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Abstract 

In the development and testing of highly automated systems, virtual environments such 

as physics engines and game development frameworks offer a suitable approach for the 

flexible design of test scenarios [1], [2]–[4]. This paper discusses the application of 

Unreal Engine 5® (UE5) in testing camera based automated driving functions of 

shunting operations, i.e., driving on sight. It presents the basic idea of mining training 

data sets for Computer Vision-based intelligences and highlights the potential of virtual 

reality in training adaptive algorithms for driving decision making in railroads. 

Keywords: Automated Driving, ATO, Virtual Tests, Unreal Engine, Training Data Set, 

Simulated Sensors, Machine Learning, Computer Vision 
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1 Introduction 

The shift of freight traffic to rail transport systems is further driven by the current policy 

strategy offensive [5]–[7]. In order to cope with the increasing transport volume and the 

simultaneous academization of professions, high-performance systems such as 

Automated Train Operation Systems (ATO) are needed to replace the function of the 

shunting driver as a driver model. Its feasibility in principle was already demonstrated at 

the Munich North shunting yard in 2017 [8]. Following this, currently the operational 

reliability and system safety is investigated. Therefore a holistic scenario-based validation 

method is under development in order to test these functionalities in a way that is 

appropriate to the application and relevant to the context [9]. A simulated railway 

environment is developed to independently serve as raw sensor data sources during both 

algorithm development and end-of-line testing. For a sustainable and comprehensive 

mapping of the eventuality spectrum, photorealistic virtual tests are pursued. The 

simulation environment (LAB) enables the generation of a huge variety of scenes, which 

is of interest in the context of collecting training data sets for machine learning purposes. 

Therefore, this paper first analyses the requirements on synthetically generated image 

data sets (virtual images) within a study on photorealism. Real comparison data sets of 

basic sensor architectures are collected during field operation and their simulatively 

emulated counterparts are reconstructed. These comparable data sets (data twins) are fed 

to different pre-trained object detection and classification algorithms. Their confidence is 

evaluated on both data sets. It is shown to what extent the image classification Confidence 

Score (CS) can be increased by means of model-like parameter variations. For the second 

stage an adaptive algorithm is trained on virtual images rendered using the rail specific 

UE5-LAB environment. The performance of the artificial intelligence-based object 

classification is then evaluated on the real world recordings.  

Due to increases in rendering performance and the flexibility in scenario and object 

design, the possibilities for data set creation surpassed limitations mentioned in the 

literature [10]. Furthermore, developments on frameworks of artificial intelligences, i.e. 

later versions of neural network-based CV systems are promising and lead to the central 

research question.  

Can virtual images from the virtually rendered railway environment (UE5-LAB) serve as 

a training dataset for a CV system that should operate in the real world and what are the 

requirements for the dataset? 
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2 State of research 

The integration of Virtual Reality (VR) into technical processes was demonstrated at the 

latest in 1993 with the development of a teleoperation system for space activities [11]. 

Today, the technology is not only used for human-machine-interfaces but also for 

machine-machine-interfaces, such as described in the following sections. 

2.1 Virtual Reality as a machine playground 

The migration of VR into the development processes of perception based autonomous 

systems is known as an established technology from parallel industries [2]–[4]. The basic 

adaptation of this approach to the railroad sector is demonstrated in [9]. Along a 

developed tool chain, a virtual closed-loop test bench was developed for scenario-based 

testing of highly automated shunting functions [12]. The structure of the simulative 

laboratory test bench for automated systems is shown in Figure 1. Equivalent to the 

Operational Design Domain (ODD, [13]), different test scenarios (a) are rendered using 

the UE5 framework (b). This rendering describes the graphical representation of each 

static and dynamic element of a scene in the field of view [14]. In accordance with the 

procedures in the field, each movement of the locomotive is initiated by a shunting task 

(c). Digital models of camera, localization and Light Detection and Ranging system 

(LiDAR) are integrated to synthesize the respective virtual sensor data stream in the first-

person perspective, post-processed and visualized in (d). From there the emulated data is 

forwarded via ethernet using the sensor specific User Datagram Protocol (UDP) streams. 

The receiver software element is the middleware of the autonomous System Under Test 

(SUT). This middleware, running either on laboratory (e) or the target hardware (f), serves 

as a publisher and subscriber infrastructure for the SUT. The exact data processing 

depends on the middleware software framework used. For instance, an autonomous 

system under development [15] is based on the Robot Operating System open source 

software libraries (ROS), another system currently under test is using the Eclipse zenoh™ 

protocol. 

Within a closed loop test bench, the sensor data is processed by the SUT (e,f), which in 

turn forwards the driving decision to the low-level control. Represented by a co-simulated 

model of the vehicle kinematics or dynamics (g), the low-level closes the loop by 

controlling the velocity of the vehicle inside the UE5 simulation. The feeding of simulated 

data sets, including an explicit shunting task, LiDAR point clouds, camera and position 
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data in the Universal Transverse Mercator (UTM) format, into automated systems has 

already been demonstrated in [9]. 

 

Figure 1: Simulative closed loop test bench for highly automated driving decision making 

as System under Test (SUT) 

2.2 Image based object classification 

For obstacle detection on railway tracks the diffusion of machine learning into the 

autonomous systems is outlined e.g. in [16], [17]. Training neural networks to detect and 

recognize static railroad signs is presented in [18] and extended to more complex elements 

such as light signals in [19]. Supervised learning methods require large data sets, whereof 

each has to be labelled in a manner appropriate to the topic. In [16], the architecture of 

the YOLOv3 convolutional neural network is applied. The network is trained for five 

different classes with 7 412 images and tested against 880 images. Hence, a massive data 

set is required for each class. [16] 

For the evaluation of the algorithm different metrics are considered. These start with the 

precision (P), which is defined as the ratio of true positives of a class to the number of 

images predicted to show this class. The Recall (R) as the ratio of the sum of true and 

false positive predictions to the total number of this class. The Intersection over Union 

(IoU) defines the common ratio of the detected bounding box and the labelled (true) 

bounding box. A threshold value for the IoU sets the minimum of congruence to be 

achieved before a classification is done. For each class this threshold can be varied over 

an interval [min,max]. This leads to a variation of the P and R values. The area below the 

P-R-curve gives the Average Precision (AP). The average of the AP@[min,max] over all 

classes gives the mean Average Precision (mAP@[min,max]). [20] 

In [14], the improvements in computer graphics and image rendering are investigated. 

The findings summarize a comparison between the human visual system and a CV system 
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and confirm an engineering benefit in the field of artificial intelligence and object 

classification. In [21] a CV-based steering angle calculation for automotive applications 

is presented and tested in CARLA and validated through performing in-field test. In [22], 

the application of Deep Learning as a new area of machine learning is understood as an 

approach to  

“achieve the imitation of the human brain” 

within the control of an aerial vehicle. In order of training the autonomous object 

detection, image classification and path planning algorithms, AirSim, based on Unreal 

Engine 4 ® is used to obtain the data set.  

In [10], it is stated, that virtually rendered images cannot represent a complete data set for 

an end-to-end CV based automatic steering angle control system in the real world. It is 

stated, that this is due to the lack of scenarios on the one hand, and the image quality on 

the other. In addition, precise manual labelling is time-consuming and therefore 

expensive. 

2.3 Photorealism as key to virtual testing 

Photorealism aims to make digital content resemble a photograph rather than mimic 

human vision. Based on that, it is not the human evaluation of the degree of photorealism 

that is required, but rather that one of CV systems. 

The essential elements for creating photorealistic renderings begin in the lighting. On 

Earth, the atmosphere modifies sunlight into varying daytime light. Without it, sunlight 

would be harsh, white, and unvarying. Shadows would be sharp and sunsets abrupt. The 

atmosphere is responsible for the dynamic, visually engaging daylight we experience. 

[23].  

The uncanny valley concept [24] represents a decrease in positive emotional responses to 

human-like characters that appear almost, but not completely, real [23]. Audiences 

appreciate non-realistic computer graphics characters like those in Toy Story [25], but 

may feel disturbed by characters that closely mimic humans yet possess an 

indistinguishable non-human quality. The uncanny valley applies not only to characters 

but also to animated or static elements and entire environments. Although inanimate 

objects do not evoke the same emotional response, a subtler uncanny feeling occurs when 

digital images approach photorealism yet lack certain believability.  
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The challenge is to identify and address the elusive factors that impact photorealism to 

overcome the uncanny valley. The size of the object in the environment should be 

accurate. [23]  

3 Evaluating photorealism 

With the goal of migrating UE5 from the entertainment industry into the engineering 

process of safety-relevant driving decision-making, the degree of reality simulation 

becomes relevant. To ensure that both virtually performed tests and virtual images 

provide reliable and meaningful information, the similarity of the data twins (real/virtual) 

must be demonstrated. The aim of this chapter, the first step of this research, is to answer 

the question which elements and settings of a simulated image are crucial for a CV system 

and which parameters can be used to influence them. 

Two different cameras were used for in-field image recording. The according parameters 

are listed in Table 1. To create realistic and comparable virtual images, the specific 

characteristics of the cameras were considered for the digital models inside UE5.  

Table 1: Camera and lens specifications 

Parameter Basler acA4024-29 μm 

with a KOWA LM8JC3M2  

Sony HDR-HZ1 

Resolution in Megapixel 12.2  11.9  

Resolution H x V in Pixel 4 024 x 3 036 4 608 x 2 592 

Sensor Format in “ 1/1.7 1/2.3 

Framerate in fps 13.4  29.97 

Mono/ Colour Black/ White RGB 

Lens focal length in mm 8 17.1 

f-number F1.4 F2.8 

3.1 Method 

For the object detection, trainable neural networks were used due to their high accuracy 

and adaptability [26]. The algorithms Faster R-CNN, YOLO, SSD, and CenterNet were 

employed. These algorithms were selected for their ease of implementation using the 
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open-source machine learning framework Apache MXNet and the GluonCV toolkit, which 

simplify the development of CV-object detection and classification systems. 

The models were trained and tested for the classes human and train of the COCO dataset 

[27], a comprehensive object detection, segmentation, and captioning dataset. The 

performances of the models were evaluated using CSs, which measure the likelihood that 

the detected object is genuinely the object of interest.  

The CS is defined as the product of the objectness score and the class probability of an 

object detection algorithm. Finally, the visual aspects of the surroundings were improved 

based on the keys to photorealism discussed in Chapter 2 and further evaluations were 

conducted. The correct dimensioning for each major object in the simulation was 

considered. Objects such as trains and signals were first designed in CAD and then 

adjusted in Blender before being imported to UE5. The general test and improvement 

loop, shown in Figure 2, is run four times.  

 

Figure 2: Proposed improvement loop for comparing captured and virtually rendered 

images 

 

The research on photorealism was divided into two phases. Phase one aimed to study the 

basic suitability of the proposed object detection method, while phase two focused on 

examining the level of photorealism and its effect on the CSs. 

To identify potential differences in CSs, first the scores on generated images were 

compared with those on similar real-world images. This step was crucial in order to 

confirm the viability of the proposed method for comparing the two image sets.  

For the human-class, Faster R-CNN showed minimal differences in the CS between real 

and virtual images, with a mean deviation in thousandths. YOLO on the other hand 

showed slightly negative average differences, indicating that its CS on virtual humans is 

in general higher than on the real-world image. Different categories of wagons were 

tested. The mean difference using Faster R-CNN is ranged between -0.02 and -0.06, 

meaning the CS on virtual images with wagons is higher compared to the real image. For 
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the same classes, YOLO showed a positive mean difference (0.03-0.08), suggesting a 

lower CS for virtual images. Out of 30 images, 16 resulted in a CS difference of less than 

6 %. Excluding the undetected images, the measurable difference in CS between real-

world and virtual images was 40 %. Due to this noticeable deviation two additional 

algorithms, i.e. Single Shot Detector (SSD) and CenterNet were consulted for the 

evaluation. The mean of all four algorithms was calculated and employed as a metric in 

phase two. 

For phase two, images captured during in-field recording drives were considered. The test 

data sets include the presence of humans, steel sheets, dwarf signals, crows and different 

types of wagons. Four virtual images were considered during each test, using both camera 

models in two distinct camera positions (0° and 30° local rotation). The different camera 

positions were used to minimize the influence of using only one object orientation, such 

as only the front perspective. A test was conducted to assess the impact of different 

materials on the confidence score of the object detection algorithm for the wagons Eanos-

x 056 and Tads 961. Both real-world and virtual images were compared using various 

materials applied to the wagons. Four types of materials were used in this study: Basic, 

Automotive, Imperfection and Megascan, each of which differs in the level of detail and 

thus appearance. The comparison of the according confidence scores for both cameras in 

each position is listed in Table 2. 

Table 2: Comparison of the mean confidence score of four object detection algorithms 

for an Eanos-x 056 wagon with different materials, cameras and perspectives 

 Real-world Basic Automotive Imperfection Megascan 

Sony,  

Position 1      

Metric 0.85 0.36 0.29 0.75 0.28 

Sony,  

Position 2      

Metric 0.66 0.47 0.67 0.85 0.45 

Basler, 

Position 1      

Metric 0.85 0.36 0.24 0.79 0.19 
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Basler, 

Position 2      

Metric 0.66 0.78 0.92 0.92 0.83 

Overall 

mean 

0.76 0.49 0.53 0.83 0.44 

 

The overall mean provides the average metric value for each material type across both 

camera models and positions. The imperfection material showed the highest overall mean 

(0.83), indicating the best average performance among the materials. In contrast, the 

Megascans material showed the lowest overall mean (0.44), indicating the poorest 

average performance. For the Tads 961 wagon the highest overall mean CS of 0.70 was 

achieved when using the Megascans material, indicating the best performance among all 

tested materials. Conversely, the imperfection material yielded the lowest overall mean 

CS (0.53), suggesting the weakest performance on average. It is essential to recognize 

that both materials were downloaded from Megascan, but the material types and textures 

used differed. The reason for the scatter is still the subject of ongoing research. The basic 

and automotive materials demonstrated similar mean CSs, ranging from 0.49 to 0.59.  

The subsequent test cases evaluated the impact of surrounding changes on the object 

classification algorithms. Four different environments were designed, which included the 

presence of a bush, the use of different grass materials, placing the object on grass without 

a rail track, and positioning the wagon on a road. It was observed that the presence of a 

bush caused the shadow of the wagon to appear larger. Using the starter content grass 

material resulted in lower photorealism in the environment, as the grass lacked 

imperfections and appeared excessively green. Positioning the wagon on grass without a 

rail track led to a reduced CS, as trains are typically found on rail tracks. Further scenarios 

inspected the effect of changing materials of objects or objects themselves in the 

background. The impact of altering the material of a background building was 

investigated. The results showed that changing the background material had a minimal 

effect on the CS, with changes ranging between -1% to 2%. Inspection of the effect of 

daytime and the according lighting (sunlight, dusk, night, lamp illumination during night) 

showed, that the period directly after sunset had the lowest mean CS. This was due to the 

absence of sunlight and lamps were not turned on. After the lamps were turned on, the 

mean CS increased and ranged from 0.43 to 0.59. As the sun becomes visible the mean 

CS increased to a range of 0.84-0.89. 
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In Phase one, pre-trained neural networks showed similar results on real and virtual 

images, with a resulting detection rate of 97%. In Phase two, the virtual images resulted 

in a lower detection rate: out of 316 total images, 90 objects remained undetected yielding 

a 72% detection rate. It is also to consider that some images in Phase two were expected 

to be undetected, such as wagons occluded by bushes or wagons on roads. 

3.2 Conclusion on photorealism 

The study on photorealism should highlight the potential benefits of virtual training 

datasets and evaluate whether their application is advantageous for the current use case, 

such as automated shunting. As a representation of the autonomous system, we used four 

object detection algorithms: Faster R-CNN, YOLOv3, SSD, and CenterNet, which were 

trained on real-world images from the COCO dataset. Our method however did not 

measure the photorealism of an image directly as it was not the objective of the study. 

Instead, it relied on the CSs of object detection algorithms to compare virtual images to 

similar real-world images. 

The impact of the surrounding and lighting was categorized. Overall, the findings suggest 

that CV systems are able to detect objects known from the real world in rendered images. 

Furthermore, it is shown, that material selection can significantly influence the 

performance of object detection algorithms. The study concludes with the motivation to 

reverse the methodical approach and design a virtual training dataset for a supervised 

learning algorithm for real-world use. 

4 Design of a virtual image training data set for in-field object 

classification 

The next step was to replace the generic COCO dataset with a training dataset specific to 

a particular use case. Therefore, virtual images obtained from the photorealistic 

simulation environment were used. This data set aims to serve for the training of a deep 

learning algorithm for signal detection and classification. The validity of the virtual 

training data is shown using the example of the dwarf signal, as shown in Figure 3, in 

each case for white (Sh1, go) and red (Hp0, stop). Following up on the research presented 

in [20] where the YOLOv5 deep network is proposed for object detection and recognition, 

this research uses the improved later version YOLOv8.  
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Figure 3: Dwarf signal, Hp0 red (left) and Sh1 white (right) 

 

In this section, initially the requirements on training neural networks are outlined. The 

chosen network is trained in two stages, in order to demonstrate the impact of the scenario 

design. Afterwards the integration of the classifier into the virtual test bench is shown and 

the live object classification is demonstrated. In the final step, recordings from the field 

are used to test the classifier on 345 real world images for both detail levels presented in 

the sections 4.2 and 4.3 respectively.  

4.1 Requirements on training data sets and general processing 

According to the suggestions of the developer, the later, advanced data set was created 

along the following instructions. First and foremost, appropriate diversity is required. For 

instance, the weather distribution observed in the field is relevant. For this purpose, the 

weather report of the target marshalling yard recorded during the last years was 

considered. In addition, consistency with the application scenario is required. This means 

that the operation environment of the CV system was designed with typical elements such 

as tracks, rail vehicles, buildings and people wearing high-visibility vests. Third, class 

balance is required. This means that training data of at least similar quantity has to be 

available for each respective class to be recognized. 

The training data set was exported from UE5. Before feeding the images to the YOLOv8 

algorithm, the classes were labelled. For this purpose, the software tool Make Sense AI 

was used. Every class appearing in a single image was framed by a bounding box, 

designed as tight as possible and assigned to the corresponding class. 

In order to increase the variety of the images and to simulate disturbances a step called 

data augmentation was carried out using the python library albumentations. The 

augmentation was reviewed using the pybboxes library. The images were saved in .jpeg 

format along with the according label document containing the coordinates of the 

bounding boxes and the class description in a .txt file, both in the same folder. The 

augmentation techniques used are rotation (between -30° and +30°), brightness (between 
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-15% and +15%), blur (up to 5 pixels) and noise (up to 8% of pixels). After sorting out 

irrelevant images, the data augmentation more than doubled the data set. 

4.2 Model One – Simple data set 

The first training data set was set up with 800 images in a variety of weather and lighting 

conditions, such as shown in Figure 4. The data set was extended using the described data 

augmentation techniques to 1 916 images in sum. The elements used include academic 

examples and do not represent the railroad guidelines conformity yet. In this stage 

elements from the periphery such as buildings, vehicles etc. were not considered. 

For the training process the initial (lr0) and final (lr1) learning rate were set to the default 

value of 0.01 each. The image size was set to 640 x 640 pixels, the number of images per 

batch to two, IoU threshold to 0.5 and the patience to 50. The model used is the large one, 

i.e. Yolov8l.pt. The images were split for training/test/validation purpose as 80/10/10. 

The entire training took 424 iterations, processed in about 20 hours using a Nvidia Titan 

Xp graphics card. After finishing the training, the mAP value is 0.92. The bounding box 

loss is 0.41 and class loss is 0.25. A low box loss value indicates a high IoU. 

 

Figure 4: Excerpt of the virtual training images 

4.3 Model Two – Advanced data set 

In the second stage of testing the integration of YOLO into the object detection and 

classification process, the training data set was set up closer to the requirements given in 

section 4.1. In order to measure the impact of the training data, the settings of the training 

process were maintained.  

The data set from model one (section 4.2) was extended to 3 897 images (1 655 without 

the augmentation) focusing on the following details. The simulation of different 

surroundings, regarding different illumination conditions, camera perspectives and 

angles, realistic scenarios including locomotives, trees and florals, terrain, rail track 

colors etc. such as shown in Figure 5 was applied.  
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Figure 5: Examples of a coherent and realistic environment for a more advanced and 

comprehensive training data set 

 

Compared to the first training, the advanced training data set resulted in a higher accuracy 

of the classificatory, shown in Figure 6. The mAP value increased from 0.92 to 0.95, the 

bounding box loss decreased from 0.41 to 0.38 and the class loss decreased from 0.25 to 

0.22, proving that the extension of the dataset has a positive effect on the accuracy of the 

model. The abbreviations (train and val) in Figure 6 refer to the data set used for training 

and validation during the training process. The graphs show typical asymptotic behavior. 

For the visualization of the training progress the training iterations, the so-called epochs, 

are plotted on the abscissa, the respective value on the ordinate. On the left side the 

improvement on the IoU (decreasing box loss) is shown on both, training (above) and 

validation data (below). A similar but faster evolution is observed for the right 

identification of a certain class in an image (decrease of cls_loss). Furthermore the 

evolution of the metrics P, Rm mAP@50 as well as the mAP@[50;95] is printed over the 

epochs. It can be seen, that the quality of the chosen neural network quickly improved in 

the beginning and came to a saturation after a few iterations. When comparing the 

evolution of the mAP50 and the mAP@[50;95] it becomes clear, that the higher 

confidences coming in line with higher IoU thresholds take more training iterations.  

 

Figure 6: Result of the second training run of Yolov8 using virtual images only 
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4.4 Integration of YOLO into the virtual test bench 

After completing the training, the virtual test bench, presented in section 2.1, was used to 

validate and demonstrate the CV-based object detection and classification. Therefore, the 

images captured by the camera model inside UE5 were streamed out by UDP to a local 

PC running a Python script. After setting up the network interface the packages are 

reassembled to images in the RGBA format. These were then converted into the RGB 

format and fed frame by frame to the CV system based on YOLOv8. The script live draws 

a bounding box around detected objects and classifies them as either red or white dwarf 

signal and annotates the according CS. This gives a simple approach to live monitor the 

decision making of artificial intelligences in driving decision making. 

4.5 Testing results on real data 

The main intension of this research was to verify a neural network trained on virtual data 

for object detection and classification on real-world data. Therefore, 345 images captured 

during in-field recordings were considered. The results of the comparatively high scores 

for both virtual test runs of the earlier sections can serve as a reference metric. In Table 

3, the results for both algorithms, based on the simple (Model One) and advanced data 

set (Model Two) are listed. Thereby, the metrics are given for both, virtually generated 

images from the LAB environment and the real-world validation images from the FIELD. 

The table also includes the results of a further experimental model trained on the exact 

same parameters and requirements as in Test Two, but using a higher resolution of the 

images (1 280 x 1 280 Pixel). 

Table 3: Results of the neural network algorithms trained on virtual images and tested 

on real world data (FIELD) and generated virtual data (LAB) 

Model mP@0.5 mAP@[0.5, 

0.95] 

mR@0.5 Accuracy  F1 

Score 

Inference 

time in ms 

One (LAB) 0.995 0.92 1.00 1.00 1.00 11.6 

One (FIELD) 0.593 0.3 0.474 0.424 0.56 11.6 

Two (LAB) 0.995 0.943 0.999 0.99 0.99 11.6 

Two (FIELD) 0.968 0.705 0.951 0.93 0.96 11.6 

Exp. (LAB) 0.994 0.941 0.998 0.99 0.99 43.1 
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Exp. (FIELD) 0.912 0.668 0.856 0.899 0.87 43.1 

 

The simple training data set of Model One led to very good results (scores > 0.9) when 

tested on virtual tracks in the LAB environment. The scenes were simple and no other 

objects included but the track and the signals. When applying the same CV model to the 

FIELD data, it becomes obvious, that the confidences are comparatively low with an mAP 

of about 30 %. Model Two, included a data set with more details on the railway 

environment. The impact on the mAP on LAB data is recordable, the improvement on 

FIELD data more than doubled the score to over 70 %. Furthermore, the mean recall more 

than doubled from Model One to Two on FIELD images. The improvement of the system 

confidence can also be seen in the confusion matrix, shown in Figure 7. 

 

Figure 7: Confusion matrix. Based on the training data set of test one (left) and test two 

(right). Validated on the same real-world data. 

 

The confusion matrix represents the actual true class on the abscissa, and the predicted 

class on the ordinate. In Figure 7, the results are presented for the CNN-based CV-System 

trained on the simple data set (left) and on the advanced data set (right). The improvement 

on the CV system trained on the advanced data set is indicated by the high scores of 

true/true values. Using model One, only 40 % of Hp0 signals were correctly detected, 

whereas model Two showed 94 % correct results on that class. Wrong predictions of 60 

% with model One lowered to a tenth of that with model Two. The Sh1 signal was 

correctly detected in 55 % of cases using model One and increased to 97 % with model 

Two. Furthermore, it can be noted, that less false positives were detected with model 

Two. Compared to the virtual control quantity, the mAP on real data is still lower but 

improvements on the training data set promise a further enhancement of the YOLO 
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classifier. At least the advanced training data set showed CSs of above 87% which is 

estimated as good. 

5 Conclusions and future work 

In this paper the utilization of convolutional neural networks for railway specific objects 

was demonstrated. It is shown that the COCO training data gives a point to start research 

about virtual training data for field applications. Furthermore, extracting training data 

from the scenario simulator as described in [9],[12] is demonstrated. It is shown, that an 

improvement on background details in the training data set has a positive impact on the 

classification and the accompanied CS. The integration of YOLO as an object 

classification algorithm into the virtual test bench is demonstrated. Furthermore, it is 

shown, that virtually rendered training data can be used for object detection and 

classification in the field.  

Future work will investigate decisive details in order to improve the mAP score. Parallelly 

the approach is rolled out to other sensors such as LiDARs. For a more efficient training 

the data generation including the required and appropriate labelling is examined with 

regard to its automatability. The research team is aiming to develop a school bench for 

autonomous systems. 
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Assignment of thematic focus: The proposed contribution topic is basically assigned to 

highly automated (assisted/automated/autonomous - 3A) rail freight transport, but is 

transferable to all automatable track-guided driving processes on sight. The presented 

virtual or digital tools are already used for (simulated) automated dispatching and can 

provide valuable insights in incident management. The goal of the work is to increase 

the competitiveness of rail freight transport and contributes to the focus on mobility 

management in perspective. 
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