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Abstract. The growing interconnection between software systems in-
creases the need for security already at design time. Security-related
properties like confidentiality are often analyzed based on data flow di-
agrams (DFDs). However, manually analyzing DFDs of large software
systems is bothersome and error-prone, and adjusting an already deployed
software is costly. Additionally, closed analysis ecosystems limit the reuse
of modeled information and impede comprehensive statements about
a system’s security. In this paper, we present an open and extensible
framework for data flow analysis. The central element of our framework
is our new implementation of a well-validated data-flow-based analysis
approach. The framework is compatible with DFDs and can also extract
data flows from the Palladio architectural description language. We show-
case the extensibility with multiple model and analysis extensions. Our
evaluation indicates that we can analyze similar scenarios while achieving
higher scalability compared to previous implementations.

Keywords: Data Flow Diagram - Software Architecture - Security.

1 Introduction

As our modern world becomes increasingly digitized, the integration of various
digital services into our daily lives has become more prevalent. To enhance
the quality of service, a growing amount of data is stored and processed, e.g.,
online shops utilizing purchase history data for recommendations. The seamless
exchange of such collected data between different services or systems is a common
practice. In scenarios like online shopping, sensitive information like payment
details and customer addresses are involved. Consequently, security becomes a
central concern in designing and building such software-intensive systems.
Information security has several definitions, e.g., as the CIA triad of con-
fidentiality, integrity, and availability, or in ISO 27000 [17]. More recent legal
regulations, like the General Data Protection Regulation (GDPR) [11], define
information security more broadly. For modern systems, changes and reconfigu-
ration in the context, environment, or internal structure might occur frequently

* Both main authors contributed equally.
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[36]. Since the protection goals are highly dependent on the system under consid-
eration, the protection goals that must be addressed may also change. In addition
to the CIA goals, other protection goals might be considered, like privacy, au-
thenticity, non-repudiation, accountability, and auditability. A system violating
confidentiality or privacy can cause costly fines, as seen in the case of H&M [16] or
British Airways [4]. However, identifying such violations can be difficult, because
the interconnected software systems represent complex networks of data flows.
Hence, a holistic and scalable approach to analyzing them is required.

Data flow analyses based on source code, e.g., JOANA [33], KeY [1], or
CodeQL [9], cannot consider context information, such as deployment. However,
such information can be essential for information security, e.g., whether the
application is deployed to an external cloud provider or not. In addition, source
code analyses cannot be used in early design phases because of their need for
existing source code. Analyzing the system during design time is beneficial
because fixing issues in later phases is usually more costly [31]. Seifermann et al.
[28, 30] proposed an architecture-based data flow analysis to analyze software
systems for confidentiality violations. Their approach considers additional context
information, such as the deployment, enabling software architects to analyze
confidentiality during early design phases. However, the original Prolog-based
implementation of Seifermann et al. [30] is hard to maintain and has a high
resource demand, which severely limits the applicability for large software systems.
Although they already used a model of a data flow diagram (DFD) [10] as an
intermediate representation during their analysis, they did not continue to follow
the idea of using DFDs as the primary model artifact. With appropriate tool
support, DFDs represent a powerful and commonly used mechanism for threat
analysis [3] that helps in correctly identifying security-related issues [24].

In this paper, we present an extensible analysis framework centered around
our previously presented new implementation of the aforementioned approach
to data flow analysis [27]. Our framework addresses shortcomings regarding the
limited input capabilities, the limited intermediate use of DFDs, and problems
with maintainability, scalability, and extensibility:

C1 We propose a novel DFD metamodel. In contrast to the previous DFD model
[30] we do not consider DFDs as intermediate system representations but as
primary software architecture modeling artifacts. As part of our framework,
we provide means to manually define DFDs as well as automatically derive
them from the architecture description language Palladio Component Model
(PCM) [21] and other third-party diagram representations [23, 25].

C2 We present a new Java-based implementation of the analysis approach of
Seifermann et al. [30], which is based on a newly developed internal data
structure and alleviates the need to mix Java with other technologies like
Prolog. In addition, we provide new forms of input, e.g., DFDs defined with
our metamodel (C1), and a domain-specific language (DSL) that enables
software architects to define constraints or queries for the analysis. We
demonstrate how our analysis framework can be applied and extended for
other security concerns, e.g., regarding the GDPR [6], or uncertainty [12].
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This paper is structured as follows: Section 2 introduces our data flow analysis
framework. Section 3 describes our new DFD metamodel (C1). In Section 4, we
describe the analysis (C2), and in Section 5, we showcase existing extensions.
Section 6 presents our evaluation and Section 7 concludes the paper.

2 Overview of the Data Flow Analysis Framework

In this section, we summarize our framework which is explained in more detail
hereafter. Figure 1 gives an informal overview of the structure and the dependen-
cies between the different parts of our data flow analysis framework. We highlight
analyses and editors with a bold border; all other rectangles represent models.

GDPR models PCM models Legend
A . —>» Transformation

uses i ---> Dependency
: [ Framework element
[ Framework extension

|Web-based editor

|DSL-based constraints and queries|

creates v \y uses v
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heeeee s Data flow analysis Uncertainty impact analysis

| Third-party diagrams

Fig. 1. Informal overview of the structure of the data flow analysis framework.

Unified data flow diagrams (DFDs) [28] play a central role in our framework (C1).
These diagrams can be manually defined using a web-based editor or transformed
from third-party diagram representations. Additionally, we enable the extraction
of data flows from software architecture models described using PCM [21]. To
unify the analysis process (C2), we transform DFD or PCM models into a set
of Directed Acyclic Graphs (DAGs), called transpose flow graphs (TFGs). Each
vertex represents one individual data processing operation from either a DFD
or PCM model, which simplifies the analysis. Using label propagation on TFGs,
the analysis finds violations of predefined constraints that reflect information
security objectives, e.g., confidentiality requirements. Constraints and queries
can be specified using a domain-specific language (DSL), referencing PCM and
DFD models. Framework extensions are possible by transforming into our DFDs
or TFGs or by inheriting from the data flow analysis. GDPR models [6] are an
example of the former while uncertainty impact analysis [12] and uncertainty-
aware confidentiality analyses [8, 14, 35] showcase the latter. The framework is
tool-supported and available as open source!. This includes modeling support,
automated model transformations, and a DSL-supported analysis?. We also
provide a dataset [7] including all tooling, code artifacts, and evaluation data.

! See nttps://dataflowanalysis.org or https://github.com/DataFlowAnalysis
2 Video demonstration available [27]: https://youtube.com/watch?v=q3WJsMyqJcA
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3 Modeling and Deriving Data Flow Diagrams

While Seifermann et al. [28] created a unified DFD notation, they only used it
as an intermediary representation for their data flow analysis [30]. However, as
DFDs are an established software architecture representation [3] and are widely
used to analyze various types of data security [2, 30, 32, 34], we present an explicit
DFD metamodel that can also be used as input for our analysis. The study of
Bernsmed et al. [3] concludes, that, while DFDs are good for evaluating security,
there exist challenges in preparing DFDs. Especially tooling that improves the
effort of creating and maintaining DFDs is missing. In this section, we present our
DFD metamodel (C1). We also provide tooling centered around our metamodel,
which aims to aid in the creation of new DFDs, the import of already existing
DFD notations [23, 25], and the automated derivation and visualization of DFDs
from system architecture models like the PCM [21].

3.1 Unified Data Flow Diagram Metamodel

DFDs, as proposed by DeMarco [10], can be represented as DAGs showing the
data flow and processing in software systems. Nodes in these graphs represent
Ezxternal entities like users, Processes that can alter data, or Stores like databases,
connected by Flows of data. Seifermann et al. [30] extend the notation by
integrating several strands of work from different research groups into one unified
metamodel. Figure 2 shows our metamodel that aligns with the unified DFD
notation. It is split into the so-called Data Dictionary [10] and the DFD. The
Data Dictionary does not directly depend on a modeled system and can thus be
reused while DFD elements are specific to a certain system.

The central part of the unified notation is the representation of behavior and
characteristics as first-class entities. Labels represent characteristics in the DFD,
e.g., specifying the sensitivity of data, or the role of a user. They can either be
defined as a characteristic of a Node or as a characteristic of data flowing between
Nodes. Labels are grouped in LabelTypes. The Behavior of Nodes defines which
Labels flow from one Node to the next via the connecting Flow. It is made up of
Pins and Assignments. Input Pins represent required interfaces and output Pins
represent provided interfaces of nodes. If a node has a certain Behavior, it also
has the corresponding input and output Pins. A Flow connects two Nodes by
connecting an output Pin of the source Node to an input Pin of the destination
Node. Assignments define which labels flow out of a node. They reference input
and output Pins of their corresponding Behavior and aggregate all Labels of the
data flowing in through the input Pin. By evaluating a logical statement defined
in the assignment, it is determined how the incoming Labels are changed and
passed on via the referenced output Pins, e.g., the encryption of data can be
represented by an Assignment that adds an encrypted label to the flowing data.

For assignments, we define two subclasses: Assignment which contains a freely
definable logical Term that is evaluated to decide if a set of Labels is applied
to the output Pin. The ForwardingAssginment does not define a logical term
but specifies that all Labels that flow into the input pins are combined and



An Extensible Framework for Architecture-Based Data Flow Analysis 5

mput = 0.1 SIc
AbstractAssignment Pin Flow Process
output ! 0.15¢ dst
. * . i sre dst
Forwarding Input output : : ) | Store
Assignment ) ) L
} <+ Behavior I Node External
Assignment i
output
@ y1
Term TRUE | | NOT LabelType
N M
* 0.1
Label — Data Flow Di ;
. H t ;
BinaryOperator T D ata Flow Diagram
2 2 Label :
OR AND Reference

Fig. 2. Metamodel of data flow diagrams and data dictionaries.

directly forwarded to the output pin. The logical terms can be nested with
binary operators AND and OR and negated with NOT to express different
statements. LabelReferences are evaluated by checking if the referenced Label
flows into the node through one of the input pins of the Assignment. In this
case, the LabelReference evaluates to true, otherwise to false. The Assignments
of a Behavior are ordered. If a Behavior contains multiple Assignments, first all
ForwardingAssignments are evaluated and the Labels for each output Pin are
saved. Other Assignments add or remove labels for their specific output Pin,
depending on if their Term evaluates to true or false. Once all Assignments are
evaluated, the Labels flow to the next Node.

3.2 Manually Defining Data Flow Diagrams

Manual ways to define DFDs that go beyond drawing on either paper or in
software are limited. With our approach, we therefore offer a ready-to-use web
editor to manually define DFDs and means to import DFDs from other notations.

Our web-based editor uses a notation that is compatible with the unified
DFD notation from Figure 2. We also incorporated the concept of the data
dictionaries. The graphical syntax follows earlier definitions of DFDs [10, 30].
Figure 3 shows the editor with an exemplary DFD. The toolbar on the right
allows the creation of the three node types, data flow edges, and input and
output pins via drag and drop. The Label Types field allows the creation of label
types and corresponding labels. Created labels can be annotated to a node by
drag and drop. Double-clicking on an output pin opens an editor for specifying
assignments for the corresponding output pin. Assignments can be defined in
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Fig. 3. Screenshot of the web-based editor showing the DFD of a simplified online shop.

textual form using a DSL. The forward keyword is used to forward all labels of
the corresponding input. The set keyword is used to define an output label and
a logical term, similar to the DFD metamodel. Incoming data can be referenced
via the name of the incoming edge. Labels are referenced by label type and label
name. Assignments are automatically syntax-checked, and issues are reported to
the user. Additionally, our web editor supports highlighting in different colors and
providing tooltips for nodes. This can be used to, e.g., visualize analysis results
and provide additional information regarding identified security violations.

The manually created DFDs can be exported as JSON files. To integrate the
editor into our framework, we offer tooling that converts the JSON files of the
web editor into an instance of our DFD metamodel. The editor is implemented in
TypeScript and uses the open-source diagramming framework Eclipse Sprotty. To
ease the adoption of our approach, we additionally created extensible tooling for
generating instances of our DFD metamodel from various inputs. At the time of
writing, we support DFD notations in PlantUML and two different types of JSON
notations. To showcase this functionality, we have processed all security-enriched
DFDs of the microSecEnD dataset of Schneider et al. [25]. The resulting instances
of our DFD metamodel can be found in our dataset [7].

3.3 Automatically Deriving Data Flows from Architectural Models

Besides the manual modeling of DFDs, our framework also supports the au-
tomated extraction of data flows from the architecture description language
PCM [21]. We choose PCM as it has already been used by previous data flow
analysis approaches [29, 30]. However, the described concept of data flow extrac-
tion is also applicable to other modeling languages like UML.

Figure 4 shows a simplified PCM model of an online shop. It comprises
information about components (e.g., Online Shop), resources (e.g., Local Server),
deployment, usage, and system behavior as Service Effect Specification (SEFF)
[21]. The model is annotated with confidentiality-related labels that represent
characteristics of data storage like On Premise and data processing like the
encryption of userData in the SetVariableAction. In the lower half, we show the
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Fig. 4. Simplified PCM model of the online shop example and the corresponding data
flow with annotated node labels, data labels, and numbered transformation traces.

extracted data flow. We annotate numbers to represent the transformation traces
from PCM to DFD. Note, that this is only a simplified example; realistic software
systems contain more than one data flow and several hundred nodes [12].

Every action in the usage and system behavior is transformed into one DFD
node. This includes calls from the user, external calls between components, start
and end nodes, and internal data processing nodes. The nodes’ pins correspond
to the in and outgoing data types, e.g., userData. For every node, we perform
a lookup of node labels, which can be annotated, e.g., to resources, or usage
scenarios. An exemplary lookup in the PCM model goes from the encrypt node
to the Online Shop component via the deployment to the Local Server resource
which is annotated with On Premise. Additionally, we convert the modeled
system behavior to assignments of our DFD metamodel like the encryption of
userData can be expressed. The default case is the forwarding of labels.

The transformation considers all information that is relevant for security
analysis, e.g., data processing and characteristics. Other information is not
transformed, e.g., components and servers do not cause additional elements in
the DFD. This enables a system view from the perspective of the data which is
especially suitable for properties like confidentiality [29]. However, we store all
traces to the originating PCM elements during the transformation. This enables
the evaluation of advanced queries and constraints in the data flow analysis.

4 Data Flow Analysis

The original Prolog-based analysis of Seifermann et al. [30] realized the extraction
of data flows and propagation of labels by first transforming the PCM models to
an explicit DFD metamodel notation, then transforming the DFD elements to
Prolog. Data flow constraints were checked by defining Prolog queries that are
unique to the modeled system. As one DFD element with characteristic labels is
transformed into multiple Prolog statements, the Prolog code grows exponentially
with the model size. The exponential growth results in high demand for memory,
as the whole Prolog program needs to be fully loaded by the Prolog interpreter.
As the analysis is made up of multiple chained transformations and intermediate
model representations, the maintenance of the analysis was made even harder.
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Additionally, the approach of modeling data flows via logical statements in Prolog
can lead to increased runtimes: Due to the lazy evaluation of Prolog, the Prolog-
based analysis needs to reevaluate the characteristic labels of nodes for each
different constraint. For cases where very few nodes need to be evaluated, this
might be an advantage. However, in using the analysis, the use case rarely occurs.
For most constraints, like Role-based Access Control (RBAC), the node and data
characteristic labels need to be evaluated at each node.

Due to the aforementioned reasons, we chose to implement the data flow
analysis in Java and made the analysis more extensible as a central part of our
framework. In this section, we first provide a general overview of the architecture
of the analysis and provide a more detailed technical description of the extraction
of data flows into flow graphs, label propagation, and constraint definition.

4.1 Architecture Overview

Our data flow analysis follows the general architecture of the Prolog-based data
flow analysis of Seifermann et al. [30]. Figure 5 shows the analysis steps and their
sequential order as an activity diagram. Initially, the input models are loaded and
references between model elements are resolved. This is done automatically by
the Eclipse Modeling Framework (EMF). Using the information from the models
and annotations, we extract a set of transpose flow graphs (TFGs) that each
represents one unambiguous flow of data to a data sink in the modeled software
architecture, i.e., the transpose rooted directed graph, where the root is a single
data sink. The extraction starts at each identified data sink and follows the
modeled flow of data in the opposite direction. Afterward, we transpose the graph
to represent data flows between the vertices of the graph, so each TFG connects
one or multiple data sources with a single data sink. Each vertex represents one
individual data processing step. If the analysis encounters an ambiguity in the
data flow of the current element, it is resolved by creating copies of the current
TFG, for each of the possible flows. After all TFGs are extracted, we first evaluate
the node characteristic labels of the vertices. Afterward, we propagate the data
characteristic labels along the edges of the TFGs. Starting with the sink vertices,
we calculate the data characteristics flowing into the current vertex by recursively
evaluating the behaviors of the previous vertices in the TFG and tracing back the
results. How sinks are identified, how characteristic labels and vertex behavior
are specified, and how they are evaluated, is specific to the input model type,
e.g., DFD or PCM.

Using a set of fully propagated TFGs, data flow constraints can be checked.
For example, by comparing propagated data characteristics with specified node
characteristics, as described in Section 3.

.—)[ Flow graph extraction ]—)[ Label propagation ]—)[ Constraint checking ]—)@

Fig. 5. Analysis architecture as performed key activities.
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4.2 Flow Graph Extraction

We specify extraction logic for creating TFGs and specific subclasses of vertex
for each element that represents a data flow node in DFDs and PCM models.

For the DFDs described in Subsection 3.1, sinks are nodes that either have no
outgoing flows or nodes whose assignments for an output pin are independent of
all its input pins. Starting with these, the analysis performs a depth-first search
over the DFD and creates vertices for each node. Ambiguities in the data flow
exist if two or more flows point to the same input pin. To resolve the ambiguity,
the analysis creates a copy of the current TFG for each path to the pin.

In the PCM, sinks are represented by the last element in usage scenarios.
As the information regarding data flows is distributed across all PCM models,
the analysis has to iterate over them and resolve relationships between elements.
The analysis creates a vertex for all elements that can be annotated with a node
characteristic label, that specifies data flow behavior, or that joins the control
flow after a branch. The latter also creates a new TFG. Calls to Service Effect
Specifications (SEFFs) that are defined in interfaces are also handled separately:
For each call of these SEFFs, a calling and returning vertex is created, which
enclose the data flows, i.e., the vertices, which make up the SEFF internally.

4.3 Label Propagation

We individually propagate the characteristic labels for each TFG. Each vertex
references the input model element it represents and contains all logic regarding
the calculation of node and data characteristic labels. First, we calculate the node
characteristic labels and store them in the corresponding vertex. Starting from
the sink of the TFG, we calculate the data characteristic labels that represent
the output of the vertex and also store them in the corresponding vertex. This is
achieved by recursively calling the calculation logic of all previous vertices and
using the hereby calculated output labels as input. Note, that we do not consider
cycles in the propagation logic because TFGs represent DAGs.

For our DFD metamodel, the calculation of node characteristic labels is
trivial, as DFD nodes already contain these labels, and vertices directly represent
nodes. During the calculation of data characteristic labels, each vertex first
recursively evaluates its input, as described above, iterating the DFD nodes that
are connected by input pins. After the input has been evaluated the labels are
aggregated and saved as output of the corresponding output pin.

In PCM, node characteristic labels are directly annotated to PCM elements like
resource containers or usage scenarios. For the calculation of node characteristic
labels, the vertex iterates over the relationships of the PCM element it represents
and stores the annotated characteristic labels relevant to the vertex. For the
calculation of data characteristic labels, the PCM-specific vertices use the output
of the previous vertex in the TFG. In contrast to our DFDs, the PCM does
not support the definition of multiple individual data flows between two nodes
that each represents a separate flowing data variable. Rather, one flow between
two vertices in the TFG encapsulates all data flowing between two nodes. To
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evaluate the input, the vertices filter the variables with their data characteristics
to only include variables that are in the scope of the element represented by the
vertex. To calculate the output data characteristic labels, the vertex evaluates
stochastical expressions that are used in the PCM to define propagation behavior.

4.4 DSL-based Constraint Checking

To help in the specification and checking of constraints and queries, we define
a simple domain-specific language (DSL). We follow the general structure of
the DSL by Hahner et al. [15], which was defined for the original analysis of
Seifermann et al. [30] but simplify the approach by implementing it in Java and
fitting it to our new implementation of the analysis.
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Constraint sccondary> Selector abelselection
mary M Variable ||

[r LabelSelection
NameSelection I—

0..1 1

Conditi0n| |DataSelect0r| |VertexSelector|%| TypeSelection I—

Fig. 6. Metamodel showing the abstract syntax of the DSL for the data flow analysis.

Figure 6 shows the abstract syntax of our DSL. A Constraint is made up of primary
and secondary selectors, as well as an optional condition. Selectors are either
specific for data or vertices. VertexSelectors match the properties of the vertices
themselves, while DataSelectors match the propagated data characteristic labels
of each vertex. They contain a set of Selections that each represent a property. A
Selection can for example define a characteristic label or the name of a vertex or
data. The VariableLabelSelection does not reference a specific label but defines a
variable that contains all labels of a given label type that are present at either
the vertex or data. These variables can be compared in the Condition of the
constraint using set theory. Executing the constraint searches all TFGs in the
modeled software architecture using the flow graph extraction, propagates all
labels, and tests each vertex. The selectors return all vertices in a TFG that
match the properties defined by its selections. Constraints define a never flows
relationship between the primary DataSelector and secondary selectors. The
results of the primary and secondary selectors represent violations. If a condition
is defined, it is evaluated in addition. In this case, the violations are the results
of primary and secondary selectors, for which the condition evaluates to true.
Listing 1 demonstrates the concrete syntax of our DSL for the online shop
example from Subsection 3.2. We provide a builder to set up the analysis with
required inputs, which is simplified in line 1. We define a constraint using our
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var analysis = new DataFlowAnalysisBuilder().build(); // simplified

var constraint = new Constraint()
.ofData()
.withLabel("Sensitivity", "Personal')
.withoutLabel ("Encryption", "Encrypted'")
.neverFlows ()
.toVertex ()
.withLabel("Location", "offPremise")

10 .create();

© 00O Uk WN

12 var violations = constraint.execute(analysis);

Listing 1. Code snippet showing a DSL constraint for a simplified online shop.

DSL, starting in line 3. For our example, we specify that personal data (line 5)
that is not encrypted (line 6) should never flow to vertices that are off-premise of
the online shop (line 9). We execute the constraint in line 12. After the execution,
the variable violations contains a list of all constraint-violating vertices within the
modeled software architecture. If no violation has been found, the list is empty.

5 Analysis Framework Extensions

We demonstrate the extensibility of our framework with several related work [5,
6, 8, 9, 12, 14, 26, 35] that is either compatible to or already using our approach.

Boltz et al. [5, 6] showcase the extension of both modeling and analysis
for data protection and privacy. As shown in Figure 1, they provide a GDPR
metamodel and transformations from PCM and to and from our DFD metamodel.
Regarding the consideration of uncertainty within the software architectural
design and system environment, multiple black-box and white-box extensions
exist. Walter et al. [35] use the data flow analysis as black-box together with
PerOpteryx [20] for design space exploration regarding confidentiality under
structural uncertainty. Other white-box extensions analyze access control under
uncertainty [8] or trace confidentiality violations to related uncertainty sources
[14]. Our framework is also used in an uncertainty impact analysis [12] that
predicts the impact of uncertainty on confidentiality based on the extracted data
flows and a classification of uncertainty regarding confidentiality [13].

6 Evaluation

In our evaluation, we compare our new Java-based analysis to the Prolog-based
analysis of Seifermann et al. [30]. The primary goals of this evaluation were
to assess the accuracy and scalability of both analyses and to show that our
Java-based analysis not only maintains the core functionalities of the Prolog-
based analysis but also improves execution times and resource efficiency. Due to
the lack of support for our new DFD metamodel in the Prolog-based analysis,
our evaluation only focuses on PCM model instances. The evaluation of our
analysis with a focus on the DFD metamodel or the extensions from Section 5
are considered potential future work.
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6.1 Evaluation Design

To compare accuracy, we check whether both analyses correctly identify violations
across various case study-based PCM models. To ensure a good base for compar-
ison, we utilize the same case study-based models employed by Seifermann et al.
[30] for evaluating the accuracy of the Prolog-based approach. The selected case
studies use the default call return semantics of the current stable PCM version.
We executed both analyses with semantically equivalent constraint queries, using
the count of accurately identified violations as the evaluation metric.

To examine and compare scalability, we measured the full execution time of
both analyses while analyzing models of increasing size. To isolate the impact of
distinct model features on scalability, we generated individual minimal models
incrementally increasing the number of node characteristic labels, characteristic
label propagations, variable actions, or SEFF parameters. We chose these elements,
as they have the highest impact on either the length of Prolog code or Java
loop iterations, depending on the analysis. Each analysis was executed with a
constraint designed to detect a violation at each node, thus ensuring a worst-case
execution time scenario for both analyses. For each run, we increase the model
feature under consideration by the power of ten, starting at 10° and ending with
10°. We conducted each test 10 times and calculated the median execution time
to mitigate outliers or measurement anomalies. The analyses were performed
on a dedicated VM equipped with 4 AMD Opteron 8435 cores, 97 GB RAM,
running Debian 11 with OpenJDK 11/17.

6.2 Evaluation Results

In terms of accuracy, both analyses successfully identified the 42 violations present
in the case study-based models without returning any false positives. Table 1
shows the results of the accuracy evaluation and size of analyzed models. As
both analyses performed the same, we assume, that our Java-based analysis
is functionally equivalent to the Prolog-based analysis, when analyzing models
using the call return semantics of the PCM.

Case Study Prolog-based Java-based Components Labels
ContactSMS [18§] 10 violations 10 violations 3 4
FlightControl [30] 0 violations 0 violations 6 6
FriendMap [34] 0 violations 0 violations 5 12
Hospital [34] 0 violations 0 violations 4 12
ImageSharing [30] 0 violations 0 violations 1 9
PrivateTaxi [18] 0 violations 0 violations 13 20
TravelPlanner [18] 32 violations 32 violations 7 8
WebRTC [34] 0 violations 0 violations 20 12

Table 1. Accuracy results of both analyses compared and size of the models.
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Fig. 7. Scalability results of the Prolog-based analysis and the Java-based analysis.

Regarding scalability, we plotted the results of both analyses as line graphs for
each examined model feature, shown in Figure 7. Each graph contains data
points from both analyses—the Prolog-based analysis (in red) and the Java-based
analysis (in blue). Both axes are scaled logarithmically, with the x-axis showing
the increasing number of model elements and the y-axis the median execution
times in milliseconds. Our evaluation showed that the Prolog-based analysis
fails to complete a run for more than 1000 node characteristic labels or 100
for variable actions and SEFF parameters, due to high memory demand (see
Section 4). In our tests, the analysis ran in out of memory errors or crashed,
despite the substantial 97 GB of available memory. Regarding execution time
behavior, while the Prolog-based analysis displayed an exponential increase in
execution times or incomplete analysis runs for larger models, our Java-based
analysis maintained nearly constant execution times up to 10® elements for
most evaluated cases. When increasing the number of label propagations, the
execution time behavior of both analyses is similar. The exponential increase in
execution time of the Java-based analysis for larger models can be explained due
to inefficiencies in TFG finding, and overhead during label propagation.
Overall, despite the noted increase in execution times for larger models in
the Java-based analysis, we consider the time required in all scenarios feasible
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for design-time analyses. Our Java-based analysis, compared to the Prolog-based
analysis, offers more manageable execution times and the capability to analyze
large models, rendering it more suitable for real-world systems.

As parts of our evaluation are based around artificial scenarios and case studies,
we discuss the external, internal, and construct validity, as well as reliability of our
evaluation, as characterized by Runeson et al. [22]. Our main threat to external
validity is the limited generalizability due to the case study-based evaluation.
We try to mitigate this threat by using well-known case studies from literature
to evaluate and compare accuracy. For the evaluation of scalability, the models
were programmatically generated to only scale and focus on individual aspects of
the models and analysis. A threat to the internal validity of our evaluation of
scalability is that, due to the use of different technologies in both analyses, it
was not possible to use the exact same constraints. We mitigate this threat by
defining semantically equivalent constraints that find a violation at each node.
Our main threat to construct validity of our scalability evaluation is that it
does not comprehensively cover all aspects that influence the execution time. We
cannot fully mitigate this threat but have chosen the examined aspects based
on the execution logic of both analyses and a previous scalability evaluation
of Seifermann et al. [30]. To mitigate threats regarding the reliability of our
evaluation and to address the lack of replication packages in software architecture
research [19], we have published a data set [7]. The dataset contains all raw and
compiled code artifacts, as well as an Eclipse-based product that already includes
the plugins that make up the framework. The product can be used to model DFD
or PCM instances and analyze them using our data flow analysis. We also include
the raw results of our scalability evaluation and the used case study models.

7 Conclusion and Future Work

In this paper, we have presented our open and extensible framework for data flow
analysis. We have introduced a unified DFD metamodel as a primary software
architecture modeling artifact and input for our data flow analysis framework.
We have described means that we provide to manually define DFDs as well as
automatically derive them from the architecture description language PCM and
other third-party representations.

Based on the approach of Seifermann et al. [30], we have implemented a Java-
based data flow analysis. We described the general architecture of the analysis
and provided detailed technical descriptions of the core features. For the analysis,
we have defined an extensible intermediate representation of data flows, called
transpose flow graphs. We have described how data flows are extracted from input
models and how characteristic labels are propagated using our new intermediate
representation. To enable the definition of data flow constraints for the analysis,
we have defined a new domain-specific language.

We highlight the problems of the Prolog-based analysis of Seifermann et al.
[30] and show in our evaluation, that our Java-based analysis is functionally
equivalent to the Prolog-based analysis and can analyze larger system models.



An Extensible Framework for Architecture-Based Data Flow Analysis 15

In future work, we aim to further enhance the tooling that makes up our frame-
work. We also aim to further work on the various framework extensions, like the
data protection [6] and uncertainty analyses [14] and include more cooperation
points of our framework, e.g., with continuous security analysis [26]. Lastly, we
aim to comprehensively evaluate the overall approach of our framework.
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