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1. Introduction

Compared to other plastic deformation modes, simple shear is
characterized by certain specific features.[1] They manifest them-
selves in the group properties of the geometric transformation
associated with simple shear and in the effect it has on
materials.[2–4] This is why simple shear, which is intrinsic in pro-
cesses such as high-pressure torsion,[5–7] equal channel angular
pressing,[8] and twist extrusion,[9] is widely used to form ultrafine-
grained structures in metals and alloys and to create new

materials by processing powders or layered
materials.[10] In the latter case, the desired
results are achieved owing to enhancement
of diffusion and convective mass transfer
through plastic deformation by simple
shear.[11–13] This enhancement leads to
active mixing of the constituent compo-
nents and the induction of physicochemi-
cal transformations in the deforming
sample. Similarly, simple shear induces
joining of metals and the formation of
new phases in the contact zone under
dry friction and wear conditions.[14–16] An

interesting application could be the production of various alloys
by processing elemental powders using the high-pressure torsion
(HPT) method.[17–19] The seminal work of the research group of
Reinhard Pippan on the use of HPT,[20,21] and, notably, their
studies on what can be called mechanical synthesis of powders
for creating new materials,[22,23] is a strong motivation for devel-
oping modeling approaches to their experimental findings.

Mathematical modeling of processes occurring when metals
are joined by simple shear is greatly complicated by the pluridis-
ciplinary nature of the phenomenon. We believe that the concept
of a “third body”, which has been developed in works on friction
and wear, can provide a useful modeling tool.[24–26] The “third
body” (TBody) associated with the contact zone is regarded as
a separate entity, which includes rough surfaces, thin surface
layers of the materials engaged in shear, as well as films, lubri-
cants, contaminants, gases, and wear products, located on the
surfaces in contact and in the pores entrapped by them. In this
concept, friction at the boundary between the two bodies is asso-
ciated with the shear resistance of the TBody. Singling out the
contact zone as a separate object makes it possible to address
the mentioned pluridisciplinary problems.[24]

We see the TBody approach as a practical vehicle to construct-
ing mathematical models of metal joining that account for the
formation of the structure and properties of a TBody during
its plastic deformation under pressure. There are several
TBody-based models devised for research in friction and
wear.[25–29] They make it possible to analyze the processes occur-
ring in the friction zone, identify characteristic patterns in the
genesis of the friction force, and find its dependence on external
factors, including pressure, sliding speed, and temperature. That
is why we adopt the promising TBody approach in the present
work.

It should be mentioned that further methods similar in spirit
to the TBody concept have been put forward in the past.
Specifically, the cohesive zone models should be referred to as
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being cognate with the TBody ones.[30,31] Another group of mod-
els focus on the thermal effects in frictional sliding and connect-
ing the thermomechanical behavior of the bulk material with the
local processes of asperity shearing within a near surface
layer.[32–34] We mention these models here as in some ways
the asperity shear-affected near-surface layer introduced there
is akin to a “third body” of interest.

In the present article, we pose the problem of describing metal
joining under simple shear in terms of the “third body” concept,
propose and analyze a continuum model for a TBody, and illus-
trate the efficacy of the approach by way of example. According to
the model proposed, failure of the bond occurs when irreversible
deformation of the TBody sets in. The strength of the bond in a
given stress state is determined by the yield locus of the TBody in
the stress space. Notably, this approach allows solving coupled
problems. Indeed, it takes into account the influence of the
mechanical properties of the bond created by plastic deformation
on the character of the plastic flow of the composite structure in
which it has been formed in the first place. The article introduces
an experimental approach and methodology for bonding metals
through shear under pressure. This method is proposed to elu-
cidate the parameters associated with the TBody model.

2. Posing the Problem

Figure 1a shows the schematics of a contact zone between two
solid bodies, which in a continuum approach is represented by a
thin layer of some “equivalent” material—a “third body” intro-
duced above (Figure 1b). Equivalence, in this case, means that
in terms of deformation and failure, the TBody imitates the
behavior of the real contact zone, namely: (i) the rheology of
the TBody describes the relation between the stresses in the bond
and the deformation of the composite, defined by the relative dis-
placement of its constituents and (ii) the limit state of the TBody
corresponds to the failure of the bond. Henceforth, the limit state
of a TBody is associated with the onset of plastic flow therein.

The TBody includes thin surface layers involved in shear
deformation. Their thickness is of the order of the height of
the surface roughness peaks, h � ðRz1 þ Rz2Þ, where h is the
thickness of the TBody, and Rz1 and Rz2 denote the average
height of the peaks (asperities) associated with the surface rough-
ness of the respective metal.

The main assumptions we are going to make in this article
when constructing a continuum TBody model are summarized
later. They are not inherent to the approach and are used just to
enable an illustration of some of the capabilities of the model as
exemplified by the model thus specified.

Considered as a continuum, the TBody is characterized by a
stress–strain state, which, following the mathematical theory of
plasticity,[35] is described by the stress tensor σij and the strain
rate tensor ėijði, j ¼ 1, 2, 3Þ. We further assume that the TBody
is an isotropic material. Certainly, this is a strong assumption,
but even under this restrictive condition, interesting and useful
results can be obtained. This is suggested by the success of apply-
ing the classical plasticity theory to calculations of various pro-
cesses of cold forming of metals under pressure. In these
processes, the material is either anisotropic initially or acquires
anisotropy as a result of deformation. While the plasticity theory
disregards this factor, it still provides a qualitatively correct
description of many forming processes and even yields quanti-
tative estimates to a first approximation. The theoretical predic-
tions can be improved if the model parameters are considered as
effective ones and are determined for conditions close to the
experiment.

An important attribute of the metal contact zone is the pore
space that is not filled with solid material. To characterize it, a
standard void volume parameter is introduced,[36] which should
be reflected in the model. With the continuum approach, the
presence of voids in the material will be accounted for by models
devised for powders and porous bodies. To that end, the porosity
parameter θ is introduced, which is defined as the volume of
voids per unit volume of material. According to the stereological
relations,[37] in the case of isotropy, the value of θ is equal to the
specific empty area: the area of empty regions per unit area in a
cross section of the material. It follows that in the TBody model,
the value ð1� θÞ corresponds to the specific area of actual contact
of the rough surfaces.

Porosity is one of the internal variables. In the continuum
approach, the internal variables are descriptors of the inner struc-
ture of the material. Their evolution represents the processes of
its restructuring.[38] In general, internal variables depend on the
deformation history of the material. Specifically, the processes
leading to the formation and degradation of a cold-welded com-
posite structure should also be reflected in the TBody model in
terms of the evolution of the corresponding internal variables.

The principles of building a continuum model of powder
materials and some examples of such models are known.[39–41]

Many of them are based on the plasticity condition

f ðσij, ξkÞ ¼ 0 (1)

and the associated flow rule

ėij ¼ λ
∂f
∂σij

(2)

where f is the loading function, λ is an undefined scalar multi-
plier, and ξk is the vector of internal variables.

For isotropic materials, the loading function depends on the
stress tensor invariants (as a rule, only on the first two). In this
case, the plasticity condition (1) has the form

f ðσ, τ; ξkÞ ¼ 0 (3)

with σ ¼ 1
3 σijδij, τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσij � σδijÞðσij � σδijÞ

q
and δij being the

Kronecker symbol.

Figure 1. Posing the problem for the exemplary case of cold welding based
on the TBody concept: a) sketch of the contact zone between two metals
and b) schematics of the TBody approach.
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Then it follows from (2)

ė ¼ λ
∂f
∂σ

(4)

γ̇ ¼ λ
∂f
∂τ

(5)

with ė ¼ ėijδij, γ̇ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ėij � 1

3 ėδij
� �

ėij � 1
3 ėδij

� �q
.

The closed curve (3) on the plane ðσ, τÞ represents the yield
locus of the powder body, and relations (4) and (5) show that
the strain rate vector ðė, γ̇Þ is orthogonal to it.

The yield locus limits a certain convex region Ω on the plane
ðσ, τÞ. All points mapping the stressed state of the powder body
belong to Ω, where f < 0, and its boundary, where f ¼ 0.
Outside the region Ω, f > 0.

Considering the relation

ė ¼ θ̇=ð1� θÞ (6)

between the rate of variation of porosity θ̇ and the rate of the vol-
ume variation ė and using Equation (4) we arrive the kinetic equa-
tion for porosity

θ̇

1� θ
¼ λ

∂f
∂σ

(7)

The complete set of TBody equations includes, along with the
constitutive equations, a set of equations of motion, the heat con-
duction equation, and the kinetic equations for the internal var-
iables. To solve this set of equations, the sticking conditions and
the continuity conditions for normal and tangential stresses are
specified at the boundaries of the TBody.

3. Constitutive Equations for the TBody and Their
Analysis

In this section, the constitutive relations for the TBody in a cold
welding (CW) model are proposed and analyzed, based on the
loading function,[42] which has already been used in TBody
modeling contact friction in metal forming,[28] as well as in
the studies of deformation and fracture of solids and an analysis
of powder shearing under pressure.[43–45] The main difference of
the model outlined below from the mentioned studies is that it
accounts for the dependence of its parameters on the deforma-
tion history of the material.[28,42–45] It is this crucial feature that
enables a description of the onset of deformation-induced join-
ing and the evolution of the properties of the weld joint. The load-
ing function of a powder body has the form[42]

f ¼ σ2

ψðθÞ þ
τ2

φðθÞ � ð1� θÞk2ðσÞ (8)

where ψðθÞ and φðθÞ are monotonic functions of the relative
porosity θ entering the plasticity conditions for porous or powder
bodies,[36–38] which satisfy the limit relations

lim
θ!0

ψðθÞ ! ∞, lim
θ!0

φðθÞ ! 1 (9)

kðσÞ ¼
ffiffiffi
2

p
KðσÞ (10)

where KðσÞ is the shear yield stress of the compact powder body
(figuratively, its “skeleton”).

At θ ¼ 0, the plasticity condition (3) corresponding to the load-
ing function (9) is reduced to the generalized von Mises plasticity
condition[32]

σu ¼
ffiffiffi
3

p
KðσÞ (11)

where σu ¼ ffiffiffiffiffiffiffiffi
3=2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσij � σδijÞðσij � σδijÞ

q
¼ ffiffiffiffiffiffiffiffi

3=2
p

τ.

For the functions ψðθÞ and φðθÞ, the theoretical relations have
been widely adopted[46]

ψðθÞ ¼ 2
3
ð1� θÞ3

θ
, φðθÞ ¼ ð1� θÞ2 (12)

along with the formulas

ψðθÞ ¼ ð1� θÞ2n�1

6aθm
, φðθÞ ¼ ð1� θÞ2n�1 (13)

with parameters a,m, n to be determined experimentally.[47]

The dependence kðσÞ was presented in the piecewise-linear
form[42]

kðσÞ ¼
�
k0 � ασ, at 0 ≤ k0 � ασ ≤ k1
k1, at k0 � ασ > k1

(14)

where k0 and k1 denote the adhesion coefficients and α is the
coefficient of friction of the individual material.

From Equation (10) it follows that, with the accuracy of a con-
stant coefficient, the quantity k0 represents the shear yield stress
of the compact powder body at zero pressure, and k1 is the limit
value of this characteristic at high pressure.

The yield loci of the compact powder body for the loading
functions given by Equation (8) and (14) are depicted in
Figure 2, where dimensionless coordinates (all stresses being
normalized by k1) are used. These yield loci satisfy the equation

σ2

ψðθÞ þ
τ2

φðθÞ ¼ ð1� θÞk2ðσÞ (15)

Yield loci offer the possibility to obtain some useful results in a
clear visual way and without calculations, cf., e.g.[35,39] In partic-
ular, irreversible deformation of the material stems only from the

Figure 2. Yield loci of a compact powder body with the loading function
defined by Equation (8) and (14). In the calculation it was assumed that
i) the functions ψðθÞ and φðθÞ are defined by formulas (12); The following
parameter values were used: k0 ¼ 0.1, k1 ¼ 1, α ¼ 0.5, θ1 ¼ 0.20,
θ2 ¼ 0.15, θ3 ¼ 0.10. The arrows on the yield locus 3 show the directions
of the strain rate vector (ė, γ̇) at points A and B.
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stress states, which in the (σ, τ) coordinates are mapped on the
points located on the yield locus. Those stress states that are
mapped on the points located inside a yield locus give rise to elas-
tic deformation only. The deformed state of the materials is rep-
resented by the plastic strain rate vector. Its origin corresponds to
the point corresponding to the stress state, and its components
are given by (e,

:
γ̇). To that end, a coordinate system (e,

:
γ̇) is intro-

duced whose axes are aligned with those of the coordinate system
(σ, τ). As no plastic deformation occurs within the region con-
fined by the yield locus, plastic deformation rate vectors associ-
ated with it are zero. Nonzero vectors (e,

:
γ̇) correspond only to

stress states on the yield locus. If the projection of such a vector
on the horizontal axis is positive, the material’s porosity is
increased upon straining, while in the opposite case it is
decreased.

As noted in the previous section, the strain rate vector (ė, γ̇) is
orthogonal to the yield locus. This implies fundamentally differ-
ent behavior of the TBody in the areas of the yield locus located to
the left and to the right of its maximum point σm. Indeed, while
at point A located to the left of σm, the projection on the abscissa
is ė < 0 and the porosity of the TBody decreases with deforma-
tion, at point B located to the right of σm, one has ė > 0 and the
porosity of the TBody increases (see Figure 2). Thus, at pressures
higher than �σm, the bonding of the metals during CW is
enhanced and at pressures lower than �σm it degrades.

In what follows, we shall refer to yield locus as the limit sur-
face of the TBody, thereby emphasizing that it limits the regionΩ
on the ðσ, τÞ plane to which the points representing the stress
states of this body are mapped. The limit surface of the
TBody is a comprehensive characteristic of the bond; it combines
the indicators of its strength, both under tension and shear, and
under combined loading in a condensed form.

Let us elucidate some properties of limit surfaces.
Figure 2 shows that the yield locus expands with a decrease in

θ. This represents strain hardening of the Tbody caused by a
decrease of its porosity. Indeed, the stress states located on
the yield locus for large θ, which gave rise to irreversible defor-
mation of the material, turn out to be located within the yield
locus when θ drops, so that no irreversible deformation occurs.

As discussed earlier, in the region Ω, the inequality f < 0
holds. Given Equation (8), it follows

Gðσ, θÞ ¼ ð1� θÞk2ðσÞ � σ2

ψðθÞ >
τ2

φðθÞ ≥ 0 (16)

Differentiating G with respect to θ, one obtains

∂G
∂θ

¼ �k2ðσÞ þ σ2

ðψðθÞÞ2
dψ
dθ

(17)

With dψ
dθ < 0 (see condition (9)), one has ∂G

∂θ < 0 meaning that
G is a decreasing function of θ. It follows that in order to
fulfil condition (16), the porosity of the TBody must satisfy
the inequality

θ < θ�ðσÞ (18)

where θ� is the solution of the equation

ð1� θ�Þk2ðσÞ � σ2

ψðθ�Þ ¼ 0 (19)

With these considerations in mind, the meaning of condi-
tion (18) is that for a given hydrostatic stress σ, the limit surface
of the TBody must circumscribe the yield locus corresponding to
the porosity θ�ðσÞ.

There is a certain corollary regarding the initial condition for
porosity, θ0, in the TBody problem, which follows from this
requirement. Let θ00 be the initial porosity of the contact zone,
which it had before pressure was applied. If θ00 > θ�ðσÞ, then
according to condition (18), pressure will reduce porosity down
to the value θ�ðσÞ. Physically, this occurs due to flattening of
asperities on rough surfaces under the normal stresses only.
The subsequent shear leads to a further decrease in θ00. The
physical reason for that is a decrease in the load-bearing capacity
of the asperities when shear stresses are applied.[35] In the TBody
model, this corresponds to a transition to the overall limit sur-
face, with a smaller value of θ. The above considerations allow
us to set the following initial conditions for porosity

θ0 ¼
�
θ00, θ00 < θ�ðσÞ
κθ�ðσÞ, θ00 ≥ θ�ðσÞ (20)

where κ < 1 accounts for a decrease in porosity at the onset of
shear. Below we examine the influence of this coefficient on the
solution of the problem.

Let us find out the physical meaning of the parameter α. To
that end, we set kðσÞ ¼ k0 � ασ. After substituting expression (8)
for the loading function into relations (4) and (5) and eliminating
λ, we obtain

eτ
:

φðθÞ ¼ γ
: σ

ψðθÞ þ αð1� θÞðk0 � ασÞ
� �

(21)

Now, making use of Equation (9), we obtain from
Equation (15) for θ ¼ 0

θ̇ ¼ αγ
:

(22)

The latter relation shows that in the initially void-free bulk,
porosity would be generated at a rate of αγ:

:
In the context of

the model, this corresponds to a mismatch between the constit-
uent metals in the structure, which do not fully adjust to each
other during plastic co-deformation. As a result, voids between
them emerge. Thus, the parameter α characterizes the ability of
the elements of a composite structure to mutually accommodate
each other during plastic deformation: the lower its value, the
more effective the accommodation mechanisms are.[43]

Analysis of experiments shows that there are several critical
values of pressure: a new deformation mechanism is activated
each time one of them is exceeded. This gives rise to a decrease
of α with increasing pressure, while in the intervals between crit-
ical pressures α remains constant.[42,44] Schematically, this
behavior reflects the dependence expressed by Equation (14),
which shows that for σ < �ðk1 � k0Þ=α, the coefficient α van-
ishes, meaning that at a sufficiently high pressure, the structural
constituents completely accommodate each other in the process
of plastic deformation.
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The above brief analysis shows that the parameters k0, k1, and
α are internal variables of the TBody integrally characterizing its
structure. Together with the porosity θ, they completely deter-
mine the limit surface of the TBody. The evolution of the
TBody structure is reflected in the internal variable value: when
a CW bond is formed, k0 increases to the level of k1, while the
value of α drops since the strengthening of the metallic bond
between the elements of the structure raises their adhesion to
each other and promotes the accommodation mechanisms.
We consider both of these factors the model proposed.

Let us take k0 the form

k0 ¼ k1ω (23)

where ω ∈ ½0, 1�.
The magnitude of ω depends on the shear strain intensity,

which is calculated using the formula[48]

Γ ¼
ffiffiffi
2

p Z
t

0
γ̇dt (24)

as well as on the pressure, which can also change during defor-
mation. Therefore, ω is a functional of the deformation history in
coordinates ðσ,ΓÞ:

Let us express ω in differential form

dω ¼ CðΓ, σÞdΓ (25)

where CðΓ, σÞ is some function of shear strain intensity and
hydrostatic stress.

According to experiment, the strain dependence of k0 has the
form of an S-shaped curve, which can be taken into account by
presenting CðΓ, σÞ as a rectangular impulse function[49,50]

CðΓ, σÞ ¼

8><
>:
0, at 0 ≤ Γ < Γ1ðσÞ
βðσÞ, at Γ1ðσÞ ≤ Γ < Γ2ðσÞ
0, at Γ2ðσÞ ≤ Γ

(26)

where Γ1ðσÞ and Γ2ðσÞ are the boundaries of the beginning and
end of transformations in the TBody that change the magnitude
of ω. These functions decrease with increasing pressure.[50]

Integration of (25) taking into account (26), with σ ¼ const, yields

ωðΓ, σÞ � ωð0, σÞ

¼

8><
>:
0, at 0 ≤ Γ < Γ1ðσÞ
βðσÞΓ, at Γ1ðσÞ ≤ Γ < Γ2ðσÞ
βðσÞðΓ2ðσÞ � Γ1ðσÞÞ, at Γ2ðσÞ ≤ Γ

(27)

We set the value for k0 at Γ ¼ 0 as k0 ¼ k00 and arrive at the
equation

ωð0, σÞ ¼ k00=k1 (28)

Since the maximum value of ωðΓ, σÞ is equal to 1, we obtain
from Equation (27)

βðσÞ ¼ 1� k00=k1
Γ2ðσÞ � Γ1ðσÞ

(29)

Thus, differential Equation (25), combined with the initial
condition (28) and relations (23), (26), and (29), accounts for
the evolution of the internal variable k0 during CW. After deter-
mining the parameters k00, k1 and the functions Γ1ðσÞ,Γ2ðσÞ in
designated experiments, the above relations make it possible to
find k0in coordinates ðσ,ΓÞ for any deformation history.

Let us show that indirectly, these relations also account for
improved accommodation of the constituent structural elements
when their bond is strengthened. To do this, we represent kðσÞ in
the following form, equivalent to Equation (14)

kðσÞ ¼ k0 � α�σ (30)

where the coefficient α� is given by

α� ¼ αHðσ þ ðk1 � k0Þ=αÞ (31)

Here HðξÞ ¼
�
0, ξ < 0
1, ξ ≥ 0

is the Heaviside function.

In relation (30), instead of the internal variable α, which is
responsible for the accommodation of the TBody structure
as expressed by Equation (14), the parameter α� appears.
Equation (31) shows that with increasing k0, the pressure range
with α� ¼ 0 expands. This means improved accommodation of
the structural elements of the TBody.

For convenience of subsequent analysis of the model and use
of its results, we now write down the constitutive equations of
TBody in their final form.

From (21) and (25) we have

dθ
dΓ

¼ φðθÞð1� θÞffiffiffi
2

p
τ

σ

ψðθÞ þ αð1� θÞkðΓ, σÞ
� �

(32)

dω
dΓ

¼ CðΓ, σÞ (33)

where

CðΓ, σÞ ¼

8>>><
>>>:
0, at 0 ≤ Γ < Γ1ðσÞ
1� k00=k1

Γ2ðσÞ � Γ1ðσÞ
, at Γ1ðσÞ ≤ Γ < Γ2ðσÞ

0, at Γ2ðσÞ ≤ Γ

(34)

τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φðθÞGðσ,Γ, θÞ

p
(35)

Gðσ,Γ, θÞ ¼ ð1� θÞk2ðσ,ΓÞ � σ2

ψðθÞ (36)

kðσ,ΓÞ ¼ k1ω� ασHðσ þ k1ð1� ωÞ=αÞ (37)

The initial conditions (20) and (28) read for Γ ¼ 0

ω0 ¼ k00=k1, θ0 ¼
(
θ00, θ00 < θ�ðσÞ
κθ�ðσÞ, θ00 ≥ θ�ðσÞ (38)

where θ�ðσÞ is the solution of the equation Gðσ, θ�Þ ¼ 0 for κ < 1.
Equation (32)–(38) describe the behavior of the TBody and the

concomitant evolution of the properties of a CW bond. They are
to be solved using the coupled problem approach to metal form-
ing, together with the pertinent equations for the co-deforming
metals comprising the pair to be joined. At the same time, at the
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boundaries between the TBody and the metals of the pair the
requirement of continuity of the velocity field, as well as the
normal and tangential stresses must be imposed.

The problem is significantly simplified if the deformation his-
tory σðΓÞ is known. In this case, Equation (33) can be solved inde-
pendently of (32), which enables finding ωðΓÞ: Substituting this
function into (32) and determining θðΓÞ completely solves the
problem of calculating the limit surface for a given deformation
history of the TBody.

Figure 3a shows the limit surfaces for TBody constructed
according to Equation (15) with the values of θ and ω obtained
by solving Equation (32)–(38) for six deformation histories shown
in Figure 3b. The calculations were performed under the follow-
ing conditions: the functions ψðθÞ and φðθÞ were defined by
Equation (12) with k1 ¼ 1 (all stresses being normalized with
respect to k1), k0,0 ¼ 0.1, α ¼ 0.3; the critical (threshold) strains
Γ1ðσÞ and Γ2ðσÞ are given by the formulas Γ1ðσÞ ¼ �20=σ and
Γ2ðσÞ ¼ �40=σ; κwas set at 0.9.

To conclude this section, we compare our proposed TBody
approach with the film theory (FT),[49] which serves as a basis
for current models of CW that describe joining of metals by plas-
tic deformation under pressure.[16] In outline, FT entails the fol-
lowing concepts: 1) gripping of metals in contact with each other
is hindered by a surface film; 2) under co-deformation of the

metals the contact area is increased leading to destruction of
the film; and 3) under the action of a sufficiently high contact
pressure the metals, now unprotected by a film, are extruded into
gaps between the metals and come into immediate contact,
which leads to the formation of a strong junction. This approach
is effective for CW processes, which involve elongation (rolling,
stamping) when the nominal contact area is increased.[16] Under
simple shear, the nominal contact area is practically unchanged,
so that FT cannot be applied. In that case, the disruption of iso-
lating surface films is associated with an increase of the actual
contact area resulting from rotations caused by simple
shear.[13–15] The phenomenological TBody approach captures
this effect in terms of the ω function expressed by the kinetic
Equation (25). This equation relates the variation of ω to the
increment of the shear strain. The said equation can be comple-
mented by including an additive term on the right-hand side to
account for the variation of ω due to the increase of the nominal
contact area induced by the elongation strain. Such a generalized
formulation would provide the model with the capacity to
describe CW effected by any deformation processes.

4. Experimental Approach and Methodology for
Identifying Model Parameters

Experimental investigations on the welding of samples
through shear deformation under pressure were carried out at
the Institute for Metal Forming Technology (IFU) at the
University of Stuttgart. The thermomechanical testing machine
utilized for these experiments was the Gleeble 3800 C, equipped
with a torsion module capable of both rotational and axial move-
ments. Load cells for torque and axial load measurement, along
with scales for rotation angle and strokemeasurement, were inte-
grated into the machine for precise process control. Movement
profiles were defined by configuring axial and rotational displace-
ment or load and torque limits, allowing for the combination of
both axial and rotational movement.

For this study, aluminum 6060 in a soft annealed state
(380 °C, 1.5 h) served as the material for the specimens.
Cylindrical samples with a diameter of 10mm and a length of
15mm, featuring a contoured face as illustrated in Figure 4a with
a ring-shaped contact area, were employed. A tapered portion on
the outer ring supported the contact layer, and a central hole in
the specimen (∅3.5mm and a depth of 1mm) eliminated areas
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Figure 3. TBody limit surfaces for five deformation histories: a) σ ¼ �0.5,
b) σ ¼ �1, c) σ ¼ �2, d) σ ¼ �3, e) σ ¼ �1 when 0 ≤ Γ < 20, σ
decreases linearly from (�1) to (�3) when 20 ≤ Γ ≤ 40.
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Figure 4. Experimental scheme: a) sample design; b) loading stages.
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of low deformation. The experiments were conducted at room
temperature.

Figure 4b illustrates the four stages of the experiment. In the
initial stage, the samples were compressed with a specified
force—here, 1000 N, corresponding to one-third of the yield
strength. During the second stage, one of the samples underwent
rotation at an angular velocity of 1 rpm until reaching a rotation
angle of 90 degrees, while the compressive force was automati-
cally maintained at the designated level. The third stage involved
the removal of the compressive load, while residual stresses,
expressed in the form of torque, persisted. Finally, in the fourth
stage, the welded joint was subjected to tensile test until failure.

Figure 5 presents the outcomes of shear welding under pres-
sure. In Figure 5a, the visual depiction of the contact surfaces of
the samples is showcased. Upon a straightforward visual exami-
nation of the surfaces post-joint failure, it becomes evident that
the contact area remains virtually unaltered. However, a notable
observation is the presence of numerous microvortices on the
surface, a phenomenon consistently noted in previous instances
of shearing multilayer samples under pressure.[51,52]

Figure 5b illustrates a noteworthy increase in the force
moment during the second stage of the experiment, signaling
the strengthening of the TBody attributed to the formation of
a metallic compound. At the point when the rotation ceased
(25 s), the compression force applied to the samples was
F1 ¼ �1000 N, and the torsional torque was T1 ¼ 6.64 Nm.
Correspondingly, the calculated stresses in the connection zone
(third body), using established relationships for the sample
dimensions depicted in Figure 4a, were normal stress
σn ¼ �34.6 MPa and tangential stress τt ¼ 84.5 MPa. Upon sub-
sequent stretching, the connection failed at a force of
F2 ¼ 330 N, corresponding to a stress σn ¼ 11.4 MPa, and a tor-
sional moment of T2 ¼ 4.15 Nm, corresponding to a tangential
stress τt ¼ 52.8 MPa. These values represent the stresses

averaged over a ring-shaped area of contact between the upper
and the lower specimens (inner diameter 3.5 mm and outer
diameter 7mm), see Figure 4a.

For the evaluation of the characteristics of the TBody, we
assume θ ¼ 0 as a first approximation. The relationship between
τ and σ according to the model is taken in the form

τ ¼ k0 � ασ (39)

Let us formulate this relationship for both instances—when
the rotation stops and when the connection breaks. Utilizing
the relationships τ ¼ ffiffiffiffiffiffiffiffi

2=3
p

σu ¼
ffiffiffiffiffiffiffiffi
2=3

p
⋅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2n þ 3ðτtÞ2

p
, σ ¼ σn=3,

valid for uniaxial loading with shear, and incorporating the stress
values derived earlier, a system of two equations emerges for
determining the parameters k0 and α. The obtained results
are k0 ¼ 87.1 MPa, α ¼ 3.09.

This example underscores the significant impact of the param-
eter α, emphasizing its correlation with a powder material con-
taining solid particles rather than an aluminum alloy.[42,42] As
indicated by relation (32), this results in a rapid increase in
the porosity of the TBody during tension, contributing to a com-
paratively lower tensile strength of the joint when compared with
the inherent strength of the alloy.

The elevated value of α is physically attributed to the presence
of solid inclusions within the material’s structure that exhibits
poor accommodation during deformation. In the TBody, these
inclusions may manifest as metal fragments reinforced by dis-
persed oxides, originally situated on the surface of the welded
samples. Further exploration and discussion of this phenome-
non promise to be of significant interest, with subsequent works
delving into experimental studies on the composition and struc-
ture of the compound. They will be focused on discovering the
optimal ways and parameters of metal bonding leading to a low α
coefficient, similar to that of the original materials, which will
guarantee the integrity and reliability of the bond.

5. Conclusion

The article introduces a novel approach to elucidating the process
of CW between two metals subjected to simple shear under pres-
sure. This method hinges on the concept of a “third body,”
formed by the surfaces and subsurface zones of the two metals
involved in the connection. By adopting this perspective, the
intricate mathematical modeling of the welding process is
streamlined into investigating the limit state of the “third body”
under complex loading conditions. Consequently, the calculation
of the strength of the joint is simplified, in that it is replaced by
the determination of the limiting stresses for the “third body.”

Furthermore, the article proposes rheological relationships for
the “third body,” drawing inspiration from a model featuring a
porous material with a structurally inhomogeneous frame. This
model is demonstrated to accurately capture the joint’s proper-
ties, accounting for the impact of its formation history on weld
strength. The rheological relationships for the “third body” incor-
porate two fitting parameters: the first representing the shear
stress of the frame and the second reflecting the structural
elements’ capacity to adjust during joint deformation.
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Figure 5. The results of the experiment: a) photographs of the samples
before and after the connection was broken; b) plots of the applied force
and torsional moment versus time.
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The experimental methodology for shear welding under pres-
sure is detailed in the article, along with preliminary results. This
practical illustration serves to elucidate the process of determin-
ing the fitting parameters of the proposed model and provides
insightful interpretations within the model’s framework.

We have shown that the concept of a “third body”—a
layer between two contacting metals formed during shear
deformation—is a useful modeling tool to describe the formation
of a bond between the metals. It enables a mathematical descrip-
tion of the deformation of the bond along with the deformation
of the metals forming the joint, as well as its evolution during
subsequent plastic deformation of the resulting composite
material.
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