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In this paper, the first large-scale application of multiscale-spectral generalized finite element 
methods (MS-GFEM) to composite aero-structures is presented. The crucial novelty lies in the 
introduction of A-harmonicity in the local approximation spaces, which in contrast to Babuška 
and Lipton (2011) [30] is enforced more efficiently via a constraint in the local eigenproblems. 
This significant modification leads to excellent approximation properties, which turn out to be 
essential to capture accurately material strains and stresses with a low dimensional approximation 
space, hence maximizing model order reduction. The implementation of the framework in the 
Distributed and Unified Numerics Environment (DUNE) software package, as well as a detailed 
description of all components of the method are presented and exemplified on a composite 
laminated beam under compressive loading. The excellent parallel scalability of the method, 
as well as its superior performance compared to the related, previously introduced GenEO 
method are demonstrated on two realistic application cases, including a C-shaped wing spar 
with complex geometry. Further, by allowing low-cost approximate solves for closely related 
models or geometries this efficient, novel technology provides the basis for future applications in 
optimization or uncertainty quantification on challenging problems in composite aero-structures.

1. Introduction

Ill-conditioned and multiscale partial differential equations (PDEs) arise in many fields, where the computation of a resolved, fine-
scale solution or a robust low-dimensional approximation can be challenging. Due to the interaction of their mesoscopic structure (ply 
level; sub-millimeter scale) and their geometric macroscopic features (structural level; meter scale), composite aero-structures are 
naturally, inherently multiscale. To model the behavior of a large scale composite structure, the numerical model needs to accurately 
represent the meso-scale configuration of the material as well as the macro-scale geometry of the part. Full mesoscopic descriptions 
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of large components naturally lead to models with huge numbers of degrees of freedom. This makes the computations prohibitively 
expensive, particularly in contexts where many evaluations are required, e.g. optimization or uncertainty quantification. As a result, 
composite aero-structures provide an ideal test bed for the new multiscale method proposed in this paper, which allows for the 
interaction of fine and coarse scale behavior to be captured without becoming excessive in cost.

1.1. High performance solvers for composite applications

Due to strongly varying parameters across the simulation domain, elasticity problems arising in composite materials lead to Finite 
Element (FE) matrices that are extremely ill-conditioned [1,2]. This poor conditioning is due to the contrast in stiffness between the 
carbon fibbers and the surrounding resin matrix, as well as the complex anisotropy arising from the inclusion of long directional 
fibbers. As a result, composite laminates have both low-energy modes, whereby the stiff fibbers act as rigid body inclusions and the 
complement resin deforms easily; and also very high-energy modes, in deformation regimes with stretched, stiff fibbers. This contrast 
between low and high energy modes is at the heart of the ill-conditioning (high condition number) in composite applications.

Whilst sparse direct solvers, like UMFPACK [3] or the ones provided in the Abaqus package [4], can reliably solve such systems, 
they are inherently limited in their scalability. This immediately restricts the physical scale of composites that can be simulated. 
Iterative solvers such as Conjugate Gradient (CG) or GMRES [5] in turn promise massive parallel scalability for modern High 
Performance Computing (HPC) systems, but their efficiency (i.e. number of iterations) strongly depends on the condition number of 
the matrix.

In order to render such iterative solvers robust, preconditioners are essential. Whilst Algebraic Multigrid (AMG) precondition-
ers are in general a promising choice regarding robustness and scalability, tests with two AMG implementations, in dune-istl [6]
and BoomerAMG [7], have demonstrated poor performance in composite applications [1,2]. The reason is that, without a problem-
specific local aggregation strategy, coarse grids in AMG do not capture the low-energy modes in composites structures. Domain 
decomposition (DD) methods are another popular class of methods for constructing preconditioners for iterative solvers. The key to 
obtaining scalability for DD preconditioners is to add a suitable coarse space into the methods. For problems with highly varying co-
efficients arising in composite applications, standard coarse spaces were shown to be not robust, and spectral coarse spaces have been 
intensively developed to overcome this issue; see [8–16] for spectral coarse spaces developed in the context of overlapping Schwarz 
methods. These coarse spaces are built from selected eigenfunctions of some tailored, local generalized eigenvalue problems, leading 
to preconditioners that are provably robust to coefficient jumps. In particular, we mention the GenEO (Generalized Eigenproblems 
in the Overlaps) method [16], which provides a framework for constructing robust spectral coarse spaces for overlapping Schwarz 
methods. Robust scale-up to several thousands of processor cores for composites applications has been shown in [2,17]. While the 
iterative solver now only needs few iterations, a considerable cost is expended in solving the independent local eigenproblems.

To avoid these tremendous computational costs of direct simulations of multiscale problems, computational homogenization 
methods [18–20] have been well developed and widely used in the engineering community. Moreover, in practical engineering 
applications, multiscale problems are typically solved multiple times with different source terms and possibly local changes in model 
parameters, such that the higher setup cost of such methods can be offset. Most of those methods, however, are based on scale 
separation hypotheses, and may fail for typical problems in realistic applications that do not exhibit such a scale separation.

1.2. Multiscale methods in composite analysis

To efficiently solve multiscale problems without scale separation for repeated analysis required in practical engineering applica-
tions, various multiscale model order reduction methods have been developed, such as the multiscale finite element method (MsFEM) 
[21,22], the generalized multiscale finite element method (GMsFEM) [23,24], localized orthogonal decomposition (LOD) [25,26], 
flux norm homogenization [27], game-theoretical approaches [28,29], and the generalized finite element method (GFEM) [30–32], 
to cite a few; see [24,33] for more comprehensive reviews. Most of these methods were developed in the context of numerical 
multiscale methods and are based on approximating the solution space on a coarse grid by a low dimensional space that is spanned 
by some pre-computed local basis functions. These local bases are typically obtained by solving local boundary value problems or 
local eigenproblems tailored to the underlying PDE, and thus encode the structural meso-scale information contained in the material 
parameters. Whereas many multiscale methods (e.g., [21,25,26,28]) use only one basis function per local patch, it has been shown 
[10,23] that for high-contrast problems, it is essential to add local degrees of freedom adaptively. Moreover, existing multiscale 
methods were mainly developed for a single PDE and related studies for coupled multiphysics problems are much fewer. Recently, 
an efficient regularized multiscale method [34] was developed to solve coupled thermomechanical problems, which overcomes the 
limitations of classical approaches for coupled problems with asymmetric operators and low regularity.

The multiscale-spectral generalized finite element method (MS-GFEM), the focus of this work, was first proposed by Babuška
and Lipton [30] for solving heterogeneous diffusion problems, but motivated also by problems in linear elasticity and in particular 
fibber-reinforced composites. The approach builds optimal local approximation spaces from eigenvectors of local eigenproblems 
posed on A-harmonic spaces defined for oversampling subdomains. Crucially, the global approximation error is fully controlled by 
the local approximation errors, which are rigorously proved to decay nearly exponentially – a feature not shared by most other ad-hoc 
constructed numerical multiscale approaches. For diffusion problems the implementation details were discussed in [32] together with 
numerical results on a two-dimensional toy example. We note that the A-harmonic subspaces were also used in many other related 
2

multiscale approaches [23,35,26], as well as in DD methods [8,12,13,15] to construct spectral coarse spaces. However, without using 
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the notion of the Kolmogrov 𝑛-width [36] and a suitable oversampling technique in the selection of the A-harmonic basis functions, 
the resulting spaces are not guaranteed to be optimal or to have exponential approximation accuracy.

In a recent paper [37], Ma, Scheichl and Dodwell proposed new local eigenproblems involving the partition of unity to construct 
new optimal local approximation spaces for the MS-GFEM method, resulting in a GenEO-type coarse-space approximation. Significant 
advantages of the new local approximation spaces were demonstrated and sharper decay rates for the local approximation errors 
were proved. In [38], the MS-GFEM method was then also formulated and analyzed for the first time in the discrete setting, as a 
non-iterative DD type method for solving linear systems resulting from FE discretizations of the fine-scale problem. Very similar 
local and global error estimates as in the continuous setting were derived. Furthermore, an efficient method to solve the (discrete) 
local eigenproblems was proposed, where the A-harmonic condition is directly incorporated into the eigenproblem. More recently, 
this approach was applied to other multiscale PDEs, such as Helmholtz [39], parabolic [40] and singularly perturbed [41] problems. 
Although numerical results of various simple, two-dimensional examples have demonstrated the efficiency of the MS-GFEM method, 
up to now, there is no study available in the literature on the application of the MS-GFEM method to realistic, large-scale, three-
dimensional multiscale problems and on the implementation and performance of the method on massively parallel computers.

1.3. Contributions of this paper

This paper represents the first large-scale application of GenEO as a multiscale-spectral GFEM, providing good approximations to 
fine-scale solutions with a very low number of basis functions. The reformulation of GenEO as a GFEM method in local A-harmonic 
subspaces distinguishes our methodology from the one proposed by Babuška and Lipton [31]. Most notably, in contrast to [31] our 
method is inherently adaptive — we can control the error a posteriori by simply setting a threshold on the eigenvalues to decide 
which eigenvectors need to be included into the local spaces; see Theorem 3.1. The paper constitutes an extension of the work 
proposed by Ma and co-authors [37,38] by generalizing the method to three dimensional elasticity problems, demonstrated with 
two real-world application cases. The theoretical background of our formulation as well as its implementation are described in detail 
and its excellent performance and scalability are demonstrated. The resulting coarse space turns out to have significantly better 
approximation properties than GenEO in the elasticity problems considered here. In particular, local A-harmonicity is crucial for 
accurate strain approximation with significant practical improvements demonstrated in numerical experiments.

Our method provides efficient reduced order models for large-scale problems that exhibit strong dependence on local details. The 
efficiency arises from a decomposition of the global problem into independent sub-problems that can be treated fully in parallel. 
A scalability test is presented in this paper that demonstrates this high efficiency even for very large structures. The accuracy of 
the approximation space is fully adjustable: a single threshold parameter on the local eigenvalues allows for an optimization of 
the amount of model order of reduction. The approach does not rely on a scale separation hypothesis between material scales 
(meso- and macro-scale for the examples illustrated in the paper), the proposed multi-scale framework is particularly well suited for 
composite aero-structures. This is demonstrated via an application on a realistic C-spar model – a demonstrator application in the 
UK-EPSRC-funded CerTest project on composite structural design and certification (see the acknowledgments).

A key motivation for the approach presented in this paper is the development of an offline-online framework, where the costly 
local model order reductions are reused across multiple similar simulation runs, reducing the overall cost to a fraction, as suggested 
in [23] but with significantly smaller coarse spaces. This promises to accelerate uncertainty quantification or optimization tasks on 
challenging composites models and will be described in detail in a subsequent paper.

In addition, this paper reports on other technical improvements and recent developments of the dune-composites module 
within DUNE [42]. Support for GenEO is extended to unstructured DUNE grids, which is crucial for engineering applications such 
as composite parts with complex geometry (e.g., T-joint stiffeners) that cannot be discretized solely using a structured grid. The 
FE matrices in GenEO are defined on overlapping subdomains, which are however not natively supported by unstructured grids in 
DUNE. We therefore assemble suitable matrices on a parallelized non-overlapping grid partition using standard DUNE procedures, 
and then construct the desired GenEO matrices from those using an appropriate communication mechanism.

2. Problem formulation

Let us start by formulating the anisotropic, linear elasticity equations for composite structures and their finite element discretiza-
tion. The composite structure is assumed to occupy a bounded and (for simplicity) polyhedral domain Ω ⊂ ℝ3 with boundary Γ
and unit, outward normal 𝐧 ∈ ℝ3. At each point 𝐱 ∈ Ω we define a vector-valued displacement 𝐮(𝐱) ∶ Ω → ℝ3 and denote by 
𝐟(𝐱) ∶ Ω → ℝ3 the body force per unit volume. The infinitesimal strain tensor, is defined as the symmetric part of the displacement 
gradients:

𝜖𝑖𝑗 (𝐮) =
1
2
(
𝑢𝑖,𝑗 + 𝑢𝑗,𝑖

)
, (1)

where 𝑢𝑖,𝑗 = 𝜕𝑢𝑖∕𝜕𝑥𝑗 . The strain tensor is connected to the Cauchy stress tensor 𝜎𝑖𝑗 via the generalized Hooke’s law:

𝜎𝑖𝑗 (𝐮) = 𝐶𝑖𝑗𝑘𝑙(𝐱)𝜖𝑘𝑙(𝐮), (2)

where the material tensor 𝐶𝑖𝑗𝑘𝑙(𝐱) is a symmetric, positive definite fourth order tensor. The studied material will be further described 
3

in Section 5.1.
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Now, let Γ𝐷 and Γ𝑁 be disjoint open subsets of Γ such that Γ𝐷 ∪ Γ𝑁 = Γ and consider the function space

𝑉 ∶= {𝐯 ∈ 𝐻1(Ω;ℝ3) ∶ 𝐯 = 𝟎 on Γ𝐷}. (3)

Given functions 𝐡 ∶ Γ𝐷 →ℝ3 and 𝐠 ∶ Γ𝑁 →ℝ3, prescribing the Dirichlet and Neumann boundary data, the weak formulation of the 
problem to be considered consists in seeking the unknown displacement field 𝐮 ∈ 𝐻1(Ω; ℝ3) with 𝐮 = 𝐡 on Γ𝐷 such that

𝑎(𝐮,𝐯) = 𝑏(𝐯) ∀𝐯 ∈ 𝑉 , (4)

where the bilinear form 𝑎(⋅, ⋅) and the functional 𝑏(⋅) are defined by

𝑎(𝐮,𝐯) = ∫
Ω

∑
𝑖,𝑗

𝜎𝑖𝑗 (𝐮)𝜖𝑖𝑗 (𝐯)𝑑𝑥 and 𝑏(𝐯) = ∫
Γ𝑁

𝐠 ⋅ 𝐯𝑑𝑠+ ∫
Ω

𝐟 ⋅ 𝐯𝑑𝑥. (5)

The variational problem (4) is discretized with conforming FEs on a mesh ℎ on Ω by introducing the FE space 𝑉ℎ ⊂ 𝑉 as the 
tensor product 𝑉ℎ ∶= 𝑉 1

ℎ
×𝑉 2

ℎ
×𝑉 3

ℎ
of the spaces 𝑉 𝑗

ℎ
∶= span{𝜙(𝑖)

𝑗 }𝑁
𝑖=1, spanned by the usual Lagrange bases on ℎ. We find a function 

𝐮𝑝 ∈ 𝐻1(Ω; ℝ3) such that 𝐮𝑝 = 𝐡 on Γ𝐷 and then seek an approximation 𝐮ℎ = 𝐮𝑝 + 𝐮̃ℎ, where ̃𝐮ℎ ∈ 𝑉ℎ, such that

𝑎(𝐮̃ℎ,𝐯ℎ) = 𝑏̃(𝐯ℎ) ∶= 𝑏(𝐯ℎ) − 𝑎(𝐮𝑝,𝐯ℎ) ∀𝐯ℎ ∈ 𝑉ℎ. (6)

We block together displacements from all three space dimensions, so that 𝐮(𝑖)
ℎ

∈ 𝔹 ∶= ℝ3 denotes the vector of displacement coef-

ficients containing all space components associated with the 𝑖𝑡ℎ basis function. The displacement vector at a point 𝐱 is then given 
by 𝐮ℎ,𝑗 (𝐱) =

∑𝑁
𝑖=1 𝑢(𝑖)

ℎ,𝑗
𝝓
(𝑖)
𝑗 (𝐱), 𝑗 ∈ {1, 2, 3}. The system (6) is equivalent to a symmetric positive-definite (spd) system of algebraic 

equations:

𝐀𝐮̃ = 𝐛̃ where 𝐀 ∈ℝ𝑁×𝑁 and 𝐛̃ ∈ℝ𝑁. (7)

The blocks in the global stiffness matrix and in the load vector are given by 𝐀𝑖𝑗 = 𝑎(𝝓(𝑖), 𝝓(𝑗)) and 𝐛̃𝑖 = 𝑏̃(𝝓𝑖), for any 𝑖, 𝑗 = 1, … , 𝑁 , 
while 𝐮̃ = [𝐮̃(1)

ℎ
, … , ̃𝐮(𝑁)

ℎ
]𝑇 ∈ 𝔹𝑁 is the block vector of unknown FE coefficients.

System (7) can be assembled elementwise using Gaussian integration:

𝑎(𝑣,𝑤) =
∑
𝑒∈ℎ

𝑎𝑒(𝑣|𝑒,𝑤|𝑒) ∀𝑣,𝑤 ∈ 𝑉 . (8)

The elementwise bilinear form 𝑎𝑒 is trivial to obtain here by restricting the integrals in eq. (4) to 𝑒. Later, restrictions of 𝑎(⋅, ⋅) to 
mesh-resolved subdomains will be crucial in defining coarse space approximations. For any mesh-resolved subdomain 𝐷 ⊂ Ω, the 
restriction of 𝑎(⋅, ⋅) to 𝐷 is denoted by

𝑎𝐷(𝑣,𝑤) ∶=
∑
𝑒∈𝐷

𝑎𝑒(𝑣|𝑒,𝑤|𝑒) ∀𝑣,𝑤 ∈ 𝑉 . (9)

3. Multiscale-spectral generalized finite element method

In this section, the methods employed in this paper are defined alongside some theoretical results. In addition to generalized finite 
element methods (GFEM), we also describe the Generalized Eigenproblems in the Overlaps (GenEO) space, which was originally 
designed as a coarse space for two-level additive Schwarz methods in [16]. Here, it is for the first time applied as a multiscale 
method for stand-alone coarse approximation to a realistic three-dimensional multiscale problem in composites, in the form of the 
multiscale-spectral generalized finite element method (MS-GFEM) method [30,37,38].

3.1. Domain decomposition

Both the two-level additive Schwarz method and GFEM are based on a decomposition of the domain Ω into non-overlapping 
subdomains {Ω̂𝑗}𝑁

𝑗=1 that are resolved by the mesh ℎ; see Fig. 1 for an example. Each non-overlapping subdomain Ω̂𝑗 is extended 
by adding layers of neighboring elements to create an overlapping partition {Ω𝑗}𝑁

𝑗=1 of Ω. We define here neighbors as elements 
having a sub-entity in common, e.g. a face, an edge or a node. In the present case, the neighboring elements have at least one node 
in common.

Next, the local finite element (FE) spaces

𝑉ℎ(Ω𝑗 ) ∶= {𝑣|Ω𝑗
∶ 𝑣 ∈ 𝑉ℎ} and 𝑉ℎ,0(Ω𝑗 ) ∶= {𝑣|Ω𝑗

∶ 𝑣 ∈ 𝑉ℎ, supp(𝑣) ⊂ Ω𝑗},

are defined, where the former restricts 𝑉ℎ to the subdomain Ω𝑗 while the latter restricts this space further to functions whose support 
is contained entirely in Ω𝑗 .

A key ingredient of GenEO-type coarse spaces and of GFEM is a partition of unity (PoU) subordinate to the overlapping decom-
4

position {Ω𝑗}𝑁
𝑗=1. A particular partition of unity specific to the FE setting was constructed in [16]. For each 1 ≤ 𝑗 ≤ 𝑁 , let
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Fig. 1. Domain decomposition into 24 subdomains, illustrating the various components.

dof(Ω𝑗 ) = {𝑘 ∶ 1 ≤ 𝑘 ≤ 𝑛 , supp(𝝓(𝑘)) ⊂ Ω𝑗} (10)

denote the set of internal degrees of freedom in Ω𝑗 , and define for each degree of freedom 𝑘 ∈ dof(Ω𝑗 ) a weight 𝜇𝑗,𝑘 ∈ [0, 1] such 
that ∑

{𝑗∶1≤𝑗≤𝑁,𝑘∈dof(Ω𝑗 )}
𝜇𝑗,𝑘 = 1.

With these weights we can define a family of local partition of unity operators Ξ𝑗 ∶ 𝑉ℎ(Ω𝑗 ) → 𝑉ℎ,0(Ω𝑗 ), 1 ≤ 𝑗 ≤ 𝑁 , such that

Ξ𝑗 (𝑣) ∶=
∑

𝑘∈dof(Ω𝑗 )
𝜇𝑗,𝑘𝑣𝑘𝝓

(𝑘)|Ω𝑗
, for any 𝑣 =

∑
𝑘∈dof(Ω𝑗 )

𝑣𝑘𝝓
(𝑘) ∈ 𝑉ℎ(Ω𝑗 ). (11)

It follows immediately from the definition that the operators {Ξ𝑗}𝑁
𝑗=1 satisfy

𝑁∑
𝑗=1

𝑅⊤
𝑗 Ξ𝑗 (𝑣|Ω𝑗

) = 𝑣 for any 𝑣 ∈ 𝑉ℎ. (12)

Here 𝑅⊤
𝑗 ∶ 𝑉ℎ,0(Ω𝑗 ) → 𝑉ℎ denotes the prolongation operator defined as the extension of a function in 𝑉ℎ,0(Ω𝑗 ) by zero. In [16], it was 

suggested that the weights can be set as

𝜇𝑗,𝑘 ∶=
1

#{𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑁 , 𝑘 ∈ dof(Ω𝑖)}
,

that is, one over the number of subdomains that contain 𝑘 as an internal degree of Freedom (DoF). Other partitions of unity can also 
be used. In the numerical experiments below, we will use a different (smoother) partition of unity.

3.2. GenEO coarse space

The GenEO space – designed in the context of additive Schwarz preconditioning methods, as a robust coarse space correction for 
multiscale variational problems – is based on the following generalized eigenvalue problem (GEVP) on each subdomain Ω𝑗 : Find 
𝜆𝑗 ∈ℝ, 𝜑𝑗

ℎ
∈ 𝑉ℎ(Ω𝑗 ) such that

𝑎Ω𝑗
(𝜑𝑗

ℎ
, 𝑣ℎ) = 𝜆𝑗 𝑎Ω𝑗

(Ξ𝑗 (𝜑
𝑗
ℎ
),Ξ𝑗 (𝑣ℎ)), for all 𝑣ℎ ∈ 𝑉ℎ(Ω𝑗 ). (13)

In the original publication [16], the bilinear form on the right hand side of (13) was restricted to the overlap Ω𝑗∖Ω̂𝑗 , but as shown 
in subsequent publications, such as [43], the GenEO space defined by the GEVP in (13) has very similar coarse space correction 
properties.

Only the lowest-energy eigenfunctions in (13), i.e., the ones corresponding to the smallest eigenvalues, are used to define the 
GenEO coarse space. Denote by 𝜆𝑗,𝑘 and 𝜑𝑗,𝑘

ℎ
the 𝑘-th smallest eigenvalue and the corresponding eigenfunction on subdomain Ω𝑗 . 

Then, the GenEO coarse space is defined by

𝑉𝐻 ∶= span
{

𝑅⊤
𝑗 Ξ𝑗 (𝜑

𝑗,𝑘
ℎ
) ∶ 𝑘 = 1,… ,𝑚𝑗 , 𝑗 = 1,… ,𝑁

}
, (14)

where the partition of unity operators are used to “stitch” the local approximation spaces on the subdomains Ω𝑗 together and to 
5

guarantee that 𝑉𝐻 ⊂ 𝑉ℎ. This definition of 𝑉𝐻 still leaves open the number of eigenfunctions 𝑚𝑗 to be included.
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In the context of two-level additive Schwarz methods, where the GenEO coarse space is combined (additively) with local solves 
on the overlapping subdomains Ω𝑗 to obtain a preconditioning matrix 𝐌 for 𝐀, it is then possible to bound the condition number 
𝜅 of the preconditioned system independently of the mesh size ℎ, the subdomain size 𝐻 or the heterogeneity in the coefficient. In 
particular, [16, Corollary 3.23] states

𝜅(𝐌−1𝐀) ≤ 𝐶(𝑘0) max
1≤𝑗≤𝑁

(
1 + 1

𝜆𝑗,𝑚𝑗+1

)
, (15)

where 𝐶(𝑘0) is a typically small constant depending only on 𝑘0, the maximum number of subdomains overlapping at any point. 
Thus, the condition number can be controlled by choosing the number 𝑚𝑗 of eigenfunctions per subdomain such that 1∕𝜆𝑗,𝑚𝑗+1 is 
bounded uniformly across all subdomains. The eigenvalues 𝜆𝑗,𝑚𝑗+1 converge to 1 as 𝑚𝑗 increases, but no theoretical results on the 
rate of convergence exist in general.

3.3. Generalized FE methods with GenEO-type local approximation

The GenEO space 𝑉𝐻 in (14) is in essence a global approximation space of generalized FEM type [44], where a fairly arbitrary 
family of local approximation spaces can be “stitched” together via a partition of unity to build the global space. As such, for 𝐻 (the 
subdomain size) sufficiently small or for 𝑚𝑗 sufficiently large, it is possible to solve the FE problem directly to a required accuracy 
in 𝑉𝐻 , in the spirit of the GFEM. However, as we will see below in the numerical experiments, the rate of convergence with respect 
to 𝑚𝑗 is rather poor when the local bases are computed as in (13). A significantly more efficient GFEM can be designed by slightly 
modifying the GEVP (13) as shown in the following.

In this subsection, a particular family of GenEO-type local approximation spaces is constructed and used within the framework of 
the GFEM as a stand-alone coarse approximation. Compared with the original version, there are two key ingredients in this GenEO-
type coarse space that provide a better accuracy for coarse approximation. The first is oversampling. Similarly to the construction 
of the overlapping subdomains, we extend each overlapping subdomain Ω𝑗 further by adding more layers of fine-mesh elements to 
create an oversampling subdomain Ω∗

𝑗 . The local eigenproblems used for constructing the coarse space will be defined on Ω∗
𝑗 instead 

of Ω𝑗 . The second ingredient is A-harmonicity. To make this notion precise, we first introduce the following local FE spaces defined 
on the oversampling domains:

𝑉ℎ,𝐷(Ω∗
𝑗 ) = {𝑣 ∈ 𝑉ℎ(Ω∗

𝑗 ) ∶ 𝑣 = 0 on 𝜕Ω∗
𝑗 ∩ Γ𝐷}, (16)

𝑉ℎ,𝐷𝐼 (Ω∗
𝑗 ) = {𝑣 ∈ 𝑉ℎ(Ω∗

𝑗 ) ∶ 𝑣 = 0 on 𝜕Ω∗
𝑗 ∩ (Γ𝐷 ∪Ω)}. (17)

The space 𝑉ℎ,𝐷(Ω∗
𝑗 ) consists of FE functions restricted to Ω∗

𝑗 that vanish on the external Dirichlet boundary of Ω∗
𝑗 , whereas 𝑉ℎ,𝐷𝐼 (Ω𝑗 )

consists of FE functions that vanish on both the external Dirichlet boundary and the interior boundary of Ω∗
𝑗 . The A-harmonic local 

FE space on Ω∗
𝑗 is then defined as

𝑉𝐴(Ω∗
𝑗 ) = {𝑢 ∈ 𝑉ℎ,𝐷(Ω∗

𝑗 ) ∶ 𝑎Ω∗
𝑗
(𝑢, 𝑣) = 0 ∀𝑣 ∈ 𝑉ℎ,𝐷𝐼 (Ω∗

𝑗 )}. (18)

Functions in 𝑉𝐴(Ω∗
𝑗 ) are referred to as A-harmonic FE functions. As we will see below, the local eigenvectors used for building the 

coarse space are A-harmonic FE functions instead of general FE functions.
With the above notations, we now define a local eigenproblem similar to (13) on each oversampling subdomain: Find 𝜆𝑗 ∈ ℝ, 

𝜑𝑗
ℎ
∈ 𝑉𝐴(Ω∗

𝑗 ) such that

𝑎Ω∗
𝑗
(𝜑𝑗

ℎ
, 𝑣ℎ) = 𝜆𝑗 𝑎Ω∗

𝑗

(
Ξ𝑗 (𝜑

𝑗
ℎ
|Ω𝑗

),Ξ𝑗 (𝑣ℎ|Ω𝑗
)
)
, for all 𝑣ℎ ∈ 𝑉𝐴(Ω∗

𝑗 ). (19)

Note that since Ξ𝑗 (𝜑
𝑗
ℎ
|Ω𝑗

) and Ξ𝑗 (𝑣ℎ|Ω𝑗
) can be identified with FE functions in 𝑉ℎ(Ω∗

𝑗 ), the right-hand side of the above GEVP is 
well-defined.

Let (𝜆𝑗,𝑘, 𝜑𝑗,𝑘
ℎ
) denote the 𝑘-th eigenpair of the GEVP (19) with eigenvalues enumerated in increasing order. The desired GenEO-

type GFEM coarse space is defined almost identically to the standard version (14):

𝑉𝐻 ∶= span
{

𝑅⊤
𝑗 Ξ𝑗 (𝜑

𝑗,𝑘
ℎ
|Ω𝑗

) ∶ 𝑘 = 1,… ,𝑚𝑗 , 𝑗 = 1,… ,𝑁
}

. (20)

The last ingredient of the MS-GFEM method is a global particular function built from local particular functions. On each over-
sampling subdomain Ω∗

𝑗 , we first define a local particular function 𝐮𝑝
ℎ,𝑗

= 𝜓𝑟
ℎ,𝑗

+𝜓𝑑
ℎ,𝑗

, where 𝜓𝑟
ℎ,𝑗

∈ 𝑉ℎ,𝐷𝐼 (Ω∗
𝑗 ) satisfies

𝑎Ω∗
𝑗
(𝜓𝑟

ℎ,𝑗 , 𝑣ℎ) = 𝑏Ω∗
𝑗
(𝑣ℎ) ∀𝑣ℎ ∈ 𝑉ℎ,𝐷𝐼 (Ω∗

𝑗 ) (21)

with 𝑏Ω∗
𝑗
(⋅) being the restriction of 𝑏(⋅) to Ω∗

𝑗 , and 𝜓𝑑
ℎ,𝑗

∈ 𝑉ℎ(Ω∗
𝑗 ) satisfies 𝜓𝑑

ℎ,𝑗
= 𝐡 on Γ𝐷 ∩ 𝜕Ω∗

𝑗 and

𝑎Ω∗
𝑗
(𝜓𝑑

ℎ,𝑗 , 𝑣ℎ) = 0 ∀𝑣ℎ ∈ 𝑉ℎ,𝐷(Ω∗
𝑗 ). (22)

Note that 𝜓𝑑
ℎ,𝑗

vanishes on all interior subdomains where Γ𝐷 ∩ 𝜕Ω∗
𝑗 = ∅ or whenever 𝐡 = 𝟎 on Γ𝐷 ∩ 𝜕Ω∗

𝑗 . On subdomains intersecting 
6

Γ𝐷 it would in fact be possible to combine problems (21) and (22) into one local problem, but this leads to a slightly larger constant 
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𝐶 in Theorem 3.1 below. Therefore, we work with local particular functions defined via (21) and (22) in this paper. The global 
particular function is then defined by “stitching” together the local functions using the partition of unity:

𝐮𝑝
ℎ
=

𝑁∑
𝑗=1

𝑅⊤
𝑗 Ξ𝑗 (𝐮

𝑝
ℎ,𝑗

|Ω𝑗
). (23)

Having defined the coarse space 𝑉𝐻 and the global particular function 𝐮𝑝
ℎ
, we are now ready to give the MS-GFEM method for 

solving the fine-scale FE problem (6): Find 𝐮𝐺
ℎ
= 𝐮𝑝

ℎ
+ 𝐮𝐻 , where 𝐮𝐻 ∈ 𝑉𝐻 , such that

𝑎(𝐮𝐺
ℎ ,𝐯) = 𝑏(𝐯) ∀𝐯 ∈ 𝑉𝐻. (24)

To assess the quality of the MS-GFEM approximation, we estimate the energy norm ‖𝐯‖𝑎 ∶=
√

𝑎(𝐯,𝐯) of the error 𝐮ℎ − 𝐮𝐺
ℎ

. The 
following result is proved in [45, Theorem 3.17 and Remark 3.18] in an abstract setting.

Theorem 3.1. Let 𝜆𝑗,𝑚𝑗+1 be the smallest eigenvalue corresponding to any eigenvector not included (∉) in the local basis on Ω𝑗 . Then

‖𝐮ℎ − 𝐮𝐺
ℎ ‖𝑎 ≤ 𝐶

(
𝜆∉min

)−1∕2 ‖𝐮ℎ‖𝑎 where 𝜆∉min ∶= min
1≤𝑗≤𝑁

𝜆𝑗,𝑚𝑗+1, (25)

where 𝐶 is an explicitly known constant that is bounded by the maximum number of oversampling domains that overlap at any given point in 
Ω.

Thus, the efficiency of the MS-GFEM method is controlled by the speed at which the eigenvalues in (19) grow. To estimate this 
growth rate, let 𝐻𝑗 and 𝐻∗

𝑗 denote the diameter of Ω𝑗 and Ω∗
𝑗 , respectively, and let 𝑑 denote the spatial dimension of the domain 

Ω. The following (informal) theorem in 𝑑 dimensions, which is proved rigorously in [45, Theorem 3.7 and Section 7.3], provides 
an exponential bound on the eigenvalues. It relies on two important properties of the A-harmonic subspace: a weak approximation 
estimate, and in particular, a Caccioppoli-type inequality, which is key to achieving exponential convergence rates for multiscale 
problems with low regularity solutions. We refer to [45, Section 3.1] for a precise statement of those two properties and for a detailed 
proof.

Theorem 3.2. Let ℎ be sufficiently small. Then there exist 𝑘𝑗 , 𝑏𝑗 , 𝐶𝑗 > 0 independent of ℎ, such that for 𝑘 > 𝑘𝑗(
𝜆𝑗,𝑘

)−1 ≤ 𝐶𝑗𝑒
−𝑏𝑗𝑘1∕𝑑

. (26)

The constant 𝐶𝑗 is proportional to the norm of the partition of unity operator, and 𝑘𝑗 and 𝑏𝑗 can be derived explicitly. The value of 𝑏𝑗 and 
thus the convergence rate grows with the amount of oversampling, i.e., with decreasing 𝐻𝑗∕𝐻∗

𝑗 .

Combining the exponential bound (26) on the local eigenvalues and the global error estimate (25) provides a rigorous, exponential 
error bound for the MS-GFEM method. It is important to note that the exponential growth rate of the local eigenvalues critically relies 
on the two aforementioned ingredients of the new coarse space, i.e., oversampling and A-harmonicity. The global error estimate (25)
also holds for the standard GenEO coarse space when used as a coarse approximation. However, without the two key ingredients, 
the eigenvalues of the local GEVP (13) do not grow exponentially fast, making the standard GenEO coarse space significantly less 
efficient; see Subsection 5.4.

Apart from the exponential decay rate of the error with respect to the number of local basis functions, Theorem 3.2 also provides 
an explicit decay rate of the error with respect to the oversampling size, which offers a second handle to control the error of the 
method, in addition to a change in the size of the local approximation spaces. This turns out to be of great importance in reducing 
the size of the global coarse problem; see Subsection 5.6.

We end this subsection by discussing ways to solve the local GEVP (19). To take into account the A-harmonic condition, a 
straightforward yet time-consuming way for solving (19) is to first construct the basis functions of the A-harmonic FE space by 
solving many local boundary value problems [30,32,46]. Instead, we use a different and more efficient method proposed in [38], 
where the A-harmonic condition is directly incorporated into the local GEVP. To this end, a Lagrange multiplier is introduced and 
the local GEVP (19) is rewritten in an equivalent mixed formulation: Find 𝜆 ∈ℝ, 𝜑ℎ ∈ 𝑉ℎ,𝐷(Ω∗

𝑗 ) and 𝑝ℎ ∈ 𝑉ℎ,𝐷𝐼 (Ω∗
𝑗 ) such that

𝑎Ω∗
𝑗
(𝜑ℎ, 𝑣ℎ) + 𝑎Ω∗

𝑗
(𝑣ℎ, 𝑝ℎ) = 𝜆𝑎Ω∗

𝑗
(Ξ𝑗 (𝜑ℎ|Ω𝑗

),Ξ𝑗 (𝑣ℎ|Ω𝑗
)), ∀𝑣ℎ ∈ 𝑉ℎ,𝐷(Ω∗

𝑗 ),

𝑎Ω∗
𝑗
(𝜑ℎ, 𝜉ℎ) = 0, ∀𝜉ℎ ∈ 𝑉ℎ,𝐷𝐼 (Ω∗

𝑗 ).
(27)

The implementation details of how the augmented system (27) is solved are presented in Subsection 4.3.

4. Implementation

The DUNE [42] package is an open-source, modular toolbox for the numerical solution of PDE problems. It leverages advanced 
7

C++ programming techniques in order to provide modularity from the ground up while producing highly efficient applications. As 
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Fig. 2. The degrees of freedom known to process 𝑗 after each step of recursive extension of the matrix connectivity graph.

such, it allows the reuse of many existing components when implementing our new mathematical methods for HPC applications. 
The new methods were integrated in the dune-composites module [1], which facilitates setting up elasticity models and provides 
access to efficient solvers that scale to thousands of cores on modern HPC systems, despite the typically bad conditioning of compos-
ites problems. This was achieved through an HPC-scale GenEO implementation [17] developed as part of dune-composites and 
later moved into the lower-level discretization module dune-pdelab [47] within DUNE. The dune-pdelab module and several 
lower-level DUNE modules are used within dune-composites to obtain the finite element discretizations on the fine level.

The DUNE framework contains a number of grid implementations for various purposes. Among those, only YASPGrid, a struc-
tured cube grid, provides full support for overlapping subdomains: Each process holds a copy of elements in its subdomain’s overlap 
region and may exchange data attached to associated DoFs with neighboring processes. Since the methods considered here are 
constructed using overlapping subdomains, we need this kind of communication mechanism. In previous work within dune-
composites [1], the restriction to cuboid domains induced by YASPGrid was overcome by applying a geometric transformation 
to the grid. However, for many relevant engineering applications, a smooth transformation from a cuboid geometry to the actual 
geometry is not available. Thus, DoF-based communication was extended to support unstructured grids as well. In order to handle 
more general model geometries, the grid creation was first shifted to a pre-processing step using Gmsh [48]. The grid import is 
facilitated by the IO functionality of dune-grid.

4.1. Algebraic overlap construction

In order to provide overlaps and communication across overlaps on unstructured grids, we use an algebraic approach. Based on 
the connectivity graph (i.e., sparsity pattern) of the finite element matrices 𝐴̂𝑗 , assembled on non-overlapping subdomains Ω̂𝑗 , we 
construct matrices 𝐴𝑗 defined on overlapping subdomains Ω𝑗 . Fig. 1 illustrates our notation for non-overlapping and overlapping 
subdomains. We begin with a matrix 𝐴̂𝑗 on a non-overlapping subdomain Ω̂𝑗 . We assume that Ω̂𝑗 has neighboring subdomains Ω̂𝑘, 
𝑘 ∈ 𝐸𝑗 , with corresponding matrices 𝐴̂𝑘.

As a starting point, we identify coinciding DoFs in 𝐴̂𝑗 and 𝐴̂𝑘 from global indices. Even non-overlapping DUNE grids provide the 
latter on subdomain boundaries. On subdomain 𝑘, we now identify all interior DoFs directly connected to DoFs in subdomain Ω̂𝑗 . 
Process 𝑘 holds unique indices to this newly identified layer of DoFs as well as their connectivity, which we pass to process 𝑗. Since 
connected DoFs in a FE discretization are either associated with the same or adjacent elements, we now are in a position where each 
process is aware of its neighbors’ DoFs within the first layer of elements along the respective subdomain boundary.

Through recursive application of this algorithm, as shown in Fig. 2, we can now grow the algebraic overlap by an arbitrary 
number of layers of elements, without having to rely on any overlap support in the grid implementation. In the following, we will 
define the number of layers of elements added to a subdomain as 𝑜 (for overlap) – even though the resulting overlap of a domain 
with its neighbor is in fact 2𝑜 elements. Finally, using the extended connectivity graphs above we can employ the communication 
mechanisms in DUNE [49,50] to exchange overlap data of vectors between neighbors. We now have the underlying communication 
infrastructure to generate a GenEO space in parallel.

The method above allows us to extend connectivity graphs of non-overlapping matrices into neighboring subdomains, construct-
ing the connectivity graphs of the overlapping matrices 𝐴𝑗 . However, GenEO obviously requires the actual matrix entries. Using 
communication across the algebraic overlap, matrix entries in the overlap can be computed by the process that holds the respective 
DOFs and then communicated to its neighbors. As shown below, simply using neighboring matrix entries from the readily available 
𝐴̂𝑘 is insufficient due to edge cases.

The FE matrix entry (𝐴𝑗 )𝑞𝑟 associated with DoFs 𝑞 and 𝑟 can be expressed as

(𝐴𝑗 )𝑞𝑟 = 𝑎Ω̂𝑗
(𝝓(𝑞),𝝓(𝑟)) +

∑
𝑘∈𝐸𝑗

𝑎Ω𝑗∩Ω̂𝑘
(𝝓(𝑞),𝝓(𝑟))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∶=(𝐴̃𝑗,𝑘)𝑞𝑟

= (𝐴̂𝑗 )𝑞𝑟 +
∑

𝑘∈𝐸𝑗

(𝐴̃𝑗,𝑘)𝑞𝑟,
8

where we exploit the elementwise decomposition of 𝑎 in Equation (8) and the decomposition
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Fig. 3. Subdomain snippets used to assemble overlapping matrices from those assembled on a non-overlapping grid partition. Top: Snippets Ω̂0 ∩Ω𝑘 used to assemble 
matrices 𝐴̃𝑘,0 on process 0, to be sent to neighboring processes 𝑘 = 1, 2, 3 for assembly of 𝐴𝑘 . Bottom: Snippets Ω0 ∩ Ω̂𝑘 used to assemble matrices 𝐴̃0,𝑘 on processes 
𝑘 = 1, 2, 3, to be sent to process 0 for assembly of 𝐴0.

Fig. 4. Integration domain supp(𝝓(𝑞)) of DoF 𝑞, which is located on 𝜕Ω𝑗 ∩ Ω̂𝑘 . Since 𝑞 is in the interior of Ω̂𝑘 , process 𝑘 takes the entire integration domain around 
the DoF into account when computing its local matrix 𝐴̂𝑘 . To assemble 𝐴𝑗 process 𝑗 requires integration only up to the overlapping subdomain boundary 𝜕Ω𝑗 , so that 
process 𝑘’s matrix entries from 𝐴̂𝑘 can not be used.

Ω𝑗 = Ω̂𝑗 ∪
⋃

𝑘∈𝐸𝑗

(
Ω𝑗 ∩ Ω̂𝑘

)
.

The matrix 𝐴̂𝑗 is already known on process 𝑗. We call 𝐴̃𝑗,𝑘 the snippet matrix from non-overlapping subdomain Ω̂𝑘 for subdomain 
Ω𝑗 . Process 𝑘 has all necessary information to compute 𝐴̃𝑗,𝑘, since it holds the non-overlapping grid partition Ω̂𝑘, and it will send 
the relevant entries to process 𝑗. Fig. 3 illustrates the snippets needed to construct the overlapping FE matrix 𝐴𝑗 . Importantly, the 
snippet matrix 𝐴̃𝑗,𝑘 may differ from the readily available 𝐴̂𝑘 for any DoF 𝑞 on 𝜕Ω𝑗 ∩ Ω̂𝑘 when supp(𝝓(𝑞)) ⊄ Ω𝑗 . Fig. 4 illustrates this. 
In such a case, we have

(𝐴̃𝑗,𝑘)𝑞𝑟 = 𝑎Ω𝑗∩Ω̂𝑘
(𝝓(𝑞),𝝓(𝑟)) ≠ 𝑎supp(𝝓(𝑞))∩Ω̂𝑘

(𝝓(𝑞),𝝓(𝑟)) = 𝑎Ω̂𝑘
(𝝓(𝑞),𝝓(𝑟)) = (𝐴̂𝑘)𝑞𝑟.

In practice, we compute the partition of unity Ξ𝑗 on process 𝑗 (see section 4.2), communicate it to all neighbors, and use 
Ω𝑗 ∩ Ω̂𝑘 = supp(Ξ𝑗 ) ∩ Ω̂𝑘 as a convenient proxy to determine which DoFs are part of the desired snippet.

An extension operator is finally defined such that

ext
(
𝐴̂𝑗 |Ω̂𝑗

)
= 𝐴𝑗 |Ω𝑗

and ext
(
𝑏̂𝑗 |Ω̂𝑗

)
= 𝑏𝑗 |Ω𝑗

to transfer matrices and vectors defined on the non-overlapping partition (Ω̂𝑗 ) towards the overlapping partition (Ω𝑗 ).

4.2. Partition of unity and oversampling

As explained in section 3.1, various partition of unity operators can be used in the GenEO theory, as long as they fulfill condition 
(11). One suitable choice is a smooth transition from zero on 𝜕Ω𝑗 to one on 𝜕(Ω𝑗 ⧵∪𝑘≠𝑗Ω𝑘), as illustrated in Fig. 5 (left) and used in 
the context of the GenEO preconditioner in [1].

To construct this partition of unity, it is enough to compute Ξ𝑗 on process 𝑗. We attribute a weight 𝑤𝑝 to each DoF 𝑝 ∈ dof(Ω𝑗 ). 
Initially, 𝑤𝑝 is set to 0 on 𝜕Ω𝑗 and to 2 × 𝑜 on the remaining DoFs in Ω𝑗 , where 𝑜 is the number of layers added. For each DoF 𝑝, 
using the extended connectivity graph of Ω𝑗 in its vicinity and comparing with neighboring weights, the weight 𝑤𝑝 is then reduced 
incrementally in the subdomain interior such that( )
9

𝑤𝑝 =min min
𝑞1≤𝑞𝑖≤𝑞𝑛

(𝑤𝑝,𝑤𝑞𝑖
+ 1),2𝑜 ,
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Fig. 5. Partition of unity operators Ξ𝑗 for an overlap size of 𝑜 = 3 (left) and 𝑜 = 1 (right). On the right we also plot the oversampling domain Ω∗
𝑗 where 𝑜∗ = 3, as well 

as the partition of unity on Ω𝑗 where 𝑜 = 1. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

where {𝑞1, ..., 𝑞𝑛} are the neighboring DoFs of 𝑝. It suffices to iterate this 2𝑜 − 1 times. As an example, the partition of unity in 
Fig. 5 (left) has been constructed with 𝑜 = 3. The communication mechanism between subdomains is used to associate to each DoF 
𝑝 ∈ dof(Ω𝑗 ) their corresponding counterpart in the neighboring subdomain Ω𝑘. The partition of unity is then simply defined by 
specifying the coefficients 𝜇𝑗,𝑝 in Equation (11):

𝜇𝑗,𝑝 ∈ [0,1] ∶ 𝜇𝑗,𝑝 =
𝑤𝑗,𝑝∑

{1≤𝑖≤𝑁} 𝑤𝑖,𝑝

, 𝑝 ∈ dof(Ω𝑗 )

where 𝑁 is the number of subdomains sharing the DoF 𝑝.
The handling of oversampling subdomains is controlled via the choice of the partition of unity. The implementation of the 

partition of unity for the oversampled subdomains Ω∗
𝑗 is the same as the one described above with a different initialization of 𝑤𝑝. 

In particular, 𝑤𝑝 is initialized to 0 not only on 𝜕Ω𝑗 , but also for a further 𝑜∗ − 𝑜 layers of DoFs before applying the iterative process 
above. Thus, the partition of unity is a vector defined on the full oversampling subdomain Ω∗

𝑗 that takes the value zero on Ω∗
𝑗 ⧵Ω𝑗 . 

In the following, we will choose a variable oversampling size 𝑜∗ and keep one layer of non-zero partition of unity overlap, i.e., 𝑜 = 1, 
as shown in Fig. 5 (right).

4.3. Enforcing A-harmonicity within the GEVP in DUNE

As described in [38], the eq. (27) can be formulated as a matrix eigenvalue problem. To achieve that, the DoF associate with Ω∗
𝑗

are partition into three sets:

1 = dof
(
(Ω∗

𝑗 ⧵ 𝜕Ω∗
𝑗 ) ∪ (𝜕Ω∗

𝑗 ∩ Γ𝑁 )
)
, 2 = dof

(
𝜕Ω∗

𝑗 ⧵ (Γ𝐷 ∪ Γ𝑁 )
)
, 3 = dof

(
𝜕Ω∗

𝑗 ∩ Γ𝐷

)
.

Those sets of DoF are depicted in Fig. 1. We also define 𝑛𝑖 as the sizes of the corresponding set 𝑖. The GEVP in matrix form is 
defined as follows: Find 𝜆ℎ ∈ℝ, 𝜙𝑗 = (𝜙𝑗,1, 𝜙𝑗,2) ∈ℝ𝑛1+𝑛2 and 𝑝 ∈ℝ𝑛1 :

⎛⎜⎜⎝
𝐴𝑗,11 𝐴𝑗,12 𝐴𝑗,11
𝐴𝑗,21 𝐴𝑗,22 𝐴𝑗,21
𝐴𝑗,11 𝐴𝑗,12 0

⎞⎟⎟⎠
⎛⎜⎜⎝
𝜙𝑗,1
𝜙𝑗,2
𝑝

⎞⎟⎟⎠ = 𝜆
⎛⎜⎜⎝
𝐵𝑗,11 0 0
0 0 0
0 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝
𝜙𝑗,1
𝜙𝑗,2
𝑝

⎞⎟⎟⎠ , (28)

where 𝐴𝑗,𝑚𝑛 = 𝑎Ω∗
𝑗

(
𝜑𝑘, 𝜑𝑙

)
𝑘∈𝑚,𝑙∈𝑛

and 𝐵𝑗,11 = 𝑎Ω∗
𝑗

(
Ξ𝑗𝜑𝑘, Ξ𝑗𝜑𝑙

)
(𝑘,𝑙)∈1

. The blocks 𝐵12, 𝐵21, 𝐵22 are zero since the partition of 
unity vanishes on 2. The oversampling, created via the choice of partition of unity, will also affect the right hand side of eq. (28), 
such that not only the blocks 𝐵12, 𝐵21, 𝐵22 but also all entries in 𝐵𝑗,11 corresponding to the oversampling region Ω∗

𝑗 ⧵ Ω𝑗 will be 
zero (see Fig. 5). The GEVP solution to construct the local basis is then 𝜙𝑗 = (𝜙𝑗,1, 𝜙𝑗,2, 𝜙𝑗,3) ∈ℝ𝑛1+𝑛2+𝑛3 , where 𝜙𝑗,3 is a zero-vector 
corresponding to the DoFs in 3, which combined with (𝜙𝑗,1, 𝜙𝑗,2) provides an A-harmonic coefficient vector on all of Ω∗

𝑗 . Instead of 
generating each block 𝐴𝑗,𝑛𝑚 individually, it is extracted from 𝐴𝑗 using the sets of DoFs 1, 2, 3. In practice, the matrix

⎛⎜⎜⎝
𝐴𝑗,11 𝐴𝑗,12 𝐴𝑗,11
𝐴𝑗,21 𝐴𝑗,22 𝐴𝑗,21
𝐴𝑗,11 𝐴𝑗,12 0

⎞⎟⎟⎠ =
(

𝑀1 𝑀𝑇
2

𝑀2 0

)

is built by block. The top left block 𝑀1 is obtained by removing the rows and columns corresponding to 3 from 𝐴𝑗 . In the elasticity 
case, Dirichlet boundary conditions are imposed in DUNE by altering rows in the matrix 𝐴𝑗 – one on the diagonal, zero elsewhere – 
so the set 3 can be easily detected. Then finally 𝑀1 is obtained by removing the rows and columns corresponding to 2. The block 
that is removed corresponds to 𝑀2. DoFs belonging to 2 are detected and saved during the overlap creation phase.

Once the eigenvectors are computed, the coarse space 𝑉𝐻 is finally obtained as shown in eq. (14) by multiplying the eigenvectors 
10

by the partition of unity. To improve the conditioning of the coarse problem, following this multiplication a re-orthogonalization 
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step via a Gram-Schmidt process is carried out. Contrary to [38], we directly solve the eigenproblem in eq. (28). The simplification 
proposed in [38] for diffusion problems requires a special handling of subdomains that touch the global Neumann boundary Γ𝑁 that 
is more involved for linear elasticity in 3D.

4.4. Boundary conditions at the coarse level

The eigenvectors (𝜙𝑘
𝑗 )𝑘∈(1,𝑚𝑗 ) of the local GEVPs on Ω∗

𝑗 have to be combined with a local particular solution 𝜓𝑗 if the body force 
𝐟 is nonzero or if Ω∗

𝑗 touches the global Dirichlet boundary and the boundary displacement 𝐡 is nonzero. Let 𝑁𝑗 be the number of 
DoFs in Ω∗

𝑗 . Then, the particular solution 𝜓𝑗 in (21) and (22) can be obtained by solving the local linear system

𝐴𝑗𝜓𝑗 = 𝑏𝑗 where 𝐴𝑗 ∈ℝ𝑁𝑗 ×ℝ𝑁𝑗 and 𝑏𝑗 = ext(𝑏̂𝑗 ) ∈ℝ𝑁𝑗 . (29)

Finally, the solution 𝜓𝑗 is multiplied by the partition of unity. The resulting vector is denoted by 𝜓̂𝑗 and appended to the basis.
Dirichlet boundary conditions are then imposed at the coarse level by altering row 𝓁𝑗 of the coarse matrix 𝐴𝐻 and the coarse 

vector 𝑏𝐻 , where 𝓁𝑗 denotes the index corresponding to 𝜓̂𝑗 in the coarse system. Since the local Dirichlet data is taken into account 
in 𝜓𝑗 , the index 𝓁𝑗 corresponds to the boundary DoF on Ω∗

𝑗 . As usual in DUNE a Dirichlet boundary condition is enforced at that 
DoF by setting:

𝐴𝐻
𝓁𝑗𝓁𝑗

= 1, 𝐴𝐻
𝓁𝑗𝑘

= 0 for all 𝑘 ≠ 𝓁𝑗 , and 𝑏𝐻
𝓁𝑗

= 1.

4.5. Hardware and software

For solving the local GEVP, we use Arpack [51] through the Arpack++ wrapper in (iterative) symmetric shift-invert mode and 
invert the arising sparse linear systems using UMFPack [3]. The domain partition of Ω into non-overlapping subdomains Ω̂𝑗 is carried 
out by the graph partitioner ParMetis [52].

The numerical results have been carried out on the Hamilton HPC Service at Durham University. Its last version, called Hamilton8, 
provides a total of 15,616 CPU cores, 36TB RAM and 1.9PB disk space. Hamilton8 is composed of 120 standard compute nodes, each 
with 128 CPU cores (2x AMD EPYC 7702), 256 GB RAM and 400 GB local SSD storage.

5. Performance experiments with MS-GFEM on composite structures

Throughout this paper, we assume a linear elastic behavior of the composite material. For aerospace applications, considering 
damage behavior is essential. Ultimately, our framework will be applied to model large displacement effects and the onset of failure. 
To achieve this, two requirements need to be validated. Firstly, it is essential to have an efficient linear elastic solver for a large-scale 
model to be used within any non-linear iteration. Secondly, the approximate solution needs to accurately represent relevant damage 
criteria, especially local extrema.

In this section, after a brief description of the composite models, we first analyze the output from all components of the MS-GFEM 
when applied to a composite beam. The method is then applied to a complex, aerospace part using a composite failure criterion to 
assess the accuracy. Finally, the parallel scaling of the method is investigated, demonstrating the efficiency of the proposed MS-GFEM 
on large composite structures.

5.1. Specification of the considered composite model problems

In the following three subsections, first a laminated beam under compression is considered in order to evaluate the performance 
of the method proposed in this study. It is illustrated in Fig. 6 (a). The laminated beam has a length of 500 mm, a width of 140 mm 
and a thickness of 6 mm. The laminate is made up of a stack of three layers (or plies) of the same thickness. Each layer represents 
a uni-directional composite made up of carbon fibbers embedded into resin. Plies are modeled as homogeneous orthotropic elastic 
materials, characterized by nine parameters and a vector of orientations 𝜃. The elastic properties of AS4/8552 ([53]) have been 
chosen for this example. In the global coordinate system, the material tensor is orientated using standard tensor rotations, following 
the stacking sequence [0◦, 45◦, −45◦]. For more details see, e.g., [54]. The study considers the elastic behavior of the laminated beam 
under compression. The uni-axial compression, illustrated in Fig. 6 (a), is modeled via a displacement imposed through Dirichlet 
boundary conditions.

Then for the remainder of the paper, a realistic aerospace part is used to demonstrate the high quality of the achieved coarse 
approximation. The aerospace part in question is a 500 mm long C-shaped wing spar section (C-spar) with a joggle region in its center, 
creating a geometric feature in the structure, see Fig. 6 (b). The material is a laminated composite, composed of 24 uni-directional 
layers (carbon fibers and resin) of 0.2𝑚𝑚 each, which are orientated as follows:[

(45◦,−45◦)3, (0◦,90◦)3
]
𝑠

The behavior of the C-spar under compression will be investigated using the same boundary conditions as the ones used in the beam 
example above.

In both examples, as visualized in Fig. 6, for the local approximation we use FE grids with piecewise linear elements, reduced 
11

integration to avoid shear-locking and one element through thickness per layer.
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Fig. 6. Models used in the numerical experiments: laminated beam (a) and laminated C-spar (b). In both cases, Dirichlet boundary conditions are applied on all DoF 
belonging to the end surfaces 𝑥 = 0𝑚𝑚 and 𝑥 = 500𝑚𝑚.

5.2. Local GEVP outputs

We start by analyzing the local generalized eigenvalue problems (GEVP), in particular the behavior of the smallest eigenvalue 
𝜆

𝑚𝑗+1
𝑗 corresponding to any eigenvector not included in the local approximation space, which is the main parameter driving the 

method accuracy (cf. the error bound in eq. (25)). First, the decay of 1∕𝜆𝑖
𝑗 for representative subdomains is analyzed, as well as 

the shape of the associated eigenvectors. Then, the effect of the oversampling size 𝑜∗ is discussed. A particular focus will be on the 
local finite element aspect ratio which severely affects the accuracy of the computed eigenvectors/-values and thus also the observed 
actual decay of the error bound.

The beam domain in Fig. 6 (a) is decomposed into 64 subdomains for the first experiment; see Fig. 7 (b). In each subdomain, a 
local eigenvalue problem is solved to construct the local approximation space with a fixed number of 𝑜∗ = 8 oversampling layers. 
In Fig. 7 (c,d) a selection of exemplary, local GEVP solutions on two representative subdomains are presented together with a semi-
logarithmic plot of 1∕𝜆𝑖

𝑗 in Fig. 7(a). For the eigenvalue plot two further subdomains are added. In total, there is one subdomain 
intersecting Γ𝐷 (𝑗 = 29), one intersecting 𝜕Ω (𝑗 = 64) and two interior subdomains (𝑗 = 55, 56), with the first one of the two having 
a higher surface-to-volume ratio.

The semi-logarithmic plot of 1∕𝜆𝑖
𝑗 in Fig. 7(a) demonstrates the predicted, nearly exponential decay of the local approximation 

error with respect to the basis size (𝑚𝑗 ) in all cases. The decay is faster for subdomains intersecting 𝜕Ω; the more the subdomain 
intersects 𝜕Ω the faster is the decay. A further factor is the surface-to-volume ratio. The higher this ratio the slower the exponential 
decay of 1∕𝜆𝑖

𝑗 , as exemplified by the relative decays of subdomains 𝑗 = 29, 64, 55 and 56. The partitioning of the domain could 
be optimized to unify the surface-to-volume ratio over all subdomains. In fact, for simple, laminated composites a regular domain 
decomposition could be chosen, e.g., into rectangular subdomains. Here, however, we do not make this choice in order to show 
the robustness of the approach to rather general subdomain partitionings, as provided by automatic graph partitioners such as 
ParMetis [52], and thus to show the potential of the approach for simulating very complex structures.

In the interior subdomain Ω∗
𝑗=56, the first six eigenvectors (indices 0 to 5) depicted in Fig. 7 (d) correspond to the zero energy 

modes (or rigid body modes) representing shifts and rotations of the structure. The following modes for Ω∗
𝑗=56 and the first few 

modes for Ω∗
𝑗=29 in Fig. 7 (c) correspond to low-energy deformations of the subdomain: bending and shearing. The higher-energy 

modes correspond to higher frequency deformations (𝑖 > 50).
As explained in Section 3.3, the oversampling parameter 𝑜∗ is key to the decay rate of the local approximation errors. In Fig. 8, 

the reciprocal eigenvalues 1∕𝜆𝑖
𝑗 for subdomain Ω∗

𝑗=56 are presented for a range of oversampling sizes. The decay of 1∕𝜆𝑖
𝑗 clearly 

accelerates as the oversampling size is increased. Thus, for a desired error bound (i.e. 1∕𝜆𝑖
𝑗 < 10−7), subdomains with larger amounts 

of oversampling lead to significantly smaller local bases and consequently to an overall smaller coarse space. The trade-off, however, 
is that the dimensions of the local GEVPs grow significantly with the amount of oversampling and this will be discussed later. In 
general, the objective is to pick the minimal number of modes 𝑚𝑗 to approximate the solution (displacement) and its derivative 
(strain and stress) sufficiently well. The accuracy of the coarse approximation and the effect of changing the main tuning parameters 
(basis / oversampling size) will be analyzed in Section 5.3. The efficiency study will be performed for the more complex C-spar 
structure and is presented in Section 5.6.

The results in Figs. 7 and 8 are computed using square elements with an aspect ratio of one between horizontal (through-thickness) 
12

and vertical (in-plane) edges. However, such a choice leads to an unreasonably high number of elements in larger composite structures 
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Fig. 7. Visualization of eigenpairs of the A-harmonic local GEVP with oversampling 𝑜∗ = 8, i.e., eight layers of elements around subdomains. The reciprocal of the 
𝑖𝑡ℎ eigenvalue 1∕𝜆𝑖

𝑗 for four representative subdomains Ω𝑗 is plotted in (a). The non-overlapping decomposition, with the four chosen subdomains highlighted, is 
presented in (b). In (c) and (d), a sample of eigenvectors 𝜙𝑖

𝑗 for the subdomains 29 and 56 is illustrated, respectively. (For clarity, the first six eigenvalues for Ω∗
𝑗=55,56,64

are not plotted in (a), since by definition 𝜆0
𝑗 =… = 𝜆5

𝑗 = 0.) The reader is advised to use the PDF version of the paper to fully appreciate this figure.

with a larger number of more realistic, thinner plies, such as the C-spar described in Section 5.1 and depicted at the bottom of Fig. 6. 
To build a reasonably sized model, the in-plane discretization has to be reduced, leading to flat elements with a larger aspect ratio. 
Unfortunately this reduces the accuracy significantly, as presented for four element aspect ratios and 𝑜∗ = 5 in Fig. 9 (b), where the 
relative 𝐿2-error for each eigenpair is shown. As a consequence, after a similar initial decay (up to 𝑖 = 60) we observe a change in 
the slope of 1∕𝜆𝑖

𝑗 for aspect ratios bigger than one in Fig. 9 (a). For very large aspect ratios of 15 and above, it even leads to a plateau 
in 1∕𝜆𝑖

𝑗 (see Fig. 7 (a), red curve). This is to be expected, due to the larger condition numbers of the stiffness matrices in the GEVP 
leading to more unstable eigensolves.

Increasing the oversampling size does not alleviate this problem, as seen in Fig. 9 (c,d); the relative 𝐿2-errors in the eigenpairs 
are independent of 𝑜∗ and the slope of 1∕𝜆𝑖

𝑗 changes roughly at the same value of 𝑖. We also tested a different type of higher-order 
finite element, namely a 20-DoF quadratic serendipity element, but the loss of accuracy due to high element aspect ratios persists. 
However, the slope change and the plateau of the eigenvalues for larger aspect ratios do not have a strong impact, since they occur 
only at values well below what is needed for good practial approximation, especially for higher oversampling sizes.

5.3. Coarse approximation accuracy

In this section, we investigate the accuracy of the MS-GFEM approximation. The fine-scale reference solution is computed using 
an iterative CG method with GenEO as preconditioner. By setting a sufficiently low tolerance, the error due to the iterative solution 
13

via CG can be neglected.
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Fig. 8. Effect of the amount of oversampling on the decay of the eigenvalues, and thus on the local error bound, depicted for the interior subdomain Ω∗
𝑗=56 .

Fig. 9. The reciprocals 1∕𝜆𝑖
𝑗 of the eigenvalues of the local GEVP (a,c) and the relative 𝐿2-error in computing the associated eigenvectors (b,d); in particular, studying 

the effect of bad element aspect ratio (for 𝑜∗ = 5) in (a,b), as well as oversampling size for fixed aspect ratio in (c,d).

We consider in the following the relative errors in 𝐿2-norm between the coarse approximations of displacement and strain fields, 
𝑢𝐻 and 𝜖𝐻 , and their fine-scale counterparts, 𝑢ℎ and 𝜖ℎ, i.e.,

𝑒𝑑 =
‖𝑢ℎ − 𝑢𝐻‖2‖𝑢ℎ‖2 , 𝑒𝜖 =

‖𝜖ℎ − 𝜖𝐻‖2‖𝜖ℎ‖2 .

Fig. 10 (a) shows the fine-scale approximation of the displacement field 𝑢ℎ of the beam under compressive loading. The unit 
displacement (𝐱(𝑧) = −10 mm) applied here causes the characteristic out-of-plane deformation of the structure related to the non-
symmetric stacking sequence chosen for this example. A maximum displacement of 20 mm is observed on the two sides of the beam. 
Fig. 10 (b) depicts the fine-scale strain approximation in the direction of compression, denoted by 𝑥 here. The order of magnitude of 
strains is (10−2).

The main parameter driving the accuracy of the coarse approximation is the smallest eigenvalue min𝑗 𝜆
𝑚𝑗+1
𝑗 corresponding to any 

local eigenvector not included in the basis. As explained above, the size 𝑚𝑗 of each of the local bases and the oversampling size 𝑜∗
will be decisive to control this parameter. For our analysis we vary these two key parameters up to maxima of 𝑚𝑗 = 250 and 𝑜∗ = 8, 
for which the error bound lies below 10−15. The relative 𝐿2-errors for displacement and strain are shown in Fig. 10, resp. (c) and (d), 
using a logarithmic scale. Both 𝑒𝑑 and 𝑒𝜖 decay exponentially with respect to 𝑚𝑗 for all amounts of oversampling. The decay rate of 
the errors is higher for larger oversampling sizes, which is in agreement with the behavior of the reciprocal eigenvalues depicted in 
14

Fig. 8.



Journal of Computational Physics 508 (2024) 113013J. Bénézech, L. Seelinger, P. Bastian et al.

Fig. 10. 𝐿2-errors versus local basis size for the displacement field (c) and the strain field (d). The reference fine-scale approximations are displayed above in (a) and 
(b).

Fig. 11. Localization of the error depending on the local space size 𝑚𝑗 . The absolute difference Δ𝜖ℎ,𝑥𝑥 between the coarse approximation and the fine scale approxi-
mation is plotted.

Fig. 12. Localization of the error depending on the oversampling size 𝑜∗ . The absolute difference Δ𝜖ℎ,𝑥𝑥 between the coarse approximation and the fine scale 
approximation is plotted.

We further investigate the location of the largest strain error, in order to explain in more detail its dependence on 𝑚𝑗 and 𝑜∗. 
The coarse approximation of the strain field has been projected onto the fine-scale space to allow a direct comparison element-by-
element. The absolute differences Δ𝜖ℎ,𝑥𝑥 between the fine-scale solution and the coarse approximation of the strain field are depicted 
in Fig. 11 for three different values of the local basis size per subdomain, 𝑚𝑗 = {90, 150, 190}, and a fixed value of 𝑜∗ = 8. The aim 
is to investigate the error behavior alongside the convergence curve for 𝑜∗ = 8 in Fig. 10 (d). The three chosen basis sizes produce 
coarse-space solutions of high accuracy with relative 𝐿2-errors bellow 10−3. The error maxima are observed on subdomains located 
in the center of the beam. Indeed, the local error on each subdomain follows the decrease of 1∕𝜆𝑖

𝑗 . As shown in Fig. 7 (a), interior 
subdomains (e.g., Ω∗

𝑗=56) need more eigenvectors for the same local error. Eventually, a sufficiently large local basis size ensures an 
accurate approximation for all subdomains.

Conversely, for fixed 𝑚𝑗 = 190 Fig. 12 assesses the impact of the oversampling size, varying 𝑜∗ ∈ {1, 5, 8}. As predicted by 
the theory, a smaller oversampling size leads to a larger error, which is localized mainly at subdomain interfaces. Increasing the 
15

oversampling area decreases the interface errors, and, eventually a smooth and very low error is observed across the domain for 
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Fig. 13. Localization of the error depending on the oversampling size 𝑜∗ for a given targeted accuracy. The absolute difference Δ𝜖ℎ,𝑥𝑥 between the coarse approximation 
and the fine scale approximation is plotted.

Fig. 14. Accuracy of the GenEO-type coarse spaces. Absolute relative 𝐿2-error on the strain field for both the classical GenEO and the A-harmonic GenEO (MS-GFEM) 
approximations (a). The quotient 1∕𝜆𝑖

𝑗 for one particular subdomain for each of the approaches (b).

𝑜∗ > 5. This example showcases one of the main advantages of the MS-GFEM: the interface problem at subdomain boundaries is 
handled by oversampling. The coarse approximation can then resolve the displacement, strain, and stress distribution at the ply 
level, independently of the model choices for the coarse space construction, in particular the choice of domain decomposition. The 
scales represented by the artificial subdomain partitioning on the macroscale and the mesoscopic geometry and orientations of the 
plies within each subdomain are mixed as if the entire solution were computed on the finer scale, proving that there is no scale 
separation between the ply scale (mesoscopic) and the structural scale (macroscopic).

In Fig. 13, the strain error is evaluated for a fixed eigenvalue threshold 1∕𝜆
𝑚𝑗+1
𝑗 = 10−7 for various oversampling sizes, to study 

the impact on the overall coarse space size. For fixed accuracy, the size of the coarse space is reduced by 22.6% when increasing 
𝑜∗ = 4 to 𝑜∗ = 6 and by 45.3% from 𝑜∗ = 4 to 𝑜∗ = 8. This improved model order reduction obviously reduces the cost of the coarse 
problem solve, but it does increase the size of the local problems and thus the cost of solving the local GEVPs. This cost trade-off will 
be studied more carefully in Section 5.6 for the C-spar.

5.4. Importance of the A-harmonic condition for composite problems

To emphasize the necessity of the A-harmonic condition in our framework, we compare the new MS-GFEM space to the classic 
GenEO coarse space with the GEVPs formulated directly in the FE space 𝑉ℎ, i.e., without enforcing A-harmonicity. The theoretical 
error bound in Theorem 3.1 is the same for both GFEM spaces, with and without the A-harmonic condition in the GEVP. Crucially, 
in both cases the approximation error is bounded by the reciprocal 1∕𝜆𝑖

𝑗 of the smallest eigenvalue corresponding to any eigenvector 
that is not included in the coarse space 𝑉𝐻 .

Fig. 14 (right) shows that the decay of 1∕𝜆𝑖
𝑗 for 𝑖 < 10 is comparable between classic GenEO and the A-harmonic formulation, 

since the first modes (rigid body, shear and bending) appear in both. In fact, the classic GenEO coarse space with a small number of 
lowest-eigenvalue modes was shown in Reinarz et al. [2] to provide a robust preconditioner within CG that reduces the condition 
number effectively and leads to a low number of CG iterations for composites problems. Beyond that, we observe in Fig. 14 (right) that 
the spectrum for the classic GenEO formulation decays much slower and eventually almost stagnates, when compared to MS-GFEM. 
This is reflected in the coarse approximation error in Fig. 14 (left), as predicted in Theorem 3.1. Even including 190 eigenvectors in 
classic GenEO is not sufficient to accurately represent the strain field in this application (with 𝑒𝜖 ≈ 1). MS-GFEM with A-harmonic 
16

GEVPs, on the other hand, achieves an excellent coarse approximation at much lower basis sizes.
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Fig. 15. Application of the method to the C-spar. The elementwise, normalized compressive failure criterion is shown in (a) with a focused view of four different plies 
oriented at 45◦ , 90◦ , 0◦ and −45◦ , clipped through the thickness of the laminate, successively along the length of the part. It shows the influence of local material 
orientation on 𝜙1− and the ability of our method to deal with strong through-thickness heterogeneities. The error Δ𝜙1− of the MS-GFEM approximation of the failure 
criterion with respect to a fine scale computation is shown in (b) with the corresponding visualization of individual plies through thickness.

5.5. Method accuracy on an aerospace part

In this section, the behavior of the C-spar, described in Section 5.1, under compression is investigated. The domain, shown in 
Fig. 6 (b), is divided into 256 subdomains. For an oversampling size of 𝑜∗ = 4 and a tolerance of 𝑡 = 10−6 on 1∕𝜆

𝑚𝑗+1
𝑗 we obtain local 

basis sizes 𝑚𝑗 varying between 60 and 170. These parameters lead to an average subdomain size of dof(Ω∗
𝑗 ) = 30000 and a model 

order reduction of 32×. With 4 GB of RAM per subdomain to compute the local GEVP this parameter choice requires 4 nodes of the 
HPC cluster Hamilton8 for the 256 subdomains. The element aspect ratio is 15 for this example (see Fig. 6). Thus, as for the simple 
beam example, the possible coarse approximation accuracy is limited by the fine scale error.

In order to assess the coarse approximation, we compute

𝜙1− =

⟨|𝜎𝑅
12|+ 𝜂𝐿𝜎𝑅

22
⟩

𝑆𝐿

𝜎𝑅
12 = 𝜎11sin

2(𝜑𝐶 ) + 𝜎22cos2(𝜑𝐶 ) − 2|𝜎12|sin(𝜑𝐶 )cos(𝜑𝐶 ) ,

𝜎𝑅
22 = (𝜎22 − 𝜎11)sin(𝜑𝐶 )cos(𝜑𝐶 ) + |𝜎12|(sin2(𝜑𝐶 ) + cos2(𝜑𝐶 )) ,

(30)

the longitudinal compressive failure criterion from [55], which is a linear combination of relevant components of the Cauchy stress 
tensor (eq. (2)): longitudinal (𝜎11), transverse (𝜎22) and shear (𝜎12). A detailed description of the material constants (𝜂𝐿, 𝑆𝐿, 𝜑𝐶 )
is available in [55]; the notation ⟨⋅⟩ denotes the positive part of the argument. In fact, damage mechanisms such as fiber kinking 
[56] are observed for fiber reinforced composites under compression. Here, 𝜙1− (eq. (30)) is a good indicator of the activation 
of this damage mechanism within the structure and, along with other criteria (corresponding also to linear combinations of the 
Cauchy stress tensor and more material properties), is used for structural design of composite laminated parts. In slender composite 
structures, this failure mode typically appears after the buckling of the structure, but even in the prebuckling context, this criterion 
gives a good insight into the usefulness of the method for composite structural design. The longitudinal compressive failure criterion, 
computed in local coordinates, is plotted in Fig. 15 (a). To visualize it, the coarse approximation 𝑢𝐻 is first projected onto the fine 
scale FE space 𝑉ℎ. The relative error with respect to a direct meso-scale approximation in 𝑉ℎ is shown in Fig. 15 (b). With the 
chosen parameters, the relative error on the failure criterion is below 3.0 × 10−3. In Fig. 15 (a), four plies (ply 6, 12, 18 and 24) 
are highlighted in a certain part of the domain, representing each stacking orientation and showing that the coarse approximation 
is able to accurately represent the quick variation of the compressive failure criterion through thickness. The remaining error is 
small and uniformly distributed, with higher values near subdomain boundaries and on interior subdomains, in agreement with the 
observations on the beam example.

5.6. Method scalability

A parallel (weak) scaling test of the method is presented in Fig. 16, where the cost of the local GEVP solves and the cost of 
the coarse solve are assessed using C-spars of different lengths while fixing the discretization of the meso-structure: 24 elements 
through thickness (one per ply) and a constant element size in the other directions (aspect ratio 15). The C-spar models vary between 
𝐿 = 62.5 mm with dof(𝑉ℎ) = 1.53 × 105 (Model 1) and 𝐿 = 2 m with dof(𝑉ℎ) = 4.6 × 106 (Model 7). The number of processors (𝑃 ) 
employed for each model has been chosen such that dof(𝑉ℎ)∕𝑃 remains constant, here dof(𝑉 ℎ)∕𝑃 ≈ 10, 000. Therefore, there is no 
mesh refinement between models: the characteristic elementsize remains the same and the total number of elements scales with the 
length of the part. Keeping dof(𝑉 ℎ)∕𝑃 constant means that the size of the local eigenvalue problems also remains constant between 
the different models.

Three combinations of parameters have been tested, choosing 𝑜∗ = 4 and 𝑜∗ = 6 and selecting a threshold of 𝑡 = 10−6 and 𝑡 = 10−3
for the reciprocal of the local eigenvalues. Parameter sets #1 and #2 assess the scalability of the method for a highly accurate solution 
with 𝑡 = 10−6. In Set #1 𝑜∗ = 4, chosen to reduce RAM consumption, whereas in Set #2 a larger oversampling size of 𝑜∗ = 6 is selected, 
thus requiring more RAM. This trade-off will be further discussed below. Set #3 has been selected to study how the method scales 
for a lower eigenvalue threshold of 𝑡 = 10−3 with smaller 𝑜∗ = 3 and half the amount of subdomains in Sets #1 and #2, such that 
17

𝑁𝑗 = dof(Ω∗
𝑗 ) is roughly the same.
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Fig. 16. Scaling of the method applied to C-spars of different lengths for three sets of parameters. In (a) the Sets #1 and #2 optimize the approximation accuracy, 
while in (b) Set #3 aims at a very efficient simulation with acceptable accuracy. The employed FE grids are displayed in (c). In all models, the characteristic element 
sizes in the fine space discretization are the same. Fig. 6 (b) represents model 4 with a detailed visualization of the mesh refinement.

As shown in Fig. 16 (a-b), the GEVP solve step scales perfectly for all three sets, since no parallel communication is required. 
As expected, the solve times increase slightly between Sets #1 and #2 due to the slightly bigger local problem sizes. There is also 
some variation in problem sizes across subdomains. However, even though the number of ARPACK iterations also varies, the cost 
per GEVP is essentially almost entirely due to the sparse direct solver UMFPack. For a FE discretization of a 3D elasticity problem its 
cost scales as expected roughly like (𝑁1.5

𝑗 ). The overall cost for the coarse space setup for each model is essentially identical, since 
it is dominated by the time spent on the local GEVPs and can be carried out fully in parallel with only local data exchange. As the 
subdomain size 𝑁𝑗 is kept constant during this numerical experiment, the time to solve the local particular problem (section 4.4) is 
constant too and does not exceed 10 seconds for any of the tested models. Therefore, to avoid cluttering we did not include that cost 
as a specific line in Fig. 16, similarly to the algebraic overlap construction, which required even less time per subdomain.

In contrast, the final coarse space problem (24) is (currently) solved on one processor, and thus eventually dominates the overall 
cost for larger models. To remain efficient, the coarse space size needs to be optimized. For all considered models, the model 
order reduction is around 32× for Set #1 and around 50× for Set #2. As a consequence, the increased oversampling size in Set #2
significantly reduces the cost of the coarse solve, particularly for the larger models (4–5–6). These gains clearly outweigh the higher 
cost for the local GEVP solves, but the amount of local memory (RAM) needed to process these GEVPs in parallel is a limit to this 
improvement, preventing the use of too large oversampling sizes. In this example, subdomains with 𝑜∗ = 6 have more than 50, 000
DoF, necessitating over 8 GB of RAM per subdomain for the local GEVPs. A reasonable oversampling size thus needs to balance 
performance and memory consumption.

The strength of our approach is the ability to construct approximation spaces of adjustable complexity in a very simple way. A 
cheaper approximation can be built by choosing a lower threshold 𝑡 for selecting the local eigenvectors. In particular, for Set #3, 
where 𝑜∗ = 3 and 𝑡 = 10−3, the size of local bases (𝑚𝑗 ) reduces to between 30 and 50, leading to a model order reduction of about 
170×. This allows the construction and solve of the coarse-space approximation for a 2 m C-spar (Model 7) on 512 processors in 10 
minutes, thus extending the range of our scalability test. As shown in Fig. 16 (b), the model order reduction is then sufficient to keep 
the computational times for the coarse solves under 10 seconds in all cases, even for Model 7. In fact, in contrast to the situation for 
parameter sets #1 and #2, the time spent on the coarse solve for set #3 is dominated by the communication cost for collecting the 
coarse system on one processor.

The accuracy of the solution of two sets of parameters: Sets #1 and #3 are compared in Fig. 17 for Model 6. Both qualitatively, 
as visible on Fig. 17, and quantitatively (relative 𝐿2-errors) the displacement field 𝑢𝐻 appears to be well represented for both sets, 
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which is in agreement with the beam example observations. However, as expected, since it is derived from the stresses (eq. (30)), the 
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Fig. 17. Visualization of the solution accuracy for Set #3 (b,d) compared to Set #1 (a,c) for Model 6 (see Fig. 16), plotting for both sets in (a, b) the compressive 
criterion (eq. (30)) and in (c, d) the displacement field. The relative 𝐿2-errors (on strain 𝑒𝜖 and displacement 𝑒𝑑 ) with respect to the fine scale approximation are 
associated with each parameter set.

accuracy of the compressive criterion in Set #3 is affected by the small basis size. Despite a visible noise on the compressive failure 
criterion of Set #3 (see the zoom-in Fig. 17), global extrema are preserved. Hence, this set of parameters is able to detect the global 
maximum of the criterion at very cheap cost.

6. Conclusion & future work

In this paper, we have presented the first scalable HPC implementation of a MS-GFEM method and demonstrated that it delivers 
high quality approximate solutions for very small coarse space sizes. As proven in previous theoretical work, this is due to the nearly 
exponential decay of the reciprocal eigenvalues in the local generalized eigenvalue problems. Here, we have demonstrated that 
this nearly exponential decay crucially relies on enforcing an A-harmonic constraint on the local eigenproblems also in composites 
applications, and that oversampling of the local subdomains is essential to achieve good accuracies at small local basis sizes. While 
the related GenEO-coarse space, which does not enforce A-harmonicity in the local eigenproblems, also leads to acceptable results 
in approximating displacements, we have seen that A-harmonicity is crucial to accurately approximate strains, stresses and derived 
failure criteria in composite applications.

We have demonstrated good parallel scalability on several hundreds of processor cores. While a single solve of the fine-scale prob-
lem is cheaper using, e.g., GenEO-preconditioned Krylov methods, the localized approach of MS-GFEM opens up new opportunities 
for parallel scalability. When solving large numbers of closely related problems, eigenvectors from unaffected subdomains may be 
retained, solving costly eigenproblems only where model parameters or geometry changes between runs. If only a few subdomains 
are affected, the global solution can be computed using a significantly smaller number of processors in the same time as a full run. 
This is especially interesting in future Uncertainty Quantification (UQ) applications, such as the impact of (meso-scale) localized 
wrinkles in composite structures on the strength or the failure behavior of the overall (macro-scale) structure. In such applications, 
the problem setup will essentially be identical in all but a few subdomains and large numbers of runs are required.

The integration of our new MS-GFEM method into an offline/online framework, where local approximation spaces will only be 
updated in a few subdomains between runs, is currently ongoing and will form part of a subsequent publication. This will also include 
the application of the offline/online framework as part of Uncertainty Quantification (UQ) methods for composites; in particular, 
exploiting the natural hierarchy of approximate models in the MS-GFEM framework within multilevel UQ methods such as Multilevel 
Monte Carlo (MLMC) [57] or Multilevel Markov Chain Monte Carlo (MLMCMC) [58].

The coarse space solves have been handled by a sequential direct solver here. A way to push scalability beyond the limits 
imposed by coarse system size would be to parallelize the coarse solve. Since the coarse system is itself ill-conditioned, this is not 
trivial. Earlier experiments conducted for [2] (but not included) indicate that, in case of GenEO, straightforward application of AMG 
is not sufficient. This aspect and management of parallel resources will be explored in future work.

On the practical side, our approach has a largely automatic workflow, from domain decomposition to the automatic generation 
of a coarse space specifically tuned to the given problem. The balance between global approximation error and basis size can be 
controlled by setting a single threshold for the selection of eigenvectors. In multiscale applications, and specifically composites, MS-
GFEM is particularly interesting since we obtain a low-dimensional approximation without assuming scale separation. Instead, the 
eigenproblems capture the structure of the given problem, providing better quality than hand-tuned approximations. The resulting 
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coarse space then accurately captures fine- and coarse-scale interaction.
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A very relevant aspect in the study of composite materials is material failure under load. In contrast to linear elasticity (as 
covered by this work), non-linear models are needed to simulate the failure of composites aero-structures (non-linear geometry, 
damage initiation and propagation). We are therefore also extending our methods to nonlinear solvers and implement nonlinear 
material behavior in dune-composites.
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