additional
information exists beyond the data used to train the AI model (Ibrahim et al., 2021).
In practice, due to technical or economic reasons, this discretionary data may often
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not be digitally available at all, or only in a small quantity that is insufficient for
model training (Ibrahim et al., 2021). Nevertheless, in human-AI collaboration,
human team members may leverage their expertise to use the additional information
(Ibrahim et al., 2021). On the other hand, researchers highlight the consistency of
AI decision-making at inference (Blattberg & Hoch, 2010; Dellermann et al., 2019a).
To summarize, theoretical inherent complementarity potential can be present during
training or inference and is typically either based on information asymmetries or
complementary skills.

Integration phase: The integration process adds a third phase to the overall decision-
making process. In the integration phase, theoretical collaborative complementarity
potential can arise as an additional part of theoretical complementarity potential
beyond the theoretical inherent complementarity potential. For the collaborative
aspect of theoretical complementarity potential, it is essential for the human-AI team
to possess the capability to further improve the best individual decision achieved
either by the AI or human alone on a given task instance. Figure 5.6 summarizes all
three phases.

AI / Human 
Training Phase

Theoretical Inherent Complementarity 
Potential

AI / Human 
Inference Phase

Theoretical 
Collaborative 

Complementarity 
Potential

Integration PhasePhase

Theoretical 
Complementarity 

Potential

&, ,

Figure 5.6.: Conceptual overview of the human-AI collaboration process.

5.3.4 Integration Mechanisms: Realizing the Theoretical
Complementarity Potential

Human as well as AI team members can make decisions individually for any instance
of a particular task. However, from a team perspective, there is a final team deci-
sion. We denote a generic representation of inferring the final team decision as an
integration mechanism. We consider the integration mechanism as the collaborative
element of the human-AI team that can be instantiated arbitrarily. In this subsection,
we aim to derive a classification of possible integration mechanisms.
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We differentiate integration mechanisms along two dimensions. First, different
timings of integration are conceivable. We may ex-ante assign the decision either
to the human or AI. This means that only one of the team members would have to
solve the task without interactive collaboration. Alternatively, we may have both
propose a decision and integrate them ex-post. Second, we may differentiate who
performs the integration – the human or the technical system (agency). Whereas
literature on decision support systems usually considers the human as the only
decision-maker, research in forecasting and human-AI collaboration proposes several
technical delegation and aggregation methods (Bondi et al., 2022; Hemmer et al.,
2021; Sanders & Ritzman, 2001). Note that in some instantiations of the integration
mechanisms, the integrator can also be one of the team members. Table 5.1 on page
105 depicts the resulting four classes of integration mechanisms that we describe in
the following subsections.

Technical delegation: Analogously to human delegation, a technical delegation of
task instances is also possible (Bondi et al., 2022; Hemmer et al., 2021; Mozannar
& Sontag, 2020). Recent work proposes to specifically train the AI to consider the
capabilities of human team members and accordingly decide who to assign the task
to (Hemmer et al., 2021; Mozannar & Sontag, 2020; Wilder et al., 2020). A simpler
technical delegation might consist of distributing task instances solely based on the
confidence of the AI (Fügener et al., 2021). In the case of the ex-post integration, a
decision is made by both the human and AI respectively. They are the basis for the
final decision integrated either by the human or a technical system.

Human aggregation: Human aggregation refers to the human who receives both
the human and an AI prediction and integrates them. The most common integration
mechanism might be one that allows humans to make judgmental adjustments to AI
decisions (Hemmer et al., 2021; Ibrahim et al., 2021; Lai et al., 2023; Sanders &
Ritzman, 1995).

Technical aggregation: Similar to the human aggregation, a technical aggregation
is also conceivable. One of the most common approaches is stacked generalization
(Wolpert, 1992) where typically a secondary AI is trained that aggregates the
decisions of multiple AI models. Similarly, this secondary AI may also aggregate
human and AI decisions. Alternative technical, but non-AI, approaches consider a
weighting mechanism for the decisions of both team members (Blattberg & Hoch,
2010).

The theoretical complementarity potential realized by ex-ante and ex-post integration
mechanisms is different. Ex-ante integration mechanisms are able to realize inherent
theoretical complementarity potential, while ex-post integration mechanisms can
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realize both inherent and collaborative theoretical complementarity potential. The
reason is that to realize collaborative complementarity potential, humans and AI
must jointly make a better decision than individually at the task instance level. This
can only happen through collaboration in ex-post integration, because in ex-ante
integration the task instance is delegated to one of the team members, and therefore
the maximum performance is that of the better team member on that particular task
instance.

Timing

Ex-postEx-ante

Human aggregationHuman delegationHuman

A
ge
nc
y

Technical aggregationTechnical delegationTechnical system

Table 5.1.: Conceptual overview of the human-AI collaboration process.

In this subsection, we developed a conceptualization of human-AI complementarity
by introducing and formalizing the notion of complementarity potential, identified
sources of theoretical complementarity potential, and classified different integration
mechanisms to realize the theoretical complementarity potential. We focus on
settings where a human and an AI form a team with the overarching goal of reaching
CTP. Our conceptualization allows an analysis of the contributing factors, including
their magnitude, to foster an in-depth understanding through which factors CTP
was achieved during human-AI collaboration or not.

In Table 5.2 on page 106, we summarize our conceptualization. It highlights starting
points for the design of human-AI complementarity. System designers can develop
mechanisms that influence the realized inherent and the realized collaborative
complementarity potential. In the following subsections, to demonstrate the utility
of our conceptualization, we apply it in a behavioral experiment.

5.4 Experimental Design

To illustrate our conceptualization, we conduct a behavioral experiment. As dis-
cussed in the previous section, the key drivers of CTP are the complementarity
potential, the presence of its sources and the integration mechanism to realize the
theoretical complementarity potential. Several previous empirical studies focused
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Table 5.2.: Conceptualization of human-AI complementarity consisting of the notion of
complementarity potential, sources of complementarity potential, and inte-
gration mechanisms. The realized complementarity potential subtracted from
the isolated performance of the better team member results in the final team
performance after collaboration. Note that performance is represented by a
loss that can be interpreted as an error measure. This means a lower value
represents a better performance.

on investigating the effect of the integration mechanisms on the effectiveness of
human-AI collaboration (Bondi et al., 2022; Hemmer et al., 2021; Lai et al., 2023).
In this behavioral experiment, we use our conceptualization to study the effect of
designing for the theoretical inherent complementarity potential by ensuring the
presence of a relevant source. To induce complementarity potential, we generate
a setting with asymmetric information between humans and AI. More specifically,
we equip the human with unique human contextual information and choose a hu-
man aggregation setting in which the human adjusts the AI suggestions in the best
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possible way from the ex-post integration mechanisms. In the following subsection,
we denote this setting as human adjustment. It allows us to investigate the realized
inherent as well as the realized collaborative complementarity potential. The latter
does not arise in the ex-ante integration classes. More specifically, we instantiate an
AI-assisted decision-making setting in which the human integrates their own and
the AI decision.

5.4.1 Task and AI Model

In this subsection, we explain our chosen task and AI model. We draw upon a real
estate appraisal task provided on the data science website Kaggle (2019). As housing
is a basic need, and because it is ubiquitous in everyone’s life, all people have to
some degree the ability to assess the value of a house based on relevant factors
such as size or appearance. The data set encompasses 15,474 houses and contains
information about the street, city, number of bedrooms, number of bathrooms, and
size (in square feet). House prices in the data set denote their listing price. The
average house price is $703,120, with a minimum of $195,000 and a maximum of
$2,000,000. An image of each house’s exterior is provided.

For the house price prediction task, we use a random forest regression model
(Breiman, 2001). We draw upon the individual trees in the random forest to
generate a predictive distribution for each instance and provide the 5% and 95%
quantiles as indicators of the AI’s prediction uncertainty. We use 80% of the data
as the training set and 20% as the test set. We randomly draw a hold-out set of 15
houses from the test set, serving as samples for our behavioral experiment. We train
the random forest on the features of street, city, number of bedrooms, number of
bathrooms, and square feet of the house, while the image of the house is withheld
from the AI model. The AI model achieves a performance measured in terms of the
mean absolute error (MAE) of $163,080 on the hold-out set, which is representative
of its performance on the test set.

For the condition with unique human contextual information, we create sufficient
complementarity potential between human and AI. From prior studies in real estate
appraisal, we know that AI usually outperforms humans Viriato, 2019. We can
therefore assume a certain amount of unique AI knowledge, also in our task setup.
To ensure a certain amount of unique human knowledge, we give the humans access
to additional contextual information. To positively affect CTP, this information must
be useful for humans. For the selected use case of real estate appraisal, a valuable
piece of information may be an image of the house, as humans can use their general
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understanding to form an overall assessment based on the house’s features, the
visible neighborhood, and its appearance. To verify this assumption, we conduct an
initial pilot study (Appendix A.1.1 contains the detail).

5.4.2 Study Design and Procedure

We conduct an online experiment with a between-subject design. We recruit partici-
pants via prolific.co. The study includes two treatments and randomly assigns each
participant to one of these treatments. We do not allow any repeated participation.
Each participant passes through the steps displayed in Figure 5.7 and described
below.

Main part 
without UHCI

Task tutorial  
without UHCI

Survey related 
to task DemographicsAI tutorial

Training phase 
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Training phase 
with UHCI
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Figure 5.7.: Sequence of the individual steps in the experiment (UHCI = unique human
contextual information).

Step 1: After accepting the task, participants are transferred to our experimental
website. They are asked to give their consent and read the instructions. The study is
initiated by a control question. Step 2: As prior work highlights the importance of
providing training about the task that the participants must conduct, we include a
mandatory tutorial (Grootswagers, 2020). To familiarize participants with the task
and data, both treatments receive an identical in-depth introduction about the data
set, including summary statistics about the entire data set, like mean, maximum and
minimum house prices as reference points (Figure A.1 and Figure A.2 in Appendix
A.1.2 contain more information). Participants in the treatment without unique
human contextual information (without UHCI) are only introduced to the tabular
data of the houses, while the participants in the treatment with unique human
contextual information (with UHCI) are also provided with the house images.

Step 3: As part of the tutorial, we introduce the participants to the AI prediction.
We highlight that the AI did not have access to the images during training. We
show the AI prediction in the context of minimum and maximum house prices. The
participants also receive information about the AI’s uncertainty in the form of the
5% and 95% quantiles (see Figure 5.8). We explain the interpretation of the AI’s
advice, including all data points mentioned above. The participants are then asked
to answer a control question to verify their understanding.
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Figure 5.8.: An overview of the interfaces containing the information that the participants
are provided with in the respective treatments of the behavioral experiment

Step 4: The participants conduct two training tasks. For each task, we initially
let the participants provide a prediction on their own, before we reveal the AI’s
recommendation. They are asked to adjust the AI’s prediction in the best possible
way. After each training example, participants receive feedback in the form of the
true house price. After completing the two training tasks, they are informed about
the start of the study.

Step 5: Each participant completes 15 house price prediction tasks presented in a
randomized order in the same procedure as described in Step 4. During the tasks,
participants are not informed about the true house price. After completion of all
tasks, we ask participants to complete a questionnaire to collect qualitative feedback
(Step 6) and demographic information (Step 7).

The overall task lasts approximately 30 minutes. We recruit a total of 120 partic-
ipants, 60 per condition. They receive a base payment of £5 and are additionally
incentivized following the approach of Kvaløy et al., 2015. Note that the two
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training tasks are not included in the final evaluation. To ensure the quality of the
collected data, we remove participants by entering house prices that are higher
than the communicated maximum house price in the data set of $2,000,000. We
also identify outliers for removal using the median absolute deviation Leys et al.,
2013; Rousseeuw and Croux, 1993. After applying these criteria, we continue with
the data from 101 participants over both conditions - 53 in the treatment without
UHCI and 48 in the treatment with UHCI (Table C1 in Appendix A.1.3 contains the
detail).

5.4.3 Evaluation Measures

We measure the human’s and AI’s individual performances (LH and LAI) as well as
the joint team performance resulting from the instantiated integration mechanism
(LI). The loss per participant is measured by the mean absolute error (MAE):

MAE = 1
N

N∑
i=1

|y − x|

In addition to the respective losses, we calculate the specific components of the
formalization of complementarity potential as defined in subsection 5.3.2. It in-
cludes complementary team performance (CTP) as a binary task outcome, unique
human knowledge (UHK), unique AI knowledge (UAIK), complementarity potential
(theoretical: CPtheoretical realized CPrealized) including its components inherent
complementarity potential (theoretical: CP inh

theoretical realized CP inh
realized) and col-

laborative complementarity potential (theoretical: CP coll
theoretical realized CP coll

realized)
Regarding the realized collaborative complementarity potential, we report its posi-
tive

(
CP coll,positive

realized

)
as well as its negative components

(
CP coll,negative

realized

)

5.5 Results

In this section, we analyze the impact of unique human contextual information on
team performance and complementarity potential. We evaluate the significance of
the results using the Student’s T-test and the Mann-Whitney U-test depending on
the fulfillment of the prerequisites while applying the Bonferroni correction. First,
we focus on the impact of contextual information on performance, followed by an
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in-depth analysis of the effect on complementarity potential and its constituting
components.

Isolated performance and team performance. Figure 5.9 displays the sole human
and joint AI-assisted performance for both conditions. It also includes the perfor-
mance of the AI alone. We first evaluate the impact of unique human contextual
information without any AI assistance. Participants in the treatment without UHCI
achieve an MAE of $251,282, while those in the treatment with UHCI yield an MAE
of $200,510 - an improvement of $50,772 (20.21%), which is significant (p < 0.001,
two-sample, two-tailed T-test). This result confirms the general usefulness of the
provided unique human contextual information (the house images) for the human
decision-making.

Figure 5.9.: Performance results as MAE of the integration mechanism “human adjustment”
across conditions (UHCI = unique human contextual information), including
95% confidence intervals. The red horizontal line denotes the AI performance.

Next, we evaluate the impact of unique human contextual information when the
human is teamed up with the AI (human adjustment). Looking at the team per-
formance after adjusting the AI’s prediction, the treatment without UHCI results
in an MAE of $160,095 versus an MAE of $148,009 in the treatment with UHCI -
an improvement of $12,086 (7.55%), which is significant (p = 0.04, two-sample,
two-tailed T-test). In both treatments, the human-AI team outperforms the AI (MAE:
$163,080). Whereas the difference between the performance of the human-AI
team in the treatment with UHCI is significant (p < 0.001, one-sample, two-tailed
T-test), the difference in the treatment without UHCI does not constitute a significant
improvement (p = 0.999, one-sample, two-tailed T-test).
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In the next step, we demonstrate the usefulness of the formalization by analyzing
the theoretically and realized complementarity potential, including its components,
as this allows a more in-depth understanding of the factors that contribute to CTP.

Theoretical complementarity potential. The theoretical complementarity potential
(CPtheoretical) consists of the theoretical inherent (CP inh

theoretical) as well as the theoret-
ical collaborative (CP coll

theoretical) complementarity potential. The theoretical inherent
complementarity potential refers to the unique knowledge the lower-performing
team member can contribute. We observe an increase in unique human knowledge
(UHK) in the presence of unique human contextual information that is significantly
different. It is $42,995 in the condition without UHCI and $61,970 in the condition
with UHCI (p < 0.001, two-tailed Mann-Whitney U test). This finding can be inter-
preted as that the images contain useful contextual information for humans that is
not accessible to the AI. At the same time, unique AI knowledge decreases (UAIK
without UHCI: $131,196; UAIK with UHCI: $99,399), which is significant (p = 0.008
two-sample, two-tailed T-test). This can be explained by the observation that unique
human contextual information also increases human performance on tasks where
the AI performs better, which consequentially reduces the unique AI knowledge. To
determine the theoretical inherent complementarity potential (CP inh

theoretical), the
unique knowledge attributable to the lower-performing team member must be de-
termined. Since the AI performs better than the human, the theoretical inherent
complementarity potential (CP inh

theoretical) is defined by the unique human knowledge
(UHK).

Next, we calculate the theoretical collaborative complementarity potential (CP coll
theoretical)

as the difference between the performance of the better team member (LAI), mean-
ing the total theoretical complementarity potential (CPtheoretical): without UHCI:
$163,080; with UHCI: $163,080), minus the theoretical inherent complementar-
ity potential (CP inh

theoretical). Whereas in the condition without UHCI it results in
$120,085, in the condition with UHCI it takes on a value of $101,110. The difference
is statistically significant (p < 0.001, two-tailed Mann-Whitney U test).

Note that it is highly unlikely that the total theoretical complementarity potential
will be fully realized, as this would mean that each prediction is exactly correct.

Realized complementarity potential. Now that we have analyzed the impact of
unique human contextual information on the theoretical complementarity potential
(CPtheoretical), we focus on the realized complementarity potential (CPrealized).

We find a significant difference between the realized inherent complementarity
potential (CP inh

theoretical) in both conditions (without UHCI: $14,468; with UHCI:
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$27,860; p < 0.001, two-tailed Mann-Whitney U test), which highlights the potential
of contextual information. This absolute increase may be due to the increase in
complementarity potential and/or improved integration. Therefore, to investigate
this further, we also calculate the relative amount of realized inherent complemen-

tarity potential
(

CP inh
realized

CP inh
theoretical

)
. This analysis reveals that unique human contextual

information not only enhances the theoretically available inherent complementarity
potential, but participants can also use significantly more of it (without UHCI: 34%;
with UHCI: 45%; p < 0.001, two-tailed Mann-Whitney U test). This is a surprising
result, as having more information available than the AI could also have detrimental
psychological effects. For example, Jussupow et al. (2020) find that perceived AI
capabilities and expertise influence aversion towards AI. This can lead to humans
taking less account of the AI’s suggestions when making their final decision (Longoni
et al., 2019), which could result in CTP not being achieved. Our results show that
unique human contextual information can however not only increase the potential
but also the overall effectiveness of the integration.

Lastly, we analyze the impact of unique human contextual information on realized
collaborative complementarity potential (CP coll

theoretical). The realized collaborative
complementarity potential is not significant between both treatments (CP coll

theoretical):
without UHCI: $-11,483; with UHCI: $-12,789;p = 0.999, two-tailed Mann-Whitney
U test). In this context, the positive realized collaborative complementarity potential
(CP coll,positive

theoretical ) is $6,770 in the treatment without UHCI and $7,731 in the treat-
ment with UHCI. The negative realized collaborative complementarity potential
(CP coll,negative

theoretical ) takes on larger values in both treatments (without UHCI: $18,253;
with UHCI: $20,520), explaining the overall negative realized collaborative comple-
mentarity potential. In our experiment, it was expectable that the negative exceeds
the positive realized collaborative complementarity potential. Given that the AI in
our setup outperforms its human team member, the occurrence of positive realized
collaborative complementarity potential can only occur on task instances where the
team performance surpasses that of the AI and the human. Conversely, each instance
where the human underperforms in comparison to the AI and fails to exactly adapt
the AI’s decision, amplifies the negative realized collaborative complementarity
potential. As humans tend to choose decisions between two boundaries (in our
case their own and the AI decision), our setup naturally fosters a negative realized
collaborative complementarity potential. The more important point is however that
the human can realize the theoretical inherent complementarity potential and even
improves in the presence of unique human contextual information, which finally
even results in CTP.
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Summing the realized inherent complementarity potential and the realized col-
laborative complementarity potential results in the total realized complementarity
potential (CP coll

realized), which is equivalent to the performance difference between
the best individual team member and the joint human-AI team performance (without
UHCI: $2,985; with UHCI: $15,071).

To summarize, we have shown that unique human contextual information increases
the complementarity potential and also improves the human ability to integrate
their own and the AI decision. This constitutes a new empirical insight that was
only possible to measure due to the granular formalization. Table 5.3 on page 115
summarizes the results of our experiment.

5.6 Discussion

Our research highlights CTP as an increasingly relevant goal of human-AI collabora-
tion. As long as AI still had limited capabilities and was used to merely augment
the human in low-stakes decision-making tasks, such as calculating decision-making
inputs, CTP had not been a focus. Nowadays AI can however conduct a rising
number of tasks independently and is even entering high-stakes decision-making
domains such as medicine (McKinney et al., 2020) and law (Hillman, 2019). It
also offers general-purpose support fueled through the recent advances in large
language models that enable applications like ChatGPT (Bubeck et al., 2023). While
this opens up the potential for automating tasks, it also calls for a new form of
human-AI collaboration in which AI models and humans are team members that
can complement each other. In this work, we provide guidance to reach CTP more
consistently.

5.6.1 Contributions

Current research lacks a concise picture of human-AI complementarity, as the major-
ity of studies focusing on human-AI collaboration do not achieve CTP (Bansal et al.,
2021; Hemmer et al., 2021). The contributions of our research are threefold and
provide guidance on the endeavor to reach CTP. First, we conceptualize human-AI
complementarity to facilitate the understanding of the inner workings in human-AI
teams that are relevant for achieving CTP. Our conceptualization consists of three
parts. We start with a formalization of human-AI complementarity and introduce
associated metrics. In addition, we systematically identify information asymmetry
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Table 5.3.: Summary of human-AI complementarity results.

and complementary skills as the key sources of complementarity potential. Finally,
we structure the options for designing effective human-AI integration mechanisms
that do not only exploit the inherent complementarity potential but also allow the
creation of collaboratively complementarity potential.

Second, for one instantiation of an integration mechanism—human adjustments—
we empirically show that asymmetric information between human and AI can result
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in CTP. In this context, we illustrate the application of the developed conceptualiza-
tion and metrics.

Third, our formalization allows us to reveal an interesting empirical insight about
the effect of unique human contextual information on human integration. Our
experiment highlights that providing humans with unique contextual information not
only affects the theoretical inherent complementarity potential, but also significantly
increases the realized inherent complementarity potential. This is an interesting
finding because the perception of having more information than the team member
could intuitively also worsen collaboration.

5.6.2 Theoretical Implications

Our work advances the discourse on human-AI collaboration (Bansal et al., 2021;
Dellermann et al., 2019a) and in particular expands the theoretical groundwork
of Fügener et al. (2021). Our conceptualization - the formalization, including
operational metrics, sources of complementarity, and the classification of integration
mechanisms - provide a basis for future research in human-AI collaboration. In this
context, we do not only provide the research community with a formalization for
human-AI collaboration but also supply concrete measures that allow investigation
into the inner workings of human-AI collaboration on an in-depth level in behavioral
experiments.

Providing sources of complementarity potential in a structured way may inspire
researchers to look for complementarity beyond arbitrary statements about com-
plementarity capabilities such as human creativity and AI’s computational power.
The classification of integration mechanisms aids comprehension of the appropriate
application of specific instantiations for different scenarios. By employing our pro-
posed concepts, researchers can conduct a more thorough analysis of distinct aspects
of human-AI collaboration, namely the theoretical complementarity potential and
its realization.

The most important implication of our research is the need to design for CTP, which
is influenced by two factors - the complementarity potential and the integration
mechanism. Both can and should be designed. The inherent complementarity
potential can be influenced by increasing the unique knowledge. From an AI
perspective, this could for example be realized by designing “complementary” AIs
that are particularly trained in areas of the feature space where humans do not
perform well (Hemmer et al., 2021; Mozannar & Sontag, 2020; Wilder et al., 2020).
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From a human perspective, humans could be trained to focus on their unique
capabilities and build awareness to use unique human contextual information. The
integration mechanism needs to be consciously designed to maximize the realized
inherent and collaborative complementarity potential.

Our work prepares the ground for the rigorous and fruitful development of design
knowledge and artifacts for human-AI complementarity.

5.6.3 Managerial and Political Implications

Our work also has major implications for decision-makers in management and
politics. In application areas suitable for human-AI collaboration tasks, such as high-
stakes decision-making, responsible managers should focus on developing AI systems
that enable the realization of CTP. Competitors might otherwise realize competitive
advantages. They need to start collecting data to train complementary AI and invest
in training that upskills their workers to improve the inherent complementarity
potential of human-AI teams.

Our work provides guidance on where to identify complementarity potential. Our
two classifications, one for sources of complementarity potential and one for inte-
gration mechanisms, allow an intuitive and easy evaluation of use cases’ eligibility
for CTP. Current AI endeavors often result in blindly adopting human-AI collabora-
tion due to decision-makers’ concerns regarding full automation (Jussupow et al.,
2021). It is however worth purposefully designing human-AI collaboration, as it can
potentially achieve CTP. Rather than fearing automation, decision-makers should
explore the benefits of working with AI. Our research provides valuable guidance to
managers, assisting them in determining when and how to collaborate with AI to
optimize decision-making and achieve CTP.

Many politicians and researchers warn of the ethical implications of giving AI the
final authority in decision-making. Our research shows that in addition to ethical
considerations, employing AI without human input does not allow leveraging the
potential of human-AI collaboration to reach CTP. Politicians and managers should
therefore consider supporting human-AI collaboration as commercially driven com-
panies might only see the short-term benefit in cost reduction through automation
while neglecting the long-term potential value of CTP.
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5.6.4 Limitations

Our current research design has several limitations that need to be addressed in
future work. We conducted our behavioral experiment based on a regression task.
Many design elements of our study are therefore closely related to regressions, such
as providing quantile information as confidence proxies in AI decisions. In future
work, classification as well as generative tasks should be evaluated, especially due
to the increase of large language models that enable applications like ChatGPT. In
this study, we also focus on a single task, namely real estate appraisal.

Another limitation is the way in which we measure the counterfactual human
decision if the user did not receive AI advice. In this work, we conducted a sequential
decision-making setup to first measure the human prediction and afterwards the
AI-assisted decision. The sequential setup alone might however influence human
decision-making. The timing of revealing the AI’s recommendation is therefore a
critical aspect in the experimental design (Jussupow et al., 2021). By immediately
presenting the AI recommendation to the participants, humans might invest reduced
cognitive capacities in the task, as the AI already provided a possible answer (Green
& Chen, 2019).

5.6.5 Future Research

We see several potential areas of future research regarding human-AI complemen-
tarity, which we structure along the formalization, the sources of complementarity
potential, and the integration mechanisms.

Future work could apply our concepts and metrics to other domains. Our formaliza-
tion could also be extended further, for example to a team setting with more than
two team members, considering multiple AIs or multiple humans.

Additionally, future work should use the conceptualization and extend the collection
of sources. In this work, we highlighted the existence of unique human contextual
information as a particular source of complementarity potential. Besides identifying
possible further sources, it is worthwhile to identify general criteria when certain
information can be considered contextual information. To extend the current under-
standing of complementarity potential, future work could derive design principles
that ensure a sufficient amount of complementarity potential in human-AI collabo-
ration. AI and humans can be trained to increase their complementarity potential.
From a human perspective, researchers should investigate how to specifically train
people to use unique human contextual information and actively integrate it into
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human-AI collaboration. From an AI perspective, research should explore how to
train AI that maximizes complementarity potential.

In addition, future work needs to address the realization of theoretical complemen-
tarity potential, inherent as well as collaborative. Our work shows that even with
unique human contextual information humans only capture 9% of the theoretical
complementarity potential. Future research needs to investigate how to improve
the integration. With human aggregation, researchers could derive research models
and evaluate relevant constructs, such as trust (Söllner et al., 2014) and mental
models (Rouse & Morris, 1986), to improve the appropriate reliance of humans in
AI decisions.

5.7 Conclusion

human-AI collaboration has predominantly been concerned with AI supporting hu-
man users. With an increasing number of tasks that can be automated, meaning they
can be solved by AI alone, the focus has however shifted to the purposeful design of
the collaboration between humans and AI as team members. The ultimate objective
of these teams must be the achievement of complementary team performance (CTP),
with the team outperforming each individual team member. The IS community is
predestined to drive the development of appropriate theories and lay the foundation
for practical applications. We hope that the conceptual base developed in this paper
with regard to formalization, sources, and integration mechanisms will provide
fruitful ground for future research, and that the empirical studies will illustrate the
validity and potential of the human-AI complementarity paradigm.
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Part IV

Harnessing Complementarity Potential in
AI-Assisted Decision-Making





Harnessing Complementarity:
The Role of Appropriate
Reliance

6

This chapter comprises an article that was published as: Schemmer, M., Kuehl,
N., Benz, C., Bartos, A., & Satzger, G. (2023d). Appropriate Reliance on AI
Advice: Conceptualization and the Effect of Explanations. Proceedings of the
28th International Conference on Intelligent User Interfaces, 410–422. Note: To
improve the structure of the work, the title was changed. The abstract has
been removed. Tables and figures were reformatted, and newly referenced
to fit the structure of the thesis. The terminology was standardized with the
dissertation. Chapter, section and research question numbering and respective
cross-references were modified. Formatting and reference style was adapted
and references were integrated into the overall references section of this thesis.

6.1 Introduction

Most important decisions are made by calling upon advisors. While in the past advice
was typically obtained from human experts, nowadays advisors based on artificial
intelligence (AI) are becoming increasingly frequent in research and practice (Jung
et al., 2018; Jussupow et al., 2021). For example, AI advises medical professionals
in breast cancer screening (McKinney et al., 2020), or in loan decisions (Demajo
et al., 2020).

In the past, research has predominantly focused on maximizing the reliance (Kerasi-
dou et al., 2021), trust (Siau & Wang, 2018), utilization (Alnowami et al., 2022),
compliance (Kühl et al., 2019), or acceptance (Shin, 2021) of AI advice (Jussupow
et al., 2021). With certain nuances, all these terms basically describe a concept that
aims at maximizing the amount of AI advice that a human decision-maker eventu-
ally follows, i.e. maximizing the AI reliance. Recently, a new line of research has
emerged that argues that maximising AI reliance does not fully exploit the potential
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of state-of-the-art human-AI collaboration (Bansal et al., 2021; Buçinca et al., 2021;
Schemmer et al., 2022a; Zhang et al., 2020). We summarize the reasons for this
line of thought in three main categories:

Increasing usage of imperfect AI advisors. First, prior research on AI advice
often assumed “perfect” advice (Jussupow et al., 2021). This makes sense if one
considers narrow application spaces, e.g. performing deterministic algebra. But AI
nowadays is used for more complex tasks (Frey & Osborne, 2017) which increases
both the number and severity of AI errors. Therefore, generally accepting AI advice
would also include the acceptance of incorrect AI advice: Assume that without an AI
advisor’s intervention, a physician would have diagnosed cancer, yet in the setting
with AI advice had been misled by an incorrect AI advice and, thus, had failed to
detect the cancer.

Increasing alignment of the objectives of human decision-makers and AI advisors.
Second, in previous research, the goal of human or AI advisors was often inconsistent
with the goal of the decision-maker, e.g., financial advisors wanted to persuade a
client to purchase certain financial products that would yield the highest financial
benefit for their own bonus. In this situation, AI designers do not want customers to
differentiate good from bad advice but simply increase acceptance of advice. Today,
however, AI advisors are often specifically designed to enhance human decision-
making (Lai et al., 2023). The advice seekers can design the advisor based on
individual goals and with desired features such as “honest” explainability. This
honesty might be missing if the inherent goal of the advisor is different from the
advice seeker’s. If the AI is not designed in alignment with human goals, it is often
not in the AI designer’s interest to enable humans to critically question the advice
they receive.

Increasing potential for complementary team performance. Third, as modern AI
is not only more performant and offers more application areas, but also complements
humans (Hemmer et al., 2022a; Hemmer et al., 2022b; Lai et al., 2022), there is
an increasing potential to achieve complementary team performance (CTP), i.e.,
a performance that exceeds both—individual AI and human performance (Bansal
et al., 2021; Fügener et al., 2021; Hemmer et al., 2022b; Lai et al., 2022; Nguyen
et al., 2022). However, this level of performance can only be achieved by exploiting
complementary capabilities. Even in the case of superior AI advice, it cannot be
achieved simply by accepting AI advice, as it is then tied to AI performance without
considering the potential additional strengths of the human.

In conclusion, human decision-makers should not simply rely on AI advice, but
should be empowered to differentiate when to rely on AI advice and when to rely
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on their own, i.e. they should display appropriate reliance (AR) (Bansal et al., 2021;
Wang & Yin, 2021; Yang et al., 2020a; Zhang et al., 2020). Despite being a necessary
condition for the effective use of AI, current research on AR on AI advice is still very
ambiguous with regard to definition, measurement, and impact factors.1

First, we deal with the ambiguous concept of AR: Current research inconsistently
uses the term both for a binary target state (“appropriate reliance is either achieved
or not”) and a metric indicating a degree of appropriateness. To clarify this, we
introduce a two-dimensional metric—the appropriateness of reliance (AoR)—to
describe and measure reliance behavior. It is based on relative frequencies of
correctly overriding wrong AI suggestions (self-reliance) and following correct AI
suggestions (AI reliance), and reflects a metric understanding of AR. This metric
can then be used to define different levels as target states of AR that mark the
achievement of particular objectives like certain legal, ethical and performance
requirements.

Second, we analyze how the provision of explanations influences AoR and the
achievement of AR states. Existing literature is ambiguous with regard to effects
of explanations (Alufaisan et al., 2021; Bansal et al., 2021; Wang & Yin, 2021):
While in some experiments, explanations support AR (Wang & Yin, 2021; Yang
et al., 2020a), in others they cause “blind trust” (Alufaisan et al., 2021; Bansal
et al., 2021) in AI advice. To better understand and reconcile conflicting results, we
consider additional constructs that may mediate the effect of explanations. More
specifically, we hypothesize that explanations do not only influence the information
available to the decision-maker, but also have an impact on trust toward AI and on
self-confidence.

To test our hypotheses, we conduct a behavioral experiment with 200 participants.
Our experiment underscores the advantages of AoR as a metric to examine in detail
the factors that lead to changes in overall performance. Moreover, our results help
explain the relationship between explanations and AoR by assessing the role of
reliance and confidence as mediators, thus mitigating the ambiguity of previous
research.

Our work provides researchers with a theoretical foundation of AR within human-
AI collaboration research and provides guidance on how to design AI advisors.
More specifically, our research contributes to research and practice by defining
AR, developing a measurement concept (AoR), and analyzing how explainable

1It is worth to mention that several studies have examined AR in automation and robotics research
(Lee & See, 2004; Wang et al., 2008), but an agreed-upon definition of AR and a respective metric
are still missing (Lai et al., 2023; Wang et al., 2008).
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AI influences the AoR. Our definition should help researchers to more accurately
describe whether they have achieved AR in their experiments. The AoR metric allows
to precisely steer the development towards AR. Lastly, our experimental insights can
be seen as a starting point for in-depth experimental evaluations of factors impacting
AoR.

The remainder of this article is structured as follows: In Section 6.2, we first outline
related work on AR in the context of human-AI collaboration. In Section 6.3, we
define AR and develop a measurement concept, the AoR, to isolate different possible
effects. Subsequently, we derive impact factors on AoR in Section 6.4. In Section
6.5, we describe the design of our behavioral experiment and summarize the results
in Section 6.6. In Section 6.7, we discuss our results and provide ideas for future
work. Section 6.8 concludes our work.

6.2 Related Work

In the following, we introduce the related work of this article, structured along
the topics of appropriate reliance in human advice, automation, and human-AI
collaboration as well as the role of explainability.

Appropriate reliance in human advice. Historically, the use of (human) advice
is generally discussed in the so-called judge-advisor system (JAS) research stream
(Harvey & Fischer, 1997; Sniezek & Van Swol, 2001; Yaniv, 2004). The term “judge”
refers to the decision-maker who receives the advice and must decide what to do
with it (Bonaccio & Dalal, 2006). The judge is the person responsible for making the
final decision. The “advisor” is the source of the advice (Bonaccio & Dalal, 2006).
The research stream mainly focuses on advice acceptance.2

Appropriate reliance in automation. In contrast, many researchers have worked
on AR with regard to automation (Lee & See, 2004) and robotics (Talone, 2019).
In the following, we will provide an overview of the most common definitions.
Fundamental work in the context of AR in automation has been laid by Lee and See
(2004). The authors outline the relationship between “appropriate trust” and AR
in their work. However, they do not define AR explicitly but provide examples of
inappropriate reliance, such as “misuse and disuse are two examples of inappropriate
reliance on automation that can compromise safety and profitability” (Lee & See,
2004, p. 50). Wang et al. (2008) define appropriate reliance as the impact of reliance

2In this article, we use the term advice acceptance as a generic term to describe the behavior of
following AI advice regardless of its quality.
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on performance. For example, they discuss the situation in which automation reaches
a reliability of 99%, and the human performance is 50%. In their opinion, it would be
appropriate to always rely on automation as this would increase performance. Talone
(2019) follows the work by Wang et al. (2008) and defines AR as “the pattern of
reliance behavior(s) that is most likely to result in the best human-automation team
performance” (Talone, 2019, p. 13). Both see AR as a function of human-automation
team performance.

Appropriate reliance in Human-AI Collaboration. Recent work in human-AI
collaboration has started to discuss AR in the context of AI advice. Lai et al. (2023)
give an overview of empirical studies that analyze AI advice considering AR. For
example, Arjun et al. (2018) analyze whether humans can learn to predict the AI’s
behavior. This ability is associated with an improved ability to appropriately rely
on AI predictions. Moreover, Gonzalez et al. (2020) measure the acceptance of
incorrect and correct AI advice. Similarly, Poursabzi-Sangdeh et al. (2021, p. 1)
point out the idea of AR in the form of “making people more closely follow a model’s
predictions when it is beneficial for them to do so or enabling them to detect when a
model has made a mistake”. However, the authors do not explicitly relate this idea
to the concept of AR. In this context, additional work uses the term “appropriate
trust” with a similar interpretation as the behavior to follow “the fraction of tasks
where participants used the model’s prediction when the model was correct and
did not use the model’s prediction when the model was wrong” (Wang & Yin, 2021,
p. 323). Finally, also Yang et al. (2020a, p. 190) define “appropriate trust is to
[not] follow an [in]correct recommendation”. All these articles have in common
that they consider AR or appropriate trust on a case-by-case basis. Bussone et al.
(2015) assess how explanations impact trust and reliance on clinical decision support
systems. The authors divide reliance into over- and self-reliance as part of their
study. They use a qualitative approach to answer their research questions. Chiang
and Yin (2021) evaluate the impact of tutorials on AR and measure AR through
team performance.

The related work highlights that current research inconsistently uses the term both
for a binary target state (“AR is either achieved or not”) and a metric indicating
a degree of appropriateness. Additionally, previous research does not provide a
unified measurement concept that allows measuring the degree of appropriateness
(Lai et al., 2023).

Explainable AI and appropriate reliance. Most researchers that studied AR so far
have proposed to use explanations of AI as a means for AR (Adadi & Berrada, 2018;
Lai & Tan, 2019; Zhang et al., 2020). We refer to AI that generates explanations as
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explainable AI (XAI). Explanations can be differentiated in terms of their scope, i.e.,
being global or local explanations (Adadi & Berrada, 2018). Global XAI techniques
address holistic explanations of the models as a whole. In contrast, local explanations
work on an individual instance basis. Besides the scope, XAI techniques can also be
differentiated with regard to being model specific or model agnostic, i.e., whether
they can be used with all kinds of models (Adadi & Berrada, 2018). The most
commonly used model agnostic technique is feature importance (Lundberg et al.,
2018; Lundberg & Lee, 2017). Feature importance can be used to generate saliency
maps for computer vision tasks or highlight important words for text classification.

Table 6.1.: Related work on explainable AI (XAI) and appropriate reliance (AR).

Study AR Metric Independent variable Effect of XAI on AR

Bansal et al. (2021) Accuracy on correct or incorrect AI advice Local feature importance Negative

Adaptive explanations Positive

based on AI confidence

Buçinca et al. (2021) Ratio of reliance on incorrect AI advice Local feature importance Negative

Jakubik et al. (2023) Ratio of reliance on correct Local feature importance No effect

or incorrect AI advice Predictive outcomes Negative

Wang and Yin (2021) Accuracy on correct or incorrect AI advice Global feature importance No effect

Local feature importance Positive

Examples No effect

Counterfactuals No effect

Yang et al. (2020a) Ratio of reliance on correct Local feature importance Positive

or incorrect AI advice

Several studies have evaluated whether different types of explanations can support
humans’ understanding of the AI model with the goal of better relying on recom-
mendations in the correct cases (Alufaisan et al., 2021; Buçinca et al., 2021; Carton
et al., 2020; Van der Waa et al., 2021). However, it has also been shown that
some types of explanations can lead people to rely too much on the AI’s recom-
mendation, especially in cases where the AI advice is wrong (Bansal et al., 2021;
Poursabzi-Sangdeh et al., 2021; Schemmer et al., 2022c). In Table 6.1, we provide a
comprehensive overview of the results that were found in the current studies on AR
in XAI-assisted decision-making. Overall, we find mixed results regarding the effect
of explanations.
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To sum it up, related work is missing a precise definition of AR, a unified measure-
ment concept, and a precise understanding of when and why explanations of AI
advisors influence AR.

6.3 Conceptualization of Appropriate Reliance

Although several studies have examined AR in automation and robotics research (Lee
& See, 2004; Wang et al., 2008), an agreed-upon definition of AR and a respective
metric are still missing (Lai et al., 2023; Wang et al., 2008). We, therefore, initiate
our research by deriving a definition of AR and a corresponding metric. To do so,
we first discuss the terms reliance and appropriateness. Following that, we derive
our metric and lastly define AR.

6.3.1 Reliance and Appropriateness

Reliance itself is defined as a behavior (Dzindolet et al., 2003; Lee & See, 2004).
This means it is neither a feeling nor an attitude but the actual action conducted.
This means reliance is directly observable. Scharowski et al. define reliance in the
AI advisor context as “user’s behavior that follows from the advice of the system”
(Scharowski et al., 2022, p. 3). Defining reliance as behavior also clarifies the role of
trust in this context, which is defined as “the attitude that an agent will help achieve
an individual’s goals in a situation characterized by uncertainty and vulnerability”
Lee and See, 2004, p. 51. In general, research has shown that trust in AI increases
reliance, but reliance can also take place without trust being present (Lee & See,
2004). For example, we might not trust the bank advisor but consciously decide that
following the advice is still the best possible decision. The other way around, we
could also generally trust an advisor, but consciously decide that the given advice is
not correct in a particular situation. Finally, reliance is influenced beyond trust by
other attitudes such as perceived risk or self-confidence (Riley, 2018).

After establishing a common understanding of reliance, we proceed by defining
“appropriateness”. Appropriateness depends on different types of AI errors. Current
AI is imperfect, i.e., it may provide erroneous advice. This erroneous advice can be
divided into systematic errors and random errors (Talone, 2019). While humans can
identify systematic errors, random errors have no identifiable patterns and can not
be distinguished. These different types of errors allow differentiation between two
cases. If all errors are random and cannot be detected, then, from a performance
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perspective, humans should always rely on the AI’s advice when the AI performs
better on average, and never when the AI performs worse on average(Talone, 2019).
However, suppose there are some systematic errors. In that case, humans might be
able to differentiate between correct and incorrect advice, which may even result
in superior performance , i.e. complementary team performance (CTP) (Hemmer
et al., 2021), compared to a scenario in which AI and humans conduct the task
independently of each other.

This changes the overall discrimination to a case-by-case discrimination. In the
presence of systematic errors, humans should evaluate each case individually. Since
the solution approach in the presence of just random errors is relatively simple,
as pointed out above, in this article, we focus on the more complicated setting
when a significant proportion of task instances exhibit systematic errors. After
having defined the terms reliance and appropriateness in the following, we derive a
metric.

6.3.2 Towards a Measurement Concept—Appropriateness of
Reliance

Appropriateness is often measured by the percentage in which the decision-maker
relies on correct AI advice and the percentage in which the decision-maker does not
rely on incorrect AI advice (Bansal et al., 2021; Gonzalez et al., 2020). The major
disadvantage of this measurement is that we cannot know whether the reliance
on correct AI advice stems from a correct discrimination or simply an overlap of
the human and the AI’s decision, i.e. instances where the AI advisor just confirms
the human (Tejeda et al., 2022). Especially from an ethical point of view, it makes
a major difference whether the final decision is incorrect because an AI advisor
“convinced” a human decision-maker to accept an incorrect AI advice or whether the
human decision-maker would also not have been competent to solve it alone.

Therefore, to measure the degree of appropriateness in a more narrow sense, we
follow the approach of the JAS paradigm and include an initial human decision
(Sniezek & Van Swol, 2001). This approach requires participants to make a decision,
receive advice, and then make a second, potentially revised decision. In general,
if we do not consider the initial human decision, information about the human
discrimination ability, including the consequent action, gets lost—it is not traceable
how the human would have decided without the AI advice. Nevertheless, especially
this interaction needs to be documented to research AR holistically.
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We use a simple discrete decision case to highlight the different possible outcomes
of reliance. Note that for simplicity, we refer to classification problems. However,
the measurement concept can be extended to regression problems as well (see for
example Petropoulos et al. (2016)). We focus on a single task instance perspective
and consider a sequential decision process which can be described as follows: First,
the human makes a decision, then receives AI advice. Second, the human is asked
to update the initial decision, i.e., either adopt or overwrite the AI advice. This
allows measuring appropriateness in a fine-granular way. Figure 6.1 highlights the
different combinations. Four of the eight combinations are cases where the human’s
initial decision and the AI’s advice are the same, i.e. the AI confirms the human’s
decision. In our reliance measure, we exclude these confirmation cases for two
reasons: First, if the same decision is made in all three steps, it is impossible to
objectively measure whether AI or self-reliance was present. Second, if the final
decision differs from the advice and the initial human decision, it is questionable
whether we can speak of a reliance outcome. For example, if both the human and
the AI are initially incorrect, then arriving at a correct final decision is less a matter
of reliance than of human-AI collaboration. While these cases of collaboration are
relevant to CTP, they are beyond the scope of our work. Therefore, we arrive at four
different reliance outcomes, which we present below.

Task 
instance

AI adviceInitial human 
decision

Human decision after receiving AI 
advice

Under-reliance

Over-reliance

Correct AI reliance (CAIR)

Correct self-reliance (CSR)

Figure 6.1.: Combinatorics of initial human decisions, AI advice and human reliance for a
single task instance in a sequential task setting.

On a high level, we can cluster those four outcomes into either AI or self-reliance. AI
reliance refers to cases in which the initial decision-maker’s decision is different from
the AI advisor and the decision-maker relies on the AI’s advice. Likewise, self-reliance
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refers to cases in which the decision-maker is different from the AI advisor but
finally relies on themselves. On a more detailed level, we can further differentiate
whether the final decision is correct or incorrect which leaves us with the following
four reliance outcomes: First, correct AI reliance (CAIR), which describes the case
when the human is initially incorrect, receives correct advice, and relies on that
advice. Second, the case in which the human relies on the initial incorrect decision
and neglects correct AI advice. This is denoted as incorrect self-reliance or under-
reliance. Third, if the human is initially correct and receives incorrect advice, this
can either result in correct self-reliance (correct self-reliance (CSR)), i.e., neglecting
the incorrect AI advice, or relying on it, which is denoted as incorrect AI reliance
or over-reliance.3 Based on these cases, we propose a two-dimensional metric that
transfers the instance perspective on a measurement for multiple task instances.

Let us consider a prediction task T = {Xi, yi}N
i as a set of N instances xi ∈ X with

a corresponding ground truth label yi ∈ Y . On the first dimension, we calculate
the ratio of the number of cases in which humans rely on correct AI advice and the
decision was initially not correct, i.e., in which humans rightfully change their mind
to follow the correct advice.

Relative AI reliance (RAIR) =
∑N

i=0 CAIRi∑N
i=0 CAi

CAIRi is one if, in this particular case, the original human decision was wrong,
the AI recommendation was correct and the human decision after receiving the AI
recommendation is correct, and zero otherwise. CAi is one if the original human
decision was wrong and the AI advice was correct, regardless of the final human
decision, and zero otherwise. On the second dimension, we propose to measure the
relative amount of correct self-reliance in the presence of incorrect AI advice.

Relative self -reliance (RSR) =
∑N

i=0 CSRi∑N
i=0 IAi

CSRi is one if on this particular instance the initial human decision was correct, the
AI advice was incorrect and the human decision after receiving AI advice is correct.
IAi is one, if the initial human decision for a task instance i was correct and the AI
advice was incorrect.

3This also clarifies our definition of over- and under-reliance. Both are errors on a task instance level,
when humans do not rely appropriately.
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Figure 6.2 highlights both dimensions. On the x-axis, we depict the relative AI
reliance (RAIR), and on the y-axis, the relative self-reliance (RSR). The figure
highlights the properties of the measurement concept. It ranges between 0 and
1 along both dimensions. We call the tuple of RAIR and RSR appropriateness of
reliance (AoR).

Appropriateness of Reliance (AoR) = (RSR; RAIR)

We refer to the theoretical goal of having a RSR and a RAIR metric of “1” as
optimal AoR. Most likely, this theoretical goal will not be reached in any practical
context as humans will not always be able to perfectly discriminate on a case-by-case
basis whether they should rely on AI advice. Furthermore, random errors will reduce
AoR as they cannot be discriminated against. Therefore, optimal AoR will most likely
be a theoretical goal.

Figure 6.2.: Two-dimensional depiction of appropriateness of reliance (AoR).

6.3.3 Definition of Appropriate Reliance

So far, we have discussed how to measure AoR and the theoretical upper boundaries
of AoR. The challenge, however, is to define the level of RAIR and RSR that
constitutes AR. In our work, we take an objective-oriented perspective and propose
to define AR individually in the context of the task. Dependent on the task, different
levels of RAIR and RSR might be appropriate. In this work, we focus on AR with
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respect to performance (P ) following Talone (2019) and Wang and Yin (2021).4

Thus, we define AR with regard to CTP:

Appropriate Reliance(AR) =

1, if PH&AI > max(PH , PAI)

0, otherwise

With PH&AI being the performance after receiving AI advice, PH the individual
human performance and PAI the individual AI performance. Essentially, this means
any tuple of RAIR and RSR that leads to CTP is considered AR.

In summary, we derived a metric (AoR) and defined AR. In the next section, we
will use this foundation to derive a research model to analyze the impact of AI
recommendation explanations on AoR.

6.4 Theory Development And Hypotheses

With the measurement concept (AoR) at hand, we now develop hypotheses on the
effect of explanations on AoR. Research has already investigated in-depth the effect
of explanations on AI advice acceptance (Shin, 2021). However, research is missing
theoretical and empirical evidence on how explanations influence AoR (Bansal et al.,
2022). Thus, our work contributes a research model that is evaluated applying the
AoR concept.

As a dependent variable, we use the before-defined two dimensions of AoR— namely
RAIR and RSR. We believe that both dimensions need to be treated differently
as there are inherent differences between the RAIR and the RSR. The RAIR

essentially deals with cases where the human is initially incorrect, gets correct
advice, and relies on this advice. In contrast, RSR focuses on cases where the
human is initially correct and receives incorrect advice, which is then rightfully
ignored. Thus, we formulate different hypotheses for the RAIR and the RSR.

The most central impact factor in the assessment of the AI advisor might be the
explanations of its recommendations. These explanations should provide insights
into the AI’s thought process. In the presence of incorrect advice, explanations
might enable the human to detect whether the advice is incorrect, for example, by
validating if the AI advisor violates some universal axioms of the task. Similarly,

4Note that besides this performance perspective, appropriateness could also be discussed from an
ethical perspective. Since in high-stake decision-making humans have an oversight responsibility
(Schoeffer et al., 2022a).
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(Bansal et al., 2021) hypothesize that if explanations do not “make sense”, humans
will reject the AI advice. However, on the other hand, sometimes explanations are
rather interpreted as a general sign of competence and thereby increase over-reliance
(Buçinca et al., 2021). Which effect exceeds the other is unclear. Therefore, we
hypothesize, without specifying a direction of the effect, that the explanations have
a general effect on the RSR:

H1a: Providing explanations of the AI advisor influences the relative self-reliance
(RSR).
The second effect of explanations on AoR is through the RAIR. Essentially, the
RAIR measures the percentage of times decision-makers follow the correct advice
after initially being wrong about the task instance. This means they do not have
enough domain knowledge to solve the task on their own. Thus, to increase the
RAIR, human decision-makers need to extend their knowledge and simultaneously
validate whether this knowledge extension makes sense. Here, explanations are
needed to first get inspired to derive new knowledge and second to validate the
knowledge. Figure 6.3 on page 136 shows an illustrative example based on an
animal classification task. Imagine that a child has just seen big dogs and then
sees a very small dog. It might think that this animal is something else, like a rat.
Next, the child receives AI advice that says the animal it sees is a dog, and provides
additional justification by highlighting the part of the image that led to the AI’s
decision. Now, the child’s first task is to figure out whether this advice makes sense
in general, while building the knowledge base. In this illustrative case, it might
understand that the animal has characteristics of a dog, but is only smaller and
therefore relies on the AI, thereby increasing the RAIR. In the presence of correct
advice, explanations might point humans towards new patterns they have not seen
before and help discriminate these knowledge extensions. In the presence of correct
advice, the convincing element of explanations would not have a negative effect
as a higher overall reliance on the AI advice would simply increase the RAIR. We
therefore hypothesize:

H1b: Providing explanations of the AI advisor increases the relative AI reliance
(RAIR).

Beyond the provisioning of additional information, explanations might change the
attitude toward the AI advisor. In 1992, Lee and Moray (1992), already discussed the
influence of self-confidence and trust as predominant attitudes for reliance decisions
in the context of automation. Therefore, in the following, we discuss potential
impacts on trust and the change in self-confidence induced through explanations
and their impact on AoR.
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Human: 
This is a rat.

AI: 
This is a dog. Just 
look in the highlighted 
area of the image.

Human: 
It could be that there exist very small 
dogs and the face still looks like a dog.

Therefore, I change my decision and 
decide this is a dog.

Figure 6.3.: Illustrative example of how humans can increase their relative AI reliance
(RAIR) based on explanations of the AI advice.

Confidence is defined as a person’s degree of belief that their own decision is correct
(Peterson & Pitz, 1988; Zarnoth & Sniezek, 1997). Confidence in one’s own decision
is a key mechanism underlying advice acceptance (Chong et al., 2022; Wang &
Du, 2018). So far, most research has discussed the influence of static human
self-confidence on AoR, i.e. a confidence in doing the task instance without any
advisor (Chong et al., 2022). However, we hypothesize that the absolute level
of human confidence actually plays a minor role in comparison to the change of
confidence after seeing the AI advice as it essentially reflects the combination of a
self-assessment and the AI advisor’s assessment. Explanations should not influence
the initial human self-confidence but the confidence level after seeing the AI advice.
Thus, we hypothesize:

H2 Providing explanations of the AI advisors increases the change in self-confidence.
We hypothesize that this change in self-confidence positively correlates with the
discrimination capability and thus should increase the RSR and RAIR.

H3a An increased change in human self-confidence increases the relative self-reliance
(RSR).

H3b: An increased change in human self-confidence increases the relative AI reliance
(RAIR)).
We hypothesize that also trust in the AI advisor influences AoR. There are different
levels of trust, e.g. trust in AI in general, trust in a specific AI advisor (Jacovi et al.,
2021) and some researchers even refer to the case-by-case discrimination as trust on
a task instance level (Wang & Yin, 2021). In this work, we focus on the specific trust
in our developed AI advisor. In general, trust is a complex, multidisciplinary construct
with roots in diverse fields such as psychology, management and information systems
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(Niese & Adya, 2022). In our study, we define trust as a belief in the integrity,
benevolence, trustworthiness, and predictability of the AI advisor following (Crosby
et al., 1990; Doney & Cannon, 1997; Ganesan, 1994; McKnight et al., 2002).
Understanding is crucial in building trust (Gilpin et al., 2019). Psychological research
shows that in general explanations of humans increase trust (Koehler, 1991). Thus,
we hypothesize:

H4 Providing explanations of the AI advisor increases trust in the AI advisor.
Trust influences reliance, but does not fully determine it (Lee & See, 2004). When
people show a high level of trust in the advisor, they consider the advice to be
high-quality advice from an advisor with good intentions, and they will give more
weight to that advice (Wang & Du, 2018). In general, this should increase the
acceptance of AI consulting. For systems’ most effective use, however, users must
appropriately trust AI advisors (Lee & See, 2004). Trust should be calibrated and
match the AI’s capabilities (Lee & See, 2004). Insufficient trust is called distrust and
when trust exceeds capability it is called over-trust (Lee & See, 2004). Research
on automation has shown that over-trust can result in over-reliance on automation
(Bailey & Scerbo, 2007; Goddard et al., 2012; Parasuraman et al., 1993) and,
therefore, should decrease the RSR. Thus, we hypothesize:

H5a: Trust decreases the relative self-reliance (RSR).
Since trust increases reliance it should also increase the RAIR. Therefore, we
hypothesize:

H5b: Trust increases the relative AI reliance (RAIR).
Figure 6.4 highlights all our hypotheses and combines them into one integrated
research model.

RAIR

Trust RSR

Explanations of AI
Appropriate Reliance in AI 

advice [Our Research] 

Change in self-
confidence

Acceptance of AI advice 
[Other Research]

H4 (+)

H5a (-)

H2 (+)
H3b (+)

H3a (+)

H1b (+)

H1a (+)

H5b (+)

Figure 6.4.: Research model on the effect of explanations on appropriateness of reliance
(AoR).
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6.5 Experimental Design

In this section, we present our study task, the AI model, and the corresponding
explanations. We then explain the study procedure and measurements.

6.5.1 Task, Model, and Explanations

As an experimental task, we have chosen a deceptive hotel review classification.
Humans have to differentiate whether a given hotel review is deceptive or genuine.
Ott et al. (2013), Ott et al. (2011) provide the research community with a data set
of 400 deceptive and 400 genuine hotel reviews. The deceptive ones were created
by crowd-workers, resulting in corresponding ground truth labels.

The implemented AI advisor is based on a Support Vector Machine with an accuracy
of 86%, which is a performance that is similar to the performance in related literature
(Lai et al., 2020). For the explanations, we use a state-of-the-art explanation
technique, LIME feature importance explanations (Ribeiro et al., 2016b), as it
is the most common one for textual data. Feature importance aims to explain
the influence of an independent variable on the AI’s decision in the form of a
numerical value. Since we deal with textual data, a common technique to display
the values is to highlight the respective words according to their computed influence
on the AI’s decision (Lai et al., 2020). We additionally provide information on the
direction of the effect and differentiate the values into three effect sizes following
the implementation of Lai et al. (2020) (see step 2 in Figure 6.5).

6.5.2 Study Design and Procedure

The research model is tested in an online experiment with a between-subject design.
We tested two different conditions. First, a control condition in which the human
receives AI advice without feature importance explanations and second, a feature
importance condition.

In each condition, participants are provided with 16 reviews. We incorporate an
advanced sampling strategy to isolate the effects of discriminating AI advice. We
have a test set of 32 reviews to which we apply stratified sampling and select
four reviews of each class of a confusion matrix (True Positive, False Positive, True
Negative, False Negative), two with a positive sentiment and two with a negative
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Step 1

Step 2

Figure 6.5.: Online experiment graphical user interface for the feature importance condition.
The ground truth of the exemplarily shown hotel review is “fake”. The design
of the interface is adapted from Lai et al. (2020).

sentiment. This approach allows us to ensure a high-performing AI that should
provide good explanations but also the potential for incorrect AI advice.

Task flow. The online experiment is initiated with an attention control question
that asks participants to state the color of grass. To control for internal validity,
participants are randomly assigned to the condition groups. Then, both condition
groups receive an introduction to the task and either AI alone or AI including feature
importance. We provide the participants with a general intuition of the AI but not
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with specific performance information. Then, the participants conduct two training
tasks, to familiarize the participants with the task and the AI and, depending on the
condition, with its explanations. Additionally, the participants receive feedback on
the training tasks. After the two training reviews, the participants are provided with
the 16 main tasks. For the AoR measurement concept, sequential task processing is
essential. In our study, this means the human first receives a review without any AI
advice, i.e., just plain text, and classifies whether the review is deceptive or genuine
(see step 1 in Figure 6.5 on page 139). Then the participant is asked to classify the
review and provide a confidence rating. Following that, the human either receives
a simple AI advice statement, e.g. “the AI predicts that the review is fake” or the
AI advice and additional explanations (see step 2 in Figure 6.5 on page 139). After
receiving the AI advice the participant is able to change the initial decision and
provide a new self-confidence assessment. This sequential two-step decision-making
allows us to measure AoR. During the main tasks, the participants do not receive
feedback on their performance. After classifying the hotel reviews, we collect data
on trust and demographic variables.

Reward. To incentivize the participants, they were informed that for every correct
decision, they get an additional 12 Cents in addition to a base payment of 5.83 Euro.
Hereby, the two training classifications do not count for the final evaluation.

Participant information. The participants are recruited using the platform “Pro-
lific.co”. We note that crowd workers might limit the generalizability of our results.
However, deception detection of digital information is often done in online commu-
nities. Future work could analyze the effects in professional deception detection
screening services. In total, we conducted the experiment with 200 participants. We
excluded one participant in the feature importance condition because of a failed
manipulation check. Table 6.2 shows the age, gender, and education distribution of
the participants.

6.5.3 Evaluation Measures

To measure AoR, we use the upfront derived measurements RAIR and RSR. We
measure the change in self-confidence for all task instances per participant:

Change in self -confidence =
16∑

i=1
ConfH2, i − ConfH , i
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Table 6.2.: Summary of participants’ characteristics.

Number per condition Control = 100

Feature importance = 99

Age µ = 27.5, σ = 8.5

Gender 46 % Male

54 % Female

Education 32 % High school

38 % Bachelor

14 % Master

16 % Other

ConfH refers to the human self-confidence when doing the task instance alone and
ConfH2 to the human self-confidence after receiving AI advice. Both are measured
with a 7-point Likert scale (“How confident do you feel in your decision?”). We
measure the trust in the AI advisor as a subjective latent construct with a 7-point
Likert scale. We use four items based on (Crosby et al., 1990; Doney & Cannon,
1997; Ganesan, 1994; Gefen et al., 2003). The items were: “I think I can trust the
AI.”, “The AI can be trusted to provide reliable support.”, “I trust the AI to keep
my best interests in mind.” and “In my opinion, the AI is trustworthy.”. Cronbach’s
Alpha was 0.89 (high). The original scales were validated. As both classes are
equally distributed, task performance was measured by the percentage of correctly
classified images, i.e., accuracy. To measure the human accuracy, we calculated this
measure for both conditions based on the initial human decision across all 16 task
instances. Furthermore, we calculate the AI-assisted accuracy based on the revised
human decision after receiving AI advice.

6.6 Results

In the following, we present the results of our behavioral experiment. We start
by presenting descriptive results, followed by the results with respect to AoR and
AR. Following that, we analyze our full research model, including mediations, by
applying structural equation modelling (SEM).
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6.6.1 Descriptive Analysis

Descriptive results of our study can be found in Table 6.3. They are split according to
the experimental condition. We evaluate the significance of the results using t-tests
after controlling for normality. The participants’ RAIR is significantly higher in the
explanation group compared to the control group (t = −1.95, p = 0.05). The change
in confidence is statistically significant (t = −2.33, p = 0.02) which means that on
average people feel more confident after receiving AI advice including explanations.
Neither AI-assisted nor human accuracy is significantly different between condi-
tions. However, the difference between the human and AI-assisted performance is
significant (feature importance condition = 2.45 pp; control condition = -1.56 pp ;
t = 2.29, p = 0.02) which means that explanations not only improve the RAIR but
also as a consequence the overall performance.

Table 6.3.: Descriptive results.

Condition RAIR RSR Trust (SD) Change in Self- AI-assisted Human

Confidence (SD) Accuracy Accuracy

Control 29.59 % 71.87% 4.45 (1.17) 0.19 (0.42) 53.94 % 55.50 %

Feature 38.87% 69.45 % 4.4 (1.18) 0.06 (0.35) 56.30 % 53.85 %

Importance

6.6.2 Appropriateness of Reliance & Appropriate Reliance

We depict our AoR results of the experiment in Figure 6.6 on page 143. They
highlight in the control condition a high RSR of 71.87% (±3pp) and a relatively
low RAIR of 29.59% (±3pp). This indicates that humans in the setting were able to
differentiate between wrong AI advice and self-rely to a high degree. The RAIR of
29.59% shows that we can observe a severe share of under-reliance on AI.

In the XAI condition, we can observe a significant increase (t = −1.95, p = 0.05)
in RAIR from 29.59% (±3pp) to 38.87% (±3pp) while the RSR does not change
significantly (71.87%±3pp for the control condition and 69.45%±3pp for the feature
importance condition, t = 0.61, p = 0.54). This means explanations of AI decisions
can reduce the share of under-reliance. It is important to highlight that RAIR is not
increased simply by relying more often on AI advice, as this would have also reduced
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Figure 6.6.: Illustration of appropriateness of reliance (AoR) including standard errors.
Explanations increase the RAIR significantly. Differences in RSR are not
significant.

the RSR significantly. Thus, our experiment indicates that feature importance on
textual data can have a positive effect on human-AI collaboration.

Following our AR definition, to evaluate whether the participants display AR, we
need to calculate whether we reached CTP. Therefore, we compare the individual
human and AI performance with the human-AI team performance. The down-
sampled AI performance is 50 % for both conditions. The human accuracy varies
depending on the condition. The human-AI team performance is not significantly
different from the human accuracy which means we do not reach CTP and therefore
AR is not displayed. Further means would be necessary to reach AR.

6.6.3 Structural Equation Model

In addition to analyzing the direct effect of explanations on the RAIR and RSR, we
use SEM analysis to test our hypothesized research model. Before fitting our SEM,
we conducted missing data analysis, outlier detection, a test for normality, and the
selection of an appropriate estimator. We observe no missing data and no outliers.
However, one participant failed our attention check leaving us with a final sample
size of 199 for both conditions. Shapiro’s test for normality indicates that several
variables of interest deviate significantly from normal distributions. As a result, we
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conducted the analysis with an estimator that allows for robust standard errors and
scaled test statistics (Kunkel et al., 2019). Therefore, we use the MLR estimator (Lai,
2018).

Table 6.4.: Structural equation model fitting index using a chi-squared test (χ2) , root mean
square error of approximation (RMSEA), Comparative Fit Index (CFI), Tucker-
Lewis Index (TLI), and Standardized Root Mean Squared Residual (SRMR).

χ2 RMSEA CFI TLI SRMR

Measurement criteria > 0.05 < 0.05 > 0.96 > 0.95 < 0.08

(Bentler, 1990; Hu & Bentler, 1999)

Value 0.083 0 1 1.02 0.02

Our dependent variables are the RAIR and RSR. Since these dependent variables
are between 0 and 1, we employed a logistic model in the Lavaan package, version
0.6-9, in R (Rosseel, 2012). This model has an excellent overall fit (see Table 6.4).
The results for each independent variable are discussed below and visualized in
Figure 6.7.

RAIR

TRUST RSR

Explanations of AI

Change in 
self-

confidence
(+)**

(+)***

(-)***

(+)*

Appropriate reliance on AI 
advice

(+)*

Figure 6.7.: Structural equation modeling results. Significance: ⋆ ⋆ ⋆ p < 0.01, ⋆⋆ p <0.05,
⋆ p < 0.1.

We do not find any significant relationship between providing explanations of the AI
advisor and the RSR (H1a). However, also in the SEM the effect of explanations
on the RAIR is significant (H1b). Additionally, we find a significant positive
relationship between providing explanations of the AI advisor and the change in
self-confidence which confirms H2. We also observe a positive correlation between
the change in self-confidence and the RAIR (H3b). Since the absolute strength of
the relationship also decreased with including the change in confidence, we can
conclude that the positive effect of explanations on the RAIR is partially mediated
by the change in confidence. Interestingly, we do not find a relationship between
the change in self-confidence and the RSR (H3a). Additionally, we find no effect
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of our explanations on trust (H4). However, both H5a and H5b are confirmed, i.e.
increasing trust increases RAIR but also decreases RSR. We display a summary
of the hypotheses results in Table 6.5. In the following Section, we discuss our
results.

Table 6.5.: Analysis results of the structural equation model (⋆ ⋆ ⋆ p < .01, ⋆⋆ p <.05, ⋆ p
< .1)

X Y z-value Standardized regression Result

coefficient

H1a: Explanations –> RSR 0.04 -0.03 not supported

H1b: Explanations –> RAIR 1.73 0.08 ⋆ supported

H2: Explanations –> Change in self- confidence 2.30 0.13 ⋆ supported

H3a: Change in confidence –> RSR 0.02 0.00 not supported

H3b: Change in confidence –> RAIR 1.84 0.11 ⋆ supported

H4: Explanations –> Trust -0.21 -0.04 not supported

H5a: Trust –> RSR -3.08 -0.05 ⋆ ⋆ ⋆ supported

H5b: Trust –> RAIR 3.19 0.06 ⋆ ⋆ ⋆ supported

6.7 Discussion

In this article, we first defined AR and conceptualized a measurement concept (AoR).
Following that, we derived a research model regarding the impact of explanations on
AoR which we subsequently tested on a deception detection task. Though conducted
in a limited scope, our findings should help to guide future work on AR.

Theoretical foundation of appropriate reliance. The main contribution of our
work is the theoretical development of AR. So far, terms like “appropriate trust”,
“calibrated trust” and AR were often used interchangeably in prior research. We
provide clarity by defining AR and putting the terms in perspective. Second, we
derive a granular, two-dimensional measurement concept—appropriateness of re-
liance (AoR). Most prior work neglected the initial human decision that would have
been made without any AI advice.5 Taking this initial human decision into account
allows to differentiate between the effects of advice (correct and incorrect) and
confirmation. Without the human initial decision, we cannot say for sure whether a

5The one exception is the work of (Buçinca et al., 2021) who measure over-reliance in the same way
that we do but do not consider under-reliance.
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final wrong human decision is due to over-reliance on a wrong AI advice or due to
the human and the AI being wrong.

Implications for appropriate reliance and explainable AI. We further have inves-
tigated the effect of AI explanations on AoR. We confirm the results of prior research
(Bansal et al., 2021; Gonzalez et al., 2020; Wang & Yin, 2021) by finding an effect
of explanations on the RAIR. We believe that the reason for this could be that the
AI’s explanations increase people’s knowledge of the task (Gonzalez et al., 2020;
Spitzer et al., 2022). Maybe in such cases, the human should be seen less as a “judge”
but instead more as a student of the AI. On the other hand, our results show that
explanations do not influence the RSR. While this may sound disappointing at first,
it also shows that the claim that explanations would reduce overreliance (Bansal
et al., 2021; Buçinca et al., 2021) does not seem to hold for all kinds of tasks.6 It
further suggests that new techniques must be developed to distinguish incorrect AI
advice. Moreover, our study is the first one that analyzed mediators of the effect of
explanations on AR. Interestingly, in our study, we find no effect of explanations on
trust. However, prior research has shown that it depends on a lot of confounding
factors. We find significant effects of trust on RAIR as well as RSR. Additionally,
we show that the effect of explanations on RAIR partially depends on the change
in confidence after receiving AI advice.

Appropriate reliance and complementary team performance (CTP). Lastly, we
want to elaborate on the relationship between AoR and CTP. To reach CTP, the task
needs to have instances where the AI is better than the human and vice versa, i.e. a
certain amount of complementarity potential needs to be present (Hemmer et al.,
2022b). CTP essentially depends on the relationship between RSR and RAIR and
this complementarity potential.

The human impact on CTP is given by multiplying the RSR and the share of
incorrect AI advice. However, simultaneously involving a human might reduce the
AI performance (1 − RAIR multiplied by the share of correct advice). That means
to reach CTP, the gain through human involvement needs to be larger than the loss
through discounting correct AI advice or more formally7:

CTP =

1, if RSR ∗ IA > (1 − RAIR) ∗ CA

0, otherwise

6An earlier study by this research team (Schemmer et al., 2022c) found initial signs of a reduced RSR
in a pretest. However, this study with more participants shows that the effect is not significant in a
larger sample.

7Provided that nothing changes in the cases where the initial decision of the human and the AI advice
are the same.
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Here IA is the total number of task instances in a test set where the human is initially
correct and receives incorrect advice. CA refers to the number of task instances
where the human is initially incorrect and receives correct advice. If this condition is
not fulfilled, AR depends on the relationship between human and AI performance.
If the human performs worse than the AI advisor and has a low RSR and RAIR,
one should always favor AI advice. If the human decision-maker performs better
on average than the AI, one can argue that from a performance perspective the AI
should not be used.

Limitations. No research is without limitations. We would like to emphasize that
deception detection is a difficult task for humans (Lai et al., 2020; Lai & Tan,
2019). Humans on average just perform slightly better than by chance on this
particular hotel review task (Lai et al., 2020). This makes AR difficult as the task of
discrimination requires human domain knowledge. Additionally, the generalizability
of our experimental findings is limited due to the choice of explanations. However,
we have deliberately chosen the most modern form of explanation to maximize
the impact of our results. Our concept is limited to classification tasks but will be
extended in future work. First approaches can be found in the work of Petropoulos
et al. (2016).

Furthermore, the sequential task setup necessary for our measurement concept has
some disadvantages as it changes the task itself. Since conducting the same task
initially alone before receiving AI advice, the human is already mentally prepared
and might react differently than after directly receiving AI advice. More specifically,
research has shown that letting humans conduct the task alone before receiving
AI advice might reduce over-reliance (Buçinca et al., 2021). The sequential task
setup could induce an anchoring effect which prevents the human to more actively
take the AI into account (Buçinca et al., 2021). This could have led to the overall
low RAIR in our experiment. Moreover, sequentially conducted tasks with AI
advice might not always be possible or desired in real-world settings. Therefore, the
measurement should be seen as an approximation of real human behavior. Instead
of having a sequential task setup, one alternative option could be to simulate a
human model based on a data set of task instances solved by humans without AI
advice. This simulation model could approximate the initial human decision within
a non-sequential task setting. However, this approach is also an approximation
of real human behavior. In other work, a latent construct has been derived to
measure reliance behaviour (Tejeda et al., 2022). Future work should compare the
approaches.

6.7 Discussion 147



Future Work. Essentially, the improvement in RAIR depends on the knowledge
gain of the human. Future work could therefore extend our research model by
adding newly learned knowledge as a mediator. Empirically, this could be measured
by asking humans before collaborating with AI to do a couple of task instances on
their own and afterwards (Spitzer et al., 2022). The performance improvement can
be interpreted as learned knowledge.

Most importantly, future research needs to investigate the impact of different design
features of AR. We initiate our research with state-of-the art feature importance but
many other ones can be thought of, e.g. counterfactuals, global explanations. Future
research should evaluate these potential design features to provide practitioners
with a toolkit for effective use of AI.

6.8 Conclusion

Appropriate reliance in AI advice is the next milestone after a decade of research
focused on AI adoption and acceptance. Nowadays, many AI applications are de-
ployed and used on a daily basis. While adoption and acceptance remain important,
we argue that a perspective shift is necessary. In the use phase of AI, researchers
need to find ways to ensure appropriate reliance and, thus, effective use of AI. In
this article, we provide guidance for future research on appropriate reliance by
providing a definition and a measurement concept—appropriateness of reliance
(AoR). Furthermore, we generate initial insights how explanations influence the
appropriateness of reliance. We hope that our research will inspire researchers
and practitioners for future research on appropriate reliance, resulting in effective
human-AI collaboration.
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Harnessing Complementarity:
The Influence of Human
Learning on Appropriate
Reliance

7

This chapter comprises a working paper that is currently under review as
Schemmer, M., Bartos, A., Spitzer, P., Hemmer, P., Kühl, N., Liebschner, J.,
& Satzger, G. (2023a). Towards Effective Human-AI Decision-Making: The
Role of Human Learning in Appropriate Reliance on AI Advice [Working paper].
Note: To improve the consistency of the thesis, the title has been changed. The
abstract has been removed. Tables and figures were reformatted, and newly
referenced to fit the structure of the thesis. The terminology was standardized
with the dissertation. Chapter, section and research question numbering and
respective cross-references were modified. Formatting and reference style was
adapted and references were integrated into the overall references section of
this thesis.

7.1 Introduction

Over the past years, Artificial Intelligence (AI) systems have entered a wide range
of areas, even high-stake decision domains. For instance, AI applications support
doctors in their diagnoses (Leibig et al., 2022), help recruiters in the hiring process
(Peng et al., 2022), and support legal decisions in court (Kleinberg et al., 2018). This
proliferation is driven by the continuous development of AI systems, which results in
advanced capabilities and increased performance (Ren et al., 2015). Self-supervised
models and generative AI have further fueled a new era of human-AI collaboration,
e.g., Notion AI, GitHub Co-pilot, DeepL, and ChatGPT.

Modern AI is not only more performant and versatile in its applications, but also bears
the potential to enhance humans through complementary capabilities (Dellermann
et al., 2019a; Fügener et al., 2021; Hemmer et al., 2021) reaching performance
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levels beyond the ones humans or AI can reach on their own. This desired supe-
rior performance in human-AI collaboration is referred to as complementary team
performance (CTP) (Bansal et al., 2021; Hemmer et al., 2021).

Despite the tremendous advances in performance and capabilities, it is essential
to bear in mind that every AI application has inherent uncertainty. AI models
and their recommendations are based on probabilities. So, no matter how good
a model is, it will not always be accurate. Since AI advice is imperfect, general
acceptance by a human decision-maker would also comprise incorrect advice. For
example, physicians would blindly follow AI advice on cancer diagnosis—although
AI advice might be wrong, and the physicians might have known better. Thus, it is
important for human decision-makers to have the ability to discern when to rely on
AI advice and when to rely on their judgment, i.e., they should display a high level
of appropriateness of reliance (AoR) (Schemmer et al., 2023d).

So far, research has focused on driving AoR by enabling humans to build an accurate
mental model of AI (Bansal et al., 2019a; Kloker et al., 2022; Kühl et al., 2022;
Taudien et al., 2022). The term mental model refers to the human’s knowledge about
various aspects of the AI system’s capabilities. Bansal et al. (2019a) particularly
stress the importance of recognizing the AI’s error boundaries to develop a realistic
mental model. The mental model research stream focuses on enabling decision-
makers to assess the quality of an AI prediction. Researchers aim to build this mental
model by providing explanations of the AI’s decision process (Bansal et al., 2019a;
Zhang et al., 2020).

However, recent review articles have shown that the current focus on influencing
the mental model through the provisioning of explanations is not sufficient to
consistently reach CTP (Hemmer et al., 2021; Schemmer et al., 2022b). One of the
core influence factors of reliance behavior in human-AI collaboration seems to be
whether the decision-maker is an expert (high domain knowledge) or a lay worker
(low domain knowledge) (Nourani et al., 2020b; Wang & Yin, 2021). We follow
this line of thought and hypothesize that learning during human-AI collaboration
(decision-makers gradually gaining expertise) could be a relevant mediator of AoR.

Figure 7.1 on page 151 illustrates this line of thought based on a brain cancer
classification example. Previous work has focused on using AI explanations to enable
the decision-maker to determine a classification’s quality. Although we do not want
to abandon this line of research, we believe that an additional facilitator could
be that a decision-maker learns new patterns through AI’s explanations that can
diagnose cancer.
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However, the specific effect of learning on AoR is ambiguous. Learning during
collaboration could also lead to unwanted effects, such as aversion–as humans might
think they have learned enough to solve the task alone and no longer need the AI
advice. Therefore, we formulate the following research question.

RQ1: How does human learning during human-AI collaboration influence the Appro-
priateness of Reliance on AI advice?

AI model provides 
prediction + explanation

Human
Based on the 

highlighted area of 
the AI, I understand 
that the white area 
could mean cancer.

Our research: Learning from AIOther research: Assessing the quality of AI predictions

AI model provides 
prediction + explanation

Human
The AI is 

wrong, it is not 
looking at the 
center of the 

brain.

Does what the AI predicts make sense? Did the AI point out a new pattern that I might have missed on my 
own?

Figure 7.1.: Distinction between related work and our contribution.

Even if learning improves AoR, we must find ways to enable and improve learning
during human-AI collaboration. Recent research on learning systems has seen first
positive results of using explanations of AI to improve learning (Goyal et al., 2019;
Wang & Vasconcelos, 2020). However, it is an open question if the promising result
in learning systems can be replicated in human-AI collaboration. Therefore, we
formulate our second research question.

RQ2: Can explanations of AI increase human learning in human-AI collaboration?

To gain first answers to our broader research questions, we derive a research model
including theory-driven hypotheses and subsequently conduct a behavioral experi-
ment with 100 participants using an image classification task as a testbed to evaluate
the model. We use example-based explanations (Fahse et al., 2022) to design a
human-AI collaboration scenario with a high potential for learning.

Our results show that a) example-based explanations can improve human learning
during human-AI collaboration, b) learning improves the human ability to assess
when to rely on themselves, and c) if sufficient learning is present, human learning
helps to assess better when to rely on AI.

We contribute to the body of knowledge on human-AI collaboration in general
and on AoR and learning from AI in particular. To the best of our knowledge,
this research depicts the first study covering the effect of explanations on learning
and the mediating effect on AoR. We thereby extend the research model of AoR
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developed by Schemmer et al. (2023d) by a learning construct. Our work provides a
new perspective on AoR and the design of human-AI collaboration systems.

7.2 Theoretical Foundations and Related Work

In the following, we introduce the related work of this article, structured along the
topics of human-AI collaboration, explainable AI, appropriate reliance on AI advice,
and learning from AI.

7.2.1 Human-AI Collaboration

In recent years, there has been a surge of research in human-AI collaboration, with
a growing number of studies conducting behavioral experiments to gain a better
understanding of how humans form decisions in the presence of AI (Alufaisan et al.,
2021; Buçinca et al., 2020; Carton et al., 2020; Lai et al., 2020; Lai & Tan, 2019; Liu
et al., 2021; Zhang et al., 2020). This research has focused on improving human-AI
collaboration to optimize team performance (Buçinca et al., 2020; Zhang et al.,
2020).

The idea behind human-AI collaboration is to be more effective than both human and
AI individually (Dellermann et al., 2019a). This improvement through collaboration
stems from the idea that both the AI and the human possess a unique set of skills
that can enrich each other in specific tasks. Thus, the true potential of human-AI
collaboration lies in leveraging these complementary capabilities to reach the desired
state of superior performance, i.e., complementary team performance (CTP) (Bansal
et al., 2021; Hemmer et al., 2021).

The question of how to realize this complementarity potential and thus reach
the desired superior performance remains an active area of research. In most
empirical studies, the performance of human-AI collaboration is still inferior to
that of individual AI, and thus CTP is not achieved (Bansal et al., 2021; Hemmer
et al., 2021; Schemmer et al., 2022b). Current research identifies the missing
appropriateness of reliance as a main cause preventing the achievement of CTP
(Bansal et al., 2021; Hemmer et al., 2021; Schemmer et al., 2022b).
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7.2.2 Explainable Artificial Intelligence

Explainability has a long-standing history in information system (IS), dating back to
the emergence of knowledge-based systems, expert systems, and intelligent agents
in the 1980s and 1990s (Meske et al., 2022). The term “Explainable Artificial
Intelligence” (XAI) was first introduced by Van Lent et al. (2004), referring to the
capacity of their system to clarify agent behavior.

XAI techniques can be differentiated in terms of their scope, i.e., global or local
explanations (Adadi & Berrada, 2018): Global XAI techniques deal with holistic
explanations of the models as a whole. In contrast, local explanations work based
on individual task instances. Local approaches can be based on examples, features,
or rules. Example-based explanations provide examples from historical data that
are either from the AI predicted class (normative examples) or from a different
class (comparative examples) (Cai et al., 2019). In an image classification task, a
normative example would be an image from the AI predicted class. A comparative
example would be the most similar images from a different class. It is important
to note that example-based explanations have a link to ground truth, as they have
historically validated labels.

7.2.3 Appropriate Reliance in Artificial Intelligence

The concept of appropriate reliance has gained attention in the field of human-AI
collaboration (Bansal et al., 2021; Schemmer et al., 2022b). In general, appropriate
reliance refers to desirable behavior where humans override incorrect AI advice and
follow correct advice (Bansal et al., 2021; Schemmer et al., 2023d).

First work on the conceptualization and measurement of appropriate reliance was
done by Schemmer et al. (2023d). The authors differentiate between appropriate
reliance as a binary target state (“appropriate reliance is either achieved or not”) and
a metric indicating a degree of appropriateness. They introduce a two-dimensional
metric—the appropriateness of reliance (AoR)1—to describe and measure reliance
behavior. It is based on relative frequencies of correctly overriding wrong AI sugges-
tions (correct self-reliance) and following correct AI suggestions (correct AI reliance)
and reflects a metric understanding of appropriate reliance (see Figure 7.2 on page
154). This metric can then be used to define different levels as target states of ap-
propriate reliance that mark the achievement of objectives like certain legal, ethical

1Note that the measurement of AoR requires a sequential task setup as visualized in Figure 7.2 on
page 154 and described in Schemmer et al. (2023d)
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Task 
instance

AI adviceInitial human 
decision

Human decision after receiving AI 
advice

Under-reliance

Over-reliance

Correct AI reliance (CAIR)

Correct self-reliance (CSR)

Figure 7.2.: Combinatorics of initial human decisions, AI advice and human reliance for a
single task instance in a sequential task setting (Schemmer et al., 2023d).

and performance requirements. From an effectiveness perspective they argue that
appropriate reliance is achieved if CTP is present.

Several studies have explored the impact of different explanation techniques on
AoR, including feature-based (Ribeiro et al., 2018), example-based (Van der Waa
et al., 2021) and rule-based (Ribeiro et al., 2018) explanations. Some empirical
evidence has shown that XAI explanations can help humans differentiate better
between correct and incorrect AI predictions (Buçinca et al., 2020), but they can
also be misleading, convincing humans to follow incorrect AI advice and leading to
poorer team performance (Bansal et al., 2021; Poursabzi-Sangdeh et al., 2021) . This
ambiguous prospect raises the question of what constitutes good explanations in the
context of human-AI collaboration and highlights the importance of further research
into suitable explanations to support AoR and its underlying factors. Moreover,
Nourani et al. (2020b) shows, that the effect of XAI explanations on humans’
reliance is dependent on their initial domain knowledge. In this work, we explore
the potential impact of leaning from AI as a mediator between explanations and
AoR.

7.2.4 Learning from Artificial Intelligence

In recent years, researchers have been exploring the potential for AI to augment
human learning (Cakmak & Lopes, 2012; Edwards et al., 2018). One field of
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research that has emerged is machine teaching (Zhu et al., 2018). In this field,
instead of assisting humans in decision-making, AI systems are set up as learning
systems to teach humans. One example are AI systems that train crowd-sourcing
workers to correctly annotate images (Wang & Vasconcelos, 2020). The concept
involves selecting the optimal teaching set (Zhu et al., 2018) to achieve the best
learning performance (Singla et al., 2014).

In recent research, the focus in this interaction between humans and AI has been
on explainable AI (XAI). Recent studies have utilized XAI to generate explanations
in such learning systems. The AI system provides additional explanations to the
human to improve their knowledge in a specific domain (Alipour et al., 2021). For
example, Goyal et al. (2019) use a convolutional neural network for various image
classification tasks and apply comparative examples to provide visual explanations.
The authors select images with minor changes from another class to generate
comparative explanations.

With the advent of research to facilitate XAI in learning systems, to the best of our
knowledge, there are no studies that investigate how explanations affects human
learning in human-AI collaboration. In this study, we investigate how XAI affects
human learning without explicitly developing a learning system but by observing
its use in human-AI collaboration to improve AoR. Dellermann et al. (2019a) argue
that humans and AI systems can learn from each other when they collaborate. We
follow this line of thought and following, derive a research model on the potential
mediating effect of learning on AoR.

7.3 Theoretical Development

In this work, we postulate that human learning plays a crucial role in AoR and
that it can be influenced by providing explanations. In this section, we derive a
corresponding research model that establishes the link between explanations and
human learning and its mediating role on AoR.

As a dependent variable, we use the previously introduced tuple of AoR, which com-
prises the two dimensions of relative self-reliance textit(RSR) and relative AI-reliance
(RAIR). RSR encompasses the cases where the human is initially correct, receives
wrong advice, and rightly dismisses it. In this case, the humans’ complementary
knowledge is leveraged by correcting an AI’s wrong output on an instance level. In
contrast, RAIR encompasses the cases where the human is initially incorrect, gets
correct advice, and rightly follows. In this case, complementarity potential from an
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AI can be exploited as the human would not have been able to correctly solve the
task instance without the help of the AI advisor.

We now first derive hypotheses related to the impact of providing explanations
on learning and thereafter focus on the potential impact of learning on AoR and
potential direct effects.

Prior research at the intersection of IS and human-computer interaction has lever-
aged learning systems that are supported by AI to teach humans in an example-based
manner. The objective of learning systems is the user’s knowledge extension. In
human-AI collaboration, the goal is to improve performance (Hemmer et al., 2021).
In learning system research, the effect of explanations generated by XAI on humans’
learning performance is an evolving research stream (Alipour et al., 2021; Goyal
et al., 2019). However, previous research has only examined how explanations can
be utilized in learning systems. To the best of our knowledge, there are no studies
investigating how XAI affects learning in human-AI collaboration.

In general, explanations hold the potential to stimulate new ways of thinking, which
can lead to the generation of new knowledge (Saeed & Omlin, 2023). Prior research
indicates that learning performance among humans can be enhanced in learning
systems through example-based learning (Basu & Christensen, 2013; Martin-de-
Castro et al., 2008; Stark et al., 2004). In this study, we examine example-based
explanations as both normative and comparative instances. Normative examples
embody instances of the predicted class, while comparative examples illustrate
instances from a different class. As Cai et al. (2019) explain, normative examples
aim to set a standard for the intended class by displaying training instances from that
class, while comparative explanations provide a contrast between the AI prediction
and the most similar instances from a different class. Example-based explanations
are anticipated to be easily comprehensible and prompt causal thinking, enabling
individuals to deduce cause-and-effect relationships. Fahse et al. (2022) suggest that
the efficacy of example-based explanations can be attributed to their compatibility
with human reasoning processes and the minimal cognitive burden they impose on
users. Yang et al. (2020b) further argue that these explanations align with people’s
inductive (i.e., bottom-up logic) and analogical reasoning (i.e., drawing comparisons
from one instance to another), which helps users understand why certain objects
are deemed similar or dissimilar.

The main difference between the use of Explainable Artificial Intelligence (XAI) in a
learning system and in human-AI collaboration may be the level of accuracy. In the
learning system, the AI is expected to achieve perfect accuracy, whereas in human
AI decision contexts, such perfect accuracy may not be achievable. This is because
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learning system designers can use historical data and select a training set where the
AI prediction is known to be correct. In human-AI decision-making, it is unclear
whether an AI’s advice is right or wrong. AI is inherently imperfect in human-AI
collaboration. However, we argue that example-based explanations are actually not
entirely dependent on the performance of the AI. Example-based explanations have
a clear ground truth because they are drawn from the training data set. Therefore,
example-based explanations have the potential to increase knowledge even if the AI
is wrong.

To sum it up, we hypothesize that the benefits of normative and comparative
examples on learning that are present in learning systems will also be present during
human-AI collaboration. Therefore, we formulate:

H1: Example-based explanations have a positive effect on human learning during
human-AI collaboration.

Next, we hypothesize the effect of human learning on RSR and RAIR. Distinguish-
ing these two dimensions allows for a deeper understanding of the underlying
mechanisms. We base our hypotheses on theories of domain knowledge (Nourani
et al., 2020b). Much of the latter work in appropriate reliance has examined the
differences between experts (high domain knowledge) and lay workers (low domain
knowledge) in terms of their reliance behavior in human-AI collaboration. We argue
that the differences between experts and lay workers can be seen as an analogy for
learning.

RSR essentially refers to the ability to override incorrect AI advice. In other words,
if humans can correctly solve a task instance and receive an incorrect AI recommen-
dation, the RSR tells us how well they can reject that incorrect advice. Nourani
et al. (2020b) have shown that experts are better at correcting AI errors than lay
workers. Consequently, learning should increase the effectiveness of validation, and
thus increase the RSR. Therefore, we hypothesize:

H2a: Learning increases relative self-reliance (RSR).

Improving RAIR reveals a more complex process. In this setting, the human does not
have enough domain knowledge to solve the task instances independently. Using
our analogy, they could be considered “lay workers” in these cases. Becoming an
“expert” can have two advantages. First, at the task instance level, learning a new
pattern based on the explanations received could allow the decision-maker to solve
the task independently, which in turn would increase RAIR. Second, an increase in
overall knowledge over time may help the decision-maker to better recognize and
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follow correct AI advice (following RSR logic). Both mechanisms would essentially
lead to an increase in RAIR through learning.

H2b: Learning increases relative AI-reliance (RAIR).

In addition to our hypothesized mediation effects, we also follow the line of thought
of previous work and consider that explanations might influence AoR by improving
the mental model. For this reason, we formulate additional direct path hypotheses
between explanations and AoR that represent additional effects of explanations
beyond learning2.

Explanations allow insights into the reasoning and decision-making of AI models. In
the case of inaccurate advice, these insights might help the human decision-maker to
evaluate the validity of such reasoning by checking for its alignment with universal
axioms of the task. This process might, in turn, enhance their knowledge regarding
the underlying AI model (mental model) and thus improve validation capability. As
RSR is increased by the correction of wrong AI advice, explanations that enhance
this kind of knowledge would increase the RSR.

H3a: Example-based explanations have a positive effect on relative self-reliance (RSR).

Additionally, it could also be possible to calibrate the own mental model of the AI in
such a way that without learning, it is still possible to detect a good recommendation
of an AI. Therefore, we hypothesize:

H3b: Example-based explanations have a positive effect on relative AI-reliance (RSR).

Figure 7.3 on page 159 summarizes all hypotheses in one integrated research model.
Lastly, any improvement in AoR should in turn improve team performance and at a
certain level enable CTP.

7.4 Methodology

In this section, we present our design for a behavioral experiment to test our research
model.

2The inclusion of both indirect and direct effect hypotheses in a research model is well known in IS
research. For example, see Tereschenko et al. (2022)
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Figure 7.3.: Research model on the effect of human learning on appropriateness of reliance
(AoR).

7.4.1 Task, Model and Explanations

As an experimental task, we choose a bird species classification task based on image
data. We chose the context of image recognition following the reasoning of Fügener
et al. (2021): Firstly, image recognition is a broad task that all humans should be
capable of executing without requiring specialized skills or training. In behavioral
research, the objective is often to establish a context where findings are applicable
to various situations. It is believed that observations in general tasks can transfer
to more specialized tasks, while contexts that necessitate specific training result
in less generalizable outcomes. Secondly, image classification is an area where
contemporary AI systems excel (Szegedy et al., 2015), performing at least on par
with human abilities (Russakovsky et al., 2015b). Thirdly, prior studies have shown
the high complementarity potential of image classification (Fügener et al., 2021;
Nguyen et al., 2022).

The bird species classification task is based on the Caltech-UCSD Birds-200-2011
dataset (Wah et al., 2011). This dataset has been used extensively in high-profile
publications and includes 11,788 images of 200 different bird categories (Goyal et al.,
2019; Nguyen et al., 2022). Four black-colored bird classes (American Crow, Groove
billed Ani, Shiny Cowbird, and Boat tailed Grackle) are chosen for the experiment.
In a preliminary study, we tried different combinations of bird classes and the
number of classes to get a solvable but still difficult task. Only the consistently
black-colored birds are selected from each of these classes, resulting in 216 images
in the dataset used. We filter out no-black birds as the preliminary studies have
shown that participants tend to choose color as an important factor during learning
which, however, was not an unambiguous feature of the bird classes.
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As a model, we use a pre-trained ResNet50 (He et al., 2016) and fine-tune it on our
data set. For training, we use Adam as an optimizer with a StepLR rate scheduler
with step size 5 and gamma of 0.1. The training data is augmented with random
rotation, change in sharpness and contrast. The model is trained for 9 epochs and
achieves an accuracy of 87.96%.

To sample the normative and comparative examples, we follow the approach of
(Cai et al., 2019). The comparative examples are searched within the second most
probable classes according to the model. Next, we calculate the cosine similarity of
the feature vectors of the flattened layer of the model between the target image and
all images of the searched class (Chen, 2020). Then, the two most similar images are
selected. The normative examples are randomly selected from the class predicted by
the model. The images which are to be classified in the experiment were omitted
from the examples.

7.4.2 Experimental Design

The experiment is conducted online with a between-subject design where two
different conditions are tested (in the following, these conditions are referred to
as baseline condition and XAI condition). Depending on the condition, either a
baseline or an example-based explanation is provided. The study is approved by the
University IRB.

Our experimental design is influenced by the requirements to measure learning
and AoR. To measure learning, we use standard methods from the organizational
learning research stream (Spitzer et al., 2022) and conduct two knowledge tests in
the experiment. The difference between the two tests then constitutes as learning
(Spitzer et al., 2022). Additionally, to measure AoR, a sequential task setup is
necessary as it is necessary to measure an initial human decision (Schemmer et al.,
2023d). These two requirements shape the design of our experiment.

Participants are randomly assigned to the condition groups to control for internal
validity. The online experiment is initiated with an attention control question. Then,
both condition groups receive an introduction to the task. The participants are
not provided with any specific performance information about the AI. Then, the
participants conduct a tutorial where we show them one example per bird class.
After the tutorial, we conduct a knowledge test by asking the participants to classify
8 pictures. Hereby, the 8 pictures are drawn stratified from a sample of 16 images in
total.
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Once the initial tutorial and first knowledge assessment have been completed,
participants move to the main task consisting of 16 individual task instances. We use
an advanced sampling strategy to ensure that RSR as well as RAIR is possible in our
study. We stratified sample each bird class and control for 50% correct predictions
and 50% incorrect predictions. For the AoR measurement concept, sequential
task processing is essential. In our study, this means the human first receives an
image without any AI advice (see step 1 in Figure 7.4). Then the participant is
asked to classify the image. Following that, the human either receives a simple AI
advice statement, e.g., “the AI predicts that the image below shows Class 4” or the
AI advice and additional example-based explanations (see step 2 in Figure 7.4).
After receiving the AI advice, the participant can change the initial decision. This
sequential two-step decision-making allows us to measure AoR. During the main
tasks, the participants do not receive feedback on their performance. After finishing
the main task, again, their task-specific knowledge is assessed. Additionally, data on
demographic variables are collected.

Examples of the most 
similar images from a 
different class (Class 4). 

Examples of the AI 
predicted class (Class 2).

Image to be classified.

Step 1 Step 2
The AI predicts that the image on the left is Class 2.Please classify the bird.

Figure 7.4.: Online experiment graphical user interface for the example-based explanation
condition. The ground truth is class 2.

7.4.3 Measurements

In this work, we measure initial task knowledge by counting the number of correctly
classified images in the first knowledge test. Learning is measured as the difference
between the number of correctly classified images in the second knowledge test and
the first knowledge test.

We measure the AoR following the work of Schemmer et al. (2023d) as a tuple of RSR
and RAIR. RSR is hereby measured as the number of cases of correct self-reliance
divided by the total number of cases in which a previously correct decision-maker
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receives incorrect AI advice. Correct self-reliance (CSR) hereby is “1” if, on this
particular instance i, the initial human decision was correct, the AI advice was
incorrect, and the human decision after receiving AI advice is correct. Incorrect
advice (IA) is “1” if the initial human decision for a task instance i was correct and
the AI advice was incorrect.

Relative self -reliance (RSR) =
∑N

i=0 CSRi∑N
i=0 IAi

RAIR is the ratio of the number of cases in which humans rely on correct AI advice,
and the decision was initially not correct, i.e., in which humans rightfully change
their minds to follow the correct advice. Correct AI reliance (CAIR) hereby is “1” if, in
this particular case i, the original human decision was wrong, the AI recommendation
was correct, and the human decision after receiving the AI recommendation is
correct, and “0” otherwise. Correct advice (CA) is “1” if the original human decision
is wrong and the AI advice is correct, regardless of the final human decision, and “0”
otherwise.

Relative AI reliance (RAIR) =
∑N

i=0 CAIRi∑N
i=0 CAi

The human performance is measured as the number of correctly classified images
divided by the total number of images before receiving AI advice. Likewise, the
human performance after AI advice refers to the number of correctly classified
images divided by the total number of images after receiving AI advice. Finally, CTP
is defined as a binary state that is achieved if the human performance after AI advice
is significantly higher than the human as well as the AI performance.

7.4.4 Participants

The experiment was performed in April 2023 on the platform “Prolific”. Image
classification is often done as crowd work and previous IS research has shown the
validity of using online studies for image classification (Fügener et al., 2021).

Overall, 100 participants were recruited, 50 per condition. All of them passed our
attention check. To incentivize the participants, they were informed that for every
correct decision, they get an additional 5 Pennies in addition to a base payment of 1.5
Pounds for an estimated study time of 15 min. Average duration of the experiment
was 9:00 minutes in the base line condition and 12:36 minutes in the XAI condition.
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Roughly 64% of the final sample identified as being female, almost 36% identified
as being male, and one participant preferred not to report. Participants’ age ranges
from 18 years to the age group of 76 years with an average age of approximate 32
years.

We excluded one participant in the baseline condition because of a failed manipula-
tion check. In addition, some participants had no cases where the AI was correct,
and they were previously wrong leading to an undefined RAIR. We assigned those
participants the average value of the condition (1 in the baseline condition and 2 in
the XAI condition). Next, after removing missing values, we remove outliers from
our data using the z-score method (2 sigma). We find one outlier in the XAI condi-
tion with a learning value of -5. Additionally, we find 4 outliers with zero correct
classifications in the first knowledge test. Which leaves us with a final data set of 48
participants in the baseline condition and 46 participants in the XAI condition.

7.5 Results

In this section we report the results of our behavioral study. First, we provide an
overview of the descriptive findings, followed by the results in terms of AoR and CTP.
We then examine our comprehensive research model, which includes mediations,
using structural equation modelling (SEM) and conduct an exploratory subgroup
analysis.

7.5.1 Descriptive Results and Appropriateness of Reliance

The descriptive results of our study are presented in Table 7.1 on page 164. They are
divided according to the experimental condition. We evaluated the significance of the
results using t-tests after controlling for normality. Otherwise, we use Mann-Whitney
U tests. In order to control for multiple comparisons and reduce the likelihood of
Type I errors, we applied Bonferroni corrections to our statistical analyses. First,
we report descriptive measures of initial knowledge and learning. Next, we report
correlation measures and then our analysis of AoR.

Our control variable initial task knowledge is not significantly different between
groups, meaning that participants start the experiment with the same knowledge
on average (baseline mean = 4.54, XAI mean = 4.26; two-tailed t-test: T = - 0.8,
p = 0.43). On average, participants correctly classify about 4 of the 8 birds in the
initial knowledge test. Note that this does not mean that they perform randomly
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on average, as we perform a multiclass classification with 4 classes, i.e., random
guessing would lead, on average, to a performance of 2 out of 8. Testing against
randomness shows that participants in both groups have significant initial knowledge
(one-sample t-test: baseline: T = 9.55, p < 0.01; XAI: T = 9.86, p < 0.01). In
summary, initial knowledge is not significantly different between the two groups,
and participants have sufficient initial knowledge to avoid guessing at random.

Learning is significantly different between the groups (two-tailed t-test: T = 2.09, p
= 0.04), which means that, on average people, learned more in the XAI condition.
In addition, we test with a one-sample t-test whether the learning is significantly
different from 0. In the baseline condition, we find no significant difference (T = -
0.69, p = 0.49). In the XAI condition, we observe that learning is significantly greater
than zero (T = 2.25, p = 0.03). This means that our example-based explanations
not only increase learning but also bring it to a level higher than 0.

Table 7.1.: Descriptive results (*** p < 0.01, ** p < 0.05, * p < 0.1)

Treatment Learning ** (SD) RSR (SD) RAIR (SD)

Baseline -0.19 (1.89) 64.89% (32pp) 57.82% (39pp)

Example-based
explanations

0.63 (1.9) 74.61% (25pp) 66% (33pp)

We also analyze the Pearson correlation on paths 2 and 3 of our hypothesis. The
results are presented in Table 7.2. To analyze the correlation paths, we do not yet
distinguish between conditions. We find a weak correlation between learning and
RSR but no significant correlation between learning and RAIR.

Table 7.2.: Correlation analysis (*** p < 0.01, ** p < 0.05, * p < 0.1)

Treatment Correlation P-Value

Learning – RSR* 0.18 0.07

Learning – RAIR 0.08 0.43

Next, we analyze AoR. Participants’ RAIR and RSR are not significantly different
between conditions. However, both values are relatively high if we compare them
with related literature (Schemmer et al., 2023d; Taudien et al., 2022). We also
observe that, although not significant, there is a trend that our example-based
explanations increase both RSR and RAIR. Figure 7.5 on page 165 illustrates our
AoR analysis.
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Figure 7.5.: Appropriateness of reliance analysis (including standard errors).

7.5.2 Structural Equation Modeling

In addition to analyzing the direct effect of explanations on RAIR and RSR, we
use structural equation modeling (SEM) analysis to test our hypothesized research
model.

Prior to fitting our SEM, we performed missing data identification, outlier detection,
normality testing, and selection of an appropriate estimator. We describe how we
identify missing data and remove outliers in the previous section. Shapiro’s test
for normality indicates that several variables of interest deviate significantly from
normal distributions. As a result, we conduct the analysis using an estimator that
allows for robust standard errors and scaled test statistics (Kunkel et al., 2019).
Thus, we use the MLR estimator (Lai, 2018).

Our dependent variables are RAIR and RSR. Since these dependent variables are
between 0 and 1, we used a logistic model in the Lavaan package, version 0.6-9, in
R (Rosseel, 2012). This model has an excellent overall fit (see Table 7.3 on page
166). The results for each independent variable are discussed below and visualized
in Figure 7.6 on page 166.

First, we find a significant relationship between providing explanations and learning
(H1). We find no direct effect of providing explanations on RSR or RAIR (H3a &
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Table 7.3.: Structural equation model fitting index using root mean square error of approxi-
mation (RMSEA), Comparative Fit Index (CFI), Tucker-Lewis Index (TLI) and
Standardized Root Mean Squared Residual (SRMR)

RMSEA CFI TLI SRMR

Measurement Criteria based
on (Hu & Bentler, 1999)

< 0.05 > 0.96 > 0.95 < 0.08

Value 0 0.99 1 4.06

3b). We also find no effect of learning on RAIR (H2b). However, we do find a
strong significant effect of learning on RSR (H2a). This reveals a rare but possible
phenomenon where the direct effect of a mediation is not significant, but the indirect
pathways are. This may occur if learning does not fully mediate the effect of
examples on RSR, and a confounder reduces the overall effect. For example, this
confounder could be aversion. Future studies should take this into account. We
also test the influence of our control variable initial domain knowledge. We find
that initial domain knowledge has a positive significant effect on both learning and
RSR.

H3a (+) 0.08

Example-based 
Explanations

Task-specific 
human learning

RAIR

RSR

H3a (+) < 0.01 

H1 (+)** 0.68

H3b (+) 0.07

Initial task 
knowledge 

(Control variable) 0.07***

-0.5***

H3b (+) *** 0.05

-0.01

Figure 7.6.: Structural equation modeling results. Significance: (*** p < 0.01, ** p < 0.05,
* p < 0.1)

7.5.3 Explorative Sub-Group Analysis

In this section, we want to explore the interesting result that learning does not affect
RAIR at all. Therefore, we analyze both conditions (baseline and XAI) separately and
perform an exploratory subgroup analysis. Overall, we find significant differences
between the SEMs fitted to the different conditions (X2 = 18.26, p = 0.02). Table
Table 7.4 on page 164 shows the path coefficients and p-values of the subgroup
models.
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In the XAI group, we find our expected positive significant effect of learning on RAIR
(H2b). The analysis of the baseline condition reveals the reasons for the overall
non-significant effect. In the baseline condition, the effect of learning on RAIR is also
weakly significant, but the path coefficient is negative. This is an interesting result
that deserves discussion. In order to answer this question, we need to understand
what learning in the baseline condition actually means. Objectively, it is almost
impossible to learn anything from the AI in the baseline condition as there is no
reference to ground truth. This means that in the baseline condition, there is a
tendency for humans to learn nothing or even unlearn patterns that were learned in
the tutorial (which is reflected by the overall negative learning value). The limited
learning potential during human-AI collaboration could then lead to automation
bias (Goddard et al., 2014) , i.e., blindly relying on AI advice. Automation bias, in
turn, increases RAIR (Schemmer et al., 2022a). This could mean that learning in
the baseline condition simply means less automation bias and, therefore less RAIR.
To conduct a first validation of this reasoning, we test the impact of learning on
absolute reliance3 in both subgroups. We find that learning significantly decreases
reliance in the baseline condition (Path coefficient = -0.03, Z = -2.38, p= 0.02)
and has no influence in the XAI condition (Path coefficient < 0.01, Z = -0.05, p=
0.96). Moreover, this reliance positively impacts RAIR in the baseline as well as in
the XAI condition. This finding confirms our reasoning above. Future studies need
to confirm our findings.

Table 7.4.: Subgroup analysis.

Baseline Condition XAI Condition

Path Estimate P-Value Estimate P-Value

Learning – RSR 0.08 < 0.01 0.04 0.14

Learning – RAIR -0.06 0.08 0.05 0.05

7.6 Discussion

In this work, we investigated two research questions. First, do explanations improve
learning from AI during human-AI collaboration, and second, how does learning
from AI influence AoR? To answer both research questions, we derived a research
model and conducted a behavioral experiment.

3We measure reliance as the average number of times the participant followed the AI advice.
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7.6.1 RQ1: The Effect of Learning on Appropriateness of Reliance

To answer our first research question (How does human learning during human-AI
collaboration influence the Appropriateness of Reliance on AI advice?), we analyze
the impact of learning on RAIR and RSR.

Applying SEM on our research model does highlight a significant effect of learning on
the RSR. However, the direct path between explanations and RSR is not significant.
This could mean that some confounders are prevalent that hamper the positive effect
of explanations on RSR. One of those confounders could be automation bias (blindly
relying on AI advice) (Bansal et al., 2021).

Interestingly, we, however, do not find a positive effect of learning on RAIR. There-
fore, we conducted an exploratory sub-group analysis and found significant differ-
ences between the effect of learning in the XAI condition and the baseline condition.
In the XAI condition, the expected positive effect of learning on RAIR is present.
Based on our results, we deduce that a certain level of learning is necessary to
observe any impact of learning on RAIR.

7.6.2 RQ2: The Effect of Explanations on Learning

To answer our second research question (Can explanations of AI increase human
learning in human-AI collaboration?), we explore the impact of example-based
explanations on human learning. We find a statistically significant difference be-
tween a baseline condition and the XAI condition. In the baseline condition, which
may be the default configuration in many real-world applications, it may be objec-
tively very difficult to learn anything at all from the AI, which is also confirmed by
our experiment. In contrast, we observe statically significant learning in the XAI
condition.

To reference our work back to IS research, we want to discuss the link to hybrid
intelligence. In their seminal paper on hybrid intelligence, Dellermann et al. (2019a)
discuss the impact of human-AI collaboration on mutual learning. Humans can
teach AI new patterns (often referred to as human-in-the-loop systems (Dellermann
et al., 2019a) or active learning (Hemmer et al., 2020)). However, the human side
of mutual learning has been neglected. We complement IS research with the first
work on human learning during human-AI collaboration.

Finally, we will discuss the implications of long-term human-AI collaboration for
unique human and AI knowledge. Learning is only possible if the “teacher” has
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some unique knowledge. The question now is whether humans and AIs can reach
an equilibrium where the knowledge of both has aligned such that no further
learning is possible. In the case of a static AI (and a human not continuing to
learn independently of the AI), this could be the case. However, recent IS research
(Kühl et al., 2022) has developed a more dynamic perspective on AI. AI models are
frequently updated or being re-trained (the authors call this adaptive AI systems).
Similarly, humans usually learn on the job, so they are continuously building unique
knowledge. Especially in organizations, this is crucial to prevent knowledge loss
and foster the distribution of knowledge (Engbom, 2020). Therefore, AI, as well as
humans, are in a continuous learning process that creates unique knowledge.

7.6.3 Implications for Theory and Practice

Theory. Our research contributes to the literature on organizational learning (Levitt
and March 1988) as well as appropriate reliance (Schemmer et al., 2023d). Even
though learning on the job is a widely recognized approach for organizational
learning, research has neglected the potential of in-process learning during human-
AI collaboration. So far, learning from AI was always considered as part of a
knowledge management tool. We, however, show that also in-process learning is
possible and thereby opens up new research potential for the machine teaching
domain. With regard to appropriate reliance, learning was so far neglected as an
impact factor. With our work, we extend the research model of Schemmer et al.
(2023d).

Practice. Our research implies that practitioners can, with the right design, leverage
two benefits at ones from human-AI collaboration—upskilling of the workforce
and better performance. With our study, we show the potential to learn from each
other in a human-AI collaboration. Thus, these insights can be used to guide not
only designers of AI systems but also knowledge managers within organizations to
enhance the learning of humans.

7.6.4 Limitations and Future Work

Despite the contributions of this work, also limitations are present. First of all,
our empirical work is limited by the choice of task as well as conducting a single
study. However, we believe that image classification is a task with much potential
for generalization following the arguments of Fügener et al. (2021). There are many
real-world situations where humans need to classify images. Tasks can range from
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low-stakes tasks, such as product quality inspection, to high-stakes tasks, such as
cancer detection.

Additionally, the generalizability of our experimental findings is limited due to the
choice of explanations. Both normative and comparative examples are a special type
of XAI that is directly linked to ground truth. However, example-based explanations
are state-of-the-art for learning systems (Goyal et al., 2019). Future work should
evaluate different example techniques.

Additionally, the sequential task structure required for our measurement approach
has certain drawbacks, as it alters the task itself. When humans first complete the
task independently before receiving AI assistance, they are already mentally prepared
and may respond differently than if they received AI advice immediately. However,
this is a known challenge in research and not specific to our study (Schemmer et al.,
2023d).

Most importantly, future research needs to investigate the impact of different design
features. Future research should evaluate these potential design features to provide
practitioners with a toolkit for the effective use of AI.

7.7 Conclusion

Over the last decade, the emphasis in research on AI adoption and acceptance by hu-
mans has facilitated the widespread use of AI in everyday life. The now widespread
adoption raises the question of how to harness the potential of human-AI collabo-
ration in the best way possible. The true potential of human-AI collaboration lies
in leveraging their complementary capabilities in a way that jointly a performance
is reached that is superior to individual AI or human performance. Therefore, to
pave the way toward effective human-AI collaboration, it is now crucial to focus on
appropriateness of reliance that realizes this potential. In this work, we study the
effect of learning on appropriateness of reliance in a behavioral experiment. We find
first evidence for learning as an impact factor of appropriateness of reliance and
show that human learning can be influenced through explanations. Thus, this work
contributes to the design of effective human-AI collaboration.
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Part V

Harnessing Complementarity Potential
beyond AI-Assisted Decision-Making





Harnessing Complementarity
in Anomaly Detection

8

This chapter comprises a working paper that is currently under review as
Schemmer, M., Holstein, J., Kühl, N., Vössing, M., & Satzger, G. (2023c).
From Anomaly Detection to Anomaly Investigation: Support by Explainable
AI [Working paper]. Note: To improve the structure of the work, the title was
changed. The abstract has been removed. Tables and figures were reformatted,
and newly referenced to fit the structure of the thesis. The terminology was
standardized with the dissertation. Chapter, section and research question
numbering and respective cross-references were modified. Formatting and
reference style was adapted and references were integrated into the overall
references section of this thesis.

8.1 Introduction

Anomaly detection is essential in various domains, e.g., manufacturing (Ren et al.,
2018; Susto et al., 2017), financial auditing (Debener et al., 2021), healthcare
(Matschak et al., 2021; Schultz et al., 2022), and cyber security (Blazquez-Garcia
et al., 2021; Gamboa, 2017). For example, engineers in manufacturing want to find
early indicators of machine failures that would allow them to conduct preventive
maintenance. In cyber security, experts aim to find security breaches and attacks. In
financial auditing, detecting fraudulent claims is a crucial task (Schultz et al., 2022),
with an estimated total of 13 billion euro in Europe in 2017 (Insurance Europe,
2019).

At the same time, manually detecting anomalies is very challenging even for human
experts (Huang et al., 2022; Qian et al., 2020), primarily due to the vast amounts
of data—in terms of granularity and variability—that need to be analyzed. For
this reason, designers of information systems build so-called anomaly detection
systems (ADSs) that aim to support human experts in identifying anomalies (Bhuyan
et al., 2013; Breitenbacher et al., 2019; Moustafa et al., 2019). Information systems
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research guides the development of such systems in many domains, e.g., auditing
(Bhattacharya & Lindgreen, 2020), manufacturing (Ren et al., 2018), etc. Recently,
more and more of these systems are based on machine learning (ML) (Garg et
al., 2022) equipping them with the ability to detect complex patterns in high-
dimensional datasets (Audibert et al., 2022). Due to the inherent rarity of anomalies,
only limited amounts of labels are available for training ML models. Additionally,
the term “anomaly” often encompasses a diverse range of underlying events (Wang
et al., 2019). To address these challenges, unsupervised ML provides a practical
solution by acquiring knowledge of normal data patterns and identifying anomalies
as deviations from these (Cheng et al., 2021; Matschak et al., 2021; Steenwinckel
et al., 2021).

Despite the capabilities of unsupervised anomaly detection techniques in identifying
anomalous patterns embedded within datasets, they are insufficiently precise in the
detection of relevant rare events and, instead, detect any anomalous pattern in the
data. However, domain experts are often interested in a specific type of anomaly
that is relevant to the business, e.g., an increase in temperature prior to a shut-in.
Therefore, human experts need to carefully validate and investigate the detected
anomalies to determine their business relevancy. As a result, ADS cannot perform
the task of detecting relevant anomalies in an automated way. This means that
human anomaly investigation is necessary to confirm whether an identified anomaly
is indeed relevant.

While existing literature provides a comprehensive examination of anomaly detection,
it falls notably short when it comes to providing systematic support for anomaly
investigation (Chemweno et al., 2016; Pang et al., 2021; Steenwinckel et al., 2021).
This deficit becomes increasingly apparent given that anomaly investigation often
necessitates domain experts to scrutinize hundreds of distinct features (Liu et al.,
2022), not all of which are necessarily relevant to a specific anomaly. Take, for exam-
ple, a typical manufacturing production line that records thousands of measurements
every second. Despite this volume of data, there currently exists no established
systematic support to guide domain experts in their investigations. Considering
the difficulty in identifying the features necessary to validate relevant anomalies, it
becomes apparent that human domain experts require assistance in their anomaly
investigation. Therefore we formulate our research question:

Research Question: How can we methodologically support human experts in anomaly
investigation?
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While an automated validation of anomalies may not be feasible in many cases, we
hypothesize that unsupervised anomaly detection methods can still offer valuable
information to human experts, enhancing the investigation process. Specifically, we
hypothesize that explanations derived from anomaly detection can assist in human
anomaly investigation. Therefore, our method embarks on a novel approach—it
utilizes explanations generated from unsupervised anomaly detection to improve the
investigation process. Our research specifically targets the investigation of anomalies
in multivariate time series, which have numerous use cases for anomaly detection
(Kieu et al., 2019; Malhotra et al., 2016), e.g., predictive maintenance (Choi et
al., 2022), stock price movements (De Benedetti et al., 2018) or cyber security
(Blazquez-Garcia et al., 2021). To evaluate the effectiveness of our proposed method,
we conduct a behavioral experiment to test whether providing humans with these
explanations improves the accuracy of anomaly investigation.

To instantiate our proposed method, we have chosen an LSTM-autoencoder as it is a
commonly used approach for anomaly detection in time series data (Malhotra et al.,
2016). Previous research has indicated that counterfactual explanations have shown
potential in the realm of multivariate time series forecasting problems (Ates et al.,
2021). This approach offers a nuanced means of understanding the forecasting
model’s output by providing alternative scenarios that could have resulted in a
different forecast. In essence, counterfactual explanations generate scenarios that
are as close as possible to the actual data instance but with a different predicted
outcome. This is accomplished by altering a minimal number of features, therefore
highlighting the most influential factors driving the model’s decisions.

For our behavioral experiment, we leverage the public New York City taxi trip dataset
(TLC, 2022) and design an autoencoder that detects anomalous patterns, i.e., events
that have a significant impact on the local taxi industry. To generate explanations,
we utilize the framework for counterfactual explanations for autoencoders proposed
by Ates et al. (2021). As a testbed, we ask participants in the subsequent anomaly
investigation task to differentiate between a specific event of interest and other
events. Our experiment involves a total of 64 participants, and we find that the
provided explanations can improve the accuracy of anomaly investigation.

Our contribution is twofold. First, we introduce a method to support human anomaly
investigation, utilizing explanations derived from anomaly detection. Second, we
demonstrate the effectiveness of these explanations through a behavioral experiment.
Our study is the first to empirically investigate the impact of anomaly detection
explanations on anomaly investigation. By validating their potential, we inspire
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new use cases for anomaly detection which could have a significant impact on how
anomaly detection systems are approached.

In the following sections, we will provide further details on our work. In Section
8.2, we will present the fundamentals and related work. Subsequently, in Section
8.3, we will conceptualize our anomaly investigation method. In Section 8.4, we
will introduce our dataset, the design of our explainable autoencoder, and our
experimental design. The results of our experiment will be presented in Section 8.5,
followed by a discussion of the findings and a conclusion in Section 8.6. Finally, in
Section 8.7, we will conclude our study.

8.2 Related Work

In this chapter, we introduce the fundamentals of our work and provide an overview
of related work. First, we introduce foundations of anomalies, anomaly detection,
investigation, and explainable anomaly detection. Then, we introduce the related
work that covers explainable autoencoder-based anomaly detection in multivariate
time series.

8.2.1 Anomaly Definition

First, it is imperative to define the term “anomaly” to establish a common ground.
An anomaly is essentially a data point or a sequence of data points with substantial
deviations from the majority of data points (Görnitz et al., 2013; Hawkins, 1980).
The term anomaly does not describe a specific event but rather a property of those
events. Those events are described as “unusual”, “rare” and simply not “normal”
(Görnitz et al., 2013).

Anomalies can be categorized into different types: Point anomalies are the most
trivial to find, as these anomalies are only single points located outside the normal
value range. Next, contextual anomalies can consist of sequences and can only be
identified as anomalous in comparison to different points with the same context. The
most complex type is the collective anomaly. Collective anomalies always span over
sequences and only gradually show a different pattern compared to normal data.
Individual values within this type of anomaly may seem ordinary and only collectively
raise suspicion (Braei & Wagner, 2020). Figure 8.1 on page 177 highlights the three
types.
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Figure 8.1.: Different anomaly types (Choi et al., 2021). The three examples depict uni-
variate time series, with the three types of anomalies in time series.

In most use cases where anomalies are to be detected, the ultimate goal is not
to detect any anomaly but relevant ones (Liu et al., 2022; Song et al., 2007).
Therefore, most anomaly detection use cases essentially boil down to a rare event
classification. For example, in manufacturing, the goal of operators may be to detect
early indicators of machinery failures. However, not only these early indicators but
also other events deviate from the “normal” operation, e.g., planned shut-downs.
This means only a subset of the anomalies is actually of interest.

In the past, knowledge-based systems have been used to classify those rare events
of interest, i.e., systems that explicitly store the knowledge of experts to detect the
events (Steenwinckel et al., 2021). However, experts have a limited, more global
view, and as data volume grows, it becomes harder for experts to explain deviations
in values and their effects (Steenwinckel et al., 2021). Moreover, acquiring their
knowledge is a time-consuming and challenging task (Steenwinckel et al., 2021).
For this reason, more and more ADS were developed. However, ADS cannot classify
the detected anomalies based on their relevancy. This means a human anomaly
investigation is still imperative (Song et al., 2007).

8.2.2 Anomaly Detection

Anomaly detection approaches consist of either classification (e.g., isolation forest),
nearest neighbor (e.g., distance-based), compression-based (e.g., autoencoder),
or clustering methods (Muruti et al., 2018). Further, anomaly detection can be
categorized into three different classes (Nassif et al., 2021). Supervised anomaly
detection aims to build a classifier model that learns from a labeled training dataset.
Here, the training dataset contains labels for normal and anomalous instances.
In practice, it may be challenging to find such datasets due to anomalies being
rare events and models requiring vast amounts of data. Next, semi-supervised
anomaly detection requires only a training dataset with instances being labeled as
normal. Accordingly, any instance different from the normal class is classified as
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an anomaly. Finally, unsupervised anomaly detection is the most common type for
anomaly detection as it does not require any labels in the training dataset, with
autoencoders being one of the most powerful model classes.

While there are numerous methods to perform anomaly detection, the focus of this
work is deep anomaly detection due to its superior performance (Chalapathy &
Chawla, 2019). Deep anomaly detection describes the application of deep learning
to the anomaly detection task. Autoencoders are the most frequently used deep
unsupervised anomaly detection method (Chalapathy & Chawla, 2019). This archi-
tecture was already introduced in the 1980’s (Rumelhart et al., 1985) and attempts
to compress the input data to then reconstruct it with as little information loss as
possible (Baldi, 2012). The most basic structure of an autoencoder contains an
encoder that generates a compressed representation of the input data and a decoder
that aims to reconstruct the input data from the compressed representation (Bank
et al., 2020). Not all the information can be stored in the so-called bottleneck layer,
so the model must learn statistical patterns in the training data (Bengio et al., 2009).
These lower-dimensional representations are the latent space of an autoencoder
(Dillon et al., 2021). For time series anomaly detection, autoencoders are usually
equipped with LSTM layers that can capture temporal dependencies (Malhotra
et al., 2016). To decide whether a sample is anomalous or not the autoencoder
reconstruction error is used. If the reconstruction error of a sample exceeds a certain
threshold, the sample is labeled as an anomaly. The threshold can be tuned manually
or set by a certain percentage of the highest errors.

8.2.3 Anomaly Investigation

Only a few articles focus on anomaly investigation (Liu et al., 2022; Soldani & Brogi,
2022). Anomaly investigation can happen on multiple levels based on the necessary
and available data (Soldani & Brogi, 2022). It can either be conducted based on the
same data used for the anomaly detection or by taking additional data into account.
This work focuses on use cases where the same data is used.

Most of the existing work deals with data visualization to improve anomaly investi-
gation (Soldani & Brogi, 2022; Xue & Yan, 2022). Xue and Yan (2022) develop an
ADS for detecting and analyzing anomalies in cloud computing performance. They
provide rich visualization and interaction designs to help understand the anomalies
in a spatial and temporal context. Soldani and Brogi (2022) improve the process of
detecting and investigating anomalies in time series data in industrial contexts. To
do so, they characterize six design elements and develop a visual ADS to support this
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process. However, beyond visualization approaches, methods to improve anomaly
investigation are still missing (Liu et al., 2022; Soldani & Brogi, 2022).

8.2.4 Explainable Anomaly Detection

Explanations are required to understand how specific predictions are generated
(Šimić et al., 2021). On an abstract level, approaches can be divided into local
and global explanations (Ates et al., 2021). Global explanations focus on the
entire dataset (Ibrahim et al., 2019), whereas local explanations refer to individual
observations (Plumb et al., 2018). By reviewing related work, it becomes apparent
that there are many implementations of explainable anomaly detection (Choi et al.,
2022; Song et al., 2018). However, none of them evaluate the effect on anomaly
investigation. Overall, to the best of our knowledge, no study has ever empirically
evaluated whether the explanations of the anomaly detection also provide a benefit
for anomaly investigation. Therefore, we argue that this work’s topic is highly
relevant.

8.2.5 Explainable Autoencoder-Based Anomaly Detection in
Multivariate Time Series

Within the context of multivariate time series, a lack of explainability approaches
can be observed, while simultaneously, analytics for these time series are increasing
in popularity (Ates et al., 2021). Counterfactuals are a promising explainability
technique for time series (Filali Boubrahimi & Hamdi, 2022). While there are many
counterfactual approaches in various domains, the multivariate time series domain
remains mostly uncovered (Guidotti, 2022). Hereby, the work of Ates et al. (2021) is
the only known framework for counterfactual explanations in time series forecasting
and classification. As their approach is model agnostic, they only require class
probabilities as the model’s output to create explanations. To do so, they modify the
input data in a way that is as close as possible to the original input while receiving
a different class label. However, not all available input features are altered and,
instead, only the ones with the highest deviations between the original input and the
modified instance with a different label. Reducing the number of adjusted variables
helps human experts as previous research has pointed out that humans are only
capable of processing four variables simultaneously (Halford et al., 2005). A typical
example of counterfactual explanations outside the domain of time series is a loan
application scenario: An AI-based system declines a person’s request, stating that

8.2 Related Work 179



similar customers have also been declined. In contrast, a counterfactual statement
can convey that the request would have been accepted if the person had slightly
lowered the credit amount (Kenny & Keane, 2021).

During the review of related works that implement explainable autoencoder, it
becomes apparent that most works utilize some form of feature importance as
an explanation technique. Alfeo et al. (2020), Dix (2021), and Ghalehtaki et al.
(2022) use the model’s built-in reconstruction error to detect important features.
However, Roelofs et al. (2021) argue that this methodology is not very robust
as the reconstruction error does not always match the actual feature importance.
Other work uses well-known frameworks such as SHAP or LIME to generate feature
importance through a surrogate model (e.g., (Jakubowski et al., 2021)) or even
deploy multiple SHAP explanations to capture temporal and feature interactions
respectively (Hussain & Perera, 2022). Ha et al. (2022) calculates the feature
importance through SHAP by applying a flattening layer on their LSTM autoencoder.
The new model uses the weights from the autoencoder and generates explanations
by using Gradient SHAP. Oliveira et al. (2022) designs its framework, the residual
explainer, which interprets deviations of the reconstruction errors to create feature
importance. In an experiment, the approach produces better results than SHAP and
takes only a fraction of the time. The only work to our knowledge that uses an
explanation technique besides feature importance is the work of Sulem et al. (2022),
who also generate counterfactual explanations. However, none of them evaluate the
impact of explanations on human anomaly investigation.

In summary, we find no study that provides methodological support for anomaly
investigation and that empirically investigates the influence of explainable anomaly
detection on anomaly investigation.

8.3 Conceptualization of Explainable Anomaly
Detection for Anomaly Investigation

In this section, we outline our method for investigating anomalies. As discussed,
we argue that the overarching goal of most anomaly detection use cases is actually
to classify specific rare events—relevant anomalies. The small number of labels
available for these rare events makes automated classification difficult. Unsupervised
approaches can detect anomalies without labels (Cheng et al., 2021) and can
find unknown patterns (Matschak et al., 2021). The underlying assumption of
using unsupervised approaches is that the desired rare events are a subset of the
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identified anomalies. While unsupervised anomaly detection methods can effectively
detect anomalies, they are limited in their ability to fully automate the detection of
relevant anomalies. Consequently, determining whether an identified anomaly is
truly relevant involves human experts, as they can apply their domain knowledge
to analyze anomalies in-depth (Liu et al., 2022). However, they are limited by
their cognitive capacity, such as the patterns they can process. For example, when
analyzing hundreds of sensors, humans may reach their cognitive limits. Thus,
cognitive capacity may limit their ability to investigate anomalies.

To summarize, unsupervised ML-based ADSs are constrained in their capability
to classify relevant anomalies, while human experts are limited by their cognitive
abilities. To overcome these limitations, we adopt a human-centered perspective
(Shneiderman, 2020) and develop a method that combines the strengths of au-
tomated anomaly detection with human anomaly investigation. We contend that
this approach has the potential to overcome the challenges posed by both ADSs
and human experts, resulting in a more effective and comprehensive approach to
classifying rare events.

To reduce the required cognitive capacity for investigating anomalies, we propose to
leverage recent advances in explainable AI. More specifically, we use explanations
derived from the ADS to inform the anomaly investigation, which can explain the
ADS’s reasoning for flagging data as anomalous. Our underlying reasoning is that we
hypothesize a relationship between the features influencing the automated detection
of an anomalous event and the features a human needs to investigate the anomalies.
For example, if the event is an early indicator for a machine failure, we hypothesize
that the sensor values that behave unusual also give an insight that the event is an
early indicator and not, for example, a planned shut-down. Besides giving insights
for the investigation, we also hypothesize that explanations can be used to reduce
the cognitive effort of human experts. For example, showing humans a filtered list of
sensors relevant to anomaly detection would reduce the number of sensors a human
expert needs to analyse. In summary, we argue that explanations of the anomaly
detection can help humans in their anomaly investigation.

Having outlined the general idea of the method, in the following, we provide a
detailed overview along with the four components of the method—data, anomaly
detection, explanations of the anomaly detection, and the human investigation.
Figure 8.2 on page 182 visualizes the method. The first two components are related
to anomaly detection, and the last two are related to anomaly investigation. We
highlight the components of the method, an exemplary instantiation, and provide
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an illustration. As an example, we use the detection of early indicators for machine
faults.

Data Machine Learning based 
Anomaly Detection

Autoencoder

Method

Instantiation Machine Sensor 
Time Series

Explanations of 
Anomaly Detection

Human 
Classification

Counterfactual 
Explanations Engineer

Anomaly Investigation

Illustration

Detected anomaly window

Counterfactual explanation

A B C A B C

Legend

A

Anomaly Detection

Figure 8.2.: Representation of the proposed method. Explanations generated from the
anomaly detection support the human anomaly investigation.

Data. For our method, the underlying data needs to have enough events of normal
behavior to be able to use an unsupervised approach. In our machine fault classifi-
cation example, the input data to the method are sensor values. In the illustration
in Figure 8.2, we depict a univariate time series, e.g. a single sensor value such as
temperature over time.

Unsupervised Anomaly Detection. Next, an unsupervised ML-based anomaly
detection flags anomalies in the input data—indicating anomalous events that
require human analysis. Unsupervised anomaly detection models operate by learning
what is normal or what are expected based on various characteristics of the data.
Following this any data point that significantly deviates from this established norm is
then considered as an anomaly. This method does pose certain challenges, primarily
in determining the threshold at which a point is flagged as an anomaly. Setting
this threshold usually involves a tradeoff whether to detect more anomalies (low
deviations are considered as an anomaly) or less anomalies (only high deviations lead
to anomalies). Commonly employed methods for unsupervised anomaly detection
are, for example, auto-encoder, principal component analysis, or isolation forest.
In our example, the output of this step are highlighted time windows in the sensor
data that are anomalies with respect to the normal behavior of the machine. It is
important to note that a human will only examine the time windows highlighted by
the anomaly detection.
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Explanations of Anomaly Detection. As a next step, explanations of the unsuper-
vised anomaly detection are generated. Common approaches are ex-post explana-
tions such as feature importance (highlighting the relevant sensor or timestamps),
example-based or rule-based explanations. Research on supervised approaches has
highlighted the importance of a human-centered perspective for designing explana-
tions (Ehsan et al., 2021). Following this line of thought, we argue that explanations
need to be consciously designed for the problem at hand. For example, in the time
series domain, research has shown the advantages of counterfactual explanations
(Ates et al., 2021). In our example, we show counterfactual explanations. This
means the explanations highlight how the sensor data should have behaved to be
not labeled as anomalous.

Human Anomaly Investigation. In the final step, a human expert receives the
explanations and differentiates the detected anomalies in for the business problem
relevant and non-relevant anomalies. This method step may be conducted by
business experts, lay workers, etc. In our example, the anomalies are investigated
by engineers. The outcome are those events that the engineer identifies as early
indicators for a machine breakage.

Having outlined our proposed novel method, in the next chapter, we present the
design of our experiment to demonstrate the value of the method.

8.4 Experiment Design

In this section, we provide information about the data and the task we use to
investigate the utility of our proposed method. Then, we describe the development
of the autoencoder and the counterfactual explanations, together forming our
explainable ADS. Finally, we present the experimental design.

8.4.1 Dataset, Task and Data Preprocessing

Dataset. We search for a suitable task and dataset by specifying a list of requirements
the dataset must fulfill. The dataset must consist of multivariate time series and must
include anomalies and, ideally, external information about the respective anomalies.
Since the participants are non-experts, the dataset must come from a context they
can understand.
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Based on these requirements, we evaluate several well-known multivariate bench-
mark datasets frequently used in anomaly detection on multivariate time series (e.g.,
(Du et al., 2017; Risdal et al., 2016)). All these datasets are multivariate and stem
from a technical context. While these characteristics are desirable for a technical
evaluation of a model, they conflict with our requirement to be easy enough to
understand by experiment participants.

For this reason, we picked a dataset with a more familiar context. One dataset that
meets all these requirements is the public New York City Taxi dataset (TLC, 2022).
Currently, around one million trips are recorded every day (TLC, 2022). TLC has
made this data available to the public since 2009. Each trip record contains 19
features, e.g., information about the pick-up and drop-off time and location, the trip
distance, payment types, fares, and the number of passengers. Nearly 13 years of
data are available - in these years, the taxi industry has changed considerably. Fares,
availability of cabs, or, for example, new competitors have, among other factors,
influenced the collected data and represented a considerable challenge (Baier et al.,
2019) that is out of the scope of this work. We address this issue by using a shorter
period of observation.

Certain days, such as holidays or days with extreme weather conditions, cause
considerable deviations from the usual behavioral pattern. These days are thus
suitable as anomalies because they are out-of-distribution by nature while serving as
ground truth at the same time (Ferreira et al., 2013). For extreme weather events,
ground truth can be found on the governmental extreme weather website 1. All of
the anomalies are collective anomalies, e.g., they are just anomalous as a sequence.
During the chosen timeframe from the beginning of 2016 to the end of December
2018, several events with known large impacts on the taxi business took place, for
example:

• Christmas (12/24/2018 - 12/26/2018)

• New Year’s Day (01/01/2018)

• Winter storm (11/15/2018

• Heavy snowfalls (03/21/2018)

For the training of our model, we use 2016 as the training and 2017 as the validation
period. 2018 serves as our test set, of which we visualized a subset in Figure 8.3 on
page 185. The colored areas shown indicate known events in New York City.

1https://www.weather.gov/okx/stormevents
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Task. Accordingly, we want to provide an easy-to-understand task based on the
dataset that supports the classification of the identified anomalies. Our dataset
lays the ideal basis for this task as the anomalies have different classes, e.g., public
holidays, extreme weather events, or other events. While it may not be possible
to differentiate between such events deterministically, some frequently appearing
patterns can be observed, e.g., during extreme weather, fewer people use taxis and,
at the same time, the share of the tips increases. Therefore, we provide participants
with the task of classifying whether the shown anomaly is an extreme weather event
or not. We employ a binary classification (extreme weather event or not) to be
close to a realistic task. For example, in condition-based maintenance, the binary
classification may be to discriminate faults from other anomalies.

Data Preprocessing. As the data is provided directly from the recording, it is
necessary to clean and preprocess it. The goal of the preprocessing is to increase
the data quality and, therefore, also the performance of the ADS (Frye et al., 2021).
We merely make basic assumptions that ensure the validity of individual recordings
while not removing any anomalies the model should detect, e.g., the trip duration
should be longer than zero minutes (Baier et al., 2020). After the data cleaning,
we aggregate the taxi demand by hour and perform a few preprocessing steps.
To increase the comprehensibility of the dataset, we drop some of the original 19
dimensions, as they are sometimes difficult to understand and negligible for anomaly
detection. Further, we create additional features that are easy to interpret and thus
support the classification task. Therefore, our final dataset consists of the following
features: trip count, average trip duration per mile, the proportion of tips in the total
fare, average trip distance, proportion of trips starting and ending in the city center,
and, finally, the average number of passengers per trip. Lastly, we scale the data to
unify the magnitude of different features (Misra & Yadav, 2019), as this can have
otherwise undesired results on the model’s processing (Papenmeier et al., 2019).

8.4.2 Explainable Anomaly Detection System

Modeling. In the following, we present our anomaly detection modeling. Similar to
related work (Ghalehtaki et al., 2022; Ha et al., 2022; Jakubowski et al., 2021), we
use LSTM-layer to take intertemporal and multivariate dependencies into account.
To optimize our architecture, we conduct a grid search and identify the following
parameters as the best combination: window size of 8, step size of 2, hidden
dimensions of the autoencoders are 8, 6 and 4, and finally the latent space with 4
dimensions. We use the reconstruction error and the detection of known anomalies
as the target.
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Our approach is to calculate the average reconstruction error of a window over all
timesteps and features and compare this value to a threshold. The threshold must
be optimized based on the results. The goal of this optimization is the recall of the
model, meaning that all anomalies are identified as such by the model.

Counterfactual Explanations. The standard autoencoder architecture must be
extended to enable explanations for common explanation frameworks such as
SHAP (Lundberg & Lee, 2017) or CoMTE (Ates et al., 2021) that cannot handle
the autoencoder output. This is because the autoencoder output has the same
dimensions as the input data. Current explainable AI frameworks, however, expect
outputs in the form of a classification or regression prediction. Thus, we design a
new layer that manipulates the model’s output to provide class probabilities (Ates
et al., 2021). To calculate the necessary class probabilities, a new layer is given a
threshold value in addition to the already existing sum of the reconstruction error, as
proposed in (Ates et al., 2021). The reconstruction error is then, similar to (Aronsson
& Bengtsson, 2021; Ates et al., 2020), converted to a binary class probability by
first subtracting the threshold value (τ) from the calculated mean error.The Sigmoid
function afterward projects that value to a range between 0 and 1. The layer is
concatenated after training the autoencoder.

Finally, we use the CoMTE framework to generate the counterfactual explanations
(Ates et al., 2021), which serve two purposes. First, they reduce the number
of features that experts need to analyze (On average, our approach changes 3.2
features). Second, they highlight how the time series should have looked liked
to be not flagged as anomalous. Figure 8.4 on page 188 depicts two examples of
our explanations. The used approach modifies four input features in the extreme
weather event and three for the public holiday.

Having introduced our explainable ADS, we now describe how we conduct our
behavioral experiment.

8.4.3 Experimental Design

Pilot Study.

To obtain qualitative feedback on our ADS, we conduct a focus group interview
with five experts with backgrounds in ML. The session lasts 30 minutes. First, we
briefly introduce the basic information about this work and then focus on the core
of the study. There, an anomalous window with the respective features is presented.
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The session is recorded and transcribed to evaluate the results more precisely in
retrospect (McGrath et al., 2019).

The experts argue that the only cue generated by the explanations, the distance
between the two lines of the counterfactual explanation, is not enough. We observe
that it is vital to provide exemplary patterns in the pre-training of the user study to
ensure that participants can understand the events being classified. We argue that
this also transfers to real-world cases, as domain experts also have prior knowledge
within their domain, which they incorporate into the anomaly investigation.

Study Procedure.

The research model is tested in an online experiment with a between-subject design.
We test two different conditions. First, a control condition in which the human
receives the ADS without counterfactual explanations, and second, a counterfactual
explanation (CF) condition. The study as a whole is approved by the University
IRB.

Sampling Strategy. In each condition, we provide participants with eight events.
For the sampling of the eight events, we apply rules to ensure that the patterns of
the underlying event are visible and prevent participants from being able to classify
events based on previously seen anomalies, e.g., the same extreme weather at two
different times during a day. Therefore, we first label our anomalies based on the
provided dates, start and end times of extreme weather of the government storm
website and public holidays 2. For extreme weather events, we label an anomaly as
extreme weather if the identified anomaly starts at most 2 hours before the start of
the extreme weather or two hours before the end of the extreme weather. Similarly,
we label anomalies as a holiday if they start on the date of a public holiday. Finally,
we randomly draw four extreme weather events, three holiday events, and one
anomaly classified as neither. While sampling, we verify that we do not draw two
anomalies on the same day.

Interface. Next, we create visualizations of the sampled anomalies (see Figure 8.5 on
page 190). Similar to Liu et al. (2022), we use two views with varying information:
the context view and the zoomed view. First, our context view shows past data of the
last three weeks for all variables, with the anomaly being highlighted. This should
support participants in understanding the behavior and interactions of the variables
in non-anomalous times and thus provides context (following the requirements from
the pilot study). However, we refrain from flagging additional anomalies in this

2https://publicholidays.com/us/new-york/2018-dates/
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Figure 8.5.: Example of an extreme weather event with counterfactual explanations (top:
zoomed view, bottom: context view).

period to avoid the possibility of inferring the date based on the position of the
anomalies, e.g., New Year’s Day, by the previous anomalies of Christmas. Second,
the zoomed view allows a detailed look at the specific time window of the anomaly.
It is also the single point in which the treatments differ. While the AI treatment
solely receives the data during the anomaly, the zoomed view of the counterfactual
treatment additionally displays explanations. To support the anomaly investigation,
we provide supplemental information about the time of the anomaly to enable a
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better understanding of the anomaly’s patterns without allowing conclusions on the
specific date (e.g., Christmas). For example, while an extreme weather event may
result in fewer trips, this is also true for nights on regular working days. Additionally,
we argue that in real-world cases of anomaly, investigation time is a feature that is
also available.

Task flow. The online experiment is initiated with an attention control question
that asks participants to state the color of grass. To control for internal validity,
participants are randomly assigned to the condition groups. As multivariate time
series are difficult to interpret for humans (Janus et al., 2021), we include multiple
tutorials. First, both conditions receive an introduction to the task and are given
examples of extreme weather events and other events. Following that, we explain the
two views of our ADS and ask participants four comprehension questions. Afterward,
we give a short tutorial on how participants can detect extreme weather events,
followed by two comprehension questions. Finally, we sample event patterns based
on related literature (Lee & Sohn, 2020; Qing et al., 2015). For the CF condition,
we follow on with an explanation of counterfactual explanations. We provide
the participants with a general intuition of the explanations rather than specific
technical information. During the experiment, we neither use the terms AI and ML
nor counterfactual explanations to prevent issues of AI literacy. Instead, we speak
of ADS and expected values. Then, the participants conduct two training tasks to
familiarize them with the task and, depending on the condition, with its explanations.
Additionally, the participants receive feedback on the training tasks. After the two
training reviews, the participants receive the eight main tasks. For each task, we
ask them how much they agree with the statement “The anomaly is an extreme
weather event” on a four-point Likert scale (Strongly agree, agree, disagree, strongly
disagree). This allows us to get a binary classification and certainty information.
After classifying the anomalies, we collect data on demographic variables.

Reward. To incentivize the participants, they were informed that for every correct
decision, they get an additional 12 cents in addition to a base payment of 6 pounds
per hour. However, the two training classifications do not count for the final
evaluation.

Participant information. The participants are recruited using the platform “Pro-
lific.co”. We note that crowd workers might limit the generalizability of our results.
However, our sampling of the task should ensure that crowd workers are capable
of doing the task. In total, we conduct the experiment with 66 participants (33
participants per condition). We exclude two participants in the CF condition and two
participants in the control condition because of conducting the eight tasks in under
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one minute. Apart from the attention check, we provide participants with in total
of six questions that ensure that participants understand the task and underlying
visualization, e.g., how many weeks of data are displayed in the context view. Based
on these questions, we further exclude eight participants in the CF condition and
nine participants in the control condition for incorrect answers. Even though this
might seem like a high number of excluded participants, one needs to consider that
multivariate time series anomaly detection is a very challenging task, and some
crowd workers may not even understand what a time series is. In addition, we
exclude all participants who fall outside the interquartile range of 1.5. By doing
so, we exclude two outliers in the CF condition. This leaves us with 22 participants
in the control group and 21 in the counterfactual group. Table 8.1 shows the age,
gender, and education distribution of the participants.

Table 8.1.: Summary of participants’ characteristics.

Number per condition Control = 22

Counterfactual Explanations = 21

Age µ = 27.12, σ = 6.29

Gender 47 % Female

47 % Male

6 % Non-Binary

Education 26 % High school

51 % Bachelor

12 % Master

11 % Other

Evaluation Measures.

To evaluate our hypothesis, we calculate two measures based on the results of our
experiment—effectiveness and efficiency.

Our first measure, effectiveness, is the participants’ accuracy in the anomaly investi-
gation, e.g., the share of correctly classified events. To calculate the share, we first
binarize the result. Due to our sampling strategy, by chance, participants would be
able to have an accuracy of 50 percent. In addition to the accuracy, we analyze the
participants’ certainty by comparing the share of agreement and disagreement with
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the percentage of strong agreement and disagreement. Next, efficiency represents
the time needed for the anomaly investigation. For both measures, we calculate the
mean per participant for the global evaluation of our hypothesis. Additionally, we
examine the effects of the explanation on each type of event more closely. Therefore,
we also build the mean for the four extreme and non-extreme weather events.

8.5 Results

In the following section, we report the results of our study. First, we provide a
qualitative interpretation of typical patterns of detected anomalies that could have
been observed by the participants of the experiment Finally, we present an analysis
of the experiments’ results.

8.5.1 Qualitative Interpretation of Detected Anomalies

As mentioned earlier, participants in the experiment must classify identified anoma-
lies in extreme weather events. This classification is based on the intuition that each
type of event has common patterns that are shared across events. However, these
patterns often do not allow for a deterministic classification of anomalies. Neverthe-
less, in the following, we qualitatively present and interpret certain patterns derived
from counterfactual explanations.

Extreme Weather. During extreme weather events, three variables in particular
differ from normal days: the number of trips is lower, the percentage of tips in the
total fare increases, and the average trip distance decreases. For an example of a
winter storm, see the top of Figure 8.4. We interpret this pattern to mean that more
people stay home on stormy days and forgo longer trips, such as visiting relatives
or friends in other neighborhoods. Furthermore, people leave their homes only for
urgent matters and then rely on taxis. Once they arrive at their destination, they
express their gratitude to the taxi drivers with an increased tip due to the adverse
circumstances.

Holidays. Compared to extreme weather events, holidays often have a distinct
pattern (see the bottom of Figure 8.4). On holidays, the number of trips during
the night is usually higher, and later the average number of passengers per trip is
higher. People often go out the night before, so there are more trips during the
night compared to regular days. Compared to regular workdays, we interpret the
higher number of trips during the night as people going out, resulting in more trips.
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The second observation with more people sharing taxis could be families visiting
relatives or friends together.

8.5.2 Experiment Results

In Table 8.2 we highlight the descriptive results of our experiment. The results
are broken down by experimental condition. Finally, we evaluate the significance
of the results using Student’s T-tests or Mann-Whitney U-tests after controlling
for normality using the Shapiro-Wilk test. In the following, we first present our
results on effectiveness and then highlight the impact of explanations on efficiency.
Figure 8.6 and Figure 8.7 visualize the results of our experiment.

Table 8.2.: Descriptive outcomes.

Condition Effectiveness Efficiency

Control 55.11 % (21.71 %) 30.92 s (22.2 s)

Counterfactual Explanations (CF) 70.24 % (15.04 %) 25.89 s (12.47 s)

Effectiveness. In the control condition, participants have an average accuracy of
55.11 %, or an average of 4.41 correct classifications. In the CF condition, we
measure an average accuracy of 70.24 %, which corresponds to an average of 5.7
correct classifications with the help of counterfactual explanations. The analysis of
the results of the experiment shows that the mean accuracy of the participants in
the CF condition is significantly higher than in the control condition (Mann-Whitney
U-test: U =137.5 , p = 0.02). Thus, we can conclude that explanations improve
the effectiveness of anomaly investigation. In addition, Figure 8.6 shows that the
interquartile range is lower when explanations are provided.
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Figure 8.6.: Distribution of the effectiveness of participants.
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Efficiency. On average, participants took 30.92 seconds to complete the eight classi-
fications in the control condition (approximately 3.87 seconds per classification).
In the CF condition, they took 25.89 seconds (approximately 3.24 seconds per
classification). Figure 8.7 shows the measurements. No significant effect on classifi-
cation time was observed between the CF and control conditions (Mann-Whitney
U-test: U = 255.5, p = 0.56). We conclude that counterfactual explanations do
not significantly increase human anomaly investigation efficiency in our setup. We
discuss possible reasons for the non-significant effect in the next chapter.
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Figure 8.7.: Distribution of the efficiency of participants.

In total, our experiment highlights the potential for using counterfactual explanations
to improve anomaly investigation. In the following section, we discuss our results.

8.6 Discussion

In this paper, we propose a method to support anomaly investigation. We suggest
using explanations derived from anomaly detection to guide human anomaly investi-
gation. We instantiated this method to demonstrate its usefulness and to analyze two
facets of anomaly investigation—accuracy and efficiency. To this end, we conducted
a behavioral experiment that showed that providing counterfactual explanations
can improve the accuracy of anomaly investigation, particularly in distinguishing
weather events from non-weather events. That is, humans can identify the subset
of relevant anomalies from a larger set of detected anomalies. However, providing
counterfactual explanations does not significantly improve efficiency in our current
setup. A possible reason for this lies in the nature of counterfactual explanations—
the visualization of a second instance that must be interpreted and compared to
the anomaly to be classified. This additional effort may offset effects that improve
efficiency, such as easier classification.
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8.6.1 Implications

To our knowledge, we are the first study to show empirically that explainable
anomaly detection can improve anomaly investigation. This result has important
implications for research and practice.

Implications for Research. In our research, we propose an anomaly detection and
investigation method that extends the well-researched area of anomaly detection
with complementary anomaly investigation. We then instantiated the method and
tested it in a behavioral experiment. We show that counterfactual explanations
can improve human accuracy in detecting relevant anomalies from a larger set of
anomalies. By demonstrating the usefulness of our method, we extend the existing
research on anomaly detection with the complementary anomaly investigation.

Implications for Practice. Our work has implications for any use case with large
amounts of data and rare classes of interest. In previous work, these use cases have
typically been characterized as unfavorable for ML (Pang et al., 2021). However, we
argue that they require a different approach. Instead of using supervised ML with
sampling strategies (e.g., SMOTE), we hypothesize that using explainable anomaly
detection together with human expert-based anomaly validation—i.e., human-AI
collaboration—may be superior. To maximize the potential benefits of such a system,
organizations should consider training their experts in AI-derived explanations to
increase their familiarity with explanations and potentially increase the efficiency of
anomaly investigation. By improving the usability of these interfaces, companies
could increase the efficiency and effectiveness of their decision-making processes,
leading to better outcomes and increased competitiveness.

8.6.2 Limitations and Future Work

As always with behavioral experiments, there is the question of how generalizable our
results are. We would like to emphasize that our research does not aim to recommend
general design features (e.g., the use of counterfactual explanations for time series),
but rather to show that explanation can improve the investigation of anomalies per
se, i.e., it shows the existence of the effect. We further argue that showing that it
works with laypeople in an online experiment shows even more potential for experts.
However, more work is needed to explore design recommendations and whether our
findings hold in other domains. We encourage other researchers to test our method
in different settings and derive design knowledge.
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We also want to discuss how realistic our chosen testbed is. Therefore, we compare
the classification of taxi events with a typical use case for anomaly detection in
manufacturing. In manufacturing, anomaly detection is often used to detect early
indicators of machine failures (Jankauskas et al., 2023). Compared to our task, the
number of features in manufacturing is usually even higher. However, based on the
expertise of researchers, we argue that the number of relevant features informing
classification tasks is usually similarly small.

A key open question is how our method is perceived by end users. A key criterion for
anomaly detection in the past has been the reduction of “false alarms,” i.e., detected
anomalies that do not belong to a class of interest, in order to reduce the workload
of experts (Campos et al., 2016; Pang et al., 2019). However, our results show that
explanations sometimes do not reduce the time needed to interpret the anomalies.
This means that explanations may be perceived as inconvenient. Future research
needs to investigate whether experts find explainable ADS useful and adopt it.

In addition to detecting infrequent events of interest–thus acting as an alert system–
explainable anomaly detection has the potential to act as a data mining tool to
generate new knowledge for organizations. Anomaly detection can find patterns
previously unknown to experts (Chandola et al., 2009). Explanations could allow
experts to validate these patterns and generate entirely new insights. Future work
could provide insight into this additional use case.

8.7 Conclusion

In this work, we address the problem of investigating anomalies in terms of their
relevance. We develop a method that assists human experts in anomaly investigation
by providing them with explanations of unsupervised automated anomaly detection.
We then conduct a behavioral experiment and show that counterfactual explana-
tions of autoencoder-based anomaly detection improve anomaly investigation in
multivariate time series. With our results, we hope to motivate researchers and
practitioners to research, implement, and use explainable anomaly detection.
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Harnessing Complementarity
in Intelligent Decision
Assistance

9

This chapter comprises an article that was published as: Schemmer, M., Kühl,
N., & Satzger, G. (2022d). Intelligent Decision Assistance Versus Automated
Decision-Making: Enhancing Knowledge Work Through Explainable Artificial
Intelligence. Proceedings of the 55th Hawaii International Conference on System
Sciences, 617–626. Intelligent decision assistance versus automated decision-
making: Enhancing knowledge workers through explainable artificial intelli-
gence. Note: To improve the structure of the work, the title was changed. The
abstract has been removed. Tables and figures were reformatted, and newly
referenced to fit the structure of the thesis. The terminology was standardized
with the dissertation. Chapter, section and research question numbering and
respective cross-references were modified. Formatting and reference style was
adapted and references were integrated into the overall references section of
this thesis.

9.1 Introduction

The recent advances in artificial intelligence (AI) lead to an increase in automated
decision-making (Coombs et al., 2020). Decisions can be classified into unstruc-
tured, semi-structured, and structured decisions (Turban et al., 2010). Traditionally,
automated decision-making was applied to structured problems, and decision sup-
port system (DSS) enhanced decision-making for unstructured problems (Gorry &
Scott Morton, 1971; Turban et al., 2010). Unstructured tasks were considered too
difficult to automate since they require more cognitive flexibility (Lacity & Willcocks,
2016). However, advances in AI, specifically in deep learning, now increasingly
enable to automate also more complex cognitive tasks, such as driving a car (Frey &
Osborne, 2017). Therefore, AI has now the potential to also address semi-structured
and unstructured decisions that are far from basic back-office tasks (Asatiani et al.,
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2019). For example, AI is used to automate loan approval (Infosys, 2019), or to
conduct recruitment choices (Albert, 2019)—decisions that in the past were unimag-
inable to automate. Therefore, both the number and complexity of tasks that can be
automated increase.

However, it has long been known that increasing automation of decisions can lead
to various drawbacks, such as automation bias and deskilling (Mosier & Skitka,
1999; Parasuraman et al., 2000). This is especially challenging since most semi-
structured and unstructured tasks are knowledge work incorporating high-stake
decision-making, e.g. medical diagnosis or jurisdictional decisions. In general, AI for
knowledge workers should automate routine and assist knowledge-intensive work
with reasoning and other high-level functions (Adelstein, 2007). The deskilling of
knowledge workers is a major problem, as they are the people who should train,
challenge and evolve AI. Knowledge workers create the labels for the AI that is
the foundation for its initial training. After changes in the environment of the
AI knowledge workers adapt and develop new solutions based on their domain
expertise (Baier et al., 2019). Furthermore, they should be able to challenge the
AI’s recommendation, either with regard to performance but also with respect to
ethical and fairness concerns. While in many use cases these disadvantages may be
negligible there are cases where they must not be ignored. Reasons include, but are
not limited to, losing significant competitiveness, e.g. in asset investment strategy
decisions, or even potentially harming people, e.g. in medical diagnoses.

Because DSS are explicitly designed to not automate but support decision-makers
(Arnott & Pervan, 2016), the initially obvious idea emerges to address these problems
by using DSS instead of fully automated systems. However, automation should not
be interpreted as a binary state but instead as a continuum (Parasuraman et al.,
2000). Negative impacts already occur at low automation levels (Parasuraman et al.,
2000)—as positive features of human decision-making are reduced such as human
engagement. Therefore, when speaking about automated decision-making, we use
the broader understanding of the continuum mentioned above, also including lower
automation levels. As many state-of-the-art DSS do include automated, AI-based
recommendations (Turban et al., 2010), they are subject to negative impacts, like
automation bias in the short, reduced engagement in the medium, and deskilling
in the long term. Thus, we perceive a major research gap in supporting human
decision-making without those downsides, and formulate:

RQ: How can we design AI for decision support without introducing automation
disadvantages?
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Based on automation and DSS research, we conceptualize a new class of DSS, Intel-
ligent Decision Assistance (IDA), that reduces automation-induced disadvantages
while still preserving decision support levels. From the automation literature, we
draw the critical evaluation of potential disadvantages of automated decision-making
and the awareness of a continuum between full automation and human agency
(Parasuraman et al., 2000). From DSS literature, we use the concept of guidance
(Morana et al., 2017). Part of guidance theory is the explainability of DSS (Morana
et al., 2017) which is a traditional topic of IS research (Meske et al., 2022). We
discuss various combinations of automation levels and explainability and eventually
follow the idea of informative guidance as a guidance that foregoes to provide
explicit recommendations (Silver, 1991). In line with this notion, we propose to
withhold the AI’s decision and let the human “brainstorm” together with the AI
by providing techniques from the Explainable AI (XAI) knowledge base (Adadi &
Berrada, 2018), such as examples, counterfactuals, or feature importance. After
conceptualizing IDA and deriving hypotheses on its impact, we provide first evidence
for their validity through a systematic evaluation of empirical studies in the literature.
With our work, we contribute to research and practice by conceptualizing a new
class of DSS—Intelligent Decision Assistance.

9.2 Literature Review

In general, IS are designed to support or automate human decision-making (Zuboff,
1985). These two purposes are traditionally analyzed in two different research
streams: decision support is traditionally covered in DSS literature (Power, 2007),
while Automation is mainly addressed in Ergonomics literature (Coombs et al.,
2020).

9.2.1 Decision Support Systems

DSS represent an important class of IS that aim to provide decisional advice (Arnott
& Pervan, 2016). In general, “DSS is a content-free expression, which means that
there is no universally accepted definition” (Turban et al., 2010, p. 16). However,
DSS can be used as an umbrella term to describe any computerized system that
supports decision-making in an organization (Turban et al., 2010). Originally, DSS
were defined as supportive IT-based systems, aiming at supporting and improving
managerial decision-making (Arnott & Pervan, 2016; Young, 1983). Later devel-
opments in DSS opened the area for application to all levels of an organization
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(Arnott & Pervan, 2016). In contrast to other IS, DSS focuses on decision-making
effectiveness and decision-making efficiency rather than efficiency alone (Evans &
Riha, 1989).

In general, the decision-making process consists of three phases that are supported
through DSS—the intelligence, design, and choice phase (Simon, 1960). In the
intelligence phase, the decision-maker searches, classifies and decomposes problems
(Turban et al., 2010, p. 48-49). In the design phase, decision alternatives are
derived (Turban et al., 2010, p. 50). Finally, in the choice phase, the critical phase
of decision-making, the decisions are chosen (Turban et al., 2010, p. 58).

An important concept of decision support is decisional guidance that has a long-
lasting history in IS literature (Morana et al., 2017). Silver (1991) differentiates in
the form of guidance, which can be either suggestive, quasi-suggestive, or informa-
tive. Suggestive guidance makes judgmental recommendations that can also be a set
of alliterative decisions (Silver, 1991, p. 94). Quasi-suggestive guidance is guidance
“that does not explicitly make a recommendation but from which one can directly
infer a recommendation or direction” (Silver, 1991, p. 109). Lastly, informative
guidance provides decision-makers only with decision-relevant information without
suggesting or implying how to act.

Another form of guidance is the explainability of the DSS (Morana et al., 2017).
Explainability is a concept with a long tradition in IS (Gregor & Benbasat, 1999).
With the rise of expert systems, knowledge-based systems, and intelligent agents
in the 1980s and 1990s, the IS community has built the basis for research on
explainability (Meske et al., 2022). In particular, the research stream of Explainable
AI (XAI), which addresses the opaqueness of AI-based systems, is gaining momentum.
The term XAI was first coined by Van Lent et al. (2004) to describe the ability of
their system to explain the behavior of agents. The current rise of XAI is driven
by the need to increase the interpretability of complex models (Wanner et al.,
2020). In contrast to interpretable linear models, more elaborate models can achieve
higher performance (Briscoe & Feldman, 2011). However, their inner workings
are hard to grasp for humans. XAI encompasses a wide spectrum of algorithms.
These algorithms can be differentiated by their complexity, their scope, and their
level of dependency (Adadi & Berrada, 2018). The interpretability of a model
directly depends on its complexity. Wanner et al. (2020) define three types of
complexity—white, grey, and black-box models. They define white-box models as
models with perfect transparency, such as linear regressions. These models do not
need additional explainability techniques but are intrinsically explainable. Black-box
models, like neural networks, on the other hand, tend to achieve higher performance
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but lack interpretability. Lastly, grey-box models are not inherently interpretable but
are made interpretable with the help of additional explanation techniques. These
techniques can be further differentiated in terms of their scope, i.e., being global or
local explanations(Adadi & Berrada, 2018): Global XAI techniques address holistic
explanations of the models as a whole. In contrast, local explanations function
on an individual instance basis. Besides the scope, XAI techniques can also be
differentiated with regard to being model-specific or model agnostic.

9.2.2 Automation

Research on automation is an essential part of IS research (Frank, 1998) and has been
around for more than a century (Lacity & Willcocks, 2016) with the overarching goal
to increase the efficiency of work by using automation as a means (Hitomi, 1994).
In general, humans are performing worse than machines in conducting repetitive
tasks and are influenced by cognitive bias (Heer, 2019). Thereby, automation can
reduce human bias-induced errors. Automated decision-making applications are
designed to minimize human involvement and relieve humans from exhaustive tasks
(Harris & Davenport, 2005). Additionally, automation acts as an “talent multiplier”
that scales human expertise and frees up human capacity to focus on more valuable
work (Harris & Davenport, 2005).

Traditionally, automation has been seen as a binary state—either none or fully
automatic (Endsley & Kaber, 1999). However, Parasuraman et al. (2000, p. 287)
define automation as “the full or partial replacement of a function previously carried
out by the human operator” which implies that automation may occur on different
levels. The authors propose a taxonomy of automation and develop ten levels. While
humans are responsible for decision-making at the first five levels, AI has control at
the last five levels up to full autonomy at level ten.

Beyond developing the 10-level taxonomy, Parasuraman et al. (2000) provide a
four-stage model of automated human information processing consisting of infor-
mation acquisition, information analysis, decision and action selection, and action
implementation. This model allows to precisely specify which stage is automated in
the decision process.

Although automation has many advantages, some authors have expressed chal-
lenges, such as automation bias or cognitive skill reduction leading possibly to
deskilling (Bainbridge, 1983). In the following, we discuss these disadvantages
which essentially represent the problem with current approaches that we want to
solve.

9.2 Literature Review 203



In the short-term, automation might lead to Automation bias which is the “tendency
to use automated cues as a heuristic replacement for vigilant information seeking
and processing” (Mosier & Skitka, 1999)—essentially representing an over-reliance
on AI recommendations. For this reason, sometimes high levels of automation are
not desirable if the automation is not perfectly reliable and recommends wrong
decisions (Sarter & Schroeder, 2001). These wrong recommendations then can
lead to a negative switch from a previously correct human decision (Goddard et al.,
2012).

Furthermore, in the long-term, automation bias can result in deskilling, either
because of the reduction of existing skills or due to the lack of skill development
in general (Meske et al., 2022; Sutton et al., 2018). This attacks the collective
intellectual capital that is the key asset of many organizations (Asatiani et al.,
2019). Many factors might eventually result in deskilling. One factor is the reduced
amount of stored information in memory, and more importantly, the reduced mental
capability to store information, when using automation, which is commonly known
as the “Google effect” (Sparrow et al., 2011). Users seem to reduce investing energy
into storing things that can be easily retrieved (Sutton et al., 2018).

Research shows that human engagement in the task is particularly important to
keep up the vigilantly (Mosier & Skitka, 1999). Engagement is a psychological
state that is broadly defined as an “individual’s involvement and satisfaction as
well as enthusiasm for work” (Harter et al., 2002, p. 269) that could reduce
potential deskilling (Asatiani et al., 2019). Exemplary, the danger of deskilling can
be highlighted with an intelligent asset solution for financial markets. Thereby,
the engagement of the broker in the task will reduce which may lead finally to
deskilling. Therefore, within the company implementing that solution, the broker
deskills—while brokers from companies not implementing the project stay skilled.
In the long-term, the environment may eventually change, for example, because
of new regulations. Therefore, existing AI solutions need to be built and trained.
One of the most important factors in the development process is domain knowledge
which may now be reduced due to deskilling. If other companies did not implement
AI, they can build and adapt faster and will, therefore, have competitive advantages
.

This long-term disadvantage of automated decision support leads to a discussion
of efficiency in the short and long-term in human-AI systems. In the short-term AI
might increase performance. However, in the long-term due to deskilling, AI systems
will not be effectively further trained and evolved. This potentially results in severe
negative long-term effects.
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9.3 Conceptualization of Intelligent Decision Assistance

In this section, we use the previously depicted research streams of DSS and automa-
tion and synthesize them to conceptualize a solution against the disadvantages of
automation. Subsequently, we discuss three particular techniques of this concept

We see two main dimensions that influence the undesired effects of automation,
which we discuss in more detail below: First, the general level of human control and
agency (Parasuraman et al., 2000) and, second, the form and degree of explainability
(Morana et al., 2017).

Which level of human agency in automation should be implemented is a notorious
discussion in automation literature (Heer, 2019). Asatiani et al. (2019) have
discussed that retaining control of human workers may help to sustain their skill
level. Similar, Endsley et al. (1997) argued that lower automation levels, in general,
can keep them cognitively engaged.

Regarding the second dimension, the literature suggests “that a seamless, collab-
orative interaction between human agents and automated tools, as opposed to
using automation as an isolated “black box”, could help to prevent the ill effects of
deskilling” (Asatiani et al., 2019, p. 6). As discussed, the research stream of XAI
addresses this “black box” issue in AI-based automated decision-making. Recent
examples (Lai & Tan, 2019; Ribeiro et al., 2018) demonstrate the capability of XAI to
support end-users in their decision-making. By varying the “degree” of explanations,
i.e. the system’s transparency (Vössing, 2020), we believe different effects on the
negative aspects of automation could be influenced. On the one hand, some might
argue that more explainability is always better. However, the latest research suggests
that a high level of automation paired with high explainability might just result in
automation bias (Hemmer et al., 2021). Furthermore, the degree of explainability
should be adapted to the profession and experience of the end-user, e.g. novice
users might need more intuitive and simpler explanations while data scientists can
get the full degree of potential explanations (Kühl et al., 2019). These examples
show that also the degree of explainability needs to be chosen thoughtfully.

As introduced, there are many forms of guidance—suggestive, quasi-suggestive, and
informative guidance (Silver, 1991). Suggestive guidance provides the decision-
maker with explicit recommendations and tries to increase the guidance of this
recommendation. However, as Parasuraman et al. (2000) states, also partially
automated systems can lead to automation bias and skill degradation. In contrast,
as mentioned, informative decisional guidance is a form of guidance where users do
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not receive explicit recommendations (Silver, 1991). We follow this line of reasoning
and propose a system could simply withhold its recommendation—although it is
aware of that recommendation. Parkes (2012) validates that suggestive guidance—
which is actually a form of automated decision-making—can lead to automation bias,
while informative guidance does not have such effects. Research also shows that the
effects of the types of guidance vary depending on the task complexity. Montazemi
et al. (1996) found that suggestive guidance is better for less complex tasks and
informative guidance is better with increasing task complexity. This argument
strengthens our derivation. Following this line of thought gives rise to the idea to set
the degree of automation to almost zero and withhold explicit AI recommendations
while keeping support through explanations up. By doing so, we can minimize
the drawbacks of automation while still assisting human decision-making. We are
creating intelligent systems that are fully capable of solving issues on their own but
use their capabilities to inspire and support instead of automating. Based on the
derivation, we name this new class of DSS, Intelligent Decision Assistance (IDA) and
define it as follows:

Definition: Intelligent Decision Assistance (IDA) is an AI that a) supports humans, b)
does not recommend explicit decisions or actions, and c) explains its reasoning

Referring to the three phases of decision-making—intelligence, design, and choice—
we mainly support with this approach the intelligence and to some extent the
design phase. In terms of final effects on the human, we derive three hypotheses
(engagement, performance, automation disadvantages).

First, IDA provides decision-makers with options to actively engage with the task by
interactively requesting explanations, interpreting them and essentially communi-
cating with the AI. As Asatiani et al. (2019) (Asatiani et al., 2019) have discussed
providing explanations instead of using automation as an isolated “blackbox” could
result in an engaged human-AI collaboration. Thus, we hypothesize:

H1: IDA increases engagement with the task.

Beyond that, we hypothesize that IDA should increase human performance. While
especially, if the automation is far better than the human, IDA will most likely
not exceed automated decision-making, it should still improve the performance by
providing guidance and especially insights. Therefore, we formulate:

H2: IDA performance outperforms the human alone.
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Lastly, because IDA does not incorporate higher levels of automation it should
reduce automation disadvantages and especially prevent deskilling. Therefore, we
formulate the following hypothesis:

H3: IDA reduces automation induced disadvantages.

In the next section, we are going to test these hypotheses based on empirical studies
in the literature.

Figure 9.1 depicts IDA in the continuum of both discussed dimensions. We depict
different types of systems for decision-making. At a high level of automation and
almost no explanations, we position automation (Turban et al., 2010). Traditional
DSS come also usually with a higher level of automation, through providing explicit
recommendation, but additionally provide explanations for the decision-maker.
We delimit ourselves from DSS that use AI to transform unstructured data into
structured data and DSS that use AI to produce a pre-decision output, e.g. a forecast.
As stated, Parasuraman et al. (2000) define four stages of automation—information
acquisition, information analysis, decision-making, and actions. Following this
classification, we focus on the decision-making level. This classification allows us
also to differentiate IDA from Advanced Analytics (Watson, 2014). While advanced
analytics may incorporate AI solutions they are always on the information acquisition
or analysis level. In contrast, IDA allows the decision-maker to actively engage on
the decision level and is positioned in the right top corner of Figure 9.1 with high
explainability and full human autonomy.

Higher AI autonomy

Intelligent Decision 
Assistance (IDA)

Advanced Analytics

Traditional Decision 
Support Systems (DSS)

No explanations

Explanations

Higher human autonomy

Automation

No AI recommendations
AI recommendations 

Figure 9.1.: Positioning of Intelligent Decision Assistance on the two dimensions of explain-
ability and degree of automation
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Now that we derived, defined, and delimit IDA, we discuss specific explanation
techniques that support IDA and consequently pose valid implementation options.
Specifically, we discuss feature importance, example-based explanations, and coun-
terfactual explanations. We explain these features based on the example of a loan
approval decision-making task.

Feature importance: Feature importance is a model-agnostic technique that gives
the decision-maker information about the importance of specific data points. Two
famous algorithms of feature importance are LIME (Ribeiro et al., 2016a) and
SHAP (Lundberg & Lee, 2017). In a loan approval decision where the banker has
information about past credits, expenses, demographics, etc., one could now train
artificial intelligence to make this decision and recommend explicit decisions. In
contrast, IDA would withhold the specific AI decision but provide the decision-maker,
i.e. the banker, with information on which data was in particular important for
the AI’s decision. In an IDA this information could now be used for various use
cases. Now in the time of big data, e.g. having many information on customers, one
particular great use case would be to filter or sort the features in an intelligent way
based on the feature importance.

Example-based explanations: Example-based explanations provide historical data
that is similar to the current instance (Van der Waa et al., 2021). Example-based
explanations, therefore essentially represent some form of information retrieval.
Research in psychology states that humans prefer explanations that show examples
(Cai et al., 2019). Furthermore, examples can be used within complex tasks (Glaser,
1986). Referring to our loan approval case, the decision-maker would receive
information on past approvals that were similar. In an IDA, the decision-maker
would get information about similar historical cases that are labeled. Based on these
examples, the decision-maker should be able to infer differences or similarities.

Counterfactual explanation: Counterfactual explanations give information on
what the smallest change would be to get a different AI decision (Wachter et al.,
2017). Counterfactual explanations take a similar form to the statement (Schoeffer
et al., 2021): “You were denied a loan because your annual income was 20,000.
If your income had been 45,000, you would have been offered a loan.” In an IDA
a counterfactual explanation would look like the following: “Your current annual
income is £30,000. If your income would be £45,000, the AI’s decision would
change.” This type of non-intrusive explanation would lead to an increased thought
process of the decision-maker.

Figure 9.2 on page 209 highlights the idea of IDA for a credit allowance example.
On the left side, we display a traditional interface for automated decision-making.
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On the right side, IDA is visualized. In the traditional interface, the decision-maker
gets a specific recommendation. Additionally, the decision-maker gets the available
information on the credit applicant, the importance of the features for the decision,
and optional explanation options. In contrast, an IDA does not provide a specific
recommendation, but rather various XAI techniques that allow the decision-maker
to “brainstorm” with the AI.

IDAAutomation
The AI recommends to give the credit

34Age

50 kIncome

3Payment history

5 yearsLength

2Type of credit

No credit Credit

Examples Counterfactuals SortExamples Counterfactuals Sort

No credit Credit

34Age

50 kIncome

3Payment history

5 yearsLength

2Type of credit

Figure 9.2.: Comparison of traditional automated decision-making and Intelligent Decision
Assistance (IDA)

9.4 Validation Study

After deriving a conceptualization of IDA, we validate our concept by conducting a
literature-based validation study based on the methodology outlined by vom Brocke
et al. (2009). The goal of the study is to find empirical studies that tested variations
of automation and explainability and to analyze whether the findings do support
our hypotheses above. This means they should address the degree of automation
and explainability. For this reason, our search string consists of two main parts.
The first reflects XAI, including relevant synonyms, such as “explainable AI” or
“interpretability” comprises of “artificial intelligence”. The second part comprised
synonyms of behavioral experiments, e.g., “user study” or “user evaluation”. To find
the synonyms, we initiated our SLR with an explorative search. The search string
was iteratively extended resulting in the following final search string:

TITLE-ABS-KEY(“explainable artificial intelligence” OR XAI OR “explainable AI” OR (
( interpretability OR explanation ) AND (“artificial intelligence” OR ai OR “machine
learning” ) ) ) AND ( “human performance” OR “human accuracy” OR “user study”

9.4 Validation Study 209



OR “empirical study” OR “online experiment” OR “human experiment” OR “behavioral
experiment” OR “human evaluation” OR “user evaluation”)

Then, we selected an appropriate database. Our exploratory search indicated that
relevant work is dispersed across multiple disciplines, publishers, conferences, and
journals. For this reason, we chose the SCOPUS database, to ensure comprehensive
coverage. Following that, we defined our inclusion criteria. We included every
article that (a) conducted empirical research, (b) reported performance measures,
(c) focused on an application context where AI supports humans on the decision
level, and (d) provided an IDA setting. With our search string defined, we conducted
the SLR from January to March 2021. We identified 256 articles through the
keyword-based search. As a next step, we analyzed the abstract of each article
and filtered based on our inclusion criteria, leading to 61 articles. Afterward, two
independent researchers read all articles in detail and applied the inclusion criteria
again. Based on these, we conducted a forward and backward search. This led to a
total of five articles that were consequently analyzed in-depth to collect data about
each experiment. The data collection process was conducted by two independent
researchers who discussed and homogenized differences. The main focus of the
validation study was to extract the treatments and outcomes of each experiment
reported in the studies. For example, if two XAI techniques were used and compared
as separate experimental treatments we added two entries into our database. In
total, we identified five articles and 12 experiments (Carton et al., 2020; Chu et al.,
2020; Lai et al., 2020; Lai & Tan, 2019; Schmidt & Biessmann, 2019). In the
following, we describe the studies and their results with regard to IDA in detail.

Carton et al. (2020) conduct an experiment on online toxicity classification of social
media posts. They use feature importance to highlight words that were relevant
for the classification. As one condition they have the prediction presence. In their
experiment, they find no significant effect of examples. However, they find signs of
automation bias:“We find that the presence of a visible model prediction tends to
bias subjects in favor of the prediction, whether it is correct or incorrect.” (Carton
et al., 2020, p. 101)

Chu et al. (2020) conduct an experiment on age guessing supported through AI. They
test three different conditions of explanations and the visibility of AI predictions.
The authors found no significant effects of explanations but also signs of automation
bias: “The predictions generally help whenever the human is inaccurate [...], but
can hurt when the human is accurate and the model is inaccurate [...].” (Chu et al.,
2020, p. 5)
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Lai and Tan (2019) and Lai et al. (2020) refer in their studies also to the ten levels of
automation introduced by (Parasuraman et al., 2000) and test various XAI techniques
without ever displaying what the actual AI’s decision is on a deception detection
task. For example, they highlight all words that were relevant for the decision
(unsigned) (Lai et al., 2020). Another condition was to colorize this highlight
differently depending on the influence of the words (signed). Their results show
that signed highlights result in a significant increase in XAI-assisted performance
(70.7% for signed, and 60.4% for human performance) (Lai et al., 2020). In Lai and
Tan (2019) they test additionally the influence of example-based explanations with
also positive but not significant effects. However, also in Lai and Tan (2019) two
highlight-based conditions showed significant positive effects in terms of short-term
performance.

Lastly, Schmidt and Biessmann (2019) conduct two different tasks in their experiment—
a book category classification based on their descriptions and a movie rating classifi-
cation. They test two different XAI algorithms, both feature importance techniques
to highlight important words. Both data sets and both XAI algorithms show an
increase in IDA performance with one algorithms generating significant results on
both data sets.

Table 9.1.: Validation study results

Source Engagement Performance Automation

Carton et al. (2020) No Measurement No effect Automation Bias

Chu et al. (2020) No Measurement No effect Automation Bias

Lai and Tan (2019) No Measurement Improvement No Measurement

Lai et al. (2020) No Measurement Improvement No Measurement

Schmidt and Biessmann (2019) No Measurement Improvement No Measurement

Table 9.1 summarizes our results of the validation study. Regarding our first hy-
pothesis (H1), we can see that current research fails to provide insights into the
effect of IDA on engagement. Regarding H2, three papers validated our hypotheses
that IDA performance should exceed human performance. Lastly, regarding H3,
two of the studies showed signs of Automation Bias in the presence of explicit AI
recommendations, which is an indicator of potential long-term deskilling effects
(Meske et al., 2022; Sutton et al., 2018).
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9.5 Discussion

Overall, the validation study provides first support for the hypotheses on the impact
of IDA and highlights the potential of IDA through five experiments with significant
positive effects and none with significant negative effects. Furthermore, the study
shows that current research lacks insights on the influence of IDA on engagement
which should be addressed in future research.

IDA has of course also limitations. One of them might be the perceived usefulness.
Telling the decision-maker that the AI would be theoretically capable of providing
them with a recommendation but this recommendation is to withhold may be
perceived as annoying for decision-makers, especially if they are under time pressure.
Therefore, the advantages of IDA need to be highlighted. One attenuated option
could be to show the explanations on default, but the recommendation just on
request. Another limitation is the potential high computational costs. Some XAI
techniques, e.g. SHAP values (Lundberg & Lee, 2017), are computational inefficient.
Therefore, the computational costs, especially in comparison to traditional analytics
tools might be much higher. This trade-off has to be determined for individual
cases.

We want to clarify that IDA should not be applied in every use case. We explicitly
derive this idea for knowledge work and not for repetitive structured work. Especially
for jobs where the disadvantages of automation are critical, IDA should be taken
into account. Among others, in high stake decision-making such as medicine, law,
or human resource. But also in knowledge-intensive areas where the competitive
advantage is based on knowledge, such as finance. However, as pointed out by
Endsley and Kaber (1999), for structured tasks that require low flexibility and have
a high system performance, full automation can be the best option.

Additionally, we want to discuss an additional advantage that may have a temporary
influence on the adoption of IDA. Paragraph 22 of the GDPR states: “The data
subject shall have the right not to be subject to a decision based solely on automated
processing [...].” (European Union, 2018) This means that in some cases automated
decision-making is simply forbidden. Here the best possible augmentation through
IDAs could be a valuable approach.

Furthermore, IDAs could have a positive influence on the fairness of AI-enhanced
decision-making. AI algorithms can have biases that can lead to unfair decision-
making. With IDAs, we allow people to have full control over the final decision and
can thus reduce bias.
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Finally, there are some open questions. Future work should empirically validate
whether IDAs prevent deskilling and other automation disadvantages and in contrast
increases engagement. Furthermore, one should access the efficiency effects of
IDA on human decision-making. For example, Fazlollahi et al. (1995) find that
decisional guidance increases decision time. However, also direct recommendations
may decrease efficiency if they lead to cognitive dissonance and consequently to an
in-depth analysis of the decision-maker. The efficiency of IDAs needs to be compared
to pure human and automated approaches.

9.6 Conclusion

The main goal of this study was to conceptualize a solution to automation-induced
disadvantages, such as automation bias or deskilling. To do so, we initiated our
research by conducting a literature review of automation and DSS literature. Based
on these two research streams, we conceptualized a new class of DSS, namely Intel-
ligent Decision Assistance (IDA). IDA augments human decision-making through
Explainable AI (XAI) while withholding explicit AI recommendations. Thereby,
IDA aims to provide insight into the data without generating automation disadvan-
tages. Subsequently, we validated our conceptualization by searching for empirical
literature which shows first evidence of our hypotheses.

Our contributions are threefold: First, we synthesize the body of knowledge in
automation sciences and decision support literature. Second, we conceptualize
a new class of systems—IDA—and third, we test three hypotheses regarding the
potential of IDA.

Unleashing the potential of IDA requires a multidimensional design process. For this
reason, we see the IS research community as the predestined research discipline to
advance research in this field. We hope to motivate IS researchers and practitioners
to actively participate in the exploration of IDA.
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Conclusion 10
This thesis is based on the idea that human and AI agents do not necessarily compete
on all tasks but can complement each other. However, we observe that currently,
human-AI collaboration leads to ineffective results (Bansal et al., 2021; Hemmer
et al., 2021; Schemmer et al., 2022b). Therefore, in this study, we investigate impact
factors and how to harness the complementarity potential between human and AI
agents. Accordingly, our goal is to derive fundamental insights for understanding
and designing effective human-AI collaboration. We addressed this research objective
by answering four interrelated research questions.

This final chapter of this thesis is structured as follows: In Section 10.1, we summa-
rize the results of our research and discuss the theoretical contributions. Next, in
Section 10.2, we outline the managerial implications of our work. In Section 10.3,
we discuss limitations and potential future research.1

10.1 Summary and Theoretical Contributions

In this section, we highlight the results of the thesis and their theoretical contri-
butions stemming from each study by revisiting the research questions (see Sec-
tion 1.2) to structure our findings. The results presented in this thesis contribute to
the domains of information systems, human-computer interaction, and computer
science.

Research Question 1 (RQ1)
How effectively do human agents and AI agents collaborate?

To address RQ1, we conduct a structured literature review and a meta-analysis
in Part II. Based on the structured literature review, we provide a comprehensive
overview of the influence of explainable AI on human decision-making performance

1Note that, with exceptions (artificial intelligence: AI, complementary team performance: CTP,
machine learning: ML, research question: RQ), for improved readability, we do not use previously
introduced abbreviations throughout this chapter.
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(cf. Chapter 3). Figure 10.1 summarizes the main results of the empirical analysis
of the state of the art. We collected a total of 93 experiments and further filtered
them into three conditions based on available performance measures, i.e., human,
AI, AI-assisted, and explainable AI-assisted performance. We observe that of all the
experiments measuring AI and explainable AI-assisted performance, 46 out of 72
experiments showed an improvement in human decision performance by providing
explanations of the AI agent’s prediction. Out of 63 experiments that measured AI- or
explainable AI-assisted performance and human performance, 59 experiments show
an improvement in performance due to AI- or explainable AI assistance. Finally,
our analysis shows that in the current state of empirical research on human-AI
collaboration, CTP (a joint performance superior to each agent individually) is not
consistently achieved, as only 16 out of 53 experiments show CTP. In addition,
we derive twelve testable hypotheses about potential influencing factors of CTP
that need to be addressed in future research. The contributions of this study are
twofold: First, we summarize the existing body of knowledge for empirical studies
of human-AI collaboration and describe relevant researched factors of CTP. Second,
we discuss neglected but relevant factors of CTP and formulate hypotheses for future
work.
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44

5

Relevant for the study

Report AI and XAI performance

XAI-assisted > AI-assisted

Report Human and AI- or XAI-assisted performance

AI- or XAI-assisted > Human performance

Report Human and AI and (XAI- or AI-assisted) performance

Achieve Complementary Team Performance (CTP)

Report Human and AI and XAI- and AI-assisted performance

Reach CTP and XAI-assisted > AI-assisted

Number of articles

Figure 10.1.: Research contribution addressing RQ1: Empirical results of structured litera-
ture review (cf. Chapter 3).

Furthermore, in Chapter 4, we conduct a statistical meta-analysis (Borenstein et
al., 2021) to complement the observations of the structured literature review. On
average, explainable AI assistance improves human task performance compared
to no assistance. We find that different types of data affect user performance
differently. For example, human-AI collaboration is more effective for textual data
than for tabular data. However, we find no additional effect of explanations on
user performance in explainable AI-assisted decision-making compared to isolated
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artificial intelligence (AI) assistance, raising the question of how to further develop
current explainable AI methods that improve user decision-making performance.
We contribute to the research by conducting, to the best of our knowledge, the first
meta-analysis of empirical human-AI collaboration. As a result, we are able to derive
statistically sound research gaps.

Overall, we contribute to the research by analyzing the state of empirical studies and
deriving research directions. Our research shows the need for a better understanding
of the mechanisms that promote effective human-AI collaboration, which is explored
in RQ2.

Research Question 2 (RQ2)
What are the key factors that influence effective human-AI collaboration?

The observation that CTP is often not achieved raises the question of what factors
might contribute to this observation. It illustrates that current knowledge of how
to leverage the respective capabilities of humans and AI agents to create synergies
in joint decision-making is not sufficiently developed and that there is a need for
additional concepts that promote a deeper understanding of complementarity in
human-AI collaboration.

To address this research gap and to address RQ2 (cf. Chapter 5), we build upon
the theoretical work of Fügener et al. (2021) and propose a conceptualization
of human-AI complementarity. The conceptualization consists of a formalization
of complementarity potential and its constituting components, a differentiation
of relevant sources of complementarity potential, as well as a classification of
integration mechanisms to realize the complementarity potential between humans
and AI. In detail, we argue that complementarity potential is composed of an inherent
and collaborative component. The first component captures the idea that humans
and AI agents possess different inherently present capabilities in the form of unique
human and AI knowledge. The second component captures a new type of knowledge
that only emerges through the interaction of humans and AI. We further differentiate
between the theoretical upper limit of complementarity potential available and
the realized amount during human-AI collaboration. Figure 10.2 on page 220
summarizes our conceptualization of human-AI complementarity.

We conduct a behavioral experiment to demonstrate the proposed conceptualiza-
tion’s usefulness.2 Our results highlight the advantages of our conceptualization,

2We choose the real estate listing price prediction domain as a testbed and exemplarily instantiate a
relevant source of complementarity potential together with an integration mechanism.
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Figure 10.2.: Research contribution addressing RQ2: Conceptualization of Human-AI com-
plementarity (cf. Chapter 5).

allowing us to develop a more nuanced understanding of the factors that influence
effective human-AI collaboration. Our experiment shows that the distribution of
instances in which the human or the AI agents performs better (and thus the inherent
complementarity potential) changes when the human is provided with an additional
house photograph. More specifically, providing the photograph increases the num-
ber of house price estimates where the human performs better than the AI agent.
Moreover, we find that providing an additional photograph of the house affects the
human’s estimate after receiving advice from the AI agent. Intuitively, the awareness
of having more information than the AI agent could lead to algorithm aversion
(Jussupow et al., 2021), which prevents humans from appropriately adjusting the
house prices recommended by the AI agent. However, our research indicates the
opposite, as our results show that providing the photo improves human adjustment
of house prices suggested by the AI agent.
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To summarize, our contributions are threefold. First, we conceptualize human-AI
complementarity by introducing and formalizing the notion of complementarity po-
tential, outlining sources of complementarity potential, and providing a classification
of existing integration mechanisms for realizing complementarity potential. Second,
we demonstrate the usefulness of the conceptualization to a human-AI collaboration
setting by relying on information asymmetry as a source of complementarity poten-
tial. Third, through our proposed conceptualization, we find a new and surprising
insight that unique human contextual information can lead human decision-makers
to better adjust AI advice.

To conclude, in order to answer RQ2, we introduce the concept of human-AI com-
plementarity, consisting of a formalization, sources of complementarity potential,
and a classification of integration mechanisms. It becomes clear that to achieve CTP,
it is essential to have the capabilities to harness complementarity potential, such as
information asymmetry, a topic we address in RQ3.

Research Question 3 (RQ3)
How can complementarity potential in AI-assisted decision-making be har-
nessed?

In this thesis, we focus on harnessing the theoretical complementarity potential and,
to address RQ3, analyze how this complementarity potential can be harnessed in AI-
assisted decision-making, which refers to the setting where human decision-makers
receive AI advice and are asked to either follow or adjust the advice. As discussed in
detail in Chapter 6, human decision-makers should not simply rely on AI advice but
should be empowered to differentiate when to rely on AI advice, and when to rely on
their own, i.e., they should display appropriate reliance. Despite being a necessary
condition for the effective use of AI, current research on appropriate reliance on AI
advice still needs to be clarified with regard to definition, measurement, and impact
factors (Bansal et al., 2021).

To address the current ambiguity in appropriate reliance research, we introduce a
two-dimensional metric—the appropriateness of reliance (AoR)—to describe and
measure reliance behavior. It is based on the relative frequency of correctly over-
riding incorrect AI suggestions (relative self-reliance—RSR) and following correct
AI suggestions (relative AI-reliance—RAIR) and reflects a metric understanding of
appropriate reliance. Figure 10.3 on page 222 visualizes the metric.

Second, we analyze how the provision of explanations influences appropriateness
of reliance and the achievement of appropriate reliance states. Existing literature
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Figure 10.3.: Research contribution addressing RQ3: Measurement of appropriateness of
reliance (cf. Chapter 6).

is ambiguous with regard to the effects of explanations (Alufaisan et al., 2021;
Bansal et al., 2021; Wang & Yin, 2021). We consider additional constructs that may
mediate the effect of explanations to better understand and reconcile conflicting
results. More specifically, we hypothesize that explanations do not only influence
the information available to the decision-maker but also have an impact on trust
toward AI and self-confidence. Our work shows that both mediators significantly
influence the appropriateness of reliance.

Our work provides researchers with a theoretical foundation of appropriate reliance
on AI-assisted decision-making. More specifically, our research contributes by defin-
ing appropriate reliance, developing a measurement concept, and analyzing how
explainable AI influences the appropriateness of reliance. Our definition should help
researchers to more accurately describe whether they have achieved appropriate
reliance in their experiments. Our measurement allows for precisely steering the
development towards appropriate reliance. Lastly, our experimental insights can be
seen as a starting point for in-depth experimental evaluations of factors impacting
appropriateness of reliance.

Building upon the results of Chapter 6, in Chapter 7, we extend our previously
derived research model by an additional mediator—the level of expertise possessed
by decision-makers. Whether decision-makers are highly knowledgeable experts or
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less knowledgeable laypeople appears to be an essential factor influencing reliance
behavior in AI-assisted decision-making (Nourani et al., 2020a; Wang & Yin, 2021).
Building on this notion, we propose that the learning process during human-AI
collaboration, in which decision-makers progressively acquire expertise, may play a
critical role in mediating the phenomenon of appropriateness of reliance. To explore
this hypothesis, we extend the existing research model and conduct a behavioral
experiment to test its validity empirically. Our results show that example-based
explanations can improve human learning during human-AI collaboration, and
learning improves the human ability to assess when to rely on themselves. Further,
if sufficient learning is present, human learning helps to assess better when to rely
on the AI agent. Figure 10.4 shows the research model, including the measured
effects.

Example-based 
Explanations

Task-specific 
human learning

RAIR

RSR

Initial task 
knowledge 

(Control variable) (+)***

(-)***

(+)*** 

(+)** 

Figure 10.4.: Research contribution addressing RQ3: Research Model including task-specific
human learning mediator (sub-group analysis is not included). Significance:
⋆ ⋆ ⋆ p < 0.01, ⋆⋆ p <0.05, ⋆ p < 0.1 (cf. Chapter 7).

To the best of our knowledge, this research depicts the first study covering the
effect of explanations on learning and the mediating effect on appropriateness of
reliance. We thereby extend the research model of appropriateness of reliance
in the previous chapter by a learning construct. We contribute to the body of
knowledge on human-AI collaboration in general and on appropriateness of reliance
and learning from AI agents in particular. Our research contributes to the literature
on organizational learning (Levitt & March, 1988) as well as appropriate reliance
(Bansal et al., 2021; Schemmer et al., 2023d). Even though learning on the job is a
widely recognized approach for organizational learning, research has neglected the
potential of in-process learning during human-AI collaboration. So far, learning from
AI agents was always considered part of knowledge management. We, however,
show that also in-process learning during human-AI collaboration is possible and
thereby opens up new research potential for the domain of so-called AI teaching
(Spitzer et al., 2022). With regard to appropriate reliance, learning was so far
neglected as an impact factor. By extending the appropriateness of reliance research
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model, we contribute to the understanding of harnessing complementarity potential
in AI-assisted decision-making.

In summary, with regard to RQ3, we contribute to research by developing a mea-
surement for quantifying appropriate reliance behavior, deriving a research model
for appropriateness of reliance, including trust, change in confidence, and human
learning, and validating this research model empirically. As these contributions are
tailored to AI-assisted decision-making, in RQ4, we explore the potential to harness
complementarity beyond AI-assisted decision-making.

Research Question 4 (RQ4)
How can complementarity potential beyond AI-assisted decision-making be
harnessed?

Finally, to better understand how system designers can harness complementarity
beyond AI-assisted decision-making, we analyze two different settings in Part V. Both
studies show examples where complementarity potential exists, but it is harnessed
in a different way than in AI-assisted decision-making. Complementarity potential
is defined by an existing ground truth and the potential to solve the task alone
by human and AI agents. AI-assisted decision-making is, per definition, bound to
supervised ML tasks, i.e., classification and regression tasks. For this reason, we first
analyze how to harness complementarity potential in unsupervised ML to broaden
our perspective. In addition, we address one of the core challenges of human-AI
collaboration presuming theoretical inherent complementarity potential over time
(Fügener et al., 2021).

In the first study in Chapter 8, we shift our focus from supervised ML to unsupervised
ML. We chose anomaly detection as an application case because of its relevance
and prevalence in unsupervised ML applications, such as healthcare (Šabić et al.,
2021), maintenance (Minarini & Decker, 2020), and cybersecurity (Karimipour
et al., 2019). The anomalies detected by unsupervised ML approaches may include
rare events but not the actual event of interest. Therefore, human experts are
generally needed to investigate the relevance of the detected anomalies. While
existing literature provides a comprehensive examination of anomaly detection,
it falls notably short when it comes to providing systematic support for anomaly
investigation, i.e., the classification of anomalies which are relevant to the business
problem at hand (Chemweno et al., 2016; Pang et al., 2021; Steenwinckel et al.,
2021). Therefore, we propose a novel method in which anomaly investigation
is improved by explanations from an AI agent that conducts anomaly detection.
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Figure 10.5 visualizes our proposed novel method. Subsequently, we conduct a
behavioral experiment to validate the usefulness of our method. Our experiment
involves a total of 64 participants, and we find that providing explanations can
improve the accuracy of anomaly investigation.

Data Machine Learning based 
Anomaly Detection

Autoencoder

Method

Instantiation Machine Sensor 
Time Series

Explanations of 
Anomaly Detection

Human 
Classification

Counterfactual 
Explanations Engineer

Anomaly Investigation

Illustration

Detected anomaly window

Counterfactual explanation

A B C A B C

Legend

A

Anomaly Detection

Figure 10.5.: Research contribution addressing RQ4: Our method of using explainable
anomaly detection to support anomaly investigation (cf. Chapter 8).

In our research, we propose an anomaly detection and investigation method that
extends the well-researched area of anomaly detection with complementary anomaly
investigation. We thereby contribute to human-AI collaboration research in general
as well as anomaly detection in specific. Our contribution can be summarized in
two main aspects. First, we present a conceptual framework for methodological
support of anomaly investigation using explanations derived from anomaly detection.
Second, we demonstrate the effectiveness of these explanations through a behavioral
experiment. Our study is the first to empirically examine the impact of anomaly
detection explanations on anomaly investigation. The validation of this potential
will inspire new use cases of anomaly detection that may substantially change the
approach to anomaly detection in general.

In our second study, which addresses RQ3, we critically assess the potential draw-
backs of AI-assisted decision-making (cf. Chapter 9). A major challenge is human
deskilling, which is induced by the low cognitive effort required to validate AI advice
as opposed to doing it alone (Buçinca et al., 2021; Fuegener et al., 2022). To
address this challenge, we discuss different combinations of levels of automation
and explainability and finally follow the idea of informative guidance that refrains
from providing explicit recommendations (Silver, 1991). In line with this notion, we
propose to withhold the decision from the AI agents and let the human interact with
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the AI agent by providing explanations of the AI agent (Adadi & Berrada, 2018),
such as examples, counterfactuals, or feature importance. We call this new form of
collaboration intelligent decision assistance (IDA). After conceptualizing IDA and
deriving hypotheses about its effects, we provide initial evidence for its validity
through a systematic review of empirical studies in the literature. With our work, we
contribute to research by conceptualizing a new form of human-AI collaboration that
addresses current drawbacks of AI-assisted decision-making—human deskilling. We
thereby continue the research started by Fügener et al. (2021) and provide potential
means to counteract deskilling and thereby preserve complementarity potential.

To conclude, this thesis contributes to research by providing a comprehensive analysis
of the current state of empirical studies, introducing new theoretical concepts,
developing research models, and addressing critical challenges. In doing so, we are
extending the research on human-AI collaboration in information systems, human-
computer interaction, and computer science research.

10.2 Managerial Implications

After having outlined the theoretical contribution of our work, in the following, we
discuss the managerial implications. The economic potential of AI continues to grow,
now fueled by the emergence of new applications such as generative AI (Jo, 2023).3

According to a 2023 study, the implementation of generative AI in 63 use cases
studied could generate annual economic benefits ranging from $2.6 trillion to $4.4
trillion. (McKinsey, 2023). This would increase the predicted monetary impact of AI
by 15 to 40 percent. AI budgets are continuously increasing as well and are expected
to hit $154 billion in 2023—up 27% over 2022 (Needham, 2023). However, a
recent study shows that while AI adoption is steadily increasing, the return on
investment (ROI) that can be realized from AI projects is still lacking (Ashoori et al.,
2023). Specifically, the average ROI for enterprise-wide initiatives is only 5.9%, well
below the typical 10% cost of capital, and even best-in-class companies are only
scratching 13%. This gap highlights a critical need for developing more effective
strategies to enhance the ROI of AI deployments. We argue that properly designed
human-AI collaboration addresses this lack of ROI. For example, in real estate market
transactions, one of the most important questions is whether a house is appropriately
valued, i.e., the house is offered within a price range that reflects its assets and is
comparable to similar houses in terms of the characteristics of the property and

3Generative AI usually refers to the process of extracting intent information from human instructions
and generating content according to the extracted intentions (Cao et al., 2023).
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its surroundings. It is difficult for humans to correctly quantify a property’s value
because of the many factors that affect it (Kucklick et al., 2021). For this reason,
more and more companies are using AI agents in real estate appraisals (Madhuri
et al., 2019). As we have shown in Chapter 5, the availability of additional human
information, e.g., by visiting the house, could lead to a complementarity potential
between human and AI agents in appraising houses. We argue that with the right
design, human-AI collaboration could lead to CTP, i.e., prediction accuracy that
exceeds the individual performance of both AI and humans. This would lead to a
better prediction of house prices and thus improve the ROI of the AI investment.4

Our work is concerned with deriving foundations and insights for such effective
human-AI collaboration, i.e., how to achieve CTP. Thus, the results presented have
direct practical relevance, as they can guide managers to pursue their AI initiatives,
leading to improved ROI. In the following, we highlight the specific managerial
implications of our thesis.

First of all, we present means to facilitate systematic discussions in organizations
about AI initiatives and their strategic positioning. Discussions about human-AI
collaboration in practical contexts are typically characterized by inconsistent termi-
nology and vague statements. For example, it is often said humans need to monitor
AI, but no reason is provided. In this work, we provide a formalization of human-AI
complementarity and precise terminology. Furthermore, we provide a classification
of sources of complementarity potential and different integration mechanisms. We
believe that by providing clarity on terminology, these foundations can contribute to
a more informed and systematic strategic exchange and, thus, to the development
of AI in organizations.

The foundation of effective human-AI collaboration is complementarity potential. We
provide managers with guidance on where to identify complementarity potential by
providing an overview of possible sources. We highlight the potential of information
asymmetry as one practical, relevant source of complementarity potential. Especially
on the human side, access to further information not available to the AI agent often
exists in practical applications. Not all data might be available in a digital format
due to technical or economic reasons. Also, information is not always digitizable,
especially if it exists only implicitly (Ibrahim et al., 2021). While some of these
obstacles can be overcome, others will likely persist. We empirically validate that
information asymmetry can increase the complementarity potential and, beyond
that, has further beneficial implications in the collaboration of human and AI agents.
In general, managers could invest in training that enhances the complementary skills

4This example does not account for the costs related to human-AI collaboration. We will discuss this in
the next section.
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of their employees, such as searching and interpreting unique human information,
to improve the inherent complementarity potential in human-AI teams.

Complementarity potential needs to be harnessed in practical applications. Our
research provides guidance on how to leverage existing complementarity potential in
the most widely used practical form of human-AI collaboration—AI-assisted decision-
making. In practice, managers typically focus on the adoption of AI and compliance
with AI advice maximizing the reliance (Alnowami et al., 2022; Jussupow et al.,
2021; Kerasidou et al., 2021; Shin, 2021; Siau & Wang, 2018). However, to
realize the potential benefits of human-AI collaboration, employees need to rely
appropriately on AI advice (Bansal et al., 2021; Schemmer et al., 2023d). We show
that the appropriateness of reliance (AoR) can be positively influenced by proper
design, e.g., by using adequate explanations of the AI’s decision-making.

Besides deriving guidance on the proper design for effective human-AI collaboration,
our research shows empirically that with the right design of human-AI collaboration,
practitioners can not only achieve CTP by using AI as a “teacher” but also increase
the knowledge level of their workforce. We show the potential to learn from each
other in a human-AI collaboration. Thus, these insights can be used to guide not
only designers of AI systems but also knowledge managers within organizations to
enhance the knowledge of practitioners.

Lastly, we introduce and inspire the use of novel concepts and methods. We develop
a new method for harnessing complementarity in anomaly investigation, which
has implications for any use case with large amounts of data and rare classes of
interest. To cope with advantages induced through AI-assisted decision-making, we
derive Intelligent Decision Assistance (IDA), which addresses deskilling in human-AI
collaboration.

In summary, our research contributes to practice by providing terminology, structure,
and insights into the design of effective human-AI collaboration and deriving novel,
inspiring concepts. In doing so, we provide support for human-AI collaboration in
general. Managers often see only the short-term benefits of cost reduction through
automation while neglecting the potential value of human-AI collaboration. Even
when they do support human involvement, it is usually for flimsy reasons based on
external pressures, such as complying with regulations. Our research shows that
when faced with external pressure, managers should not view it as a burden but
rather as an opportunity to leverage complementarity potential, realize CTP, and
improve ROI.
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10.3 Limitations and Future Research

The research presented in this thesis certainly has limitations that motivate future
research. Since Chapter 3 through Chapter 9 discuss limitations and future research
for each study individually, in this section, we reflect the most important ones that
should be taken into consideration regarding the generalizability of the results.

First and foremost, this thesis is limited by the focus on effectiveness of human-AI
collaboration, i.e., achieving CTP. In this thesis, we focused on effectiveness because
we observed that CTP was not consistently achieved in empirical work. For this
reason, we wanted to demonstrate the possibility of achieving CTP by unraveling its
impact factors. Now that we have investigated systematically impact factors, future
research should analyze the overall economic impact of human-AI collaboration.
While a marginal performance improvement may be theoretically interesting to
demonstrate the existence of CTP, it may not be practically relevant if it does not
improve the ROI. Including the cost of human-AI collaboration implementations
could strengthen the practical implications of this thesis.

An additional limitation arises from the methodological focus on empirical research
in this thesis. To answer RQ2-RQ4, we conducted behavioral experiments. The
generalizability of our research may be limited to the domains and tasks we selected.
The focus of our research was primarily concentrated on singular tasks, which inher-
ently imposes constraints on the broad applicability of the results across diverse tasks.
Therefore, while our findings provide valuable insights into human-AI collaboration
in this specific task, extrapolating these conclusions to encompass all potential tasks
within different domains or industries might not be appropriate. However, each
experimental setting was consciously and carefully chosen for the individual studies.
Additionally, we employ a variety of tasks over all the studies, ranging from image
classification to text analysis to sensor data, which should increase generalizability.
Nevertheless, future work must validate our concepts in other tasks and domains.

The backbone of this thesis is the assumption that complementarity potential is
available. In this thesis, we provide guidance on sources of complementarity poten-
tial. Providing these sources in a structured way may inspire researchers to look for
complementarity beyond arbitrary statements about complementarity capabilities,
such as human creativity and AI computational power. Furthermore, we introduce a
promising and practical source, information asymmetry (Ibrahim et al., 2019). We
conduct a behavioral experiment to show the impact of unique human contextual
information on complementarity potential. Future work needs to validate additional
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sources empirically. First ideas for, e.g., training AI agents to be more complementary
can be found in Hemmer et al. (2022a) and Hemmer et al. (2023).

Another limitation is the focus on one particular instantiation of AI assistance
elements throughout the thesis—explainable AI. We focus on explainable AI for
our analysis of the state of the art of empirical human-AI collaboration research as
well as the main assistance element to harness the complementarity potential in
AI-assisted as well as beyond AI-assisted decision-making. Since explainable AI is
certainly the most used form to support human-AI collaboration (Lai et al., 2023),
we believe this is a good starting point for research. However, future work should
evaluate other elements of AI assistance, such as providing in-depth information on
training data.

Lastly, with two exceptions, this thesis focuses on AI-assisted decision-making,
encompassing classification and regression tasks. However, AI agents can address a
magnitude of additional tasks (Carbonell et al., 1983), such as clustering, forecasting,
etc. Especially the generation of text or images, commonly referred to as generative
AI (Jo, 2023), is growing. The scope of this thesis has implications for all kinds of
tasks conducted by AI agents. Future work needs to investigate the applicability of
our foundations and insights.

Overall, we hope that this work will contribute to making the most of current
improvements in AI. We believe that our research will prove useful in designing
human-AI collaboration that allows human and AI agents to complement each other,
thus moving from competition to complementarity.
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Appendix A
A.1 Appendix Human-AI Complementarity

Conceptualization

A.1.1 In-Person Pilot Study

For our in-person pilot study, we conducted two expert workshops. Each one lasted
90 minutes and aimed to elaborate on the usefulness of the house images for the
participants and generate insights for the experimental design. The participants
were 13 interviewees and two researchers. The first workshop was conducted
with a smaller group to facilitate more extensive exchange. The second workshop
focused on collecting broad ideas. We discussed three prediction cases in each
session. After each house, we collected feedback in a structured way by asking the
participants to make notes about how the AI and the information supported their
decision-making.

In general, both workshops confirmed the usefulness of unique human contextual
information (UHCI). We also received helpful comments for further refinement of
our study. In the first workshop, a participant mentioned that the “picture was the
first indication for me” and another one stated “I was already 70% sure what I was
going to type when I saw the picture.” Both comments indicate the importance that
participants see in the UHCI.

In the second workshop, participants highlighted the need for more information
about the underlying data by stating “show the user the summary statistics.” They
also mentioned the importance of a training section, for example by saying “I need
examples of wrong (and right) predictions”.
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A.1.2 Task and AI Tutorial

Figure A.1.: Online experiment graphical user interface for the task tutorial.
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Figure A.2.: Online experiment graphical user interface for the AI tutorial.
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A.1.3 Participant Statistics

Table A.1.: Summary of participants’ characteristics (unique human contextual information:
UHCI).

Number per condition Without UHCI = 53

With UHCI = 48

Age Mean = 24.44

Standard deviation = 6.4

Gender Female = 56%

Male = 43%

Non-binary = 1%

Education High school = 41%

Bachelor’s = 44%

Master’s = 10%

Other = 5%
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