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A B S T R A C T   

This study describes an AI model by leveraging advanced Convolutional Neural Networks (CNNs) to recognize 
affective states in real-world sports settings, particularly tennis matches. In contrast to prior studies that pri
marily utilized data acquired from actors and rudimentary statistical methods, the present research emphasizes 
the analysis of bodily expressions in real-life contexts, aiming for a more naturalistic representation of human 
emotions. Our CNN-based models demonstrate an accuracy rate of up to 68.9 %, outperforming or matching 
human observers in many instances. Intriguingly, both the machine learning models and human observers 
exhibited a shared propensity to more effectively identify negative affective states, which may be attributed to 
the more intense and straightforward expression of these states. These results not only advance the state of the 
art in affective state recognition but also pave the way for broader applications, including in healthcare and 
automotive safety sectors, thereby constituting a significant advancement in the development of sophisticated 
and universally applicable emotional recognition systems.   

1. Introduction 

Affective processes, encompassing emotions and moods, play a 
pivotal role in various human behaviors and cognitions [1]. These 
processes pervade numerous aspects of life, influencing decisions in 
contexts such as consumer behavior, health care, and occupational ac
tivities [2]. Recognizing affective states in others is deemed a crucial 
ability, especially in professions demanding interpersonal interactions 
[3]. The current research explores the potential for artificial intelligence 
(AI) to recognize affective states in real-life situations, an ability tradi
tionally considered human. 

Affect and emotions are foundational concepts in psychological 
research, often delineated by their complexity and the processes through 
which they are experienced. Affect represents a broader spectrum of 
feelings and states, typically characterized by dimensions such as 
valence (positive or negative) and arousal (high or low), as outlined in 
the Circumplex Model of Affect [4]. Emotions, on the other hand, are 
considered more complex and specific, characterized within categorical 
models that identify discrete emotional states, such as anger, anxiety, or 
happiness [5–7]. Recognizing these distinctions, our study draws upon 

the framework proposed by Baumeister, Vohs, DeWall, and Zhang [8], 
differentiating between automatic affect—rapid, simple affective re
actions captured by dimensional models—and full-fledged emotions, 
which are more nuanced and align with categorical interpretations. 
Importantly, the contextual factors surrounding these affective states 
play a crucial role in their expression and perception, a perspective 
emphasized by Feldman-Barrett’s theory of constructed emotions, 
which posits that emotions are constructed in the moment, through a 
complex interplay of the brain, body, and culture [9]. This under
standing of affect and emotions as contextually driven processes is 
particularly relevant to our analysis of tennis players’ affective states, 
grounding our research in a comprehensive understanding of affective 
processes as they unfold in sports contexts. 

Scherer [10] delineates five key components for assessing affective 
processes: cognitive, neurophysiological, motivational, motor expres
sion, and subjective feeling. While most contemporary methods priori
tize the measurement of subjective feelings, significant advancements 
have occurred in other domains, including cognitive appraisal [11], 
brain mechanisms [12], physiological response [13,14], and expressive 
behavior [15]. Such advancements indicate the absence of a ’gold 
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standard’ in affective measurement, highlighting that these metrics 
capture dimensions of affect rather than discrete emotional states [16]. 
Traditional approaches also face the limitation of failing to capture the 
dynamic nature of affective processes in real-world settings [10]. 

AI offers a promising alternative to traditional measures of affective 
processes, promising non-invasive and continuous assessment of affec
tive states through motor expression. However, the task of recognizing 
affective states from expressive behaviors presents inherent complex
ities and achieves only partial accuracy, even among human evaluators 
[17,18]. One of the challenges lies in the unpredictable and unsystem
atic occurrence of emotions and affective states in real-world scenarios. 
Nonetheless, sports settings offer a unique environment to tackle these 
challenges, given the rich and varied expressions of affective states 
frequently observed in competitive situations. 

In the pursuit of these research objectives, we have developed and 
trained an AI model that demonstrates significant proficiency in classi
fying affective states as either positive or negative in real-world sports 
scenarios. Utilizing video footage from tennis matches as a testbed for 
affective expressions in a real-life context, our model achieved accu
racies that not only are comparable with human evaluators but also in 
certain instances surpass them. Notably, our findings reveal a com
monality between human and machine assessments: both tend to 
recognize negative affective states with greater accuracy, which might 
be attributed to their heightened intensity and more explicit expression. 
The results of this study offer a promising avenue for further research 
and potential applications in various domains beyond sports psychol
ogy, including healthcare and automotive safety. 

In addressing the challenges of affective state recognition in sports, 
particularly in tennis, our research introduces a novel methodological 
approach that significantly advances the field. Unlike existing studies 
that predominantly rely on facial expressions or controlled experimental 
settings [19], our work harnesses the dynamic and complex nature of 
real-world tennis matches, utilizing both posture (joint positions) and 
video frames to analyze athletes’ expressive behaviors. This 
dual-modality approach, combined with advanced CNN architectures, is 
specifically optimized for the task of affect recognition in athletic per
formance. By meticulously developing a dataset that captures the 
authentic expressions of tennis players in competitive scenarios, we 
bridge the gap between theoretical affective computing models and their 
practical application in sports. Furthermore, our methodological in
novations extend beyond the mere application of AI techniques to 
include a comprehensive preprocessing pipeline and a novel dataset, 
setting a new standard for research in the intersection of affective 
computing, AI, and sports psychology 

1.1. Models for affect recognition in real sport scenarios 

In our study of affective states in competitive sports, we identify such 
environments as optimal natural laboratories for observing emotional 
expressions in naturalistic settings [20]. The inherent structure of sports 
competitions, with their well-defined rules and goals, creates scenarios 
that are deeply relevant to an athlete’s immediate goals and elicit 
distinct and pronounced emotional responses. In net and wall games 
such as tennis, badminton, or volleyball, these emotionally charged 
scenarios occur with regularity, driven by the dynamics of winning and 
losing points [21]. This constant ebb and flow in a competition fosters a 
continuous evolution of the player’s emotional state, reflecting the 
real-time successes and setbacks experienced during the game [22]. We 
use the term "affective states in real-life" to refer to these emotional 
responses that occur in direct response to competitive events. The 
emotional salience of these events, whether they are consistent or 
inconsistent with the athlete’s goal (e.g., winning the game), directly 
influences the valence of these affective states, resulting in positive or 
negative emotions based on the outcome’s congruence with the athlete’s 
goals [23]. 

Prior studies, grounded in these theoretical considerations, have 

endeavored to discern whether external human observers can differen
tiate between players having won or lost a point in sports like tennis [17, 
21] and volleyball [24] by analyzing video sequences of the players’ 
expressive behavior. These investigations imply that situational factors, 
such as winning or losing, are closely connected with players’ affective 
states, offering robust indicators of athletes’ emotional conditions. A 
significant obstacle within these studies is that recognition by human 
observers is influenced by multifarious elements, including a) the 
player’s appraisal of the situation, b) the transformation of a player’s af
fective state into discernible expressive behavior, and c) the observer’s 
interpretation of the behavior (see Fig. 1). 

Specifically, the athlete’s appraisal of the situation is not solely influ
enced by the immediate outcome of a point, but also incorporates other 
elements, such as the strategic significance of the point within the 
competition [23]. Such considerations have been found to augment the 
intensity of the emotional response to winning or losing a point, 
particularly during critical phases of a match (e.g., the concluding stages 
of a closely contested game). For instance, Fritsch et al. [25] empirically 
demonstrated that an athlete’s affective state manifested more expres
sively in crucial match situations as compared to less significant con
texts. Consequently, the perceived importance of a situation has a 
tangible impact on the intensity of the affective reaction, underscoring 
the nuanced interplay between context and emotional response in sport. 

In the realm of sports, the translation of affective states into observable 
expressive behavior extends beyond mere emotional reactions and also 
encompasses aspects of social nonverbal communication [26]. In other 
words, the visible behavior is not solely a manifestation of the in
dividual’s affective state but also serves as a communicative signal 
directed at other participants, such as teammates or opponents [27]. 
Expressive behavior, in this context, can be both a genuine reflection of 
the individual’s emotional state and a strategic tool, deliberately sup
pressed or exaggerated to influence others [28]. This dual function of 
expressive behavior has been empirically substantiated in team sports. 
For instance, Fritsch et al. [24] revealed that in volleyball, players 
showed more intense positive affective reactions following a win, 
whereas negative affective reactions were less conspicuously displayed 
after losing points. This underscores the complex interplay between 
expressive behavior, affective states, and social communication in 
sports, where expression becomes both a reflection of emotion and a 
calculated response tailored to specific competitive scenarios. 

The process of recognizing affective states fundamentally relies on 
the observer’s interpretation of expressive behavior, guided by the 
principles outlined in Brunswik’s lens model, wherein the observer 
perceives a configuration of various observable cues [29]. Discerning 
the relevance and meaning of these cues necessitates repeated experi
ence, drawing upon the generalized principles of learning that are 
applicable across animals [e.g. classical and operant conditioning; 30], 
humans [31] and AI [e.g. machine learning; 32]. Such experiential 
learning enables observers to develop an adeptness at interpreting the 
constellation of cues linked to expressive behavior. Supporting this 

Fig. 1. Model of Affect Recognition.  
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notion, Fritsch, Preine [17] found that experts in tennis were more 
proficient at correctly identifying players’ affective responses compared 
to those who were novices in the sport. This underscores the importance 
of experiential knowledge and nuanced understanding in the accurate 
assessment of affective states through observed expressive behavior. 

The model delineated in Fig. 1 posits specific conditions under which 
the recognition of affective states from observed expressions can be 
successfully achieved. First, there must be a clear and discernible link 
between the situation in which the affect is expressed and the in
dividual’s affective state. Second, the intensity of the affective state must 
surpass a certain threshold to manifest externally. Finally, the observ
er—whether human or artificial—must accurately interpret the 
expressive behavior displayed. The successful recognition of the affec
tive state from expressive behavior is contingent upon the concurrent 
fulfillment of these three conditions. The complex interplay among these 
elements highlights the intricate nature of affect recognition and un
derscores the necessity for a nuanced understanding of the underlying 
mechanisms. 

1.2. Automate affect recognition based on AI concerning bodily 
expressions 

Over the past two decades, the convergence of affective computing 
and machine learning has catalyzed the development of diverse meth
odologies for automated affect recognition, leveraging data from phys
iological, auditory, textual, and visual sources [33]. Historically, the 
focus has largely been on facial expressions for emotion recognition, 
constituting approximately 90 % of research in the field [33]. Recent 
shifts towards bodily expressions underscore the expanding interest in 
non-facial cues [34], echoing broader psychological insights that 
emphasize the conveyance of affect through body language [35]. Ad
vancements in capturing body postures and movements via video cam
eras, motion capture, and wearable technologies have broadened the 
scope of research [36–38]. Benchmark databases like FABO [39], 
THEATER Corpus [40], GEMEP [41], and EMILYA [42] play a pivotal 
role in emotion recognition analysis. However, these databases often 
rely on annotations from acted expressions or external human raters, 
which may not accurately reflect real-world affective states [43]. This 
discrepancy highlights the challenges in dataset construction and 
annotation, as identified by Jemioło et al. [44], emphasizing the need for 
datasets that more authentically represent the complexity of affective 
experiences in real-life contexts. 

Affective computing is the study and development of systems and 
devices that can recognize, interpret, process, and simulate human af
fects, essentially bridging the gap between human emotional experi
ences and computational technology [45]. While earlier affective 
computing relied on relatively simple statistical methods, such as deci
sion trees [46], Hidden Naive Bayes [47], analysis of variance [48], or 
cluster analysis, recent advancements have embraced deep learning 
techniques like Convolutional Neural Networks (CNN) and Recurrent 
Neural Network (RNN) [49]. While some studies report high accuracy 
levels, up to 100 %, it’s critical to consider these results in the context of 
the number of emotion categories evaluated. Such high accuracy rates 
often depend on the dataset’s complexity and the specific scenarios 
tested [50]. Hence, a comprehensive understanding of these factors is 
essential before drawing comparisons [44]. Recognizing the importance 
of context, our study emphasizes the need for affect recognition research 
to pivot towards naturalistic scenarios that reflect the complexity and 
spontaneity of human emotions, addressing the challenges of annotation 
validity and ensuring that the affective states recognized by AI systems 
closely mirror those experienced in everyday life. 

1.3. Objectives of the present study 

In light of the prevalent challenges and limitations within the realm 
of affective recognition, particularly issues concerning the validity of 

annotations and the essential need for real-world affective assessment, 
this study sets forth two primary objectives. The first objective of the 
present study is the development of an AI system specifically designed 
for recognizing affective states in real-life situations, as opposed to 
relying on data from acted or posed situations. Recognizing affective 
states in real-life contexts offers superior utility, as it mitigates the 
inherent limitations of using actor-based data, which may not capture 
the nuanced, spontaneous expressions of emotion that occur in everyday 
life. This focus on real-world applicability aligns with emerging research 
emphasizing body language as a more informative medium for gauging 
affective states [39]. The second objective is to rigorously assess the 
performance of the developed affect recognition system. In striving to 
achieve these objectives, this study aspires to introduce a more nuanced 
and applicable methodology to the field of affective recognition, thereby 
filling existing research gaps and enabling more accurate emotional 
understanding in real-world situations. 

2. Methods 

2.1. Data 

The data for this study were derived from tennis matches involving 
15 players (5 females and 10 males), all competing in official contexts 
such as tournaments or league matches. These players, aged between 25 
and 52 years with an average age of 39.2 (SD = 7.1) years, were ama
teurs playing at a competitive level, classified within the German Per
formance Class System (Leistungsklassensystem). The composition of 
our participant pool was influenced by the availability of athletes who 
consented to participate and could be filmed during competition. We 
acknowledge that the gender ratio in our sample does not reflect an 
equal distribution; however, it mirrors the general participation de
mographics within the competitive contexts accessible to our research, 
considering the constraints of athlete availability and willingness to 
participate. Ethical considerations were paramount in the design and 
execution of our study. In compliance with the guidelines of the Ethics 
Committee of the Karlsruhe Institute of Technology, we obtained 
explicit consent from all participants involved, adhering to strict privacy 
policies to ensure the integrity and confidentiality of the data collected. 
Each tennis match was recorded with a focus on capturing the expressive 
behavior of one player at a time, further reflecting our commitment to 
conducting our research in an ethically responsible manner. 

For each point contested within a match, detailed records were 
maintained, including both the score and the outcome of the point. 
Videographic data was captured using a Sony HDR-CX240E Handycam 
(Full HD 1920×1080), equipped with a back-illuminated Exmor R 
CMOS sensor for superior low-light performance. This camera, known 
for its clear image zoom up to 54x and SteadyShot image stabilization, 
was placed near the net to capture one player from a frontal perspective. 
To ensure a consistent frontal view, the camera’s orientation was 
adjusted to the opposite side of the court whenever players switched 
sides (see Fig. 2). 

Fig. 2. The placement and orientation of the camera on the court.  
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Subsequently, the video footage was meticulously edited to isolate 
the segments displaying players’ expressive behavior in the immediate 
aftermath of a rally until the commencement of the subsequent rally. 
The selection criteria for individual points included within the study 
stipulated that the ball’s trajectory must not allow inferences regarding 
the point’s outcome, and that the player’s expressive behavior must be 
discernible in the video recording. These criteria were strictly adhered 
to, enabling us to compile 622 analyzable match scenes from a larger 
pool of video material, where the proportion of points won and lost was 
nearly identical. To avoid introducing any asymmetries in the dataset 
and ensure equitable learning conditions for the AI, we employed a 
stratified sampling method to deliberately select an equal number of 
scenes from won and lost points. This approach allowed us to achieve a 
balanced distribution, resulting in an even allocation of 311 points won 
and 311 points lost. The stratified sampling ensured that the selection 
was not random but systematically aligned with our objective to main
tain parity between the outcomes represented in our dataset. 

The collected video footage of the match scenes underwent a sub
sequent editing process to generate three distinct versions, each 
differing in length. The first version captured the initial three seconds 
following the conclusion of the rally, while the second version encom
passed the first ten seconds post-rally. The third version included the 
entire duration of the pause between rallies; however, if a video scene’s 
length was less than ten seconds in this version, it was allocated to the 
second version category. Empirical findings from studies involving 
human observers have demonstrated that the recognition rate, when 
utilizing video excerpts from the first version (i.e., the initial three 
seconds after the point’s end), was comparable to those obtained from 
the second or third versions of the footage [17]. As a result, it was 
concluded that the first three seconds of video would suffice for a 
human, and therefore also for a neural network, to accurately recognize 
a player’s affective state. Owing to specific computational constraints, 
the analysis actually utilized a slightly extended timeframe—specifi
cally, the first 160 frames were extracted at a 50 FPS rate. This particular 
frame count was chosen as it is divisible by 32, conforming to the input 
requirements of the pre-trained pose network deployed in part of this 
study. 

As delineated in Table 1, the complete dataset comprising 622 match 
scenes was randomly partitioned into two distinct subsets to evaluate 
the model’s performance. Specifically, 500 videos were allocated to the 
training set for the purpose of training the model, while the remaining 
122 videos were designated as a test set. To ensure representativeness, 
an equal distribution of points won and lost was maintained within both 
the training and test sets. 

A neural network was trained to predict the expressive behavior 
corresponding to positive or negative affect as exhibited in the video 
recordings. To facilitate this analysis, joint positions were extracted for 
the players in the videos, allowing the expressive behavior to be assessed 
using either pose data alone, image data alone, or a combination of both, 
utilizing a pre-existing and pre-trained neural network from MMPose 
[MMPose Contributors, 51]. This particular neural network accepts an 
image as input and returns the positional coordinates of every joint for 
each person depicted in the image. The output format is aligned with the 
COCO (Common Objects in Context) dataset and adheres to a specific 
sequence of joint positions. 

Subsequently, this format was mapped to the OpenPose joint posi
tion order, where the neck position—absent in the COCO dataset—was 
computed as the midpoint between both shoulders. The transformation 
of the joint position format was necessitated to enable joint position 

tracking within the videos and to facilitate the creation of skeleton- 
images, following the procedure detailed by Schneider, Sarfraz [52]. 
Their work, involving activity recognition, utilized the OpenPose joint 
position format. In accordance with the methodology employed in our 
study, joint positions were extracted for each image independently, thus 
lacking continuity in the mapping of joint position groups to an indi
vidual person (see Fig. 3). To establish this continuity, a separate pro
gram was implemented by Schneider, Sarfraz [52] to analyze the 
distances between joint positions from one frame to another. Through a 
comparative analysis of these distances, different tracks of joint posi
tions were identified, continuously spanning multiple images. The 
length of these tracks is indicative of the duration a person remained 
visible in the video. 

In the analysis of each video, multiple tracks were identified corre
sponding to various individuals present within the frame. This presented 
a challenge, as only the individual playing in the foreground was 
pertinent to the study, while others, such as spectators or individuals 
participating in adjacent games, were not relevant. To differentiate be
tween the subject of interest and irrelevant individuals, a tailored al
gorithm was employed to define bounding boxes around each person in 
the video sequence. The individual corresponding to the tallest bound
ing box for the majority of the video’s duration was identified as the 
primary subject, a criterion selected on the basis that the person of in
terest, being closest to the camera, appeared taller than others in the 
background. This specific track was consequently designated as the 
primary subject’s track for the analysis. 

For the specific condition involving pose, the relevant pose data were 
extracted from the video sequences, focusing on the identified tracks of 
joint positions over time for the main subject. Utilizing skeleton-image 
encoding, a methodology described by Caetano, Sena [53], the trajec
tories of the joint positions were processed. Both magnitude and 
orientation were encoded, with each stored in a distinct file for every 
video and encompassing the entire track. Within the resulting matrix, 
the rows were structured to encode the spatial configuration of the 
joints, while the depth layers of the image were determined as one for 
the magnitude and three for the orientation matrices. By maintaining 
the magnitude and orientation as separate files, the data were prepared 
in a format amenable for direct utilization as input to a neural network, 
facilitating subsequent analysis. 

In the case of image data, it was imperative that the neural network’s 
focus be directed solely toward the relevant player within the video. To 
achieve this, the portion of the image encapsulating the player was 
isolated and cropped. Utilizing the player’s joint positions, which were 
previously extracted, a bounding box containing all of the player’s joints 
was defined. This bounding box, complete with additional padding, was 

Table 1 
Training and test set split.   

N N win N loose 

Train 500 250 250 
Test 122 61 61  Fig. 3. Sample cropped image with visualized joint positons.  
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then cut out to create a fixed square size with the player centrally 
positioned. The inclusion of padding ensured that the player remained 
fully within the frame, compensating for potential inaccuracies in joint 
position detection. In instances where players momentarily exited the 
frame, a bounding box of fixed size was maintained from the point at the 
frame’s edge where the player departed, holding this position until the 
player’s return. This occurrence was rare, and each instance was 
meticulously reviewed to ensure consistency in the approach. 

2.2. Model structure 

The structure of the model is delineated into two primary networks: 
the pose network and the image network. The pose network operates on 
pose data, specifically utilizing skeleton images as fabricated in the 
previous section, whereas the image network directly engages with the 
image data. These two networks are subsequently integrated into a 
composite network, amalgamating information from both the pose and 
image networks. Generally, the input to these networks comprises in
formation from 32 frames, though an extended sequence length of 64 
frames was also investigated to discern the impact of sequence duration. 
The unifying output across all networks is a one-dimensional binary 
discrete prediction, discerning whether the preceding point in a given 
situation was lost or won. 

The architecture of the pose network is conceived as a CNN. Predi
cated on a framework proposed and pre-trained by Schneider, Sarfraz 
[52] for an action recognition classification task, the architecture un
dergoes adaptation by replacing the final two fully connected layers 
with new ones to facilitate retraining for the affect recognition task (see 
upper part of Fig. 4). Conversely, the image network is constructed on 
the foundations of the S3D network, as proposed by Min and Corso [54], 
and pretrained on the Kinetics-400 dataset for an analogous action 
recognition classification task [55]. Manifested as a 3D-CNN network, it 
augments the traditional CNN architecture by introducing time as a 
third dimension. To allow retraining for affect recognition, the terminal 
convolutional layer is replaced by two new convolutional layers (see 

lower part of Fig. 3). 
The outputs of both networks are flattened and concatenated 

following the final layers, culminating in a unified feature vector. This 
vector is subsequently subjected to a linear layer, culminating in the 
final classification result (see Fig. 3). The employment of the S3D 
network architecture prescribes a fixed timeframe for analysis, an 
attribute not necessary with an RNN architecture. Within this particular 
application, the emphasis is placed on the examination of discrete 
temporal segments, seeking cues within the player’s body language. To 
facilitate the identification of such cues, the input was methodically 
confined to a fixed size, encompassing either 32 or 64 frames, as dictated 
by the specifications of the network. 

To ensure a comprehensive and robust evaluation of the model’s 
performance, we implemented four distinct test modes, as detailed in 
Table 2. Test Mode 1 entailed the analysis of a 32-frame segment, chosen 
randomly from the preliminary 160 frames of the video. Test Mode 2 
examined the video in its entirety, utilizing all 160 frames. Test Modes 3 
and 4 both utilized the full span of 160 frames but divided the frames 
into five equidistant segments, each comprising 32 frames. Conse
quently, both these modes generated five distinct neural network pre
dictions. For Test Mode 3, these outcomes were averaged to yield a 
collective prediction. Test Mode 4, in contrast, relied on a majority 
voting mechanism wherein individual predictions were rounded based 
on their proximity to a median value. This approach mainly manifested 
divergent results when the predictions hovered around the midpoint; 
otherwise, the outcomes between the two methods were largely 

Fig. 4. Architecture of the combined network with pose network at the top and the image network at the bottom. Note: The green parts represent the adjusted layers 
of the original networks. 

Table 2 
Settings for different test modes.  

Test Mode # frames # samples selection method combination method 

1 32 1 Random – 
2 160 1 All – 
3 32 5 Sequential Average 
4 32 5 Sequential Majority voting  
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congruent. 
In the computational setup for training our models, we utilized 

servers equipped with Nvidia GeForce graphics cards of the GTX series, 
which feature up to 12GB of graphics memory. In the process of model 
training, three distinct network types were employed: the pose network, 
the image network, and a combined network variant. These networks 
were subject to training using various hyperparameters, the objective 
being to ascertain the network configuration that yielded the most 
efficacious performance metrics. The hyperparameters selected for the 
experimental comparison of these models encompassed the optimizer, 
the learning rate, and the decision as to whether the entire pre-trained 
model would be fine-tuned to the newly acquired data. Within the 
realm of optimizers, both the Adaptive Moment Estimation (Adam) 
optimizer and the Stochastic Gradient Descent (SGD) optimizer were 
subjected to comparative analysis. The learning rates that were evalu
ated spanned a range, varying in powers of ten, from 0.1000 down to 
0.0001. The specific hyperparameters corresponding to the models that 
demonstrated the most favorable results are documented in Table 3. 

2.3. Statistical analysis 

In order to assess the performance of the models presented in Table 3 
this study employed metrics such as the accuracies, precision, recall, F1 
score, and ROC-AUC score. The accuracy metric reflects the proportion 
of all predictions that the AI got correct, be it for won or lost points. An 
accuracy of 0.50 corresponds to the guess probability. A high accuracy 
indicates a significant alignment between the AI’s estimations and the 
actual point outcomes. Precision denotes the proportion of points the AI 
correctly identified as ’won’ out of all its ’won’ predictions. Recall 
provides insight into the AI’s ability to detect truly won points. It 
measures the fraction of actual ’won’ points that the AI managed to 
correctly identify. F1 Score is a harmonic mean of precision and recall, it 
balances the trade-off between precision and recall. It is especially 
valuable when class distributions are imbalanced. The Negative Pre
dictive Value (NPV) is defined as the proportion of accurately identified 
lost points relative to the total number of lost points. Conversely, the 
Positive Predictive Value (PPV) quantifies the likelihood of correctly 
identifying won points among the overall set of won points. Receiver 
Operating Characteristic - Area Under the Curve (ROC-AUC) metric is 
instrumental in gauging the AI’s capacity to distinguish between won 
and lost points. The ROC-AUC of 0.50 corresponds to the guess proba
bility. A high ROC-AUC score reveals that the model can effectively 
differentiate outcomes based on body language, independent of the 
specific classification threshold chosen. ROC-AUC is equivalent to ac
curacy when the outputs can only take discrete binary values. 

3. Results 

Table 4 elucidates the performance characteristics of the top seven 
models, as further outlined in Table 3. The accuracy ranged from 63.9 % 
to 68.9 %, with the image network basing on sequence length of 64 
frames in test mode 1 (Image 64 t1) achieving the highest accuracy of 
68.9 %. In contrast, both Pose t1 and Image t2 demonstrated the lowest 

accuracy of the seven best models used in this study, standing at 63.9 %. 
Precision values varied considerably, from 62.7 % (Image t2) to 80.6 % 
(Image 64 t3). Likewise, recall values exhibited a range between 41.0 % 
(Image 64 t3) and 80.3 % (Combined t1), demonstrating the trade-off 
between the two metrics. The F1 score, which provides a balanced 
view of precision and recall, had a maximum value of 71.0 % for 
Combined t1. Image 64 t1 and Image t3 followed closely, registering F1 
scores of 64.2 % and 66.7 % respectively. NPV ranged from 60.4 % 
(Image 64 t3) to 73.3 % (Combined t1), while PPV spanned between 
62.7 % (Image t2) and 80.6 % (Image 64 t3). It should be noted that the 
ROC-AUC values mirror the accuracy values because our output only 
took discrete binary values (point won vs. point lost) without rounding. 

4. Discussion 

The primary aim of this research was to develop a machine learning 
model designed to identify affective states by analyzing bodily expres
sions, using video footage from tennis matches as a data source. Our 
approach distinguishes itself primarily by its focus on real-life sports 
situations for model training, in contrast to other methodologies that 
often rely on data obtained in controlled laboratory settings with actors. 
We contend that by training our model on more naturalistic contexts, we 
are better positioned to make reliable predictions in real-world sce
narios. While this work strives to be a valuable contribution to the 
emerging field of applying AI algorithms for emotional state detection in 
real-world athletic settings, it is important to acknowledge that the field 
is rapidly evolving, and other parallel efforts may also be in progress. 

In the current investigation, the most robust accuracy of 68.9 % was 
achieved by utilizing an image-based neural network with a sequence 
length of 64 frames in Test Mode 1. This performance aligns well with 
existing literature in the domain of gesture-based emotion recognition. 
Comparing our results with state-of-the-art methods highlights the 
contributions of our study to the field of affective computing. Recent 
studies, such as those by Ly, Lee, Kim, and Yang [56], have reported 
accuracies in the vicinity of 67.5 % utilizing a combination of CNN and 
ConvLSTM networks, drawing from databases like FABO. Similarly, 
Avola et al.’s research [57], employing an LSTM-MLP hybrid model on 
the UCLIC Affective Body Posture and Motion database, achieved ac
curacies between 35.0 % and 78.9 % for different affective postures. In 
the sports context, however, we are not aware of any study that has 
examined the accuracy of emotion recognition by AI. The advantage of 
our method is underscored by its application in real-life contexts, 
providing a more accurate reflection of genuine affective states as 
opposed to the controlled or acted expressions often used in training 
datasets. This aspect underlines the significance of our work within the 
broader trajectory of affective computing research, marking a step for
ward in the development of AI systems capable of emotion recognition 
in complex, real-life situations. 

For transparency, comparisons with human observers have been 
made, and our trained model shows comparable, if not superior, per
formance. The studies that were based on the same sample of video 
footage revealed an average human observer accuracy between 55.9 % 
and 63.0 %, with individual rates reaching as high as 75.0 % [17,21], 

Table 3 
Overview of the optimal hyperparameter configurations for the models.  

Model Model type Test Mode Optimizer Learning rate Fine-tuning Seq length 

1. Pose t1 Pose 1 SGD 0.0001 False 32 
2. Image t1 Image 1 SGD 0.0010 True 32 
3. Image t2 Image 2 Adam 0.0010 True 32 
4. Image t3 Image 3 Adam 0.1000 False 32 
5. Image 64 t1 Image 4 Adam 0.0010 False 64 
6. Image 64 t3 Image 1 SGD 0.0010 False 64 
7. Combined t1 Combined 1 SGD 0.1000 True 32 

Note: pose = model type pose; image = model type image; combined = model type combined; t1 = test mode 1; t2 = test mode 2; t3 = test mode 3; t4 = test mode 4; 64 
= sequence length of 64 frames. 
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and are thus comparable to the accuracies achieved by our CNN models. 
This suggests that the machine learning algorithms applied here offer 
equal or greater proficiency in identifying affective states from expres
sive behaviors of tennis players compared to human observers. How
ever, it’s worth noting that both human cognition and AI present unique 
challenges in accurately recognizing affective states. Human affect 
recognition may be influenced by subjective biases [58], emotional state 
[59], or cultural background [60], which can impede objective assess
ment. On the other hand, AI models like CNNs may struggle with issues 
related to the learning with imbalanced data, the validity of training 
data, generalization to diverse situations, or interpreting nuanced, 
context-dependent expressions [61]. These issues highlight the inherent 
biases in AI methodologies, emphasizing the need for careful consider
ation in the design and application of machine learning algorithms for 
affect recognition. 

A closer examination of performance metrics reveals intriguing 
patterns, such as the Image 64 t3 model’s 90.2 % accuracy rate in 
identifying negative affective states for points lost. This high accuracy 
underscores the model’s sensitivity to subtle cues indicative of negative 
emotions, a finding that aligns with psychological theories suggesting 
that humans are more attuned to recognizing negative emotional ex
pressions due to their evolutionary significance [62]. The trend 
observed in our models, where accuracy for negative states generally 
exceeds that for positive states, is consistent with findings from 
human-based studies [17,24], where human observers showed a higher 
recognition rate for negative affective states (ranging from 60.1 % to 
68.3 %) compared to positive affective states (ranging from 51.1 % to 
56.6 %). This context helps to understand the significance of the 90.2 % 
figure, which highlights the advanced capabilities of CNN models in 
emotion recognition, especially for negative states, compared to tradi
tional human observer-based assessments. 

A closer examination of performance metrics reveals some intriguing 
patterns. For instance, the Combined T1 model displayed an accuracy 
rate of 80.3 % for identifying positive affective states during points won, 
whereas the Image 64 t3 model achieved a 90.2 % accuracy rate for 
detecting negative affective states during points lost (as mentioned in 
the previous paragraph). In five out of the seven models under investi
gation, the accuracy for identifying negative affective states outstripped 
that for positive states. 

The propensity for both CNNs and human observers to more accu
rately identify negative affective states than positive ones may be 
multifaceted, encompassing both evolutionary underpinnings and psy
chosocial factors. From an evolutionary perspective, the ability to 
rapidly recognize and respond to negative emotional states is advanta
geous, as these states often signal imminent threats or unfavorable cir
cumstances requiring swift action [63]. Additionally, negative emotions 
tend to manifest through more salient and universally recognizable 
facial expressions, body language, and physiological changes, making 
them easier to detect. In social contexts, the accurate identification of 
negative emotions is crucial for maintaining social cohesion, as it allows 
for timely intervention and support [64]. Moreover, empirical studies 

suggest that individuals often experience negative affective states with 
greater intensity than positive ones, further amplifying the physiological 
and expressive cues associated with them [62]. Consequently, this 
heightened intensity might make negative affective states more readily 
recognizable. Collectively, these factors suggest that both machine 
learning algorithms and human cognitive processes are more finely 
tuned to the cues and expressions associated with negative affective 
states, thereby accounting for the higher rates of accurate identification. 

The study employs an innovative methodology for the accurate 
assessment of affective states in real-world settings, specifically utilizing 
objective situation descriptors like "points won" or "points lost" in tennis 
matches. This methodology is strengthened by the standardized rules of 
the sport, which generally yield consistent appraisal mechanisms across 
players, thereby enhancing the accuracy of interpretive analyses. 
However, the accuracy of this method for recognizing affective states is 
conditional upon three primary factors. First, it assumes a uniformity in 
how players evaluate situations, a premise that, while supported to some 
extent by existing studies [25], still necessitates further empirical vali
dation for accuracy. Second, the accuracy of affective state recognition 
can be affected by the level of affective expressivity displayed by the 
observed individual, and may be compromised if true affective states are 
masked for social or strategic reasons. Lastly, the accurate recognition of 
affective states hinges on the precise interpretation of expressive cues, a 
challenge that presents inherent difficulties for both human evaluators 
and AI systems. Consequently, achieving complete accuracy in affect 
recognition in real-world settings remains an aspirational goal, given the 
three conditions that influence the detection and interpretation of 
expressive cues have yet to be fully satisfied by either human observers 
or AI systems. 

Furthermore, we acknowledge the critical importance of fairness in 
AI and affective computing research. While our study focused on the 
technical aspects of emotion recognition, the aspect of fair
ness—ensuring equitable and bias-free models—remains a paramount 
concern for future work [65]. As AI technologies continue to evolve, 
dedicating efforts to understand and mitigate potential biases becomes 
essential to developing tools that are just and equitable for all users. 

4.1. Strength and limitations 

This study has a number of strengths and limitations. A significant 
strength of this study lies in the annotation method employed. By 
referring to objective indicators in situational contexts, the study ad
vances a novel form of affective state assessment. Furthermore, the use 
of real-life video footage from actual tennis matches enhances the 
ecological validity of the research. This provides an understanding of 
how affective states are naturally experienced and expressed. 

One clear limitation is the restricted size of the video dataset. A 
limited dataset size constrains the model’s learning capacity, potentially 
affecting the accuracy and generalizability of the neural network. 
Additionally, the small test set of 122 videos may result in inflated dif
ferences between model performances. Additionally, all video footage 

Table 4 
Overview of the performance indicators.  

Model True Positives True Negatives False Positives False Negatives ACC F1 Precision Recall NPV PPV ROC-AUC score 

n % n % n % n % 

Pose t1 33 27.0 45 36.9 16 13.1 28 23.0 63.9 60.0 67.4 54.1 61.6 67.3 0.639 
Image t1 34 27.9 45 36.9 16 13.1 27 22.1 64.8 61.3 68.0 55.7 62.5 68.0 0.648 
Image t2 42 34.4 36 29.5 25 20.5 19 15.6 63.9 65.6 62.7 68.9 65.5 62.7 0.639 
Image t3 39 32.0 44 36.1 17 13.9 22 18.0 68.0 66.7 69.6 63.9 66.7 69.6 0.680 
Image 64 t1 34 27.9 50 41.0 11 9.0 27 22.1 68.9 64.2 75.6 55.7 64.9 75.6 0.689 
Image 64 t3 25 20.5 55 45.1 6 4.9 36 29.5 65.6 54.3 80.6 41.0 60.4 80.6 0.656 
Combined t1 49 40.2 33 27.0 28 23.0 12 9.8 67.2 71.0 63.6 80.3 73.3 63.6 0.672 

Note: pose = model type pose; image = model type image; combined = model type combined; t1 = test mode 1; t2 = test mode 2; t3 = test mode 3; t4 = test mode 4; 64 
= sequence length of 64 frames; ACC = accuracy; NPV = Negative Predictive Value; PPV = Positive Predictive Value; ROC-AUC score = Receiver Operating Char
acteristic - Area Under the Curve. 
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was confined to a tennis hall environment, subjecting the data to specific 
lighting conditions that occasionally impaired visibility. Further, the 
participant demographic was limited to competitive tennis players of 
young to middle adult age from the European region. A more diverse 
participant pool across skill levels, ages, and ethnic backgrounds could 
enrich the dataset and improve the model’s applicability. In addition, 
the study could benefit from higher-resolution video capture to glean 
more nuanced details of expressive behavior. The involvement of a 
professional camera operator could further refine the quality of the 
collected data. Finally, creating high-quality videographic data in real- 
life scenarios presents its own set of challenges, including varying 
environmental conditions and the unpredictability of live events, which 
can complicate data collection and affect the fidelity of the captured 
footage. 

4.2. Implications for research and practice 

To mitigate these limitations, subsequent research should focus on 
expanding the dataset both in terms of volume and diversity. High- 
resolution video equipment and professional camera operation could 
also enhance data quality. If these limitations are addressed and a suf
ficiently accurate neural network is developed, the system’s application 
could potentially extend to various other domains such as healthcare, 
automotive safety, and workplace environments. Such advancements 
would not only improve the understanding of human affective expres
sive behavior but also facilitate the development of non-invasive, reli
able systems for measuring affective states across diverse contexts. 

In addressing the critical need for comparative analysis between AI 
and human observers in recognizing affective states, future research 
should systematically explore the distinctions and similarities in their 
performance. Such studies could offer invaluable insights into the pre
cision, biases, and efficiency of both AI systems and human judgment in 
interpreting expressive behavior. This endeavor not only holds the 
promise of advancing our understanding of affective state recognition 
technologies but also of enhancing the applicability of these tools in real- 
world scenarios where nuanced interpretation of human emotions is 
crucial. 

The findings from this study underscore the importance of exploring 
machine learning methodologies for affective state recognition in sports 
contexts. One clear avenue for future research is to investigate the 
observed divergence between machine and human performance in 
recognizing positive versus negative affective states. Understanding the 
biases or strengths in the employed algorithms could offer insights into 
the mechanisms driving these variances. Further studies could also delve 
into the effect of sequence length and test modes on model performance, 
potentially contributing to the refinement of future affective recognition 
systems. Moreover, the observed limitations in affective state recogni
tion, both in human observers and AI systems, call for multi-disciplinary 
research involving psychology, data science, and sports science. Such 
collaborations could facilitate the development of more nuanced and 
accurate models that better mimic human appraisal mechanisms. 

For professionals in the sports sector, the study’s outcomes could be 
particularly impactful. Coaches, athletes, and sport psychologists could 
benefit from a system capable of recognizing affective states, allowing 
for more targeted emotional regulation strategies. Automated real-time 
emotional analysis could provide a data-driven basis for tactical or 
motivational adjustments during a match or training. Furthermore, 
sports organizations could potentially adopt these machine-learning 
models for fan engagement activities, offering real-time emotional 
narratives of ongoing matches. However, caution must be exercised in 
the ethical application of such technologies, especially in regard to 
player consent and data privacy. 

The potential ramifications of this research extend far beyond the 
sports arena, offering transformative possibilities across multiple sec
tors. In healthcare, the algorithmic recognition of affective states could 
significantly enhance patient monitoring and personalized care, 

potentially identifying early signs of emotional or psychological distress 
that may otherwise go unnoticed. In automotive safety, an under
standing of the driver’s emotional state could trigger appropriate pre
ventive measures, such as alerting systems or automated driving 
controls, to minimize the risk of accidents caused by emotional 
impairment. Similarly, in sectors like education, customer service, and 
mental health, the nuanced understanding and recognition of human 
emotions could pave the way for more empathetic and effective in
teractions. Also, in areas such as robotics or Human-AI Interaction, 
successful detection of the user’s affective state can influence how ma
chines act and behave towards humans and thus yield a better user 
experience. Future research could focus on adapting the algorithms for 
these specific applications, including considerations for ethical impli
cations and data privacy, to fully harness the potential of affective state 
recognition in creating more adaptive and responsive systems across 
these diverse fields. 

5. Conclusion 

In summary, this study serves as a milestone in the utilization of 
machine learning for affective state recognition in real-world sports 
contexts. Our findings indicate that machine learning models can 
outperform human observers in affective state recognition. Notably, 
both machine learning models and human observers displayed a com
mon tendency to more accurately recognize negative affective states, 
potentially due to their heightened intensity and more explicit expres
sion. The implications of this research are far-reaching, impacting sec
tors such as healthcare and automotive safety where understanding and 
recognizing human emotions can be transformative. By laying the 
foundation for substantial improvements through larger and more 
diverse datasets and higher-quality video capture, this study sets the 
stage for the development of non-invasive, highly accurate systems for 
detecting human affective states across a range of applications. 
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